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Abstract

Sedimentary evidence from a total of 21 AMS 14C dates and 192 pollen and charcoal and 181 phytolith samples from three study sites

in the archaeologically rich lower Yangtze in China provides an indication of interactions between early agriculturalists and generally

highly dynamic environmental conditions. Results suggest that environmental changes influenced agricultural development, and attest

the localised environmental impacts of incipient agriculture. Evidence of human activity, in the form of indicators of deforestation and

possibly food production, is apparent by ca 7000BP (early Neolithic or Majiabang). Clearer evidence of human activity dates to ca

4700BP (late Neolithic or Liangzhu). Extensive, profound and apparently widespread human impacts do not appear until the Eastern

Zhou (Iron Age, ca 2800–2200BP), however, which in the lower Yangtze was a period associated with technological advances in

agriculture, increased urbanisation and relatively stable hydro-geomorphological conditions.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The agriculturally fertile middle and lower reaches of the
Yangtze and Yellow rivers in central and eastern China are
regarded as one of several regions globally where
agriculture developed more-or-less independently (Bell-
wood, 2005). The region is at present associated with
several domesticated summer cereals, most notably rice
(Oryza sativa L.). Environmental changes at the end of the
Pleistocene and during the early part of the Holocene may
have facilitated the initiation and development of agricul-
ture (Yasuda, 2002; Bellwood, 2005), as has been suggested
for other parts of the world (e.g., Wright, 1993). Archae-
ological investigations have yielded numerous cereal grain
assemblages dating to the late Pleistocene/early Holocene,
a period of rapid climate change, with ‘firmly identified
cultivated rice’ present in the middle Yangtze by ‘no later
than’ 8500BP (Lu, 1999, p. 67). Domestication followed
and the subsequent accumulation and concentration of

wealth among agriculturalists, and their colonisation of
previously unfarmed areas, are thought to have under-
pinned the formation of civilisation by facilitating the
emergence and unification of states, cultural assimilation
and the appearance of a dynastic system in which
economic, political and religious authority became closely
integrated (Lu and Yan, 2005).
Archaeological and palaeoenvironmental data for the

period of emergence of food production in China are
relatively scarce (Chang, 1986; Elston et al., 1997; Lu et al.,
2006; Fuller et al., in press), while incontrovertible evidence
of the domestication of plants does not occur until much
later in the archaeological record (Fuller et al., 2007).
Several important questions naturally arise from this,
including: what sequence of events led to the emergence
of agriculture characterised by domestication; to what
extent did the sequence vary geographically; and was the
sequence influenced by varying environmental conditions?
These questions guide the current research focusing on

the lower Yangtze, the results of which are synthesised and
reported in this paper. The lower Yangtze is associated
with a large number of archaeological sites, some of
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which — notably the sites at Hemudu and Shangshan and
the evidence for rice consumption during the early
Holocene that they have yielded — are well known, and
characterised by conditions conducive to the accumulation
of relatively continuous sediment-based archives. The
lower Yangtze is also highly dynamic, environmentally
and socio-economically. Thus, in addition to abundant
opportunities to integrate archaeological with sediment-
based records of human activity, the lower Yangtze also
provides an almost ideal location for examining the
influence of environmental changes on incipient food
production, and in particular early rice-based agriculture.

1.1. The emergence of rice as a food source

Currently there are about 20 species of wild-growing rice
(Oryza) and two cultigens: O. sativa L., domesticated in
Asia, and O. glaberrima Steud., grown in west Africa
(Chang, 1989; Morishima, 2001). Recent genetic evidence
suggests that perennial populations of wild red rice,
O. rufipogon Griff, were the ancestor of O. sativa and that
at least two, independent domestication events led to the
two main subspecies of domesticated rice: O. sativa indica

and O. sativa japonica (Londo et al., 2006; Li et al., 2006b).
Ancestral populations of wild rice may also have included
annual wild rice (O. nivara S.D. Sharma et Shastry) as part
of the same gene pool (Londo et al., 2006) and references to
wild rice here do not differentiate between them.

Wild rice grows well in shallow (o1m deep) permanent
water bodies, is intolerant of low temperatures (Khush,
1997), and is largely perennial and therefore mainly reliant
on vegetative reproduction. The relatively few seeds
produced ripen over a prolonged period of time and, once
ripened, are dispersed by shattering. In China and aside
from a few isolated stands in the middle and lower
Yangtze, wild rice is currently restricted to swampy land
in the southern part of the country. Existing archaeobo-
tanical and palaeoecological evidence suggests, however,
that wild rice was more extensive during a brief interlude in
the lateglacial and during the early-to-mid Holocene,
during which warm temperatures together with increased
monsoonal rainfall and rising sea and river levels led to an
expansion of suitable habitat, with wild rice abundant over
a large part of southern and central China as far north as
the Yellow River (Crawford and Shen, 1998; Crawford
et al., 2005).

The Yangtze is thought to have featured prominently in
the domestication of rice (Normile, 1997; Wang, 1997;
Crawford and Shen, 1998; Zhao, 1998; Liu, 2000; Zhao
and Piperno, 2000; Chapman and Wang, 2002; Jiang and
Liu, 2006). The common occurrence of wild rice, particu-
larly during relatively warm, humid phases in the past, in
combination with the high nutritional value of its seeds,
would have ensured its high value among hunter-gatherer
communities. Evidence suggests that wild rice was being
exploited as early as ca 12,000BP (Crawford and Shen,
1998; Zhang and Wang, 1998; Liu, 2000; Zheng et al.,

2003). Less controvertible evidence of the use of rice —
dating to the early-to-mid Holocene — comes from sites
that appear to have been occupied more or less perma-
nently: Bashidang, Chengbeixi and Pengtoushan (ca
8500BP) in the middle Yangtze; Hemudu (ca 7000BP),
Kuahuqiao (possibly ca 7700BP) and Shangshan (ca
10,000BP) in the lower Yangtze (Lu, 1999; Jiang and
Liu, 2006; Zong et al., 2007). However, how this rice was
obtained is debatable: was the rice collected from the wild
or was it cultivated — perhaps closer to home, and do at
least some rice remains dating to the early-to-mid Holocene
represent the product of domestication?
Recognising the domestication syndrome (the number of

traits associated with domesticated plants but not with
their wild relatives) in rice is problematic, owing to
difficulties in determining distinguishing features that are
incontrovertible (Fuller et al., 2007, in press). Many of the
domestication syndrome traits in rice relate to dispersal of
seeds, and in immature wild rice features such as the awn
and spikelet base may be more similar to mature
domesticated rice than to mature wild rice (Fuller et al.,
2007). This is important because wild rice may have been
harvested before the bulk of the grains were fully mature,
and therefore before the gains had been dispersed by
shattering, which does not occur in domesticated rice. Such
difficulties in identification are compounded by the degree
of morphological overlap between domesticated and extant
wild rice, by the incomplete nature of archaeological and
palaeoecological records, and by the fact that the original
wild progenitor of domesticated rice could be now extinct.
As a result, although a period of pre-domestication
cultivation of rice is expected, the actual onset and length
of this period are unknown.

2. Study area and sites

The current research is based on sedimentary evidence
from three sites in the lower Yangtze, to the south of the
main river channel (Fig. 1). According to existing data, the
mouth of the palaeo-Yangtze was located some hundreds
of kilometres east of the present coast at the Last Glacial
Maximum (LGM) (Chen and Stanley, 1995; Chen et al.,
1997; Elvin and Su, 1998). Rising sea-level during the
lateglacial brought the coastline closer to its present
location, although the coastline was still over 100 km
farther east by ca 12,000BP (Chen et al., 2000; Liu et al.,
2000) and what is now the delta was part of a wide coastal
plain drained by a network of incised river channels
(Stanley and Chen, 1996). Relative sea level (RSL) rose
rapidly during the early Holocene in areas bordering what
is now the Yangtze delta (Zong, 2004), while the delta plain
and an enlarged Lake Taihu may date to as recently as
3000–4000BP (Chen and Zong, 1998; Hori et al., 2001) and
to relatively stable RSL and, particularly since ca 2000BP,
rapid progradation as a result of deforestation and
associated soil erosion in the catchment for the Yangtze
river (Wang et al., 2001).
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A trench was excavated at Qingpu, located about 40 km
southwest of Shanghai, at 31107.7280N and 120154.6560E,
to a depth of 260 cm. A total of 100 samples was collected
from 260 to 60 cm for subsequent laboratory analyses.
Analyses were carried out on a further 60 samples of
sediment from 191 to 40 cm in a second trench, excavated
at Guangfulin (3113.8700N and 121111.5000E). The ground
altitudes of the sample sites at Qingpu and Guangfulin
were estimated using an altimeter and GPS at 4.3m
a.m.s.l., or about 6m above the local (Wusong) datum. The
sample sites at Qingpu and Guangfulin are located in a
part of the Yangtze delta that is particularly rich in
archaeological sites, some of which date to the early
Neolithic. Moreover, the site at Guangfulin is only ca
200m from a major archaeological site of the same name,
relics from which are thought to date from the late
Neolithic to the Iron Age.

The third site, Luojiang (29159.0620N and 121121.7520E),
is located on a floodplain draining into the southern part of
Hangzhou Bay. The ground altitude at the sample site was
estimated at 4m a.m.s.l. (4m above the local (Yellow Sea)
datum), but the site is bounded by land of higher elevation
(ca 40–50m a.m.s.l.). A 45m-long core of sediment was

obtained from Luojiang: this paper refers to abundances of
pollen and charcoal (32 samples) and phytoliths (21
samples) extracted from sediment samples from the
uppermost 5m of the core. Luojiang is situated ca 3 km
to the southwest of the archaeological site at Hemudu (ca
1.1m a.m.s.l.). The lowermost occupation layer at Hemudu
(layer 4, ca 7100–6500BP) contains abundant rice remains
and evidence of sedentary settlement. Artifacts recovered
from this layer include bone tools and cooking vessels.

3. Materials and methods

Pollen residues formed the majority (17) of the 21
samples collected from the three study sites submitted for
AMS 14C dating. Preparation of pollen residues for dating
involved 10% NaOH to remove humic colloids; 15% HCl
to remove carbonates; 40% HF to remove silicates and
sieving through a 5 mm mesh to remove the fine fraction.
The other four AMS 14C dates were obtained on fragments
of wood and macro-charcoal and were pre-treated using
30% HCl and 10% NaOH.
Processing of samples for pollen and micro-charcoal

analyses followed standard preparation techniques, as
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Fig. 1. Location of well-dated Holocene sediment records in the Yangtze delta region (crosses), in addition to sites of the present study (triangles): (1)

Linfengqiao (Yu et al., 2003; Zhang et al., 2005); (2) Cauduntou (Okuda et al., 2003); (3) Zk01 (Shu et al., 2007); (4) HQ98 (Yi et al., 2003, 2006); (5) ZX-1

(Chen et al., 2005; Tao et al., 2006); (6) Maqiao (Yu et al., 2000); (7) CM97 (Yi et al., 2003, 2006); (8) Qidong (Liu et al., 1992). The area shaded darker

grey represents land of higher elevation.
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outlined in Moore et al. (1991). Lycopodium spores were
added as markers prior to processing in order to estimate
pollen and micro-charcoal concentrations. Pollen and
micro-charcoal residues were mounted in silicon oil and
scanned under an Olympus Nikon microscope at
400�magnification.

Pollen identification was made with reference to Wang
et al. (1995). Pollen produced by grasses (Poaceae) was
divided into two size categories (p40 mm and 440 mm).
Poaceae grains 440 mm have previously been identified as
domesticated rice (see Wang et al., 1995; Chatuvedi et al.,
1998, but also see Shu et al., 2007, who suggest that pollen
from domesticated rice in the lower Yangtze may
predominantly fall in the 35–45 mm size range) and are
here referred to as Poaceae (Oryza comp.). Although the
use of a size threshold to distinguish Poaceae pollen
produced by cereals such as rice is crude, particularly where
there is a strong likelihood of encountering wild varieties of
the same genus (see Maloney, 1990; Tweddle et al., 2005),
in the current context size criteria are used in this way
along with other forms of supporting evidence, notably
other pollen types, charcoal and phytolith remains.
Quercus pollen was also separated into two size categories:
grains with a long axis 430 mm were classified as Quercus
(deciduous comp.), and grains p30 mm as Quercus (ever-
green comp.) (Chang and Wang, 1986). Micro-charcoal
(5–150 mm) was quantified using the point-count method
(Clark, 1982). Samples of 1 cm3 were prepared for analysis
of macro-charcoal (4150 mm) through gentle disaggrega-
tion in 5% Calgon solution and sieving through a sieve
of 150 mm mesh. All charcoal particles larger than
150 mm were counted under a stereomicroscope at
20�magnification.

Phytoliths were extracted from 1 g crushed air-dried
sediment samples using HCl to remove carbonates,
agitation followed by settling to separate clays, firing in a
muffle furnace to remove organics, and density (heavy
liquid, sodium polytungstate) separation. Phytolith counts
were conducted using a Meiji Techno Co. Ltd. ML5000
series laboratory microscope at 400�magnification. Phy-
tolith morphotypes were identified according to Bozarth
(1992), Rosen (1992), Wang and Lu (1993), Runge (1999),
Lu et al. (2006) and Piperno (2006), and following the
nomenclature of ICPN Working Group et al. (2005). A list
of phytolith types identified in this research, and their
botanical affinities, is provided in Itzstein-Davey et al.
(2007a). Rice phytoliths in the form of four single-cell
morphotypes (cuneiform (fan-shaped) bulliforms; bilobate
(dumbbell) short cells, bumpy long cells and double-peaked
glumes) and one multi-cell morphotype (Jiang, 1995; Lu
et al., 1997; Itzstein-Davey et al., 2007a, b) were studied in
detail. At one site (Qingpu), single-celled, double-peaked
Oryza glume phytoliths were sufficiently numerous to
permit their separation into likely wild and likely domes-
ticated morphotypes (Itzstein-Davey et al., 2007b). Sam-
ples were selected from regular intervals down the profile
sampled at Qingpu. Up to a total of 25 double-peaked rice

glume phytoliths per sample were measured (Pearsall et al.,
1995; Zhao et al., 1998).
Because of uncertainties associated with both the

precision and accuracy of empirical evidence of variations
in RSL during the Holocene for the East China Sea
bordering what is now the Yangtze delta (see Zong, 2004),
changes in RSL from ca 10,000BP to the present were
simulated at 1000 yr intervals using a geophysical model.
Generally, such models consist of three key components:
an ice loading model, an earth model, and an algorithm to
compute sea level change. The global ice model incorpo-
rated in the geophysical model used here follows the
analyses of Bassett et al. (2005), which provide a close fit
with far-field observations of RSL dating from the time of
the LGM to ca 9000BP. The Holocene component of the
ice model is consistent with the findings of Nakada and
Lambeck (1989), who suggest a late Holocene eustatic melt
water contribution of ca 2m between 6000 and 2000BP.
The response to loading episodes is computed using a
spherically symmetric, Maxwell visco-elastic Earth model
that is self-gravitating and compressible (e.g., Wu and
Peltier, 1982). Sea level predictions were computed in a
gravitationally self-consistent manner by solving the most
recent, generalised, form of the sea level equation (see
Mitrovica and Milne, 2003; Kendall et al., 2005), which
takes into account such effects as perturbations in the
Earth’s rotation (e.g., Milne, 2002).

4. Results

Information on the 21 samples dated using the AMS 14C
technique is provided in Table 1. Generally dates obtained
have low counting errors and are stratigraphically con-
sistent. However, some anomalous dates were returned,
presumably because of the nature of the local sedimentary
environment and the sedimentary matrix from which the
samples were originally taken. Problems with the 14C
dating of deltaic sediments are common, in part because of
the numerous opportunities for carbon to be stored and
reworked prior to final deposition (Stanley and Chen, 2000;
Stanley and Hait, 2000).
Diagrams summarising sediment-based data from each

site (Figs. 2–4) were constructed using C2 version 1.4.2
(Juggins, 2003) and zoned according to variations in the
remains of pollen, phytoliths and charcoal using CONISS
(Grimm, 1987, 1992). Pollen counts are expressed as
percentages of the total pollen sum, which generally
comprised 300 grains in total; phytolith results are
presented as percentages of the total phytolith sum, which
comprised a minimum of 400 single-celled morphotypes;
charcoal data are presented in concentration form
(cm2 cm�3). Pollen, phytoliths and macro-charcoal remains
are likely to be largely local in origin, as the terrestrial or
semi-terrestrial nature of the three sample sites does not
favour the accumulation of material transported long
distances (Andersen, 1986). Moreover, phytoliths tend to
be relatively poorly dispersed in general (Piperno, 2006),
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while work on modern pollen assemblages from the lower
Yangtze has shown the main sources to be vegetation
growing on the delta plain, or in adjacent uplands (Wang
et al., 1982).

4.1. Guangfulin

4.1.1. Sediment stratigraphy and AMS 14C chronology

According to the AMS 14C chronology, sediment
samples from Guangfulin range in age from ca 12,400 to
400BP. An age reversal occurs in the lower sediments: the
sample at 174 cm is younger than three overlying dates and
has been rejected as a result. The age-depth curve based on
the remaining seven AMS 14C dates correlates well with the
chronology from the archaeological excavation at Guang-
fulin (Chen, 2002; Li et al., 2006a) and indicates two main
accumulation phases, separated by either a period of slow
sediment accumulation or, perhaps most likely given the
sedimentary setting, a hiatus accounting for the lateglacial-
Holocene transition and much of the early Holocene to ca
7400BP.

4.1.2. Charcoal, phytoliths and pollen analyses

Sediment data for Guangfulin are summarised in Fig. 2
and were divided into four zones. GFL 1 (191–140 cm, ca
12,400–11,400BP) is characterised by pollen from arboreal
taxa, in particular Pinus and Quercus, and by phytoliths
mainly assignable to C3 Poaceae. A few C4 Poaceae
phytoliths were also recorded. Pollen from Betula,

Castanopsis/Castanea-type, Juglans, Salix and Tsuga is also
present. The vast majority of Quercus pollen on the basis of
size appears to be from evergreen taxa. Chenopodiaceae,
Cyperaceae, Poaceae and Typha are prominent among
non-arboreal pollen types, while fern spores are also
relatively abundant. Very low numbers of phytoliths from
Oryza sp. were present in three samples from this zone
(189, 169 and 164 cm). The upper boundary of the zone is
marked by a rapid reduction in Pinus pollen and, to a lesser
extent, Chenopodiaceae and Quercus, and an increase in
Poaceae and Typha pollen. Micro- and macro-charcoal
abundances are very low. The lower boundary of GFL 2
(140–110 cm, ca 7400–4700BP) appears to coincide with a
break in sedimentation. The zone is characterised by high
percentages of pollen from herbs (Artemisia, Cyperaceae,
Poaceae and Typha) and greatly reduced levels of Pinus

when compared with Zone GFL 1. Reduced percentages of
Juglans, Quercus (deciduous-comp.) and Tsuga pollen were
noted. Arboreal pollen present includes Carpinus, Castanop-

sis/Castanea-type, Quercus (evergreen-comp.) and Salix.
Phytoliths from Oryza sp. are present in low numbers,
and a Setaria-type morphotype was recorded. Abundances
of macro- and micro-charcoal are higher when compared
with the earlier zone. Sediments comprising GFL 3
(110–80 cm, ca 4700–2400BP) include a pottery-rich layer.
Their microfossil content is distinguished primarily by
increases in phytoliths from Oryza, particularly multi-
celled forms, and in Poaceae (Oryza comp.) pollen. High
abundances of charcoal (micro- and macro) remains when
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Table 1

AMS 14C dates for sediment samples taken from trenches at Qingpu and Guangfulin, and the core at Luojiang

Study site Depth (cm) Laboratory code Age (14C yrsBP) Calibrated date (95.4% prob.) Dated material

Guangfulin 62–64 NZA 26016 945730 AD 1025–1158 Wood

70–72 NZA 26011 2057730 170 BC–AD 16 Pollen residue

88–90 NZA 26017 2453730 753–411 BC Charcoal

124–126 NZA 26012 6209730 5295–5056 BC Pollen residue

138–140 NZA 26013 6375730 5468–5306 BC Pollen residue

154–156 NZA 26014 12218745 12,256–12,000 BC Pollen residue

174–176 NZA 26264 5517755 4461–4259 BC Charcoal

179–181 NZA 26015 12366755 12,796–12,133 BC Pollen residue

Luojiang 180–182 NZA 22890 1050735 AD 895–1030 Pollen residue

200–202 NZA 22891 4071730 2854–2491 BC Pollen residue

210–212 NZA 22897 4350740 3090–2894 BC Plant macrofossil

300–302 Beta-220585 10,650730 10,857–10,710 BC Pollen residue

498–500 NZA 23298 10,984755 11,096–10.901 BC Pollen residue

Qingpu 62–64 NZA 21231 1827735 AD 85–315 Pollen residue

120–122 NZA 21213 2152735 359–58 BC Pollen residue

182–184 NZA 20038 2386735 732–392 BC Pollen residue

210–212 NZA 21230 3853740 2462–2205 BC Pollen residue

238–240 NZA 22222 5780730 4708–4549 BC Pollen residue

242–244 NZA 20037 5600740 4491–4359 BC Pollen residue

250–252 NZA 22221 5114735 3979–3800 BC Pollen residue

258–260 NZA 21212 4920735 3770–3645 BC Pollen residue

Calibrated dates are determined from the calibration curve IntCal04 (Reimer et al., 2004) using the program OxCal v4.0.1 (Bronk Ramsey, 1995, 2001).
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compared with GFL 2 also characterise GFL 3. Pollen
from Artemisia, Poaceae and Typha remains common, and
there are two distinct peaks in Moraceae/Urticaceae-type
pollen. GFL 4 (80–54 cm, ca 2400–400BP) is characterised
by increased abundances of Poaceae pollen, although
numbers of Oryza comp. grains remain largely unchanged
when compared with GFL 3. Multi-celled Oryza sp. glume
phytoliths remain common and several Setaria-type
phytoliths were also recorded. Pollen from Typha is
abundant, with Artemisia and Cyperaceae pollen also
present but in lower abundances when compared with GFL
3, as are levels of micro- and macro-charcoal.

4.2. Luojiang

4.2.1. Sediment stratigraphy and AMS 14C chronology

AMS 14C dating of macrofossils and pollen residues
extracted from core sediments from Luojiang has proven
particularly problematic: several age reversals are apparent
over the total length of the core. Furthermore, the early
Holocene record appears to be missing, as is part of the late
Holocene, unless the most recent date obtained
(1050735BP) is erroneous, which appears likely based
on age-depth relationships for sediment sequences from
other sites in the lower Yangtze.

4.2.2. Charcoal, phytoliths and pollen analyses

Microfossil data, summarised in Fig. 3, were classified
into three zones. L1 (500–255 cm, from ca 11,000 to pre
4350740BP) is characterised by high levels of Pinus and
Quercus pollen and relatively low levels of other types of
arboreal pollen. Pollen from wetland taxa is also relatively
abundant, as is pollen associated with open habitats,
including Poaceae and Chenopodiaceae. Poaceae phyto-
liths are common, particularly those from C3 taxa,
although Oryza sp. phytoliths are absent. Charcoal is
relatively abundant throughout this zone. Abrupt changes
in pollen and charcoal abundances distinguish the lower
boundary of L2 (255–105 cm, from pre-4350740BP to
post-4071720BP, and possibly post-1050735BP). It
seems highly likely that the boundary coincides with a
break in sedimentation. Pinus pollen declines in abun-
dance, while pollen from Poaceae and evergreen forms of
Quercus increases. Oryza sp. phytoliths are present also. L3
(105–35 cm, post-4071720BP, and possibly post-
1050735BP) is characterised by reduced pollen from
arboreal sources, increases in Poaceae (particularly Oryza

comp.) pollen and phytoliths from Oryza sp. and a
continuation of low levels of charcoal.

4.3. Qingpu

4.3.1. Sediment stratigraphy and AMS 14C chronology

The AMS 14C chronology indicates that sediment
samples obtained from this site range in age from ca
6000 to 1800 yr BP. According to the age-depth profile, a
change in sediment accumulation rate is apparent at about

202 cm depth, although this change is more likely to be at
196 cm and to correspond to an abrupt break in
stratigraphy.

4.3.2. Pollen, phytolith and charcoal analysis

Microfossil data, summarised in Fig. 4, were classified
into three zones. QP1 (260–186 cm, ca 6000–2400BP) is
characterised by high abundances of pollen from arboreal
sources and, particularly in the upper part of the zone,
charcoal. Castanopsis/Castanea-type, Pinus and Quercus

are common among arboreal taxa. Other forest taxa
present include Betula, Diospyros, Juglans and Salix.
Poaceae makes a large contribution to non-arboreal pollen,
as do to a lesser extent Artemisia, Brassicaceae and
Chenopodiaceae. A range of wetland pollen and spore
types is present, of which Cyperaceae and Typha are the
most abundant. Poaceae morphotypes are also abundant
among the phytoliths encountered, and include both C3

and C4 forms. Low numbers of Oryza sp. phytoliths are
also present. The lower boundary of QP2 (186–120 cm, ca
2400–2100BP) is marked by a major decline in arboreal
pollen and a large increase in Poaceae. Poaceae (Oryza

comp.) is also relatively abundant, as is Artemisia. Of
pollen from wetland taxa, Cyperaceae is present through-
out this zone, but in reduced amounts, while Ceratopteris

and Typha are more abundant when compared with QP1.
Phytolith counts show an increase in C4 types, although C3

types remain most common. Morphotypes indicative of
Oryza sp. are present, particularly in the upper section of
this zone, from 160 to 120 cm. A large peak in micro-
charcoal concentrations marks the boundary between QP1
and QP2, and charcoal abundances are generally higher
and more variable in the latter than the former. QP3
(120–60 cm, ca 2100–1800BP) is marked by large amounts
of Osmanthus pollen and consistently low levels of
charcoal. Poaceae pollen, both p40 mm and 440 mm, is
also abundant. Pollen from wetland taxa (Cyperaceae and
Typha) and fern spores persist with proportions similar to
QP2, while pollen from arboreal taxa is in relatively low
abundance. Common phytoliths in this zone include both
C3 and C4 Poaceae morphotypes, and several Oryza sp.
morphotypes.
Of the 26 samples from Qingpu investigated to determine

whether rice glume phytoliths recovered from sediment
samples were from domesticated or wild forms, measure-
ments indicate that the majority was from wild Oryza

species, although glume phytoliths from domesticated
forms were present from ca 2400BP and abundant from
ca 2100BP (Itzstein-Davey et al., 2007b).

4.4. Estimated relative sea level, ca 10,000 BP-present

When compared with existing empirical data for the
delta area as a whole (Zong, 2004), results from the
geophysical RSL model employed in the current research
simulate accurately both the rate and direction of RSL
movement in the period to ca 8000BP. Thereafter, the
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model output suggests that RSL exceeded present level by
ca 7000BP, although such a scenario is at odds with
existing empirical data, which suggest a slowing of RSL
rise from ca 8000BP, with the present level not attained
until ca 3000BP, after which date there was little move-
ment of RSL (Zong, 2004). The discrepancy may be related
to inaccuracies in the model (the model is poorly
constrained for the East China Sea and fails to account
for local variations in sedimentary and tectonic condi-
tions), or reflect sediment compaction, which will serve to
lower the altitude of sea level reconstructed from empirical
evidence. Xin and Xie (2006) recently published prelimin-
ary results of a model of Holocene geomorphic evolution
of the Yangtze delta. According to these results, the period
ca 7000–3000BP was characterised by repeated transgres-
sions and regressions, during which parts of the delta plain
may have been inundated. Frequent inundation of low-
lying parts of the delta plain during the mid Holocene is
therefore not inconceivable, particularly given the wide
tidal range of the lower Yangtze and that seasonal
typhoons can result in local rises of sea level of the order
of 2–3m (Wang et al., 2005).

5. Discussion

5.1. Palaeoenvironmental synthesis

Data from the Guangfulin and Luojiang sites indicate
that cool temperate forest and open terrestrial and wetland
habitats were extensive in the lower Yangtze during the
lateglacial, with forest presumably restricted to relatively
well-drained sites. Such a pattern of vegetation is in
keeping with existing published data from the Yangtze
delta (e.g., Liu et al., 1992; Chen and Chen, 1996; Chen
et al., 1997; Yi et al., 2003), and the diversity of lateglacial
habitats is likely to have proven attractive to hunter-
gatherers who had access to fire as a means of manipulat-
ing their environment. According to the charcoal data,
vegetation fires were far more common during the
lateglacial in the southern part of the study area than they
were farther north, and this pattern may reflect greater
levels of human activity on and around the southernmost
part of the delta.

Sediments dated to the early Holocene were not sampled
at the three study sites. Evidence from elsewhere in the
lower Yangtze suggests that post-glacial warming led to a
mid-Holocene climatic optimum, when temperatures were
2–4 1C warmer (Wang and Gong, 2000; Yi et al., 2003;
Chen et al., 2005) and levels of precipitation were
substantially higher than present — the latter due to an
enhanced East Asia summer monsoon (Yu et al., 2005;
Steinke et al., 2006), and to the replacement of cool
temperate forests by more thermophilous taxa (e.g., Liu
et al., 1992; Chen and Chen, 1996; Chen et al., 1997;
Yi et al., 2003). This replacement is in accordance with data
from Guangfulin and Qingpu, although human activity
could have been a factor, given a concomitant increase in

charcoal, along with hydrological change: at Guangfulin,
pollen from forest taxa, notably conifers and several
temperate evergreen and deciduous taxa, is far lower in
abundance than during the lateglacial, while pollen from
more open types of vegetation (e.g., Poaceae) and fresh-
water wetland habitats (Cyperaceae and Typha) is much
more common.
The lower Yangtze is thought to have been first settled

by humans ca 7000BP (Lu, 1999; Yu et al., 2000), possibly
earlier, and the occurrence around that time of Oryza sp.
phytoliths, Oryza comp. pollen and evidence of increased
burning at the Guangfulin site may represent the onset of
incipient agriculture during the early Neolithic. Occasional
occurrences of Setaria sp. phytoliths in the sediments from
Guangfulin may also represent early agriculture. Setaria

italica (L.) P. Beauv., or foxtail millet, is thought to have
been one of the first domesticated cereals in Asia, and has
been recorded at Chengtoushan on the middle Yangtze in
deposits dating from ca 5600BP, where it appears to have
been cultivated along with rice (Nasu et al., 2007).
However, the wild progenitor of foxtail millet is widely
distributed across Asia and could conceivably have been
the source of Setaria sp. phytoliths recovered from the
Guangfulin site.
Major increases at Guangfulin in both micro- and macro-

charcoal from ca 4700BP suggest an important shift in
burning regime, and the occurrence of vegetation fires close-
by. The date roughly coincides with the onset of occupation
of the nearby archaeological site, and with the beginning of
a pottery-rich layer in the sampled sediment profile.
Moreover, an increased abundance of rice phytoliths and
Oryza comp. pollen from around the same time would
appear to indicate an increased importance of rice-based
agriculture locally. Raised levels of Moraceae/Urticaceae-
type pollen from ca 3000BP may represent the cultivation of
Morus, and the production of silk close to the study site
(particularly as this pollen type is not common in sediments
at the other two study sites). Sericulture in China is believed
to date to the Neolithic (Gu and Hu, 2003), with the earliest
evidence in the lower Yangtze dating to ca 4850–4650BP
(Kuhn, 1988; Yan, 1992).
Human impact during the mid Holocene is much less

evident in the sediments from Qingpu, and pollen and
phytoliths indicate the persistence of thermophilous forest,
presumably on relatively well-drained sites, to ca 2400BP.
Trace amounts of Oryza sp. phytoliths, relatively few
Oryza comp. pollen and fluctuating but generally low levels
of charcoal suggest a much lower level of agricultural
activity than at Guangfulin. A similar picture emerges from
the relatively few data relating to the mid Holocene
extracted from the Luojiang core, although a greater
extent of forest than around Qingpu is evident. As with
Qingpu, however, low abundances of charcoal, Oryza sp.
phytoliths and Oryza comp. pollen suggest relatively low
levels of rice-based agricultural activity locally.
None of the three sites studied in the current research

have yielded evidence of climatic cooling and drying dated
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ca 4000BP, which reportedly caused a re-colonisation of
the lower Yangtze by cool temperate vegetation (Sun and
Chen, 1991; Yi et al., 2003). Human activity is, however,
apparent in the late Holocene records from all sites, with
local variability again evident. Environments continued to
be human-influenced post-ca 2400BP at Guangfulin. Rice
continued to feature, while a reduced abundance of
Moraceae/Urticaceae-type pollen may reflect a decline in
the importance of sericulture around Guangfulin. A change
in fire regime, indicated by reduced levels of charcoal, may
reflect changes in farming techniques, such as reduced
burning of stubble (Cao et al., 2006), a more general
decline in human activity, possibly brought about by
increased inundation (concomitant changes in sediment
composition — in the form of the occurrence of pebble-
sized stones in a dark silty clay and increased abundances
of Typha pollen and the remains of sponge spicules — are
in keeping with frequent flooding), or the shortage of
combustible material owing to the almost complete
eradication of forests. Chronological control is much less
secure for the late Holocene record from Luojiang:
conditions post-4071720BP at Luojiang were charac-
terised by reduced tree cover — although not to the same
extent as farther north on the delta — and by increases in
Poaceae. Rice remains become more prevalent in the
sediment record, while charcoal abundances indicate that
the incidence of vegetation fires remained relatively low.

Deforestation around Qingpu is evident and levels of
Oryza comp. pollen and Oryza phytoliths increase from ca
2400BP. Both wild and domesticated forms of Oryza were
present at this time, along with intermediate forms
(Itzstein-Davey et al., 2007b). A change in agricultural
practices is apparent ca 2100BP, notably an increased
importance of domesticated rice and the cultivation of
Osmanthus, the latter indicated by an increased abundance
of Osmanthus pollen. Osmanthus is a small evergreen tree,
and is often cultivated for its aromatic properties
(Mabberly, 1987).

5.2. Environmental changes as driver of and constraint on

early food production in the lower Yangtze

Palaeoecological data from the three study sites dis-
cussed here indicate geographic differences in the onset of
vegetation changes attributable to humans, and in the pace
of subsequent developments in food production. Evidence
of deforestation and of the presence of potential food
sources in the lower Yangtze, including rice and possibly
also foxtail millet, is apparent by ca 7000BP and may
represent incipient agriculture. More substantial human
impacts, including possible evidence of increased impor-
tance of rice as a food source, are apparent from ca
4700BP at Guangfulin, from sometime after 4071730BP
at Luojiang, and from ca 2400BP, and particularly from ca
2100BP, at Qingpu.

An apparently late onset of relatively substantial
environmental impacts as a result of human activity is

surprising, given the large number of archaeological sites in
the lower Yangtze dating to the early Neolithic. This could
be due to the highly localised nature of the sedimentary
records considered here. A late onset is also indicated by
existing palaeoecological data from other sites on the delta,
however. The first human influence apparent in the
sediment record from site CM97 on Chongming Island is
in the form of the appearance of Fagopyrum (buckwheat)
pollen, ca 4500BP (Yi et al., 2003, 2006). At site Zk01
increases in pollen possibly from domesticated rice and also
from plants associated with disturbed vegetation in
sediments post-dating an AMS 14C date of 39347106BP
are thought to represent anthropogenic activity (Shu et al.,
2007). Furthermore, a marked increase in Poaceae ca
3000BP at site ZX-1 was attributed to the commencement
of rice agriculture (Chen et al., 2005). More recently still,
increased abundances of pollen from Poaceae and other
herbs ca 1300BP have been attributed to human dis-
turbance and agricultural expansion at sites HQ98 and CM
97 (Yi et al., 2003, 2006), while widespread vegetation
disturbance and soil erosion in the Yangtze catchment
from ca 2000BP, leading to a sudden increase in Yangtze
River sediment discharge, is thought to have been caused
by humans (Hori et al., 2001). A late onset also accords
with Fuller et al. (2007, in press), who argue that early
occupants of the delta engaged in hunting and gathering
until well into the middle Holocene, utilising both wild and
cultivated forms of rice as part of a broad subsistence base
that also included a wide range of nuts and fish.
A livelihood strategy in which hunting and gathering are

prominent is likely to have been a more effective response
to highly variable and unpredictable hydrological condi-
tions than strategies placing a greater reliance on sedentary
forms of food production. Frequent and severe flooding
will have hindered both the establishment and persistence
of settled communities and of productive agriculture from
early in the Holocene. Rapidly rising RSL during the early-
to-mid Holocene, possibly surpassing current height
according to simulations of a geophysical model, together
with a dense network of channels and tidal creeks (Yan and
Huang, 1987; Li et al., 2002), higher monsoonal rainfall,
the occasional typhoon and tidal surge and relatively low
levels of sediment accretion because of a largely forested
catchment would have led to the frequent inundation of
low-lying parts of the delta plain (Hori et al., 2002). In
addition to a temporal trend of improved technologies,
increased agricultural production and pronounced social
stratification (Chang, 1986; Shao, 2005; Cao et al., 2006),
Neolithic settlements on the delta are characterised by
alterations in their pattern of distribution (Stanley and
Chen, 1996; Stanley et al., 1999; Yu et al., 2000), and
presumably this dynamism in settlement pattern was in
part because of rising water tables and an increased risk of
flooding (Zhu et al., 2003; Zong, 2004). Increased
frequency and severity of flooding could have disrupted
settlement and food production at Guangfulin ca 2400BP,
and frequent flooding by brackish water from around the
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same time may explain a continued importance of wild rice
around Qingpu (and quite possibly around the other sites
too). The cultivation of domesticated rice — a glycophyte-
is hampered by high soil salinity, while some wild varieties
of rice seem able to thrive in brackish water (Zeng and
Shannon, 2000; Latha et al., 2004).

Environmental conditions in the lower Yangtze during
the early and middle Holocene could therefore have acted
both as a trigger (a combination of wetlands and warm
temperatures provided suitable habitat for wild rice) and
constraint (high variability, in particular due to a high
frequency of flooding) to food production and domestica-
tion. Not until the Iron Age (Eastern Zhou), with the
widespread availability of draught animals and iron tools
(Rostoker et al., 1983; Lu, 2005) and reduced incidence of
flooding as a result of sediment accretion and stabilised or
falling RSL (Wang et al., 2001), could farmers manipulate
their environment to the extent that they were able to reap
the full benefits of sedentary agriculture underpinned by
domesticated crops, while at the same time extending and
deepening the environmental impacts of their activities.

6. Conclusion

Sediment-based palaeoecological data from three loca-
tions in the lower Yangtze reveal spatial and temporal
differences in the level of human activity, including food
production. The environmental impacts of early human
populations appear to have been relatively localised.
Although agriculture in the lower Yangtze dates to at least
7000BP, food production during the mid Holocene may
not have been an extensive activity, is likely to have been
combined with hunting and collection from the wild and to
have included the cultivation of wild varieties of rice, and
could have been constrained by frequent inundation.
Evidence of the onset of profound human-induced
environmental impacts, associated with extensive, seden-
tary agriculture, occurs much later in the Holocene and
roughly coincides with the Eastern Zhou (Iron Age, ca
2800–2200BP), a period associated in the lower Yangtze
with technological advances in agriculture, and relatively
stable hydro-geomorphological conditions.
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