Liquid Exfoliation of Layered Materials
![Thumbnail](/themes/Mirage2/images/white_rectangle.jpeg)
File Type:
PDFItem Type:
Journal ArticleDate:
2013Access:
openAccessCitation:
Valeria Nicolosi, Manish Chhowalla, Mercouri G. Kanatzidis, Michael S. Strano, Jonathan N. Coleman, Liquid Exfoliation of Layered Materials, Science, 340, 6139, 2013, 1226419-1 - 1226419-18Download Item:
Abstract:
Not all crystals form atomic bonds in three dimensions. Layered crystals, for instance, are those that form strong chemical bonds in-plane but display weak out-of-plane bonding. This allows them to be exfoliated into so-called nanosheets, which can be micrometers wide but less than a nanometer thick. Such exfoliation leads to materials with extraordinary values of crystal surface area, in excess of 1000 square meters per gram. This can result in dramatically enhanced surface activity, leading to important applications, such as electrodes in supercapacitors or batteries. Another result of exfoliation is quantum confinement of electrons in two dimensions, transforming the electron band structure to yield new types of electronic and magnetic materials. Exfoliated materials also have a range of applications in composites as molecularly thin barriers or as reinforcing or conductive fillers. Here, we review exfoliation—especially in the liquid phase—as a transformative process in material science, yielding new and exotic materials, which are radically different from their bulk, layered counterparts.
Sponsor
Grant Number
National Science Foundation (NSF)
European Research Council (ERC)
Author's Homepage:
http://people.tcd.ie/colemajhttp://people.tcd.ie/nicolov
Description:
PUBLISHED
Author: COLEMAN, JONATHAN; NICOLOSI, VALERIA
Type of material:
Journal ArticleCollections
Series/Report no:
Science340
6139
Availability:
Full text availableKeywords:
PhysicsDOI:
http://dx.doi.org/10.1126/science.1226419Metadata
Show full item recordLicences: