Efficient Subset Simulations using Hamiltonian Neural Network enhanced Markov Chain Monte Carlo methods
Citation:
Denny Thaler, Somayajulu Dhulipala, Franz Bamer, Bernd Markert, Michael Shields, Efficient Subset Simulations using Hamiltonian Neural Network enhanced Markov Chain Monte Carlo methods, 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Dublin, Ireland, 2023.Download Item:

Abstract:
The Monte Carlo method delivers an unbiased estimate of the probability of failure. However, the variance of the estimate depends on the number of evaluated samples. This number must be very large for estimations of a low probability of failure. If the evaluation of each sample is computationally expensive, the crude Monte Carlo simulation strategy is impracticable. Therefore, subset simulations are used to reduce the required number of evaluations. Subset simulations require a Markov Chain Monte Carlo sampler, such as the random walk Metropolis-Hastings algorithm. The algorithm, however, struggles with sampling in low-probability regions, especially if they are narrow. As a consequence, advanced Markov Chain Monte Carlo simulations have been developed. In particular, the Hamiltonian Monte Carlo method explores the target distribution rapidly. Driven by the idea of Hamiltonian dynamics, this sampler provides a non-random walk through the target distribution. The incorporation of subset simulation and Hamiltonian Monte Carlo methods has shown promising results for reliability analysis. One downside of the Hamiltonian Monte Carlo method is that gradient evaluations are computationally expensive, especially when dealing with high-dimensional problems and evaluating long trajectories. We show that integrating Hamiltonian neural networks in Hamiltonian Monte Carlo simulations significantly speeds up the sampling task. Furthermore, the enhancement of adaptive trajectory length within the Hamiltonian Monte Carlo results in the efficient proposal of the following states. Based on this recent enhancement, we provide a fast sampling strategy for subset simulations using Hamiltonian neural networks to replace the evaluation of the gradient and significantly speed up the Hamiltonian Monte Carlo simulation.
Description:
PUBLISHED
Author: ICASP14
Other Titles:
14th International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP14)Type of material:
Conference PaperCollections:
Series/Report no:
14th International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP14)Availability:
Full text availableLicences: