Show simple item record

dc.contributor.authorRUNGGER, IVANen
dc.contributor.authorSANVITO, STEFANOen
dc.date.accessioned2010-07-14T10:04:24Z
dc.date.available2010-07-14T10:04:24Z
dc.date.issued2010en
dc.date.submitted2010en
dc.identifier.citationA. Biliæ, . Crljen, B. Gumhalter, J. D. Gale, I. Rungger, and S. Sanvito, Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence, Physical Review B, 81, 15, 2010, 155101en
dc.identifier.otherYen
dc.identifier.urihttp://hdl.handle.net/2262/40310
dc.descriptionPUBLISHEDen
dc.description.abstractCharge transport through a molecular junction comprising an oligomer of p-phenylene-vinylene between gold contacts has been investigated using density-functional theory and the nonequilibrium Green?s function method. The influence of the contact gap geometry on the transport has been studied for elongated and contracted gaps, as well as various molecular conformations. The calculated current-voltage characteristics show an unusual increase in the low bias conductance with the contact separation. In contrast, for compressed junctions the conductance displays only a very weak dependence on both the separation and related molecular conformation. However, if the contraction of the gap between the electrodes is accommodated by tilting the molecule, the conductance will increase with the tilting angle, in line with experimental observations. It is demonstrated that the effect of tilting on transport can be interpreted in a similar way to the case of the stretching the junction with a molecule in an upright position. The lowest conductance was observed for the equilibrium gap geometry. With the dominant transport contribution arising from the ? system of the frontier junction orbitals, all the predicted increases in the conductance arise simply from the better band alignment between relevant frontier orbitals at the nonequilibrium geometries at the expense of weaker coupling with the contacts.en
dc.format.extent155101en
dc.language.isoenen
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseries81en
dc.relation.ispartofseries15en
dc.rightsYen
dc.subjectAtomic, molecular and chemical physicsen
dc.subjectgap geometryen
dc.titleConductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependenceen
dc.typeJournal Articleen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/sanvitosen
dc.identifier.rssinternalid67403en
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevB.81.155101en
dc.subject.TCDThemeNanoscience & Materialsen
dc.identifier.rssurihttp://link.aps.org/doi/10.1103/PhysRevB.81.155101en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record