Show simple item record

dc.contributor.authorSHVETS, IGORen
dc.contributor.editorV Grushko1, O Lübben, A N Chaika, N Novikov, E Mitskevich, A Chepugov, O Lysenko, B E Murphy, S A Krasnikov and I V Shvetsen
dc.date.accessioned2014-10-14T10:24:16Z
dc.date.available2014-10-14T10:24:16Z
dc.date.issued2013en
dc.date.submitted2013en
dc.identifier.citationAtomically resolved STM imaging with a diamond tip: simulation and experiment, 25, 025706, 2013, V Grushko1, O Lübben, A N Chaika, N Novikov, E Mitskevich, A Chepugov, O Lysenko, B E Murphy, S A Krasnikov and I V Shvets, eds.en
dc.identifier.otherYen
dc.identifier.urihttp://hdl.handle.net/2262/71491
dc.descriptionPUBLISHEDen
dc.description.abstractThe spatial resolution of a scanning tunneling microscope (STM) can be enhanced using light element-terminated probes with spatially localized electron orbitals at the apex atom. Conductive diamond probes can provide carbon atomic orbitals suitable for STM imaging with sub-Ångström lateral resolution and high apex stability crucial for the small tunneling gaps necessary for high-resolution experiments. Here we demonstrate that high spatial resolution can be achieved in STM experiments with single-crystal diamond tips, which are generally only considered for use as probes for atomic force microscopy. The results of STM experiments with a heavily boron-doped, diamond probe on a graphite surface; density functional theory calculations of the tip and surface electronic structure; and first-principles tunneling current calculations demonstrate that the highest spatial resolution can be achieved with diamond tips at tip–sample distances of 3–5 Å when frontier p-orbitals of the tip provide their maximum contribution to the tunneling current. At the same time, atomic resolution is feasible even at extremely small gaps with very high noise in the tunneling current.en
dc.language.isoenen
dc.relation.ispartofseriesAtomically resolved STM imaging with a diamond tip: simulation and experimenten
dc.relation.ispartofseries25en
dc.relation.ispartofseries025706en
dc.relation.uridoi:10.1088/0957-4484/25/2/025706en
dc.rightsYen
dc.subjectCondensed matteren
dc.subjectelectrical, magnetic and optical surfacesen
dc.typeJournalen
dc.contributor.sponsorRussian Academy of Sciencesen
dc.contributor.sponsorMarie Curieen
dc.contributor.sponsorDepartment of Industry of the Basque Governmenten
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/ivchvetsen
dc.identifier.rssinternalid97190en
dc.rights.ecaccessrightsopenAccess
dc.contributor.sponsorGrantNumberRFBR grant no. 11-02-01256en
dc.relation.citesCitesen
dc.subject.TCDThemeNanoscience & Materialsen
dc.subject.TCDTagNanotechnologyen
dc.subject.TCDTagPhysicsen
dc.identifier.rssurihttp://iopscience.iop.org/0957-4484/25/2/025706/articleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record