Show simple item record

dc.contributor.authorSENGE, MATHIASen
dc.date.accessioned2013-10-21T15:49:58Z
dc.date.available2013-10-21T15:49:58Z
dc.date.issued2012en
dc.date.submitted2012en
dc.identifier.citationBeggan JP, Krasnikov SA, Sergeeva NN, Senge MO, Cafolla AA, Control of the axial coordination of a surface-confined manganese (III) porphyrin complex., Nanotechnology, 23, 23, 2012, 235606en
dc.identifier.issn0957-4484en
dc.identifier.otherYen
dc.identifier.urihttp://hdl.handle.net/2262/67522
dc.descriptionPUBLISHEDen
dc.description.abstractThe organisation and thermal lability of chloro(5,10,15,20-tetraphenylporphyrinato)manganese(III) (Cl- MnTPP) molecules on the Ag(111) surface have been investigated under ultra-high-vaccum conditions, using scanning tunnelling microscopy, low energy electron diffraction and x-ray photoelectron spectroscopy. The Cl-MnTPP molecules are found to self-assemble on Ag(111) surface at roomtemperature, forming an ordered molecular overlayer described by a square unit cell. In accordance with the three-fold symmetry of the Ag(111) surface, three rotationally equivalent domains of the molecular overlayer are observed. The primitive lattice vectors of the Cl-MnTPP overlayer show an azimuthal rotation of ? 15? [esd's???] relative to that of the Ag(111) surface, while the principle molecular axes of the individual molecules are found to be aligned with the substrate ?1 10 and ? ? 121 crystallographic directions. The axial chloride (Cl) ligand is found to be orientated away from the Ag(111) surface, whereby the average plane of the porphyrin macrocycle lies parallel to that of the substrate. When adsorbed on the Ag(111) surface, the Cl-MnTTP molecules display a latent thermal lability resulting in the dissociation of the axial Cl ligand at ~ 423 K. The thermally induced dissociation of the Cl ligand leaves the porphyrin complex otherwise intact, giving rise to the coordinatively unsaturated Mn(III) derivative. Consistent with the surface conformation of the Cl-MnTPP precursor, the resulting (5,10,15,20-tetraphenylporphyrinato)manganese(III) (MnTPP) molecules [if the Cl is now gone it cannot be a molecule but be a cation, or does the surface now function as the negative counter ion?] display the same lattice structure and registry with Ag(111) surface.en
dc.description.sponsorshipThis work was supported by grants from Science Foundation Ireland (P.I. 09/IN.1/B2650en
dc.format.extent235606en
dc.language.isoenen
dc.relation.ispartofseriesNanotechnologyen
dc.relation.ispartofseries23en
dc.relation.ispartofseries23en
dc.rightsYen
dc.subject.otherChemistry
dc.titleControl of the axial coordination of a surface-confined manganese (III) porphyrin complex.en
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/sengemen
dc.identifier.rssinternalid83192en
dc.identifier.doihttp://dx.doi.org/10.1088/0957-4484/23/23/235606en
dc.rights.ecaccessrightsOpenAccess


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record