Show simple item record

dc.contributor.authorWhelan, Alisonen
dc.contributor.authorLally, Caitrionaen
dc.contributor.authorMurphy, Bruceen
dc.date.accessioned2020-02-03T16:46:49Z
dc.date.available2020-02-03T16:46:49Z
dc.date.issued2019en
dc.date.submitted2019en
dc.identifier.citationAlix Whelan, Collagen fibre orientation and dispersion govern ultimate tensile strength, stiffness and the fatigue performance of bovine pericardium, Journal of the Mechanical Behavior of Biomedical Materials, 90, 2019, 54 - 60en
dc.identifier.issn1751-6161en
dc.identifier.otherYen
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1751616118305204?via%3Dihub#!
dc.identifier.urihttp://hdl.handle.net/2262/91424
dc.descriptionPUBLISHEDen
dc.description.abstractThe durability of bovine pericardium leaflets employed in bioprosthetic heart valves (BHVs) can significantly limit the longevity of heart valve prostheses. Collagen fibres are the dominant load bearing component of bovine pericardium, however fibre architecture within leaflet geometries is not explicitly controlled in the manufacture of commercial devices. Thus, the purpose of this study was to ascertain the influence of pre-determined collagen fibre orientation and dispersion on the mechanical performance of bovine pericardium. Three tissue groups were tested in uniaxial tension: cross-fibre tissue (XD); highly dispersed fibre-orientations (HD); or preferred-fibre tissue (PD). Both the XD and PD tissue were tested under cyclic loading at 1.5 Hz and a stress range of 2.7 MPa. The results of the static tensile experiments illustrated that collagen fibre orientation and degree of alignment significantly influenced the material's response, whereby, there was a statistically significant decrease in material properties between the XD groups and both the PD and HD groups for ultimate tensile strength and stiffness (p < 0.01). Furthermore, HD tissue had a stiffness of approximately 58% of the PD group, and XD tissue had a stiffness of approximately 18% of the PD group. The dynamic behaviour of the XD and PD groups was extremely distinct; for example a Weibull analysis indicated that the 50% probability of failure in specimens with fibres orientated perpendicular (XD) to the loading direction occurred at 375 cycles. Due to this failure, XD specimens survived on average less than 20% of the cycles completed by those in which fibres were aligned along the loading direction (PD). The results from this study indicate that fibre architecture is a significant factor in determining static strength and fatigue life in bovine pericardium, and thus must be incorporated in the design process to improve future device durability.en
dc.format.extent54en
dc.format.extent60en
dc.language.isoenen
dc.relation.ispartofseriesJournal of the Mechanical Behavior of Biomedical Materialsen
dc.relation.ispartofseries90en
dc.rightsYen
dc.subjectBiomechanicsen
dc.subjectValveen
dc.subjectPericardiumen
dc.subjectCollagenen
dc.subjectFatigueen
dc.subjectStructureen
dc.titleCollagen fibre orientation and dispersion govern ultimate tensile strength, stiffness and the fatigue performance of bovine pericardiumen
dc.typeJournal Articleen
dc.contributor.sponsorIrish Research Council (IRC)en
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/whelana5en
dc.identifier.peoplefinderurlhttp://people.tcd.ie/murphb17en
dc.identifier.peoplefinderurlhttp://people.tcd.ie/lallycaen
dc.identifier.rssinternalid192825en
dc.identifier.doihttp://dx.doi.org/10.1016/j.jmbbm.2018.09.038en
dc.rights.ecaccessrightsopenAccess
dc.contributor.sponsorGrantNumberEBPPG/2016/353en
dc.relation.sourceJournal of the Mechanical Behaviour of Biomedical Materialsen
dc.subject.TCDThemeNext Generation Medical Devicesen
dc.subject.TCDTagBiomechanics, Biomedical Engineeringen
dc.relation.sourceurihttps://linkinghub.elsevier.com/retrieve/pii/S1751616118305204en
dc.status.accessibleNen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record