Recruiting for Small Business Growth: Micro-Level Evidence

Anton Gidehag and Magnus Lodefalk
Örebro University, Sweden

Abstract. We examine the link between new employees in leading positions and subsequent productivity in small- and medium-sized enterprises (SMEs). Managers and professionals are likely to possess important tacit knowledge. They are also in a position to influence the employing firm. Exploiting rich and comprehensive panel data for Sweden in the 2001-2010 period and employing semi-parametric and quasi-experimental estimation techniques, we find that newly recruited professionals have a positive and statistically significant impact on the productivity of the hiring SME. For newly recruited managers there is no general link to the productivity of the hiring SME. We also find that professionals with experience from international firms and enterprise groups contribute the most to total factor productivity. Overall, the findings suggest the importance of mobility of key personnel for productivity-enhancing knowledge spillovers to SMEs.

JEL codes: D22, D24, D83, J24, J62

Keywords: recruitment, knowledge spillovers, firm growth, productivity, SME

Acknowledgements and Funding: We thank Kent Eliasson, Björn Falkenhall, Pär Hansson, Dan Johansson, Patrik Karpaty, Julia Korosteleva, André van Stel and participants at the SWEGPEC 2015 workshop and seminars at Aston and Örebro universities in the United Kingdom and Sweden, as well as the Ratio Institute Sweden for helpful comments and suggestions. Gidehag acknowledges financial support from the Swedish Agency for Growth Policy Analysis and Lodefalk from the Jan Wallander and Tom Hedelius Research Foundation. The usual caveat applies.

1. Introduction

Mobility of labour is considered crucial for the transfer of knowledge between firms and, hence, for innovation and growth (Almeida and Kogut 1999; Cooper 2001; Fosfuri et al. 2001). Managers and professionals can be expected to play a key role as knowledge carriers. They are likely to accumulate tacit knowledge as well as being in influential positions in firms. For small- and medium-sized enterprises (SMEs), recruitment of such leading personnel may be particularly instrumental for productivity growth. In spite of this, the role of white-collar recruitment as a contributor to SME productivity is to a large extent an unexploited research area, motivating the present study.

1. Corresponding Author: Lodefalk (corresponding author): Örebro University, SE-70182 Örebro, Sweden, and Ratio Institute, Box 3203, SE-10364, Stockholm, Sweden (cellular: +46 722 217340; e-mail: magnus.lodefalk@oru.se)
The importance of tacit knowledge spillovers for firm performance has been highlighted in previous research (e.g., Moretti 2004b; Boschma et al., 2009, 2014; Andersson and Klepper 2013). Individuals carry knowledge that is not easily codified but through interaction can be transferred to other individuals. Such knowledge can, for instance, be gathered through education and work experience.

A seminal contribution by Moretti (2004b) focused on knowledge spillovers between American plants using data for plants that were operational in both 1982 and 1992. He finds that a high educational attainment of workers outside a plant is important for plant productivity. Highly educated individuals working in different industries but within the same city seem to share their knowledge, which in turn boosts firm performance. Moretti (2004a) finds that a high share of college educated individuals increases the wages of non-educated individuals within the same city, partly because the former group appears to make the latter more productive.

Some studies suggest that labour mobility does not uniformly cause positive knowledge externalities but that the effect depends on the matching between the employee and employer as well as workplace similarity (e.g., Boschma et al., 2009, 2014). In this vein, Balsvik (2011) studies how the mobility of workers from multinational enterprises (MNEs) to other firms in Norway affects productivity. She finds evidence to suggest that bringing in experience from an international firm – through employment – makes the receiving firm more productive than does the employment of other workers. Parrotta and Pozzoli (2012) exploit data for Denmark on the hiring of technicians and post-secondary educated workers and find that recruitment has a positive impact on firm productivity and yet does not negatively affect ‘donating’ firms.

A related literature investigates the impact of recruitment on foreign trade, expecting recruitment of persons with foreign market knowledge and contacts to facilitate foreign market entry and success. Some studies have examined the impact of hiring immigrants or expats on firm exports and conclude that such recruitment helps firms to overcome barriers to foreign trade (e.g., Hiller 2013; Hatzigeorgiou and Lodefalk 2016; Lodefalk 2016). The impact appears to be strongest for recruitment of skilled personnel to smaller firms, which arguably have less experience in internationalisation.

Another literature that is closely related to this paper studies the importance of managers for firms. Mion and Opromolla (2014) investigate the impact of manager mobility on export by Portuguese firms. They find that managers with

2. Fosfuri et al. (2001) theoretically predict such spillovers. They also mention evidence that being employed by an MNE is associated with more job training.

3. A related study is Javorcik and Poelhekke (2014), who study how Indonesian former foreign owned firms perform once they are divested, i.e., sold to local owners. By applying a difference-in-difference approach and comparing current and former foreign owned firms, they conclude that the ownership change leads to a drop in total factor productivity. These findings suggest that foreign parent firms continuously provide the local firms with important knowledge.
previous experience in exporting to a foreign market are linked to increased likelihood that the new employer will also export to that market, a relation that does not exist for non-managers. Interestingly, they suggest that the effect of manager mobility for firm productivity would be an interesting topic for future research. More generally, there are several studies that point to the key role of management for firm decisions and performance (e.g., Bertrand and Schoar 2003; Bloom and Van Reenen 2007, 2010; Harrison et al. 2016).4 Some studies have also found that the management of firms is typically constituted by several leaders, having complementary skills, that together form a team that is key for firms’ future development (Flamholtz 2011; Flamholtz and Kannan-Narasimhan 2013).

We contribute to these studies by focusing specifically on the impact of recruitment of white-collar workers in leading positions on subsequent growth in SMEs. Newly recruited managers and other professionals – such as mathematicians, computer system designers, and economists – arguably possess tacit knowledge that is of importance for the new employer. Moreover, due to their leading position, they may find it easier to share and apply their knowledge than do other white- or blue-collar workers, such as associate professionals, clerks and manual labour. Our focus on SMEs is motivated by the expectation that recruited managers and professionals have a more instrumental role when entering a small- or medium-sized rather than a large firm and by the consideration that SMEs are important for net job creation (e.g., Henrekson and Johansson 2010). In addition, we analyse whether and to what extent knowledge spillovers have heterogeneous or homogeneous impacts depending on the previous work experience of the recruit. For instance, it is plausible to think that a new manager with previous experience from a large, multinational firm who comes to a small, non-international firm may have a different impact than one who lacks that experience (see, e.g., Fosfuri et al. 2001).

Empirically, we exploit detailed and comprehensive employer-employee registers from Statistics Sweden that give us the opportunity to match workers with their past and present employers in Sweden over the years 2001-2010. Importantly, our dataset contains detailed information on firms’ employees, such as their previous workplaces and occupations, and on firm characteristics, such as firm size and affiliations. To provide results that are robust to endogeneity, we employ state-of-the-art algorithms for the estimation of total factor productivity, which is then regressed on recruiting variables while controlling for firm heterogeneity. As a robustness check, we adopt a combination of propensity score matching and a difference-in-difference estimator.

4 There is a relatively large literature on inter-firm labour mobility and firm innovation, including patenting (for a brief overview, see, e.g., Parrotta and Pozzoli, 2012). For example, Braunerhjelm et al. (2014) analyse the movement of research and development personnel and the impact on firms’ innovation ability, concluding that the former employer benefits in terms of an extended network and the latter in terms of new skills.
In a nutshell, we find that recruiting professionals, but generally not managers, has a positive and statistically significant impact on the subsequent total factor productivity of the hiring firm. The within-firm association with productivity is twice as large as the one for recruitment of other workers. The impact is the largest for professionals arriving from enterprise groups and international firms. The results confirm our expectation that hiring key personnel is associated with tacit knowledge spillovers that are instrumental for the subsequent growth of the SME. The results are robust to alternative specifications and estimators as well as endogeneity concerns.

The remainder of the paper is structured as follows. In Section 2 and 3, we elaborate on our conceptual and empirical framework. In Section 4, we present our data and descriptive statistics. Our econometric results are presented and discussed in Section 5. Finally, in Section 6, we offer concluding remarks.

2. Conceptual Framework

Individuals gather knowledge, for example, through education, on-the-job training and communication, which may generate positive externalities that make their employer and other individuals and firms more productive (Moretti 2004a, 2004b; Becker 1964). They may, for example, learn about technology and its application, marketing, financing and management of firms in different situations. Part of that knowledge is tacit and therefore individually bound, and, arguably, this applies particularly to the knowledge acquired on the job (Polanyi 1962). Therefore, labour mobility becomes crucial for knowledge transfer between firms and, hence, for innovation and growth (Almeida and Kogut 1999; Cooper 2001; Fosfuri et al. 2001). New workers may transfer knowledge to their colleagues about how to tackle specific problems by example or more generally through instruction and demonstration (Keller 2004).

The movement of managers and professionals between firms is likely to be more strongly associated with knowledge transfer that promotes firm growth than is the movement of other workers. Managers and professionals can be expected to have learnt from being in responsible positions at the donor firm; this is in terms of technologies, procedures, leadership and extended social networks. They arrive to a position where they likely can make their tacit knowledge count. They can transmit their ideas and hard won experience as well as extend the social networks

5. The tacit knowledge we envisage is neither completely general nor specific in the terminology of Becker (1964) but rather somewhere in-between, enabling meaningful but incomplete transfer.

6. Keller (2004) argues that despite recent technological advances, knowledge is most effectively transferred through face-to-face interaction, and recent research would seem to suggest that this is still the case (see, e.g., Denstadli et al. 2013; Gustafsson 2012; Westermark 2013).

7. Our conjecture is somewhat akin to the one of ‘informed’ and ‘uninformed’ staff in the model of Glass and Saggi (2002).
of the recipient firm.8 We also expect managers and professionals to more easily absorb the knowledge of the recipient firm than other workers, in part because of their experience from responsible positions and in part because they most likely are post-secondary graduates, which can be expected to be associated with general skills related to acquiring, applying and transmitting knowledge. In combination, managers and professionals can therefore be expected to be in an advantageous position to identify and avail themselves of possibilities to make substantial contributions to the operations of the recipient firm, thus promoting growth.9

To frame our discussion on the impact of knowledge spillovers from the recruitment of managers and professionals on firm growth, we begin with a standard Cobb-Douglas production function. Consider the production function of a profit-maximising firm as:

\[Y_{it} = A_{it}K_{it}^{\beta}SL_{it}^{\gamma}UL_{it}^{\delta} \]

(1)

where \(Y_{it} \) is value-added in firm \(i \) at time \(t \); \(A_{it} \) is total factor productivity (TFP); \(K_{it} \) is physical capital stock; \(SL_{it} \) and \(UL_{it} \) are skilled and unskilled labour, respectively; and the output elasticities are \(\beta, \gamma \) and \(\delta \).

TFP is, in turn, considered a function of the tacit knowledge of managers and professionals \((M\alpha P_{it}) \) as well as a vector \(Z_{it} \) of time-variant firm variables, which may or may not be observed, such as accumulated experience and networks of the firm.10 More formally, we define:

\[A_{it} = f(M\alpha P_{it}, Z_{it}) \]

(2)

Equation (2) is our model of interest. We now turn to its estimation.

8 The movement of managers and professionals may be beneficial for the new employer as well as the former employer through an extended social network. Hence, managers and professionals could work as links between employers (see, e.g., Braunerhjelm et al. 2014).

9 Although a high level of labour mobility could lead to labour poaching, i.e., firms underinvest in their employees, the downsides are often assumed to be offset by the positive effect stemming from knowledge externalities (Boschma et al. 2009).

10 It should be added that managers, professionals and other workers are included in the labour variables in eq. (1) according to their educational level. Strictly speaking, we therefore consider positive changes in \(M\alpha P_{it} \) in eq. (2) to represent the spillover of tacit knowledge to the firm, i.e., an externality. However, for convenience, we will interchangeably use the terms recruitment of and knowledge spillovers from the hiring of managers and professionals, as well as the abbreviation \(M\alpha P_{it} \). We may add that one common way to try to indirectly measure technology is through its effects on productivity, in addition to measuring R&D expenses and patents (Keller 2004).
3. Empirical Framework

To empirically estimate equation (2) and analyse the productivity effect of $M\alpha P_{it}$, we need to obtain the TFP of the firm.

3.1. Estimation of Total Factor Productivity

TFP is commonly computed as the residual from equation (1), that is,

$$A_{it} = \frac{Y_{it}}{K_{it}^{\beta}SL_{it}^{\gamma}UL_{it}^{\delta}}$$

Therefore, we first need to know the output elasticities. Conceptually, we might receive such estimates by applying ordinary least squares estimation to the log-linearised version of equation (1) while excluding A_{it} and assuming it to have zero mean in conditional expectation. However, a well-known problem in this regard is that firms are likely to simultaneously adjust their input choices to expected productivity shocks using more (less) inputs in the event of positive (negative) shocks (see, e.g., the overview in Van Beveren 2012). The simultaneity of input choices and productivity shocks, which are now in the error term, violates the basic exogeneity assumption of ordinary least squares estimation. It is likely to lead to biased estimates of the output elasticities and, in turn, a biased estimate of the firm’s TFP.\(^\text{11}\)

Researchers have suggested various parametric and semi-parametric techniques to address this problem. Parametric fixed effects estimators could be used to capture time-invariant parts of firm heterogeneity, but they have not performed well empirically, leading to questions about the underlying assumptions (Olley and Pakes 1996; Ackerberg et al. 2007; Levinsohn and Petrin 2003). Instead, Olley and Pakes (1996) and Levinsohn and Petrin (2003) have proposed structural approaches using semi-parametric estimators. The idea is to find a variable – for example, material inputs or capital investment – that is costless to adjust to anticipated but unobserved short-term productivity shocks, for example, expected breaks in production due to exchange of key machinery. The variable is then used as a proxy for unobserved productivity shocks. It is assumed to be a monotonous function of TFP and is conditioned on observables. TFP can then be inverted out.

Practically, in equation (1), TFP is replaced by the inverted out and non-parametric function of the proxy variable and observables. Having estimated the output elasticities of the production factors, the elasticity of the proxy variable can be retrieved from non-linear estimation of a variation of (1) under assumptions on

\(^{11}\) Selection bias is another issue with OLS panel estimation of TFP when disallowing the entry and exit of firms.
firm dynamics in terms of productivity and the proxy variable. Finally, one computes TFP as the residual from the resulting production function.

However, more recently, there has been criticism that collinearity between labour and the proxy variables may complicate identification of the labour output elasticity parameter, again resulting in biased TFP-estimates (Ackerberg et al. 2015; Bond and Soderbom 2005). Ackerberg et al. (2015) instead extend the Olley and Pakes (1996)-estimator by only using the first-stage estimation to retrieve the residual in the estimation of equation (1). In the second stage, they estimate the unknown parameters and then finally compute TFP, as previously explained.

In this paper, we slightly extend the technique of Ackerberg et al. (2015) along the lines of Vandenberghe (2013). The latter considers the importance of controlling for firm heterogeneity in TFP-estimation to fulfil the underlying monotonicity assumption and to improve identification of the output parameters. In effect, this means that we control for time-invariant firm-specific effects in the first stage estimation. Then, we retrieve the estimated parameters and lastly estimate TFP. Finally, we arrive at our empirical version of equation (2) to analyse the role of MaP_{it} for firm growth.

In the first stage, we generate the predicted \hat{y}_{it}, with lower-case letters indicating natural logarithms, by estimating:

$$y_{it} = \alpha + \beta k_{it} + \gamma s{l}_{it} + \delta u{l}_{it} + \varphi_t(\cdot) + v_i + \epsilon_{it} \tag{3}$$

where φ_t is a second-order polynomial of the input variables and material, a polynomial that proxies for unobserved productivity shocks; v_i is unobserved time-invariant firm heterogeneity; and ϵ_{it} is an i.i.d. error term. In other words, we exploit contemporary information to obtain value added net of unanticipated shocks and measurement error. Next, we use non-linear optimisation to obtain the output elasticity estimates, given certain moment conditions. The conditions follow from the assumptions that all input variables but not the proxy variable – materials – are determined in advance and cannot be as easily adjusted and that productivity follows a first-order Markov process. The latter means that current TFP is equal to its expectation conditional on TFP in $t-1$ plus an innovation or news component ξ_{it}, which is assumed to be mean independent of information known in the previous period. Specifically, we use the moments below to estimate the output elasticities:

$$E \begin{bmatrix} K_{it} \\ SL_{it-1} \\ UL_{it-1} \end{bmatrix} = 0 \tag{4}$$

12. In this stage, we use robust and firm-clustered standard errors from 50 block bootstrap replications.
Having estimated the output elasticities while controlling for the simultaneity problem through semi-parametric technique, we are ready to proceed to the empirical specification of equation (2).

3.2. Empirical Specification

Formally, we consider a firm’s expected conditional total factor productivity as a function of the recruitment of managers and professionals as well as other covariates:

\[E[\ln \frac{y_{it}}{K_{it}} \mid \text{MaP}_{it-n}, O_{it-n}, Z_{it-n}, v_i] = \zeta_{\ln \text{MaP}} \ln \text{MaP}_{it-n} + \zeta_{\ln O} \ln O_{it-n} + \zeta_{\ln Z} \ln Z_{it-n} + \zeta_{\ln I} \ln I_{it-n} + v_i \quad (5) \]

where \(i \) is the firm; \(t \) is the year; \(n \) is the lag dimension, which is one for recruitment variables and two for covariates; \(\text{MaP}_{it-n} \) represents employment of managers and professionals; \(O_{it-n} \) represents the employment of other workers; \(Z_{it-n} \) is a 1 x K1 vector of firm covariates (log of firm size, log of firm age, multinational affiliation and legal form); \(I_{it-n} \) is a 1 x K2 vector of fixed effects (industry, year, municipality); and \(v_i \) is again time-invariant firm heterogeneity. \(\text{MaP}_{it-n} \) and \(O_{it-n} \) enter the specification unlogged since far from all SMEs are likely to recruit new employees in a particular year.

We include the employment of other workers, \(O_{it-n} \), to control for knowledge spillovers that otherwise may bias the results, even if such workers are expected to have substantially less influence on firm growth than managers and professionals. In the \(Z_{it-n} \) vector, we include variables that, if excluded, may cause omitted variable bias. In essence, we consider the variables to be related to the experience and social networks of the firm as well as the ambitions within the firm (see, e.g., Haltiwanger et al. 2013; Kogut and Zander 1993; Li and Yueh 2011; Baik et al. 2015).

Our empirical specification is dynamic in the sense that it has a lagged structure. Productivity is a function of knowledge spillovers through the recruitment of managers and professionals in the preceding year, conditioned on covariates previously established. We expect knowledge spillovers to follow only from repeated and intense interaction between the new recruit and the firm, as discussed in social network theory (Granovetter 1973). In short, it takes time for knowledge to be transferred and applied by the firm so that it may affect firm growth (Keller 2004).13 Another motivation for the lagged structure is to reduce remaining endogeneity concerns.

13. Alternatively, one may think of the recruitment as a strategic investment that takes time to pay off. Even if, e.g., technology may be instantly understood by the one exposed to it, as in the theoretical model of Glass and Saggi (2002), its application and its pay off may take time to materialise.
As mentioned, we control for time-invariant firm heterogeneity. Estimation is therefore focused on the within-firm variation of productivity. We consider this important to avoid, for example, differences in the ability of owners of firms to drive our results. In addition, we pay careful attention to other confounding factors at the industry and municipal level as well as across time by including corresponding fixed effects.

3.3. Robustness Tests

Returning to the issue of endogeneity, we cannot completely rule out that actual or anticipated firm growth results in the employment of managers and professionals rather than the reverse. Such selection into the hiring of managers and professionals may introduce an endogeneity bias in the estimation of equation (5). To test the robustness of the results from the lagged within-firm specification of equation (5), we employ a quasi-experimental model.

First, we generate a counterfactual by finding valid controls to ‘treated’ firms through the nearest neighbour (one-to-one) propensity score matching with replacement (Rosenbaum and Rubin 1983). We divide firms into those that hire managers and professionals (‘treated’) and those that instead hire other workers ('controls’). Then, we match each treated firm with a control based on observable pre-treatment characteristics likely to affect assignment into treatment. If correctly implemented, the matching generates a control group that has the same likelihood of treatment as the group of treated firms, whereby treatment is as if randomly assigned. We therefore assume that the productivity outcome is independent of participation in the treatment (recruitment of influential versus less influential workers), conditional on the pre-treatment observables – the so-called conditional independence assumption (CIA).

Formally, the conditional expected treatment status, which equals the propensity score \(\rho \), is:

\[
E(D_i = 1|\alpha_{it}, X_{it}) = P(D_i = 1|X_{it}) = f(X_{it}) + IND_{it} + TREND_t \tag{6}
\]

where

\[
D_i = \begin{cases}
1, & \text{if } \Delta MaP_i > 0 \land \Delta O_i = 0; \\
0, & \text{if } \Delta MaP_i = 0 \land \Delta O_i > 0;
\end{cases}
\]

\(X_{it} \) is a 1 x K vector of pre-hiring characteristics of the firm (including lagged firm size, value-added, age, share of managers and professionals, share of skilled workers, the average age of workers, and the squared values of selected variables); \(IND_{it} \) is a two-digit industry indicator variable; and \(TREND_t \) is a

14. Using this definition of controls, we only compare firms that all decide to hire new personnel. Consequently, we expect to reduce heterogeneity, such as decisions to recruit, and we estimate the relative effect from hiring leading personnel.
common trend variable. Based on the resulting ρ, we assign each treated firm with a control using nearest neighbour (one-to-one) matching with replacement.15 The productivity outcome is then independent of the type of recruited workers, assuming the CIA holds.

Second, we adopt a Difference-in-Difference (DiD) estimator to control for time-invariant unobservable firm heterogeneity and time-variant shocks that may affect treated firms and controls differently (Blundell et al. 2004; Heckman et al. 1997). We use the estimator to analyse the potentially differential growth impacts of recruitment of managers and professionals versus that of other workers in the post-recruitment period. After constructing the counterfactual and assuming that this controls for selection into recruitment of influential workers, we estimate the average effect λ_{ATE} on the treated firms, where

$$\lambda_{ATE} = E[E(a_{it}|D_t = 1) - E(a_{it}|D_t = 0)] \quad (7)$$

Having described our methodology and arrived at our main empirical specification – equation (5) – as well as the robustness checks – equations (6) and (7) – we now present our data, descriptive statistics and preliminary evidence.

4. Data and Descriptive Statistics

For our empirical analysis, we construct a matched employer-employee dataset that covers the time period 2001-2010 using four registers of Statistics Sweden. Merging information from the various registers is facilitated by the fact that all individuals, plants, firms and enterprise groups in Sweden have unique identifiers; thus, less reliable statistical matching methods are superfluous.

In most of our analysis, the Structural Business Statistics ("Företagens ekonomi", FEK) register is the point of departure. The FEK register contains the population of private non-financial Swedish firms with at least one employee, and is available over the 1998-2013 period.16 The register includes information such as employment, value added and turnover. To this we merge information from the Firm and Plant Dynamics ("Företagens och arbetställenas dynamik", FAD) and the Enterprise Group Register ("Koncernregistret", KCR). FAD contains data on

15 We also impose the common support condition in the matching to minimise potential matching bias; that is, we require that the probability of recruiting managers and professionals is strictly positive for all firms.

16 The excluded organisations are sole proprietorships without employees, financial industry firms, and a limited number of other categories (housing cooperatives, international organisations and public administration). Exploiting the LISA database, which is subsequently described, we note that none of the excluded organisations that are privately held have a strong tendency to hire leading personnel, while publicly held organisations – which are generally of large size – do (Appendix Table A1). The latter are, nevertheless, excluded both for conceptual and practical reasons since our focus is on profit-driven private firms and we lack information on key variables, e.g., value added, for the excluded organisations.
firm dynamics in terms of employment. It assigns each firm a numeric code based on whether the majority of a firm’s personnel in a given year constitutes a majority or minority of the firm’s workforce the forthcoming year. KCR contains data on firms that are part of an enterprise group, such as whether they are foreign owned.

Since we are interested in organic growth in productivity, we exploit information from FAD to only include firms where a majority of the workforce in year \(t \) is a majority in year \(t+1 \).\(^{17}\) Put differently, we keep firms that are persisting in the sense that the personnel composition remains similar. The approach also helps us to control for confounding factors related to mergers or acquisitions.

Next, we merge the firm-level data with individual-level data from the Longitudinal Integration Database for Health Insurance and Labour Market Studies (LISA), which covers the universe of Swedish residents who are at least 16 years old. Information such as individuals’ educational background and age is included. By combining the firm- and individual-level data, we are able to match information about the workers with their respective workplaces. For instance, we are able to observe how many workers within a firm have a certain type of education, workers’ age, and importantly for our purposes, their previous workplace.

Since we are interested in recruitment to leading positions in firms, we exploit the occupational classification of workers, which is contained in LISA. Occupations are classified according to the Standard for Swedish Occupational Classification (SSYK, rev 1996), which corresponds to the International Standard Classification of Occupations (ISCO-88). SSYK ranks occupations into ten hierarchical main levels.\(^{18}\) The levels are based on the skills required to perform a certain job and its complexity. The top two categories are ‘Managers’ (SSYK 1) and ‘Professionals’ (SSYK 2), and these are of our main interest. For instance, these categories include CEOs, mathematicians, engineers and economists. The SSYK variable entered the LISA database in 2001, which restricts our analysis to the time period 2001-2010.

Finally, we limit our analysis to small and medium sized firms for reasons already explained and remove extreme outliers. We define an SME as a firm with at most 249 employees during a particular year (OECD 2005). The resulting unbalanced panel dataset encompasses approximately 139,000 and 167,000 firms in the years 2001 and 2010, respectively.\(^{19}\)

\(^{17}\) The FAD codes are based on different combinations of two conditions: (A) \(\left(\frac{g_t}{EMP_t} \right) \geq 0.5 \); and (B) \(\left(\frac{g_t}{EMP_t} \right) \geq 0.5 \), where \(g_t = EMP_t \bigcap EMP_{t'} \), and \(EMP_t \) is employment in time \(t \) or \(t' \). In this study, we consider a firm as remaining iff. both (A) and (B) hold.

Recruiting for Small Business Growth: Micro-Level Evidence

Table 1. Descriptive statistics. Year 2010.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of employees</td>
<td>8.15</td>
<td>3</td>
<td>18.56</td>
<td>1</td>
<td>249</td>
<td>167,167</td>
</tr>
<tr>
<td>Managers and professionals (MaP)</td>
<td>1.62</td>
<td>1</td>
<td>5.85</td>
<td>0</td>
<td>227</td>
<td>167,167</td>
</tr>
<tr>
<td>Other workers</td>
<td>6.05</td>
<td>2</td>
<td>15.02</td>
<td>0</td>
<td>240</td>
<td>167,167</td>
</tr>
<tr>
<td>Newly hired</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managers</td>
<td>0.06</td>
<td>0</td>
<td>0.34</td>
<td>0</td>
<td>21</td>
<td>167,167</td>
</tr>
<tr>
<td>Professionals</td>
<td>0.15</td>
<td>0</td>
<td>1.05</td>
<td>0</td>
<td>81</td>
<td>167,167</td>
</tr>
<tr>
<td>Other workers</td>
<td>1.07</td>
<td>0</td>
<td>3.43</td>
<td>0</td>
<td>158</td>
<td>167,167</td>
</tr>
<tr>
<td>Newly hired MaP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from large to small firm*</td>
<td>0.03</td>
<td>0</td>
<td>0.19</td>
<td>0</td>
<td>6</td>
<td>148,271</td>
</tr>
<tr>
<td>from small to small firm*</td>
<td>0.04</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>11</td>
<td>148,271</td>
</tr>
<tr>
<td>from enterprise group to stand-alone SME</td>
<td>0.04</td>
<td>0</td>
<td>0.34</td>
<td>0</td>
<td>35</td>
<td>126,213</td>
</tr>
<tr>
<td>from one to another enterprise group</td>
<td>0.31</td>
<td>0</td>
<td>1.31</td>
<td>0</td>
<td>55</td>
<td>40,954</td>
</tr>
<tr>
<td>within same enterprise group</td>
<td>0.06</td>
<td>0</td>
<td>0.62</td>
<td>0</td>
<td>62</td>
<td>40,954</td>
</tr>
<tr>
<td>from stand-alone firm to SME</td>
<td>0.03</td>
<td>0</td>
<td>0.27</td>
<td>0</td>
<td>25</td>
<td>167,167</td>
</tr>
<tr>
<td>from foreign trading firm to SME</td>
<td>0.09</td>
<td>0</td>
<td>0.67</td>
<td>0</td>
<td>63</td>
<td>167,167</td>
</tr>
<tr>
<td>from non-foreign trading firm to SME</td>
<td>0.11</td>
<td>0</td>
<td>0.66</td>
<td>0</td>
<td>51</td>
<td>167,167</td>
</tr>
<tr>
<td>from MNE to non-MNE affiliated firm</td>
<td>0.03</td>
<td>0</td>
<td>0.32</td>
<td>0</td>
<td>32</td>
<td>159,177</td>
</tr>
<tr>
<td>from and to non-MNE firm</td>
<td>0.11</td>
<td>0</td>
<td>0.72</td>
<td>0</td>
<td>80</td>
<td>159,177</td>
</tr>
<tr>
<td>Firm age</td>
<td>10.21</td>
<td>12</td>
<td>5.67</td>
<td>0</td>
<td>37</td>
<td>167,167</td>
</tr>
<tr>
<td>Enterprise group status</td>
<td>0.25</td>
<td>0</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
<td>167,167</td>
</tr>
<tr>
<td>Multinational status</td>
<td>0.05</td>
<td>0</td>
<td>0.21</td>
<td>0</td>
<td>1</td>
<td>167,167</td>
</tr>
<tr>
<td>Value added</td>
<td>4,335</td>
<td>1,132</td>
<td>17,396</td>
<td>-739,877</td>
<td>2.15E+06</td>
<td>167,167</td>
</tr>
<tr>
<td>Physical capital stock</td>
<td>5,109</td>
<td>1,003</td>
<td>113,024</td>
<td>-221.8</td>
<td>2.19E+07</td>
<td>167,167</td>
</tr>
</tbody>
</table>

Notes: Data refer to the year 2010. Total number of SMEs is 167,167. Monetary values are in 1,000 SEK (approximately 123 USD). * (Here, large and small refer to the 75th and 15th percentiles in the distribution of all firms, respectively, corresponding to cut-offs of 835 and 15 employees. Hence, small firm=16 employees; large firm=854 employees)

In Table 1, we provide a snapshot of our sample in 2010.20 The average firm is a micro-enterprise, having just eight employees. Approximately two of them are employed as managers and professionals and six as other workers.21 The median firm is even smaller, having three employees. The average firm is small also in terms of recruitment, although there is quite a lot of heterogeneity as

19. In year 2010, there were approximately 215,000 firms in the matched dataset, with 214,000 being SMEs. After removing firms that likely have developed non-organically, there are approximately 172,000 firms. Removing extreme outliers, we have 167,167 SMEs.

20. Presented is the total number of firms in our sample. Due to restrictions in the estimation of TFP, our econometric analysis includes approximately 60,000 firms annually. For a definition of key variables, see Appendix Table A2.
captured by the standard deviation. The average firm approximately recruits 0.2 managers and professionals and one other worker. Altogether, the firms in our sample recruited approximately 212,000 workers in 2010, with approximately 5 percent being managers, 11 percent professionals and 84 percent other workers. On average, a firm is ten years old and does not belong to an enterprise group. Additionally, the results display that firms are very heterogeneous and that large firms substantially skew the distribution of firms in variables such as value added and physical capital stock.

To understand recruitment patterns, we provide details on where newly recruited managers and professionals come from. Considering recruitment among small firms, we find that, on average, approximately half of the recruits are ‘donated’ by other small firms and the other half by large firms. Studying recruitment from an enterprise group perspective, we note that a substantial amount of leading personnel are recruited from firms that are affiliated with another enterprise group rather than from firms within the same enterprise group. Non-tabulated results (available upon request) suggest that micro-enterprises hire many managers relative to other SMEs, whereas the other SMEs hire relatively many professionals. An explanation might be that the very small firm needs to fill key management positions, whereas the larger SME recruits to complete the competence bloc of the firm (Johansson 2010).

5. Econometric Results

We now turn to our econometric results from the estimation of equation (5), which are displayed in Table 2. We start out by presenting OLS results in Column 1 as a point of reference. As expected, productivity is positively associated with firm size and age as well as multinational enterprise affiliation. The result for leading personnel confirms our expectation that the recruitment of managers and

21. The reason why the employees in the two categories do not exactly add up to the mean is that a small minority of workers have not been assigned an occupational code. However, reassuringly, further analysis reveals that there is no systematic pattern of missing information across the distribution of occupational codes and industries

22. In our sample, limited liability firms hire most of the newly hired leading personnel; although the average number of hired managers and professionals is the highest in foreign owned firms; see Appendix Table A1.

23. Notice that in Table 1, we limit our descriptive statistics to subsamples of SMEs when necessary. For instance, recruitment statistics for small firms are limited to firms having a maximum of 15 employees whereas recruitment statistics for enterprise groups are based only on firms affiliated with an enterprise group.

24. That the sums of mean recruitment from firms with different affiliations do not add up to the total is due to the fact that donors may be organisations for which the affiliation variables are missing, e.g., municipalities or government agencies, which account for a large share of employment in Sweden.

25. The results for specifications where we sequentially introduce the covariates are available in Gidehag and Lodefalk (2016).
professionals is positively associated with productivity. Since recruits enter the specification in numbers, the resulting regression coefficient is a semi-elasticity. The result suggests that hiring another manager or professional is linked to approximately 2.7 percent higher productivity in the subsequent year, all else equal.

Table 2. Benchmark estimation results

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) Within-firm estimation</th>
<th>(3) Within-firm estimation</th>
<th>(4) Within-firm estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managers and professionals</td>
<td>0.0265***</td>
<td>0.00221***</td>
<td>0.00217***</td>
<td>0.00216***</td>
</tr>
<tr>
<td></td>
<td>(0.00135)</td>
<td>(0.000764)</td>
<td>(0.000764)</td>
<td>(0.000758)</td>
</tr>
<tr>
<td>Others</td>
<td>-0.0129***</td>
<td>0.00145***</td>
<td>0.00147***</td>
<td>0.00123***</td>
</tr>
<tr>
<td></td>
<td>(0.000367)</td>
<td>(0.000323)</td>
<td>(0.000323)</td>
<td>(0.000323)</td>
</tr>
<tr>
<td>Firm size (log)</td>
<td>0.212***</td>
<td>0.0623***</td>
<td>0.0624***</td>
<td>0.0668***</td>
</tr>
<tr>
<td></td>
<td>(0.00199)</td>
<td>(0.000585)</td>
<td>(0.000585)</td>
<td>(0.000584)</td>
</tr>
<tr>
<td>Firm age</td>
<td>0.00194***</td>
<td>0.0110***</td>
<td>0.0110***</td>
<td>0.0257</td>
</tr>
<tr>
<td></td>
<td>(0.000337)</td>
<td>(0.000698)</td>
<td>(0.000699)</td>
<td>(0.0166)</td>
</tr>
<tr>
<td>Multinational enterprise</td>
<td>0.211***</td>
<td>-0.0411***</td>
<td>-0.0412***</td>
<td>-0.0409***</td>
</tr>
<tr>
<td></td>
<td>(0.00719)</td>
<td>(0.0108)</td>
<td>(0.0108)</td>
<td>(0.0108)</td>
</tr>
</tbody>
</table>

Obs.	360,415	360,415	360,415	360,415
Adjusted R^2	0.12	0.68	0.68	0.68
Firm FE	y	y	y	y
Industry	y	y	y	y
Year	y	y	y	y

Notes: The response variable is total factor productivity (log). In Column 1, we present OLS estimation results, and, in Columns 2-4 within-firm estimation results, with robust and firm-clustered standard errors in parentheses. By including binary indicators, the legal form of the firm is controlled for throughout.

* p < 0.10, ** p < 0.05, *** p < 0.01

The results discussed may be biased due to heterogeneity at several levels. In Columns (2)-(4), we therefore gradually introduce specific effects at the firm, industry and year level. When we control for unobserved time-invariant firm heterogeneity (Column 2), the association between hiring leading personnel and productivity is reduced to a tenth of its previous size while still being economically and statistically significant. Recruiting other workers is less strongly linked to productivity growth. Adding further specific effects only marginally affects the results (Columns 3-4). Our benchmark within-firm estimation results are displayed in Column (4). The semi-elasticity for leading personnel is 0.00216. In other words, we find that hiring an additional manager or professional is on average associated with a 0.2 percent increase of the productivity of the hiring SME.26

Reassuringly, our result for leading personnel is qualitatively in line with, although substantially more conservative than, the results for technicians and

26. In within-firm regressions of performance measures on multinational affiliation, a negative sign of the coefficient for multinational affiliation is not uncommon (e.g., Lodefalk 2016).
graduate workers in the firm-level study of Parrotta and Pozzoli (2012) using a panel of Danish firms.27

Next, we re-estimate equation (5) but separate the recruitment of managers and professionals to consider potential heterogeneity in impacts. We do not have any strong á priori expectations. On the one hand, managers are in charge of the daily business while being directed by the owner or a board of directors. Therefore, they may be more strongly related to firm productivity than professionals. On the other hand, managers range from chief executive officers to division managers and lower-level operations managers, while professionals, for example, include scientists with doctoral degrees who are likely instrumental in research and development that may underpin the future of a firm and who may bring in technological knowledge from their former employer.28 Ultimately, the issue is therefore an empirical one. In Table 3, we display the empirical results. We find that managers have no statistically significant association with firm productivity, whereas the association for professionals is stronger than for the group of both managers and professionals. This result suggests that, in order to improve productivity, SMEs primarily need to complete their competence blocs for growth, including bringing in technological knowledge, rather than fill positions in the daily management of the firm.

27. We may add that their study, i.a., differs from ours in that their employment variables single out technicians (part of SSYK 3), which in our study are included in the group of other workers, and workers with at least a bachelor’s degree, irrespective of their occupational classification. Since our group of managers and professionals (SSYK 1 & 2) is more narrowly defined and, e.g., pays attention to the fact that there is a considerable mismatch between education and jobs for many workers, such as immigrants, we would have expected the hiring impact to be comparatively larger in our study. We conclude that the quantitative difference in the results is likely to be due, at least partly, to differences in our modelling approaches.

28. SSYK classifies all personnel who are responsible for other workers, their wages or budget as managers.
Table 3. Estimation results for managers and professionals, separately

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managers, j</td>
<td>-0.00190 (0.00304)</td>
</tr>
<tr>
<td>Professionals, i</td>
<td>0.00288*** (0.000898)</td>
</tr>
<tr>
<td>Others, j</td>
<td>0.00135*** (0.000334)</td>
</tr>
<tr>
<td>Firm size (log), j</td>
<td>0.0666*** (0.00584)</td>
</tr>
<tr>
<td>Firm age</td>
<td>0.0257 (0.0166)</td>
</tr>
<tr>
<td>Multinational enterprise (0,1)</td>
<td>-0.0407*** (0.0108)</td>
</tr>
<tr>
<td>Obs.</td>
<td>360,415</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Notes: The response variable is total factor productivity (log). Results are from within-firm estimation. We control for firm, industry and year specific effects as well as for the legal form of the firm. In parentheses are robust and firm clustered standard errors. * p < 0.10, ** p < 0.05, *** p < 0.01

We also would like to investigate the extent to which the background of the new recruit matters for the receiving SME. As discussed in the introductory section, previous evidence suggests that recruits from, for example, exporting or multinational firms are instrumental for non-exporting or standalone firms. We therefore use the categories that we included in the descriptive statistics also in our econometric analysis, with the results displayed in Table 4. Throughout, we account for potential productivity impacts resulting from the recruitment of other personnel, i.e., to non-leading positions.\(^{29}\) We first consider the case where a recruit to a leading position is ‘donated’ by a firm of an enterprise group (Columns 1-3). Interestingly, professionals from enterprise groups and entering stand-alone SMEs are associated with a substantial and statistically significant change in productivity. Those entering affiliated firms are not linked to productivity impacts. As regards managers, the results are more mixed. Managers entering stand-alone firms are not linked to a statistically significant impact, whereas those entering affiliate firms or firms of other enterprise groups are associated with a positive and negative productivity impact, respectively.

\(^{29}\) However, since our focus is on leading personnel, we do not discern the background of other employees.
Table 4. Estimation results discerning the background of newly hired leading personnel

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From enterprise group to stand-alone firm</td>
<td>From other firm in the enterprise group</td>
<td>From other enterprise group to the firm of another enterprise group</td>
<td>From an MNE</td>
<td>From a large firm</td>
<td>From a foreign trading firm to a non-trader</td>
<td>From a non-foreign trading firm to a non-trader</td>
</tr>
<tr>
<td>Managersₚᵣ</td>
<td>0.0039</td>
<td>0.0112*</td>
<td>-0.0090***</td>
<td>-0.0143*</td>
<td>0.0118</td>
<td>-0.00434</td>
</tr>
<tr>
<td>(0.0085)</td>
<td>(0.0058)</td>
<td>(0.0044)</td>
<td>(0.00732)</td>
<td>(0.00515)</td>
<td>(0.0121)</td>
<td>(0.00937)</td>
</tr>
<tr>
<td>Professionalsₚᵣ</td>
<td>0.0253*</td>
<td>0.0011</td>
<td>0.0042**</td>
<td>0.00963***</td>
<td>0.00340*</td>
<td>0.0115***</td>
</tr>
<tr>
<td>(0.0149)</td>
<td>(0.0013)</td>
<td>(0.0018)</td>
<td>(0.00249)</td>
<td>(0.00175)</td>
<td>(0.02979)</td>
<td>(0.00361)</td>
</tr>
<tr>
<td>Othersₚᵣ</td>
<td>0.0054***</td>
<td>0.0002</td>
<td>0.0005</td>
<td>0.00142***</td>
<td>0.00136***</td>
<td>0.00323***</td>
</tr>
<tr>
<td>(0.0014)</td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td>(0.00321)</td>
<td>(0.00321)</td>
<td>(0.000825)</td>
<td>(0.000793)</td>
</tr>
<tr>
<td>Obs.</td>
<td>206,833</td>
<td>153,582</td>
<td>153,582</td>
<td>360,415</td>
<td>360,415</td>
<td>253,313</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.60</td>
<td>0.73</td>
<td>0.73</td>
<td>0.68</td>
<td>0.68</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Notes: The response variable is total factor productivity (log). Results are from within-firm estimations. We control for firm, industry and year specific effects as well as for the legal form of the firm. In parentheses are robust and firm clustered standard errors. For brevity, other covariate estimates are not reported. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

In Columns (4)-(7), we note that professionals arriving from multinationals, enterprise groups (especially when the recruiting firm is a stand-alone firm) and foreign-trading firms are substantially more strongly associated with subsequent productivity growth than they are in the benchmark results. This result is in line with our expectations that professionals that arrive from firms with substantial resources can contribute a great deal to the SME that employs them, for example, by promoting innovation and marketing. Hiring an additional professional from a firm that participates in foreign trade or from an MNE is associated with a 1 percent increase in the recruiting firm’s productivity. As regards the result for professionals arriving from foreign traders in non-trading SMEs, the finding is well in tune with the literature on heterogeneous export behaviour of firms, where exporting firms are ‘the best’ firms within their industries (see, e.g., Bernard et al. 1995).

How robust are our results to endogeneity and specification issues? We have tested this by first employing the DiD matching estimator that provides a like-for-like comparison of difference-in-difference treatment effects. The results suggest that, on average, treated firms’ productivity growth is markedly higher across the time period one year prior to one year after recruitment than is the productivity growth of control firms. Two years after hiring, treated firms have even higher productivity growth compared with control firms’ productivity growth. These

30. In a related study, using data for Norway, Balsvik (2011) finds that newly hired workers from MNEs have a stronger impact on firm productivity than workers hired from elsewhere.
31. In additional analysis, we note that key individual characteristics hardly differ between recruits from foreign trading and multinational firms versus other recruits.
32. These results are available in the working paper version of this article (Gidehag and Lodefalk 2016), where we also present and discuss the operationalization of the matching and DiD estimator. Assuring for this analysis is that the pre-treatment trends are similar.
findings qualitatively confirm our benchmark result; this reassures us that our main findings are not driven by endogeneity, such as selection into recruitment, or macroeconomic shocks.

We now turn to the specification issues. Potentially, SMEs may be affected by both positive and negative factors in their local milieu, including, for example, access to a harbour or a university, and omitting these factors may bias our results. Likewise, the industry of an SME may experience shocks that radically change competition or demand for the SME’s products or services, and this may also introduce omitted variable bias. Reassuringly, our results scarcely change at all after controlling for such unobserved heterogeneity by including municipality and industry-year specific effects. Finally, adopting a non-linear specification with respect to leading personnel does not qualitatively alter our benchmark result.

6. Concluding Remarks

The role of white-collar recruitment for SME productivity growth is largely an unexploited research area. The gap in research is at odds with the generally recognised importance of tacit knowledge spillovers for economic growth and with the prevalence of SMEs. Indeed, Mion and Opromolla (2014) highlight the effect of manager mobility for productivity as a topic for future research.

This paper contributes by exploiting comprehensive and very detailed employer-employee panel data in the 2001-2010 period to analyse the impact of recruiting leading personnel (managers and professionals) on the productivity of small and medium-sized enterprises. We employ state-of-the-art algorithms for estimating total factor productivity, which, in turn, is regressed on recruiting variables while controlling for firm heterogeneity. We also adopt a quasi-experimental technique to test the robustness of our results. Importantly, we are able to analyse whether impacts differ depending on the matching between the donating and receiving firm.

We find evidence to suggest that the tacit knowledge carried by leading personnel can be instrumental for the productivity of SMEs. Hiring an additional manager or professional is on average associated with a 0.2 percent increase in subsequent firm productivity. Interestingly, when separating the two categories of managers and professionals, mainly professionals contribute to firm productivity. The strongest impact – at least three times as large – comes from recruiting professionals from enterprise groups and international firms.

33. The results are also robust to, e.g., controlling for the foreign-trading status of the SMEs; and the employment of a partial adjustment model, in which the lagged value of the response variable is included as a covariate. Using an estimation of total factor productivity from an OLS FE estimation does not qualitatively change the results, but results in inflated semi-elasticities.
Our findings underline that mobility of professionals is key for the growth of SMEs. They can be expected to both have experience and the ability to absorb and relay tacit knowledge. For SMEs that generally have less experience and resources than large firms, such personnel might propel the firm in a new trajectory, in particular if the recruits are from better-endowed firms. As shown by the booming Swedish gaming industry, which is dominated by SMEs, being able to recruit key personnel from Sweden and internationally may be a necessary component of comparative advantage (Holm 2014).

However, SMEs are arguably unable to compete easily with the salaries of larger and more established firms due to their relatively weak economic situation. Moving to an SME is also associated with downsides for other reasons. SMEs are often more prone to lay-offs or even exit from the market than more established firms are. Legislation that protects the labour force can make the leap to an SME even riskier since the potential recruit may lose job protection related to the length of employment at the current employer.

From an economic perspective, it therefore seems imperative to facilitate the mobility of key personnel and their recruitment to SMEs. For example, policymakers may consider removing unnecessarily restrictive firing regulations, such that hiring new personnel becomes more attractive for small firms (Millán et al. 2013). Another proposal may be to enable SMEs to more easily match the salaries and job security of more established firms by offering favourably taxed employee stock options, which SMEs can use to attract professionals.
References:

Örebro, Sweden: Örebro University.
Appendix

Table A1. Recruitment of managers and professionals across types of legal forms

<table>
<thead>
<tr>
<th>Legal form</th>
<th>No. of new managers and professionals</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural persons, partnerships and limited shipping partnerships (1)</td>
<td>10,608</td>
<td>0.05</td>
</tr>
<tr>
<td>Limited and mining partnerships (2)</td>
<td>2,780</td>
<td>0.10</td>
</tr>
<tr>
<td>Limited liability firms (excl. mining) (3)</td>
<td>75,237</td>
<td>0.40</td>
</tr>
<tr>
<td>Associations (excl. tenant owners’ associations) (4)</td>
<td>7,365</td>
<td>0.47</td>
</tr>
<tr>
<td>Tenant owners’ associations (5)</td>
<td>591</td>
<td>0.19</td>
</tr>
<tr>
<td>Government controlled entities and authorities (6)</td>
<td>3,418</td>
<td>10.78</td>
</tr>
<tr>
<td>Foreign legal persons (7)</td>
<td>1,113</td>
<td>0.51</td>
</tr>
<tr>
<td>Other legal entities (8)</td>
<td>1,970</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Notes: Own computations for the year 2010 for groups of legal entities, based on the LISA database.
Table A2. Data description and sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity</td>
<td>Total factor productivity, derived as described in Section 3</td>
<td>SBS and LISA</td>
</tr>
<tr>
<td>Newly hired leading personnel</td>
<td>Individuals who switch firm between two consecutive years and belong to SSYK categories 1-2</td>
<td>LISA</td>
</tr>
<tr>
<td>Newly hired other workers</td>
<td>Individuals who switch firm between two consecutive years and belong to SSYK categories 3-9</td>
<td>LISA</td>
</tr>
<tr>
<td>Firm size</td>
<td>No. of individuals who have the firm as their primary workplace in November</td>
<td>LISA</td>
</tr>
<tr>
<td>Skilled labour</td>
<td>Workers with post-secondary education</td>
<td>LISA</td>
</tr>
<tr>
<td>Unskilled labour</td>
<td>Workers without post-secondary education</td>
<td>LISA</td>
</tr>
<tr>
<td>Physical capital stock</td>
<td>Bookmarket value of the stock of machines, inventories, buildings, land and other property</td>
<td>SBS</td>
</tr>
<tr>
<td>Material input</td>
<td>Bought-in intermediates goods</td>
<td>SBS</td>
</tr>
<tr>
<td>Firm age</td>
<td>The number of years since the firms entered official statistics</td>
<td>SBS</td>
</tr>
<tr>
<td>Enterprise group affiliation</td>
<td>Enterprise group status dummy; unity if a firm is part of an enterprise, zero otherwise</td>
<td>EGR</td>
</tr>
<tr>
<td>Multinational affiliation</td>
<td>Multinational status dummy; unity if a firm is part of an enterprise with firms abroad, zero otherwise</td>
<td>EGR</td>
</tr>
<tr>
<td>Foreign trader</td>
<td>Unity if the firm exports or imports, zero otherwise</td>
<td>FTS</td>
</tr>
<tr>
<td>Legal form</td>
<td>Two-digit classification by type of legal entity</td>
<td>LISA</td>
</tr>
<tr>
<td>Industry</td>
<td>Two-digit Standard Industrial Classification (SNI2002, c.f. ISIC rev. 3)</td>
<td>FDB</td>
</tr>
<tr>
<td>Municipality</td>
<td>Four-digit municipality code</td>
<td>FR</td>
</tr>
</tbody>
</table>

Notes: Sources from Statistics Sweden are Structural Business Statistics (Företagens ekonomi), SBS; Longitudinal Integration Database for Health Insurance and Labour Market Studies, LISA; Enterprise Group Register (Koncernregistret), EGR; Foreign Trade Statistics (Utrikeshandel med varor; Utrikeshandel med tjänster, lånor och transfereringar), FTS; Business Register (Företagsdatabasen), FDB; Firm register (Företagsregistret), FR.