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Artur Oliveira Gomes

Abstract

The current lack of tool support for model-checking Circus, a formalism which combines Z,

CSP, refinement calculus and Dijkstra’s guarded commands, is one of the constraints for

its use at industrial scale. Nowadays, it is possible to translate Circus to other formalisms

and to verify them profiting from existing model-checkers, such as FDR and ProB, which

have no direct support for Circus. However, such approaches are usually performed man-

ually, which requires time and also may introduce errors. We used Haskell to implement

an automatic tool which preserves the semantics while translating Circus to CSP, which

includes an automatic Circus refinement calculator as part of the transformation before

the translation into CSP. It is based on the existing set of translation rules but has sev-

eral improvements, compared to its original strategy. We extended the language coverage,

and provide a more efficient structure for handling more complex type systems, and bet-

ter support for specifications with larger sets of state variables. We introduce a set of

translation rules for using Z schemas as Circus actions, not previously supported in the

translation into CSP. In our research, we also explored ways of verifying the correctness of

our implementation. We proved manually some interesting properties for the translation,

which are related to the improvements developed in this work. We also investigated the

use of Isabelle/UTP as a theorem prover in order to help us to increase confidence in our

approach. However, our tool was tested using several Circus case-studies present in the

literature. Among our findings, we observed that, compared to previous work, the state-

space explored with our improved translation strategy was reduced dramatically by over

eighty per cent and the time consumed for checks in FDR was reduced from minutes to

milliseconds, compared to the initially adopted strategy.
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Chapter 1

Introduction

The constant growth of technology associated with computing and the need for increasingly secure

software has increased the demand for process verification systems, especially in the area of formal

methods. Such research field aims to apply a set of methodologies and formal languages to rigorously

specify, develop, and verify systems both in hardware and in software.

The application of the methodologies developed in the area of formal methods achieves a greater

depth in the analysis of computer systems that would be possible otherwise. Currently, formal methods

and its tools have reached such a level of usability that allows its application on an industrial scale [10,

17, 26, 31, 11], allowing software developers to provide more meaningful guarantees for their projects.

Researchers in this area have been seeking solutions to ensure the integrity of systems, in partic-

ular, critical systems. When we speak of critical systems, we refer to those with low failure tolerance

or even intolerant to failures. These are systems that, in the case of failures, often involve risk to

human beings, such as sensors and autopilots in avionics, and for medical devices, such as pacemakers

and defibrillators.

Related to avionics, we report on the DO-178B document, Software Considerations in Airborne

Systems and Equipment Certification [144] produced by RTCA, along with the European Organisation

for Civil Aviation Equipment (EUROCAE), whose objective is to define criteria for certification of

airborne systems, intended for software development teams for the aviation industry.

According to this document, one of the goals of the verification process is to ensure that the

resulting software complies with its requirements. The document specifies the classification of software

at various levels of criticality, according to the effects of a fault condition. It starts from levels at

which there is no impact (no consequences) or which have minimal impact on the system to those in

which result in catastrophic failures to the aircraft, jeopardising the safety of flight, such as a fall or

mid-air collision.

Due to the complexity and the safety criteria of such a system, it is necessary to adopt a consistent

methodology for specification, modelling, verification and validation, comprehensively, aiming to meet

the highest standards of certification of software. Twenty years later, the DO-178C [65] was released

and includes in its standards the use of formal methods as a way to overcome the difficulties presented

above.
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There is also an interest in applying formal methods while developing medical devices. It is well

known that such devices deal directly with health, acting in many ways, for the preservation of life, so

that the security of these devices is of utmost importance. As for the avionics software systems, there

are also agencies responsible for regulating the production of medical devices, such as in the United

States, where the Food and Drug Administration (FDA) controls the production of such systems in

that country. In the last five years, several research groups in the area of formal methods, scattered

around the world, have been working on a case study whose goal is the specification, verification and

prototyping of a cardiac pacemaker [23].

For its relevance, this study is an excellent example of research of a critical system, driven by

the assumption that it is necessary to have a firm assurance that such a system will work according

to its requirements [24]. It is known that any failure or error in the system can cause serious health

problems in patients who are dependent on a pacemaker to survive.

Related to the pacemaker challenge, much work has been done using various approaches. For

instance, languages like Z [78, 77], Vienna Development Model, VDM [18, 107], Event-B [113, 154, 153],

abstract state machine (ASM) [12], and CSP[149], have been addopted in order to formalise the

pacemaker system. Moreover, a range of analysis has been performed using techniques and tools such

as model refinement [155, 114], validation using ProB [135] and model checking [158, 38]. Moreover,

test cases have been created [94, 115, 112].

More recently, the ABZ Conference has proposed the adoption of an industrial scale case-study

so participants can formalise the specification and submit to the conference. That is a very positive

way of comparing formal languages and tools among several approaches to formalise the case-study.

A first example was proposed for ABZ 2014, with the Landing Gear [21] Case Study. For the ABZ

2016, The Haemodialysis Machine [7] Case Study was proposed.

The use of formal methods provides a way to specify, develop, and verify complex systems

rigorously, used in order to automate various kinds of verification steps. Among several approaches

aiming at the correctness of systems, model-checking formally assesses given systems regarding their

desired/undesired behavioural properties, through exhaustive checking of a finite model. Our intention

in undertaking the Haemodialysis case-study was to apply our knowledge in a real-life example in order

to identify the limitations in our approach regarding the formal language and tool support as well.

We decided to use Circus [75] as a formal language based on our previous experience with the

language and explore its capabilities in order to model the haemodialysis system. We also wanted to

explore how we could analyse the system using existing tools and how we could format our model in

order to be supported and analysed by such tools.

Currently, there is a limited tool support for model-checking Circus. In order to overcome such

problem, one can translate Circus into CSP by hand, and then, model-check the translated model

using FDR, which supports programs written in CSP. It analyses failures and divergence models, with

checks related to, for example, deadlock, livelock and termination. However, we have to somehow

translate Circus into CSP, by adapting the model to the CSP restrictions. For instance, we have to

capture the state-based features of Circus in CSP.
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Until now, tools for translating Circus into CSP are limited. There have been a few related

works in defining a translation strategy to obtain CSP programs from Circus. Ye and Woodcock [175],

defined a link from Circus to CSP‖B with model-checking using ProB [135]. Moreover, Beg [16], also

prototyped a tool for translating Circus to CSPM . These two are further discussed in the next section,

but so far, their current version are limited to a restricted subset of Circus.

As an initial attempt to model-check Circus, we participated in the ABZ’16 haemodialysis case

study [75], producing a Circus specification, manually translating it into CSPM , which we then checked

with FDR[72]. Moreover, when translating Circus into CSP, we adapted the Circus model to map the

structural Z parts into appropriate CSP.

Unlike in Circus processes, an explicit notion of state variables is not present in CSP processes.

Therefore, in order to translate Circus state, we would either translate it into a memory process [122,

86, 140], allowing other processes to read and write the values by synchronising on memory ‘get’ and

‘put‘ events, or to transform the state variables into process parameters, as used by Beg [16]. For

instance, we captured the state-based features of Circus in CSP using a memory process synchronising

on channels for reading and updating the values of the state variables. Such an approach was also

used while model checking [74] the ARINC 653 [4] architecture.

Our formalised model of the haemodialysis case-study is presented in Section 7.3. We describe

the decisions taken in order to structure the system, such as how we capture the system data using Z

schemas as a Circus state and how Circus processes and actions capture the behaviour of the system,

and finally, how Circus channels are used to model the communication between the components of the

system.

The handmade translation uses a significant but rather simple structure of ’gets’ and ’sets’

functions and channels for reading and updating the values of the state variables in the process.

Such an approach requires the creation of two channels for each state variable, which returns and

updates the value of a variable, over the state, which in its turn, is defined as a tuple.

The translation of that case study has shown to be already hard to perform since we had doubled

the number of lines of the specification, from a thousand (Circus model) to over two thousand (CSP-

translated model). Our research showed that this handmade approach can be error-prone, and is

unlikely to be feasible for industrial scale systems. Therefore, an automatic tool would be useful for

this task.

In light of these findings, we present here the development of the Circus2CSP1, an automatic

tool for model checking Circus, where we use a strategy for translating Circus programs into CSPM ,

aiming at model-checking with FDR. Our first thought was to use our handmade translation strategy.

However, our goal was not only to automate but also to produce a smaller and more efficient model

compared with existing approaches such as Oliveira’s [132], which still captures the intended semantics

of a Circus specification. Our tool was then built based on the strategy developed during the COMPASS

project2, as presented in the Deliverable 24.1 [132, Section 5.3], that defines a rigorous but manual

translation strategy aiming at obtaining CSPM specifications from Circus.
1See https://bitbucket.org/circusmodelcheck/circus2csp
2COMPASS Project - http://www.compass-research.eu

3

https://bitbucket.org/circusmodelcheck/circus2csp
http://www.compass-research.eu


During the implementation of our translation tool, we identified the need to improve the trans-

lation rules, in particular, for the ones that translate the CSP subset of Circus into CSPM . Our

contribution here is not only to implement the tool but to analyse and improve, when required, the

current translation strategy and provide new rules, as we present in this thesis. Moreover, we also

extend the work of Oliveira et al. [132] with an improved definition of the type system approach

used in the specification of a memory process in CSPM , which handles FDR restrictions regarding

polymorphic functions.

In summary, our objectives towards model checking Circus resulted in the following contributions:

• Contribution 1.1 A tool for automatically translating a subset of Circus into CSPM :

Implementation of a tool based on the work of Oliveira et al. [132] where one is able to translate

Circus models written in LATEX into CSPM , and then, be able to perform model-checking and

refinement checks using FDR.

• Contribution 1.2 An automatic Circus refinement calculator:

As part of the translation strategy, the Circus refinement laws are applied to the processes and

actions. In order to automate the translation as much as possible, we provide an automatic

Circus refinement calculator.

• Contribution 1.3 A transformation of some Z schemas into appropriate Circus constructs for

translating into CSPM :

The translation approach presented by Oliveira does not handle Z schemas directly, but only

after normalisation. However, such a translation was not yet formally proved to be correct. We

explore ways of translating Z schemas into Circus actions, specifically, those schemas where the

translation results in a set of assignments.

• Contribution 1.4 An improved Circus model that supports multiple types within a specification:

The generated CSPM model from Oliveira et al. using multiple types is not supported by FDR,

since it contains some auxiliary functions that are seen by FDR as polymorphic functions, which

are not supported by such a tool. We, however, introduce a new data structure that treats each

type with its own set of auxiliary functions.

• Contribution 1.5 A refinement of the memory model from Oliveira et al. [132]:

We provide a refined memory model with distributed memory cells updating and retrieving the

values of the state variables, allowing FDR to handle a large number of state variables in a

process, optimizing FDR’s effort to check such models.

• Contribution 1.6 New rules for mapping Circus to CSPM :

We extended the mapping functions for expressions and predicates from Z, as well as mapping

functions for those actions specifically related to the Memory model.
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• Contribution 1.7 A mechanism that integrates Circus2CSP with FDR:

We connected our tool to the "terminal-mode" interface of FDR, in order to be able to run checks

straight from our tool. Unfortunately, we have no direct access to the code of FDR, and thus,

we have to manually parse the results from the execution of FDR’s "refine" command.

• Contribution 1.8 An automatic assertion generator for checking with FDR:

Our tool is able to generate assertion checks for refinement, deadlock, livelock and determinism

checks for the loaded specification.

1.1 Thesis outline

In Chapter 2 we start presenting a survey of the state-of-art concerning formal languages and tools,

followed by a review of existing work on model checking in Section 2.2. Then, we review refinement

approaches in Section 2.3. Furthermore, we introduce Circus in Section 2.4. Finally, we conclude the

chapter with a discussion of our contributions to the current state-of-art.

We start Chapter 3 with the description of our approach for translating Circus to CSPM , where

we detail what kind of model we can generate, as well as implementation decisions. Moreover, in

Section 3.5 we introduce an approach for supporting Z schemas in the translation strategy (Contri-

bution 1.3). Finally, an overview of the automatic refinement calculator for Circus (Contribution 1.2)

is presented in Section 3.4.

Chapter 4 details the transformation of Circus processes into a subset that can be then translated

into CSPM . In Section 4.1 we present the improvements for the memory model (Contribution 1.4 and

1.5). Then we present the transformation functions for Circus actions in Section 4.2.

Chapter 5 contains the description of how we prepared the CSPM environment to support the

translated model from Circus, as well as the decisions taken for the Contribution 1.4 and 1.5, and how

these affect the CSPM code. Moreover, the Contribution 1.6 is described in Section 5.4. Finally, we

conclude the chapter with the CSPM translated version of the Circus model presented in Section 2.4.

In Chapter 6, we present our tool Circus2CSP (Contribution 1.1), with instructions on how to use

it. Then, we introduce how we integrated Circus2CSP with FDR (Contribution 1.7) in Section 6.3,

along with the instructions for using the assertion generator (Contribution 1.8). Finally, we conclude

the chapter with some considerations regarding our experience during the development of the tool.

In Chapter 7 we present our experiments while testing our tool. We also compare our results to the

achievements from the literature. In Section 7.3 we illustrate the benefits of using Circus2CSP with the

example of the Haemodialysis case study, where we compare the results obtained previously [75] with

the outcome of using Circus2CSP. We discuss experiments using compression techniques in Section 7.5.

Finally, we conclude the chapter with some final considerations about our experience while using

Circus2CSP.

We discuss the proofs on the refinement of the Memory model (Contribution 1.5) in Chapter 8,

where a handmade proof is presented, along with an approach for running every proof steps on FDR

in order to prove the refinement steps. Moreover, we sketch some plans for using an approach for
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validating the implementation as well as the improvements presented in this thesis. In a near future,

we intend to produce a link between our tool and Isabelle/UTP, and therefore, verify the Haskell

implementation of Circus2CSP as well as to integrate our refinement calculator with the theorem

prover.

Finally, we conclude this document with Chapter 9 where we discuss how the results obtained

throughout our research supports this thesis. Furthermore, provide a summary of our plans for future

work.
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Chapter 2

Literature Review

A survey of theoretical concepts and related works discussed in this thesis will are presented as

illustrated as follows: firstly, we make an analysis of the current state-of-art on formal languages and

tools used in the area of formal methods; then, we briefly introduce an overview of model-checking,

followed by a survey on refinement strategies. Later in this chapter, we introduce Circus followed by a

simple example. Finally, we conclude this chapter with some overall conclusions regarding the existing

work and the proposition for our thesis.

2.1 Formal Languages and Tools

In this section we survey a few existing formalisms and tools: we first present some state-based

languages, such as Z and B; then we detail some process-based languages, like CCS and CSP; then

we list a few combinations of these formalisms. In this thesis, we aim at a language and tools that

capture both state-based constructs with concurrent processes.

2.1.1 State-based languages

State-based formal languages such as Z [172, 157], B [3] and VDM [62, 5], are used to model struc-

tural aspects of a system. By using these languages, we provide a mathematical description of the

system, using, for example, set theory, first-order logic and lambda calculus. There is, however, a

drawback in the use of such model-based languages: modelling aspects of the system behaviour, such

as communications between components becomes inconvenient.

The Z language was extended to Object-Z, in order to include notions of object orientation by

Carringtonet al.[32]. The analysis of Z can be specified using theorem provers [106, 145]. Moreover, a

refinement calculus for Z, based on the work of Carroll Morgan [121], was introduced by Cavalcanti and

Woodcock [34]. Utting [162] developed an animator for Z specifications: a tool written in Haskell that

takes Z specifications written in LATEX and allows the user to interact with the specification. Further

work was produced by the Community Z Tools [116], a framework written in Java and aimed at

parsing Z specifications and allowing a wide range of assessments. Moreover, Xiaoping [93] presents

an approach to produce a Z animator transforming specifications into code written in imperative

programming languages.
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The language B [3] and Event-B [1] aims at refining specifications to implementations, with tool

support [138] such as animator and model-checker (ProB) [102, 99, 101] and the Eclipse-based Rodin

toolset [2], which have been successfully used in industrial case-studies [139, 55, 10, 103, 17, 26].

In the context of VDM, the refinement of specifications in such language is possible [125, 18].

Moreover, Couto [47] introduces a proof obligation generator integrated with theorem provers. The

use of VDM also extends its support to cover object orientation [63], real-time [163] and distributed

systems, using the variants for VDM, VDM++ and VDM-RT. Kanakis [95] presents an extension of

the Ouverture [64] tool for the generation of the concurrency aspects of VDM++ models. Finally,

code generation for embedded systems is proposed by Bandur et al. [13].

2.1.2 Process-based languages

The behavioral aspects of a system can be captured with the help of process-based languages, like

Communicating Sequential Processes (CSP) [82, 140, 149] and Calculus of Communicating Systems

(CCS) [117]. For instance, CSP is a language developed to describe and analyse communication and

synchronisation between processes in the context of concurrent programs. Roscoe et al. [140] presents

notions of refinement for CSP and have tool support. Regarding programs written using CSP, we

can perform verifications regarding the non-determinism, deadlock freedom and livelock freedom.

Furthermore, the correctness of the software can be analysed with the aid of model analysis tools,

via model-checking using FDR [72], which also allows the user to animate specifications in CSP.

Moreover, Isobe [88] introduced a tool for refinement proofs of CSP. However, unlike the languages

based on states, process-based languages does not provide a concise notation for capturing data aspects

of systems, becoming inconvenient to define a similar structure for managing the "state" of a system.

2.1.3 Combining State-based languages with Process-based languages

As we aim at the verification of a complex and critical system, we realise that we can not take both

structural and behavioural aspects of the system, using the languages presented in this section in

isolation. We need a formalisation that combines both aspects, allowing us to create formal models

that cover both aspects.

Several formalisms have been combined with the aim of addressing this difficulty. For exam-

ple, the CSP language and B are integrated by Schneider and Treharne [161], and by Butler and

Leuschel [29]. Furthermore, an automatic translation from a combination of B and CSP into Java

was presented by Yang and Poppleton [173]. On the other hand, the Z language combined with CSP

is addressed in the work of Mota and Sampaio [124] and also is used by Roscoe and Woodcock [143].

Moreover, combinations of Object-Z [32], an extension to the Z language that includes concepts of

object orientation, along with CSP, are addressed by several groups [60, 53, 87, 156, 51, 108]. Finally,

Galloway and Stoddart adopt the combination of CCS with Z [70] which, in turn, is also adopted by

Taguchi and Araki [159].

Woodcock and Cavalcanti defined Circus [170], which is a formal language that combines struc-

tural aspects of a system using the Z language [172] and the behavioural aspects using CSP [149],

along with the refinement calculus [121] and Dijkstra’s guarded commands [52]. Its semantics is based

8



on the Unifying Theories of Programming (UTP) [83]. An extension of Circus used in order to capture

the temporal aspects of systems is presented by Sherif and He, known as Circus Time [152, 151], and

also by Wei [164].

2.2 Model-Checking

In this work, we are motivated to research techniques for verifying reactive systems [148], i.e., those

we consider to have an interaction with their environment rather than computing a result in their

termination. For instance, the behaviour of a cardiac pacemaker is defined as a set of responses to

constantly monitoring the stimuli provided by the human heart, and such a system can be considered

as a reactive system.

Among the range of verification techniques, model checking is used for exploring all the possible

states a reactive system can reach. In other words, the algorithms used for model-checking will

evaluate all possible scenarios of a system, which may eventually reach an undesired one, depending

on the property that is being evaluated.

The concepts of model checking were first introduced almost thirty years ago by Clarke and

Emerson [39], and independently and almost simultaneously, by Queille and Sifakis [92], whose goal

was to analyse the behaviour of a system model, by given properties, concerning the system formal

specifications. The approach proposed by Clarke [40] argues that, rather than using mechanical

theorem provers, it would be worth using an algorithm, themodel checker. It is capable of mechanically

asserting if a more concrete model meets a more abstract model, its specification, using propositional

temporal logic: it verifies whether a relation SYS |= f (SYS satisfy f ), where SYS is a model which

can be a Kripke structure, of a given formal language, and f is a temporal logic formula.

If the model checker reaches a state where the desired property is violated, it should provide

a counter-example [42] indicating how the model has reached such an undesired state. The counter

example shows the execution path, with all the steps or transitions, from the initial system state

until the state that violates such property under consideration. From that point, with the help of an

animator, such as probe [105], one can visually repeat such steps, as a way of investigating what led

the system to such a state. Therefore, the user can debug its model and fix/adapt it in such a way

that the property is no longer evaluated.

It is also fair to mention a few weaknesses of model-checking systems. A first one is related to

the system size. Sometimes a system may be larger than the physical memory limits of the computing

resource being used. During model-checking, the exhaustive analysis may require to store all the states

of the system, whose state space may be exponential in the number of components. In such cases,

what happens is the technical challenge called state explosion [41]. Some effort has been made in the

past decades in order to avoid the state explosion problem, as proposed by McMillan [110], with the

use of symbolic model checking, which manipulates sets of states represented in propositional logic,

instead of single states, using binary decision diagrams (BDD) [27]. Moreover, Biere et al. [20] pro-

posed a symbolic model-checking strategy without BDDs, using other boolean decision strategies [22],

and using SAT [19] solvers. However, the computational memory available nowadays is much more
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accessible than it was a decade ago. Therefore, among the past decades, the size of systems suitable

for model-checking went from small examples to real-world applications.

Although there are strategies for avoiding state explosion, as well as the increased computing

capacity available nowadays, the problem still occurs, and it is then essential to have in mind the

concept of abstraction [44]. Usually abstracting systems is an intellectual challenge, and requires

some expertise on top of the designer’s creativity in order to produce a more abstract model able to

cope with the computing limitation. Clarke et al. [43] presented a strategy for abstracting models,

where a counter example-guided abstraction refinement was proposed. Eventually, should a behaviour

occur in the concrete model, that is not present in the abstract model, an erroneous counter example

occurs. In such cases, Clarke et al.suggested that those counter examples should be used in order to

refine the abstraction in order to eliminate such behaviour. Moreover, besides the research on model

abstraction, compression techniques [142] have been used in model checkers in order to avoid the state

space explosion, by reducing the state exploration.

Moreover, the focus of model-checking is on the system’s behaviour rather than how the model

would manage its data. Therefore, a system whose behaviour strongly relies on its data may become

difficult to check, since the data may range over infinite domains. For instance, a small system of a

chronometer that has no upper bound limit explicitly defined in the model may force the model-checker

to explore an infinite number of states and may never reach an end. Moreover, in some cases where

the properties evaluated, such as an atomic proposition such as "volume ≤ 200" or "temperature =

100", the checker does not need to assert every possible value of such variables within the range of

values of the natural numbers. For the above example, the set of values {99, 100, 101, 200, 201} are

enough for evaluating the two propositions. Effectively, such optimisation helps the model-checker.

Another weakness of model-checking is related to the completeness of the verification. The

checker only verifies the properties provided by the user. However, the lack of completeness comes

with the fact that the system properties that are not checked cannot be guaranteed to be correct.

Finally, as we are model checking the model of a system, we can not say anything about its final

product or prototype, and thus, further investigation such as testing techniques are required.

Our work here focuses more on the implementation of an approach for translating Circus into

CSPM , in order to allow the community to model-check CSPM models derived from Circus in FDR.

Until now we gave a brief overview on model-checking and will not dive more in-depth into the

subject. However, for further reading, an extensive survey on the subject was made by Freitas et

al. [69]. They details temporal logic and its variations, as well as a more in-depth study on how

to avoid state explosion, how to fine tune the formal model using abstractions, and also an analysis

between expressiveness and effectiveness when combining model checking with theorem proving.

However, in order to justify our contribution, we provide here a brief survey of the current state of

art of approaches for model checking systems designed in the formal languages presented in Section 2.1:

we relate works between the mentioned languages with available tools suitable for model-checking.

For the past decades, FDR [71, 72, 73] have been used as a de-facto model checker for CSP.

Model checking through FDR allows the user to perform a wide range of analysis, such as refinement

checks, deadlock and livelock freedom, and termination. Given a CSP process, FDR will convert it
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into a generalised labelled transition system [136] used to represent such process while checking it for

refinement. Briefly, a labelled transition system (LTS) represents a system model using a set of states

and a collection of transitions between those states. Every transition is labelled by an action that

happens when the transition occurs, and every state may be labelled with a predicate that holds in

that state. A generalised labelled transition system carries more information than the LTS, where the

states are labelled with properties related to the semantic model to be used in the refinement check.

In our work, we use FDR version 4.2, a continuation of the version 3, released in 2013, which was

completely redesigned compared to its previous version FDR2. In this new version, a new compiler

was designed and proved to be much more efficient than the one used in FDR2, being able to analyse

much bigger systems with billions of states. Among the improvements, the new compiler uses a list of

strategies to decide how syntactic processes should be compiled. For instance, every CSP operator has

a preferred level of compilation, low-level, high-level, mixed-level and recursive high-level. The decision

of which compilation level will decide which generalised LTS representation will be used: Explicit or

Super-Combinator. Those representations differ one to each other in the number of states and time

consuming for calculating the transitions. Moreover, the recursive high-level strategy is a novelty for

FDR3, and the authors argue that such a strategy has reduced the compilation time considerably in

many examples [72].

Experiments for comparing FDR3 with other model checkers such as SPIN and DiVinE were

conducted [72], aiming at evaluating the checker capability and efficiency concerning memory used.

Although in some cases where in-memory checks FDR demonstrated to be slower, it was the only

one to be able to compute those checks that required on-disk storage. In summary, the other model

checkers evaluated showed great efficiency at the beginning of the checks but became less useful for

those checks where the memory was, and disk storage was then required.

It is known that FDR was used in order to model-check some of the combinations of formalisms

presented in Section 2.1.3, such as CSP-OZ [61], CSP-Z [56], and Object-Z [96]. Moreover, ProB [102,

99, 103] has been used in order to validate B-Method models, such as the ABZ’14 Landing Gear

case-study [100], as well as applied to railway systems [55]. Moreover, Z specifications were animated

using ProB [135], using an extension of the tool that supports the Z language.

In addition to FDR, Process Analysis Toolkit (PAT) [158, 54] uses model-checking in order

to verify compositional models, complementing FDR checks, including normalisation and simula-

tion. However, it lacks further evaluation in order to compare PAT with FDR. Chaki et al. [37]

presented a procedure for model checking a combination of state-based with event-based formalisms

using the MAGIC (Modular Analysis of proGrams In C) [36] model checker. Finally, the model

checker SPIN [84] performs assertion checks using linear time temporal logic (LTL) formulae. It dif-

fers from FDR, for example, which uses LTS, an approach closely related to the automata theory.

Instead, SPIN uses a combination of propositional logic with time-related operators used to formulate

complex statements about how a condition can vary over time. Those conditions use past, present and

future tense. Usually, LTL is applied to hardware modelling, such as a pipeline circuit, as presented

by [28, 19].
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Currently, there are limited numbers of tools for verifying Circus, such as a refinement calculator,

CRefine [46], and an animator for Circus, Joker [128]. However, for model-checking, Circus is usually

translated by hand to machine-readable CSP (CSPM ) [146], and then FDR [72] is used. We applied

that method in our response to the Haemodialysis case study for ABZ’16 [75]. The approach, however,

requires the attention of the researcher, since CSP does not support the state-based specification. It

is necessary to produce a modified version of the specification in order to capture the state changes,

with the use of communicating channels for updating the state values between processes.

Model-checking Circus can be a challenge as the model complexity grows exponentially concerning

the state components and actions, for each Circus process. Thus, as the number of processes grows,

there is a high risk of state-space explosion.

Freitas [68] presented some related work on techniques for model-checking Circus, where a re-

finement model checker based on automata theory [85] and the operational semantics of Circus [171]

was formalised in Z/Eves [145]. He also prototyped a model checker in Java. It is also known that

Mota et al. [122, 123] prototypes a strategy for model checking Circus using Microsoft FORMULA [90]

framework. However, they could not provide a formal proof of the soundness of their approach, since

FORMULA does not have an available formal semantics. .

One strategy used in order to overcome the lack of tool support for model checking Circus is

proposed by Beg [16], who proposes the use of the current CZT [49] framework in order to produce

a tool for translating Circus into CSPM . The intention is to build on the existing work from Freitas

and Cavalcanti [67], who defined a translation from Circus into Java implementation that uses the

JCSP [134, 69] library, a Java implementation of the CSP model for concurrency and communication.

However, he reports that the work was ultimately tricky because of the complexity of the abstract

syntax and resulting visitor patterns. Thus, the approach was modified in order to explore the

translation strategy using Haskell instead. However, the Haskell work did not involve the development

of a Circus parser.

Yet another approach for model-checking Circus was defined by Ye and Woodcock [174], whom

defined a link from Circus to CSP‖B with model-checking using ProB [135]. However, because the

approach splits the Circus models into pieces in CSPM and B, model-checking using other tools such

as FDR is not possoble. Moreover, another inconvenience is that such an approach relies solely on

ProB, which is a limited tool in terms of processing capabilities: it does not support multiprocessors

nor multithreading. Therefore, it is unlikely that ProB would be able to handle larger Circus models

generated by Ye’s tool.

A handmade translation from Circus into CSPM was proposed by Oliveira et al. [133], where they

define a set of translation rules, which, when combined with the Circus refinement laws, result in a

subset of Circus that can be then translated into CSPM . Their translating approach requires some

attention regarding some Circus constructs that are not yet supported by their approach. However,

such a translation strategy is limited to the use of a small set of types derived from the same super-

type, since polymorphism is not supported by FDR. Moreover the memory model used for capturing

the state of a process may lead to state explosion while using a larger set of state variables.

12



Since CSPM does not have a notion of variables for a state as in Z, Circus or even B-Method, we

have to somehow capture them in order to obtain a CSPM model as similar as possible to the original

Circus one. Therefore, one could either use a memory model[133, 127] in order to manage the values

of the state variables, or else, to adopt the idea of state-variables parametrised processes, as used by

Beg [16].

A memory model uses an auxiliary process which offers and retrieves the values of each state

variables, being executed in parallel with the main execution flow of the system: both processes

terminates simultaneously. This approach differs from the one presented by Beg, where the state of a

Circus process is represented by the process parameters, rather than using a memory cell.

However, the parametrised state proposed by Beg requires the definition of intermediate pro-

cesses, just as intermediate states in a transition graph. A similar representation using parameters

for capturing the state variables in CSPM was adopted by us previously in the specification of the

Integrated Modular Avionics architecture [74], as well as in the formal specification of the haemodial-

ysis machine [75], as a handmade translation strategy. In this case, the state-variables parametrised

process approach used in [74] and [75] requires the definition of a large number of CSPM events and

functions for updating an internal state-process, which is quite similar to the memory cell used in

[133, 127]. However, in our case, we use one get and one set event for each state variable as well

as several auxiliary functions, rather than using an abstraction for mapping variables to values, as

presented initially by Mota et al..

2.3 Refinement of Specifications

In our research we also use the concepts of refinement, and therefore, in this section we present an

overview of what refinement is, as well as what can be achieved with refinement and what is the range

of tools supporting refinement.

The concept of refinement can be explained firstly using the analogy of a drawing process. Ini-

tially, the ideas of the final piece are only on the artist’s mind, or maybe on a piece of paper from

some client’s request. At first, he produces a very abstract sketch of what he intended to do. Then,

he will, step-by-step, use his skills and techniques to introduce more details to the drawing, refining

his abstract sketch into a more precise and concrete image. Such refinement step can occur several

times, as the artist aims at the perfection of his piece, and for each pass, the early abstract drawing

becomes more concrete until the artist judges it is ready for framing.

By taking the example of the drawing and replacing it with the software development, an abstract

specification can be refined into a more concrete implementation, using a refinement calculus [9, 8, 121],

where details of the intended software are included, sometimes requiring several steps. The refinement

process establishes a footpath through the system’s development history, where each refinement step

may highlight each decision taken on the design and, due to its mathematical nature, the refinement

is used for justifying the correctness of each step.

The refinement calculus as presented by Morgan [119] consists of an extension of Dijkstra’s

guarded command language [52]. In such, a specification statement can be defined as w : [pre, post ],
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and it can be satisfied by an implementation which, given an initial state that satisfies pre, the

implementation can be executed resulting in a final state updating the variables in the frame w , that

satisfies post .

Moreover, the refinement calculus also defines a relation between the refinement steps, known as

refinement relation. The refinement relation between P and Q , with Q a more concrete model than

P , is represented as P v Q and can be read as P is refined by Q. Furthermore, if we look closely to

the refinement process, we may see intermediate steps P v I0 v . . . v IN v Q , where I0, . . ., IN ,

may introduce fragments of executable code, as illustrated by Oliveira [129, Chapter 6, p. 129], where

Circus is refined step-by-step into Java code.

A refinement calculus for Z was introduced by Cavalcanti [34], which was based on Morgan’s

refinement calculus [120]. Such refinement will be further discussed in Section 3.5, as its implementa-

tion and inclusion into our tool, may bring value contribution to the current state-of-art. Moreover, a

refinement from Z aiming at obtaining compilable code may be done using a tool like ProZ [135], an

extension of ProB. As an advantage, B has notably good tools for model-checking, such as ProB [102],

and code generation such as Atelier-B [45] and B-Toolkit [138], whose features are currently lacking

for the Z language.

Moreover, Carter et al. [33] introduced a strategy for expressing Object-Z in Perfect [97], and

then, using Perfect Developer [48], refining it into an implementation. Perfect Developer is a software

produced by Escher Technologies, which is a tool for fully automatic software verification and code

generation to languages like C, C#, and ADA. It automatically generates and discharges all proofs

that are necessary to verify the specification in order to guarantee the consistency of the system. The

Perfect Developer language introduces the notion of object orientation. It is straightforward to learn

for Z users since it has a similar syntax to the Z language, including features such as state invariants and

the use of schemas for operations. Similarly, Gomes and Oliveira [77] translated their specification of a

cardiac pacemaker [24] written in Z [78], into Perfect, and then, refined it into C#, where a graphical

user interface (GUI) for the refined code from Perfect Developer was produced. Furthermore, Gomes

and Olivera [111] presented a prototype of the pacemaker model using Arduino [6], using a handmade

simplified version of the C++ version generated by Perfect Developer.

Among a few works related to the translation of CSPM into executable code, Zhou and Stiles [178]

shows how concurrent programs written in CSP can be translated into sequential programs, using

Mathematica. Moreover, Raju, Rong and Stiles [137] suggest that CSPM programs are automatically

translated into channel oriented and concurrent executable code, written in Java and C. An experiment

for translating CSP||B into Handel-C [30], which is a hybrid language from C and CSP, was presented

by Schneider et al. [150]. We also know that Welch and Brown present a translation of CSP programs

into Java using JCSP [168], while Hilderink presents a translation [80], emphasising in distributed and

real-time programs.

There have been several paths for obtaining Java code from CSP models [80]. For instance,

Hilderink et al. [81] presents their approach for Communicating Java Threads (CJT), while the use

of Communicating Sequential Processes for Java (JCSP) [168] is considered in [126, 98, 165, 169].

The differences and similarities between CJT and JCSP are explored in [147]. Besides Java, Welch et
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al. [167, 166] introduced their approach for obtaining Occam-π code from CSP. Other approaches for

obtaining Occam-π were explored by Moores [118] as well as by Jacobsen and Jadud [91]. Finally,

Moores also explored the generation of C code using CCSP [118].

Oliveira [129] developed a refinement calculus for Circus currently considered the de-facto ref-

erence for Circus1, using tool support with ProofPower-Z [177]. Likewise, Felianchi et al. introduced

a mechanisation of the Unifying Theories of Programming (UTP) into Isabelle/HOL, supporting

Circus [58]. Furthermore, Feliachi et al. introduced the semantics of Circus into Isabelle/HOL, Is-

abelle/Circus [57]. Finally, another approach to formalise the UTP into Isabelle/HOL was proposed

by Foster et al. [66].

Another approach for using JCSP as target language from formal specifications is presented by

Oliveira et al. [134], who present a strategy for the implementation of Circus programs in Java. Con-

versely, from the above-presented approaches, we have here a strategy based in a set of translation

rules that are exhaustively applied, transforming programs specified in Circus to Java programs us-

ing the JCSP library. Freitas and Cavalcanti introduce mechanisation of the Circus translation into

Java [67]. Moreover, related to code generation from Circus, Barrocas and Oliveira introduce JCircus, a

tool based on CRefine [131], which was then extended by Barrocas et al. [14], based on the translation

rules presented in [129] and also translates Circus programs into Java code, with similar ideas to the

JCSP implementation.

2.4 Quick Circus Guide

The verification of complex and critical systems often requires dealing with a mix of mutable state

and communicating processes. Therefore there are needs for formalisms that combine both structural

and behavioural aspects of a system, allowing the creation of formal models in a more complete way.

2.4.1 Circus Background

A Circus specification is in some sense an extension of Z[172] in that it takes the paragraphs of Z

and adds new paragraph forms that can define Circus channels, processes and actions 2 . Channels

correspond to CSP events:

channel c : T

For both CSP and Circus, we usually define a specification comprising a set of paragraphs in the form

N (Expr+) =̂ A where N is a (process/action) name, the Expr+ may refer to local parameters, and

A is the description of a process/action that may or may not refer to N and the local parameters.

A process is an entity that is willing to perform some events, but not others, depending on its

current state. Any processes interact with an environment, also considered as a process. A given

process willing to perform an event can be said to be "offering" that event. Whether or not the event

occurs depends on both the willingness of the environment to perform it and the synchronisation

requirements between the process and its environment.
1More details and publications about Circus are found at https://www.cs.york.ac.uk/circus/
2 Which is why our tool was built by extending Jaza[162].
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Circus actions can be considered as CSP processes extended with the ability to read and write

shared variables, usually defined using a Z schema:

LocVars =̂ [v0 : Tx ; . . . ; vn : Tz | inv(v0, . . . , vn)]

A Circus process is an encapsulation of process-local shared variables and Circus actions that access

those local variables, along with a ‘main‘ action.

processP =̂
begin

stateState =̂ LocVars
P .Actions =̂∆State . . .

• var l0 : U0; . . . ; lm ; Um • MA(v0, . . . , vn , l0, . . . , lm)
end

The process P has a state S in which state variables v0, . . . , vn are declared in terms of its respec-

tive types Tx , . . . ,Tz , and may contain some invariants inv(v0, . . . , vn) regarding the state variables.

Moreover, it may have a list of Circus actions P .Actions that have access to the state variables and

therefore, may update its values. Finally, a main action describes the behaviour of the process. It is

possible to have local variables, l0, . . . , ln , declared before the main action MA.

Circus processes can only communicate with the external environment via channels. Processes can

be modified and combined with each other, using the following CSP operators: sequential composition

(; ), non-deterministic choice (u), external choice (@), alphabetised parallel (J . . . K), interleaving (9),

iterated versions of the above (e.g., ue∈E • . . . ), and hiding (\).

Circus actions can be built with the CSP operators detailed above, as well as the following

CSP constructs: termination (Skip), deadlock (Stop), abort(Chaos), event prefix (→), guarded action

(N), and recursion (µ). Besides, a Circus action is defined by a Z schema, or Dijkstra-style guarded

commands, including variable assignment (:=). Note that actions cannot be defined as standalone

entities at the top level of a Circus specification.

Also, Circus actions can be composed in parallel, but with a difference from standard CSP.

Parallel composition of actions requires that we specify for each action, which of the shared variables

it is allowed to (visibly) modify. It must be done in such a way that every variable can be modified by

at most one arm of the parallel composition. The semantics of a parallel construct is that each side runs

on its copy of the shared variables, and the final state is obtained by merging the (disjoint) changes

when both sides have terminated. So general parallel composition is given by P J ns1 | cs | ns2 K Q ,

where ns1 and ns2 are the sets of variables that can be modified by P and Q respectively, and cs is

the set of channels on which both actions must synchronise.

Finally, Circus allows the use of local declarations in a variety of both process and action contexts.

For actions, we can declare local variables, using

var x : T • A

which introduces variable v of type T which is only in scope within A. Variations of these can be

used to define parameterised actions, of which the most relevant here is one that supports read-write

parameters.

(vres x : T • A)(y)
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Here x is local to A and must differ from y , which is global. At the start, x is initialised with the

value of y . Action A then runs, and at the end, y is updated with the final value of x .

2.4.2 Circus through an example

We describe the development of a clock alarm, based on the chronometer example from Oliveira’s PhD

thesis [129], to which we add some alarm features. For model checking purposes, we restrict the type

RANGE to values from 0 to 2, instead of the conventional range from 0 up to 59, used for minutes

and seconds.

In Circus, events are observable and are atomic (either they happen in their entirety, or not at

all). Moreover, an atomic event can transfer data through its channel. For instance, an event c.k

means that a value k is transported through the channel c. In our example, a few channels are used:

the clock tick every second; when the time is requested, the channel out outputs the minutes and

seconds as a pair; radioOn turns on the radio when the alarm is set; and snooze mutes the alarm.

The events snooze and radioOn are part of the added alarm features.

RANGE == 0 . . 2
ALARM ::= ON | OFF
channel tick , time, snooze, radioOn
channel out : {min, sec : RANGE • (min, sec)}

We start the construction of the Circus process WakeUp with the definition of the state WState with

three state components: sec and min, for seconds and minutes respectively; and an alarm signal state

buzz , part of the alarm extension, that can be either ON or OFF .

process WakeUp =̂ begin
stateWState =̂ [sec,min : RANGE ; buzz : ALARM ]

Circus process may contain Circus actions, which can describe parts of the process behaviour. Such

actions are used in the main action of the process. As an illustration, we present four Circus actions,

based on the Chronometer example. In our example, the first action, AInit , sets both sec and min to

zero, as well as buzz to OFF . Moreover, IncSec and IncMin increment sec and min respectively.

AInit =̂ [AState ′ | sec′ = 0; min ′ = 0]
IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]
IncMin =̂ [∆AState | min ′ = (min + 1) mod 60]

Next, we present a modified version of the Run process as an initial attempt in order to model the

alarm clock. The action Run starts with a tick , then it increments sec through IncSec. Then it behaves

like: if sec = 0, then it increments min through IncMin; else if sec 6= 0, then nothing happens. We

also introduce new features: supposing the alarm is triggered when min = 1, then the radio is turned

on and the buzz component now is ON ; if the time is requested, the value of min and sec is delivered

through out and it skips right after; and finally, the user can press snooze and the buzzer is switched
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to OFF .

Run =̂


tick → (IncSec) ;



 (sec = 0) N (IncMin)
@
(sec 6= 0) N Skip


@
(min = 1) N radioOn → (buzz := ON )
@
time → out !(min, sec)→ Skip
@
snooze → (buzz := OFF )




Finally, the main action of the WakeUp process starts with the initialisation of the state variables,

through the action AInit , then it recurses the Run action.

• (AInit ; (µX • (Run ; X )))
end

The Haemodialysis case study [75] uses around 51 channels, includes over 80 actions and comprises

about 950 lines of code. Now that we are more familiarised with the Circus language, we shall move

to the next section where we describe the translation strategy into CSPM .

2.5 Thesis Proposition

We can see in this chapter that among several formal languages, there are attempts to refine formal

specifications into code and also to perform model-checking. However, we can see that there is a lack of

automation even though its manual application is very error-prone. It is well known that it is a trend

for the industry to apply formal methods in their projects. However, industrial-scale applications

would require too much effort and caution from the user in order to avoid the introduction of errors

due to the manual work.

In this document, we present the steps towards the development of Circus2CSP a tool for model

checking Circus specifications, using a mechanism that automatically translates Circus into CSPM and

from that, uses FDR for model checking. Such a tool is based on the translation strategy proposed

by Oliveira et al. [133]3, which is limited to a subset of Circus. In that work, Oliveira et al. use a

set of translation rules combined with the Circus refinement laws in order to transform a state-rich

Circus specification into a stateless Circus version of the specification. For such, the state components

of a state-rich Circus process are transformed into a Memory process [127], with get and set messages

capturing the state changes, resulting in a stateless Circus process. We illustrate the summary of our

approach in Figure 2.1, compared with the previously mentioned two others from Oliveira et al. [133]

and Arshad Beg [16].

The entire toolset is developed as an extension of JAZA, which parses Z specifications written

in LATEX, the same input used by the Community Z Tools. Circus specifications are written as a

sequence of block environments, very similar to the way Z paragraphs are written. LATEX is a de facto

standard for writing Circus specifications. However, we assume that the Circus document is already

type checked by existing tools [109]. As part of our contribution, we also improved Oliveira’s transla-

tion strategy [133], reducing its limitations (restriction to non-polymorphic functions and number of
3This work is further detailed in Section 3.1.
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Figure 2.1: Strategies for translating Circus into CSP.

state variables supported in the memory model), and including new features such as some translation

rules for some Z schemas4 and the integration of our tool with FDR. Our tool requires that any proof

obligation necessary for the refinement, which is not automatically proved, should be proved by the

user manually.

Our tool supports most of the Circus syntax, but avoids any construct as defined in [132, p.

78]. Furthermore, some features are not yet supported such as: dealing with state invariants nor

preconditions in the Z-like schemas; non-determinism of data are not supported; state variables should

be initialised prior to the execution of the process; and the consequences of nested parallelism and

hidding with non-disjoint name sets were not experimented until now. Finally, the refinement of Z

schemas is restricted to those resulting in assignments.

Our goal was to produce a framework using the infrastructure available from Jaza, where the

parser for Z was extended and now supports Circus and from there, we include new modules like the

translation tool and the refinement calculator for Circus. Moreover, as shown in Chapter 6, our tool

is linked to FDR, and may also be integrated with other tools in the future. Our contribution here is

mainly related to the fulfilment of a tool for automatically model-checking Circus.

Our focus while model-checking Circus is to produce a model in CSPM where FDR can evaluate

using as little computing resources as possible. As such, we provide a refined model from the strategy

presented by Oliveira et al. [132], where our tool is capable of producing CSPM models from larger

specifications and making it possible for model-checking them using FDR. We highlight that because

FDR is a refinement checker, it is not possible to perform temporal logic checks, which is further

discussed by Lowe [104].

As a future work, we intend to use a theorem prover in order to verify the correctness of our

implementation of our translator. For this reason, we used Haskabelle in order to translate our im-

plementation into the syntax of Isabelle/HOL. We attempted, but did not succeed, to link our syntax
4Translation rules specific for those schemas that results in assignments.
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with Isabelle/UTP. Our goal was to verify if the models produced using our tool are equivalent to a

refinement produced using the Circus refinement laws, after having the translation rules from [132] im-

plemented in Isabelle/UTP. However, we encountered restrictions in the expressiveness of Isabelle/UTP

for Circus, such as the absence of the formalisation of hidding, complex channel communication, and

recursive actions, that prevented us from continuing our investigation towards our verified translator.

Our preliminary achievements, as well as the issues encountered while attempting to link our tool

with Isabelle/UTP, are detailed in Section 8.
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Chapter 3

Methodology

In this chapter, we describe our approach for translating Circus to CSPM , where we detail what kind

of model we can generate, as well as implementation decisions. We present the ground concepts of

Circus2CSP, as illustrated in Figure 3.1, a framework that automatically translates Circus into CSPM

and later on, model checks these specifications using FDR. Moreover, in Chapter 8, we will discuss

why and how we intend to integrate our tool with Isabelle/HOL theorem prover.

Figure 3.1: Structure of Circus2CSP

We first present our work on parsing Circus specifications written in LATEX, by producing an

extended version of Jaza [162]. Then we explore a strategy for translating Circus into CSPM . Finally,

we discuss the implementation of the translation strategy with a tool written in Haskell.

3.1 Translating Circus to CSPM

Our first attempt model-check the Circus haemodialysis specification [75] was to translate it into

CSPM manually and adjust its state-space until the desired checks could be completed. This manual

translation was not very satisfactory, as it would have been challenging to make a case that we had

done it correctly. Such work motivated us to the development of a mechanised translator that we

intend to provide both as a basis for arguing for its correctness, and a high degree of automation to

minimise error-prone human interventions.
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We started the development of a tool based on the Circus-to-CSPM translation strategy developed

for the EU COMPASS project and described in deliverable D24.1 [132, Section 5]. It specifies the

translation of a state-rich Circus specification into a defined subset of Circus by describing functions

(ΩP ,ΩA,Υ) that transform Circus syntax. The translation process starts with a state-rich CircusSR

process P , which, applying ΩP (P for Circus processes), is then transformed into a state-poor CircusSL

process P ′, in parallel with a Memory process, for state and local variable value accesses. We illustrate

an overview of the translation in Fig. 3.2.

Figure 3.2: Mapping Circus into CSPM (derived from [132, Fig.7, p77])

The Omega functions, ΩP and ΩA, move the explicit mutable state from processes and actions

respectively, transforming it into a single Memory process that is definable in CSP. This process has

state parameters that record the current value of every variable and uses mget and mset channels

to provide read and write operations. The memory parameters required are determined by ΩP when

applied to the top-level or ‘main’ Circus process.

In this transformation procedure, the Circus refinement laws along with the ΩA (A stands for

Circus actions) functions are applied1 to the main action of the Circus process, which is expanded

with the definitions of all Circus actions of the Circus process. Such procedure produces a specification

that may be refined using the selected refinement laws. The Ω functions result in models that belong

to CircusCSP , the CSP subset of Circus containing only “state-poor” divergence-free Circus processes,

ready to be translated into CSPM by Υ. Finally, the Υ function takes the results of the Ω functions,

now corresponding to standard CSP, and renders it in machine-readable CSPM .

Our tool is able to translate a subset of the Circus syntax, and so far, it does not support

specifications using Z schemas that would handle complex constructs, other than what can be refined

into assignments. Moreover, it does not handle nested parallelism and hidding.

The correctness of the set of Ω translation rules defined by Oliveira et al. was proved using the

Circus refinement laws [132, p. 94]. As part of our research we intended to prove the correctness

of the implementation of those translation rules, along with the improvements made througout our

research, as will be presented later in this document. In Chapter 8, we present how we we attempted

to use Isabelle/UTP, in order to support our approach. We propose to prove that any process PSR

in CircusSR is refined by a process PSL in CircusSL, using the refinement steps from the Ω functions

combined with the Circus refinement laws. Therefore, we present the following requirement:

1The remainder of the Ω functions are defined in Section 5.3 of the Deliverable report D24.1[132]. Moreover, a list
of the Circus refinement laws used in the approach can be found in Appendix A of the same document.
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Requirement 3.1 For some set of unprimed and primed state variables, denoting the variables before

and after the execution of the process, PSR is refined by Ω(PSR)2.

(∃St ,St ′ • PSR) v (∃St ,St ′ • Ω(PSR))

We hightlight that one of the improvements presented in this document is the refinement of

the stateless processes where the bindings used for the memory process are no longer defined non-

deterministically, and therefore, we are no longer able to prove the equivalence between PSR and

Ω(PSR), but but that it is a refinement (PSR v Ω(PSR)). In this case, that is only a refinement,

rather than an equality, when not all variables are initialised before any external event. We discuss

our approach towards the verified implementation in Chapter 8.

The strategy to be used in the proof of the above presented requirement is based on the fact

that the Ω translation is a sequence of refinement steps, using the Circus refinement laws. Such an

approach is further discussed in Section 8.2. For now, we clarify that we want to decompose the

above requirement and attempt to prove that if each step on that sequence of refinement is correct,

for example ΩStepn v ΩStepn+1 , we also expect to prove that the whole refinement is also correct:

PSR v . . . v ΩStepn v ΩStepn+1
v . . . v PSL

We note that many of these refinement steps are in fact equivalences, as observed by the Circus

refinement laws presented in the Appendix D. In the next section we detail the memory model used

as part of the translation strategy, as a way of capturing the interactions between the main action of

a Circus process and its state variables.

3.2 The Memory Model

As it turns out, the architecture of the memory model proved to be crucial to ensuring that the

resulting mechanised translation had both wide scopes regarding Circus features being supported and

resulting in CSPM models that minimised the time and space workload for the FDR refinement

checker.

Initially, our memory model was very similar to that in D24.1, with some differences in naming

conventions. In our approach, we defined a notation for renaming the variables allowing the user to

identify which are state components, or local variables easily. Variables are renamed by adding a

prefix sv or lv indicating a state or local variable respectively.

As part of the translation strategy, the CSPM environment is redefined regarding the type system.

Based on the work of Mota et al. [127], D24.1 defined a type UNIVERSE comprising any type defined

in the specification. Moreover, the names of every state component and local variable are defined as

components of NAME .

[UNIVERSE ]
NAME ::= sv v1 | sv v2 | . . . | sv vn | lv l1 | . . . | lv ln

2This requirement has not been proven yet, and it will be discussed further in the Future Work section (Section 9.2).
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The approach makes use of a set of bindings, BINDING , which maps all the names, NAME , into the

UNIVERSE type.

BINDING == NAME →UNIVERSE
δ == {sv v1 7→ T1, sv v2 7→ T2, . . . , sv vn 7→ T3, . . . , lv ln 7→ Tm}

As a result of applying the Ω functions, the state of a Circus process is replaced by a Memory

action which manages the values, offering gets and sets, for the values of the state components of such

a process, when translated into CSPM .

Memory =̂ vres b : BINDING •
(@n : dom b • mget .n!b(n)→ Memory(b))

@ (@n : dom b • mset .n?nv : (nv ∈ δ(n))→ Memory(b ⊕ {n 7→ nv}))
@ terminate → Skip

Such a Memory process runs in parallel with the main action of the translated Circus process, and any

communication between them occurs through the channelsmget andmset , where δ(n) returns the type

of the variable n. Moreover, the process execution ends when the terminate signal is triggered. The

above three channels compose the MEMI channel set used hereafter in the translated specification.

channelsetMEMI == {|mget ,mset , terminate |}

The final specification puts the original process after Ω-translation in parallel with the memory model,

synchronising on the MEMI channels, which are themselves hidden at the top-level, with the binding

as a top-level parameter. Note that the semantics of this at the top-level involves a non-deterministic

choice of the values in the initial binding b. This results in the following CSP form:

u b : BINDING •
 (ΩA(P); terminate → Skip)

J∅ | MEMI | ∅K
Memory(b)

 \MEMI

Deliverable D24.1 [132] contains manual proofs of the correctness of the translation [132, Ap-

pendix K]. In the next section, we present our approach for translating Z schemas into an equivalent

Circus construct, in order to provide a translation into CSPM .

3.3 Extending Jaza

When we started our research, two options were available regarding the existing framework that could

be extended in order to implement our translator. Jaza and the CZT. It is well known that CZT is a

continuation of work for exploring the Z language and its related/derived formalisms such as TCOZ,

Object-Z and Circus.

Moreover, one of the mechanisms implemented in CZT is ZLive, an animator for Z, based on the

approach of Jaza. However, the CZT was implemented in Java using the visitor pattern. Finally, the

CZT development team concluded that the task of implementing the CZT parser for Z was difficult

and required over a year [109] to be concluded.

As an illustration of the difficulties for using Java for implementing a tool, Beg [15, p. 71] reports

that his attempt for using the CZT was challenging, as he was able to translate only a few simple

Circus constructs. When he moved to the implementation of complex actions in Circus, he reported
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that the lack of pattern matching in such actions made him move to implementation of his translator

using Haskell.

Either in Beg’s work as well as in our Haskell implementation, the pattern matching feature was

crucial for implementing our translators. As a consequence, the number of lines of code written was

less than what would be needed to implement those functions in Java.

Therefore, we used Jaza [162] as a start point, reusing its existing parser for Z which takes LATEX

specifications as input. Jaza is an open-source tool for animating specifications written in the Z

language based on Spivey’s Z notation [157]. Its name stands for ’Just Another Z Animator’ and was

written in Haskell. The current version of the tool, released in 2005, supports parsing and animating

programs specified in Z.

Haskell is a purely functional programming language, which means that it prohibits side effects.

Moreover, we can have a more clean and elegant code with reduced lines of code for implementing

the same rules, compared to an implementation in Java. However, our decision to extend Jaza was

not only motivated by the advantages of using Haskell. We also aim at verifying the correctness of

the implementation of our translator. For such we can use Haskabelle [79] for translating the Haskell

code into the Isabelle-HOL [160] syntax, which is an ML-like language, quite similar to Haskell. Then

we can use Isabelle/UTP [66] for the verification.

Details on our journey towards the verification using Isabelle/UTP, as well as the difficulties

encountered can be found in Chapter 8. As of now, Isabelle/UTP is not fully able to handle all the

Circus constructs required for verifying the translation approach, and therefore our implementation.

Hence, the verification of our implementation using theorem proving was left as future work.

Currently, there are two notations for the Z language, Spivey [157] Z notation and the ISO/IEC

13568 Standard [89] for the Z language. Our first concern about extending the existing tool for

parsing Z so it can support Circus is related to the notation used for describing Z specifications.

Jaza was written taking into account the Z notation from Spivey. However, the Community Z Tools

(CZT) [109] has developed a new framework written in Java based on the ISO Standard. Like Jaza,

the CZT framework also reads Z specifications written in LATEX and parses it w.r.t. the ISO Standard

for Z.

In our work, we decided to work using Spivey’s Z notation instead of producing a parser compliant

with the ISO standard, because ISO Z standard abstract syntax tree has a more complex structure

than Spivey’s.

3.3.1 Jaza supporting Circus

Our first step towards our implementation of the model-checking via CSPM approach for Circus was

to extend Jaza’s parser. We extended the Haskell code for Jaza and introduced the productions of the

Circus abstract syntax trees [129]. Since Circus is a combination of Z and CSP, we used the existing

Haskell code of the Z parser and merged new functions that allow us to parse the Circus encoded in

LATEX. We merge both abstract syntax trees since Circus includes Z paragraphs, denoted as Par and

valid Z identifiers, denoted merely in the Circus AST as N .
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The Figure 3.3 illustrates an example of a Z specification, a Z state FactX which finds the

factor of x [157]. Once loaded into Jaza, we can see how one can animate the specifications and

assess its execution against a given input. As we can see, Jaza provides some arguments related to

underspecification in the case it is unable to provide a correct answer. We assume that the specification

Figure 3.3: Jaza loading LATEX files.

provided is already type checked with existing tools [109]. After parsing the LATEX input, we can

identify, on top of the Z paragraphs, the whole structure of Circus such as channels, processes, actions,

namesets, and channel sets. Moreover, we can evaluate the CSP operations, whose notation differs

from each other depending on the scope for Circus actions and Circus processes.

From this point, we were able to implement the translation approach for Circus specifications,

as well as the Circus refinement calculator, and the mapping functions from Circus to CSPM . We

anticipate a few results from our work: during our implementation of the Circus parser from the

existing Jaza parser for Z was concluded in around four weeks. Moreover, the initial set of the Omega

transformations was implemented in two weeks. Finally, the design and implementation of the Circus

refinement calculator took around three days to be ready to produce some refinement calculations.

We reused the existing definitions of Jaza’s Z grammar, and as illustrated below, we introduced

our notation for Circus. We first introduce how three types of Circus paragraphs are defined in the

Haskell AST as a subset of the Z paragraphs, ZPara, composed by a channel declaration, or a channel

set declaration, or a process paragraph in Circus,

ZPara ::= channelCDecl
| channelsetN == CSExp
| processP =̂ ProcDef

can be defined in Haskell with data types as defined below.

1 data ZPara =
| ...

3 | CircChannel [CDecl]
| CircChanSet ZName CSExp

5 | Process ProcDecl
| ...

The entire syntax of Circus is defined in Haskell using datatypes. When it comes to Circus actions

(CAction), we relate the available operators to its representation in the table below.
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CircusAST HaskellAST

(S) CActionSchemaExpr ZSExpr

ZName CActionName ZName

Skip CSPSkip

Stop CSPStop

Chaos CSPChaos

Comm → CA CSPCommAction Comm CAction

CCommand CActionCommand CCommand

(ZPred) N CA CSPGuard ZPred CAction

CA ; CA CSPSeq CAction CAction

CA @ CA CSPExtChoice CAction CAction

CA u CA CSPIntChoice CAction CAction

CA J ns1 | cs | ns1 K CA CSPNSParal [ZExpr] CSExp [ZExpr] CAction CAction

CA J cs K CA CSPParal CSExp CAction CAction

CA 9 CA CSPInterleave CAction CAction

CA \ cs CSPHide CAction CSExp

CA(ZExpr+) CSPParAction ZName [ZExpr]

CA[x/y , z/n] CSPRenAction ZName CReplace

µN • CA CSPRecursion ZName CAction

(Decl • CA)(ZName) CSPUnfAction ZName CAction

; Decl • CA CSPRepSeq [ZGenFilt] CAction

@Decl • CA CSPRepExtChoice [ZGenFilt] CAction

uDecl • CA CSPRepIntChoice [ZGenFilt] CAction

Jcs K Decl • Jns1 K CA CSPRepParalNS CSExp [ZGenFilt] [ZExpr] CAction

Jcs K Decl • CA CSPRepParal CSExp [ZGenFilt] CAction

9Decl • ||[ns1 ]|| CA CSPRepInterlNS [ZGenFilt] [ZExpr] CAction

9Decl • CA CSPRepInterl [ZGenFilt] CAction

In the remainder of this chapter, we turn our attention to the auxiliary mechanisms required for

the implementation of the tool. In the next section, we present how we designed the automatic Circus

refinement calculator.

3.4 Implementing a Circus Refinement Laws Calculator

The Ω translation functions makes use of the refinement laws of Circus [35], which required us to

develop a Circus refinement calculator. Our refinement calculator uses a selected subset of the Circus

refinement laws, where there is a confluence of laws (the laws are applied towards a refined model),

and does not introduce any loop during the refinement. The laws are firstly applied to the scope of

Circus processes, and then, a second iteration applies the laws to the content of the main action of a

Circus process.

Our implementation of this calculator provides similar functionality to that of CRefine [46]. The

critical advantage of reimplementing this functionality in Haskell is that we can, in future work, use

Isabelle/HOL in order to verify that our implementation of the laws is correct.

We first introduce the definition of the type constructor Refinement for our tool. We define it

as a parametrised datatype Refinement , where t can either be used for a process refinement (CProc)

or an action refinement (CAction). In Haskell, we define the type Maybe t in order to define two

possible outcomes of the execution of a given function: it may either contain a certain value y, (herein
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represented by Just y) or an empty value, (denoted by Nothing). We evaluate such a type in

order to assert wether or not a refinement step is found during the execution of the calculator. If

a refinement step is found, then the tool returns a tagged triple Done, that contains the matched

instance of that left-hand side (orig), along with the corresponding right-hand side (refined), plus

a list of side-conditions that need to be satisfied (provisos). However, when the refinement is not

applied to that specification, the calculator returns None. Right now, we expect those provisos to be

discharged manually by the user. However, our tool will write those provisos in a text file so they can

be, in a future, discharged using a theorem prover, like Isabelle/HOL.

data Refinement t = Done{orig :: Maybe t, refined :: Maybe t, proviso :: [ZPred] }
2 | None

We illustrate our approach with the example of a Circus refinement law, guard combination, L. 153,

which allows merging bindings within the context of the action A.

(g1) N ((g2) N A) = (g1 ∧ g2) N A

The above refinement law is implemented in Haskell as the following function

crl guardComb that uses pattern matching to check for abstract syntax that matches the left-hand

side of the law above, and returns the refinement in refined . Moreover, in this refinement law, no

proviso is required to be proved. Otherwise, the second clause uses a wild-card pattern for all other

cases, which returns None.

crl_guardComb :: CAction -> Refinement CAction
2 crl_guardComb e@(CSPGuard g1 (CSPGuard g2 c))

= Done{orig = Just e,
4 refined = Just (CSPGuard (ZAnd g1 g2) c),

proviso=[]}
6 crl_guardComb _ = None

The second example we use here to illustrate our implementation of the refinement laws is the

Guard/Parallelism composition distribution law, L. 19. It extends the guards for the entire

parallelism composition in case the initials of the opposite action to the guarded one (action A2 in our

example), is a subset of the channel set cs used for synchronising the two events: initials(A2) ⊆ cs.

(((g) N A1) J ns1 | cs | ns2 K A2) = (g) N (A1 J ns1 | cs | ns2 K A2)

The implementation of such law is presented below and behaves as follows: the two first clauses match

with the cases where one of either two sides of the parallelism is a guarded command; otherwise, the

third clause returns None, meaning that no refinement was produced. In either two first clauses,

where Done is returned, the proviso field contains the pending proof obligation regarding the set

of initials of the action in parallel with the guarded action.

crl_guardParDist :: CAction -> Refinement CAction
2 crl_guardParDist e@(CSPNSParal ns1 (CChanSet cs) ns2 (CSPGuard g a1) a2)

= Done{orig = Just e,
4 refined = Just (CSPGuard g (CSPNSParal ns1 (CChanSet cs) ns2 a1 a2)),

proviso = [(ZMember (ZTuple [ZSetDisplay (initials a2),
6 ZSetDisplay (zname_to_zexpr cs)])

(ZVar ("\\subseteq",[],[])))]}
8 crl_guardParDist e@(CSPNSParal ns1 (CChanSet cs) ns2 a1 (CSPGuard g a2))

3The compilation of the Circus refinement laws mentioned in this thesis can be found in the Appendix D.

28



= Done{orig = Just e,
10 refined = Just (CSPGuard g (CSPNSParal ns1 (CChanSet cs) ns2 a1 a2)),

proviso = [(ZMember (ZTuple [ZSetDisplay (initials a1),
12 ZSetDisplay (zname_to_zexpr cs)])

(ZVar ("\\subseteq",[],[])))]}
14 crl_guardParDist _ = None

Guided by [132], a relevant subset of the refinement laws have been used in as part of the

translation strategy in order to obtain CSPM specifications from Circus. Our refinement calculator

was implemented precisely to apply these laws. We intend to ensure that the translation process is

as automated as possible in order to produce a CSPM specification that relies on its original Circus

version, in order to avoid the introduction of errors in the specification due to user interaction.

An action refinement is performed by the calculator on the main action of a Circus process,

where the implemented refinement laws are recursively applied through each prefixed action until no

further refinement steps are performed. Then, a process refinement is also performed using two other

refinement laws, prom-var-state, L. 17 as illustrated below, and prom-var-state2, L. 18, applied

to the context of the Circus process itself. The goal of this second refinement step is to promote local

variable declarations to the state of the Circus process. We present two cases of L. 17, defined for

processes with an existing state paragraph:

processP =̂
begin
stateS
L(x : T )

• (var x : T • MA)
end

=

processP =̂
begin
stateS ∧ [x : T ]
L( )

• MA
end

as well as for those without a preexisting state paragraph:

processP =̂
begin

L(x : T )

• (var x : T • MA)
end

=

processP =̂
begin

(state[x : T ])
L( )

• MA
end

The implementation of the refinement laws is easily achieved because of Haskell’s pattern matching

feature. For the two cases of the above presented law, we define a function crl prom var state, which

accepts both parametrised (ProcDefSpot) and non-parametrised (ProcDef) processes. In both

cases, the function calculates the free variables of the main action and renames them with the prefix

lv , which are then promoted to the state of the process, represented by (ZSchema (zs++lvs)),

where zs is the set of state variables, and lvs is the set of local variables promoted from the main

action. In any other case where the pattern does not match, None is returned meaning that no

refinement was performed.

crl_prom_var_state :: ZPara -> Refinement ZPara
2 crl_prom_var_state e@(Process (CProcess p (ProcDef (ProcMain (ZSchemaDef (ZSPlain s []) (ZSchema zs))

aclst (CActionCommand (CVarDecl x t))))))
= Done{orig = Just e, refined = Just ref, proviso = []}

4 where
fvs1 = free_var_CAction (CActionCommand (CVarDecl x t))

6 fvs2 = free_var_CAction t
ffvs = diff_varset fvs2 fvs1

8 -- prefix the local variables with lv_
lvs = rename_genfilt_lv p x

10 nl = rename_list_lv p (varset_to_zvars ffvs) x
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subs = make_subinfo nl fvs2
12 -- rename the occurrences of local variables

-- as prefixed in the main action
14 finalsubs = sub_CAction subs ma2

ref = (Process (CProcess p (ProcDef
16 (ProcMain (ZSchemaDef (ZSPlain s []) (ZSchema (zs++lvs))) aclst finalsubs))))

crl_prom_var_state e@(Process (CProcess p (ProcDefSpot yR (ProcDef
18 (ProcMain (ZSchemaDef (ZSPlain s []) (ZSchema zs))

aclst
20 (CActionCommand (CVarDecl x t)))))))

= Done{orig = Just e, refined = Just ref, proviso = []}
22 where ...

crl_prom_var_state _ = None

We now explain the behaviour of the internal mechanism of our refinement calculator. As mentioned

before, a Circus specification in Circus2CSP consists of a list of Z paragraphs, and, for each Circus

process within that list, the refinement calculator will attempt to apply each of the refinement laws

implemented. In case the result from applying a law is different from the original model, it means

that a refinement step has occurred and the tool recurses trying to apply the refinement laws to the

new refined model. The refinement is completed when no new refinement step is found, represented

by None.

Similarly, the tool applies all the refinement laws implemented in the context of Circus actions.

The difference here is that the mechanism is more complicated since the tool first attempt to apply

the refinement to the top level of the action, and instead of stopping when no further refinement is

found to that construct, it recurses over the branches of the operators.

For example, let’s use the action A1 @A2. The first step is to attempt to refine that action, and,

whenever the tool returns None, it will then recurse, attempting to refine both A1 and A2. Finally,

it stops when no further refinement is found when applying the laws to the branches of the action.

Our implementation in Haskell has demonstrated that even using a larger specification, the refinement

laws are applied quickly to both processes and actions levels, in just a few milliseconds.

3.4.1 A simple refinement example

We introduce here an example of the refinement steps of a Circus action, where the refinement steps

are illustrated below. In the following example, assuming that A1 =̂ c1→ Skip and A2 =̂ c2→ Skip,

we want the calculator to apply L. 19 and L. 15, as presented above, in order to bring all the guards

together as a conjunction, v1 = 0 ∧ v2 = 0.

(v1 > 0) N
(

(v2 > 0) N A1 J ∅ | {| c1, c2 |} | ∅ K A2
)

= [L. 19 – prov:initials(A2) ⊆ {| c1, c2 |}]

(v1 > 0) N
(

(v2 > 0) N
(
A1 J ∅ | {| c1, c2 |} | ∅ K A2

) )
= [L. 15]

(v2 > 0 ∧ v1 > 0) N
(
A1 J ∅ | {| c1, c2 |} | ∅ K A2

)
The calculator generates the refinement steps of the above action in the Haskell AST notation

for Circus. The resulting calculation can be exported into a text file where the user can check each

interaction. We illustrate below the extract of the output file from the above Circus refinement steps.

1 CSPGuard
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(ZMember (ZTuple [ZVar ("v1",[],"NAT"),ZInt 0]) (ZVar (">",[],"")))
3 (CSPNSParal NSExpEmpty (CChanSet ["c1","c2"]) NSExpEmpty

(CSPGuard (ZMember (ZTuple [ZVar ("v2",[],"NAT"),ZInt 0]) (ZVar (">",[],"")))
5 (CActionName "a1"))

(CActionName "a2"))
7 = provided[ZMember (ZTuple [ZSetDisplay [ZVar ("c2",[],"")],

ZSetDisplay [ZVar ("c1",[],""),ZVar ("c2",[],"")]])
9 (ZVar ("\\subseteq",[]))]

CSPGuard
11 (ZMember (ZTuple [ZVar ("v1",[],"NAT"),ZInt 0]) (ZVar (">",[],"")))

(CSPGuard (ZMember (ZTuple [ZVar ("v2",[],"NAT"),ZInt 0]) (ZVar (">",[],"")))
13 (CSPNSParal NSExpEmpty (CChanSet ["c1","c2"]) NSExpEmpty (CActionName "a1") (CActionName "a2")))

= provided[none]
15 CSPGuard

(ZAnd (ZMember (ZTuple [ZVar ("v1",[],"NAT"),ZInt 0]) (ZVar (">",[],"")))
17 (ZMember (ZTuple [ZVar ("v2",[],"NAT"),ZInt 0]) (ZVar (">",[],""))))

(CSPNSParal NSExpEmpty (CChanSet ["c1","c2"]) NSExpEmpty (CActionName "a1") (CActionName "a2"))

In the next section, we present one of our contributions to the existing work: we list a few rules for

translating a subset of Z schemas, which was not included in the translation strategy presented by

Oliveira et al. [50].

3.5 Rewriting Z Schemas into Circus Actions

In this section, we devote ourselves to look for an approach for refining those Z schemas that can be

refined into assignements in Circus. We know that producing a general refinement set of rules is a

challenging task and in this work, we give a few ideas of how to capture essentially operations that

modify the state variables, which are then refined into assignments.

We propose in this section the refinement of only a few cases which can be commonly found in

the literature. The scope of our research in extending the translation rules gives us the ability to

explore the expressiveness of using Z schemas for dealing with the process state variables.

However, while exploring the world of Z schemas, we are aware that we are not fully able to

give support to all the properties checked during the refinement checks when model-checking using

FDR. For instance, the translation strategy introduced by Oliveira et al. does not take the state

invariants into account. Furthermore, the semantic model of Circus as presented in [129] does not

explicitly mention invariants. Moreover, capturing the state invariant as well as checking for any

violation in CSPM might make the job of the model checker extremely difficult since the calculation

while exploring the state space might be much harder and would require more computing resources.

Finally, when translating into CSPM , the operations over the state variables are transparent (hidden)

to the environment, and therefore, nothing can be said about invariants, since our focus is on model

checking the system behaviour and not the data aspects of the system.

Our proposed rules for refining some of the constructs available in Z when using schemas are based

on the Z Refinement Calculus [34], which in its turn is based on Morgan’s refinement calculus [119, 121].

We produce a transformation of Z schemas considering that they were declared in the normal

form, St =̂ [d | inv ]. Then, we use the transformation from schemas to specification statements, using

the conversion laws [34, p. 55]. A specification statement is defined regarding its precondition, which

must be satisfied by the initial state, and if so, then the postcondition is satisfied by the resulting state

from changing the variables in the frame. Such statement can be defined as fl : [pre, post ], where fl

are the variables from the frame list whose values are changed in that operation. Therefore, the basic
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conversion (bC ) from Cavalcanti transforms a schema that modifies the state, St , into a specification

statement:

[∆St ; di?; do! | p] =bC α d , α do! : [inv ∧ ∃ d ′; do! • inv ′ ∧ p, inv ′ ∧ p]

However, the notation from Oliveira [129] suggests that a schema can be translated into a spec-

ification statement after a normalisation, where the invariant is included in the predicate p of the

schema.

[∆St ; di?; do! | p]

= [normalisation]

[St ; St ′; di?; do! | inv ∧ p]

= [[129, def B.40]]

α St , α do! : [∃St ′; do! • inv ′ ∧ p, inv ′ ∧ p]

Then, from a specification statement, an omega translation rule from [132, p. 91] might be used in

order to produce a Circus action compatible to the syntax that can be translated into CSPM .

ΩA

 w :

 pre(v0, . . . , vn),

post
(

v0, . . . , vn , l0, . . . , ln
v ′0, . . . , v ′n , l ′0, . . . , l ′n

)   =̂

mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .ln?vln →

¬ (pre(vv0, . . . , vvn , lv0, . . . , lvn)) N Chaos
@(pre(vv0, . . . , vvn , lv0, . . . , lvn))N

u vv :



x0 : Γ(v0); . . . ; xn : Γ(vn);
xn+1 : Γ(l0); . . . xm : Γ(lm)

| post
(

vv0, . . . , vvn , vl0, . . . , vln
x0, . . . , xn , xn+1, . . . , xm

)
∧ w ′ = w
• (x0, . . . , xn , xn+1, . . . , xm)


•

mset .v0!(vv .0)→ . . .→
mset .v0!(vv .n)→
mset .l0!(vv .(n + 1))→ . . .→
mset .lm !(vv .(n + 1))→
Skip




As mentioned earlier in this section, producing a model that preserves the invariants during its

operations makes the task of model checking more expensive. The translation rule for specification

statement from [132, p. 91] introduces a non-deterministic choice over all the possible combination

of values for the frame variables that would preserve the invariants along with a statement that any

other variable not mentioned in the frame is unchanged. However, the validation of the translation

rule for the specification statement is not complete in [132].

We propose here an initial attempt to capture the behaviour of Z schema in a more concrete

model, compared to the generalised translation rule presented above, from [132, p. 91]. In such work,

where schemas can be translated into specification statements and then, the later can be translated into

an external choice between either chaos or an update to the memory process depending on whether or

not the preconditions are satisfied. One of the constructs we are most interested in are the state values

updates using schemas, which can be refined into assignments using Z Refinement Calculus [34]. This

would eliminate the task of translating the predicates into a CSPM notation that can be interpreted
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and evaluated in FDR. Cavalcanti [34, p. 140] defines a refinement from Z schemas that modifies a

state into assignments, provided that the invariant is not violated when the values from the variables

are updated:

[∆St ; di?; do! | c′1 = e1 ∧ . . . ∧ c′n = en ∧ o1! = en+1 ∧ om ! = en+m ]

v [assC - provided inv [e1, . . . , en/c1, . . . , cn ] and c′1, . . . , c′n 6∈ FreeVars(e1, . . . , en+m)]

c1, . . . , cn , o1!, . . . , om ! := e1, . . . , en+m

If we restrict the above definition to schemas that has no input or output variables, by applying

assC , we obtain an assignment.

[∆St | c′1 = e1 ∧ . . . ∧ c′n = en ]

v [assC - provided inv [e1, . . . , en/c1, . . . , cn ] and c′1, . . . , c′n 6∈ FreeVars(e1, . . . , en)]

c1, . . . , cn := e1, . . . , en

To this date, we assume here that the provisos are proved to be correct through proofs by the user.

However, in the future work, such task might be supported by our tool with a link to Isabelle/HOL

theorem prover, for discharging the proof obligations, such as those we intend to automate with our

refinement calculator. We address our effort for achieving this in Section 8.

One of the requirements when model-checking a system is to produce a model whose range of

values is enough for covering any condition imposed by an operation. However, when including the

state invariant, we are also restricting the range of values permitted to be used within the system.

From the example of the chronometer in Section 2.4, we know that both min and sec was declared as

natural numbers. However, while thinking of a chronometer in the real world, we know that neither a

second, nor a minute goes beyond 59 units, without flipping the next unit counter. Therefore, while

model-checking the chronometer model in CSPM , it is safe to restrict the range of min and sec to

0 . . 60, where 60 is an unexpected value in the system.

However, if one makes the Circus model more restricted, and declare the state as [min, sec :

N | min < 60 ∧ sec < 60], we know that the semantics of Circus will preserve the invariant over

its behaviour. However, depending on the invariants used, the translation into a CSPM model might

become difficult since we do not have an easy way of modelling complexes predicates from Z in CSPM .

We experimented with the impact of explicitly including invariant and precondition checks in Cir-

cus models and translating them into CSPM using the example of the Chronometer, from Section 2.4,

with a new process Chrono. When using the translation rules presented in [132], we identified that

it is hard for FDR to check the model. The chronometer example presented was translated using

the conversion from normalised schemas to specification statement and from there, to the appropriate

rules that introduce a condition to whether or not the pre is satisfied or not. In case of being sat-

isfied, it behaves as a non-deterministic choice of all possible combinations of values from the state

variables which satisfies both the invariant and the precondition, followed by updating these values in

the memory model. Otherwise, should pre is not satisfied, it behaves such as Chaos.

Our example of the chronometer has only two state variables and the results obtained using FDR

are enough to show how the invariant checks throughout the specification increase the time spent
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during the assertion check in FDR. We deliberately modified the original model with the inclusion

of the state invariant restricting both min and sec to values below 60, in order to experiment the

translated model in FDR.

processChrono =̂
begin
state AState =̂ [sec,min : N | min < 60 ∧ sec < 60]
AInit =̂ [AState ′ | sec′ = 0; min ′ = 0]
IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]
IncMin =̂ [∆AState | min ′ = (min + 1) mod 60]

Run =̂


tick → (IncSec); (sec = 0) N (IncMin)

@
(sec 6= 0) N Skip


@ time → out !(min, sec)→ Skip


• AInit ; (µX • Run ; X )

end

We illustrate our experiment in Table 3.1 while exploring the inclusion of state invariants and precon-

dition verification in the chronometer model, and used the following derived models4:

D241 Model translated using the approach from [132] without the inclusion of invariants and precon-

ditions, using a non-deterministic choice of any possible set of bindings.

D241Inv Model translated using the approach from [132] including the invariants as a restriction to the

bindings set.

D241Pre Model translated using the approach from [132] which includes precondition checks before the

operations, but does not include the invariants. The preconditions, in this case, includes the

invariant, as defined for the translation rule presented by Oliveira [129], where the schemas are

transformed into α St , α do! : [∃St ′; do! • inv ′ ∧ p, inv ′ ∧ p], where the invariant is part of the

precondition.

D241InvPre Combination of D241Inv and D241Pre.

CTOC Model translated using our improved translation rules, the result from our tool Circus2CSP, as

will be discussed in Section 4.1 (no invariant checks).

CTOCPre Extension of CTOC model but with the same translation rules for D241Pre, including the

precondition checks.

From the above listed models, our tool is able to automatically generate CTOC , whereas the

others were generated by hand. We perfomed checks for deadlock freedom5 using the translated models

using the six variants presented above combined with a different range of values for the natural number,

replacing the restriction to the value 60, for model checking purposes. For example, in a specification

where the values for natural numbers are restricted to the range 0 . . 10, the process state is then

defined as [min, sec : 0 . . 10 | min < 10 ∧ sec < 10].
4The files used in this experiment can be found in the tool repository, and from there, are located in the path

"https://bitbucket.org/circusmodelcheck/circus2csp/exs/cases/alarm/gCSPm/tests/"
5The tests were performed using Intel Core i7 2.8GHz CPU with 16GB of RAM.
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Table 3.1: Interference of invariants and preconditions in CSPM - Deadlock freedom checks

CTOC CTOCPre D241 D241Inv D241InvPre D241Pre

Values Exec States Exec States Exec States Exec States Exec States Exec States
Range Time Visited Time Visited Time Visited Time Visited Time Visited Time Visited

0..3 0.116 68 0.134 21 0.206 1085 0.177 610 0.173 190 0.187 337
0..4 0.138 118 0.169 28 0.212 2946 0.183 1885 0.204 449 0.219 701
0..5 0.186 182 0.229 35 0.346 6547 0.255 4546 0.276 876 0.312 1261
0..6 0.242 260 0.373 42 0.416 12734 0.35 9355 0.393 1.513 0.428 2059
0..7 0.275 352 0.52 49 0.631 22521 0.545 17242 0.81 2.402 0.874 3137
0..8 0.411 458 0.904 56 0.878 37090 0.705 29305 1.242 3585 1.312 4.37
0..9 0.559 578 1.4 63 1.158 57791 1.138 46810 1.826 5104 1.955 6301
0..10 0.738 712 2.055 70 1.687 86142 1.482 71191 2.323 7001 2.73 8471
0..11 0.954 860 2.859 77 2.147 123829 1.954 104050 3.685 9318 3.986 11089
0..12 1.246 1022 4.197 84 2.714 172706 2.57 147157 5.22 12097 5.45 14197
0..13 1.544 1198 5.684 91 3.68 234795 3.308 202450 6.748 15380 7.424 17837
0..14 1.972 1388 8.052 98 4.955 312286 4.356 272035 8.702 19209 9.646 22051
0..15 2.533 1592 9.867 105 5.846 407537 5.452 358186 11.988 23626 12.6 26881
0..60 3m27s 25262 22m29s 1024 2h48m 99M 01h40m 91M 52m28s 3.7M 65m22s 3.8M

The first difference in the results is that from the models D241 and D241Inv , and therefore, those

that do not restrict the behaviour of the system to whether or not the preconditions are satisfied, and

therefore neither the precondition itself nor the state invariants are being checked. For those cases,

the number of states visited was over 10-fold more significant than the other cases, as illustrated in

Fig. 3.4. We observe that the results from D241 and D241Inv were so significant, that they do not

allow us to see the results obtained for CTOC and CTOCPre. The labels in the chart refer to the

value ranges of natural numbers, the first column from Table 3.1.

Figure 3.4: Experiment results derived from Table 3.1 - D241, D241Inv , CTOC and CTOCPre.

However, the influence of a precondition check within an operation makes a significant reduction

in the state exploration. Moreover, by restricting the bindings to the invariants of the state, the

results were quite similar to the ones without such restriction. Finally, the results from the models

D241InvPre and D241Pre shows that the state space explored was smaller, but the time consumed

by FDR for calculating the assertions has doubled, as illustrated in the Fig 3.5, generated from the

data collected in Table 3.1. Note that for clarity, that chart does not include the results of D241 and

D241Inv .

We also noticed that all the above presented result were executed in a much large time frame

than the approaches using the translation from our tool, Circus2CSP. However, the models generated

by our tool does not include neither invariants nor preconditions. Moreover, even when including the

precondition checks (CTOCPre) within the model generated, with the manual inclusion of precondi-

tions, the number of visited states reduced considerably, but with the cost of 4-fold longer execution
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Figure 3.5: Experiment results derived from Table 3.1 - D241InvPre, D241Pre, CTOC and CTOCPre.

than the case of CTOC .

As a way of experimenting the real world example of the chronometer, we experimented the

model ranging from 0 up to 60, whose values are presented in the last row of Table 3.1, illustrated

in the figure below. In general, the CSPM models (CTOC ) translated using our tool were evaluated

by FDR using a much smaller state space and were checked in less time than all the other models

experimented.

Figure 3.6: Experimenting real chronometer values (0 up to 60) derived from Table 3.1

We see a significant difference among the results from the approaches evaluated, where the model

using CTOC was evaluated (3 minutes) by FDR in 98% less time than the time spent to check the

model using D241 (over 2h48). Such a result shows how different models of the same system can be

affectedby the checks of invariants and preconditions, as well as how optimising the memory model

can result in much smaller state exploration when using FDR. Finally, we observed no correlation

between time and state visited, inspite the use (or not) of compression by default in FDR.

3.5.1 An Example of the Transformation

As an example of the transformation of Z schemas to fit into our translation, we use the Chrono

process as defined previously in this section, which is based on the example from Oliveira’s PhD
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thesis [129, Section 1.3, p.6]. It simply updates the minutes and seconds, as a normal clock, after each

tick . Moreover, it also may display, through the signal out , the current time, should a signal time

occur.

RANGE == {0 . . 59}
channel tick , time
channel out : RANGE × RANGE
processChrono =̂
begin
state AState =̂ [sec,min : N | min < 60 ∧ sec < 60]
AInit =̂ [AState ′ | sec′ = 0; min ′ = 0]
IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]
IncMin =̂ [∆AState | min ′ = (min + 1) mod 60]

Run =̂


tick → (IncSec); (sec = 0) N (IncMin)

@
(sec 6= 0) N Skip


@ time → out !(min, sec)→ Skip


• AInit ; (µX • Run ; X )

end

As part of the translation strategy, all Circus actions are promoted to the main action. Therefore, after

applying the rules presented in the previous section, we obtain the following Circus specification, which

will then be translated, using the omega (Ω) functions, into a Circus syntax which can be translated

into CSPM .

process Chrono =̂
begin
stateAState =̂ [sec,min : N | min < 60 ∧ sec < 60]

•



(sec,min := 0, 0);
µX •

tick → (sec := (sec + 1) mod 60); (sec = 0) N (min := (min + 1) mod 60)
@
(sec 6= 0) N Skip


@ time → out !(min, sec)→ Skip

 ; X




end

process AChrono =̂ b RAN : RANGE •
begin
Memory =̂ . . .

•



mset .sv sec.(RAN .0)→ mset .sv min.(RAN .0)→

µX •

tick → mset .sv sec.(RAN .(v sv sec + 1) mod 3)→
mget .sv min?v sv min : (δRAN (sv min))→
mget .sv sec?v sv sec : (δRAN (sv sec))→

(v sv sec = 0)N
mset .sv min.(RAN .(v sv min + 1) mod 3)→ Skip

@
(v sv sec 6= 0) N Skip


@ time → out !(min, sec)→ Skip


; X




end

The proofs supporting the above translation can be found in Appendix G.1.
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3.5.2 Final considerations

We see here a future link of the Z refinement calculus [34] with our tool. Currently, our tool supports

only the refinement of those schemas that can be translated into assignments. Moreover, the refinement

laws for Z [34] are different from the refinement laws for Circus [129]. We have some ideas for a future

implementation of the refinement of other constructs, which might also be advantageous. For instance,

schema conjunction may be refined into a sequential composition of schemas. Moreover, schema

disjunction might be refined into alternation where the precondition of schemas is transformed into

guards.

Our experiments presented in this section, as well with the other presented in this document,

show the potential for the tool and further investigation on the effectiveness of existing refinement and

translation approaches when it comes to the implementation of tools for supporting them. Moreover,

the scalability of the approaches should be considered through empirical research, which might be

achieved with experiments such as the ones we produced throughout our research, as we report in this

document. We discuss more on how we plan to extend our contributions to this work in Section 9.2,

where we discuss what can be used and how we intend to integrate our refinement calculator and Z

schemas refinement between our tool and theorem provers.

In the next section, we introduce the whole translation structure from state-rich Circus processes

to state-poor Circus, using the Ω functions. Moreover, we also present our findings regarding the trans-

lation strategy initially presented in [132], and provide several improvements towards the automatic

translator tool.
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Chapter 4

Rewritting Circus state-rich processes
with Ω

The translation steps using the Ω functions involve the use of Circus refinement laws, as illustrated in

Fig. 3.2. We now present each step of the transformations towards the state-poor Circus process that

can then be translated into CSPM . The steps here are present in the Deliverable 24.1 [132], and the

steps presented beyond Step 4.6 are part of our contribution to state of the art, as our research has

demonstrated that these steps would result in a more efficient specification regarding model-checking.

In order to demonstrate how the translation scheme affects a Circus process, we will again use the

example of the process P , from the Section 2.4.2, as a starting point for the translation process.

processP =̂
begin

stateState =̂ [v0 : T0; . . . ; vn : Tn | inv(v0, . . . , vn)]
P .Actions =̂∆ P .State
• MA(v0, . . . , vn , l0, . . . , lm)

end

(4.1)

Given the initial shape of the process P , the first iteration is to expand the definitions of all the

P .Actions into MA, and therefore, the process will no longer have any other action defined but the

main action. Then, an action refinement in the main action of the process, MA, is executed, where

the Circus refinement laws are used in order to promote any local variable towards the outermost side

of the main action, using laws such as Law 161. Moreover, all local variables are then renamed in

order to avoid name clashes in the next transformation steps.

processP =̂
begin

stateState =̂ [v0 : T0; . . . ; vn : Tn | inv(v0, . . . , vn)]

• var l0 : U0; . . . ; lm ; Um • MA(v0, . . . , vn , l0, . . . , lm)
end

(4.2)

The next step is the execution of a Circus process refinement, where any local variable is then promoted

into state components, using the Law 17 and Law 18, respectively.

processP =̂
begin

stateState =̂ [v0 : T0; . . . ; vn : Tn ; l0 : U0; . . . ; lm ; Um | inv(v0, . . . , vn)]

• A(v0, . . . , vn , l0, . . . , lm)
end

(4.3)

1The compilation of the Circus refinement laws mentioned in this thesis can be found in the Appendix D.
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We now move to one of the biggest change in the structure of the process, with a data refinement

that transforms the original state, with multiple variables, into a single binding component, b of type

BINDING , as already presented here.

processP =̂
begin

stateState =̂ [b : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(lm))]

• A(b(v0), . . . , b(vn), b(l0), . . . , b(lm))
end

(4.4)

Now that the state is redefined concerning the bindings, we then introduce a new Circus action,

Memory , that manages the interaction between the main action with the new form of access to the

state components. At the same time, according to the definition B.41 [129, p. 186], the declaration

part decl of a process state can be also be defined as a local variable of the main action, var decl • A.
Therefore, the declaration of the bindings in State is transformed into a local variable of the main

action. This step differs from [132] as we are not preserving the state invariants in the local variables.

Such step, however, is justified as in the semantic model of Circus processes: it ignores any existing

state invariants [129, p. 67][132, p. 89]. Moreover, capturing the invariants during model-checking

may result in a much more complex structure and, therefore, can lead to state explosion during the

refinement checks, as already discussed in Section 3.5.

processP ′ =̂
begin

stateState =̂ [b : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(lm))]
Memory =̂

vres b : BINDING •
(@n : dom b • mget .n!b(n)→ Memory(b))

@
(

@n : dom b •
(

mset .n?nv : (nv ∈ δ(n))→
Memory(b ⊕ n 7→ nv)

) )
@ terminate → Skip

• var b : BINDING •( (
ΩA(A);
terminate → Skip

)
J ∅ | MEMI | {b} K Memory(b)

)
\MEMI

end

(4.5)

Therefore, because of definition 1 [129, Section 3.1.4, Def. B.41, p. 43], we no longer need to include

the state definition in the Circus process.

processP ′ =̂
begin

Memory =̂

vres b : BINDING •
(@n : dom b • mget .n!b(n)→ Memory(b))

@
(

@n : dom b •
(

mset .n?nv : (nv ∈ δ(n))→
Memory(b ⊕ n 7→ nv)

) )
@ terminate → Skip

• var b : BINDING • (ΩA(A) ; terminate → Skip)
J∅ | MEMI | {b}K
Memory(b)

 \MEMI

end

(4.6)

According to the example of the RingBuffer , from Deliverable 24.1, the local variable b in the main

action of the process P ′ is transformed in a replicated internal choice of all possible values of b of type

BINDING . This step is not clearly described as a translation step in [132]. In fact, this is a missing
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step between the Circus specification and the equivalent translated CSPM model. We describe here

this step and then will present the justification for why we decided to modify the translation scheme

from this step onwards.

This translation step is justified by the definition of the L4 for var, from the Unifying Theories

of Programming [83, p. 70], which says that given a variable x of a certain type T , then var x is

equivalent to u{var x := k | k ∈ T}. In other words, the initial value of a declared variable x is

arbitrarily non-deterministic. Thus, this can be rewritten as var x : T = u x : T , and it is in fact how

we capture the var construct in CSPM .

processP ′ =̂
begin

Memory =̂

vres b : BINDING •
(@n : dom b • mget .n!b(n)→ Memory(b))

@
(

@n : dom b •
(

mset .n?nv : (nv ∈ δ(n))→
Memory(b ⊕ n 7→ nv)

) )
@ terminate → Skip

• u b : BINDING • (ΩA(A) ; terminate → Skip)
J∅ | MEMI | {b}K
Memory(b)

 \MEMI

end

(4.7)

Whilst testing our tool, we identified that by translating the Step 4.7 into CSPM , the approach works

fine for specifications that uses a small number of state variables. However, it becomes unfeasible in

larger specifications, as the number of generated states grows in terms of the bindings combinations

of state variables and their type range of values. In large scale specifications, this approach would

consume an expresive amount of time and memory for FDR4 to explore the state space.

As part of our contribution to state of the art, in order to overcome such problems, we developed

a new sequence of translation steps that still preserves the semantics of Circus and, at the same time,

optimises the computational time using FDR4. Our first step is to define another refinement step

after Step 4.6, where, instead of refining the local variable b of type BINDING as an internal choice

of all possible values of its type, we use the refinement law 21, crl proc splitting4, where the local

variable is transformed into a parameter of the Circus process. Such a step is in conformance with

the definition of a Circus process [129, p. 23], where parameters may be used as local variables in the

definition of the process. In Chapter 5, we describe the modifications we had to include that reflects

the steps presented here in the context of CSPM .

processP ′ =̂ b : BINDING
begin

Memory =̂

vres b : BINDING •
(@n : dom b • mget .n!b(n)→ Memory(b))

@
(

@n : dom b •
(

mset .n?nv : (nv ∈ δ(n))→
Memory(b ⊕ n 7→ nv)

) )
@ terminate → Skip

•
 (ΩA(A) ; terminate → Skip)

J∅ | MEMI | {b}K
Memory(b)

 \MEMI

end

(4.8)
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With this approach, instead of leaving the task of generating all possible combination of bindings for

the model-checker, we produce a more concrete model, where a set of bindings b should be provided

as a parameter. In other words, the initial values of the Circus process is therefore defined non-

deterministically. We assume that the state of a Circus process is explicitly initialised in the main

action, which is usually one of the verification requirements from certification authorities [65].

In order to illustrate our arguments on the effect of removing the internal choice of possible

bindings, in Figure 4.1, we could start the execution of our Circus process P ′ with several bindings

sets, P ′(b1),P ′(b2), . . . , P ′(bn), and, after the execution of the state initialisation, P ′.StateInit , the

next state of the process would lead to a same state State ′ for any instance of bn , and therefore, the

execution of the process main action would be identical despite the bindings used. We stress that by

disregarding the state initialisation in a specification would lead the system to unexpected behaviour.

P ′(b1)start

P ′(b2)start

. . .start

P ′(bn )start

State′ State′′ State′′′

P ′.StateInit

P ′.StateInit

P ′.StateInit

P ′.StateInit

. . . terminate

Figure 4.1: Converging transitions after the state initialisation.

In the next section we focus on the memory process, where we present the limitations found

whilst testing the tool and the improvements made to that process.

4.1 Upgrading the Memory Model

With the initial version of the tool, we could take examples from D24.1 (e.g. the ring-buffer exam-

ple [132, Appendix D.2, p163]) and automatically translate them and then successfully perform FDR

checks. However, when we turned out attention to the haemodialysis machine [75] model, we imme-

diately uncovered some limitations of the original translation. All of these limitations were overcome

by changing the memory model only.

4.1.1 Limitation 1: Z types vs. CSPM types

One of the issues we encountered while testing the translation rules from [132] was related to the

definition of the universe type in CSPM . In Circus, we abstract any type within the universe type
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with [UNIVERSE ]. However, in CSPM , we can’t use that level of abstraction and therefore, we need

to produce a structure for explicitely declaring the types involved in a specification environemnt. As

of now, we are not detailing the CSPM specifities: we discuss the CSPM environment structure and

how we handle the type definitions in Section 5.1.

We anticipate that the examples used while testing our tool were enough to show that FDR

does not support a polymorphic definition of BINDING , and therefore, we had to refine our memory

model, as well as to partition the UNIVERSE and BINDING types into distinct sets for each type

used within a specification.

processP ′ =̂ bT1
: BINDINGT1

, . . . , bTn : BINDINGTn

begin
Memory =̂

vres bT1 : BINDINGT1 , . . . , bTn : BINDINGTn •
(@n : dom bT1 • mget .n!bT1(n)→ Memory(bT1 , . . . , bTn ))
@ . . .
@(@n : dom bTn • mget .n!bTn (n)→ Memory(bT1 , . . . , bTn ))

@
(

@n : dom bT1
•
(

mset .n?nv : (nv ∈ δ(n))→
Memory((bT1

⊕ {n 7→ nv}), . . . , bTn )

) )
@ . . .

@
(

@n : dom bTn •
(

mset .n?nv : (nv ∈ δ(n))→
Memory(bT1

, . . . , (bTn ⊕ {n 7→ nv}))

) )
@ terminate → Skip

•
 (

ΩA(A) ; terminate → Skip
)

J∅ | MEMI | {bT1
, . . . , bTn}K

Memory(bT1 , . . . , bTn )

 \MEMI

end

(4.9)

The above-presented model resolved the problem with CSPM type limitations and allowed the

successful loading of the translated HD model into FDR. However, it now exposed the second limita-

tion.

4.1.2 Limitation 2: FDR time/space explosion

We quickly discovered that we could only check small Circus models using this translation, with

even the hand-translation of the HD model done for the original case-study being more effective. We

proceeded to experiment with transformations to the memory model, justified by the Circus refinement

laws. The final step, observing a trend, was to do more partitioning, moving to a situation were every

variable gets its memory process. The supertype bindings were retained at the top-level, but the

relevant binding parameterised each variable’s memory process with its domain restricted to just the

name of that variable. So, for example, if variable ni has a type whose type is T , then we first define

a binding bT for that type and use it to parameterise a memory process for all variables of that type.

Then we have a parallel composition of a memory process for each such variable, all synchronising on

terminate, but interleaving all the mget and mset events:

MemoryT (bT ) =̂ J{| terminate |} K n : dom bT • MemoryTVar(n, {n}C bT ) (4.10)

Here N C µ restricts the domain of map µ to set N . We then define a parameterised process that

represents a single variable:

MemoryTVar(n, b) =̂

 mget .n.b(n)→ MemoryTVar(n, b)
@mset .n?nv : δ(n)→ MemoryTVar(n, b ⊕ n 7→ nv)
@ terminate → Skip

 (4.11)
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Remember that δ maps a variable name to its type. The entire memory is constructed by putting the

memories for each supertype in parallel, in the same as for the individual variable processes.

Memory(bT1
, . . . , bTk ) =̂ MemoryT1(bT1

)J{| terminate |}K. . .J{| terminate |}KMemoryTk (bTk ) (4.12)

This last transformation produced a marked improvement in the time and memory consumption of

FDR when checking models.

processP ′ =̂ bT1
: BINDINGT1

, . . . , bTn : BINDINGTn

begin
MemoryTVar(n, b) =̂ mget .n.b(n)→ MemoryTVar(n, b)

@mset .n?nv : δ(n)→ MemoryTVar(n, b ⊕ n 7→ nv)
@ terminate → Skip


MemoryT (bT ) =̂

J{| terminate |} K n : dom bT • MemoryTVar(n, {n}C bT )

Memory(bT1
, . . . , bTk ) =̂


MemoryT1(bT1

)
J{| terminate |}K
. . .
J{| terminate |}K
MemoryTk (bTk )


•
 (

ΩA(A) ; terminate → Skip
)

J∅ | MEMI | {bT1
, . . . , bTn}K

Memory(bT1
, . . . , bTn )

 \MEMI end

(4.13)

The above definition concludes the refinement steps in order to transform a state-rich Circus

process into a state-poor process, where the Memory action controls the data previously stored in the

state of the process. We also presented here our proposed translation strategy as a way to overcome

the limitations regarding the use of polymorphic functions in CSPM as well as why we removed the

replicated internal choice from the main action in order to reduce the state exploration in FDR.

4.2 Rewritting Circus Actions with Ω

We implemented the Ω functions that transform state-rich into state-poor Circus processes. The

implementation of the Omega functions2 in the Circus action level is performed using a set of recursive

functions over the Circus actions AST. These functions are applied in order to produce a specific shape

for the main action of a Circus process, where the reference to any state component or local variables

is made using a local copy, obtained by mget , each of them with v prefixed to their names.

We use our Circus AST in Haskell, and therefore, we can create functions that match the patterns

for the translation rules. Such a feature makes the implementation very straightforward for most of

the Circus constructs.

One first example of translation rule is the prefixed action c → A, which does not require or use

any data from the state variables, and therefore, it only recurses over the construct.

ΩA(c → A) =̂ c → ΩA(A)

It is then implemented in Haskell using pattern matching, using the construct

(CSPCommAction x a) for prefixed actions, where x is used for the channel declaration, and a
2The entire list of implemented functions is available for further reading in Appendix B.
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is the subsequent action. In this case, we use the pattern (ChanComm c []) to represent that the

channel c does not communicate any value, represented by the empty list of channel communication

[]. As described above, the ΩA for such pattern recurses over a.

omega_CActions :: CAction -> CAction
2 omega_CActions (CSPCommAction (ChanComm c []) a)

= (CSPCommAction (ChanComm c []) (omega_CActions a))

A slightly more complex example is that of events outputting values that involve state variable

values. In such a case, we must identify the set of free variables of the expression e which will be the

output of the channel c. From that set, we prefix the action with one or more mget events, retrieving

the values of the related state variables to the expression e.

ΩA(c.e(v0, . . . , vn , l0, . . . , lm)→ A) =̂
mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →
c.e(vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(A)

where FV (e) = (v0, . . . , vn , l0, . . . , lm)

Our implementation of the above definition is illustrated below. Firstly, we have to retrieve fe,

the list of variables used in the expression e, using the function getChanDotExpVar3. Then, we obtain

the list of free variables fvars and then the function can fall on two cases: (1) if fvars is empty, the

function recurses on the process a; (2) otherwise, for each variable of fvars, a mget event is created

in order to retrieve the value of that state variable. In Circus2CSP, we use the auxiliary function

make_get_com which creates the mget actions for each element of the list of free variables – which

retrieve the state variables used – fvars, in the action. Finally, we also rename the variables used in

action a, with the help of the function rename_vars_CAction, so they now refer to the v prefixed

variables, obtained using mget , rather than accessing the state variables directly.

1 omega_CAction (CSPCommAction (ChanComm c e) a) =
case fvars of

3 [] -> (CSPCommAction (ChanComm c e) (omega_CAction a))
_ -> make_get_com fvars (rename_vars_CAction (CSPCommAction (ChanComm c e) (omega_prime_CAction a)

))
5 where fe = getChanDotExpVar e

fvars = (remdups ( concat ( map get_ZVar_st ( concat ( map varset_to_zvars (map free_var_ZExpr
fe))))))

A third example which requires a more complex implementation is the case of the use of the

external choice operator. First, we have to evaluate which state variables are mentioned in each side

of the operator, and for each state variable, one mget prefixed action should be performed right before

the scope of the operator, so those values can then be used in both sides. Mainly, the Ω′A set of action

behaves just like ΩA, however, does not produce any mget or mset before the construct.

ΩA(A1 @ A2) =̂

 mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →

(Ω′A(A1) @ Ω′A(A2))


The implementation is similar to the previous example presented above, where we use to retrieve the

free variables of the action in question and then, prefix the external choice with the relevant mget

events. Finally, the Ω′A functions are used for both sides of the external choice, meaning that the
3The source code of Circus2CSP is available online [76].
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values obtained with mget are propagated to each side of the choice, and no further mget events

should happen until required, as defined by the translation rules.

omega_CAction (CSPExtChoice ca cb)
2 = make_get_com fvars (CSPExtChoice (omega_prime_CAction ca)

(omega_prime_CAction cb))
4 where

fvars = remdups $ concat $ (map get_ZVar_st $ varset_to_zvars $
6 free_var_CAction (CSPExtChoice ca cb))

Moreover, any replicated operator such as replicated sequential composition or external choice are

translated into their expanded form, which will then match the respective pattern for such operator,

since the ΩA function is called again for such expanded form.

ΩA(; x : 〈v1, ..., vn〉 • A(x )) =̂ ΩA(A(v1) ; . . . ; A(vn))

ΩA(@ x : v1, ..., vn • A(x )) =̂ ΩA(A(v1) @ . . . @ A(vn))

Another example we present here is the translation for assignments. Such a construct is not

present in the syntax of CSPM and therefore, needs to be transformed into something else in Circus

which can then be translated into CSPM . We use as an example the definition of the AInit action of

the WakeUp Circus process from Section 2.4.2, where the assignment operator is used in order to set

the initial values for sec and min as 0, and buzz as OFF .

ΩA(sv sec, sv min, sv buzz := 0, 0,OFF ) =̂ mset .sv sec.0→
mset .sv min.0→
mset .sv buzz .OFF → Skip


We can observe that no mget event occurred in AInit . It is because the values that will be assigned

to the variables does not depend on other state variables. A different example that uses both mget

and mset events is illustrated below. Let’s translate now the action IncSec from the same example of

Section 2.4.2:

ΩA(sec,min := (sec + 1) mod 3,min) =̂
mget .sv sec?v sv sec : δ(sv sec)→
mget .sv min?v sv min : δ(sv min)→
mset .sv sec.(NAT .((v sv sec + 1) mod 3))→
mset .sv min.v sv min → Skip


Basically, the result transformation is a sequence ofmgets andmsets from theMemory model. We first

get, mget , all the state variable and local variable values used in the left-hand side of the assignment,

and then, using mset , we set the values of such variables. The most interesting translation rule, and

yet the most complex, is the one that deals with actions in parallel. In Circus the actions A1 and

A2 are modelled to work in parallel as A1 J ns1 | cs | ns2 K A2. The initial values of all variables are

available for both actions. However, A1 can only modify the variables mentioned in the name set ns1.

Likewise, ns2 represents the set of permitted variables to be modified by A2.

In D24.1, the translation uses two auxiliary actions: MemoryMerge and Merge. The former

behaves like Memory using a copy of the bindings, except in the case of a terminate signal, when it

propagates two other signals mleft and mright to the later, which will write the final values to Memory
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according to the state partition.

ΩA(A1 J ns1 | cs | ns2 K A2) =̂
mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →



 (
Ω′A(A1) ; terminate → Skip

)
J{} | MEMI | {}K
MemoryMerge({v0 7→ vv0, . . .},LEFT )

 \MEMI

J{} | cs | {}K (
Ω′A(A2) ; terminate → Skip

)
J{} | MEMI | {}K
MemoryMerge({v0 7→ vv0, . . .},RIGHT )

 \MEMI


J{} | MRGI | {}K
Merge


\MRGI

where

Merge =̂

 (mleft?l → ; n : ns1 • mset .n!l(n)→ Skip)

9 (mright?l → ; n : ns2 • mset .n!l(n)→ Skip)


MemoryMerge =̂

vres b : BINDING ; s : SIDE •

(
@ n : dom b • mget .n!b(n)→

MemoryMerge(b, s)

)
@
(

@ n : dom b • mset .n?nv : (nv ∈ δ(n))→
MemoryMerge(b ⊕ {n 7→ nv}, s)

)
@terminate →

(
(s = LEFT) N mleft !b → Skip
@ (s = RIGHT) N mright !b → Skip

)


In our model, we redesigned the translation rule for parallel actions. We isolate completely the

local copies of initial values of the bindings with ΓA functions instead of ΩA, which uses local gets

and sets, namely lget and lset , as an intermediate state. It will propagate the local state values

from MemoryMerge to Memory should a lterminate signal occurs, meaning that the parallelism has

finished. Hence, the new ΩA translation rule for parallel actions is illustrated as follows.

ΩA(A1 J ns1 | cs | ns2 K A2) =̂
mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →



 (
Γ′A(A1) ; lterminate → Skip

)
J{} | MEML | {}K
MemoryMerge(b TYP1, . . . , b TYPn ,ns1)

 \MEML

J{} | cs | {}K (
Γ′A(A2) ; lterminate → Skip

)
J{} | MEML | {}K
MemoryMerge(b TYP1, . . . , b TYPn ,ns2)

 \MEML




We follow the idea of the distributed memory system and therefore, we define a distributedMemoryMerge

action, where we first split it into several copies, one for each binding type, synchronising on lterminate,

resulting in several MemoryMergeTYPTYPn actions, one for each type TYPn .

MemoryMergeTYP1(b TYP1,ns) =̂

J{| lterminate |} K v : dom b TYP1 • MemoryMergeTYP1Var(v , b TYP1,ns)
MemoryMerge(b TYP1, . . . , b TYPn ,ns) =̂

MemoryMergeTYP1(b TYP1,ns)
J{| lterminate |}K
. . .
J{| lterminate |}K
MemoryMergeTYPn(b TYPn ,ns)
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Then, a second level of distribution is made within the scope of

MemoryMergeTYPTn , where for every single state variable v within the bindings b TYP1, an ac-

tion MemoryMergeTYPnVar is available for it and may perform either lget and lset , updating locally

the values for its variable, and terminates with lterminate, followed by a mset updating its value to

the memory model, should such variable belongs to the name set ns. Otherwise, it skips.

MemoryMergeTnVar(v , b TYPn ,ns) =̂
lget .v .(b TYP1(v))→ MemoryMergeTYP1Var(v , b TYP1,ns)
@ lset .v?nv : typeTYP1(n)→

MemoryMergeTYP1Var(v , b TYP1 ⊕ {v 7→ nv}),ns))

@ lterminate →

 if v ∈ ns −→ (mset .v .(b TYP1(v))→ Skip)
8v 6∈ ns −→ Skip

fi




Regarding the Merge action, it was literally merged into the MemoryMergeTYPnVar action, and

therefore, neither mleft nor mright are any longer necessary: because of the distributed model, there

is no need to model a replicated sequential composition of mset for every variable n in ns, once it is

done locally in every action MemoryMergeTYPnVar .

Until now, we presented the elements used in the translation strategy in order to reshape a Circus

specification in such a way it can then be rendered in CSPM using the Υ functions. In the next section,

we present details on the CSPM environment, as well as how we implemented the Υ functions.
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Chapter 5

Translating Circus to CSPM with Υ

In this section we present how we translate the transformed CircusCSP into CSPM . We first present

the original structure of the file [132], then we present how the improvements presented in previous

sections affected such structure. Finally, we show some examples of the Upsilon (Υ) translation rules

for both Circus processes and actions.

5.1 The CSPM type environment for the Memory model

We introduce here the structure defined in Deliverable 24.1 [132], and then we present the modifica-

tions to the CSPM environment that reflects the improvements made during our research in order to

overcome the limitations of the original translation strategy, as presented in Section 4.1.

The use of the UNIVERSE type, the CSPM subtype feature, and the function type written in

CSPM to map a name to its specific type worked fine if all the types in UNIVERSE where a sub-type

of one supertype. In the D24.1 examples, all types were sub-types of the natural numbers. However,

in the haemodialysis model [75], we had a mixture of types, some natural sub-types, but others being

enumerations. The translations of these failed to type check in FDR because its type system is not

powerful enough. The function type maps variables to their types in the bindings, which requires

returning different types, leading to a type error in FDR. Enumerations are isomorphic to subsets of

the naturals, and so we could have re-written those types, but we felt that it would be preferable if

the translator could somehow handle this situation itself.

As a way of illustrating the whole structure, we use the WakeUp model from Section 2.4.2, which

can be found in the Appendix H.4.1 along with some reasoning about that model. The only difference

between the WakeUp model to the Chronometer model, from Section 3.5, is that we introduce the

feature of an alarm for a defined time. Therefore, we introduce a type ALARM which can either be

ON or OFF , depending on the behaviour of the chronometer.

Firstly, we introduce how UNIVERSE , NAME , type, tag, and value would be defined follow-

ing [132]. We have two types in our example: the “nametype” ALARM , which can be ON and OFF ;

and the RANGE set, a subset of the natural numbers, ranging from 0 up to 5. The translated specifi-

cation in CSPM uses the UNIVERSE type that includes, for example, the type RANGE , indicated by

using using a CSP tag RAN .RANGE , which is incorporated as a subtype of UNIVERSE . Any value

of RANGE will now be available within UNIVERSE as {RAN .0,RAN .1,RAN .2,RAN .4,RAN .5}.
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RANGE = {0..5}
2 datatype ALARM = ON | OFF

datatype UNIVERSE = RAN.RANGE | ALA.ALARM

The next step is to define subtypes of the universe type: we prefix each subtype with U followed by

the first three letters of the type name, in capital letters, e.g. U RAN . Each subtype is defined with

a tag, and its type name, e.g. RAN .RANGE .

1 subtype U_RAN = RAN.RANGE
subtype U_ALA = ALA.ALARM

Here we propose a solution where the whole construction of bindings and auxiliary functions, along

with how the communication in the Memory process is differentiated according to each type used

in the specification. We modified the universal type approach from [132], to handle a mixed-type

universe.

Instead of directly defining the three untypeable CSPM functions, value, type, and tag, we

define variants of each function for each type within the specification. For instance, for the RANGE

type, we define functions valueRAN, typeRAN and tagRAN. Further in this section, we will show

that the use of the tag function becomes redundant for our approach.

valueRAN(RAN.v) = v
2 valueALA(ALA.v) = v

4 typeRAN(x) = U_RAN
typeALA(x) = U_ALA

6
tagRAN(x) = RAN

8 tagALA(x) = ALA

We also define subtypes for each of the NAME types, and thus, its subtypes NAME RAN and

NAME ALA.

datatype NAME = sv_sec | sv_min | sv_buzz
2 subtype NAME_RAN = sv_sec | sv_min

subtype NAME_ALA = sv_buzz

Next, we define a series of of bindings for each type, instead of a universal binding mapping. For our

example, we will have either NAMES VALUES RAN and NAMES VALUES ALA, as well as its

related BINDINGS , BINDINGS RAN and BINDINGS ALA. In practice, this solution is beneficial

whilst using FDR, as the checker doesn’t need to build mappings for a name other than its own type.

For instance, we will never have a match between a min variable and the value ON or OFF .

1 NAMES_VALUES_RAN = seq({seq({(n,v) | v <- typeRAN(n)}) | n <- NAME_RAN})
BINDINGS_RAN = {set(b) | b <- set(distCartProd(NAMES_VALUES_RAN))}

We also have to modify the definition of Memory in order to differentiate the bindings for every type

defined in the specification. Moreover, as we now have multiple definitions of the type function, we

need to produce instances of mset and mget for every defined type.
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Firstly, we redefine the parameter of the function Memory(binds), as it might have several bind-

ings. As a convention, we define the bindings parameters as a prefix b , followed by the tag name

of the type. From our example, we define Memory(b RAN , b ALA) with the bindings for RANGE

and ALARM . We illustrate the definitions for the type U RAN and omit the definitions for type

U ALA as they are similar to the ones for U RAN . Thus, we translate the distributed model of the

Memory action, as introduced in Section 4.1.2.

MemoryRANVar(n,b_RAN) =
2 mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)

[] mset.n?nv:RANeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv))
4 [] terminate -> SKIP

MemoryRAN(b_RAN) =
6 ( [| {| terminate |} |] n : dom(b_RAN)

@ MemoryRANVar(n,ddres(n,b_RAN)) )
8 Memory(b_RAN, b_ALA) =

MemoryALA(b_ALA) [| {| terminate |} |] MemoryRAN(b_RAN)

Likewise, the definitions for MemoryMerge in CSPM are presented below. We make use of several

auxiliar CSPM definitions1 such as ddres, which represents the domain restriction function from Z.

Moreover the over(b_RAN,n,nv) function represents the expression b RAN ⊕ {n 7→ nv}. In this

example, we also ommit the definitions for U ALA since they are similar to the ones for U RAN .

1 MemoryMergeRANVar(n,b_RAN,ns) =
lget.n.apply(b_RAN,n) -> MemoryMergeRANVar(n,b_RAN,ns)

3 [] lset.n?nv:typeRAN(n) -> MemoryMergeRANVar(n,over(b_RAN,n,nv),ns)
[] lterminate -> ( ; bd : <b_RAN>

5 @ ; n : <y | y <- ns,member(y,dom(bd))>
@ mset.n.apply(bd,n) -> SKIP )

7 MemoryMergeRAN(b_RAN,ns) =
( [| {| lterminate |} |] n : dom(b_RAN)

9 @ MemoryMergeRANVar(n,ddres(n,b_RAN),ns) )
MemoryMerge(b_RAN,b_ALA,ns) =

11 ( MemoryMergeALA(b_ALA,ns) [| {| lterminate |} |] MemoryMergeRAN(b_RAN,ns) )

5.2 Generating Bindings

As one of our contributions, our tool is capable of generating a simple set of bindings for each type

used within the specification. Circus2CSP reads some of the types used within a specification and

determines a binding set with the minimum value within a range of values, or the first value within

a free type definition. Any other complex type definition is left as a task for the user to define it,

and we point it as DO_IT_MANUALLY. Therefore, once type-checking with FDR, it will point exactly

which binding needs to be defined manually.

We illustrate below the example of the bindings defined for the Chronometer model from Sec-

tion 2.4.2, where we use the value 0 of type RANGE for defining the values for minutes and seconds.

Moreover, the buzzer of the alarm is defined as OFF .

1 b_RAN1 = {(sv_sec, RAN.0),(sv_min, RAN.0)}
b_ALA1 = {(sv_buzz, ALA.ON)}

1Two auxiliary CSPM files are provided with the translator: function aux.csp and sequence aux.csp. These are
derived from the Deliverable 24.1, with new other functions added.
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We plan to extend the bindings generator in order to produce a mechanism capable of identifying

a meaningful set of values enough for model-checking a specification without needing to explore every

single value within a range. This is part of our future work and is detailed in Section 9.2

We should clarify that our approach to producing parametrised processes is not an attempt to

use the bindings data-independendly [140, p. 453]. That is solving a different problem, namely finding

a finite size of a type that is suitable to demonstrate the correctness for any finite or even infinite size

of such type.

In the next section, we introduce the function ΥP , used in order to render the structure of Circus

processes in CSPM .

5.3 Mapping Circus Processes - ΥP

Note that the definition of bothMemory andMemoryMerge actions are enclosed inside a let-within

statement. Although, we omit the definitions of MemoryMerge as it is not used in the example above.

Proc(b_RAN,b_ALA) =
2 let MemoryRANVar(n,b_RAN) = ...

MemoryRAN(b_RAN) = ...
4 MemoryALAVar(n,b_ALA) = ...

MemoryALA(b_ALA) = ...
6 Memory(b_RAN, b_ALA) =

MemoryALA(b_ALA) [| {| terminate |} |] MemoryRAN(b_RAN)
8 ...

MemoryMerge(b_RAN, b_ALA) =
10 MemoryMergeALA(b_ALA) [| {| lterminate |} |] MemoryMergeRAN(b_RAN)

within ( ( ( MA ; terminate -> SKIP ) [| MEMI |] Memory(b_RAN, b_ALA)) \ MEMI )

The content of MA in the above extract refers to the main action of the process and it is translated

into CSPM using the ΥA functions which will be presented in the next section.

5.4 Mapping Circus Actions - ΥA

The translation from CircusCSP into CSPM is basically the generation of auxiliary types from Z

constructs, along with channel and processes, according to the resulting specification from the Ω

functions transformation. Such a translation is made using the Υ functions, which output the CSPM

text directly into a file.

ΥA(c.v → A) =̂ c.v -> ΥA(A)

During our research we identified some inconsistency in the definition of the Υ functions. We noticed

that result of the translation strategy, illustrated by the RingBuffer [132, p. 163] example, differs from

what one would obtain by using the translation rules presented in [132, p. 156]. For instance, looking

at the RingBuffer in CSPM , in [132, p. 170], when communicating through a channel mget , a state

variable v of a process RingBuffer , translated as RingCell v should obtain the value vRingCell v and

should state that its type should match with the type of RingBuffer v . As an example, a channel

communication like mget .RingCell v?vRingCell v : δ(RingCell v) would not be captured by the two

cases below.

ΥA(c?x : P → A) =̂ c?x :{x | x <- δ(c), ΥB(P(x ))-> ΥA(A)
ΥA(c?x → A) =̂ c?x -> ΥA(A)
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Thus, there are not enough cases for the Υ function to cover all the data communication to and from

Memory . Moreover, the two rules above do not mention the use of any of the auxiliary functions,

type, tag and value, used in the RingBuffer example on [132, Appendix D4, p. 166].

It is part of our contribution to include new rules that support our running WakeUp example.

A possible definition of a Υ function that covers the mget and mset communication, respectively, is

provided below. We translate the δ function by first splitting it according to the types it returns, and

create type-specific versions by adding a suffix XYZ —the type of x— to the type, tag and value

functions.

ΥA(mget .x?v x : δ(x )→ A) =̂ mget.x?v x:(typeTYP(x)) -> ΥA(A)
ΥA(mset .x .v x → A) =̂ mset.x.(TYP.valueTYP(v x)) -> ΥA(A)

From our example, the WakeUp process, the mset communication is then translated to the following

extract, where the auxiliary functions are renamed suffixed by RAN , the tag of sv sec.

1 ... -> mset.sv_sec.(RAN.valueRAN(v_sv_sec)) -> SKIP

Similarly to process and action refinement, both the Ω and Υ functions are applied not only at

the action level but also at the Circus process level. The implementation procedure is similar to that

above and technical details are described in Section 5.3 of the Deliverable report D24.1 [132].

5.5 The CSPM version of the WakeUp process

Moving to the main content of the specification, we use the example alarm clock, WakeUp process,

where we incorporate the approach of separate bindings for each type. In the code extract below,

we show the process structure around the equivalent code of the Circus main action of the WakeUp

process.

1 WakeUp(b_RAN,b_ALA) =
let MemoryRANVar(n,b_RAN) =

3 mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)
[] mset.n?nv:typeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv))

5 [] terminate -> SKIP
MemoryRAN(b_RAN) =

7 [| {| terminate |} |] n : dom(b_RAN) @ MemoryRANVar(n,b_RAN)
Memory(b_RAN,b_ALA) = MemoryALA(b_ALA) [| {| terminate |} |] MemoryRAN(b_RAN)

9 ...
within ( ( (

11 mset.sv_sec.(RAN.0) -> mset.sv_min.(RAN.0) -> mset.sv_buzz.(ALA.OFF) ->
( let X =

13 mget.sv_buzz?v_sv_buzz:(typeALA(sv_buzz)) ->
mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

15 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
( ( ( (

17 tick ->
mset.sv_sec.(RAN.(valueRAN(v_sv_sec) + 1) % 3) ->

19 mset.sv_min.(RAN.valueRAN(v_sv_min)) ->
mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

21 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
( ( (valueRAN(v_sv_sec) == 0) &

23 mset.sv_min.(RAN.(valueRAN(v_sv_min) + 1) % 3) ->
mset.sv_sec.(RAN.valueRAN(v_sv_sec)) -> SKIP )

25 [] ( (valueRAN(v_sv_sec) != 0) & SKIP ))
[] ( (valueRAN(v_sv_min) == 1) &

27 radioOn -> mset.sv_buzz.(ALA.ON) -> SKIP ))
[] time -> out.(valueRAN(v_sv_min),valueRAN(v_sv_sec)) -> SKIP)

29 [] snooze -> mset.sv_buzz.(ALA.OFF) -> SKIP); X )
within X );

31 terminate -> SKIP )
[| MEMI |] Memory(b_RAN,b_ALA)) \ MEMI )
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We can identify the original parts of the Circus specification in the CSPM code above. For instance,

the content from line 11 is the equivalent translation of the AInit Circus action. Moreover, lines 23,

24 and 25 refers to the IncMin action.

With this revised approach, we noticed that the tag function is no longer required. The main

reason for that is due to the fact that we “carry” the subtype for each state variable in its own

name. We redesigned the whole Jaza/Circus2CSP framework to support the inclusion of the type

of a variable in its definition: ZVar (n,d). The former definition of a ZVar consisted of a pair

containing the variable name, n, and any decoration element, d . However, because of our findings

regarding the multiple types issues in the original translation scheme [132], we decided to incorporate

the variable tag, as defined in the UNIVERSE type within the ZVar definition. Therefore, we updated

ZVar (n,d) to ZVar (n,d,t), where t is the tag. For instance, the a variable sv n of type

NatValue is represented in Haskell as ZVar (’’sv\_n’’,[],’’NAT’’).

Because of the inclusion of the tag of a type in the variable definition in Haskell, we no longer

need to apply the function tag and expect FDR to evaluate the result. Now, from our example above,

in line 29, we write directly (ALA.ON ) instead of using (tagALA(sv buzz ).ON ) whilst writing the

mset synchronisation.

In this section we presented how Circus2CSP renders the translated specification in CSPM using

Υ functions. We detailed the improvements made to the original translation scheme when dealing

with multiple types in a same specification.

54



Chapter 6

A quick overview of Circus2CSP

In this section, we present an overall picture of how to use our tool Circus2CSP1, and how it interacts

with FDR4. The user can interact with the tool through a terminal-like interface, using a REPL (Read-

Eval-Print-Loop). It provides the user with a help command which lists all commands available and

how to use each of them. The initial screen of Circus2CSP is illustrated in Figure 6.1. It displays to

the folder in which will look for Circus specifications written in LATEX as well as the destination folder

for the CSPM files and reports from the tests performed using FDR4 in our tool.

Welcome to Circus2CSP translator, version X.X.X YYY 2018
Author: Artur Oliveira Gomes (gomesa@tcd.ie)
This is based on JAZA (Just Another Z Animator), see below.
Copyright(C) 1999-2005 Mark Utting (marku@cs.waikato.ac.nz).
Jaza comes with ABSOLUTELY NO WARRANTY (see file COPYING).
This is free software, and you are welcome to redistribute
it under certain conditions (see file COPYING).

Type ‘help’ to see the available commands.

Src. path: source/directory/
Dst. path: destination/directory/
Circus2CSP>

Figure 6.1: Circus2CSP initial screen

6.1 Commands for the translation to CSPM

Whilst listing the available commands, as shown in Fig. 6.2 and Fig. 6.3, the help will display two

sections: (1) a list of the commands used for the translation tool and (2) a list of commands for using

the built-in assertion generator.

The list of commands for the translation section is detailed below.

“list” displays all files of the source directory

“load” loads the file containing the Circus specification, which should be a LATEX file but the user must

not provide the file extension .txt.

“reload” reloads the already opened file (no need to provide file name again)
1The tool can be downloaded from our repositoryhttps://bitbucket.org/circusmodelcheck/circus2csp/

commits/tag/ThesisDay
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“conv” one-command for performing: (1) translation of Z schemas (if any); (2) automatic Circus refine-

ment calculus; (3) omega transformations (Ω); and (4) upsilon transformation (Circus to CSPM )

(Υ)

“reconv” repeats “conv”

“reset” cleans the buffer of loaded files

“quit” closes the application

Circus2CSP> help
Available commands for Circus2CSP:

help Display this message
list List the files in the current directory.
quit Exit the animator
reset Reset the whole specification
load filename Load a Circus spec from a file (do not include ".tex")
reload Re-load Circus spec from current file
conv filename ’load filename; omega; tocsp’.
convp filename perform conv but with mget_var instead of mget.var
reconv repeat ’conv’ on previous file
reconvp repeat ’convp’ on previous file
% comment (Ignored)
...

Figure 6.2: Circus2CSP help menu

6.2 Injecting CSPM in the Source Files

One interesting feature we decided to include in our tool is the possibility of injecting pieces of CSPM

directly into the LATEX source files. We can specify a system in Circus and also include the assertions

which will be directly exported into the resulting file containing the CSPM translated specification.

\begin{assert}
"assert SPEC [FD= IMP"
\also "assert SPEC :[deadlock free [FD]]"

\end{assert}

The code must be enclosed within the environment assert, which is identified by Circus2CSP

as text content that should be included in the resulting file. As illustrated above, for each assertion,

the user should insert a new line and quote the entire string, and in case more than an assertion is

required, the macro \also should be included between every two assertions. It is also possible to

include other CSPM definitions such as processes, channels and auxiliary functions when added to the

LATEX in a assert environment.

6.3 Integrating FDR4 with Circus2CSP

Model checking through FDR4 allows the user to perform a wide range of analysis of the specifications,

such as refinement checks, deadlock and livelock freedom, and termination. Verifying the assertions

about CSP specifications in FDR requires a considerable amount of time when we analyse more

complex systems. On top of the wide range of analysis that we can perform, another useful feature

available in FDR4 is to be able to animate the specification using Probe.
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We were able to integrate Circus2CSP with the command line interface of FDR4, and therefore,

we cannot only translate Circus into CSPM but perform all possible check using FDR straight from our

tool. The first two commands we introduce now, as listed in Fig. 6.3, are: procs and runfdr. The

former, procs, lists all the CSPM processes available, whereas the latter executes FDR4 and checks

any assertion included in the LATEX file using the environment assertion, as detailed in Section 6.2.

As part of our contribution, we developed an automatic generator of assertions for FDR4. Our

tool is capable of creating and executing assertions regarding the currently loaded specification. It is

executed using the command assert which provides results from refinement checks and for deadlock

freedom, divergence, and determinism check, depending on the user needs.

Available commands for FDR4:
The parameter ’model’ where m can be [T,F,FD]

procs list all available processes
runfdr Run FDR4 in command line mode
assert ref spec impl assert spec [FD= impl
assert ref spec impl model assert spec [m= impl
assert refall perform batch refinement for all processes available
assert refall model perform refall using a given model
assert dl spec checks spec for dls
assert dl spec model checks spec for dls using a given model
assert dlall perform batch dl check for all processes available
assert dlall model perform ’dlall’ using a given mode
assert div spec checks spec for div
assert div spec model checks spec for div using a given mode
assert divsall perform batch div check for all processes available
assert divsall model perform ’divsall’ using a given model
assert det spec checks if the spec is deterministic
assert det spec model checks if the spec is deterministic using a given model
assert detall perform batch det check for all processes available
assert detall model perform ’detall’ using a given model
assert jumbo perform all batches available (may take some time)

Figure 6.3: Circus2CSP help menu - continuation of Fig. 6.2

For each assertion check, the user can either select a specific check, as well as selecting which

process or processes and the model to be used, which can be (T) traces, (F) failures, and (FD) failures-

divergence model. Moreover, the user has the option to tell the tool to perform a specific check to

all available processes or to perform any combination of refinement between the available processes.

Finally, the command assert jumbo perform all checks available by Circus2CSP all at once.

6.4 Outputs provided by Circus2CSP

In our tool, we provide the results of both translation and assertion checks in FDR4 through separated

outputs.

1. filename.csp – Provides the translation to CSPM of the Circusspecification contained in

filename.tex.

2. filename.hc – Contains the Haskell AST representation of the translated Circus specification2.

3. filename.checks.csp – Uses a copy of filename.csp in order to perform the assertion

checks.
2Such file may be useful for debugging and reporting issues to the authors.
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4. filename.report.txt – Provides all results from the assertion checks of a given

filename.tex3.

6.5 Final Considerations

The development of Circus2CSP was conceived with the idea of reusing existing tools and filling gaps

in order to achieve a way of model-checking Circus specifications using FDR. We reused Jaza, written

in Haskell, rather than using the CZT framework, since we considered that the Java code of CZT was

much more complicated to understand and to start developing from it. However, the Haskell code for

Jaza was much more straightforward to read and include new features on top of the existing code.

Our attempt to integrate Circus2CSP with FDR is limited to the interface available by FDR. We

integrated our tool with FDR using the executable command "refines", as part of FDR’s package,

and manually parse the output resulted from its execution. A first restriction is that we can not

list the process names using the command-line, which is available in the GUI interface. Therefore,

we implemented our name listing command in Circus2CSP. However, we are restricted to the list of

the translated processes from Circus and cannot list the CSPM content of the environment assert

in LATEX, since to this day, the parser recognises the content declared in that environment as pure

text, which will be directly included into the CSPM files. We are aware that we could overcome such

limitation if we had integrated the CSPM Haskell parser 4 in our tool. It would be helpful in order to

be able to list all the processes, including the ones in the assert environment.

Yet another limitation for the integration with FDR and the use of CSPM as a target language

is that FDR provides counterexamples in CSPM that would be difficult to interpret regarding the

state properties of Circus processes. However, as mentioned earlier in this thesis, our focus here is to

model-check the behavior of the system, and just like we do not provide a translation for preconditions

and invariants, the changes of the state of a Circus process are also not analysed with our tool.

In the next section, we evaluate several Circus specification examples using Circus2CSP, comparing

with other methodologies from the literature.

3As of now, the tool will provide only the verdict regarding the assertion, in a simplified way: Passed or Failed .
For future work, we will include an extended output system, which will be able to provide details regarding the state
space exploration, counterexamples, as well as to generate LATEX tables for displaying the results for refinements of the
combination between all of the Processes.

4More about the CSPM parser can be found at https://github.com/tomgr/libcspm
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Chapter 7

Using Circus2CSP and FDR4

In this chapter, we present a compilation of Circus examples from the literature, and for each of them,

we use Circus2CSP in order to obtain the CSPM code. Then we compare, whenever possible, the

results obtained between our approach and the ones presented in the literature. We first introduce

rather small and simple examples, which shows interesting features of Circus. We also illustrate with

those examples, how the Ω transformations combined with the Circus Refinement Laws can solve

problems previously mentioned in the literature.

As we move along the chapter, we introduce more complex examples and finish this with the

Haemodialysis case study, comparing the results obtained since the beginning of our research, until

the conclusion of Circus2CSP.

7.1 Simple Circus Examples

Our first examples, from Example 1 to Example 6 were originally presented by Beg [15, Section 9.3,

p.93-99] in his PhD thesis, where Circus was translated into CSPM using a different strategy, where the

process state is preserved through the use of parameters, and consecutive action calls with updated

values for the state variables.

Example 1 – Lift Process

This first example shows the specification of a lift, which controls the direction of the lift, as well

as the doors opening and closing.

NatValue == 0 . . 5
DoorState ::= opened | closed
channel up, down, open, close

The Circus process Lift has two state variables: floor captures the floor level, and doorState describes

when the door is either opened or closed . It behaviour starts with the InitLift action, setting the

initial values for the state variables. Then, the Run action is called in an infinite loop, offering the

options to go up or down, as well as to open or close the doors, depending on the conditions defined
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for each action.

processLift =̂
begin
stateLiftState =̂ [floor : NatValue; doorState : DoorState]
InitLift =̂ (floor := 0) ; (doorState := closed)

Run =̂



(floor < 5 ∧ doorState = closed) N up → (floor := floor + 1)
@
(floor > 0 ∧ doorState = closed) N down → (floor := (floor − 1))
@
(doorState = closed) N open → (doorState := opened)
@
(doorState = opened) N (close → (doorState := closed))


• InitLift ; (µX • (Run ; X ))

end

Then we use Circus2CSP for translating the Lift specification into CSPM , resulting in the following

code.

1 Lift(b_NAT,b_DOO) =
let

3 MemoryNATVar(n,b_NAT) =
( ( mget.n.apply(b_NAT,n) -> MemoryNATVar(n,b_NAT)

5 [] mset.n?nv:typeNAT(n) -> MemoryNATVar(n,over(b_NAT,n,nv)))
[] terminate -> SKIP)

7 MemoryDOOVar(n,b_DOO) = ..
MemoryNAT(b_NAT) = ( [| {| terminate |} |] n : dom(b_NAT) @ MemoryNATVar(n,b_NAT) )

9 MemoryDOO(b_DOO) = ...
Memory(b_NAT,b_DOO) = ( MemoryDOO(b_DOO) [| {| terminate |} |] MemoryNAT(b_NAT) )

11 within ( ( (
mset.sv_floor.(NAT.0) -> mset.sv_doorState.(DOO.closed) ->

13 ( let X = mget.sv_doorState?v_sv_doorState:(typeDOO(sv_doorState)) ->
mget.sv_floor?v_sv_floor:(typeNAT(sv_floor)) ->

15 ( ( ( ( (
((valueNAT(v_sv_floor) < 5) and (valueDOO(v_sv_doorState) == closed))

17 & up -> mset.sv_floor.(NAT.(valueNAT(v_sv_floor) + 1)) -> SKIP )
[] ( ((valueNAT(v_sv_floor) > 0) and (valueDOO(v_sv_doorState) == closed))

19 & down -> mset.sv_floor.(NAT.(valueNAT(v_sv_floor) - 1)) -> SKIP ))
[] ( (valueDOO(v_sv_doorState) == closed)

21 & open -> mset.sv_doorState.(DOO.opened) -> SKIP ))
[] ( (valueDOO(v_sv_doorState) == opened)

23 & close -> mset.sv_doorState.(DOO.closed) -> SKIP ));
X ) within X );

25 terminate -> SKIP )
[| MEMI |] Memory(b_NAT,b_DOO))\MEMI )

Then, from the translation from Beg’s tool,

INITLIFT(doorState,floor) = LIFT(closed,0)
2 LIFT(doorState,floor) =

((floor < 5 and doorState == closed)) & (up -> LIFT(doorState,floor + 1))
4 []

((floor > 0 and doorState == closed)) & (down -> LIFT(doorState,floor - 1))
6 []

(doorState == closed) & (open -> LIFT(opened,floor))
8 []

(doorState == opened) & (close -> LIFT(closed,floor))

We compare both models by defining ArshadLift and CTOCLift processes, with the same binding

values, and check for the refinement between them, which turns out to be equivalent to each other.

1 ArshadLift = INITLIFT(valueDOO(apply(b_DOO1,sv_doorState)),
valueNAT(apply(b_NAT1,sv_floor)))

3 CTOCLift = Lift(b_NAT1,b_DOO1)
assert ArshadLift [FD= CTOCLift -- Passed

5 assert CTOCLift [FD= ArshadLift -- Passed

Example 2 – Simple Sequential Chain of Calls in Initialiser
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In this example, assignments are combined with channel communication, in a sequential com-

postition. The refinement calculator is used in order to transform any sequential composition into a

single sequence of communication, since assignments are transformed into mget and mset events. For

all the examples from now on, we restrict the range of values of an assignment using the mod operator.

channel a, b, c
processProcEx1 =̂
begin
stateEx1State =̂ [x , y : NatValue]
InitProcEx1 =̂ (x := 1) ; (y := 1)
ActionA =̂ (x := 0) ; (a → Skip)
ActionB =̂ (y := x + 1 mod 5) ; (b → Skip)
ActionC =̂ c → Skip
• ActionC ; ActionA ; ActionB

end

Then we use Circus2CSP for translating the ProcEx1 specification into CSPM , resulting in the following

code.

1 ProcEx1(b_NAT) =
let

3 MemoryNATVar(n,b_NAT) = ...
MemoryNAT(b_NAT) = ...

5 Memory(b_NAT) = MemoryNAT(b_NAT)
within ( ( (

7 c -> -- ActionC
mset.sv_x.(NAT.0) -> a -> -- ActionA

9 mget.sv_x?v_sv_x:(typeNAT(sv_x)) -> -- ActionB
mset.sv_y.(NAT.((valueNAT(v_sv_x) + 1)%5)) -> b -> SKIP; -- ActionB

11 terminate -> SKIP )
[| MEMI |] Memory(b_NAT))\MEMI )

The translation provided by Beg is:

ACTION_C(x,y) = c -> ACTION_A(x,y)
2 ACTION_A(x,y) = a -> ACTION_B(0,y)

ACTION_B(x,y) = b -> SKIP

Then we define the two CSPM processes ArshadProEx1 and CTOCProcEx1, and check the refinement

between them, proving its equivalence.

1 ArshadProEx1 = ACTION_C(valueNAT(apply(b_NAT1,sv_x)),
valueNAT(apply(b_NAT1,sv_y)))

3 CTOCProcEx1 = ProcEx1(b_NAT1)
assert ArshadProEx1 [FD= CTOCProcEx1 -- Passed

5 assert CTOCProcEx1 [FD= ArshadProEx1 -- Passed

Example 3 – Main Action having Internal Choice

We introduce now an example which uses the sequential composition operator and the internal

choice operator.

processProcEx2 =̂
begin
stateEx2State =̂ [x , y : NatValue]
InitProcEx2 =̂ (x := 1) ; (y := 1)
ActionA =̂ (x := 0) ; (a → Skip)
ActionB =̂ (y := x + 1 mod 5) ; (b → Skip)
ActionC =̂ c → Skip
• ActionA ; (ActionB uActionC )
end
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We expect the refinement calculator to apply the distributivity of sequential composition over internal

choice: A ; (B u C ) = (A ; B) u (A ; C ). Moreover, we note that because the main action does not

call InitProcEx2, its behaviour is not translated into CSPM . Therefore, the CSPM code of ProcEx2

is:

1 ProcEx2(b_NAT) =
let

3 MemoryNATVar(n,b_NAT) = ...
MemoryNAT(b_NAT) = ...

5 Memory(b_NAT) = MemoryNAT(b_NAT)
within ( ( ( (

7 mset.sv_x.(NAT.0) ->
a ->

9 mget.sv_x?v_sv_x:(typeNAT(sv_x)) ->
mset.sv_y.(NAT.((valueNAT(v_sv_x) + 1)%5)) ->

11 b -> SKIP
|~|

13 mset.sv_x.(NAT.0) -> a -> c -> SKIP );
terminate -> SKIP )

15 [| MEMI |] Memory(b_NAT))\MEMI )

Because the mget , mset and terminate events are hidden, MEMI , we could think of the behavior of

ProcEx2 as being:

1 ProcEx2(b_NAT) =
let

3 MemoryNATVar(n,b_NAT) = ...
MemoryNAT(b_NAT) = ...

5 Memory(b_NAT) = MemoryNAT(b_NAT)
within ( a -> b -> SKIP |~| a -> c -> SKIP )

Which is indeed the same behavior as of Beg’s translated version ACTION FINAL:

ACTION_FINAL(y,x) = a -> b -> SKIP |~| a -> c -> SKIP

And therefore, both processes are equivalent.

1 ArshadProEx2 = ACTION_FINAL(valueNAT(apply(b_NAT1,sv_x)),valueNAT(apply(b_NAT1,sv_y)))
CTOCProcEx2 = ProcEx2(b_NAT1)

3 assert ArshadProEx2 [FD= CTOCProcEx2 -- Passed
assert CTOCProcEx2 [FD= ArshadProEx2 -- Passed

Example 4 – Multiple assignments in an Action

A slightly longer process is defined as ProcEx4, which contains a larger number of assignments,

when compared with Example 2.

processProcEx4 =̂
begin
stateEx4State =̂ [x , y : NatValue]
InitProcEx4 =̂ (x := 1) ; (y := 1)
ActionA =̂ (x := 0) ; (a → Skip)
ActionB =̂ (y := x + 1 mod 5) ; (b → Skip)

ActionC =̂


(x := y + 1 mod 5) ;
(y := y + x mod 5) ;
(x := 4) ;
(y := 5) ;
(c → Skip)


• (ActionA ; (ActionB ; ActionC ))

end
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We can see that some assignments does not mention any state variable, whereas others like x := y + 1

do require the values of such variables. Therefore, sometimes a mget event occurs prior to the mset

event, for retrieving the current value of the variables mentioned in the assignment.

ProcEx4(b_NAT) =
2 let

MemoryNATVar(n,b_NAT) = ...
4 MemoryNAT(b_NAT) = ...

Memory(b_NAT) = MemoryNAT(b_NAT)
6 within ( ( ( mset.sv_x.(NAT.0) ->

a ->
8 mget.sv_x?v_sv_x:(typeNAT(sv_x)) ->

mset.sv_y.(NAT.((valueNAT(v_sv_x) + 1)%5)) ->
10 b ->

mget.sv_y?v_sv_y:(typeNAT(sv_y)) ->
12 mset.sv_x.(NAT.(valueNAT(v_sv_y) + 1)) ->

mget.sv_x?v_sv_x:(typeNAT(sv_x)) ->
14 mget.sv_y?v_sv_y:(typeNAT(sv_y)) ->

mset.sv_y.(NAT.(valueNAT(v_sv_y) + valueNAT(v_sv_x))) ->
16 mset.sv_x.(NAT.4) ->

mset.sv_y.(NAT.5) ->
18 c -> SKIP;

terminate -> SKIP )
20 [| MEMI |] Memory(b_NAT))\MEMI )

We can observe in the translation from Beg that sometimes the behavior of the action does not clearly

show when a value is updated. For instance, in ActionA, we first have an assignment, x := 0, then an

event a followed by Skip. Therefore, we expect the variables update prior to the event, which does

not occur as shown in the first two lines of the following code:

ACTION_A4(y,x) = a -> ACTION_B4(y,0 )
2 ACTION_B4(y,x) = b -> ACTION_C_0((x + 1)%5 ,x)

ACTION_C_0(y,x) = ACTION_C_1(y,(y - 1) )
4 ACTION_C_1(y,x) = ACTION_C_2((y + x)%5,x)

ACTION_C_2(y,x) = ACTION_C_3(y,4)
6 ACTION_C_3(y,x) = ACTION_C_4(5,x)

ACTION_C_4(y,x) = c -> SKIP

We see that first, an event a occurs and then the value of x is updated to 0. Similarly, the ActionB be-

haves as described in ActionA. However, for ActionC , all assignments, and therefore, state transitions,

occurs prior to the event c, which is the final one, ACTION C 4, as described above.

Our approach using Circus2CSP, however, preserves the sequence of state variable updates. Fi-

nally, as the events a, b, and c, does not mention any state variable, the behavior of our translation

is indeed equivalent to Beg’s approach.

1 ArshadProEx4 = ACTION_A4(valueNAT(apply(b_NAT1,sv_x)),valueNAT(apply(b_NAT1,sv_y)))
CTOCProcEx4 = ProcEx4(b_NAT1)

3 assert ArshadProEx4 [FD= CTOCProcEx4 -- Passed
assert CTOCProcEx4 [FD= ArshadProEx4 -- Passed

Example 5 – Assignment Does Not Resolve Choice - Assignment in One Side

This example introduces an interesting discussion about the non-interference of state changes in
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choice.

processProcEx5 =̂
begin
stateEx5State =̂ [x , y : NatValue]
InitProcEx5 =̂ (x := 1) ; (y := 1)
ActionA =̂ (x := 0) ; (a → Skip)
ActionB =̂ (y := x + 1 mod 5) ; (b → Skip)
ActionC =̂ c → Skip
• ActionA ; (ActionB @ ActionC )

end

In the example above, as part of the main action, there is an external choice between ActionB and

ActionC , which then may be seen as:

ProcEx5.(. . . ; (((y := x + 1 mod 5) ; b → Skip) @ (c → Skip)))

Such case is described by Oliveira [129, Definition B.7, p. 35], where he argues that since the

process state is encapsulated, and therefore, should be invisible to the global environment, any state

change should also not be visible, and therefore, an assignment should not interfere in the choice of

events.

As part of our research, we were able to prove1 that property using Circus refinement laws com-

bined with the omega transformations. As we know that assignments are not available in CSPM , we

translate them into a sequence of mget and mset events, which are hidden to the external environment.

Using the refinement laws we were able to shift the mget and mset events to occur after the event

choice. Therefore, based on the Proof G.2.2, the above external choice becomes:

ProcEx5.( . . . ; ((b → mset .sv y .((v sv x + 1) mod 5)→ Skip) @ (c → Skip)))

Thus, as expected, the CSPM code of the ProcEx5 translates the Circus process using the combi-

nation of the refinement laws and omega transformations, resulting in the same behavior as described

above, where the choice must be resolved between the events b and c and depending on them, the

value of y may be updated.

ProcEx5(b_NAT) =
2 let

MemoryNATVar(n,b_NAT) = ...
4 MemoryNAT(b_NAT) = ...

Memory(b_NAT) = MemoryNAT(b_NAT)
6 within ( ( (

mset.sv_x.(NAT.0) -> a -> -- ActionA
8 mget.sv_x?v_sv_x:(typeNAT(sv_x)) ->

mget.sv_y?v_sv_y:(typeNAT(sv_y)) ->
10 (

b -> mset.sv_y.(NAT.((valueNAT(v_sv_x) + 1)%5)) -> SKIP -- ActionB
12 []

c -> SKIP -- ActionC
14 );

terminate -> SKIP )
16 [| MEMI |] Memory(b_NAT))\MEMI )

Finally, as expected, both translations of ProcEx5 are equivalent to each other.

ACTION_FINAL5(y,x) = a-> BOX(y,0 )
2 BOX(y,x) = b-> SKIP [] c-> SKIP

4 ArshadProEx5 = ACTION_FINAL5(valueNAT(apply(b_NAT1,sv_x)),

1The entire proof can be found in the Appendix G.2
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valueNAT(apply(b_NAT1,sv_y)))
6 CTOCProcEx5 = ProcEx5(b_NAT1)

8 assert ArshadProEx5 [FD= CTOCProcEx5 -- Passed
assert CTOCProcEx5 [FD= ArshadProEx5 -- Passed

Example 6 – Assignment Does Not Resolve Choice - Asssignment on Both Sides

This is a second case of the non-interference of assignments on external choice. Here, assignments

are used in both sides of the external choice, and according to the Proof G.2.1, the property holds,

which shows that the final values of both x and y depends on the occurence of the events, whichever

was chosed.

processProcEx6 =̂
begin
stateEx6State =̂ [x , y : NatValue]
InitProcEx6 =̂ (x := 1) ; (y := 1)
ActionA =̂ (x := 0) ; (a → Skip)
ActionB =̂ (y := x + 1) ; (b → Skip)
ActionC =̂ c → Skip
• (ActionA @ ActionB) ; ActionC

end

Therefore, using Circus2CSP, we obtain the following CSPM code.

1 ProcEx6(b_NAT) =
let

3 MemoryNATVar(n,b_NAT) = ...
MemoryNAT(b_NAT) = ...

5 Memory(b_NAT) = MemoryNAT(b_NAT)
within ( ( (

7 mget.sv_x?v_sv_x:(typeNAT(sv_x)) ->
mget.sv_y?v_sv_y:(typeNAT(sv_y)) ->

9 (
(

11 a -> mset.sv_x.(NAT.0) -> SKIP -- ActionA
[]

13 b -> mset.sv_y.(NAT.((valueNAT(v_sv_x) + 1)%5)) -> SKIP -- ActionB
);

15 c -> SKIP -- ActionC
);

17 terminate -> SKIP )
[| MEMI |] Memory(b_NAT))\MEMI )

The resulting CSPM code translated by Beg as described in his thesis is defined below. However,

we see no pattern for state changes after the occurrence of a or b, leading it straight to the following

code, rather than to an intermediate action before the execution of the event c.

ACTION_FINAL6(y,x) = (a -> b -> SKIP) [] (a -> c -> SKIP)

However, we believe there is a mistake as he argues that sequential composition distributes over

external choice,

(ActionA @ ActionB) ; ActionC
v (ActionA ; ActionC ) @ (ActionB ; ActionC )

v

 (
(x := 0 ; a → Skip) ; c → Skip

)
@(

(y := x + 1 ; b → Skip) ; c → Skip
)


and therefore, it should result, instead, in the definition below. Moreover, we also used FDR4 to assert

the equivalence between the two models.
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1 ACTION_A_0(y,x) = ACTION_A_1(y,0)
ACTION_A_1(y,x) = a -> ACTION_C(y,x)

3 ACTION_B_0(y,x) = ACTION_B_1(y,x+1)
ACTION_B_1(y,x) = b -> ACTION_C(y,x)

5 ACTION_C(y,x) = c -> SKIP
ACTION_FINAL6(y,x) = ACTION_A_0(y,x) [] ACTION_B_0(y,x) -- Possible correct CSPm

7
ArshadProEx6 = ACTION_FINAL6(valueNAT(apply(b_NAT1,sv_x)),

9 valueNAT(apply(b_NAT1,sv_y)))

11 CTOCProcEx6 = ProcEx6(b_NAT1)

13 assert ArshadProEx6 [FD= CTOCProcEx6 -- Passed
assert CTOCProcEx6 [FD= ArshadProEx6 -- Passed

In the next section, we introduce examples used in order to evaluate the various improvements

to the translation strategies, as previously presented, and we point out when such improvements were

made necessary.

7.2 Evaluating Circus2CSP with Case-Studies

While experimenting with the translated CSPM specifications using FDR4, our main goal was to

obtain a model to which FDR4 can check, avoiding state-space explosion or excessive checking times.

We report here some experiments done with the HD machine and the ring-buffer case study from

D24.1. Our experiments make comparisons between the following translation schemes:

byHand The original hand translation of the HD model performed for the ABZ case-study.

D241 An automated translation based on that described in Compass deliverable D24.1

typedD241 A decomposition of D241, where each type has its own BINDINGS set and only refers

to the state variables of that type.

CTOC The final automated translation that provides Circus models with one memory process per

variable.

All these results were obtained on an Intel Core i7 2.8GHz CPU with 16GB of RAM. We also

have tested our tool with several existing examples, like the air controller [14], among several other

examples of Circus specifications also used for testing the JCircus tool. We were able to produce

a translation for the chronometer models from Oliveira’s PhD thesis [129]. As an experiment, we

were able to assert, in FDR, that both AChrono, and Chrono, are equivalent: AChrono is refined

by Chrono and vice-versa. Its refinement is also proved manually by Oliveira [129, p.34-41]. The

translation and refinement checks in FDR of the chronometer example are detailed in Appendix H. In

the next section, we describe our experiments with our tool, regarding the Memory model refinements

using the Haemodialysis case study [75].

7.3 The Haemodialysis Case Study

Haemodialysis is a therapy used in order to purify the blood of patients diagnosed with kidneys failure.

Such therapy is usually performed using a machine which removes waste such as creatinine and urea,

as well as an excess of water, which is usually excreted when the kidneys are fully functional. The
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dialysis machine uses a semipermeable membrane, in between the patient’s blood flow and the dialysate

solution, through which the blood’s impurities are transferred to the dialysate solution, which in turn,

is then discarded at the end of the therapy.

Such a device reveals the need for a deep understanding of the field of nephrology, as well as de-

tailed documentation of the hemodialysis machine requirements, which involves continuous monitoring

of dozens of safety-critical parameters, such as blood flow rates, pH, temperature and air detection.

Moreover, the system requirements are complicated as they rely on the values of those parameters.

Now, we briefly introduce Circus using some pieces of the Haemodialysis machine specification [75].

7.3.1 The Haemodialysis Machine in Circus

A Circus specification is composed of a series of paragraphs with can be either Z paragraphs, CSP

processes, or mixed CSP with commands, defining Circus actions. Circus also uses Z schemas in order

to model the “state” variables of a process, which might be read or updated using Circus actions.

One of the state components is the Z schema HDGenComp, composed of the state variables that

we identified whilst reading the system requirements. For instance, we include the hdActivity and

infSalVol parameters from R-1.

HDGenComp =̂ [hdActivity : P ACTIVITY ∧ infSalVol : N ∧ . . .]

We now define the Circus process HDMachine, which captures all the state variables in “state HD-

State”, being composed of a conjunction of the HDGenComp schema, along with RinsingParameters

and all the other schemas, such asDFParameters, UFParameters, PressureParameters, andHeparinParameters,

modelling the variables detailed in [Mashkoor2016, Tables 3–6].

processHDMachine =̂ begin

stateHDState ==

 HDGenComp ∧ RinsingParameters
∧ DFParameters ∧ UFParameters
∧ PressureParameters ∧ HeparinParameters


Then, the behavior of the system is captured using Circus actions. Firstly, we describe the execution

flow of the system from the therapy preparation to the conclusion, as illustrated in Figure 7.1. Ac-

Figure 7.1: Execution flow of the Haemodialysis machine

cording to the requirements, the system starts with the preparation phase, followed by the initiation

phase, and an ending phase, which are defined as the MainTherapy action, as a sequence of three

Circus actions: TherapyPreparation, TherapyInitiation and TherapyEnding .

MainTherapy =̂ TherapyPreparation ; TherapyInitiation ; TherapyEnding

As an example, for the therapy preparation phase, we define a Circus action that starts with a signal

preparationPhase, followed by a sequence of activities according to [Mashkoor2016,§3.2]. A key idea

here is each phase signals that it has started, on a channel, so that requirements and activities that

are phase-dependent can ascertain when they should be active. We model the steps that compose
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the therapy preparation phase, with a Circus process that behaves accordingly. The remaining two

top-level actions, TherapyInitiation and TherapyEnding are modelled similarly and can be found in

[75].

TherapyPreparation =̂
preparationPhase → AutomatedSelfTest;
ConnectingTheConcentrate ; SetRinsingParameters;
InsertingRinsingTestingTubSystem ; PrepHeparinPump;
SetTreatParameters ; RinsingDialyzer

7.3.2 System Requirements

We capture the system requirements by writing Circus actions that describe the behaviour of each

of them, and then, we run such actions in parallel with the MainTherapy action, synchronising on

common events, in order to allow the system to enforce raising alarms or stopping the therapy whenever

the system execution detects unexpected readings from the various sensors. As an example of how we

model the requirements, we describe R-1:

During the application of arterial bolus, the system monitors the volume of saline infusion

and if the volume exceeds 400ml, the system should stop the blood flow and raise an alarm

signal.

Therefore, in Circus, we use conditionals where if the above restriction is satisfied, the system will

perform StopBloodFlow and RaiseAlarm. If the precondition is not satisfied, it waits for a defined

period (parameter CheckInterval) and checks again. This illustrates the general approach here for

many of these monitoring requirements.

R1 =̂


if( (

hdActivity = {appArtBolus} ∧ infSalVol > 400
)

−→(StopBloodFlow 9 RaiseAlarm)

)
8
(
¬
(
hdActivity = {appArtBolus} ∧ infSalVol > 400

)
−→(Wait(CheckInterval)→ R1)

)
fi


Finally, the main action to be executed in the Circus process HDMachine is defined as HDMain, where

the system variables are initialised with HDGentCompInit , followed by the main therapy interleaved

with the requirements, which we restrict for illustration purposes to the Arterial Bolus section.

HDMain =̂ HDGenCompInit ; (MainTherapy 9 R1)

• HDMain
end

In this section, we briefly introduced the Haemodialysis case study along with some components of its

Circus specification, as presented in [75]. In the next section, we discuss various approaches for model

checking Circus.

7.3.3 Translating it into CSPM

In order to model check the Circus specification of the Haemodialysis machine, our first attempt was

to manually translate the Circus specification into CSPM , which we will refer to as byHand in this
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thesis. After the ABZ’16, we started the development of a tool based on the translation strategy

developed for the EU COMPASS project and described in deliverable D24.1[132] (herein D241).

However, we identified that D241 does not support specifications that use mixed types: it would

not support our Haemodialysis machine, as we use several free types, as well as subsets of the natural

numbers. Moreover, we noticed that such an approach is not suitable for Circus processes with a large

number of state variables: our HD machine model has more than 20 state variables.

In order to overcome the limitations of D241, we use the Circus refinement laws in order to

produce an improved translation scheme, which we will refer to as CTOC in this thesis. In this section,

we provide an overview of byHand, and then, we present the translation using Circus2CSP.

A manual approach

We present here a few pieces from the CSPM model of the Haemodialysis machine as presented in

ABZ’16, using byHand. First, we translate the Z types into equivalent constructs in CSPM . For

instance, natural numbers are translated into a set of meaningful values, as we do not want FDR

to explore all possible values, but only those being used. Therefore, we use NatValue = {0..X } for

the definition of natural numbers. Moreover, free types are translated into datatypes in CSPM . For

instance, the type ACTIVITY is used for exploring the various tasks performed by the HD machine,

such as the application of arterial bolus, appArtBolus and the reinfusion process, reinfProcess.

datatype ACTIVITY = reinfProcess | appArtBolus | ...

Then, Z schemas are translated by defining name types in CSPM , which consists of producing tuples

with the values for each variable from the schema. For example, the schema HDGenComp is translated

into a tuple where the first component of the tuple is the range of values for the hdActivity , of type

PACTIVITY , translated into CSPM as Set.(ACTIVITY). For model-checking purposes, we redefine

the limits for the infSalVol ranging from 0 up to 1, as we have to limit the range of values using

byHand.

1 nametype HDGenComp = (Set.(ACTIVITY),{0..1},...)

In Circus, when we want to manipulate the values of a component of a state component, we can freely

access it, even using assignments, as they are used within the context of the Circus process. However,

the main issue while translating Circus into CSPM is the fact that manipulating state variables is not

possible in CSPM as we do in Circus and assignments are not present in the syntax of CSP.

Therefore, the approach in order to overcome such problems, works as follows: if we want, for

example, to obtain the value of hdActivity , we define an auxiliary function get hdActivity illustrated

below, using as input a tuple of type HDGenComp and which returns the value of the corresponding

component. Similarly, an assignment such as hdActivity := val is made possible by calling the function

set hdActivity(val , (hda, inf , ...)), where val is the value to be assigned replacing hda and (hda, inf , ...)

is the tuple of type HDGenComp, as illustrated below.
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1 get_hdActivity((hda,inf,...)) = hda
set_hdActivity(val,(hda,inf,...)) = (val,inf,...)

The overall shape of the HDMachine process translated using byHand is presented as follows:

it has a tuple as a parameter, where each of the state components is structured within the equivalent

notation for the Z schemas. We represent the state of the process by creating new processes, where

every component of the Circus state is defined as the input of that process in CSPM and the access to

those values is made through CSPM channels, allowing the main action of the process to access and

update the values of the state components.

For instance, the HDGenComp is defined as the first member of the tuple, HDGC . Then, in

order to read and write each state variable, we create internal processes, like as HDGenCompSt for

the HDGenComp: each variable is read using the channels prefixed with get , and is updated through

channels prefixed with set . For instance, getHdActivity provides the current value of hdActivity , and

setHdActivity receives the its value and recurses updating it in HDGC .

HDMachine((HDGC, RP, DFP, UFP, PP, HP)) =
2 let

HDGenCompSt(HDGC) =
4 getHdActivity!get_hdActivity(HDGC) -> HDGenCompSt(HDGC)

[] setHdActivity!vHd -> HDGenCompSt(set_hdActivity(vHd, HDGC))
6 [] ...

The requirementR-1 is defined in CSPM similarly to the Circusmodel. However, as there are no direct

access to the state variables, the values of hdActivity and infSalVol is obtained through getHdActivity

and getinfSalVol respectively, prior to the if-then-else construct. Moreover, the behavior of R-1

is preserved during the translation.

R1 = getHdActivity?hdActivity -> getinfSalVol?infSalVol ->
2 if hdActivity == {appArtBolus} and infSalVol > 0

then (StopBloodFlow ||| RaiseAlarm)
4 else Wait(CheckInterval) ; R1

The main therapy of the Haemodialysis machine, modelled MainTherapy is translated as a sequence

of TherapyPreparation, followed by therapyInitiation and concluded with TherapyEnding .

MainTherapy = TherapyPreparation ; TherapyInitiation ; TherapyEnding

The structure of the CSPM process is defined as the execution of HDGenCompInit , initialising the

HDGenComp variables, followed by the MainTherapy in parallel with R1. In order to be able to read

and update the values of the state variables, the main behavior is put in parallel with HDGenCompSt ,

synchronising on channel set HDComm, composed of the get−prefixed and set−prefixed channels.

1 within ((HDGenCompInit ; (R1 ||| MainTherapy))
[|HDComm|] HDGenCompSt(HDGC)) \ HDComm

This concludes the translation of the haemodialysis machine using byHand. The resulting CSPM file

has twice the number of lines compared to its Circus specification written in LATEX. Such strategy
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applied to this case study justifies the need for an automated translation as the Circus specification is

already large, and we had to manually create auxiliary functions, as well as channels, used for the gets

and sets between the actions and the state variables in the CSPM process. In the next subsubsection,

we present the translated model using Circus2CSP.

Automatic Translation using Circus2CSP

We present now a short description of the CSPM code of the haemodialysis machine from the Circus

model [75] generated using the strategy CTOC. We inserted comments in the code below, identifying

a few actions which were expanded into the main action of the process. For instance, the action

TherapyPreparation can be found in line 12, as well as the scope of the requirement R-1 is defined

between the lines 34 and 45.

HDMachine(b_NAT,...) =
2 let

MemoryNATVar(n,b_NAT) = mget.n.apply(b_NAT,n) -> MemoryNATVar(n,b_NAT)
4 [] mset.n?nv:typeNAT(n) -> MemoryNATVar(n,over(b_NAT,n,nv))

[] terminate -> SKIP
6 MemoryNAT(b_NAT) =

([|{| terminate |}|] n : dom(b_NAT) @ MemoryNATVar(n,b_NAT))
8 ...

Memory(b_NAT,...) = (MemoryNAT(b_NAT) [|{| terminate |}|] Memory...)
10 MemoryMerge(b_NAT,...) = ...

within ( ( ( (
12 preparationPhase -> autSelfTest -> -- TherapyPreparation action

mset.sv_signalLamp.(BOO.TRUE) ->
14 connectingConcentrate?x -> mset.sv_bicarbonateAcetate.(BOO.x) ->

( ( ( (
16 ( atrialTubing -> SKIP ||| ventricularTubing -> SKIP );

salineBagLevel?ifs ->
18 mset.sv_infSalineVol.(NAT.ifs) -> SKIP );

insertHeparinSyringe ->
20 heparinLineIsVented -> SKIP );

connectDialyzer ->
22 fillArterialDrip -> stopBP -> SKIP );

therapyInitiation -> connectingToPatient ->
24 mset.sv_signalLamp.(BOO.FALSE) ->

connPatientArterially ->
26 setbloodFlowInEBC?bf -> mset.sv_bloodFlowInEBC.(NAT.bf) ->

connPatientVenously ->
28 mset.sv_signalLamp.(BOO.TRUE) ->

...
30 mset.sv_signalLamp.(BOO.FALSE) ->

therapyEnding -> -- TherapyEnding action
32 mset.sv_signalLamp.(BOO.FALSE) -> SKIP )

|||
34 ( let muR1 = -- Begin of R-1

mget.sv_hdActivity?v_sv_hdActivity:(typePBO(sv_hdActivity)) ->
36 mget.sv_infSalineVol?v_sv_infSalineVol:(typeNAT(sv_infSalineVol)) ->

(((valuePBO(v_sv_hdActivity) == {TRUE})
38 and (valueNAT(v_sv_infSalineVol) > 0)) &

( stopBloodFlow -> SKIP
40 ||| mset.sv_alarm.(BOO.TRUE) -> produceAlarmSound -> SKIP )

[] not (((valuePBO(v_sv_hdActivity) == {TRUE})
42 and (valueNAT(v_sv_infSalineVol) > 0))) &

tick -> muR1)
44 within muR1 ) -- End of R-1

); terminate -> SKIP )
46 [| MEMI |] Memory(b_PBO,b_BOO,b_NAT))\MEMI )

In the next section, we describe and discuss our experiments on the haemodialysis machine using the

above-presented approaches, reinforcing the relevance of our translation strategy implemented in our

tool, Circus2CSP.

7.3.4 HD Machine Experiments

In this section we discuss the use of our translation tool with the example of the Haemodialysis case

study, detailing the results of using the several approaches for model checking Circus specifications
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translated into CSPM and then using FDR. Our first model was presented in the ABZ’16 [75], where

a manual translation (byHand) of the haemodialysis machine Circus specification was made, and then

we were able to verify it in FDR. Such an approach, however, is not practical as the manual translation

is time-consuming and may introduce errors.

As a result of the translation byHand for the haemodialysis machine, the number of lines in the

CSPM file doubled (2264 lines) compared to the LATEX Circus specification (1024 lines). Moreover,

124 new auxiliary functions (get and set ) were created, used for setting and getting the values of

the state variables in the name type tuples. Besides, 113 channels were used for synchronising values

between the main action and the state process were created.

Then, as we implemented the tool based on Oliveira’s approach [132], we identified that the

haemodialysis machine model in CSPM leads to a type error in FDR as it does not support polymorphic

function definitions, which is the case of the type function. We, therefore, were unable to perform

any check of the HD machine in FDR using D241. The results of experiments on the intermediate

steps in translation improvement between D241 and CTOC will be presented in the sequel.

The solution to the problem of D241 came with a series of refinements in the translation scheme.

Firstly, we defined typedD241, where the bindings used in the specification were split into subsets

related to the types used of the state variables, as presented in Section 4.1.1.

We solved the issue of typedD241 with a new approach, where the refinement laws were used in

order to refine the Circus process, moving the bindings, offered initially as local variables, to parameters

of the process. Therefore, FDR would not have to check all possible bindings, but only one, provided

by the user. In our tool, we developed a mechanism able to generate a single binding as an example

for model checking. Such a requirement is feasible as we expect the Circus specification, and therefore

the translated CSPM specification, to initialise all the state variables.

For the first time using Circus2CSP, we were able to obtain results from FDR regarding our

HDMachine. However, due to a large number of state variables, the state exploration in FDR was

taking several minutes to conclude the checks. We concluded that the Memory model used was

generating a large number of available mset and mget synchronisations that were never being used.

Therefore, we designed CTOC, a new approach with a Memory model firstly distributed by its type,

and then, for each type-related memory process, we have smaller processes, where each state variable is

manipulated (through mget and mset) independently. Details on such an improvement were presented

in Section 4.1.2.

Our reference Circus model was that of the haemodialysis machine running in parallel with a

model of one of its requirements (R-1 [7, Section 4.2, p11]). The requirement model is effectively a

monitor that observes the machine model, checking that it is satisfied, and deadlocking if it observes a

violation. We then check the proposition that the HD model is correct w.r.t R-1 by showing that the

combination is deadlock free. In addition to comparing various translation schemes, we also explored

the effect of changing the size of our “natural number” type:

NatValue == 0 . .N
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We explored the byHand and CTOC translation schemes with nine ranges of NatValue size, with

N up to a maximum of 90, as shown in in Table 7.12. The only case where we could compare the

two approaches was our first case, with N = 1: it resulted in 9,409 states visited using byHand, in

contrast with 811 states visited using CTOC, resulting in a reduction of 91% regarding states explored.

Moreover, the execution time with the model generated using CTOC was equally reduced by 91%

compared to the model using byHand.

The “Plys” column indicates how deep the breadth-first search algorithm used by FDR went

while checking. The number of plys is larger for the byHand model and is independent of the value

of N . Interestingly, after waiting more than 2 hours, we were unable to obtain results from the model

generated with byHand when we increased the N to 2. However, the model generated with CTOC,

when tested using n = 90, was executed in 35 seconds, which is still quicker than byHand with N = 1.

We also note that the amount of memory used was constant, at 240MB approx.

Table 7.1: Time for asserting deadlock freedom of the HD Machine in FDR4

NatValue States Transitions Plys Exec.
Approach range Result Visited Visited Visited Time

0..1 Passed 811 1,800 39 0.375s
0..2 Passed 1,761 3,786 39 0.407s
0..4 Passed 4,645 9,834 39 0.420s
0..6 Passed 8,841 18,650 39 0.508s
0..8 Passed 14,349 30,234 39 0.602s
0..10 Passed 21,169 44,586 39 0.937s
0..20 Passed 74,949 157,866 39 2.352s
0..30 Passed 161,529 340,346 39 3.465sCTOC
0..90 Passed 1,369,809 1,369,809 39 35.097s
0..1 Passed 9,409 301,617 47 40.826s

byHand 0..2 incomplete ? ? ? > 2 hours

In addition to experiments that varied N above, we also explored how the number of variables,

rather than the size of their datatypes, influenced the checking time. Using a hypothetical example not

related to the haemodialysis case study having 12 state variables, checks using D241 were performed

in 35 minutes, compared to 76 ms using CTOC. We observed segmentation faults using D241 with

more than 12 variables. However, checks using CTOC in an example with 42 state variables and

NatValue = 0 . . 30, were performed in 870 ms.

What is clear is that with the CTOC translation scheme, namely one memory-process per state-

variable, we can now handle Circus models of considerable complexity, based on the results obtained

from model-checking the haemodialysis machine specification in FDR. Using the CTOC translation

results in CSPM with approximately 75% fewer lines compared to the byHand translation approach.

7.4 Ring-Buffer Experiments

Another interesting example was to take the Circus specification of the bounded reactive ring buffer,

RB , from D24.1 [132, Appendix D.2, p. 163], based on the model presented in [35]. We compared the

CTOC translation of this using Circus2CSP (RBCTOC ), with the by-hand translation in D24.1 [132,
2All these results were obtained on an Intel Core i7 2.8GHz CPU with 16GB of RAM, and no compression techniques

were used in FDR for this experiment.
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Appendix D.4, p166] (RBD241). We also compared it with the model of the ring buffer, RBKW , based

on [172, Chapter 22], produced using the approach of Kangfeng and Woodcock [174] for translating

Circus into CSP||B, which is similar to the one from [132, p. 116] but makes use of Z schemas. We

firstly perform the usual tests like deadlock freedom and termination checks for all three specifications,

as illustrated in Table 7.2.

Table 7.2: RingBuffer checks: deadlock and livelock freedom, and determinism.

Test Model Result States Visited Transitions Plys Exec.Time
RBD241 Passed 8,297,025 16,805,249 44 26.657s
RBCTOC Passed 1,628 3,109 38 0.145sdeadlock free

RBKW Failed 248 713 8 0.128s
RBD241 Passed 9,869,889 19,852,673 69 54.863s
RBCTOC Passed 2,012 3,853 63 0.159sdeterministic

RBKW Failed 27 84 3 0.156s

We can see a clear difference between the states visited between the three approaches, notably

those between RBbyH and RBCTOC where the number of states and transitions visited was reduced

considerably, as well as the amount of time spent by FDR4 to check the assertions. However, the

tests performed with the CSPM specification of RBKW failed the checks for deadlock freedom and

fdeterminism. Such results are expected since the RBKW model is translated into CSP||B, and

therefore, some properties of the specification are defined in B, and can be evaluated properly by

ProB, but not by FDR4, which sees only the CSPM specification files.

We also experimented to check the failures-divergences refinement (P vFD Q) between the

three approaches, each pair in both directions, as described in Table 7.3. Since we know that the

specification RBCTOC is a translation from the same Circus model of the handmade translation of

RBbyH , we expect that RBbyH and RBCTOC are equivalent to each other, RBbyH vFD RBCTOC and

RBCTOC vFD RBbyH , which is true, as seen below in row 1 and 3. However, the model RBKW is

refined by both RBCTOC and RBbyH (rows 2 and 4), but the refinement in the reverse direction does

not hold (rows 5 and 6), i.e., RBKW is not a refinement of neither RBCTOC nor RBbyH , as it is a

more abstract model since part of the whole RBKW model is defined in B.

Table 7.3: Refinement checks between three models of the Ring Buffer example

Assertion States Transitions Plys Exec.
Visited Visited Visited time

1 RBbyH vFD RBCTOC X 1,628 3,109 38 58.019s
2 RBKW vFD RBCTOC X 1,733 3,365 43 0.226s
3 RBCTOC vFD RBbyH X 8,297,025 16,805,249 44 42.543s
4 RBKW vFD RBbyH X 8,809,345 18,087,809 49 43.939s
5 RBbyH vFD RBKW × 27 98 3 57.680s
6 RBCTOC vFD RBKW × 27 91 3 0.172s

Interestingly, if we compare the states and transitions visited, as well as the execution time from

Table 7.2 with Table 7.3, given a refinement A vFD B , the states and transitions visited are almost

the same as of checking B for deadlock freedom. However, we noticed that the execution time of any

refinement check that involves RBbyH are much longer than those between RBCTOC and RBKW .
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Unfortunately, the structure defined for this translation strategy is not fully supported by ProB [101],

which was used to test RBKW [174]. ProB is another model-checker, which like FDR4, also allows

the user to animate specifications. It was originally developed for the B language, but it has been

extended and now it supports other formal languages such as CSP, Z, Event-B [1], as well as com-

bined languages such as CSP||B. We observed that the use of subtype, in our models, is not fully

supported by the ProB tool, causing some commands like "model-check" to result in errors. However,

we were able to animate our translated specification using ProB, and to execute the same assertion

check, as in FDR4: our experiments with ProB demonstrated similar results to those obtained with

FDR4.

7.5 Compression Experiments

An important aspect when using FDR is the availability of compression techniques [142] in order to

reduce the number of states, improving the time required for refinement checking. A compression

transforms a labelled-transition system (LTS) into a corresponding one, which is expected to be

smaller and more efficient whilst using it for checks in FDR. The current version of FDR, 4.2, applies

compressions in parallel compositions by default, which is the main structure we use in our memory

model. We explored a few compression tecniques, such as sbisim, which determines the maximal

strong bisimulation [25], and wbisim, which computes the maximal weak bisimulation. Depending on

the compression used, the number of states visited, or plys visited3, were indeed reduced, as illustrated

in Table 7.4.

Table 7.4: Experimenting CSPM compression techniques with the HD Machine

sbisim+diamond no compression sbisim wbisim
Values States Exec States Exec States Exec States Exec
Range Visited Time Visited Time Visited Time Visited Time

(seconds) (seconds) (seconds) (seconds)
0..10 77 0.499 21,169 0.458 302 0.479 87 0.56
0..20 77 0.986 74,949 0.819 302 0.925 87 1.106
0..40 77 2.901 280,909 2.263 302 2.582 87 3.647
0..80 77 11.093 1,086,429 8.043 302 10.013 87 13.343
0..120 77 25.096 2,416,749 18.805 302 21.793 87 35.839
0..160 77 47.635 4,271,869 35.148 302 42.267 87 70.011
0..240 77 114.845 9,556,509 84.803 302 100.112 87 175.846
0..360 77 327.815 21,419,469 235.236 302 269.414 killed 286.079
0..480 77 668.437 38,005,629 467.602 302 523.825 killed 525.889

Although the states visited were considerably reduced using the compression techniques men-

tioned above, the time consumption is almost the same for small range of values for the NatValue

type. However, as we increase that range, we see that the states visited does not change for those

cases when compression techniques were used, but we noticed that the time spent is much longer than

the model checked with no use of compression techniques. Finally, we noticed that FDR was unable

to perform the checks using wbisim for the cases where the range of NatValue were larger than 0..240,

being killed by the operating system.
3Number of plys that were visited in the breadth-first search.
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7.6 Final considerations for testing Circus2CSP

There is one thing we need to have in mind when performing model checking of Circus specifications:

we need to avoid state explosion. In FDR, the translated specifications of a Circus model into CSP

can cause state explosion due to the infinite number of possible states of the system. We then have to

restrict, in the CSP specifications, the types to a small subset of the original types specified in Circus.

Since we can deal with a large number of processes in parallel and their communication channels,

some of the assertions would require too much computing resources and could lead to a system crash

due to lack of system memory.

In order to overcome such problem, another possible contribution for this work could be the

development of a module for the translation tool that would be able to produce a subset of the

possible range of values that FDR would use for testing. For example, given a type TIME = {0..59}

and a variable second : TIME , if the variable second is used once in the entire specification, lets us

consider the expression second > 15 being evaluated. We do not need to evaluate every single value

of the range {0..59}, but only two, for instance, 15 and 16. Therefore, a suitable subset would be

second : {15, 16}. Such a tool would analyze FDR3 much simpler since the state space would be

significantly smaller and the assertions would be more easily evaluated.

In summary, we described in this chapter our experiments performed throughout the timeline

of the development process of Circus2CSP. We used the case studies presented here as testing set in

order to identify any weakness in the translation approach, as we presented in the previous chapters.

Moreover, we used such examples as a way of evaluating the tool capabilities, the scalability of the

approach, and to be able to evaluate the efficiency of FDR while checking the translated specifications

using the various translation approaches implemented until now.
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Chapter 8

Validating the Translation

Besides the development of Circus2CSP, we would like to reason about the correctness of our approach,

including the improvements provided during our research. One of our first tasks is to formally verify

the refinement of the memory model from Section 4.

8.1 Verifying the Refinements on the Memory Model

As discussed earlier in this thesis, the Memory model from the model as presented for D241 was

refined into the distributed model used in our tool CTOC. For such, we use the Circus refinement laws

and we were able to manually prove the equivalence (bidirectional refinement) between the original

Memory process used in D241 (renamed in this section to MemoryD241) and the partitioned memory

process used in CTOC (MemoryCTOC ), as presented below.

MemoryD241 =̂ vres b : BINDING •
(@n : dom b • mget .n!b(n)→ MemoryD241(b))

@
(

@n : dom b • mset .n?nv : (nv ∈ δ(n))→
MemoryD241(b ⊕ {n 7→ nv})

)
@ terminate → Skip


MemoryCTOC =̂ var b : BINDING •

(J{| terminate |} K n : dom b • MemoryVar (n,n C b))

MemoryVar =̂ varn : NAME ; b : BINDING • mget .n!b(n)→ MemoryVar (n, b)
@mset .n?nv : (nv ∈ δ(n))→ MemoryVar (n, (b ⊕ {n 7→ nv}))
@ terminate → Skip


In order to show that both memory models are equivalent, we proved that:

MemoryD241 v MemoryCTOC

and

MemoryCTOC v MemoryD241

8.1.1 Memory Model Refinement Proof

We present here the proof steps for the refinement of the memory model. Such steps look at the simple

case where there are only two state variables, n1 and n2, in order to keep things concise. However,

the proofs steps are essentially the same for any number of state variables.
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MemoryCTOC (b)

= [MemoryCTOC definition]

J{| terminate |} K n : dom b • MemoryVar (n,n C b)

= [Iterated parallelism definition]

MemoryVar (n1,n1 C b) J {| terminate |} K MemoryVar (n2,n2 C b)

= [MemoryVar definition] mget .n1!b(n1)→ MemoryVar (n1,n1 C b)
@mset .n1?nv : (nv ∈ δ(n1))→ MemoryVar (n1,n1 C (b ⊕ {n1 7→ nv}))
@ terminate → Skip


J{| terminate |}K mget .n2!b(n2)→ MemoryVar (n2,n2 C b)

@mset .n2?nv : (nv ∈ δ(n2))→ MemoryVar (n2,n2 C (b ⊕ {n2 7→ nv}))
@ terminate → Skip


= [[82, L7 - p.51]]

mget .n1!b(n1)→
(

MemoryVar (n1,n1 C b)
J{| terminate |} K MemoryVar (n2,n2 C b)

)
@mget .n2!b(n2)→

(
MemoryVar (n2,n2 C b)
J{| terminate |} K MemoryVar (n1,n1 C b)

)
@mset .n1?nv : (nv ∈ δ(n1))→

(
MemoryVar (n1,n1 C (b ⊕ {n1 7→ nv}))

J{| terminate |} K MemoryVar (n2, (n2 C b)))

)
@mset .n2?nv : (nv ∈ δ(n2))→

(
MemoryVar (n2,n2 C (b ⊕ {n2 7→ nv}))

J{| terminate |} K MemoryVar (n1, (n1 C b)))

)
@ terminate → (Skip J {| terminate |} K Skip)


= [Parallelism Composition Unit - [129, Law C.90]]

mget .n1!b(n1)→
(

MemoryVar (n1,n1 C b)
J{| terminate |} K MemoryVar (n2,n2 C b)

)
@mget .n2!b(n2)→

(
MemoryVar (n2,n2 C b)
J{| terminate |} K MemoryVar (n1,n1 C b)

)
@mset .n1?nv : (nv ∈ δ(n1))→

(
MemoryVar (n1,n1 C (b ⊕ {n1 7→ nv}))

J{| terminate |} K MemoryVar (n2, (n2 C b)))

)
@mset .n2?nv : (nv ∈ δ(n2))→

(
MemoryVar (n2,n2 C (b ⊕ {n2 7→ nv}))

J{| terminate |} K MemoryVar (n1, (n1 C b)))

)
@ terminate → Skip


= [(n2 C (b ⊕ {n1 7→ nv})) = n2 C b and (n1 C (b ⊕ {n2 7→ nv})) = n1 C b]

mget .n1!b(n1)→
(

MemoryVar (n1,n1 C b)
J{| terminate |} K MemoryVar (n2,n2 C b)

)
@mget .n2!b(n2)→

(
MemoryVar (n2,n2 C b)
J{| terminate |} K MemoryVar (n1,n1 C b)

)
@

 mset .n1?nv : (nv ∈ δ(n1))→
MemoryVar (n1, (n1 C (b ⊕ {n1 7→ nv})))
J{| terminate |} K MemoryVar (n2, (n2 C (b ⊕ {n1 7→ nv})))


@

 mset .n2?nv : (nv ∈ δ(n2))→
MemoryVar (n2, (n2 C (b ⊕ {n2 7→ nv})))
J{| terminate |} K MemoryVar (n1, (n1 C (b ⊕ {n2 7→ nv})))


@ terminate → Skip


= [MemoryCTOC definition]

mget .n1!b(n1)→ MemoryCTOC (b)
@mget .n2!b(n2)→ MemoryCTOC (b)
@mset .n1?nv : (nv ∈ δ(n1))→ MemoryCTOC (b ⊕ {n1 7→ nv})
@mset .n2?nv : (nv ∈ δ(n2))→ MemoryCTOC (b ⊕ {n2 7→ nv})
@ terminate → Skip


= [Iterated External Choice definition] (@n : dom b • mget .n!b(n)→ MemoryCTOC (b))

@ (@n : dom b • mset .n?nv : (nv ∈ δ(n))→ MemoryCTOC (b ⊕ {n 7→ nv}))
@ terminate → Skip
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= [Same (guarded) recursive form as MemoryD241, so unique fixed-point law applies] (@n : dom b • mget .n!b(n)→ MemoryD241(b))

@ (@n : dom b • mset .n?nv : (nv ∈ δ(n))→ MemoryD241(b ⊕ {n 7→ nv}))
@ terminate → Skip


= [MemoryD241 definition]

MemoryD241(b)

8.1.2 Memory Model Refinement using FDR

We used FDR in order to verify every refinement step presented above. Our intention was to split

the refinement steps into intermediate CSPM processes, and use the failures-divergence refinement

showing the equivalence between each two steps, i.e., asserting the refinement in both directions. In

total, we have six refinement steps, defined as LHS, S1, S2, S3, S4 and RHS, where LHS is the CSPM

description of MemoryD241 and RHS is the equivalent model to MemoryCTOC .

We illustrate the CSPM code used for the refinement steps below, where the final two assertions

asserts if LHS is refined by RHS and also if RHS is refined by LHS. All the assertions below passed

through the tests from FDR, proving that the refinement is true, and therefore, the models are

equivalent. For the sake of simplicity, we used only two variables v 1 and v 2, but such an approach

can be extended to more variables.

LHS = MemoryNAT(b_nat)
2 --

assert LHS [FD= S1
4 assert S1 [FD= LHS

--
6 S1 = ( ( mget.v_1.apply(b_nat,v_1) -> MemoryNATVar(v_1,dres(b_nat,{v_1}))

[] mset.v_1?nv:typeNAT(v_1) -> MemoryNATVar(v_1,dres(over(b_nat,v_1,nv),{v_1}))
8 [] terminate -> SKIP)

[|{|terminate|}|]
10 ( ( mget.v_2.apply(b_nat,v_2) -> MemoryNATVar(v_2,dres(b_nat,{v_2}))

[] mset.v_2?nv:typeNAT(v_2) -> MemoryNATVar(v_2,dres(over(b_nat,v_2,nv),{v_2})))
12 [] terminate -> SKIP))

--
14 assert S2 [FD= S3

assert S3 [FD= S2
16 --

S3 =
18 mget.v_1.apply(b_nat,v_1) -> (MemoryNATVar(v_1,dres(b_nat,{v_1}))

[|{|terminate|}|]
20 MemoryNATVar(v_2,dres(b_nat,{v_2})))

[] mget.v_2.apply(b_nat,v_2) -> (MemoryNATVar(v_2,dres(b_nat,{v_2}))
22 [|{|terminate|}|]

MemoryNATVar(v_1,dres(b_nat,{v_1})))
24 [] mset.v_1?nv:typeNAT(v_1) -> (MemoryNATVar(v_1,dres(over(b_nat,v_1,nv),{v_1}))

[|{|terminate|}|]
26 MemoryNATVar(v_2,dres(over(b_nat,v_1,nv),{v_2})))

[] mset.v_2?nv:typeNAT(v_2) -> (MemoryNATVar(v_2,dres(over(b_nat,v_2,nv),{v_2}))
28 [|{|terminate|}|]

MemoryNATVar(v_1,dres(over(b_nat,v_2,nv),{v_1})))
30 [] terminate -> (SKIP [|{|terminate|}|] SKIP)

--
32 assert S2 [FD= S3

assert S3 [FD= S2
34 --

S3 =
36 mget.v_1.apply(b_nat,v_1) -> MemoryNAT(b_nat)

[] mget.v_2.apply(b_nat,v_2) -> MemoryNAT(b_nat)
38 [] mset.v_1?nv:typeNAT(v_1) -> MemoryNAT(over(b_nat,v_1,nv))

[] mset.v_2?nv:typeNAT(v_2) -> MemoryNAT(over(b_nat,v_2,nv))
40 [] terminate -> SKIP

--
42 assert S3 [FD= S4

assert S4 [FD= S3
44 --

S4 =
46 ([] n:dom(b_nat) @ mget.n.apply(b_nat,n) -> MemoryNAT(b_nat))

[] ([] n:dom(b_nat) @ mset.n?nv:typeNAT(n) -> MemoryNAT(over(b_nat,n,nv)))
48 [] terminate -> SKIP

--
50 assert S4 [FD= RHS

assert RHS [FD= S4

79



52 --
RHS =

54 ([] n:dom(b_nat) @ mget.n.apply(b_nat,n) -> Memory(b_nat))
[] ([] n:dom(b_nat) @ mset.n?nv:typeNAT(n) -> Memory(over(b_nat,n,nv)))

56 [] terminate -> SKIP
--

58 -- Showing the equivalence of LHS with RHS
assert LHS [FD= RHS

60 assert RHS [FD= LHS

Our research aims to go beyond the implementation of the translation tool. We present in the

next section some plans for future work regarding experiments on the verification of our translation

approach.

8.2 Plans for the Verified Translation

We intend to link our tool with other tools as we did with FDR. For a future work, we would like

to create a path to theorem provers like Isabelle/HOL. A key question is how to ensure that the

translations we have developed are correct with respect to the semantics of both Circus and CSP. We

would like to verify the correctness of our Haskell implementation of such a strategy.

In the long term, our goal towards this would be to, hopefully, link Circus2CSP with Isabelle/UTP [58,

59, 66] and be able to prove that the translation provided by our tool is equivalent to a manually

refined Circus specification using Isabelle/UTP. Our expectation is that such an effort would improve

the confidence of our translation so it can be used in industrial-scale programs.

We illustrate in Figure 8.1 the possible paths for showing that the translation approaches in

both Haskell and Isabelle/UTP are equivalent. We use the function toUTP in order to transform the

Haskell representation of Circus specifications into Isabelle/UTP. Moreover, we would have to design a

function in Isabelle/HOL, seen in the figure below as refUTP , in order to be able to map the Haskell

implementation of each refinement step into its corresponding representation in Isabelle/UTP.

Haskell

Isabelle/UTP

PHaskellstart . . . ΩHaskell
Stepk

ΩHaskell
Stepk+1

. . . QHaskell

PIsabelle . . . ΩIsabelle
Stepk

ΩIsabelle
Stepk+1

. . . QIsabelle

toU
T
P

toU
T
P

vH1
vHk

vHk+1
vHk+2 vHn

vI1 vIk
vIk+1

vIk+2 vIn

refU
T
P

refU
T
P

refU
T
P

refU
T
P

refU
T
P

Figure 8.1: Plans for verifying the correctness of Circus2CSP

In order to verify the correctness of our implementation of the translation from Circus to CSPM , as

mentioned in Section 3.1, we want to prove that the refinement steps implemented in Haskell, herein

ΩH , from staterich Circus processes (CircusSR) to stateless Circus processes (CircusSL) are correct

w.r.t. those refinement steps implemented in Isabelle/UTP, represented here as ΩI . We hightlight that

the notation used here for ΩH and ΩI represents not only the Ω functions as presented in Chapter 4,

but also the relevant Circus refinement laws used during such a refinement process.
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Unfortunately, the current version of Isabelle/UTP does not support all of the Circus operators

used in our translation strategy. The stateless Circus models produced using Circus2CSP uses paramet-

ric recursion, hiding and complex event structures in the prefix constructs. We know that mechanising

those constructs in Isabelle/UTP is tricky and would require a considerable effort for specifying them

and proving its properties in Isabelle.

We attempted to work closely with the Isabelle/UTP development team at the University of York,

but after some interactions, we observed that such work goes beyond the scope of our research for

this PhD. In order to contribute to the development of Isabelle/UTP with the formalisation of those

constructs, we would need to expand our knowledge on the theories as defined in Isabelle, as well as

to obtain a better understanding on the notation and style of proofs adopted by the other members

of the development team. Some proofs already made are not trivial, and the Isar language for proofs

in Isabelle might sometimes become very difficult to understand. Such an effort would require some

time for learning as well as much more interaction with the current team.

During our research, a lot has been done aiming at linking our implementation to Isabelle/HOL

theorem prover. However, the attempt to verify our tool was left as future work, along with the

integration of the refinement calculator in order to discharge the proof obligations for both Circus re-

finements, as well as for the strategy for refining Z schemas into Circus actions, presented in Section 3.5.

Some of our efforts for attempting to link our tool with Isabelle are described in Appendix E.

From the Requirement 3.1 presented in Section 3.1, we want to show that every Ω refinement

step within a refinement from state-rich to stateless Circus processes should be proved to be correct

using Isabelle. However, until now, we were not able to prove such a requirement, and thereore, it

was left as one of our future work plans.

We could have implemented the translation strategy directly in Isabelle/HOL and perform the

verification approach within the same platform. However, our idea for verifying our implementation

came after our first version of the tool written in Haskell, when we started the refinements of the

memory model, described in Section 4, along with the inclusion of new translation rules. Therefore,

we decided to use Haskabelle in order to import our code into Isabelle. Moreover, we also had a Z

parser within Jaza, and the effort for parsing Circus from LATEX would still take time. Finally, we

would either way have to export CSPM code from the refinements performed, which would probably

require the same implementation effort.

Moreover, we also would like to use a theorem prover to experiment with the proofs made in order

to solve interesting problems in Circus. For instance, we would like to use a theorem prover to formalise

our proof on the relation between assignments and external choice. As stated by Oliveira [129], an

assignment does not resolve an external choice. However, when implementing the translation to

CSPM , we noticed that because assignments are transformed into a sequence of events (mget and

mset), and from the fact that any state change is not visible externally, we can shift an assignment

after the events that are to be selected in the choice. We were able to prove such a proposition, as
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presented below, by hand, where the entire proof can be found in Appendix G.2.

Ω(PS .((x := 0 ; c1 → Skip) @ (x := 1 ; c2 → Skip)))
=
PS .((c1 → x := 0) @ (c2 → x := 1))

In summary, our tool may be seen as a laboratory for experimenting and further contributions,

since it was designed in such a way that other modules may be introduced and therefore, the range

of experiments it can support may grow in the future. We hope that being able to link our tool with

Isabelle theorem prover will improve the confidence of the community for using Circus as a formal

modelling language, and motivate its use in industry. Finally, our tool may also be extended in order

to be able to support test-cases generation.
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Chapter 9

Conclusions

The work presented in this document was motivated by the need for a tool capable of model-checking

specifications designed using Circus. As presented in Section 2.2, there has been an effort from the

community in order to design a systematic approach for model-checking Circus, which due to its

combination of formalisms, has been a challenge until now. The choice of the subject and the language

itself comes from personal experiences with Circus for the past twelve years since the beginning of our

experience with research as an undergraduate student in Brazil. The real challenge for model-checking

Circus came during our research on the formalisation of the Integrated Modular Avionics architecture,

following the ARINC 653 standards [74], where a manual translation of that model into CSPM was

generated, and required months of work due to the complexity of such a large model.

This PhD project was initially defined as an attempt to produce verified Occam − π code from

Circus, aiming at simulating programs using microcontrollers, such as Arduino boards. However, as

we started our research, we felt the need for a tool capable of model-checking Circus in large-scale,

before the refinement into code. Moreover, we know from the literature that other research has been

done in order to obtain Java code from Circus, but the need for model-checking Circuswas still a gap

yet to be filled. Therefore, we decided that, for the moment, the work presented here would be of a

much more valuable contribution than the proposed one for obtaining Occam−π through refinement.

In the next section we summarise our contributions to the current state of the art, and then we

conclude this document with directions of future work.

9.1 Contributions

We developed Circus2CSP by extending Jaza [162], a Z animator written in Haskell, to cover the

Circus abstract syntax. Consequently, we can parse Circus specifications written in LATEX, which is

the notation adopted as the standard for the Circus community. We then implemented the translation

strategy introduced by Oliveira et al. [132, Section 5.3, p.79], and used the Circus refinement laws,

to improve both the scope and effectiveness of the translation. Finally, our tool also includes an

automatic Circus refinement calculator, where we implemented the laws listed in Appendix A of the

Deliverable 24.1 [132, p.147].

Our tool Circus2CSP is based on the set of rules for refining state-rich Circus into stateless pro-

cesses that can be mapped into CSPM [132]. The reason we adopted the translation presented by
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Oliveira et al., is that, even though it is a manual translation, with no tool support involved, each

translation step is justified by the Circus refinement laws, which have been formally proved to be

correct. Currently, their approach covers a subset of Circus. However, as presented in Section 4.1.1,

our investigation through experiments with the implementation of such rules demonstrated that such

an initial and theoretical approach was restricted for only a subset of the possible Circus specifications:

those dealing with only one same type for all variables within the state of those processes.

Our contribution here begun to become clear, when we had to implement not only a tool for

the translation but also to refine that translation strategy in order to support a more realistic set of

specifications: those using mixed types among their state variables.

We also experimented with the efficiency of FDR concerning the scale of the specifications. For

such, we used the haemodialysis case study, a complex system which behaves depending on the values

of dozen of state variables. Thus, we refined the memory model in order to optimise the task of

reading and updating the state variables from the Circus processes.

The modifications for the memory model presented here are similar to what was presented by

Mota et al. [127], where interleaving between processes, one for each state variable, was proposed.

In fact, the memory model used in [132] was based on the one by Mota et al., and was expanded

with the inclusion of a terminate signal, and, rather than one process for each variable, it would offer

all possible mget and mset for all state variables at the same time. However, after implementing

such model, we identified that such approach tends to make the job of FDR harder and expensive,

leading to state space explosion, when using several state variables on the same memory model. In

our research, we also seek ways of optimising the CSPM model in order to obtain a more efficient

analysis. Therefore, even though the terminate event is used for synchronising the end of the Memory

execution, the parallel composition of all possible mgets and msets leads to a possible exponential

growth of the state space, which was observed in Section 4.1.2. However, such a problem does not

occur while using interleaving. Moreover, Mota et al. also argues that the use of interleaving helps

the compression algorithms built in FDR [141] to reduce the state space exploration while analysing

such models.

Moreover, throughout our research, we observed that we could produce a more concrete model

when moving the decision of using the bindings to the model designer, where now we have processes

using bindings given as parameters, instead of provided non-deterministically. As discussed in the

refinement step 4.8, Chapter 4, we rely on the fact that the state variables should be initialised

before its main execution [4]. As an experiment, we developed a first mechanism that provides one

single instance of bindings as part of the CSPM specification. The approach of parametrised bindings

resulted in a significant reduction in the time spent by FDR while checking the models produced by

Circus2CSP, as illustrated in Fig. 3.5 and Table 7.2. The outcome is that we now have a mechanised

translator from Circus to CSPM that produces tractable models, and allows the use of FDR on more

extensive case studies that have been possible up to now.

We used the haemodialysis machine and the ring buffer case studies as examples in order to test

the capabilities of our tool while model-checking the automatically translated models in FDR. We

aimed to contribute to reducing FDR’s workload in order to model check larger systems. We learned
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that a practical implementation/mechanisation of a theory might reveal difficulties that could not

otherwise be discovered without extensive use of a tool prototype, especially when applying it to more

extensive case studies.

As part of the translation strategy proposed by Oliveira et al. [132], the Circus refinement laws

were used during the refinement into the stateless Circus processes. We implemented an automatic

refinement calculator as part of Circus2CSP, as presented in Section 3.4, which handles a selected set

of laws used according to [132, Appendix A, p. 147]. Moreover, we experimented with a strategy for

refining Z schemas into "schema-free" Circus actions using Z Refinement Calculus [34].

With Circus2CSP, we can model-check specifications written in Circus using FDR. Our tool is

currently integrated with the command-line interface of FDR4, and, as presented in Chapter 6, the

user can run FDR from within Circus2CSP. Moreover, we provide a way of writing CSPM code in the

LATEX source files where the Circus specification is written, using the environment assert. Finally, our

tool can automatically generate assertion checks about the currently loaded specification and perform

a combination of refinement checks, along with checks for deadlock freedom, as well as deterministic

check and divergence-free checks. However, so far, our tool is only able to provide binary answers,

staring if the assertion has passed or not. We plan for the future to parse the counter-examples

provided by FDR into our tool.

9.2 Future Work

We have plans to extend the coverage of the tool, looking for ways of overcoming the restrictions

presented here, in particular, for those presented in Section 2.5. We have a particular interest in

specifying a translation strategy for Z schemas used as Circus actions within a process, as presented

in Section 3.5. The best approach would be to use Z Refinement Calculus [34]. For now, our tool

deals only with those schemas that in fact can be translated into assignments. We intend to explore

the operators for Z schemas and the refinement laws that can be applied accordingly.

The binding generator presented in Section 5.2 is a prototype of a more ambitious plan for future

work where we intend to evaluate the specification looking for a suitable set of values for the types.

Our idea is to find an approach that could restrict the range of values as much as possible, so FDR

would only need to explore just a few significant values. For example, in the specification of the

Chronometer, we discussed the restriction to a range of values from 0 up to 60. For model-checking

purposes, we can consider an even more restricted range, as we are only interested in the interactions

when the seconds are either 0 or one step before the 59th tick, which is when the clock increments

the minutes. Therefore, we could use a range from 0 up to 5, which may be enough for simulating the

behaviour of the model.

Another example is the full range of values used in the haemodialysis case study [75]. Supposing

a specific parameter is used within a range of 35ml and 45ml, we know that the system will respond

to any monitored value below and above that range. Therefore, we would not need to have a check

for any value from 0ml up to 100ml, but probably, only something like 34ml up to 46ml, since the
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new range would simulate any value outside the predetermined parameter settings. Such an approach

then reduces a combination of 101 values to only 12 values for FDR to explore within the state space.

Besides, we also plan to strengthen the link between the Haskell syntax of Circus and Isabelle/UTP

[66]. As discussed previously in Chapter 8, the current release of Isabelle/UTP does not yet support all

of the constructs used in the translated form. Our goal will be to prove that either refining the Circus

specification in our tool and then importing into Isabelle/UTP, or, importing the specification into

Isabelle/UTP first, and then using the refinement laws, would result in the same refined specification.

Our tool also has a Circus refinement “calculator” embedded in it, which implements the laws

listed in Appendix A of the Deliverable 24.1 [132, p.147], which can easily be extended to the other

refinement laws proved by Oliveira [129] in the near future. We also plan to integrate the refinement

calculator in order to be able to discharge proof obligations with support from Isabelle/UTP. This also

involves generating lemmas for the proof obligations generated during the refinement of Z schemas

using Z Refinement Calculus.

Finally, in terms of improvement of our tool, comparing to other approaches [49], it would also

be interesting to review the parser of Z and Circus in Jaza in order to rewrite their AST to be in con-

formance with the International Standards Organization (ISO) standards, ISO/IEC 13568:2002 [89],

which describes the syntax, type system and semantics of Z formal notation. Such changes would,

therefore, be propagated to the Circus syntax accordingly. Moreover, we would like to include the

libcspm library1 into Circus2CSP in order to be able to parse the relevant code included in our defini-

tion of the assertion LATEX environment. Such an attempt would help a Circus2CSP user wishing to

review any fault in the CSPM specification translated from Circus. It would be interesting to provide

a mechanism for back annotation where we would be able to identify which part of the Circus model

is the source of the failure, incorrect behaviour, or even to help to identify the source of a deadlock

or non-determinism.

1https://github.com/tomgr/libcspm
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Appendix A

Circus AST

A.1 Circus and Z Paragraphs

ZPara ::= channelCDecl
| channelsetN == CSExp
| ProcDecl

A.2 Circus Channel Declaration – CDecl

CDecl ::= n
| n : Exp
| n[e] : Exp

A.3 Circus Process – ProcDecl

ProcDecl ::= processN =̂ ProcDef
| processN (N+) =̂ ProcDef
| processN [N+] =̂ ProcDef

A.4 Circus Process – ProcessDef

ProcessDef ::= Decl • ProcDef
| Decl � ProcDef
| Proc
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A.5 Circus Process – CProc

CProc ::= N
| N [Exp+]
| N (Exp+)
| N bExp+c
| ; Decl • CProc
| @Decl • CProc
| uDecl • CProc
| JCSExp K Decl • CProc
| 9Decl • CProc
| CProc \ CSExp
| CProc @ CProc
| CProc u CProc
| CProc J CSExp K CProc
| CProc 9 CProc
| CProc ; CProc
| (Decl • ProcDef )(Exp+)
| beginPPar∗

stateSchemaExpPPar∗
• CAction

end
| beginPPar∗

• CAction
end

A.6 Process paragraphs – PPar

PPar ::= ZPara
| N =̂ ParAction
| NSExp

A.7 Parametrised Actions – ParAction

ParAction ::= CAction
| Decl • ParAction
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A.8 Circus Actions – CAction

CAction ::= (S)
| Name
| Skip
| Stop
| Chaos
| Comm → CAction
| CCommand
| (Pred) N CAction
| CAction ; CAction
| CAction @ CAction
| CAction u CAction
| CAction J NSExp | CSExp | NSExp K CAction
| CAction J CSExp K CAction
| CAction 9 CAction
| CAction \ CSExp
| CAction(Exp+)
| CAction[x/y , z/n]

| µN • CAction
| (Decl • CAction)(ZName)

| ; Decl • CAction
| @Decl • CAction
| uDecl • CAction
| JCSExp K Decl • JNSExp K CAction
| JCSExp K Decl • CAction
| 9Decl • ||[NSExp ]|| CAction

| 9Decl • CAction

A.9 Circus Communication

Comm ::= NCParameter∗
| N [Exp+]CParameter∗

A.10 Circus Communication – CParameter

CParameter ::= ?N
| ?N : Pred
| !Exp
| .Exp
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A.11 Circus Commands – CCommand

CCommand ::= N+ := Exp+

| if GActions fi
| varDecl • CAction
| valDecl • CAction
| resDecl • CAction
| vresDecl • CAction
| N+ : [Pred ,Pred ]
| N+ : [Pred ]
| :[Pred ,Pred ]
| :[Pred ]
| {Pred}
| [Pred ]

A.12 Circus Guards – CGActions

CGActions ::= Pred −→ CAction
| CGActions 8 GActions

A.13 Circus Renaming – CReplace

CCommand ::= CAction[N+/M+]
| if CAction[N+ := M+]
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Appendix B

Omega Mapping Functions

B.1 Circus and Z Paragraphs

ΩZPara(channelCDecl) =̂ channelCDecl
ΩZPara(channelsetN == CSExp) =̂ channelsetN == CSExp

ΩZPara(Pr) =̂ ΩProcDecl(Pr)

B.2 Mapping Circus Processes Declaration

B.2.1 Circus Process – ProcDecl

ΩProcDecl(processN =̂ P) =̂ processN =̂ ΩProcDecl(P)
ΩProcDecl(processN (N+) =̂ P) =̂ processN (N+) =̂ ΩProcDecl(P)
ΩProcDecl(processN [N+] =̂ P) =̂ processN [N+] =̂ ΩProcDecl(P)

B.2.2 Circus Process – ProcessDef

ΩProcessDef (Decl • PD) =̂ (Decl • ΩProcessDef (PD))
ΩProcessDef (Decl � PD) =̂ Decl � ΩProcessDef (PD)

ΩProcessDef (Proc) =̂ ΩCProc(Proc)
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B.2.3 Circus Process – CProc

ΩCProc(N ) =̂ N
ΩCProc(N [Exp+]) =̂ N [Exp+]
ΩCProc(N (Exp+)) =̂ N (Exp+)
ΩCProc(N bExp+c) =̂ N bExp+c

ΩCProc(; Decl • Proc) =̂ ; Decl • ΩCProc(Proc)

ΩCProc(@Decl • Proc) =̂ @Decl • ΩCProc(Proc)

ΩCProc(uDecl • Proc) =̂ uDecl • ΩCProc(Proc)

ΩCProc(JCSExp K Decl • Proc) =̂ JCSExp K Decl • ΩCProc(Proc)

ΩCProc(9Decl • Proc) =̂ 9Decl • ΩCProc(Proc)

ΩCProc(Proc \ CSExp) =̂ ΩCProc(Proc) \ CSExp
ΩCProc(Proc @ Proc) =̂ ΩCProc(Proc) @ ΩCProc(Proc)
ΩCProc(Proc u Proc) =̂ ΩCProc(Proc) u ΩCProc(Proc)

ΩCProc(Proc J CSExp K Proc) =̂ ΩCProc(Proc) J CSExp K ΩCProc(Proc)
Ω(Proc 9 Proc) =̂ ΩCProc(Proc) 9 ΩCProc(Proc)

ΩCProc(Proc ; Proc) =̂ ΩCProc(Proc) ; ΩCProc(Proc)

ΩCProc((Decl • ProcDef )(Exp+)) =̂ ((Decl • ΩProcessDef (ProcDef ))(Exp+)

The translation of state-rich Circus process is detailed in Section 4.

B.3 Mapping Parameterised Circus Actions

ΩPPar (ZPara) =̂ ΩZSchema(ZPara)
ΩPPar (N =̂ PA) =̂ N =̂
ΩParAction(PA)
ΩPPar (NSExp) =̂ NSExp

B.3.1 Parametrised Actions – ParAction

ΩParAction(Decl • PA) =̂ Decl • ΩParAction(PA)
ΩParAction(CA) =̂ ΩCAction(CA)

B.3.2 Stateless Circus - Actions - Derived from Deliverable 24.1 [132]

ΩA 1

ΩA(Skip) =̂ Skip
ΩA(Stop) =̂ Stop
ΩA(Chaos) =̂ Chaos

ΩA 2

ΩA(c → A) =̂ c → ΩA(A)

ΩA 3

ΩA(c.e(v0, . . . , vn , l0, . . . , lm)→ A) =̂ mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →
c.e(vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(A)
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where

FV (e) = (v0, . . . , vn , l0, . . . , lm)

ΩA 4

Included by Artur - An input carrying a value named with a state variable is defined as an

assignment to that, but as assignments are not allowed, we directly make a mset with that value.

Therefore, suppose vn ∈ StateVariables, we have the following translation rule.

ΩA(c?vn → A) =̂
(
c?vvn → mset .vn !vvn(vv0, ..., vvn , vl0, ..., vlm)→ ΩA(A)

)
where

vn ∈ (v0, . . . , vn , l0, . . . , lm)

ΩA 5

ΩA(c?x : P(x , v0, . . . , vn , l0, . . . , lm)→ A) =̂ mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →
c?x : P(x , vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(A)


where

x ∈ wrtV (A)

ΩA 6

ΩA(c?x → A) =̂ c?x → Ω′A(A)

ΩA 7

ΩA(A1 9 A2) =̂ ΩA(A1) 9 ΩA(A2)

ΩA 8

ΩA(c!e(v0, . . . , vn , l0, . . . , lm)→ A) =̂ c.e(v0, . . . , vn , l0, . . . , lm)→ A

ΩA 9

ΩA(g(v0, . . . , vn , l0, . . . , lm)→ A) =̂ mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →
g(vv0, . . . , vvn , vl0, . . . , vlm) N Ω′A(A)



ΩA 10

ΩA(A1 ; A2) =̂ ΩA(A1) ; ΩA(A2)

ΩA 11

ΩA(A1 uA2) =̂ ΩA(A1) u ΩA(A2)

ΩA 12

ΩA(A1 @ A2) =̂

 mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →
(Ω′A(A1) @ Ω′A(A2))
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ΩA 13

The definition of parallel composition (and interleaving), as defined in the D24.1, has aMemoryMerge,

MRGI and Merge components and channel sets. Whilst translating them into CSP, the tool would

rather expand their definition.

ΩA(A1 J ns1 | cs | ns2 K A2) =̂ ΓA(A1 J ns1 | cs | ns2 K A2)

ΩA 14

ΩA(; x : 〈v1, ..., vn〉 • A(x )) =̂ ΩA(A(v1) ; . . . ; A(vn))

ΩA 15

ΩA(@ x : 〈v1, ..., vn〉 • A(x )) =̂ ΩA(A(v1) @ . . . @ A(vn))

ΩA 16

ΩA(u x : 〈v1, ..., vn〉 • A(x )) =̂ ΩA(A(v1) u . . . uA(vn))

ΩA 17

ΩA(Jcs K x : 〈v1, ..., vn〉 • Jns(x ) K A(x )) =̂
A(v1)

Jns(v1) | cs |
⋃
{x : {v2, ..., vn} • ns(x )}K . . .

 ΩA(A(vn − 1))
Jns(vn − 1) | cs | ns(vn)K
A(vn)

 


ΩA 18

ΩA(valDecl • P) =̂ valDecl • ΩA(P)

ΩA 19

ΩA

(
x0, . . . , xn := e0

(
v0, ..., vn ,
l0, ..., lm

)
, . . . , en

(
v0, ..., vn ,
l0, ..., lm

) )
=̂

mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →
mset .x0!e0(vv0, ..., vvn , vl0, ..., vlm)→ . . .→
mset .xn !en(vv0, ..., vvn , vl0, ..., vlm)→ Skip


ΩA 20

ΩA(A \ cs) =̂ ΩA(A) \ cs

ΩA 21

ΩA


if g0(v0, ..., vn , l0, ..., lm)−→A0

8 . . .
8gn(v0, ..., vn , l0, ..., lm)−→An

fi

 =̂


mget .v0?vv0 → . . .→ mget .vn?vvn →
mget .l0?vl0 → . . .→ mget .lm?vlm →
if g0(v0, ..., vn , l0, ..., lm)−→ Ω′A(A0)

8 . . .
8gn(v0, ..., vn , l0, ..., lm)−→ Ω′A(An)

fi


ΩA 22

ΩA(µX • A(X )) =̂ µX • ΩA(A(X ))
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ΩA 23

ΩA(9 x : 〈v1, ..., vn〉 • A(x )) =̂
A(v1)

Jns(v1) |
⋃
{x : {v2, ..., vn} • ns(x )}K . . .

 ΩA(A(vn − 1))
Jns(vn − 1) | ns(vn)K
A(vn)

 


ΩA 24

ΩA(A[old1, ..., oldn := new1, ...,newn) =̂
A[new1, ...,newn/old1, ..., oldn)

B.3.3 Definitions of Ω′
A

Ω′A 1

Ω′A(Skip) =̂ Skip
Ω′A(Stop) =̂ Stop
Ω′A(Chaos) =̂ Chaos

Ω′A 2

Ω′A(c → A) =̂ c → Ω′A(A)

Ω′A 3

Ω′A(c.e → A) =̂ c(vv0, ..., vvn , vl0, ..., vlm)→ Ω′A(A)

Ω′A 4

Ω′A(c!e → A) =̂ c.e → A

Ω′A 5

Ω′A(g → A) =̂ g → Ω′A(A)

Ω′A 6

Ω′A(c?x → A) =̂ c?x → Ω′A(A)

Ω′A 7

Ω′A(c?x : P → A) =̂ c?x : P → Ω′A(A)

where

x ∈ wrtV (A)

Ω′A 8

Ω′A(A1 ; A2) =̂ Ω′A(A1) ; ΩA(A2)

Ω′A 9

Ω′A(A1 uA2) =̂ Ω′A(A1) u Ω′A(A2)
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Ω′A 10

Ω′A(A1 @ A2) =̂ (Ω′A(A1) @ Ω′A(A2))

Ω′A 11

Ω′A(A1 J ns1 | cs | ns2 K A2) =̂ ΓA(A1 J ns1 | cs | ns2 K A2)

Ω′A 12

Ω′A(; x : 〈v1, ..., vn〉 • A(x )) =̂ Ω′A(A(v1) ; . . . ; A(vn))

Ω′A 13

Ω′A(@ x : 〈v1, ..., vn〉 • A(x )) =̂ Ω′A(A(v1) @ . . . @ A(vn))

Ω′A 14

Ω′A(u x : 〈v1, ..., vn〉 • A(x )) =̂ Ω′A(A(v1) u . . . uA(vn))

Ω′A 15

Ω′A(Jcs K x : 〈v1, ..., vn〉 • Jns(x ) K A(x )) =̂
A(v1)

Jns(v1) | cs |
⋃
{x : {v2, ..., vn} • ns(x )}K

. . . Ω′A(A(vn − 1))
Jns(vn − 1) | cs | ns(vn)K
A(vn)





Ω′A 16

Ω′A(valDecl • P) =̂ valDecl • Ω′A(P)

Ω′A 17

Ω′A
(
x0, . . . , xn := e0, . . . , en

)
=̂ mset .x0!e0 → . . .→ mset .xn !en → Skip

Ω′A 18

Ω′A(A \ cs) =̂ Ω′A(A) \ cs

Ω′A 19

Ω′A


if g0−→A0

8 . . .
8gn −→An

fi

 =̂


if g0−→ Ω′A(A0)

8 . . .
8gn −→ Ω′A(An)

fi


Ω′A 20

Ω′A(µX • A(X )) =̂ µX • Ω′A(A(X ))

Ω′A 21

Ω′A(9 x : 〈v1, ..., vn〉 • A(x )) =̂
A(v1)

Jns(v1) |
⋃
{x : {v2, ..., vn} • ns(x )}K . . .

 Ω′A(A(vn − 1))
Jns(vn − 1) | ns(vn)K
A(vn)

 


Ω′A 22

Ω′A(A[old1, ..., oldn := new1, ...,newn) =̂
A[new1, ...,newn/old1, ..., oldn)
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B.4 Γ functions

This section is a novelty of the approach. It describes all the mapping functions that runs within the

scope of parallel actions. As described in Section ??, it creates an intermediate using theMemoryMerge

action, with local lgets and lsets and then, should a lterminate signal arises, all the values of such

intermediate state are propagated to the Memory action through mget and mset .

B.4.1 Stateless Circus - Actions

ΓA 1

ΓA(Skip) =̂ Skip
ΓA(Stop) =̂ Stop
ΓA(Chaos) =̂ Chaos

ΓA 2

ΓA(c → A) =̂ c → ΓA(A)

ΓA 3

ΓA(c.e(v0, . . . , vn , l0, . . . , lm)→ A) =̂ lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →
c.e(vv0, . . . , vvn , vl0, . . . , vlm)→ Γ′A(A)


where

FV (e) = (v0, . . . , vn , l0, . . . , lm)

ΓA 4

ΓA(c!e(v0, . . . , vn , l0, . . . , lm)→ A) =̂ c.e(v0, . . . , vn , l0, . . . , lm)→ A

ΓA 5

ΓA(g(v0, . . . , vn , l0, . . . , lm)→ A) =̂ lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →
g(vv0, . . . , vvn , vl0, . . . , vlm) N Γ′A(A)


ΓA 6

ΓA(c?x : P(x , v0, . . . , vn , l0, . . . , lm)→ A) =̂ lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →
c?x : P(x , vv0, . . . , vvn , vl0, . . . , vlm)→ Γ′A(A)


where

x ∈ wrtV (A)

ΓA 7

ΓA(A1 ; A2) =̂ ΓA(A1) ; ΓA(A2)

ΓA 8

ΓA(A1 uA2) =̂ ΓA(A1) u ΓA(A2)
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ΓA 9

ΓA(A1 @ A2) =̂

 lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →
(Γ′A(A1) @ Γ′A(A2))


ΓA 10

ΓA(A1 J ns1 | cs | ns2 K A2) =̂

lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →

 (
Γ′A(A1) ; terminate → Skip

)
J{} | MEMI | {}K
MemoryMerge({v0 7→ vv0, . . .},LEFT )

 \MEMI

J{} | cs | {}K (
Γ′A(A2) ; terminate → Skip

)
J{} | MEMI | {}K
MemoryMerge({v0 7→ vv0, . . .},RIGHT )

 \MEMI




The definition of parallel composition (and interleaving), as defined in the D24.1, has a MemoryMerge,

MRGI and Merge components and channel sets. Whilst translating them into CSP, the tool would

rather expand their definition. ΓA 11

ΓA(; x : 〈v1, ..., vn〉 • A(x )) =̂ ΓA(A(v1) ; . . . ; A(vn))

ΓA 12

ΓA(@ x : 〈v1, ..., vn〉 • A(x )) =̂ ΓA(A(v1) @ . . . @ A(vn))

ΓA 13

ΓA(u x : 〈v1, ..., vn〉 • A(x )) =̂ ΓA(A(v1) u . . . uA(vn))

ΓA 14

ΓA(Jcs K x : 〈v1, ..., vn〉 • Jns(x ) K A(x )) =̂
A(v1)

Jns(v1) | cs |
⋃
{x : {v2, ..., vn} • ns(x )}K

. . . ΓA(A(vn − 1))
Jns(vn − 1) | cs | ns(vn)K
A(vn)





ΓA 15

ΓA(valDecl • P) =̂ valDecl • ΓA(P)

ΓA 16

ΓA

(
x0, . . . , xn := e0

(
v0, ..., vn ,
l0, ..., lm

)
, . . . , en

(
v0, ..., vn ,
l0, ..., lm

) )
=̂

lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →
lset .x0!e0(vv0, ..., vvn , vl0, ..., vlm)→
ldots →
lset .xn !en(vv0, ..., vvn , vl0, ..., vlm)→ Skip


ΓA 17

ΓA(A \ cs) =̂ ΓA(A) \ cs

112



ΓA 18

ΓA


if g0(v0, ..., vn , l0, ..., lm)−→A0

8 . . .
8gn(v0, ..., vn , l0, ..., lm)−→An

fi

 =̂


lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →
if g0(v0, ..., vn , l0, ..., lm)−→ Γ′A(A0)

8 . . .
8gn(v0, ..., vn , l0, ..., lm)−→ Γ′A(An)

fi


ΓA 19

ΓA(µX • A(X )) =̂ µX • ΓA(A(X ))

ΓA 20

ΓA(9 x : 〈v1, ..., vn〉 • A(x )) =̂
A(v1)

Jns(v1) |
⋃
{x : {v2, ..., vn} • ns(x )}K . . .

 ΓA(A(vn − 1))
Jns(vn − 1) | ns(vn)K
A(vn)

 


ΓA 21

ΓA(A[old1, ..., oldn := new1, ...,newn) =̂
A[new1, ...,newn/old1, ..., oldn)

B.4.2 Definitions of Γ′
A

Γ′A 1

Γ′A(Skip) =̂ Skip
Γ′A(Stop) =̂ Stop
Γ′A(Chaos) =̂ Chaos

Γ′A 2

Γ′A(c → A) =̂ c → Γ′A(A)

Γ′A 3

Γ′A(c.e → A) =̂ c(vv0, ..., vvn , vl0, ..., vlm)→ Γ′A(A)

Γ′A 4

Γ′A(c!e → A) =̂ c.e → A

Γ′A 5

Γ′A(c?x → A) =̂ c?x → Γ′A(A)

Γ′A 6

Γ′A(c?x : P → A) =̂ c?x : P → Γ′A(A)
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where

x ∈ wrtV (A)

Γ′A 7

Γ′A(g N A) =̂ g N Γ′A(A)

Γ′A 8

Γ′A(A1 ; A2) =̂ Γ′A(A1) ; ΓA(A2)

Γ′A 9

Γ′A(A1 uA2) =̂ Γ′A(A1) u Γ′A(A2)

Γ′A 10

Γ′A(A1 @ A2) =̂ (Γ′A(A1) @ Γ′A(A2))

Γ′A 11

Γ′A(A1 J ns1 | cs | ns2 K A2) =̂

lget .v0?vv0 → . . .→ lget .vn?vvn →
lget .l0?vl0 → . . .→ lget .lm?vlm →



 (
Γ′A(A1) ; lterminate → Skip

)
J{} | MEMI | {}K
MemoryMerge({v0 7→ vv0, . . .},LEFT )

 \MEMI

J{} | cs | {}K (
Γ′A(A2) ; lterminate → Skip

)
J{} | MEMI | {}K
MemoryMerge({v0 7→ vv0, . . .},RIGHT )

 \MEMI


J{} | MEMI | {}K
Merge


\{|mleft ,mright |}


Γ′A 12

Γ′A(; x : 〈v1, ..., vn〉 • A(x )) =̂ Γ′A(A(v1) ; . . . ; A(vn))

Γ′A 13

Γ′A(@ x : 〈v1, ..., vn〉 • A(x )) =̂ Γ′A(A(v1) @ . . . @ A(vn))

Γ′A 14

Γ′A(u x : 〈v1, ..., vn〉 • A(x )) =̂ Γ′A(A(v1) u . . . uA(vn))

Γ′A 15

Γ′A(Jcs K x : 〈v1, ..., vn〉 • Jns(x ) K A(x )) =̂
A(v1)

Jns(v1) | cs |
⋃
{x : {v2, ..., vn} • ns(x )}K . . .

 Γ′A(A(vn − 1))
Jns(vn − 1) | cs | ns(vn)K
A(vn)

 


Γ′A 16

Γ′A(valDecl • P) =̂ valDecl • Γ′A(P)
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Γ′A 17

Γ′A
(
x0, . . . , xn := e0, . . . , en

)
=̂

 mset .x0!e0 →
. . .→
mset .xn !en → Skip


Γ′A 18

Γ′A(A \ cs) =̂ Γ′A(A) \ cs

Γ′A 19

Γ′A


if g0−→A0

8 . . .
8gn −→An

fi

 =̂


if g0−→ Γ′A(A0)

8 . . .
8 gn −→ Γ′A(An)

fi


Γ′A 20

Γ′A(µX • A(X )) =̂ µX • Γ′A(A(X ))

Γ′A 21

Γ′A(9 x : 〈v1, ..., vn〉 • A(x )) =̂
A(v1)

Jns(v1) |
⋃
{x : {v2, ..., vn} • ns(x )}K . . .

 Γ′A(A(vn − 1))
Jns(vn − 1) | ns(vn)K
A(vn)

 


Γ′A 22

Γ′A(A[old1, ..., oldn := new1, ...,newn) =̂ A[new1, ...,newn/old1, ..., oldn)
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Appendix C

Mapping Functions - Circus to CSP

Mapping Functions - Circus to CSP

C.1 Mapping Circus Paragraphs

The following functions are used to map Circus Channels into CSP.

Firstly the UNIVERSE type is defined as follows.

ΥCircParagraphs([UNIVERSE ]) =̂
datatype UNIVERSE = MKUniverse(ulst)
MKsubtype(fulst)
MKvalue(fulst)
MKtype(fulst)

provided

• δ(∅) 6∈ spec – There is at least one element in the δ mapping.

• spec is the whole specification

• ulst = DEFUniverse(spec) – list of mappings from variables to types, from δ function

• fulst = GETTypes(spec) – list of all types from δ function

Then, we define the translation for the channels and sets of the Memory model.

ΥCircParagraphs(channelmget ,mset : NAME ×UNIVERSE ) =̂
ΥCDecl(channelmget ,mset : NAME ×UNIVERSE )

ΥCircParagraphs(channel terminate) =̂
ΥCDecl(channel terminate)

ΥCircParagraphs(channelsetMEMI == {|mget ,mset , terminate |}) =̂
MEM I =ΥCSExp({|mget ,mset , terminate |})

ΥCircParagraphs(BINDING =̂ NAME × U) =̂
BINDINGS T1= {set(b) | b <- set(distCartProd(NAMES VALUES T1))}
. . .
BINDINGS Tn= {set(b) | b <- set(distCartProd(NAMES VALUES Tn))}

Finally, we define the translation of the remainder constructs.

ΥCircParagraphs(N ::= a1 | . . . | an) =̂ datatype N = ΥZBranch list(a1 | . . . | an)
ΥCircParagraphs(P) =̂ ΥProcDecl(P)
ΥCircParagraphs(channel c) =̂ ΥCDecl(c)
ΥCircParagraphs(channelsetCN == CS ) =̂ CN = ΥCSExp(CS )
ΥCircParagraphs(N == expr) =̂ N = ΥZExpr
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C.1.1 Mapping Circus Channels

This set of mapping functions will translate the declaration of channels from Circus into CSPM .

Although, generic channels are not yet available.

ΥCDecl(channel a) =̂ channel a
ΥCDecl(channel a : T ) =̂ channel a : T

A channel declaration can be either of form CChan or CChanDecl . For CChan, we can have

channel terminate, whereas for CChanDecl , channelmget : NAME × BINDING . Thus, we filter

both cases into x1 for CChan and x2 for CChanDecl , and then, display them accordingly.

C.1.2 Mapping Function for Channel Set Expressions

ΥCSExp({| xs |}) =̂ {| ΥCSExp get cs(xs)|}
ΥCSExp(CS1 \ CS2) =̂ diff(ΥCSExp(CS1),ΥCSExp(CS2))
ΥCSExp(CS1 ∪ CS2) =̂ union(ΥCSExp(CS1),ΥCSExp(CS2))
ΥCSExp(CS1 ∩ CS2) =̂ inter(ΥCSExp(CS1),ΥCSExp(CS2))
ΥCSExp({| |}) =̂ {}
ΥCSExp(CS ) =̂ CS

provided

• CS , CS1 and CS2 are channel sets, CSExp.

C.1.3 Mapping Circus Processes Declaration

This is the translation rules for ProcDecl . Up to the date, we don’t have a translation rule for generic

processes.

ΥProcDecl(processP =̂ ProcDef ) =̂ PΥProcessDef (PD)

provided P is the name of a Circus process.

C.1.4 Mapping Circus Processes Definition

ΥProcessDef (Proc) =̂ = ΥCProc(Proc)

ΥProcessDef (Decl • Proc) =̂ (ΥZGenFilt list)= ΥCProc(Proc)

provided

• Proc is the process content.

• Decl are the local variables for the process Proc environment.
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C.1.5 Mapping Circus Processes

In this section, we list all the mapping functions for the possible behaviours of a Circus process. Note

that CGenProc (N [Exp+]), CSimpIndexProc, and CParamProc (N (Exp+)) are not yet implemented.

ΥCProc(P1 @ P2) =̂ ΥCProc(P1)[] ΥCProc(P2)

ΥCProc(P1 \ CS ) =̂ ΥCProc(P1)\ΥPredCS (CS )
ΥCProc(P1 u P2) =̂ ΥCProc(P1)|~|ΥCProc(P2)
ΥCProc(P1 9 P2) =̂ ΥCProc(P1)|||ΥCProc(P2)
ΥCProc(P) =̂ P
ΥCProc(P1 J CS K P2) =̂ ΥCProc(P1)[|ΥPredCS (CS )|]ΥCProc(P2)
ΥCProc(P1 ; P2) =̂ ΥCProc(P1);ΥCProc(P2)

ΥCProc(@ x : S • P1) =̂ [] x :ΥZExpr (S )@ΥCProc(P2)

ΥCProc(u x : S • P1) =̂ |~| x :ΥZExpr (S )@ΥCProc(P2)

ΥCProc(9 x : S • P1) =̂ |~| x :ΥZExpr (S )@ΥCProc(P2)

ΥCProc(JCS K x : S • P1) =̂ [|ΥPredCS (CS )|] x :ΥZExpr (S )@ΥCProc(P2)

ΥCProc(; x : S • P1) =̂ ; x :ΥZExpr (S )@ΥCProc(P2)

ΥCProc(beginAL • MA end) =̂
letΥPPar list(AL)
withinΥCAction(MA)

ΥCProc(begin • MA end) =̂ ΥCAction(MA)
ΥCProc(Proc[NL := EL]) =̂ P[[ΥRename(NL,EL)]]

provided

• P is a process name.

• P1 and P2 is a process CProc

• cs is a channel set CSExp

• MA is the main action of the Circus process.

• AL is the list of actions.

This function maps any renaming, to its equivalent syntax in CSPM .

ΥRename(x # xs, y # xs) =̂ ΥComm(x )<- ΥComm(y), ΥRename(xs, xs)
ΥRename([x ], [y ] =) =̂ ΥComm(x )<- ΥComm(y)

C.1.6 Mapping Circus Processes Paragraphs

ΥPPar (P =̂ Decl • A) =̂ P(ΥZGenFilt list(Decl)) = ΥCAction(A)
ΥPPar (P =̂ A) =̂ P = ΥCAction(A)
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C.1.7 Mapping Circus Actions

ΥA(c → A) =̂ c -> ΥA(A)
ΥA(c?x → A) =̂ c?x -> ΥA(A)
ΥA(c.v → A) =̂ c.v -> ΥA(A)

ΥA(c?x : P → A) =̂ c?x : ΥZExp(P)-> ΥA(A)
ΥA(mget .x?v x : δ(x )→ A) =̂ mget.x?v x:(typeTYP(x)) -> ΥA(A)

ΥA(mset .x .v x → A) =̂ mset.x.(TYP.valueTYP(v x)) -> ΥA(A)
ΥA(A @ B) =̂ ΥA(A)[]ΥA(B)
ΥA(A u B) =̂ ΥA(A)|~|ΥA(B)

ΥA(A \ cs) =̂ ΥA(A)\ΥPcs (cs)
ΥA(g & A) =̂ ΥB(g) & ΥA(A)

ΥA(A ||[ ns1 | ns2 ]|| B) =̂ ΥA(A)|||ΥA(B)
ΥA(A J ns1 | cs | ns2 K B) =̂ ΥA(A)[|ΥPcs (cs)|]ΥA(B)

Υ(µX • A) =̂ let muA=ΥA(A)within muA
ΥA(@ x : S • A) =̂ [] x :ΥP(S )@ΥA(A)

ΥA(u x : S • A) =̂ |~| x :ΥP(S )@ΥA(A)

ΥA(9 x : S • J∅ K A) =̂ ||| x:ΥP(S )@ΥA(A)

ΥA(Jcs K x : S • A) =̂ [|ΥPcs (cs)|] x :ΥP(S )@ΥA(A)

ΥA(Jcs K x : S • J∅ K A) =̂ [|ΥPcs (cs)|] x :ΥP(S )@ΥA(A)

ΥA(; x : S • A) =̂ ; x :Υseq(S )@ΥA(A)

ΥA(A ; B) =̂ ΥA(A);ΥA(B)
ΥA(Skip) =̂ SKIP
ΥA(Stop) =̂ STOP

ΥA(Chaos) =̂ CHAOS

C.1.8 Mapping Circus Commands

Assignments are translated into prefixed actions with mget and mset with the Ω functions. Therefore,

we only have to translate conditional commands with if − then − else. Moreover, we do not have to

provide any translation for local variable declaration var as they are promoted to the Memory state

process.

ΥA


if g0−→A0

8 . . .
8gn −→An

fi

 =̂

 g0 ->ΥA(A0)
[] . . .
[]gn ->ΥA(An)



C.1.9 Mapping Circus Guarded Actions

ΥA

 (g0) N A0

8 . . .
8(g0) N An

 =̂

 g0 & ΥA(A0)
[] . . .
[]gn & ΥA(An)



C.2 Mapping Functions from Circus to CSP - Based on D24.1 -
COMPASS

The definitions mapping functions for Expressions and the ones for Predicates were expanded in order

to cover a wider range of constructs. These were based on the Z definitons and some may use the

auxiliary definitons in CSPM included in the functions_aux.csp and sequences_aux.csp.
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C.2.1 Mapping Function for Expressions

ΥZExpr (N) =̂ NatValue
ΥZExpr (m) =̂ m m ∈ Z

ΥZExpr (aT ) =̂ value (def U prefix T )(v a ) aT ∈ State
∧ T ∈ UNIVERSE

ΥZExpr (at) =̂ a a 6∈ State
ΥZExpr (m ∗ n) =̂ (ΥZExpr (n)* ΥZExpr (m))

ΥZExpr (m + n) =̂ (ΥZExpr (n)+ ΥZExpr (m))
ΥZExpr (m − n) =̂ (ΥZExpr (n)- ΥZExpr (m))
ΥZExpr (a 7→ b) =̂ (ΥZExpr (a),ΥZExpr (b))

ΥZExpr (# a) =̂ card(ΥZExpra )
ΥZExpr (a

⋂
b) =̂ Inter(ΥZExpr (a),ΥZExpr (b))

ΥZExpr (a
⋃
b) =̂ Union(ΥZExpr (a),ΥZExpr (b))

ΥZExpr (a a b) =̂ ΥZExpr (a)ˆΥZExpr (b)
ΥZExpr (a ∩ b) =̂ inter(ΥZExpr (a),ΥZExpr (b))
ΥZExpr (a ∪ b) =̂ union(ΥZExpr (a),ΥZExpr (b))

ΥZExpr (a/ s) =̂ concat(ΥZExpr (s))
ΥZExpr (m div n) =̂ (ΥZExpr (n)/ ΥZExpr (m )

ΥZExpr (dom a) =̂ dom(ΥZExpr (a))
ΥZExpr (ran a) =̂ ran(ΥZExpra )

ΥZExpr (m mod n) =̂ ΥZExpr (n)% ΥZExpr (m)
ΥZExpr (m \ n) =̂ diff(ΥZExpr (n), ΥZExpr (m))

ΥZExpr (m C n) =̂ dres(ΥZExpr (n), ΥZExpr (m))
ΥZExpr (m # n) =̂ comp(ΥZExpr (n), ΥZExpr (m))

ΥZExpr (m B n) =̂ rres(ΥZExpr (n), ΥZExpr (m))
ΥZExpr (m 7→ n) =̂ pfun(ΥZExpr (n), ΥZExpr (m))

ΥZExpr (−n) =̂ - (ΥZExpr (n))
ΥZExpr (a ⊕ {b 7→ c}) =̂ over(ΥZExpr (a),ΥZExpr (b),ΥZExpr (c))

ΥZExpr (a × b) =̂ (ΥZExpr (a).ΥZExpr (b))
ΥZExpr (a ⊕ b) =̂ oplus(ΥZExpr (a),ΥZExpr (b))

ΥZExpr (P a) =̂ Set(ΥZExpra )
ΥZExpr (seq a) =̂ Seq(ΥZExpra )
ΥZExpr (a \ b) =̂ diff(ΥZExpr (a),ΥZExpr (b))
ΥZExpr (a . . b) =̂ {ΥZExpr (a)..ΥZExprb }

ΥZExpr (∅) =̂ {}
ΥZExpr ({ a, . . . , c }) =̂ { a, . . . , c }

ΥZExpr (〈〉) =̂ <>
ΥZExpr (〈b a〉) =̂ < b a > b a ∈ BINDINGS

ΥZExpr (〈sv a〉) =̂ < sv a > sv a ∈ NAMES
ΥZExpr (〈ns〉) =̂ <y | y <- ns> ns ∈ NSExp

ΥZExpr (seqAa seqB) =̂ ΥZExpr (A)ˆ ΥZExpr (B)
ΥZExpr (seq a) =̂ <y | y <- a >

ΥZExpr (〈a, . . . , c〉) =̂ < a, . . . , c >
ΥZExpr (A× B) =̂ A.B

ΥZExpr ((a, . . . , c)) =̂ ( a, . . . , c )
ΥZExpr (fa) =̂ ΥZExpr (f )(ΥZExpr (a))
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C.2.2 Mapping Functions for Predicates

ΥZPred(if x then y else y) =̂ if ΥZPred(x )thenΥZPred(y)elseΥZPred(z )
ΥZPred(a ≥ b) =̂ ΥZExpr (a)>=ΥZPred(b)
ΥZPred(a > b) =̂ ΥZExpr (a)>ΥZPred(b)
ΥZPred(a ≤ b) =̂ ΥZExpr (a)<=ΥZPred(b)
ΥZPred(a < b) =̂ ΥZExpr (a)<ΥZPred(b)
ΥZPred(a 6= b) =̂ ΥZExpr (a)!=ΥZPred(b)
ΥZPred(a ≥ b) =̂ ΥZExpr (a)>=ΥZPred(b)
ΥZPred(a = b) =̂ ΥZExpr (a)==ΥZExpr (b)

ΥZPred(¬ a) =̂ not (ΥZPred(a))
ΥZPred(a ∧ b) =̂ ΥZPred(a)and ΥZPred(b)
ΥZPred(a ∨ b) =̂ ΥZPred(a)orΥZPred(b)
ΥZPred(True) =̂ true
ΥZPred(False) =̂ true
ΥZPred(a ∈ B) =̂ member(ΥZExpr (a),ΥZExpr (B))

ΥZPred(a) =̂ a
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Appendix D

Circus refinement laws

We present a list of Circus Refinement Laws used throughout this thesis. With the exception of Law 20

and Law 21, which are part of our contribution, the other laws may be found in the Deliverable

24.1 [132].

Law 1 (Parallelism composition/External choice—expansion∗)

(@ i • ai → Ai) J ns1 | cs | ns2 K (@ j • bj → Bj )
=
(@ i • ai → Ai) J ns1 | cs | ns2 K ((@ j • bj → Bj ) @ (c → C ))

provided

•
⋃

i{ai} ⊆ cs

• c ∈ cs

• c 6∈
⋃

i{ai}

• c 6∈
⋃

j{bj}

Law 2 (Channel extension 3∗)

(A1 J ns1 | cs1 | ns2 K A2(e)) \ cs2
=
((c!e → A1) J ns1 | cs1 | ns2 K (c?x → A2(x ))) \ cs2

provided

• c ∈ cs1

• c ∈ cs2

• x 6∈ FV (A2)

Law 3 (Sequence unit)

(A)Skip; A
(B)A = A; Skip

Law 4 (True guard)

(true) N A = A
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Law 5 (External choice/Sequence—distribution)

(@ i • (gi) N ci → Ai); B = @ i • (gi) N ci → Ai ; B

Law 6 (Parallelism composition/External choice—distribution∗)

@ i • (Ai J ns1 | cs | ns2 K A) = (@ i • Ai) J ns1 | cs | ns2 K A

provided

• initials(A) ⊆ cs

• A is deterministic

Law 7 (Hiding/External choice—distribution∗)

(A1 @ A2) \ cs = (A1 \ cs) @ (A2 \ cs)

provided

• (initials(A1) ∪ initials(A2)) ∩ cs = ∅

Law 8 (Hiding/Sequence—distribution∗)

(A1 ; A2) \ cs = (A1 \ cs) ; (A2 \ cs)

Law 9 (Hiding Identity∗)

A \ cs = A

provided

• cs ∩ usedC (A) = ∅

Law 10 (Parallelism composition/Sequence—step∗)

(A1; A2) J ns1 | cs | ns2 K A3 = A1; (A2 J ns1 | cs | ns2 K A3)

provided

• initials(A3) ⊆ cs

• cs ∩ usedC (A1) = ∅

• wrtV (A1) ∩ usedV (A3) = ∅

• A3 is divergence-free

• wrtV (A1) ⊆ ns1

Law 11 (Variable Substitution2∗)

var x • A(x ) = var y • A(y)

provided
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• x is not free in A

• y is not free in A

Law 12 (Assignment Removal∗)

x := e ; A(x ) = A(e)

provided x is not free in A(e)

Law 13 (Innocuous Assignment∗)

x := x = Skip

Law 14 (Variable block introduction∗)

var x : T • A = AA = var x : T • A

provided x 6∈ FV (A)

Law 15 (Guard combination) 1

(g1) N ((g2) N A) = ((g1 ∧ g2)) N A

Law 16 (Variable block/Sequence—extension∗) 1

A1 ; (var x : T • A2) ; A3 = (var x : T • A1 ; A2 ; A3)

provided x 6∈ FV (A1) ∪ FV (A3)

Law 17 (prom-var-state) [0]

begin
(stateS )
L(x : T )

• (var x : T • MA)
end

=

begin
(stateS ∧ [x : T ])
L( )

• MA
end

Law 18 (prom-var-state-2) [0]

begin
L(x : T )

• (var x : T • MA)
end

=

begin
(state[x : T ])
L( )

• MA
end

Law 19 (Guard/Parallelism composition—distribution∗) 3

((g) N A1) J ns1 | cs | ns2 K A2 = (g) N (A1 J ns1 | cs | ns2 K A2)

provided initials(A2) ⊆ cs

Law 20 (Process Splitting 3 ArturGomes)

provided x is a local variable, and therefore, can be promoted into a parameter of the process P

process G =̂ beginPPar • var x : T • P(x ) end
=

process G =̂ beginPPar • u x : T • P(x ) end
=

process G =̂ u x : T • G ′(x )

process G ′ =̂ (x : T • beginPPar • P(x ) end)
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Law 21 (Process Splitting 4 ArturGomes)

process G =̂


begin
PPar
• var x : T • P(x )

end


=

process G =̂ x : T •


begin
PPar
• P(x )

end



D.1 Lemmas from Deliverable 24.1 [132]

Lemma (K.2) A
J∅ | MEMI | {b}K
Memory(b)


=

A
J∅ | MEMI | {b}K (@n : NAME • mget .n!b(n)→ Memory(b))

@(@n : NAME • mset .n?nv → Memory(b ⊕ {n 7→ nv}))
@terminate → Skip


 \MEMI

D.2 Circus Denotational Semantics [129, Chapter 3]

Definition 1 (B.41)

begin state [decl | pred ]PPars • A end =̂ var decl • A
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Appendix E

Beyond the Tool Implementation -
Linking with Isabelle/UTP
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Appendix F

From Haskell to Isabelle using
Haskabelle

Because we are using Haskell, we could use Isabelle/HOL as our target theorem prover. We can use

one of its tools, Haskabelle [79], which is capable of translating Haskell code into the ML-like syntax of

Isabelle, which is similar to Haskell. Moreover, another benefit from using Isabelle is the possibility of

using Isabelle/UTP, which is an implementation of the Unifying Theories of Programming (UTP) [83],

as well as the theories of Circus.

The result from Haskabelle is a very similar code compared to the original Haskell implementation.

Then, we would load the theories for Isabelle/UTP and create a function that maps our Haskell syntax

of Circus into that used by Isabelle/UTP.

Unfortunately, Haskabelle is no longer being maintained by its developers, and the last release

was delivered as a package of Isabelle2015. Later versions of IsabelleHOL no longer contain the tool

packages. However, one can still execute Haskabelle on Isabelle2015 and load the translated files on

later versions of IsabelleHOL.

Although, as the Haskabelle code is open-source, we updated its files to comply with GHC

7.10, and manually (and informally) inserted Haskabelle into Isabelle2017. Such a fix required the

manual installation of older versions of a few Haskell packages. We have a dedicated folder within our

repository for the fixed Haskabelle code, which we plan to submit to the Isabelle/HOL developers for

a possible reinclusion in its future releases.

Our first task was to resolve any Haskell library dependency, as the Haskabelle tool does not

support importing functions from Haskell libraries. Instead, we have to make a local copy of the

required librares. One of the most used is the List library, and thus, we organise all the list-related

functions in a local auxiliary file.

One of the caveats in the Haskabelle tool is that some Haskell constructs are not directly trans-

lated. For instance, an equality in a case expression, case (a = b)of... is translated as case (eq a b)of...

and as it is, the definition of function eq , from the Haskabelle’s Prelude.thy file clashes with the types

of a and b from our code. We need to manually replace the eq a b by a = b, so that the code is

accepted by Isabelle.

Another caveat found is the translation of tuples into Isabelle’s notation. The native translation
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with Haskabelle transforms, for example, the tuple (T1 ∗ T2 ∗ T3) into ((T1 ∗ T2) ∗ T3), whose

function definition in Isabelle differs from the one defined in our implementation in Haskell, and

therefore, the native translation is not equivalent. Thus, we manually fix any definition of tuples in

our code, so the function behaves as the expected ones written in Haskell. The resulted code has a

similar structure compared to the original Haskell code, preserving the dependency tree of the local

libraries. The Haskell implementation of the three Ω functions along with the example of the Ω′

function presented in the section above is defined in the code extract below.

F.1 Reasoning using Isabelle/UTP

Our tool, Circus2CSP, was built based on the implementations of formal rules for remodelling Circus,

along with the Circus refinement calculus. All those rules and laws were proved to be correct, some

of them by hand, some with the help of theorem provers [176, 130]. However, we know that theory

and practice do not always result in the same product. Therefore, we would like to verify if the

implementation in Haskell of all those theories used is correct w.r.t. its formal definitions from the

literature.

Moreover, our refinement calculator is not able to discharge the proof obligations derived from

the refinement laws applied in its calculations. We, however, developed our tool in such a way that

those proof obligations would be made available in a file so that they can be, later on, parsed an

prepared as lemmas for external use in a theorem prover.

Therefore, we can list three goals we would like to achieve while using Isabelle/UTP :

1. Verifying the correctness of Haskell implementation of Circus2CSP

2. Discharging the proof obligations for the automatic Circus refinement calculator

3. Discharging any proof obligation while refining Z schemas into Circus

We first introduce here briefly how we translated into Isabelle/HOL our Haskell AST of Circus as

well as the omega functions and the code for the refinement calculator. We illustrate the similarities

in both sides of the translation from Haskell to Isabelle with a small piece of code from the omega

functions. As an example, we first show a few selected Haskell functions of the omega transformations.

omega_CAction :: CAction -> CAction
2 omega_CAction CSPSkip = CSPSkip

omega_CAction (CSPCommAction (ChanComm c []) a)
4 = (CSPCommAction (ChanComm c []) (omega_CAction a))

omega_CAction (CSPExtChoice ca cb)
6 = make_get_com lsx (CSPExtChoice (omega_prime_CAction ca)

(omega_prime_CAction cb))
8 where

lsx=remdups.concat.map get_ZVar_st (free_var_CAction (CSPExtChoice ca cb))
10 omega_CAction (CSPHide a cs) = (CSPHide (omega_CAction a) cs)

omega_CAction x = x
12 omega_prime_CAction :: CAction -> CAction

omega_prime_CAction (CSPSeq ca cb)
14 = (CSPSeq (omega_prime_CAction ca) (omega_CAction cb))

omega_prime_CAction x = omega_CAction x
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The above Haskell code is translated into Isabelle/UTP via Haskabelle, resulting in the equivalent

functions omega CAction and omega prime CAction in the syntax of Isabelle/HOL. Both functions

are mutually recursive as the CSPSeq function calls both omega CAction and omega prime CAction.

1 function (sequential) omega_CAction :: "CAction ⇒ CAction" and
omega_prime_CAction :: "CAction ⇒ CAction"

3 where
"omega_CAction CSPSkip = CSPSkip"

5 | "omega_CAction (CSPCommAction (ChanComm c Nil) a)
= (CSPCommAction (ChanComm c Nil) (omega_CAction a))"

7 | "omega_CAction (CSPExtChoice ca cb)
= make_get_com lsx (CSPExtChoice (omega_prime_CAction ca)

9 (omega_prime_CAction cb))
where

11 lsx=remdups.concat.map get_ZVar_st (free_var_CAction(CSPExtChoice ca cb))"
| "omega_CAction (CSPHide a cs) = (CSPHide (omega_CAction a) cs)"

13 | "omega_CAction x = x"
| "omega_prime_CAction (CSPSeq ca cb)

15 = (CSPSeq (omega_prime_CAction ca) (omega_CAction cb))"
| "omega_prime_CAction x = omega_CAction x"

17 by pat_completeness auto
termination by size_change

Within the environment of Isabelle/UTP, we developed a function for mapping the specifications

written in the syntax of Circus2CSP into the one used for writing Circus in Isabelle/UTP. Such a

function, herein toUTP , was prototyped with only a few of the Circus actions constructs in order to

experiment the overall approach for reaching Isabelle and therefore, for formally verifying Circus2CSP.

The toUTP function, for now, is limited to the following operators:

1. Skip, Chaos and Stop

2. Internal choice, external choice and sequential composition

3. Indexed operators for interleaving and internal choice

4. Simple prefix events

The structure of toUTP is illustrated in Fig F.1. We defined on purpose the clause for external

choice with a symmetrical equivalence. We expected that Isabelle/UTP would use the Circus refinement

laws and in fact, it does prove that such symmetry is valid.

Figure F.1: Mapping Haskell to Isabelle/UTP

Because we decided to prototype toUTP with simple constructs, the proofs for small examples of

Circus actions using those constructs listed were quite trivial. For example, the fact that we introduced

a symmetry in the external choice operator in toUTP was not a problem for the prover, since such

property was already defined in Isabelle, and was proved using simplification tactics.

We illustrate the bridge between the functions implemented in Circus2CSP and the theories of Is-

abelle/UTP with the example of the action Skip ; Skip, which can be refined into Skip. We proved that,
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when applying toUTP to the Haskell description of that action, (CSPSeq CSPSkip CSPSkip), it

can be refined into Skip in the syntax of Isabelle/UTP.

lemma "toUTP (CSPSeq CSPSkip CSPSkip) v Skip"
2 apply simp

apply (metis CSP3_Skip CSP3_def Healthy_if eq_refl)
4 done

The proof first transforms the left-hand side into the syntax of Isabelle, and then, using the built-in

theories of Circus, it proves the refinement.

Now that we presented our work on linking our Haskell implementation of the translation into

Isabelle, we now focus on the overall strategy for verifying that implementation using Isabelle/UTP.

F.1.1 Considerations for Future Work

From that point, our next task would be to introduce the omega mapping functions into the Is-

abelle/UTP environment, along with any Circus refinement law used in our automatic refinement

calculator that would not be yet available in Isabelle. Finally, with those steps concluded, we would

be able to start with the proofs for supporting our verified translator, as illustrated in Figure 8.1.

As we mentioned earlier, we would benefit from Isabelle while discharging the proofs related to

the refinement of both Circus and Z schemas using ZRC. Once able to verify the correctness of our

tool, we could start implementing a module of Circus2CSP capable of verifying if the laws applied in

the refinement steps are valid. For such, we can extract every refinement step and its provisos, which

are the required conditions to prove that step is true, and format them into the syntax of a lemma

in Isabelle. Therefore, we may have at the end, a list of lemmas one for each refinement step to be

proved using Isabelle. Hopefully, we will be able to prove that, given P v Q , P is refined by Q by

rewriting them using the intermediate steps proved as lemmas.

We illustrate below an example of one of the Circus refinement laws, initially implemented in

Haskell, then imported to Isabelle. First we introduce how the Refinement type is defined in Isabelle

- we had to change the names of Done and None to Done and NoRef , as None is a reserved word

in the context of Isabelle. Therefore, we use ′t Refinement for a refinement of either a CAction or a

CProcess.

datatype (’t) Refinement
2 = NoRef

| Done "’t option" "’t option" "ZPred list"

Then, we illustrate the implementation of the law sequence-unit, L. 3. It starts with a Circus

action in the shape of (CSPSeq CSPSkip act) or (CSPSeq act CSPSkip), for Skip ; Act and

Act ; Skip respectively, and when applied, it results in a CAction Refinement , with only Act .

1 (* Implementation of Skip ; Act *)
fun crl_seqSkipUnit_a :: "CAction ⇒ CAction Refinement"

3 where
"crl_seqSkipUnit_a (CSPSeq CSPSkip a) = Done (Some (CSPSeq CSPSkip a)) (Some a) Nil "

5 | "crl_seqSkipUnit_a _ = NoRef"

7 (* Implementation of Act ; Skip *)
fun crl_seqSkipUnit_b :: "CAction ⇒ CAction Refinement"

9 where
"crl_seqSkipUnit_b (CSPSeq a CSPSkip) = Done (Some (CSPSeq a CSPSkip)) (Some a) Nil"

11 | "crl_seqSkipUnit_b _ = NoRef"
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And the refinement of, for example, Skip ; terminate → Skip, when applying crl_seqSkipUnit_a

is, therefore, terminate → Skip, as illustrated in Figure F.2.

1 value "crl_seqSkipUnit_a
(CSPSeq

3 CSPSkip
(CSPCommAction (ChanComm ’’terminate’’ []) CSPSkip))"

Figure F.2: Refinement test

We also illustrate how the Haskell implementation of the refinement calculator, translated to the

environment of Isabelle, can be proved to be correct using the refinement laws of Circusin Isabelle. We

use the above presented equation for applying the law sequence-unit, as illustrated in Figure F.2,

and prove its equivalence to the syntax of Isabelle/UTP. The action PrefixCSP �′′ terminate ′′ � Skip

is a syntactic sugar for terminate → Skip. And as expected the proof is concluded using the simp

command of Isabelle/UTP.

lemma "toUTP (fromDone(refined (crl_seqSkipUnit_a
2 (CSPSeq CSPSkip (CSPCommAction (ChanComm ’’terminate’’ []) CSPSkip)))))

= PrefixCSP �’’terminate’’� Skip"
4 by simp
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Appendix G

Proofs on Circus models

G.1 Proofs on the Z schemas refinement - Chronometer

Here we present the proofs of the refinement of Z schemas for the Chronometer process as discussed

in Section 3.5.1.

Init action

Init

= [Init schema def]

[∆State | sec′ = 0 ∧ min ′ = 0]

= [basic conversion bC [34]]

sec,min : [(inv ∧ ∃ sec′,min ′ • sec′ = 0 ∧ min ′ = 0 ∧ inv ′), (inv ′ ∧ sec′ = 0 ∧ min ′ = 0)]

= [predicate calculus]

sec,min : [(∃ sec′,min ′ • sec′ = 0 ∧ min ′ = 0), (sec′ = 0 ∧ min ′ = 0)]

= [Assignment conversion assC [34], provided inv [0, 0/min, sec]]

(sec,min := 0, 0)

IncSec action

IncSec

= [Init schema def]

[∆State | sec′ = (sec + 1)]

= [basic conversion bC [34]]

sec,min : [(inv ∧ ∃ sec′,min ′ • sec′ = (sec + 1) ∧ inv ′), (inv ′ ∧ sec′ = (sec + 1))]

= [L 5.4 - contract frame [119]]

sec : [(inv ∧ ∃ sec′,min ′ • sec′ = (sec + 1) ∧ inv ′)[min/min ′], (inv ′ ∧ sec′ = (sec + 1))[min/min ′]]

= [predicate calculus]

sec : [(∃ sec′ • sec′ = (sec + 1)), (sec′ = (sec + 1))]

= [Assignment conversion assC [34], provided inv [(sec + 1)/sec]]

(sec := sec + 1)
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IncMin action

IncMin

= [Init schema def]

[∆State | min ′ = (min + 1)]

= [basic conversion bC [34]]

sec,min : [(inv ∧ ∃ sec′,min ′ • min ′ = (min + 1) ∧ inv ′), (inv ′ ∧ min ′ = (min + 1))]

= [L 5.4 - contract frame [119]]

sec : [(inv ∧ ∃ sec′,min ′ • min ′ = (min + 1) ∧ inv ′)[sec/sec′], (inv ′ ∧ min ′ = (min + 1))[sec/sec′]]

= [predicate calculus]

sec : [(∃min ′ • min ′ = (min + 1)), (min ′ = (min + 1))]

= [Assignment conversion assC [34], provided inv [(min + 1)/min]]

(min := min + 1)

G.2 Assignment then Choice problem

We want to prove that a state assignment can be shifted to after the choice is resolved. We use the

definition of the Ω functions as well as the refinement laws.

G.2.1 Assignment then choice - Both sides

Ω(PS .((x := 0 ; c1 → Skip) @ (x := 1 ; c2 → Skip)))
=
PS .((c1 → x := 0) @ (c2 → x := 1))

Proof

Ω(PS .((x := 0 ; c1 → Skip) @ (x := 1 ; c2 → Skip)))

[ΩP ]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 (x := 0 ; c1 → Skip)

@
(x := 1 ; c2 → Skip)

 ;

terminate → Skip


J∅ | MEMI | {b}K
Memory(b)

 \MEMI

[ΩA-12]

= P .
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var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx → (x := 0 ; c1 → Skip)
@
(x := 1 ; c2 → Skip)


 ;

terminate → Skip


J∅ | MEMI | {b}K
Memory(b)


\MEMI

[ΩA 19]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx →
(

mset .x .0→ Skip;
c1 → Skip

)
@(

mset .x .1→ Skip;
c2 → Skip

)


 ;

terminate → Skip


J∅ | MEMI | {b}K
Memory(b)


\MEMI

[Lemma D.1]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx →
(

mset .x .0→ Skip;
c1 → Skip

)
@(

mset .x .1→ Skip;
c2 → Skip

)


 ;

terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI

[L.1]
provided:
{terminate} ⊆ MEMI
{mset ,mget} ⊆ MEMI
mset ∈ MEMI ∧ terminate ∈ MEMI
{mset , terminate} * {mget}

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx →
(

mset .x .0→ Skip;
c1 → Skip

)
@(

mset .x .1→ Skip;
c2 → Skip

)


 ;

terminate → Skip


J∅ | MEMI | {b}K
mget .x !vx → Memory(b)


\MEMI

[L.2]
provided:
{mget} ⊆ MEMI
b 6∈ FV (Memory(b))

= P .
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var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




(

mset .x .0→ Skip;
c1 → Skip

)
@(

mset .x .1→ Skip;
c2 → Skip

)
 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.4]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




(True) N

(
mset .x .0→ Skip;
c1 → Skip

)
@

(True) N
(

mset .x .1→ Skip;
c2 → Skip

)
 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.5]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •



 (True) N

 mset .x .0→ Skip;
c1 → Skip;
terminate → Skip

 
@ (True) N

 mset .x .1→ Skip;
c2 → Skip;
terminate → Skip

 


J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.4]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •



 mset .x .0→ Skip;
c1 → Skip;
terminate → Skip


@ mset .x .1→ Skip;

c2 → Skip;
terminate → Skip




J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.6]
provided:
initials(Memory(b)) ⊆ MEMI
Memory(b) is deterministic

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 mset .x .0→ Skip;

c1 → Skip;
terminate → Skip


J∅ | MEMI | {b} K Memory(b)


@
 mset .x .1→ Skip;

c2 → Skip;
terminate → Skip


J∅ | MEMI | {b} K Memory(b)




\MEMI

[Lemma D.1]

= P .
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var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

var b : BINDING •

 mset .x .0→ Skip;
c1 → Skip;
terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




@
var b : BINDING •

 mset .x .1→ Skip;
c2 → Skip;
terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip







\MEMI

[L.1]
provided:
{terminate} ⊆ MEMI
{mget ,mset} ⊆ MEMI
{mset , terminate} ⊆ MEMI
{mset , terminate} * {mset}

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 mset .x .0→ Skip;

c1 → Skip;
terminate → Skip


J∅ | MEMI | {b}K
mset .x?0→ Memory(b ⊕ {x 7→ 0})


@
 mset .x .1→ Skip;

c2 → Skip;
terminate → Skip


J∅ | MEMI | {b}K
mset .x?1→ Memory(b ⊕ {x 7→ 1})




\MEMI

[L.2+L.3]
provided:
{mset} ⊆ MEMI
x 6∈ FV (Memory(b))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


(

c1 → Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})


@
(

c2 → Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 1})




\MEMI

[L.10]
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provided:
initials(Memory(b)) ⊆ MEMI
MEMI ∩ usedC (c1 → Skip) = ∅
MEMI ∩ usedC (c2 → Skip) = ∅
wrtV (c1 → Skip) ∩ usedV (Memory(b)) = ∅
wrtV (c2 → Skip) ∩ usedV (Memory(b)) = ∅
Memory(b) is divergence free
wrtV (c1 → Skip) ⊆ ∅
wrtV (c2 → Skip) ⊆ ∅

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


(c1 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})




@
(c2 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 1})





\MEMI

[L.7]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


(c1 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})


 \MEMI

@
(c2 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 1})




\MEMI


[L.8+L.9]

provided:
MEMI ∩ usedC (c1 → Skip) ∩ usedC (c2 → Skip) = ∅

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

(c1 → Skip);  (terminate → Skip)
J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})

 \MEMI


@
(c2 → Skip);  (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 1})

 \MEMI




[L.3]

= P .
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var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

(c1 → Skip);  (Skip ; terminate → Skip)
J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})

 \MEMI


@
(c2 → Skip);  (Skip ; terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 1})

 \MEMI




[L.2]

provided:
{mset} ⊆ MEMI
x 6∈ FV (Memory(b))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

(c1 → Skip);
 (mset .x .0→ Skip ; terminate → Skip)

J∅ | MEMI | {b}K
mset .x?0→ Memory(b ⊕ {x 7→ 0})


\MEMI


@
(c2 → Skip);
 (mset .x .1→ Skip ; terminate → Skip)

J∅ | MEMI | {b}K
mgset .x?1→ Memory(b ⊕ {x 7→ 1})


\MEMI




[L.1]

provided:
{terminate} ⊆ MEMI
{mget ,mset} ⊆ MEMI
{mset , terminate} ⊆ MEMI
{mset , terminate} * {mset}

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

(c1 → Skip);


(mset .x .0→ Skip ; terminate → Skip)
J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI


@
(c2 → Skip);


(mset .x .1→ Skip ; terminate → Skip)
J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI




[Lemma D.1]

= P .
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var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

(c1 → Skip);

(

mset .x .0→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)

 \MEMI


@
(c2 → Skip);

(

mset .x .1→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)

 \MEMI




[L.9+L.8]

provided:
MEMI ∩ usedC (c1 → Skip) ∩ usedC (c2 → Skip) = ∅

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

(c1 → Skip) ;



(

mset .x .0→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)


 \MEMI

@

(c2 → Skip) ;



(

mset .x .1→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)


 \MEMI


[L.7]

provided:
initials(A1) ∪ initials(A2) ∩MEMI = ∅

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

(c1 → Skip) ;


(

mset .x .0→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)


@

(c2 → Skip) ;


(

mset .x .1→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)




\MEMI

[L.10]
provided:
initials(Memory(b)) ⊆ MEMI
MEMI ∩ usedC (c1 → Skip) = ∅
MEMI ∩ usedC (c2 → Skip) = ∅
wrtV (c1 → Skip) ∩ usedV (Memory(b)) = ∅
wrtV (c2 → Skip) ∩ usedV (Memory(b)) = ∅
Memory(b) is divergence free
wrtV (c1 → Skip) ⊆ ∅
wrtV (c2 → Skip) ⊆ ∅

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

  c1 → Skip;
mset .x .0→ Skip;
terminate → Skip

 J ∅ | MEMI | {b} K Memory(b)


@  c2 → Skip;

mset .x .1→ Skip;
terminate → Skip

 J ∅ | MEMI | {b} K Memory(b)




\MEMI
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[L.6]
provided:
initials(Memory(b)) ⊆ MEMI
Memory(b) is deterministic

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

  c1 → Skip;
mset .x .0→ Skip;
terminate → Skip

 @

 c2 → Skip;
mset .x .1→ Skip;
terminate → Skip

 
J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.4]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


(True) N

 c1 → Skip;
mset .x .0→ Skip;
terminate → Skip


@

(True) N

 c2 → Skip;
mset .x .1→ Skip;
terminate → Skip




J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.5]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




(True) N

(
c1 → Skip;
mset .x .0→ Skip

)
@

(True) N
(

c2 → Skip;
mset .x .1→ Skip

)
 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.4]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 (c1 → Skip ; mset .x .0→ Skip)

@
(c2 → Skip ; mset .x .1→ Skip)

 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.2]
provided:
{mget} ⊆ MEMI
b 6∈ FV (Memory(b))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx → (c1 → Skip ; mset .x .0→ Skip)
@
(c2 → Skip ; mset .x .1→ Skip)


 ;

terminate → Skip


J∅ | MEMI | {b}K
mget .x !vx → Memory(b)


\MEMI

[L.1]
provided:
{terminate} ⊆ MEMI
{mset ,mget} ⊆ MEMI
mset ∈ MEMI ∧ terminate ∈ MEMI
{mset , terminate} * {mget}
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= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx → (c1 → Skip ; mset .x .0→ Skip)
@
(c2 → Skip ; mset .x .1→ Skip)


 ;

terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI

[Lemma D.1]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx → (c1 → Skip ; mset .x .0→ Skip)
@
(c2 → Skip ; mset .x .1→ Skip)


 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.3]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx → (c1 → mset .x .0→ Skip)
@
(c2 → mset .x .1→ Skip)


 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[ΩA-19]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


mget .x?vx → (c1 → (ΩA(x := 0)))

@
(c2 → (ΩA(x := 1)))

 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[Ω′A-17]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


mget .x?vx → (c1 → (Ω′A(x := 0)))

@
(c2 → (Ω′A(x := 1)))

 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[Ω′A-2]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


mget .x?vx → Ω′A(c1 → (x := 0))

@
Ω′A(c2 → (x := 1))

 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[Lemma D.1]
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= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

 mget .x?vx →

 Ω′A(c1 → (x := 0))
@
Ω′A(c2 → (x := 1))

 ;

terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI

[L.1]
provided:
{terminate} ⊆ MEMI
{mset ,mget} ⊆ MEMI
mset ∈ MEMI ∧ terminate ∈ MEMI
{mset , terminate} * {mget}

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

 mget .x?vx →

 Ω′A(c1 → (x := 0))
@
Ω′A(c2 → (x := 1))

 ;

terminate → Skip


J∅ | MEMI | {b}K
mget .n!b(n)→ Memory(b)

 \MEMI

[L.2]
provided:
{mget} ⊆ MEMI
b 6∈ FV (Memory(b))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 Ω′A((c1 → (x := 0))

@
(c2 → (x := 1)))

 ;

terminate → Skip


J∅ | MEMI | {b}K
mget .n!b(n)→ Memory(b)

 \MEMI

[L.4+L.6 twice]
provided:
initials(Memory(b)) ⊆ MEMI
Memory(b) is deterministic

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

( (
Ω′A(c1 → (x := 0)) ; terminate → Skip

)
J∅ | MEMI | {b} K Memory(b)

)
@( (

Ω′A(c2 → (x := 1)) ; terminate → Skip
)

J∅ | MEMI | {b} K Memory(b)

)
 \MEMI

[L.7]
provided:
initials(c1 → (x := 0)) ∪ initials(c2 → (x := 1)) ∩MEMI = ∅

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

( (
Ω′A(c1 → (x := 0)) ; terminate → Skip

)
J∅ | MEMI | {b} K Memory(b)

)
\MEMI

@( (
Ω′A(c2 → (x := 1)) ; terminate → Skip

)
J∅ | MEMI | {b} K Memory(b)

)
\MEMI


[Induction Hypoteses]
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= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} • (vres k : BINDING • (c1 → (x := 0)))(b)

@
(vres k : BINDING • (c2 → (x := 1)))(b)


[Semantics]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} • (vres k : BINDING • (c1 → (x := 0)))(b)

@
(vresm : BINDING • (c2 → (x := 1)))(b)


[L.11]

provided:
k 6∈ FV (c2 → (x := 1)) ∧ m 6∈ FV (c1 → (x := 0))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} • (var k : BINDING • k := b ; (c1 → (x := 0)) ; b := k)

@
(varm : BINDING • m := b ; (c2 → (x := 1)) ; b := m)


[L.12]

provided:
k 6∈ FV ((c2 → (x := 1))(b)) ∧ m 6∈ FV ((c1 → (x := 0))(b))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} • (var k : BINDING • (c1 → (x := 0)) ; b := b)

@
(varm : BINDING • (c2 → (x := 1)) ; b := b)


[L.13+L.3]

provided:
k 6∈ FV ((c2 → (x := 1))(b)) ∧ m 6∈ FV ((c1 → (x := 0))(b))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} • (var k : BINDING • c1 → (x := 0))

@
(varm : BINDING • c2 → (x := 1))


[L.14]

provided:
k 6∈ FV (c2 → (x := 1)) ∧ m 6∈ FV (c1 → (x := 0))

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

((c1 → (x := 0)) @ (c2 → (x := 1)))

[L.20]

= P .((c1 → (x := 0)) @ (c2 → (x := 1)))

G.2.2 Assignment then choice - Assignment in one side

Ω(PS .((x := 0 ; c1 → Skip) @ (c2 → Skip)))
=
Ω(PS .((c1 → x := 0) @ (c2 → Skip)))

Proof

Ω(PS .((x := 0 ; c1 → Skip) @ (c2 → Skip)))
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[ΩP ]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 (x := 0 ; c1 → Skip)

@
(c2 → Skip)

 ;

terminate → Skip


J∅ | MEMI | {b}K
Memory(b)

 \MEMI

[ΩA − @]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx → (x := 0 ; c1 → Skip)
@
(c2 → Skip)


 ;

terminate → Skip


J∅ | MEMI | {b}K
Memory(b)


\MEMI

[ΩA− :=]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx →
(

mset .x .0→ Skip;
c1 → Skip

)
@(

c2 → Skip
)


 ;

terminate → Skip


J∅ | MEMI | {b}K
Memory(b)


\MEMI

[Lemma K.2 from Deliverable 24.1]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx →
(

mset .x .0→ Skip;
c1 → Skip

)
@(
c2 → Skip

)

 ;

terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI

[L.1]
provided:
{terminate} ⊆ MEMI
{mset ,mget} ⊆ MEMI
mset ∈ MEMI ∧ terminate ∈ MEMI
{mset , terminate} ( {mget}

= P .
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var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




mget .x?vx →
(

mset .x .0→ Skip;
c1 → Skip

)
@(
c2 → Skip

)

 ;

terminate → Skip


J∅ | MEMI | {b}K
mget .x !vx → Memory(b)


\MEMI

[L.2]
provided:
{mget} ⊆ MEMI
b 6∈ FV (Memory(b))

= P .

var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •



(

mset .x .0→ Skip;
c1 → Skip

)
@(
c2 → Skip

)
 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.4]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




(True)N(

mset .x .0→ Skip;
c1 → Skip

)
@
(True)N(
c2 → Skip

)

 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.5]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •




(True)N mset .x .0→ Skip;

c1 → Skip;
terminate → Skip


@

 (True)N(
c2 → Skip;
terminate → Skip

) 


J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.4]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •



 mset .x .0→ Skip;
c1 → Skip;
terminate → Skip


@(

c2 → Skip;
terminate → Skip

)


J∅ | MEMI | {b} K Memory(b)


\MEMI

[L.6]
provided:
initials(Memory(b)) ⊆ MEMI
Memory(b) is deterministic

= P .

145



var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 mset .x .0→ Skip;

c1 → Skip;
terminate → Skip


J∅ | MEMI | {b} K Memory(b)


@ (

c2 → Skip;
terminate → Skip

)
J∅ | MEMI | {b} K Memory(b)




\MEMI

[Lemma K.2 Deliverable 24.1]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •

var b : BINDING •

 mset .x .0→ Skip;
c1 → Skip;
terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




@
var b : BINDING • (

c2 → Skip;
terminate → Skip

)
J∅ | MEMI | {b} K Memory(b)




\MEMI

[L.1]
provided:
{terminate} ⊆ MEMI
{mget ,mset} ⊆ MEMI
{mset , terminate} ⊆ MEMI
{mset , terminate} ( {mset}

= P .

var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


 mset .x .0→ Skip;

c1 → Skip;
terminate → Skip


J∅ | MEMI | {b}K
mset .x?0→ Memory(b ⊕ {x 7→ 0})


@ (

c2 → Skip;
terminate → Skip

)
J∅ | MEMI | {b} K Memory(b)




\MEMI

[L.2+L.3]
provided:
{mset} ⊆ MEMI
x 6∈ FV (Memory(b))

= P .

var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


(

c1 → Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})


@
(

c2 → Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)




\MEMI
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[L.10]
provided:
initials(Memory(b)) ⊆ MEMI
MEMI ∩ usedC (c1 → Skip) = ∅
MEMI ∩ usedC (c2 → Skip) = ∅
wrtV (c1 → Skip) ∩ usedV (Memory(b)) = ∅
wrtV (c2 → Skip) ∩ usedV (Memory(b)) = ∅
Memory(b) is divergence free
wrtV (c1 → Skip) ⊆ ∅
wrtV (c2 → Skip) ⊆ ∅

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


(c1 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})




@
(c2 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b)





\MEMI

[L.7]

= P .
var b : {y : BINDING | b(x ) ∈ N ∧ inv(b(x ))} •


(c1 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})


 \MEMI

@
(c2 → Skip); (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b)




\MEMI


[L.8+L.9]

provided:
MEMI ∩ usedC (c1 → Skip) ∩ usedC (c2 → Skip) = ∅

= P .b : BINDING •

(c1 → Skip);  (terminate → Skip)
J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})

 \MEMI


@
(c2 → Skip);  (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b)

 \MEMI




[L.3]

= P .b : BINDING •
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(c1 → Skip);  (Skip ; terminate → Skip)
J∅ | MEMI | {b}K
Memory(b ⊕ {x 7→ 0})

 \MEMI


@
(c2 → Skip);  (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b)

 \MEMI




[L.2]

provided:
{mset} ⊆ MEMI
x 6∈ FV (Memory(b))

= P .b : BINDING •

(c1 → Skip);
 (mset .x .0→ Skip ; terminate → Skip)

J∅ | MEMI | {b}K
mset .x?0→ Memory(b ⊕ {x 7→ 0})


\MEMI


@
(c2 → Skip);
 (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b)


\MEMI




[L.1]

provided:
{terminate} ⊆ MEMI
{mget ,mset} ⊆ MEMI
{mset , terminate} ⊆ MEMI
{mset , terminate} ( {mset}

= P .b : BINDING •



(c1 → Skip);


(mset .x .0→ Skip ; terminate → Skip)
J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI


@
(c2 → Skip);
 (terminate → Skip)

J∅ | MEMI | {b}K
Memory(b)


\MEMI




[Lemma K.2 from Deliverable 24.1]

= P .b : BINDING •

(c1 → Skip);

(

mset .x .0→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)

 \MEMI


@
(c2 → Skip);  (

terminate → Skip
)

J∅ | MEMI | {b}K
Memory(b)

 \MEMI




[L.9+L.8]

provided:
MEMI ∩ usedC (c1 → Skip) ∩ usedC (c2 → Skip) = ∅
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= P .b : BINDING •

(c1 → Skip) ;



(

mset .x .0→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)


 \MEMI

@

(c2 → Skip) ;

  (
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)

  \MEMI


[L.7]

provided:
initials(c1 → Skip) ∪ initials(c2 → Skip) ∩MEMI = ∅

= P .b : BINDING •

(c1 → Skip) ;


(

mset .x .0→ Skip;
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)


@

(c2 → Skip) ;

 (
terminate → Skip

)
J∅ | MEMI | {b}K
Memory(b)




\MEMI

[L.10]
provided:
initials(Memory(b)) ⊆ MEMI
MEMI ∩ usedC (c1 → Skip) = ∅
wrtV (c1 → Skip) ∩ usedV (Memory(b)) = ∅
Memory(b) is divergence free
wrtV (c1 → Skip) ⊆ ∅

= P .b : BINDING •

  c1 → Skip;
mset .x .0→ Skip;
terminate → Skip

 J ∅ | MEMI | {b} K Memory(b)


@( (

c2 → Skip;
terminate → Skip

)
J ∅ | MEMI | {b} K Memory(b)

)


\MEMI

[L.6]
provided:
initials(Memory(b)) ⊆ MEMI
Memory(b) is deterministic

= P .b : BINDING •
  c1 → Skip;

mset .x .0→ Skip;
terminate → Skip

 @
(

c2 → Skip;
terminate → Skip

) 
J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.4]

= P .b : BINDING •


(True) N

 c1 → Skip;
mset .x .0→ Skip;
terminate → Skip


@(True) N

(
c2 → Skip;
terminate → Skip

)


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.5]

= P .b : BINDING •
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 (True) N

(
c1 → Skip;
mset .x .0→ Skip

)
@(True) N

(
c2 → Skip

)
 ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.4]

= P .b : BINDING •
 (

(c1 → Skip ; mset .x .0→ Skip)
@(c2 → Skip)

)
;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.2]
provided:
{mget} ⊆ MEMI
b 6∈ FV (Memory(b))

= P .b : BINDING •


 mget .x?vx →(

(c1 → Skip ; mset .x .0→ Skip)
@(c2 → Skip)

)  ;

terminate → Skip


J∅ | MEMI | {b}K
mget .x !vx → Memory(b)

 \MEMI

[L.1]
provided:
{terminate} ⊆ MEMI
{mset ,mget} ⊆ MEMI
mset ∈ MEMI ∧ terminate ∈ MEMI
{mset , terminate} ( {mget}

= P .b : BINDING •


 mget .x?vx →(

(c1 → Skip ; mset .x .0→ Skip)
@(c2 → Skip)

)  ;

terminate → Skip


J∅ | MEMI | {b}K (

@mget .n!b(n)→ Memory(b)
)

@
(

@mset .n?nv → Memory(b ⊕ {n 7→ nv})
)

@terminate → Skip




\MEMI

[Lemma K.2 from Deliverable 24.1]

= P .b : BINDING •

 mget .x?vx →(

(c1 → Skip ; mset .x .0→ Skip)
@(c2 → Skip)

)  ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[L.3]

= P .b : BINDING •

 mget .x?vx →(

(c1 → mset .x .0→ Skip)
@(c2 → Skip)

)  ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI

[ΩA− :=]

= P .b : BINDING •
 (

mget .x?vx →(
(c1 → (x := 0)) @ (c2 → Skip)

) ) ;

terminate → Skip


J∅ | MEMI | {b} K Memory(b)

 \MEMI
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[ΩA − @]

= P .b : BINDING • ( (
(c1 → (x := 0)) @ (c2 → Skip)

)
;

terminate → Skip

)
J∅ | MEMI | {b} K Memory(b)

 \MEMI

[ΩP ]

= Ω(PS .((c1 → x := 0) @ (c2 → Skip)))
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Appendix H

Chronometer models

We list a number of models derived from a simple example from Oliveira’s PhD thesis [129]: a

chronometer. First, we present the original models, then we present the results from the translator of

Z schemas. Next, we present the state-poor Circus specification. Finally, we present the CSPM code.

H.1 Original models

AChrono

RANGE == 0 . . 3
channel tick , time
channel out : {min, sec : RANGE • (min, sec)}
process AChrono =̂
begin
stateAState =̂ [sec,min : RANGE ]
AInit =̂ [AState ′ | sec′ = 0; min ′ = 0]
IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]
IncMin =̂ [∆AState | min ′ = (min + 1) mod 60]
Run =̂
 tick → IncSec;(

if sec = 0−→ IncMin
8sec 6= 0−→ Skipfi

) 
@ time → out !(min, sec)→ Skip


• (AInit ; (µX • (Run ; X )))

end

Chrono

channel inc,minsReq
channel ans : RANGE
channelsetSync == {| inc,minsReq , ans |}
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processChrono =̂ begin
stateState =̂ [sec : RANGE ] ∧ [min : RANGE ]
SecInit =̂ [AState ′ | sec′ = 0]
IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]
RunSec =̂
 tick → IncSec;(

if sec = 0−→ inc → Skip
8sec 6= 0−→ Skipfi

) 
@time → minsReq → ans?min → out !(min, sec)→ Skip


Seconds =̂ SecInit ; (µX • (RunSec ; X ))
MinInit =̂ [AState ′ | sec′ = 0]
IncMin =̂ [∆AState | sec′ = (sec + 1) mod 60]
RunMin =̂ (inc → IncMin) @ (minsReq → ans!min → Skip)

Minutes =̂ MinInit ; (µX • (RunMin ; X ))

• ((Seconds J {sec} | Sync | {min} K Minutes) \ Sync)
end

Distributed processes - ChronometerFull

Seconds

processSeconds =̂
begin
stateStateSeconds =̂ [sec : RANGE ]
SecInit =̂ [AState ′ | sec′ = 0]
IncSec =̂ [∆AState | sec′ = (sec + 1) mod 60]
RunSec =̂

 tick → IncSec;(
if sec = 0−→ inc → Skip
8sec 6= 0−→ Skipfi

) 
@ time → minsReq → ans?min → out !(min, sec)→ Skip


• SecInit ; (µX • (RunSec ; X ))

end

Minutes

processMinutes =̂
begin
stateStateMinutes =̂ [min : RANGE ]
MinInit =̂ [AState ′ | sec′ = 0]
IncMin =̂ [∆AState | sec′ = (sec + 1) mod 60]
RunMin =̂(

(inc → IncMin)
@(minsReq → ans!min → Skip)

)
• MinInit ; (µX • (RunMin ; X ))

end

ChronometerFull

processChronometerFull =̂ ((Seconds J Sync K Minutes) \ Sync)
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H.2 After the Z Schemas Translation

AChrono

A specification:

RANGE == 0 . . 3
channel tick , time
channel out : {min, sec : RANGE • (min, sec)}
process AChrono =̂
begin
stateAState =̂ [sec,min : RANGE ]
AInit =̂ (sec,min := 0, 0)
IncSec =̂ (sec,min := (sec + 1) mod 3,min)
IncMin =̂ (min, sec := (min + 1) mod 3, sec)
Run =̂
 tick → IncSec;(

if sec = 0−→ IncMin
8sec 6= 0−→ Skipfi

) 
@ time → out !(min, sec)→ Skip


• (AInit ; (µX • (Run ; X )))

end

Chrono

channel inc,minsReq
channel ans : RANGE
channelsetSync == {| inc,minsReq , ans |}
processChrono =̂ begin
stateState =̂ [sec : RANGE ; min : RANGE ]
SecInit =̂ (sec := 0)
IncSec =̂ (sec := (sec + 1) mod 3)
RunSec =̂

 tick → IncSec;(
if sec = 0−→ inc → Skip
8sec 6= 0−→ Skipfi

) 
@time → minsReq → ans?min → out !(min, sec)→ Skip


Seconds =̂ SecInit ; (µX • (RunSec ; X ))
MinInit =̂ (min := 0)
IncMin =̂ (min := (min + 1) mod 3)
RunMin =̂ (inc → IncMin) @ (minsReq → ans!min → Skip)

Minutes =̂ MinInit ; (µX • (RunMin ; X ))

• ((Seconds J {sec} | Sync | {min} K Minutes) \ Sync)
end
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Distributed processes - ChronometerFull

Seconds

processSeconds =̂
begin
stateStateSeconds =̂ [sec : RANGE ]
SecInit =̂ (sec := 0)
IncSec =̂ (sec := (sec + 1) mod 3)
RunSec =̂

 tick → IncSec;(
if sec = 0−→ inc → Skip
8sec 6= 0−→ Skipfi

) 
@ time → minsReq → ans?min → out !(min, sec)→ Skip


• SecInit ; (µX • (RunSec ; X ))

end

Minutes

processMinutes =̂
begin
stateStateMinutes =̂ [min : RANGE ]
MinInit =̂ (min := 0)
IncMin =̂ (min := (min + 1) mod 3)
RunMin =̂(

(inc → IncMin)
@(minsReq → ans!min → Skip)

)
• MinInit ; (µX • (RunMin ; X ))

end

ChronometerFull

processChronometerFull =̂ ((Seconds J Sync K Minutes) \ Sync)

H.3 CSPM code from Circus2CSP

maxValue = 3
2 maxRange = maxValue - 1

RANGE = {0..maxRange}
4 channel tick, time

channel out : (RANGE,RANGE)
6 channel inc, minsReq

channel ans : RANGE
8 datatype DIRECTION = LEFT | RIGHT

10 Sync = {| inc,minsReq,ans |}

12 --------------------------------
-- The universe of values

14 datatype UNIVERSE = RAN.RANGE

16 --Conversions
valueRAN(RAN.v) = v

18 typeRAN(x) = U_RAN
tagRAN(x) = RAN

20
-- subtypes of UNIVERSE for RAN

22 subtype U_RAN = RAN.RANGE

24 -- definition of NAME for the entire spec
datatype NAME = sv_sec | sv_min

26
-- Subtype definition for RAN
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28 b_RAN1 = {(sv_sec, RAN.0),(sv_min, RAN.0)}
subtype NAME_RAN = sv_sec | sv_min

30 NAMES_VALUES_RAN = seq({seq({(n,v) | v <- typeRAN(n)}) | n <- NAME_RAN})

32 -- Bindings definitions for RAN
BINDINGS_RAN = {set(b) | b <- set(distCartProd(NAMES_VALUES))}

34 NAMES_VALUES = seq({seq({(n,v) | v <- typeRAN(n)}) | n <- NAME})

36 -- Bindings definitions for RAN
BINDINGS = {set(b) | b <- set(distCartProd(NAMES_VALUES))}

38
--------------------------------

40 -- mget, mset and terminate --
--------------------------------

42 channel mget, mset : NAME.UNIVERSE
channel terminate

44 MEMI = {| mset,mget,terminate |}

46 --------------------------------
-- lget, lset and lterminate --

48 --------------------------------
channel lget, lset : NAME.UNIVERSE

50 channel lterminate
MEML = {| lset,lget,lterminate |}

1 Minutes(b_RAN) =
let

3 MemoryRANVar(n,b_RAN) =
( ( mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)

5 [] mset.n?nv:typeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv)))
[] terminate -> SKIP)

7 MemoryRAN(b_RAN) =
( [| {| terminate |} |] n : dom(b_RAN) @ MemoryRANVar(n,b_RAN) )

9 Memory(b_RAN) =
MemoryRAN(b_RAN)

11 MemoryMergeRANVar(n,b_RAN,ns) =
( ( lget.n.apply(b_RAN,n) -> MemoryMergeRANVar(n,b_RAN,ns)

13 [] lset.n?nv:typeRAN(n) ->F MemoryMergeRANVar(n,over(b_RAN,n,nv),ns))
[] lterminate ->

15 ( ; bd : <b_RAN> @ ; n : <y | y <- ns,member(y,dom(bd))> @ mset.n.apply(bd,n) -> SKIP ))
MemoryMergeRAN(b_RAN,ns) =

17 ( [| {| lterminate |} |] n : dom(b_RAN) @ MemoryMergeRANVar(n,b_RAN,ns) )
MemoryMerge(b_RAN,ns) =

19 MemoryMergeRAN(b_RAN,ns)

21 within ( ( ( mset.sv_min.(RAN.0) ->
( let X = mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

23 ( ( inc ->
mset.sv_min.(RAN.(valueRAN(v_sv_min) + 1) % 3) -> SKIP

25 [] minsReq ->
ans.valueRAN(v_sv_min) -> SKIP);

27 X ) within X );
terminate -> SKIP )

29 [| MEMI |] Memory(b_RAN))\MEMI )

Seconds(b_RAN) =
2 let

MemoryRANVar(n,b_RAN) =
4 ( ( mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)

[] mset.n?nv:typeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv)))
6 [] terminate -> SKIP)

MemoryRAN(b_RAN) =
8 ( [| {| terminate |} |] n : dom(b_RAN) @ MemoryRANVar(n,b_RAN) )

Memory(b_RAN) =
10 MemoryRAN(b_RAN)

MemoryMergeRANVar(n,b_RAN,ns) =
12 ( ( lget.n.apply(b_RAN,n) -> MemoryMergeRANVar(n,b_RAN,ns)

[] lset.n?nv:typeRAN(n) -> MemoryMergeRANVar(n,over(b_RAN,n,nv),ns))
14 [] lterminate ->

( ; bd : <b_RAN> @ ; n : <y | y <- ns,member(y,dom(bd))> @ mset.n.apply(bd,n) -> SKIP ))
16 MemoryMergeRAN(b_RAN,ns) =

( [| {| lterminate |} |] n : dom(b_RAN) @ MemoryMergeRANVar(n,b_RAN,ns) )
18 MemoryMerge(b_RAN,ns) =

MemoryMergeRAN(b_RAN,ns)
20

within ( ( ( mset.sv_sec.(RAN.0) ->
22 ( let X = mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->
24 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->

( ( tick ->
26 mset.sv_sec.(RAN.(valueRAN(v_sv_sec) + 1) % 3) ->

mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
28 ((valueRAN(v_sv_sec) == 0) &

inc -> SKIP [] (valueRAN(v_sv_sec) != 0) &
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30 SKIP)
[] time ->

32 minsReq ->
ans?t_sv_min ->

34 mset.sv_min.(RAN.t_sv_min) ->
out.(valueRAN(v_sv_min),valueRAN(v_sv_sec)) -> SKIP);

36 X ) within X );
terminate -> SKIP )

38 [| MEMI |] Memory(b_RAN))\MEMI )

ChronometerFullAOG(b) = ( ( SecondsAOG(b) [| Sync |] MinutesAOG(b) ) \ Sync )

1 Chrono(b_RAN) =
let

3 MemoryRANVar(n,b_RAN) =
( ( mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)

5 [] mset.n?nv:typeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv)))
[] terminate -> SKIP)

7 MemoryRAN(b_RAN) =
( [| {| terminate |} |] n : dom(b_RAN) @ MemoryRANVar(n,b_RAN) )

9 Memory(b_RAN) =
MemoryRAN(b_RAN)

11 MemoryMergeRANVar(n,b_RAN,ns) =
( ( lget.n.apply(b_RAN,n) -> MemoryMergeRANVar(n,b_RAN,ns)

13 [] lset.n?nv:typeRAN(n) -> MemoryMergeRANVar(n,over(b_RAN,n,nv),ns))
[] lterminate ->

15 ( ; bd : <b_RAN> @ ; n : <y | y <- ns,member(y,dom(bd))> @ mset.n.apply(bd,n) -> SKIP ))
MemoryMergeRAN(b_RAN,ns) =

17 ( [| {| lterminate |} |] n : dom(b_RAN) @ MemoryMergeRANVar(n,b_RAN,ns) )
MemoryMerge(b_RAN,ns) =

19 MemoryMergeRAN(b_RAN,ns)

21 within ( ( ( ( mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->
mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

23 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
( ( ( lset.sv_sec.(RAN.0) ->

25 ( ( let X = lget.sv_min?v_sv_min:(typeRAN(sv_min)) ->
lget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

27 lget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
( ( tick ->

29 lset.sv_sec.(RAN.(valueRAN(v_sv_sec) + 1) % 3) ->
lget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->

31 ((valueRAN(v_sv_sec) == 0) &
inc -> SKIP [] (valueRAN(v_sv_sec) != 0) &

33 SKIP)
[] time ->

35 minsReq ->
ans?t_sv_min ->

37 mset.sv_min.(RAN.t_sv_min) ->
mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

39 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
out.(valueRAN(v_sv_min),valueRAN(v_sv_sec)) -> SKIP);

41 X ) within X );
lterminate -> SKIP )

43 [| MEML |]
MemoryMerge({(sv_min,v_sv_min),(sv_sec,v_sv_sec)},<sv_sec>) )\MEML )

45 [| Sync |]
( ( lset.sv_min.(RAN.0) ->

47 ( ( let X = lget.sv_min?v_sv_min:(typeRAN(sv_min)) ->
( ( inc ->

49 lset.sv_min.(RAN.(valueRAN(v_sv_min) + 1) % 3) -> SKIP
[] minsReq ->

51 ans.valueRAN(v_sv_min) -> SKIP);
X ) within X );

53 lterminate -> SKIP )
[| MEML |]

55 MemoryMerge({(sv_min,v_sv_min),(sv_sec,v_sv_sec)},<sv_min>) )\MEML ) )\Sync );
terminate -> SKIP )

57 [| MEMI |] Memory(b_RAN))\MEMI )

1 AChrono(b_RAN) =
let

3 MemoryRANVar(n,b_RAN) =
( ( mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)

5 [] mset.n?nv:typeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv)))
[] terminate -> SKIP)

7 MemoryRAN(b_RAN) =
( [| {| terminate |} |] n : dom(b_RAN) @ MemoryRANVar(n,b_RAN) )

9 Memory(b_RAN) = MemoryRAN(b_RAN)
MemoryMergeRANVar(n,b_RAN,ns) =

11 ( ( lget.n.apply(b_RAN,n) -> MemoryMergeRANVar(n,b_RAN,ns)
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[] lset.n?nv:typeRAN(n) -> MemoryMergeRANVar(n,over(b_RAN,n,nv),ns))
13 [] lterminate ->

( ; bd : <b_RAN> @ ; n : <y | y <- ns,member(y,dom(bd))> @ mset.n.apply(bd,n) -> SKIP ))
15 MemoryMergeRAN(b_RAN,ns) =

( [| {| lterminate |} |] n : dom(b_RAN) @ MemoryMergeRANVar(n,b_RAN,ns) )
17 MemoryMerge(b_RAN,ns) = MemoryMergeRAN(b_RAN,ns)

19 within ( ( ( mset.sv_sec.(RAN.0) ->
mset.sv_min.(RAN.0) ->

21 ( let X = mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->
mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->

23 ( ( tick ->
mset.sv_sec.(RAN.(valueRAN(v_sv_sec) + 1) % 3) ->

25 mset.sv_min.(RAN.valueRAN(v_sv_min)) ->
mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->

27 ((valueRAN(v_sv_sec) == 0) &
mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

29 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
mset.sv_min.(RAN.(valueRAN(v_sv_min) + 1) % 3) ->

31 mset.sv_sec.(RAN.valueRAN(v_sv_sec)) -> SKIP [] (valueRAN(v_sv_sec) != 0) &
SKIP)

33 [] time ->
out.(valueRAN(v_sv_min),valueRAN(v_sv_sec)) -> SKIP);

35 X ) within X );
terminate -> SKIP )

37 [| MEMI |] Memory(b_RAN))\MEMI )

H.4 WakeUp

Here we introduce a variant of the Chronometer model presented above. The WakeUp has the feature

of triggering an alarm in case a specific time is set, in our example, when min = 1.

ALARM ::= ON | OFF
channel snooze, radioOn
process WakeUp =̂
begin
stateWState =̂ [sec,min : RANGE ; buzz : ALARM ]
WInit =̂ (sec,min, buzz := 0, 0,OFF )
WIncSec =̂ (sec,min := (sec + 1) mod 3,min)
WIncMin =̂ (min, sec := (min + 1) mod 3, sec)

WRun =̂





tick →WIncSec;
(sec = 0) N WIncMin
@(sec 6= 0) N Skip
@(min = 1) N radioOn → (buzz := ON )
@(time → out !(min, sec)→ Skip)
@(snooze → (buzz := OFF ))



 \ {| tick |}


• (WInit ; (µX • (WRun ; X )))
end

The WakeUp model may deadlock. When testing with FDR, we observed that the signal tick was the

source of the problem. Therefore, the WakeUpOK can either tick and update the time, or turn on
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the alarm, output the current time, or set the alarm to snooze.

process WakeUpOK =̂
begin
stateWState =̂ [sec,min : RANGE ; buzz : ALARM ]
WInit =̂ (sec,min, buzz := 0, 0,OFF )
WIncSec =̂ (sec,min := (sec + 1) mod 3,min)
WIncMin =̂ (min, sec := (min + 1) mod 3, sec)

WRun =̂





 tick →WIncSec;(
(sec = 0) N WIncMin
@(sec 6= 0) N Skip

) 
@(min = 1) N radioOn → (buzz := ON )
@(time → out !(min, sec)→ Skip)
@(snooze → (buzz := OFF ))

 \ {| tick |}


• (WInit ; (µX • (WRun ; X )))
end

H.4.1 WakeUp using Circus2CSP

1 RANGE = {0..5}
datatype ALARM = ON | OFF

3
channel snooze, radioOn

5 channel tick, time
channel out : (RANGE,RANGE)

--------------------------------
2 -- The universe of values

datatype UNIVERSE = RAN.RANGE | ALA.ALARM
4 --Conversions

valueRAN(RAN.v) = v
6 valueALA(ALA.v) = v

8 typeRAN(x) = U_RAN
typeALA(x) = U_ALA

10
tagRAN(x) = RAN

12 tagALA(x) = ALA

14 -- subtypes of UNIVERSE for RAN
subtype U_RAN = RAN.RANGE

16
-- subtypes of UNIVERSE for ALA

18 subtype U_ALA = ALA.ALARM

20 -- definition of NAME for the entire spec
datatype NAME = sv_sec | sv_min | sv_buzz

22
-- Subtype definition for RAN

24 b_RAN1 = {(sv_sec, RAN.0),(sv_min, RAN.0)}
subtype NAME_RAN = sv_sec | sv_min

26 NAMES_VALUES_RAN = seq({seq({(n,v) | v <- typeRAN(n)}) | n <- NAME_RAN})

28 -- Subtype definition for ALA
b_ALA1 = {(sv_buzz, ALA.ON)}

30 subtype NAME_ALA = sv_buzz
NAMES_VALUES_ALA = seq({seq({(n,v) | v <- typeALA(n)}) | n <- NAME_ALA})

32
-- Bindings definitions for RAN

34 BINDINGS_RAN = {set(b) | b <- set(distCartProd(NAMES_VALUES_RAN))}

36 -- Bindings definitions for ALA
BINDINGS_ALA = {set(b) | b <- set(distCartProd(NAMES_VALUES_ALA))}

1 --------------------------------
-- mget, mset and terminate --

3 --------------------------------
channel mget, mset : NAME.UNIVERSE

5 channel terminate
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1 --------------------------------
-- MEMI --

3 --------------------------------
MEMI = {| mset,mget,terminate |}

5 channel lget, lset : NAME.UNIVERSE
channel lterminate

7 MEML = {| lset,lget,lterminate |}

1 WakeUp(b_RAN,b_ALA) =
let

3 MemoryRANVar(n,b_RAN) =
( ( mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)

5 [] mset.n?nv:typeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv)))
[] terminate -> SKIP)

7 MemoryALAVar(n,b_ALA) =
( ( mget.n.apply(b_ALA,n) -> MemoryALAVar(n,b_ALA)

9 [] mset.n?nv:typeALA(n) -> MemoryALAVar(n,over(b_ALA,n,nv)))
[] terminate -> SKIP)

11 MemoryRAN(b_RAN) = ( [| {| terminate |} |] n : dom(b_RAN) @ MemoryRANVar(n,b_RAN) )
MemoryALA(b_ALA) = ( [| {| terminate |} |] n : dom(b_ALA) @ MemoryALAVar(n,b_ALA) )

13 Memory(b_RAN,b_ALA) = ( MemoryALA(b_ALA) [| {| terminate |} |] MemoryRAN(b_RAN) )
within ( ( ( mset.sv_sec.(RAN.0) ->

15 mset.sv_min.(RAN.0) ->
mset.sv_buzz.(ALA.OFF) ->

17 ( let X = tick ->
mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

19 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
mset.sv_sec.(RAN.(valueRAN(v_sv_sec) + 1) % 3) ->

21 mset.sv_min.(RAN.valueRAN(v_sv_min)) ->
mget.sv_buzz?v_sv_buzz:(typeALA(sv_buzz)) ->

23 mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->
mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->

25 ( ( ( ( ( ( (valueRAN(v_sv_sec) == 0) & mset.sv_min.(RAN.(valueRAN(v_sv_min) + 1) % 3) ->
mset.sv_sec.(RAN.valueRAN(v_sv_sec)) -> SKIP )

27 [] ( (valueRAN(v_sv_sec) != 0) & SKIP ))
[] ( (valueRAN(v_sv_min) == 1) & radioOn -> mset.sv_buzz.(ALA.ON) -> SKIP ))

29 [] time -> out.(valueRAN(v_sv_min),valueRAN(v_sv_sec)) -> SKIP)
[] snooze -> mset.sv_buzz.(ALA.OFF) -> SKIP);

31 X ) within X );
terminate -> SKIP )

33 [| MEMI |] Memory(b_RAN,b_ALA))\MEMI )

1 WakeUpOK(b_RAN,b_ALA) =
let

3 MemoryRANVar(n,b_RAN) =
( ( mget.n.apply(b_RAN,n) -> MemoryRANVar(n,b_RAN)

5 [] mset.n?nv:typeRAN(n) -> MemoryRANVar(n,over(b_RAN,n,nv)))
[] terminate -> SKIP)

7 MemoryALAVar(n,b_ALA) =
( ( mget.n.apply(b_ALA,n) -> MemoryALAVar(n,b_ALA)

9 [] mset.n?nv:typeALA(n) -> MemoryALAVar(n,over(b_ALA,n,nv)))
[] terminate -> SKIP)

11 MemoryRAN(b_RAN) = ( [| {| terminate |} |] n : dom(b_RAN) @ MemoryRANVar(n,b_RAN) )
MemoryALA(b_ALA) = ( [| {| terminate |} |] n : dom(b_ALA) @ MemoryALAVar(n,b_ALA) )

13 Memory(b_RAN,b_ALA) = ( MemoryALA(b_ALA) [| {| terminate |} |] MemoryRAN(b_RAN) )
within ( ( ( mset.sv_sec.(RAN.0) ->

15 mset.sv_min.(RAN.0) ->
mset.sv_buzz.(ALA.OFF) ->

17 ( let X = mget.sv_buzz?v_sv_buzz:(typeALA(sv_buzz)) ->
mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->

19 mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->
( ( ( ( tick ->

21 mset.sv_sec.(RAN.(valueRAN(v_sv_sec) + 1) % 3) ->
mset.sv_min.(RAN.valueRAN(v_sv_min)) ->

23 mget.sv_min?v_sv_min:(typeRAN(sv_min)) ->
mget.sv_sec?v_sv_sec:(typeRAN(sv_sec)) ->

25 ( ( (valueRAN(v_sv_sec) == 0) &
mset.sv_min.(RAN.(valueRAN(v_sv_min) + 1) % 3) ->

27 mset.sv_sec.(RAN.valueRAN(v_sv_sec)) -> SKIP )
[] ( (valueRAN(v_sv_sec) != 0) & SKIP ))

29 [] ( (valueRAN(v_sv_min) == 1) & radioOn -> mset.sv_buzz.(ALA.ON) -> SKIP ))
[] time -> out.(valueRAN(v_sv_min),valueRAN(v_sv_sec)) -> SKIP)

31 [] snooze -> mset.sv_buzz.(ALA.OFF) -> SKIP);
X ) within X );

33 terminate -> SKIP )
[| MEMI |] Memory(b_RAN,b_ALA))\MEMI )

-- Experiments in FDR
2

assert WakeUp(b_RAN1, b_ALA1) :[deterministic [FD]] -- Failed
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4 assert WakeUpOK(b_RAN1, b_ALA1) :[deterministic [FD]] -- Passed

6 assert WakeUp(b_RAN1, b_ALA1) :[divergence free [FD]] -- Passed
assert WakeUpOK(b_RAN1, b_ALA1) :[divergence free [FD]] -- Passed

8
assert WakeUp(b_RAN1, b_ALA1) :[deadlock free [FD]] -- Passed

10 assert WakeUpOK(b_RAN1, b_ALA1) :[deadlock free [FD]] -- Passed

12 assert WakeUp(b_RAN1, b_ALA1) [FD= WakeUpOK(b_RAN1, b_ALA1) -- Failed
assert WakeUpOK(b_RAN1, b_ALA1) [FD= WakeUp(b_RAN1, b_ALA1) -- Failed

14
HWakeUp = WakeUp(b_RAN1,b_ALA1) \ {|tick|}

16 HWakeUpOK = WakeUpOK(b_RAN1,b_ALA1) \ {|tick|}

18 assert HWakeUp [FD= HWakeUpOK -- Passed
assert HWakeUpOK [FD= HWakeUp -- Passed
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In memoriam

My dear mother Vilma Maria de Oliveira Silva

I 18/01/1954 - > 04/04/2017
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