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Supplements to: Chapter 1 What is size ? - size variable selection for
demographic studies at global scales

Supplement S1.1, Supplement to Methods

S.1.1.1 Details of the dataset version used for this study.

The data curation of the PlantPopNet network includes the thorough cleaning of incoming data for
mistakes made upon measurement in the field or during data entry. Once cleaned, year after year,
new field data is added to the existing database. For reproducibility purposes, it is therefore
necessary to include information referring to the exact version of the dataset used, as any

subsequent data curation, subsetting or changes performed.

In this project, we used the PLANTPOPNET_YO V1.02 2020-11-18 and
PLANTPOPNET Y1 V1.1 2021-03-31 datasheets (standard data products). In addition, we
performed the following data cleaning steps: population CDF was excluded, as the number of
individuals indicated as surviving in year 1 did not match the numbers of individuals alive in year 0
and year 2. We excluded individuals LK1 _T1 P8 121,LK1 T1 P8 122 asthere was apparently a shift
in the columns of the leaf measurements; these plants had the highest observed number of leaves
in the whole dataset, but no leaf width information. We excluded observations of 305, 300 and 240
floral stems per rosette, as they were paired with leaf width <3mm and were probably due to column
shifts again. These extremely high number of floral stems values stemmed from the same year and
population as the extreme number of leaves values. Other high number of stems or leaf values were
maintained, as there was no evidence of any mistake. These corrections take place in a dataset

including 18146 observations of rosettes.

S.1.1.2 Details of the biomass equation

The biomass equation was developed following the method of Villellas et al. (2021). They
harvested aerial biomass information from 396 specimen grown in the greenhouse seeds stemming
from 16 populations included in the present study. They established a regression equation to predict
aerial biomass from the leaf measurements collected in the field (leaf number, length and width),
which we are reusing here. They applied Linear Mixed Models and model selection based on Akaike
Information Criterion for finite sample sizes (AIC.). Aboveground dry biomass was the response
variable, and they compared AIC. values of models with all possible combinations of main effects of
leaf length, leaf width, leaf number and the square term of the number of leaves as explanatory
variables (no interactions). In all models, all variables except leaf length were log-transformed to

normalise distribution of errors, and population of origin, as well as the light condition the plants
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were grown under in Villellas et al., were included as a random effect. The model including all three
variables and the square term of the number of leaves provided the lowest AIC. and an is strongly

supported by the data (conditional R2 0.86). The resulting equation is as follows:

e0.555934-6+1.9239234*10g(n°leaves)—0.2128901*10g(n°leaves)2+0.0028415*leaf length+ 0.8332087+log (leaf width)

Analyses were performed with the packages Ime4 (Bates et al. 2015) and MuMiIn (Barton 2016)
in R software (R Core Team 2017). We refer the reader to (Villellas et al. 2021) for more details about

the greenhouse conditions and light treatments.

S.1.1.3 Evaluation of the models — choice of performance metrics

We made use of two different performance metrics; an R? adapted to generalized linear mixed
models (Johnson 2014; Nakagawa, Johnson, and Schielzeth 2017; Nakagawa and Schielzeth 2013),
and the Mean Absolute Error (MAE; Chai and Draxler, 2014; Cort J. Willmott and Matsuura, 2005).
Nakagawa’s R? is divided into conditional and marginal R%. Marginal R? (R%*») can be understood as
the variance explained by the fixed effects in the model, while the conditional R? (R2) is the variance
explained by the entire model including the random structure. We used R? as an overall metric of
model performance, and MAE as a way to investigate further the error of the model in each separate

population.

The Mean Absolute Error is computed as follow:

n,.
MAE = 2 eqn 3
Where e is the i-th model error of a model with n observations.

To obtain MAE values comparable between models calibrated on different responses, we mean
centred and standardized the residuals of all models and calculated the MAE based on those

standardized residuals.

Both these metrics were selected on the following basis; they provide information about the
performance of the model (Chai and Draxler 2014; Nakagawa and Schielzeth 2013), they are
applicable to mixed models and to the different error families we make use of in this study (Chai and
Draxler 2014; Nakagawa et al. 2017), they can be compared between models with different response
variables, even if these have been built on different datasets (unlike selection criteria such as AIC;
Nakagawa and Schielzeth (2013) and between error distributions (although this is a bit more
arduous; Nakagawa et al. (2017). We preferred MAE to the Root Mean Squared Error (RMSE), as
MAE is more intuitive, as it is linked directly to the absolute error of the models. Furthermore,

although there is evidence that RMSE should be favoured in the cases where the error is expected
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to be normal (Chai and Draxler 2014), we want to compare various types of models with different
error families, in which case MAE is advised (Willmott and Matsuura 2005). Finally, both R and MAE

are easily interpretable.

S.1.1.4 Evaluation of the models —the Dharma protocol

The DARHMa methodology (Hartig 2020) simulates a set of expected residuals based on the model
and assuming the assumptions are met. The dharma residuals are then the difference between the
simulated and the actual residuals. These “DHARMa residuals” then have to meet the assumptions
of uniformity, and overdispertion of the residuals can be tested. The vignette of the package is
extremely well furnished and we invite all to read it for more details; https://cran.r-

project.org/web/packages/DHARMa/vignettes/DHARMa.html. The functions used here were slightly

adapted, so that they do not display p-values (as we diagnose multiple models).



Supplement S1.2: Illustration of the approach used to explore the model diagnostics

of the vital rate models under criterion a)

The following graphs illustrate the model diagnostic approach followed for criterion a. We made use
of the Dharma methodology for the exploration of generalized linear mixed models developed and

its related R package (Hartig 2020).

We present the plots stemming from two of our models as examples: one good one (the survival
model using the untransformed number of leaves as a size predictor) and one which we described

IM

as “suboptimal” in the main text (the growth model making use of the log transformed length of the

longest leaf as a size metric). For details about the interpretation of these plots, see section 51.1.4.



Supplement S1.2.1 Example of a model with good Dharma diagnostics

The following shows the details of the summary of the model, followed by the plots from the
Dharma diagnostics approach.

no_leaves_ YO

Formula of the model:
survived_Y1 ~ no_leaves_YO + (no_leaves_YO0 | site_code) + (1 | unique_plot_ID) <environment:
0x7fec19def2c8>

Summary table:

Diagnotsics:
MODEL INFO: Observations: 5746 Dependent Variable: survived_Y1 Type: Mixed effects generalized linear
regression Error Distribution: binomial Link function: logit

MODEL FIT: AIC = 5072.32, BIC = 5112.26 Pseudo-R? (fixed effects) = 0.21 Pseudo-R? (total) = 0.72

FIXED EFFECTS:

Est. S.E. z val. p
(Intercept) 0.66 0.22 2.96 0.00
no_leaves_YO0 0.19 0.04 5.50 0.00
RANDOM EFFECTS:
Group Parameter Std. Dev.
unique_plot_ID (Intercept) 0.81
site_code (Intercept) 1.33
site_code no_leaves YO 0.17
Grouping variables:
Group # groups ICC
unique_plot_ID 658 0.11

site_code 54 0.31
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Supplement S1.2.2 Example of a model with poorer Dharma diagnostics

Log_longest_leaf YO0

Formula of the model:

Log_longest_leaf_Y1 ~ Log_longest_leaf YO + (Log_longest_leaf YO | site_code) + (1 | unique_plot_ID)

<environment: 0x7fed0055e5a0>
Summary table:

Diagnotsics:

MODEL INFO: Obsetrvations: 4321 Dependent Variable: Log_longest_leaf Y1 Type: Mixed effects linear

regression

MODEL FIT: AIC = 3386.28, BIC = 3430.88 Pseudo-R? (fixed effects) = 0.24 Pseudo-R? (total) = 0.68

FIXED EFFECTS:

Est. S.E. tval.
(Intercept) 2.54 0.20 12.67
Log longest leaf YO 0.49 0.04 12.66

p values calculated using Kenward-Roger standard errors and d.f.

RANDOM EFFECTS:

Group Parameter
unique_plot_ID (Intercept)
site_code (Intercept)
Group Parameter
site_code Log_longest_leaf YO
Residual

Grouping variables:

Group # groups
unique_plot_ID 602
site_code 55

d.f. P
52.59 0.00

52.87 0.00

Std. Dev.
0.16

1.31

Std. Dev.
0.25

0.33

ICC
0.01

0.93
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Supplement S1.3, Supplement to Results
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Figure $1.3.1 Patterns of Mean Average Error along two main climatic gradients; A)

temperature and B) precipitation (displayed on the next page). Upper rows show the native range

populations, lower rows the non-native range. Populations are on the x-axis, placed by order of

increasing A) temperature and B) precipitation. Y-axis shows the Mean Absolute Error (ratio of the

sum of the absolute value of the residuals over the number of observation) in this population. Each

symbol and color represents a different size metric (see legend). Highly differentiated lines would

show a strong difference between the three candidate size metrics in their performance. High

differences between Mean Absolute Error for different populations show a strong difference in

performance at the population level. In the present case, size metrics mostly perform so similarly that

the lines confound and overlap.
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Supplement S1.3.2: Effect of size metric, temperature and precipitation on MAE

MODEL INFO:

Observations: 196

Dependent Variable: MAE

Type: Mixed effects linear regression

MODEL FIT:

AlC=-227.17, BIC =-187.83
Pseudo-R? (fixed effects) = 0.05
Pseudo-R? (total) = 0.88

FIXED EFFECTS:

Est. S.E. tval. d.f. p
(Intercept) 0.76 0.06 12.44 27.21 0.00
size metric (no leaves) 0.04 0.02 1.57 162.00 0.12
size metric (In(no leaves)) 0.04 0.02 1.82 162.00 0.07
size metric (Total Leaf Length) 0.03 0.02 1.30 162.00 0.19
size metric (regressed biomass) 0.04 0.02 1.83 162.00 0.07
size metric (longest leaf) 0.02 0.02 0.95 162.00 0.34
size metric (photosynthetic area) 0.00 0.02 0.18 162.00 0.85
precipitation 0.01 0.05 0.23 24.00 0.82
temperature 0.05 0.06 0.71 24.00 0.48
RangeNon-Native 0.02 0.14 0.17 24.00 0.87

p values calculated using Kenward-Roger standard errors and d.f.

RANDOM EFFECTS:

Group  Parameter Std. Dev.

pop (Intercept) 0.23
Residual 0.09

Grouping variables:

Group #groups ICC

pop 28 0.87



Supplements to: Chapter 2 Vital rate and life history strategies of P.
lanceolata are captured by SDM predicted suitability along a steep
environmental gradient in the Swiss Alps

Supplement S2.1 Supplement to the main text

Supplementary material S2.1.1: added information on the SDM
Water availability, temperature and neighbouring vegetation cover or height are described

as the best descriptors of several ecological processes for P. lanceolata (Kuiper and Bos
1992). Kuiper and Bos (1992) also highlighted the high importance of land use, such as
agricultural use or disturbance, and soil physical properties in driving the distribution of the
species (see as well publication such as Kozdkova et al., 2015). Soil chemical properties, on
the other hand, were shown to be of little relevance to the distribution of P. lanceolata L.
(Kuiper and Bos 1992; Wu and Antonovics 1976). As a result, two climatic predictors (yearly
moisture index, yearly mean temperature), two topographic predictors (slope and
topographic position) and one biotic predictor (vegetation height) were included in our
model. The environmental predictors used are detailed in Table 1. All variables were cropped

to exclude forested areas.

No layer of agricultural use information was available for the study area at the time of this
study. Nonetheless, in this mountain area, both land use and soil properties are highly linked
to the steepness of the slope and the position within the topography of the soil (Randin et
al. 2009). Slope and flatness of the terrain will affect the exploitation type and choice, and
bumpiness of the terrain will create places of more intensive exploitation or grazing. The
same variables will affect nutrient deposition and soil depth on steep mountainsides (Kérner
2003). Slope and topographic position were hence added as surrogates for soil properties
and land use in the research area. The slope is measured in degrees and derived from the
digital elevation model (DEM) with ArcGis 9.3 spatial analyst tool (Dubuis, Giovanettina, et
al. 2013). The topographic position is computed with moving windows and is an integration
of topographic features at various scales; positive values of this variable indicate ridges and
tops and negative values valleys and sinks (Dubuis, Giovanettina, et al. 2013). This variable
was calculated using the method of Zimmermann, Edwards, Moisen, Frescino, and

Blackward (2007).
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Water availability and temperature were captured via layers of yearly moisture index and
yearly mean temperature (Dubuis, Rossier, et al. 2013; Zimmermann and Kienast 1999).
These climatic predictors were computed from the monthly means of the average
temperature (°C) and sum of precipitation (mm) data recorded between 1961 and 1990 by

the Swiss network of meteorological stations (www.meteosuisse.ch), using only the

information from the growing season (June-August). The point measurement are
interpolated on Switzerland with local thin-plate spline-functions for temperature and a
regionalized linear regression model for precipitation based on a digital elevation model

(from the Swiss Federal Office of Topography, www.swisstopo.ch) (Zimmermann and

Kienast 1999). The moisture index is the mean difference between precipitation and
potential evapotranspiration over the growing season and represents the amount of water

potentially available in the soil.

As the height of the neighbouring vegetation was shown to have a high impact on the
distribution of P. lanceolata L., we used a modelled layer of coverage weighted mean
community vegetation height developed for the study area (Baudraz et al. 2018). This layer
was developed using exhaustive community inventories and species specific mean
functional traits value sampled in the same study area (Dubuis, Rossier, et al. 2013). Using
this data, Baudraz et al., (2018) interpolated the coverage weighted mean community
vegetative height of non-forested areas over the whole research area. We used this layer as

a way to capture vegetation height in the study area.

We used Biomod?2 to fit the individual SDMs and derive the final prediction of habitat suitability
(Thuiller et al. 2016). The three following modelling techniques were included in the ensemble:
boosted regression trees (BRT; (Elith, Leathwick, and Hastie 2008), random forest (RF; Prasad,
Iverson, & Liaw, 2006) and generalized linear model (GLM; Guisan, Edwards, & Hastie, 2002). The
models and the final prediction were evaluated through repeated split sampling (models calibrated
on 70% of the data, and evaluated on 30%) using AUC, max-Kappa and max-TSS (Guisan, Thuiller,
and Zimmermann 2017). A final, ensemble model using all of the data was then projected over the

study area and used as an environmental suitability metric in the rest this study (Guisan et al. 2017).

Supplementary material S2.1.2: added information on the site selection
The suitability range (from min to max log odds value) was divided into five strata each covering 20%

of all possible suitability values. Seven known P. lanceolata occurrences in each stratum were
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randomly selected as candidate sites. Candidate sites were visited over the first fieldwork season
(June-August 2017). If the occurrence of P. lanceolata was confirmed and the site deemed suitable
for the PlantPopNet protocol (Buckley et al. 2019), a population monitoring site was set up. In total,
19 populations were set up, four in each suitability stratum except for the lowest suitability. In the
latter, some reported occurrences were actually misidentifications of the species P. atrata, and only
three populations could be set up. In another stratum, a candidate site was discarded as it did not
match the criteria for the establishment of a PlantPopNet population (foreseeable sudden change in
land use in the next few years; Buckley et al. 2019), but could be replaced by another suitable
candidate site. The data of one site at the middle range of values had to be discarded, as plants

marked in the first year could not be consistently relocated in future years.

Supplementary material S2.1.2: Fieldwork and gathering of demographic data
Setting up of the populations, demographic census and collection of functional traits data were

performed following the PlantPopNet protocol (Buckley et al. 2019). In Summer (June-August) 2017,
100 individuals per site were mapped and tagged using small linoleum squares, fixed in the ground
at the foot of each plant with a plastic coated metallic pin. This enabled us to find them accurately
in subsequent years. The size (number of leaves and length/width of the longest leaf) and
reproductive effort (number of stems and inflorescence length) of each rosette of each individual
were recorded during the summer for three years (2017-2019). When new individual rosettes were
produced, they were also tagged and measured, and given an individual identifier, either within the
genet they belonged to or as separate, new recruits. Seedlings were counted, but not marked until
their second year, to avoid tagging related mortality. Repeated demographic censuses at each site
enabled the calculation of rates of reproduction, growth of each rosette and individual, recruitment

in the population and mortality/survival of adult individuals.
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Supplement S2.2 Supplementary Figures

Figure S2.2.1: life cycle of the focal species. An individual of size z: at time t can contribute to the
population at time t+1 by either surviving (s) and growing or shrinking (g) to a size z:.;, or entering a
reproductive event starting by flowering with a probability of h, then producing a certain reproductive
effort (o, measured in mm of inflorescences, a proxy for number of seeds). These seeds then
contribute to a fraction of the number of recruits (b) entering the population at time t+1 with a size

z.41 given by the size distribution of recruits function c.

s = survival, g = growth (and shrinkage), h = flowering probability, o = reproductive effort per

flowering event, b = recruitment rate, ¢ = recruit size distribution.
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Figure $2.2.2 Geographic projection of the predicted environmental suitability on the study
area. Colour code represents the predictions of the weighted ensemble model (GBM, GLM and RF) in
log odds.
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Figure 52.2.3: Summary of the effect of suitability on the different vital rates. Vital rates
are presented on the y-axis. Open circles represent the parameters for suitability in each vital
rate model (x-axis), horizontal bars their 95% confidence intervals. Turquoise = linear term of
the relationship between suitability and the vital rate, red = interaction between suitability
and size to explain the vital rate. An absence of point means no term at all was maintained

in the model.
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Figure S2.2.4 Convergence of the population growth rate as the population model is
iterated towards equilibrium. The x-axis shows the number of iterations: as our matrix model is
based on an annual transition period, the number of iterations can be understood as equivalent to
years. The y-axis shows the rate of increase of the population (population size at time t / population
size at time t+1) as predicted by the model. Each line is based on the observations of one population
in one transition.
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Figure S2.2.5 Plot of the raw data of useful information on recruits density. Upper part =
components of recruit density, with (A) area covered by each population, (B) number of recruits, (C)
recruit density. One observation = one site. Lower part = relationship with site species richness, with
(D) number of recruits and (E) recruit density over number of species. The number of species was
inventoried in a 2m x 2m vegetation plot at the end of the demographic transects. Species were
identified as best as possible to species or genus level, and some unidentified species were recorded
as such. One observation = one site in one year. (F) relationship between species richness and
environmental suitability. One observation = one site.
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Supplement S2.3: relationship between seed number and inflorescence length

In the Summer of 2019, inflorescences were collected at the field sites, around the monitored
populations. These inflorescences were not collected not yet fully ripe, so that the seeds had not yet
dispersed. The inflorescence length was measured, and the seeds were extracted from each
inflorescence and counted. Some sites had to be revisited outside peak flowering season to obtain
biological samples, and no seeds could be found in three sites.
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Figure S2.3.1 Relationship between the number of seeds per inflorescence and the length
of the inflorescence in fifteen sites from our study. The inflorescence length is measured in
millimeters, and the relationships are for one inflorescence per plant only.

From the gathered information, the relationship between number of seeds and inflorescence length
was studied. We first display the raw data per site (Figure S4.1). We also built a generalized linear
mixed model explaining the number of seeds as a function of the inflorescent length, with the site of
origin as a random factor (intercept only). The number of seeds was modelled as Poisson distributed
with a log link, using the Ime4 package in R (Bates et al. 2015). The relationship between seed number
and inflorescence length once adjusted for the correlation between samples stemming from the
same sites is displayed in Figure S4.2.
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Figure S2.3.2 Modelled relationship between the number of seeds per inflorescence and
the length of the inflorescence once the effect of sites has been accounted for. The
inflorescence length is measured in millimeters. The predicted line and confidence intervals stem from
a generalized linear mixed model explaining the number of seeds as a function of inflorescence length
as a Poisson distributed process (with log link), with the site of origin as a random intercept.
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Supplement S2.4 Supplementary Tables

Table S2.4.1 Model selection tables of the vital rates models
Detail of the model selection outputs on the vital rates models. The tables show candidate models for
the selection.

Size YO means size at time t, “A2” indicates a quadratic term, and size*suitability is the interaction
between size at time t and suitability.

The columns for Intercept, size YO, size Y2 if applicable, suitability, suitability”2, transition,
size*suitability indicate the parameter estimates for the fixed effect predictors, with NA meaning this
predictor is not included in this candidate. dAICc is the delta AlCc (Barton 2018; Burnham and
Anderson 2002): a difference in dAICc of less than two between two models means they have
equivalent fit.

Table S2.4.1.A survival

Intercept size YO suitability suitability®2 transition size * suitability family degrees of freedom log likelihood AlCc dAlCc
1 0.14 0.97 -0.42 0.34 + -0.15 binomial(logit) 8 -1518.39 3052.83 0.00
4 0.48 0.97 -0.38 NA + -0.15 binomial(logit) 7 -1519.63 3053.29 0.46
2 0.24 0.91 -0.65 0.33 + NA binomial(logit) 7 -1519.72 3053.47 0.64
3 0.55 0.91 -0.61 NA + NA binomial(logit) 6 -1520.86 3053.74 0.91
5 0.50 0.91 NA NA + NA binomial(logit) 5 -1525.78 3061.57 8.74
Table S2.4.1.B growth
Intercept Intercept  size size * degrees of log

(cond) (disp) Y0 suitability suitability®2 transition suitability family freedom likelihood AlCc dAICc
2 0.74 + 060 0.25 NA + -0.11 nbinom2(log) 12 -7865.41 15754.92 0.00
1 0.75 + 060 0.25 -0.01 + -0.11 nbinom2(log) 13 -7865.39 15756.90 1.98
5 0.76 + 059 NA NA + NA nbinom2(log) 10 -7870.13 15760.33 541
4 0.76 + 059 0.04 NA + NA nbinom2(log) 1" -7869.87 15761.83 6.91
3 0.77 + 059 0.04 -0.01 + NA nbinom2(log) 12 -7869.84 15763.78 8.86
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Table 52.4.1.C flowering probability

Intercept
3 -7.91
7 -8.30
2 -7.13
1 71
4 -5.10
8 -5.55
6 -5.09
9 -5.57
5 -5.08

Table S2.4.1.D reproductive effort

size
YO

4.36
434
3.59
3.59
1.52
1.51
1.52
1.52

1.52

size*2 suitability transition

-0.66
-0.66
-0.48
-0.48
NA
NA
NA
NA
NA

-1.23

-1.27

NA

-0.20

-0.83

-0.87

NA

-0.28

-0.21

+

+

Intercept size YO suitability suitability*2 transition

3 2.09
2 2.05
4 2.09
1 2.05
5 2.06

0.44
0.44
0.44
0.44

0.46

0.22

0.22

0.22

0.22

NA

NA
0.03
NA
0.03
NA

Table S2.4.1.E size of recruits

Intercept (cond)
3 0.68
2 0.68
1 0.60

Intercept (disp)

+

+

+

suitability

NA
0.13

0.13

size degrees of log

suitability suitability”2 family freedom likelihood AlCc dAlCc

0.49 NA binomial(logit) 8 -1171.39 2358.82 0.00

0.49 0.42 binomial(logit) 9 -1170.61 2359.27 045

NA NA binomial(logit) 6 -1184.83 2381.68 22.86

NA NA binomial(logit) 7 -1184.53 2383.09 24.27

0.30 NA binomial(logit) 7 -1190.04 2394.12 35.30

0.29 0.46 binomial(logit) 8 -1189.06 2394.16 35.34

NA NA binomial(logit) 5 -1196.28 2402.58 43.76

NA 0.51 binomial(logit) 7 -1194.75 2403.52 4470

NA NA binomial(logit) 6 -1195.94 2403.91 45.09
size * suitability family degrees of freedom log likelihood AICc dAICc
+ NA gaussian(identity) 7 -481.20 976.67  0.00
+ NA gaussian(identity) 8 -481.15 978.66 1.98
+ 0 gaussian(identity) 8 -481.20 978.75 2.08
+ 0 gaussian(identity) 9 -481.15 980.75  4.07
+ NA gaussian(identity) 6 -485.00 982.21 5.54
suitability”2 transition family degrees of freedom log likelihood AlCc dAICc
NA + nbinom2(log) 5 -1911.04 383214  0.00
NA + nbinom2(log) 6 -1910.03 3832.15 0.02
0.07 + nbinom2(log) 7 -1909.85 3833.82 1.68
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Table $2.4.2 Detail of the vital rates models



Supplement S2.5 Detail of the recruitment model selection
Several candidate recruitment models (b) were attempted, for different density dependence
scenarios: compensatory density dependence, density independent and constant

recruitment. Detail of the models are given in equations 4, 5 and 6.

As the studied populations have different densities, and the PlantPopNet protocol monitors
as many 50 x 50 cm plots necessary to sample 100 individual genets in the first year of
fieldwork, we fitted our candidate recruitment models on the number of recruits per plot
(rw/aw) in any site w via generalized least squared (gls). The use of gls was necessary to
compare linear and non-linear response curves. The use of the number of recruits per unit
area is necessary to have comparable, meaningful densities to study the effects of density
dependence. The response variable was square root transformed to normalize the residuals

and yield a more homogeneous variance of the error in all candidate models.

Our density independent model is described in equation 4. In this model, every unit of

reproductive effort linearly produces a proportion (po) of the number of recruits.

Tw __ Ow

w Po * w equation 4

where oy is the sum of reproductive effort (mm of inflorescences) produced by all individuals

in site w and aw the number of plots (unit area) sampled at site w.

Our constant recruitment model is described in equation 5. It describes a scenario where
only a certain number of microsites become available every year in any given population,
constraining the number of recruits entering the population the next year to a specific

plateau value R, 4.

Tw

Rinax equation 5

Ay

Equation 6 assumes a compensatory density dependent process through a reparametrized
Beverton-Holt equation where every unit of reproductive effort contributes linearly to the
pool of recruits at low density, but at higher densities the probability of recruitment
decreases up to a plateau value Rmax (Beverton & Holt, 1957: see supplementary material

$2.6 for the reparametrization).
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Two_ ”0*(@)
- ow
Ay +po*(aw)

Rmax

equation 6

We assumed that the parameters p0 and Rmax could vary, or not, as a function of

enviromental suitability such as detailed in equations 7-10.

Po= Pot+ B1@ equation 7
Rpax = B2+ Bz @ equation 8
or

Po = Bo equation 9
Riax = B2 equation 10

We only let either p0O or Rmax at a time to vary as a function of suitability in the Beverton-
Holt model, to limit our models to three parameters to be estimated on the basis of 36 non-

independent observations (2 observations of 18 sites).

This led us to a total of seven candidate recruitment models. These seven candidate
recruitment models were then compared using AlCc values. The recruitment models were
fitted via generalized least squares using the nlme package (Pinheiro et al., 2020). AlCc
values were determined using the MuMIn package (Bartoni, 2018). The results of the AlCc

based model comparison are presented in Table S2.5.1.

There was a wide range of existing densities in our observed populations, such that the
number of 0.25m? plots that needed to be sampled to guarantee a population size of at least
100 individuals in the first year of the study varied between 4 and 127 (Figure S2.5.1, colour
legend). The model that had the lowest AlCc was the constant recruitment model with
carrying capacity varying as a function of suitability (model C.1, Table $2.5.1). The constant
recruitment model with no effect of suitability performed nearly as good in terms of AlCc.
We therefore selected model C.1, but note the potential impacts of this choice in the
discussion. The prediction of a constant recruitment model, compared to those of a

Beverton Holt model are displayed in Figure S2.5.2
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Table S2.5.1 Results of the recruitment model selection. The various models represent different
regimes of density dependence. Column four (“Detail of the parameters and relationship to
suitability”) details the way environmental suitability was allowed to affect recruitment and density
dependence in all models. The selection of the best model was performed based on AlCc value, mode
details on other metrics are available in supplement S1. Recruitment models were fitted via
generalized least squares using the nlme package (Pinheiro et al., 2020). AlCc values were determined
using the MuMIn package (Barton, 2018).

Model Recruitement | Equation Detail of the parameters and | AlCc

name type relationship to suitability
No density B

1 dependence r Po= Pot+ fr*w 103

—=po*S
a

No density

. = 104

0 independence Po = Po 0

Compensatory Dy = B

BH.1.R density Fo = o 90
dependence Riax = 1+ B2+ @
Compensatory | r Po *S B

BH.1.P density rin w Po - Bo +—'8[13 * @ g8
dependence + Riar max = P2
Compensatory _

BH.0 density RPo —_ﬁ?g 89
dependence max — P1
Constant 81.8

¢l recruitment T_»p Rmax = o+ Brx @
Constant q ~ max

c.0 recruitment Rmax = Bo 82
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Figure S2.5.2 Details of predictions of two candidate recruitment models evaluated for this
study. Left panels show the results of the constant recruitment model (model C.1, see main text),
while right hand panels show the results of the compensatory recruitment model for comparison
(model BH.1.P, see main text). Upper panels are in the original scale of the models, i.e. in number of
recruits per unit area (r/a, table 2 and equations 4-6) either observed (x-axis) or predicted (y-axis) at
any given site. Lower panels are reported in actual number of recruits (r, table 2 and equations 4-6)
either observed (x-axis) or predicted (y-axis) at any given site.
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Supplementary material S2.6: Reparametrization of the Beverton Holt Equation
Let’s start with our Beverton Holt recruitment function (Beverton & Holt 1957), where R is the

number of expected recruits per unit area, S is the number of stems per unit area, and by and b; are
the parameters:

B S
o bo + 618

Define Ry as the asymptotic number of recruits. Divide numerator and denominator on the
right hand side by S

and let .S tend to oo :

. 1 1
Roaz = th—}oobO— = bl

—+b
g + 01
One can then rewrite the recruitment function in terms of asymptotic number of recruits:

S
R =

bo +

Rm ax

One can reparameterise this by setting pg = 1/bo, which results in:

p—_ PoS
14 28
Rmam

The po parameter turns out to be the slope of the recruitment function at S =0, i.e. the propor-
tion of seeds that recruit in the absence of density dependence. The parameters are now meaningful
and can be directly compared to the parameters of the other two models we use in our study. Let pg
get very big and you get to the constant recruitment model (equation 6, main text). Let Rpaz be
very big and we obtain the density independent model (equation 5, main text).
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Supplements to: Chapter 3 Intraspecific variation in functional traits
and their demographic consequences along an environmental
suitability gradient for a perennial herb

Added information on the SDM: see Supplementary material S2.1.1
In an attempt to reduce redundancy, this section is presented only once, in Chapter 2.

Supplement S3.1 Plots of the raw data and correlations between traits (if available)
$3.1.1 Correlations between predictors. One observation = one site

predictors only
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$3.1.2 Correlation between leaf traits. One observation = one individual

leaf area
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$3.1.3 Specific Leaf Area over predictors
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$3.1.4 Leaf Mass over predictors
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$3.1.4 Leaf Area over predictors

Leaf Area
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S$3.1.1 Seed Mass. One observation
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Seed number
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Supplement S3.2 Details of the survival models

Table $3.2.1 Survival as a function of Leaf Area in interaction with suitability

MODEL INFO:

Observations: 4047

Dependent Variable: individual survival at time t + 1
Type: Mixed effects generalized linear regression
Error Distribution: binomial

Link function: logit

MODEL FIT:

AlIC =3764.17, BIC = 3808.31
Pseudo-R? (fixed effects) = 0.18
Pseudo-R? (total) = 0.35

FIXED EFFECTS:

Est. 2.5% 97.5% zval.

(Intercept) 296 2.56 3.36 14.54
LA -0.45 -0.83 -0.07 -2.32
suitability -0.34 -0.65 -0.02 -2.09
transition -1.14 -1.32 -0.97 -12.67

LA:suitability 0.61 0.36 0.86 4.71

RANDOM EFFECTS:

Group  Parameter Std. Dev.

plot (Intercept) 0.88
site_code (Intercept) 0.34

Grouping variables:

Group #groups ICC

plot 362 0.18
site_ code 18 0.03




Table $3.2.2 Survival as a function of Leaf Area without interaction with suitability

MODEL INFO:

Observations: 4047

Dependent Variable: individual survival at time t + 1
Type: Mixed effects generalized linear regression
Error Distribution: binomial

Link function: logit

MODEL FIT:

AIC =3779.97, BIC=3811.49
Pseudo-R? (fixed effects) = 0.08
Pseudo-R? (total) = 0.35

FIXED EFFECTS:

Est. 2.5% 97.5% zval.

(Intercept) 335 2.86 3.84 13.41
LA -0.33 -0.70 0.05 -1.69
transition -1.14 -1.32 -0.97 -12.69

RANDOM EFFECTS:

Group  Parameter Std. Dev.

plot (Intercept) 0.87
site_code (Intercept) 0.76

Grouping variables:

Group #groups ICC

plot 362 0.16
site_ code 18 0.13
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Table $3.2.3 Survival as a function of Specific Leaf Area in interaction with suitability

MODEL INFO:

Observations: 4047

Dependent Variable: individual survival at time t + 1
Type: Mixed effects generalized linear regression
Error Distribution: binomial

Link function: logit

MODEL FIT:

AIC =3768.58, BIC=3812.72
Pseudo-R? (fixed effects) = 0.16
Pseudo-R? (total) = 0.35

FIXED EFFECTS:

Est. 2.5% 97.5% zval.

(Intercept) 3.01 257 345 13.27

SLA -0.43 -0.77 -0.08 -2.42
suitability -0.24 -0.57 0.09 -1.42
transition -1.14 -1.32 -0.97 -12.70

SLA:suitability 0.55 0.21 0.89 3.14

RANDOM EFFECTS:

Group Parameter Std. Dev.

plot (Intercept) 0.87
site_code (Intercept) 0.43

Grouping variables:

Group #groups ICC

plot 362 0.18
site_code 18 0.04




Table $3.2.4 Survival as a function of Specific Leaf Area without interaction with suitability

MODEL INFO:

Observations: 4047

Dependent Variable: individual survival at time t + 1
Type: Mixed effects generalized linear regression
Error Distribution: binomial

Link function: logit

MODEL FIT:

AIC =3774.05, BIC = 3805.58
Pseudo-R? (fixed effects) =0.12
Pseudo-R? (total) = 0.35

FIXED EFFECTS:

Est. 2.5% 97.5% zval.

(Intercept) 336 291 3.81 14.73
SLA -0.55 -0.89 -0.22 -3.24
transition -1.14 -1.32 -0.97 -12.69

RANDOM EFFECTS:

Group  Parameter Std. Dev.

plot (Intercept) 0.87
site_code (Intercept) 0.63

Grouping variables:

Group #groups ICC

plot 362 0.17
site_code 18 0.09

Summary tables printed with use of the jtools package (Long 2020).
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Supplement S3.3 Relationship between functional traits and elevation
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Figure $3.3.1 Relationship between elevation and functional traits: A) SLA, B) LA, C)
Number of seeds per inflorescence D) seed mass. The prediction line and 95% confidence
intervals stem from a linear mixed model with suitability as a fixed effect and site as a
random effect. Suitability is the mean standardized output of the Species Distribution Model.
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Figure $3.3.1 Relationship between LA (A) or SLA (B) on survival in interaction with
elevation. Panel A shows the relationship between LA (x-axis) and survival probability (y-
axis). Panel B shows the relationship between SLA (x-axis) and survival probability (y-axis).
The interaction between elevation and the functional trait in explaining survival is
represented by the two colored lines, where deep purple shows the relationship at the lowest
elevation where a population was monitored. Light yellow shows the relationship at the
highest elevation. Points are coloured as per the lines. The shaded areas represent the 95%
confidence interval for the predictions. Each observation is an individual from one of the 18
populations: points are shown with jitter to avoid overlap. Plots created using the ggeffects
package (Lidecke 2018) using the viridis colour-blind friendly colour maps (Garnier et al.
2021).
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Supplements to: Chapter 4 - Evidence for a slower life cycle in low
SDM-predicted probability of occurrence areas in the perennial herb
Plantago lanceolata L.

Supplement S4.1: Supplement to data sources
In this study, we focused on the first two transitions of the PlantPopNet database. We used

the YO_V1.02,Y1 V1.1.and Y2_V1.1 standard data products. In addition, we performed the
following data cleaning and investigation steps. Population CDF was excluded as the number
of individuals still alive (i.e., the population excluding dead plants and new recruits) in Y1 did
not match with the number of individuals in YO or Y2. A shift in columns for individuals 121
and 121 in population LK1 (LK1_T1_P8 121 and LK1_T1_P8 122) was detected and
corrected (no leaves = NA, leaf length = 95, respectively 72 and leaf width = 6, respectively
28) and individual 8 in population SW242 (SW242_T2 P20_8) was deleted following an issue

on tracking the rosettes between year 0 and y1.

Life cycle of the focal species: see Figure S2.2.1
In an attempt to reduce redundancy, this figure is presented only once, in Chapter 2.
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Supplement S4.2 Variable importance in the two SDM approaches represented in the
main text.

SoilSand_reproj
Slope |
bio15.
bio12

bio1 .

GlobCov_reproj |

WorldPop_reproj |

hf_repro |

0 10 20 30 40
Relative influence
Figure $4.2.1 Relative influence of each environmental predictors in the species-specific
SDM-approach. The relative influence is computed as the squared error attributed to each
variable in the random boosted regression tree technique applied for the species specific SDM
(Elith et al. 2008; Greenwell et al. 2018). Legend of layer’s names: SoilSand_reproj = soil sand
contents (proportion of sand), biol5 = precipitation seasonality, bio 12 = annual
precipitation, bio 1 = mean annual temperature, GlobCov_reproj = global land use cover,
WorldPop_reproj = population density, hf _repro = human footprint.
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Supplement 5§4.2.2 Variable importance of each environmental predictors in the generic
SDM. The variable importance is a standardized metric of the mean importance of each
variable across the different runs of the different algorithms included in the final ensemble
model as a max-TSS weighted average (Thuiller et al. 2016). Legend of predictors’ names:
biol = mean annual temperature, bio 4 = temperature seasonality, bio 10 = mean
temperature of the warmest quarter, bio 11 = mean temperature of the coldest quarter, bio
15 = precipitation seasonality, bio 16 = precipitation of the wettest quarter, moist = annual
potential evapo-transpiration, moist_SD = seasonality of the annual potential evapo-
transpiration.
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Supplement $4.2.3 Relative influence of each environmental variable when the species
specific-SDM approach is applied on the generic SDM predictors (Hybrid approach 1,
Supplement 54.3). The relative influence is computed as the squared error attributed to each
variable in the random boosted regression tree technique applied for the species specific SDM
(Elith et al. 2008; Greenwell et al. 2018). Legend of predictors’ names: biol = mean annual
temperature, bio 4 = temperature seasonality, bio 10 = mean temperature of the warmest
quarter, bio 11 = mean temperature of the coldest quarter, bio 15 = precipitation seasonality,
bio 16 = precipitation of the wettest quarter, moist = annual potential evapo-transpiration,
moist_SD = seasonality of the annual potential evapo-transpiration.
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Supplement S$4.2.4 Variable importance of each environmental predictors when the
generic SDM approach is applied on the species-specific environmental predictor (Hybrid
approach 2, Supplement S4.3). The variable importance is a standardized metric of the mean
importance of each variable across the different runs of the different algorithms included in
the final ensemble model as a max-TSS weighted average (Thuiller et al. 2016). Legend of
layer’s names: SoilSand_reproj = soil sand contents (proportion of sand), biol5 =
precipitation seasonality, bio 12 = annual precipitation, bio 1 = mean annual temperature,
GlobCov_reproj = global land use cover, WorldPop_reproj = population density, hf repro =

human footprint.
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Supplement S4.3 Consequences of a swap of predictors between SDM-approaches.

As the relationships between life history strategies (LHS) and environmental suitability as
predicted by a Species Distribution Model (SDM-suitability) were so distinct between the
two Species Distribution Models (SDM), we performed a reciprocal swap between predictors
of the two modelling techniques. We performed the generic SDM-approach using the
environmental predictors from the species-specific SDM approach (hybrid 1: Figure S4.3.1).
Vice versa, we performed the species-specific SDM modelling on the “classic” plant-SDM
environmental predictors (Broennimann et al. 2007; Cserg6 et al. 2017; Petitpierre et al.
2012; Thuiller et al. 2005). We will call this second swap hybrid 2 (Figure S4.3.2 and S4.3.3).
Our expectation was that the environmental predictors of the species-specific SDM would
produce the same trends in demography in both techniques, and that the environmental
predictors of the generic SDM would fail to detect meaningful trends in both techniques.
We expected each SDM approach to have better evaluation metrics when applied on the
species specific environmental predictors. We expected the generic SDM approach to always
yield better evaluations, as it uses repeated split sampling rather than spatial blocks for the

cross validation. Results are displayed and discussed hereafter.

The generic SDM method with specific predictors (hybrid 1) had excellent evaluation
metrics, with Kappa = 0.84, max-TSS = 0.832 and AUC = 0.969. Overall, the average trends of
the Generic-SDM with the species-specific predictors were similar to those of the original
GBM approach, but the confidence intervals were broader (Figure S4.3.1, compared to

Figure 4.4, main text).
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Figure 54.3.1 Speed of the life cycle over the SDM-predicted suitability for P. lanceolata,
when the generic-SDM procedure is applied using the species-specific predictors [Hybrid
1]. Black lines and shaded areas are the predictions and 95% confidence interval of a linear
model predicting each life history metric as a function of SDM-suitability. Reproductive life
expectancy, mean yearly reproduction, generation time were log transformed in the models.
One observation = one PlantPopNet population (time averaged).

When applying the species-specific modelling approach on the classic SDM predictors
(hybrid 2), a methodological modification had to be performed. The number of spatial blocks
had to be decreased to 2 when using this set of predictors, based on the results of the
spatialAutoRange analysis in BlockCV (Valavi et al. 2019). The performance metrics were
high: Kappa = 0.78, max-TSS = 0.78, AUC = 0.95, but over only two spatial blocks, which
makes it not directly comparable to the 5-spatial block result on the species-specific
environmental predictors. The demographic over suitability models supported a quadratic

relationship between LHS and SDM-suitability Figure S4.3.2). If a straight relationship was
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fitted, trends similar as when using the species specific predictors emerged, but much

weaker (Figure S4.3.3, compared to Figure 4.4, main text).

Discussion

The consequences of our swap in environmental predictors between the two SDM
approaches seems to indicate several important results. First, the generic SDM-approach
can capture the same trends in demographic strategies when applied on the species specific

predictors. Nonetheless, the trends are not as clear, and the evaluation metrics of the SDM
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Figure 54.3.2: Speed of the life cycle over the SDM-predicted suitability for P. lanceolata,
when the species specific-SDM approach is applied using the classic predictors. The AlCc
values of models supposing a quadratic relationship between LHS and suitability were lower
than for a linear model (see Figure S2.3). The AlCc values are displayed in each panel (Barton
2018).
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itself are not as high as with the original predictors. The results of the species-specific SDM
applied on classic environmental predictors (hybrid 2) are harder to interpret. The
evaluation metrics of this SDM were higher than the original species-specific SDM, but this
is probably due to the fact that only two spatial blocks could be used in the spatial block
cross validation. A spatial block cross validation uses data from another geographic area to
validate the model, making it harder to obtain good evaluation metrics than with a repeated
split sampling (where the dataset is randomly separated in two parts, with 70% of the data
being used for model calibration and 30%, randomly selected from any geographic area, for
model evaluation). The number and size of the blocks is chosen based on the spatial

correlation of
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Figure 54.3.3: Speed of the life cycle over the SDM-predicted suitability for P. lanceolata,
when the species specific-SDM approach is applied using the classic predictors, and when
the relationship between Life History Strategy metrics and suitability is forced to be linear.
The AlCc values are displayed in each panel (Barton 2018).
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predictors in space (Roberts et al. 2017; Valavi et al. 2019). With the original species-specific
environmental predictors, five spatial blocks were selected, making it harder to obtain good

evaluation metrics.

Then, the relationships between demography and suitability as predicted by our hybrid 2
are hard to interpret. A quadratic relationship between LHS and suitability was supported
by our LHS over suitability models (Figure S4.3.2). Quadratic relationships are common in
ecology, with optima at intermediate values of an environmental driver and conditions
decreasing in optimality on both sides of that optimum (Begon, Townsend, and Harper
2006). There is very little theoretical support for a quadratic relationship between overall
demographic performance and probability of occurrence. Indeed, the expectation is that a
decreasing environmental optimality on both sides of an environmental gradient would
result in a decreasing probability of occurrence (see for instance (Maguire, 1973). Rather,
we take this quadratic trend to be an effect of the lack of information at the middle range
of suitability values, and the difficulty to fit any meaningful trend in these SDM-suitability to
LHS models. Indeed, the confidence interval of the linear models are very broad (Figure

S4.3.3).

Except for the probability of survival across the reproductive life, slopes are similar to those
detected with the original species- specific SDM (though they could very well be flat), which
is counter to our expectations. There is hence something further than the choice of
environmental predictors to our species specific SDM that makes it capture the demographic

trends we were expecting.

The generic SDM approach did not include interactions between predictors (Csergé et al.
2017). In comparison, we chose to use a random boosted regression tree as a fitting
algorithm in our species specific SDM. We selected this approach as it made it possible to
capture interactions between environmental predictors, without having to stipulate them a-
priori (Elith et al. 2008). Random boosted regression trees are a machine learning technique
which will create repeated splits of the data based on the values of the provided predictors.
It will split the data multiple times, based on which predictor can explain the most variance
at the current split. As a consequence, any interaction or any for and between any predictors

can be easily captured. It is likely that there were interactions between predictors that could
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not be captured by several of the algorithms used in the ensemble model forming our
Generic-SDM approach. This is supported by the fact that a preliminary model excluding the
Maxent algorithm (another machine learning technique that could capture interactions
included in the Generic-SDM approach (Phillips, Anderson, and Schapire 2006) provided
flatter and more uncertain relationships between SDM-suitability and Life History Strategy

Metrics (not shown).

One last point to these technical considerations is the overall evaluation metrics of the SDM.
The best SDM in terms of Kappa, max-TSS and AUC remains the generic-SDM approach, with
Kappa = 0.849, Max-TSS = 0.857 and AUC = 0.983. This is part due to the use of a different
cross validation strategy in the species-specific versus generic SDM approaches. The use of
spatial block cross validation approach in our species-specific SDM makes it harder to obtain
very high evaluation metrics. But the generic-SDM is an ensemble of algorithms, which
includes a similar random boosted regression tree. This algorithm alone had evaluation
metrics of Kappa = 0.782, Max-TSS = 0.779 and AUC = 0.942 using the repeated split
sampling evaluation of the Generic-SDM. While this remains excellent, it is lower than the
evaluation scores of the generic SDM. This has two important consequences: first, the
species-specific SDM, which does capture the trends in demography along suitability
gradients we were expecting, would not be selected based on evaluation metrics, and thus
would probably be discarded by a scientist willing to predict its distribution. Second, a
demographer willing to interpolate the demography of the species along large geographic
distances using SDM-suitability could not use the SDM-evaluation metrics alone to guide

their choices.
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Supplement S4.4 relationship between SDM-suitability and observed abundance and
population growth rates.

Methods

We measured the performance of each populations using six metrics: the observed transient
population growth rate, the observed density on the field and the asymptotic population
growth rate (predicted by our non-stochastic population model). We extracted the transient
population growth rate (the ratio of the observed number of individuals at time t+1 over the
number of individuals at time t) for all populations at each observed demographic
transitions. The observed population density (number of observed individuals in any given
year over the number of plots of the population when observed in the wild) was also
extracted for all populations in each observed year. The asymptotic population growth rate
was obtained by projecting our structured population model until stable stage (500
iterations) on an identical starting population. We then computed the asymptotic
population growth rate as the ratio of the observed number of individuals at time 500 over
the number of individuals at time 499, but because of the microsite limited recruitment in

our model, it will be equal to one for all populations.

The relationship between observed density and population growth rate and SDM-suitability
was assess through a series of linear mixed models with SDM-suitability as a fixed effect and
site of origin and year as random factors. The models were fitted using the Ime4 package in
R (Bates et al. 2015). The relationship between SDM-suitability and the modelled
performance metric (the asymptotic population growth rate, the carrying capacity, the
average life time reproductive effort and the maximal life time reproductive effort) was

computed through linear mixed models. Results are displayed in Figure S4.4.1 and S4.4.2
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