The effects of Flare Definitions on the Statistics of Derived Flare Distributions.
Citation:
Ryan, D.F., Dominique, M., Seaton, D., Stegen, K., and White, A., The effects of Flare Definitions on the Statistics of Derived Flare Distributions., Astronomy & Astrophysics, 592, A133, 2016, 1-14Abstract:
The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. Such examinations can tackle large-scale science questions or give context to detailed single-event studies. However, they are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds. This arbitrariness may
lead to important scientific conclusions being drawn from results caused by subjective choices in algorithms rather than
the true nature of the Sun. In this paper, we explore the effect of the arbitrary thresholds used in the GOES (Geostationary
Operational Environmental Satellite) event list and LYRA (Large Yield RAdiometer) Flare Finder algorithms.
We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux
frequency distribution and the flare start thresholds of the algorithms. We also find that the power law exponents of
these distributions are not stable, but appear to steepen with increasing peak flux. This implies that the observed flare
size distribution may not be a power law at all. We show that depending on the true value of the exponent of the
flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms.
However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the
PROBA2/LYRA flare size distributions are artificially steep and clearly non-power law. We show that this is consistent
with an insufficient degradation correction. This means that PROBA2/LYRA should not be used for flare statistics
or energetics unless degradation is adequately accounted for. However, it can be used to study variations over shorter
timescales and for space weather monitoring.
Sponsor
Grant Number
SFI stipend
08/IN.1/I1879
Author's Homepage:
http://people.tcd.ie/arwhiteDescription:
PUBLISHED
Author: WHITE, ARTHUR
Type of material:
Journal ArticleCollections
Series/Report no:
Astronomy & Astrophysics592
A133
Availability:
Full text availableSubject (TCD):
ASTROPHYSICS , Applied Statistics , PARETO POWER LAW , POWER LAW , POWER-LAW DISTRIBUTIONS , Solar Physics , StatisticsDOI:
http://dx.doi.org/10.1051/0004-6361/201628130Metadata
Show full item recordLicences: