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Supplements to:  Chapter 1 What is size ? - size variable selection for 
demographic studies at global scales 
 

Supplement S1.1, Supplement to Methods 

S.1.1.1 Details of the dataset version used for this study.  

The data curation of the PlantPopNet network includes the thorough cleaning of incoming data for 

mistakes made upon measurement in the field or during data entry. Once cleaned, year after year, 

new field data is added to the existing database. For reproducibility purposes, it is therefore 

necessary to include information referring to the exact version of the dataset used, as any 

subsequent data curation, subsetting or changes performed.  

In this project, we used the PLANTPOPNET_Y0_V1.02_2020-11-18 and 

PLANTPOPNET_Y1_V1.1_2021-03-31 datasheets (standard data products). In addition, we 

performed the following data cleaning steps: population CDF was excluded, as the number of 

individuals indicated as surviving in year 1 did not match the numbers of individuals alive in year 0 

and year 2. We excluded individuals LK1_T1_P8_121, LK1_T1_P8_122 as there was apparently a shift 

in the columns of the leaf measurements; these plants had the highest observed number of leaves 

in the whole dataset, but no leaf width information. We excluded observations of 305, 300 and 240 

floral stems per rosette, as they were paired with leaf width <3mm and were probably due to column 

shifts again. These extremely high number of floral stems values stemmed from the same year and 

population as the extreme number of leaves values. Other high number of stems or leaf values were 

maintained, as there was no evidence of any mistake. These corrections take place in a dataset 

including 18146 observations of rosettes. 

S.1.1.2 Details of the biomass equation 

The biomass equation was developed following the method of Villellas et al. (2021). They 

harvested aerial biomass information from 396 specimen grown in the greenhouse seeds stemming 

from 16 populations included in the present study. They established a regression equation to predict 

aerial biomass from the leaf measurements collected in the field (leaf number, length and width), 

which we are reusing here. They applied Linear Mixed Models and model selection based on Akaike 

Information Criterion for finite sample sizes (AICc). Aboveground dry biomass was the response 

variable, and they compared AICc values of models with all possible combinations of main effects of 

leaf length, leaf width, leaf number and the square term of the number of leaves as explanatory 

variables (no interactions). In all models, all variables except leaf length were log-transformed to 

normalise distribution of errors, and population of origin, as well as the light condition the plants 
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were grown under in Villellas et al., were included as a random effect. The model including all three 

variables and the square term of the number of leaves provided the lowest AICc and an is strongly 

supported by the data (conditional R2 0.86). The resulting equation is as follows:  

!!.###$%&'().$*%$*%&∗,-.(0°234536)8!.*)*9$!)∗,-.(0°234536)!(!.!!*9&)#∗234:	230<=>(	!.9%%*!9?∗,-.	(234:	@AB=>)	 

Analyses were performed with the packages lme4 (Bates et al. 2015) and MuMIn (Barton 2016) 

in R software (R Core Team 2017). We refer the reader to (Villellas et al. 2021) for more details about 

the greenhouse conditions and light treatments.  

S.1.1.3 Evaluation of the models – choice of performance metrics 

We made use of two different performance metrics; an R2 adapted to generalized linear  mixed 

models (Johnson 2014; Nakagawa, Johnson, and Schielzeth 2017; Nakagawa and Schielzeth 2013), 

and the Mean Absolute Error (MAE; Chai and Draxler, 2014; Cort J. Willmott and Matsuura, 2005). 

Nakagawa’s R2 is divided into conditional and marginal R2. Marginal R2 (R2
m) can be understood as 

the variance explained by the fixed effects in the model, while the conditional R2 (R2
c) is the variance 

explained by the entire model including the random structure. We used R2 as an overall metric of 

model performance, and MAE as a way to investigate further the error of the model in each separate 

population.  

The Mean Absolute Error is computed as follow:  

"#$ =	∑ |3"|#
"
0        eqn 3 

Where ei is the i-th model error of a model with n observations.   

To obtain MAE values comparable between models calibrated on different responses, we mean 

centred and standardized the residuals of all models and calculated the MAE based on those 

standardized residuals.  

Both these metrics were selected on the following basis; they provide information about the 

performance of the model (Chai and Draxler 2014; Nakagawa and Schielzeth 2013), they are 

applicable to mixed models and to the different error families we make use of in this study (Chai and 

Draxler 2014; Nakagawa et al. 2017), they can be compared between models with different response 

variables, even if these have been built on different datasets (unlike selection criteria such as AIC; 

Nakagawa and Schielzeth (2013) and between error distributions (although this is a bit more 

arduous; Nakagawa et al. (2017). We preferred MAE to the Root Mean Squared Error (RMSE), as 

MAE is more intuitive, as it is linked directly to the absolute error of the models. Furthermore, 

although there is evidence that RMSE should be favoured in the cases where the error is expected 
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to be normal (Chai and Draxler 2014), we want to compare various types of models with different 

error families, in which case MAE is advised (Willmott and Matsuura 2005). Finally, both R2 and MAE 

are easily interpretable. 

S.1.1.4 Evaluation of the models – the Dharma protocol  

The DARHMa methodology (Hartig 2020) simulates a set of expected residuals based on the model 

and assuming the assumptions are met. The dharma residuals are then the difference between the 

simulated and the actual residuals. These “DHARMa residuals” then have to meet the assumptions 

of uniformity, and overdispertion of the residuals can be tested. The vignette of the package is 

extremely well furnished and we invite all to read it for more details; https://cran.r-

project.org/web/packages/DHARMa/vignettes/DHARMa.html. The functions used here were slightly 

adapted, so that they do not display p-values (as we diagnose multiple models). 
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Supplement S1.2: Illustration of the approach used to explore the model diagnostics 

of the vital rate models under criterion a)  

 

The following graphs illustrate the model diagnostic approach followed for criterion a. We made use 

of the Dharma methodology for the exploration of generalized linear mixed models developed and 

its related R package (Hartig 2020).  

We present the plots stemming from two of our models as examples: one good one (the survival 

model using the untransformed number of leaves as a size predictor) and one which we described 

as “suboptimal” in the main text (the growth model making use of the log transformed length of the 

longest leaf as a size metric). For details about the interpretation of these plots, see section S1.1.4. 
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Supplement S1.2.1 Example of a model with good Dharma diagnostics  

The following shows the details of the summary of the model, followed by the plots from the 
Dharma diagnostics approach.  
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Supplement S1.2.2 Example of a model with poorer Dharma diagnostics  
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Supplement S1.3, Supplement to Results 
A 

Figure S1.3.1 Patterns of Mean Average Error along two main climatic gradients; A) 

temperature and B) precipitation (displayed on the next page). Upper rows show the native range 

populations, lower rows the non-native range. Populations are on the x-axis, placed by order of 

increasing A) temperature and B) precipitation. Y-axis shows the Mean Absolute Error (ratio of the 

sum of the absolute value of the residuals over the number of observation) in this population. Each 

symbol and color represents a different size metric (see legend). Highly differentiated lines would 

show a strong difference between the three candidate size metrics in their performance. High 

differences between Mean Absolute Error for different populations show a strong difference in 

performance at the population level. In the present case, size metrics mostly perform so similarly that 

the lines confound and overlap.  
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Supplement S1.3.2: Effect of size metric, temperature and precipitation on MAE 

Supplement S1.3.2: Effect of size metric, temperature and precipitation on MAE 

MODEL INFO:     
Observations: 196     
Dependent Variable: MAE    
Type: Mixed effects linear regression     
      
MODEL FIT:      
AIC = -227.17, BIC = -187.83    
Pseudo-R² (fixed effects) = 0.05    
Pseudo-R² (total) = 0.88      
      
FIXED EFFECTS:     
 Est. S.E. t val. d.f. p 

(Intercept) 0.76 0.06 12.44 27.21 0.00 

size metric (no leaves) 0.04 0.02 1.57 162.00 0.12 

size metric (ln(no leaves)) 0.04 0.02 1.82 162.00 0.07 

size metric (Total Leaf Length) 0.03 0.02 1.30 162.00 0.19 

size metric (regressed biomass) 0.04 0.02 1.83 162.00 0.07 

size metric (longest leaf) 0.02 0.02 0.95 162.00 0.34 

size metric (photosynthetic area) 0.00 0.02 0.18 162.00 0.85 

precipitation 0.01 0.05 0.23 24.00 0.82 

temperature 0.05 0.06 0.71 24.00 0.48 

RangeNon-Native 0.02 0.14 0.17 24.00 0.87 

      
p values calculated using Kenward-Roger standard errors and d.f.  

      
RANDOM EFFECTS:     
------------------------------------    
  Group      Parameter    Std. Dev.     
---------- ------------- -----------    
   pop      (Intercept)     0.23        
 Residual                   0.09        
------------------------------------    
      
Grouping variables:     
-------------------------     
 Group   # groups   ICC       
------- ---------- ------     
  pop       28      0.87      
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Supplements to: Chapter 2 Vital rate and life history strategies of P. 
lanceolata are captured by SDM predicted suitability along a steep 
environmental gradient in the Swiss Alps 
 
 
Supplement S2.1 Supplement to the main text 
Supplementary material S2.1.1: added information on the SDM 
Water availability, temperature and neighbouring vegetation cover or height are described 

as the best descriptors of several ecological processes for P. lanceolata (Kuiper and Bos 

1992). Kuiper and Bos (1992) also highlighted the high importance of land use, such as 

agricultural use or disturbance, and soil physical properties in driving the distribution of the 

species (see as well publication such as Kozáková et al., 2015). Soil chemical properties, on 

the other hand, were shown to be of little relevance to the distribution of P. lanceolata L. 

(Kuiper and Bos 1992; Wu and Antonovics 1976). As a result, two climatic predictors (yearly 

moisture index, yearly mean temperature), two topographic predictors (slope and 

topographic position) and one biotic predictor (vegetation height) were included in our 

model. The environmental predictors used are detailed in Table 1. All variables were cropped 

to exclude forested areas.  

No layer of agricultural use information was available for the study area at the time of this 

study. Nonetheless, in this mountain area, both land use and soil properties are highly linked 

to the steepness of the slope and the position within the topography of the soil (Randin et 

al. 2009). Slope and flatness of the terrain will affect the exploitation type and choice, and 

bumpiness of the terrain will create places of more intensive exploitation or grazing. The 

same variables will affect nutrient deposition and soil depth on steep mountainsides (Körner 

2003). Slope and topographic position were hence added as surrogates for soil properties 

and land use in the research area. The slope is measured in degrees and derived from the 

digital elevation model (DEM) with ArcGis 9.3 spatial analyst tool (Dubuis, Giovanettina, et 

al. 2013). The topographic position is computed with moving windows and is an integration 

of topographic features at various scales; positive values of this variable indicate ridges and 

tops and negative values valleys and sinks (Dubuis, Giovanettina, et al. 2013). This variable 

was calculated using the method of Zimmermann, Edwards, Moisen, Frescino, and 

Blackward (2007).  
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Water availability and temperature were captured via layers of yearly moisture index and 

yearly mean temperature (Dubuis, Rossier, et al. 2013; Zimmermann and Kienast 1999). 

These climatic predictors were computed from the monthly means of the average 

temperature (°C) and sum of precipitation (mm) data recorded between 1961 and 1990 by 

the Swiss network of meteorological stations (www.meteosuisse.ch), using only the 

information from the growing season (June-August). The point measurement are 

interpolated on Switzerland with local thin-plate spline-functions for temperature and a 

regionalized linear regression model for precipitation based on a digital elevation model 

(from the Swiss Federal Office of Topography, www.swisstopo.ch) (Zimmermann and 

Kienast 1999). The moisture index is the mean difference between precipitation and 

potential evapotranspiration over the growing season and represents the amount of water 

potentially available in the soil. 

As the height of the neighbouring vegetation was shown to have a high impact on the 

distribution of P. lanceolata L., we used a modelled layer of coverage weighted mean 

community vegetation height developed for the study area (Baudraz et al. 2018). This layer 

was developed using exhaustive community inventories and species specific mean 

functional traits value sampled in the same study area (Dubuis, Rossier, et al. 2013). Using 

this data, Baudraz et al., (2018) interpolated the coverage weighted mean community 

vegetative height of non-forested areas over the whole research area. We used this layer as 

a way to capture vegetation height in the study area.  

We used Biomod2 to fit the individual SDMs and derive the final prediction of habitat suitability 

(Thuiller et al. 2016). The three following modelling techniques were included in the ensemble: 

boosted regression trees (BRT; (Elith, Leathwick, and Hastie 2008), random forest (RF; Prasad, 

Iverson, & Liaw, 2006) and generalized linear model (GLM; Guisan, Edwards, & Hastie, 2002). The 

models and the final prediction were evaluated through repeated split sampling (models calibrated 

on 70% of the data, and evaluated on 30%) using AUC, max-Kappa and max-TSS (Guisan, Thuiller, 

and Zimmermann 2017). A final, ensemble model using all of the data was then projected over the 

study area and used as an environmental suitability metric in the rest this study (Guisan et al. 2017).   

Supplementary material S2.1.2: added information on the site selection 
The suitability range (from min to max log odds value) was divided into five strata each covering 20% 

of all possible suitability values. Seven known P. lanceolata occurrences in each stratum were 
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randomly selected as candidate sites. Candidate sites were visited over the first fieldwork season 

(June-August 2017). If the occurrence of P. lanceolata was confirmed and the site deemed suitable 

for the PlantPopNet protocol (Buckley et al. 2019), a population monitoring site was set up. In total, 

19 populations were set up, four in each suitability stratum except for the lowest suitability. In the 

latter, some reported occurrences were actually misidentifications of the species P. atrata, and only 

three populations could be set up. In another stratum, a candidate site was discarded as it did not 

match the criteria for the establishment of a PlantPopNet population (foreseeable sudden change in 

land use in the next few years; Buckley et al. 2019), but could be replaced by another suitable 

candidate site. The data of one site at the middle range of values had to be discarded, as plants 

marked in the first year could not be consistently relocated in future years. 

Supplementary material S2.1.2: Fieldwork and gathering of demographic data 
Setting up of the populations, demographic census and collection of functional traits data were 

performed following the PlantPopNet protocol (Buckley et al. 2019). In Summer (June-August) 2017, 

100 individuals per site were mapped and tagged using small linoleum squares, fixed in the ground 

at the foot of each plant with a plastic coated metallic pin. This enabled us to find them accurately 

in subsequent years. The size (number of leaves and length/width of the longest leaf) and 

reproductive effort (number of stems and inflorescence length) of each rosette of each individual 

were recorded during the summer for three years (2017-2019). When new individual rosettes were 

produced, they were also tagged and measured, and given an individual identifier, either within the 

genet they belonged to or as separate, new recruits. Seedlings were counted, but not marked until 

their second year, to avoid tagging related mortality. Repeated demographic censuses at each site 

enabled the calculation of rates of reproduction, growth of each rosette and individual, recruitment 

in the population and mortality/survival of adult individuals. 
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Supplement S2.2 Supplementary Figures 
 

 

 
Figure S2.2.1: life cycle of the focal species. An individual of size zt at time t can contribute to the 

population at time t+1 by either surviving (s) and growing or shrinking (g) to a size zt+1, or entering a 

reproductive event starting by flowering with a probability of h, then producing a certain reproductive 

effort (o, measured in mm of inflorescences, a proxy for number of seeds). These seeds then 

contribute to a fraction of the number of recruits (b) entering the population at time t+1 with a size 

zt+1 given by the size distribution of recruits function c.   

 

s = survival, g = growth (and shrinkage), h = flowering probability, o = reproductive effort per 

flowering event, b = recruitment rate, c = recruit size distribution. 
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Figure S2.2.2 Geographic projection of the predicted environmental suitability on the study 
area. Colour code represents the predictions of the weighted ensemble model (GBM, GLM and RF) in 
log odds. 
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Figure S2.2.3: Summary of the effect of suitability on the different vital rates. Vital rates 
are presented on the y-axis. Open circles represent the parameters for suitability in each vital 
rate model (x-axis), horizontal bars their 95% confidence intervals. Turquoise = linear term of 
the relationship between suitability and the vital rate, red = interaction between suitability 
and size to explain the vital rate. An absence of point means no term at all was maintained 
in the model.  
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Figure S2.2.4 Convergence of the population growth rate as the population model is 
iterated towards equilibrium. The x-axis shows the number of iterations: as our matrix model is 
based on an annual transition period, the number of iterations can be understood as equivalent to 
years. The y-axis shows the rate of increase of the population (population size at time t / population 
size at time t+1) as predicted by the model. Each line is based on the observations of one population 
in one transition.  
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Figure S2.2.5 Plot of the raw data of useful information on recruits density. Upper part = 
components of recruit density, with (A) area covered by each population,  (B) number of recruits, (C) 
recruit density. One observation = one site. Lower part = relationship with site species richness, with 
(D) number of recruits and (E) recruit density over number of species. The number of species was 
inventoried in a 2m x 2m vegetation plot at the end of the demographic transects. Species were 
identified as best as possible to species or genus level, and some unidentified species were recorded 
as such. One observation = one site in one year. (F) relationship between species richness and 
environmental suitability. One observation = one site. 
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Supplement S2.3: relationship between seed number and inflorescence length 
In the Summer of 2019, inflorescences were collected at the field sites, around the monitored 
populations. These inflorescences were not collected not yet fully ripe, so that the seeds had not yet 
dispersed. The inflorescence length was measured, and the seeds were extracted from each 
inflorescence and counted. Some sites had to be revisited outside peak flowering season to obtain 
biological samples, and no seeds could be found in three sites.  

 

Figure S2.3.1 Relationship between the number of seeds per inflorescence and the length 
of the inflorescence in fifteen sites from our study. The inflorescence length is measured in 
millimeters, and the relationships are for one inflorescence per plant only.  

From the gathered information, the relationship between number of seeds and inflorescence length 
was studied. We first display the raw data per site (Figure S4.1). We also built a generalized linear 
mixed model explaining the number of seeds as a function of the inflorescent length, with the site of 
origin as a random factor (intercept only). The number of seeds was modelled as Poisson distributed 
with a log link, using the lme4 package in R (Bates et al. 2015). The relationship between seed number 
and inflorescence length once adjusted for the correlation between samples stemming from the 
same sites is displayed in Figure S4.2.   
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Figure S2.3.2 Modelled relationship between the number of seeds per inflorescence and 
the length of the inflorescence once the effect of sites has been accounted for. The 
inflorescence length is measured in millimeters. The predicted line and confidence intervals stem from 
a generalized linear mixed model explaining the number of seeds as a function of inflorescence length 
as a Poisson distributed process (with log link), with the site of origin as a random intercept.  
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Supplement S2.4 Supplementary Tables 
Table S2.4.1 Model selection tables of the vital rates models 

 

Table S2.4.1 Model selection tables of the vital rates models 
Detail of the model selection outputs on the vital rates models. The tables show candidate models for 
the selection.  

Size Y0 means size at time t, “^2” indicates a quadratic term, and size*suitability is the interaction 
between size at time t and suitability.  

The columns for Intercept, size Y0, size Y^2 if applicable, suitability, suitability^2, transition, 
size*suitability indicate the parameter estimates for the fixed effect predictors, with NA meaning this 
predictor is not included in this candidate. dAICc is the delta AICc (Bartoń 2018; Burnham and 
Anderson 2002): a difference in dAICc of less than two between two models means they have 
equivalent fit.  

Table S2.4.1.A survival 

 

Table S2.4.1.B growth 

 

  



27 

 

 

Table S2.4.1.C flowering probability 

 

Table S2.4.1.D reproductive effort 

 

Table S2.4.1.E size of recruits 
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Table S2.4.2 Detail of the vital rates models
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Supplement S2.5 Detail of the recruitment model selection 

Several candidate recruitment models (b) were attempted, for different density dependence 

scenarios: compensatory density dependence, density independent and constant 

recruitment. Detail of the models are given in equations 4, 5 and 6.  

As the studied populations have different densities, and the PlantPopNet protocol monitors 

as many 50 x 50 cm plots necessary to sample 100 individual genets in the first year of 

fieldwork, we fitted our candidate recruitment models on the number of recruits per plot 

(rw/aw) in any site w via generalized least squared (gls). The use of gls was necessary to 

compare linear and non-linear response curves. The use of the number of recruits per unit 

area is necessary to have comparable, meaningful densities to study the effects of density 

dependence. The response variable was square root transformed to normalize the residuals 

and yield a more homogeneous variance of the error in all candidate models.  

Our density independent model is described in equation 4. In this model, every unit of 

reproductive effort linearly produces a proportion (p0) of the number of recruits.  

!!
"!
	= 	 ## ∗ $!"!  equation 4 

where ow is the sum of reproductive effort (mm of inflorescences) produced by all individuals 

in site w and aw the number of plots (unit area) sampled at site w.  

Our constant recruitment model is described in equation 5. It describes a scenario where 

only a certain number of microsites become available every year in any given population, 

constraining the number of recruits entering the population the next year to a specific 

plateau value %%"&. 

	!!"! = %%"& equation 5 

Equation 6 assumes a compensatory density dependent process through a reparametrized 

Beverton-Holt equation where every unit of reproductive effort contributes linearly to the 

pool of recruits at low density, but at higher densities the probability of recruitment 

decreases up to a plateau value Rmax (Beverton & Holt, 1957: see supplementary material 

S2.6 for the reparametrization).  
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"!
	=

'"∗)#!$!*

+,	
%"∗(#!$!)
)*$+

                  equation 6 

We assumed that the parameters p0 and Rmax could vary, or not, as a function of 

enviromental suitability such as detailed in equations 7-10.   

## =	&# +	&+	( equation 7 

%%"& =	&. +	&/	( equation 8 

or 

## = &# equation 9 

%%"& =	&. equation 10 

We only let either p0 or Rmax at a time to vary as a function of suitability in the Beverton-

Holt model, to limit our models to three parameters to be estimated on the basis of 36 non-

independent observations (2 observations of 18 sites).   

This led us to a total of seven candidate recruitment models. These seven candidate 

recruitment models were then compared using AICc values. The recruitment models were 

fitted via generalized least squares using the nlme package (Pinheiro et al., 2020). AICc 

values were determined using the MuMIn package (Bartoń, 2018). The results of the AICc 

based model comparison are presented in Table S2.5.1. 

There was a wide range of existing densities in our observed populations, such that the 

number of 0.25m2 plots that needed to be sampled to guarantee a population size of at least 

100 individuals in the first year of the study varied between 4 and 127 (Figure S2.5.1, colour 

legend). The model that had the lowest AICc was the constant recruitment model with 

carrying capacity varying as a function of suitability (model C.1, Table S2.5.1). The constant 

recruitment model with no effect of suitability performed nearly as good in terms of AICc. 

We therefore selected model C.1, but note the potential impacts of this choice in the 

discussion. The prediction of a constant recruitment model, compared to those of a 

Beverton Holt model are displayed in Figure S2.5.2 
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Table S2.5.1 Results of the recruitment model selection. The various models represent different 
regimes of density dependence. Column four (“Detail of the parameters and relationship to 
suitability”) details the way environmental suitability was allowed to affect recruitment and density 
dependence in all models. The selection of the best model was performed based on AICc value, mode 
details on other metrics are available in supplement S1. Recruitment models were fitted via 
generalized least squares using the nlme package (Pinheiro et al., 2020). AICc values were determined 
using the MuMIn package (Bartoń, 2018). 

 

 

Model 
name 

Recruitement 
type 

Equation Detail of the parameters and 
relationship to suitability 

AICc  

I.1 
No density 
dependence )

* = ## ∗ + 

 

## =	&# +	&+ ∗ 	( 103 

I.0 
No density 
independence 

## =	&# 104 

BH.1.R 
Compensatory 
density 
dependence 

 
)
* =

## ∗ +
1 +	## ∗ +%%"&

 

 

## =	&# 
%%"& =	&+ + &. ∗ 	( 

90 

BH.1.P 
Compensatory 
density 
dependence 

## =	&# +	&+ ∗ 	( 
%%"& =	&. 

88 

BH.0 
Compensatory 
density 
dependence 

## =	&# 
%%"& =	&+ 

89 
 

C.1 
Constant 
recruitment )

* = %%"& 
%%"& =	&# +	&+ ∗ 	( 

81.8 
 

C.0 
Constant 
recruitment 

%%"& =	&# 82 
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Figure S2.5.2 Details of predictions of two candidate recruitment models evaluated for this 
study. Left panels show the results of the constant recruitment model (model C.1, see main text), 
while right hand panels show the results of the compensatory recruitment model for comparison 
(model BH.1.P, see main text). Upper panels are in the original scale of the models, i.e. in number of 
recruits per unit area (r/a, table 2 and equations 4-6) either observed (x-axis) or predicted (y-axis) at 
any given site. Lower panels are reported in actual number of recruits (r, table 2 and equations 4-6) 
either observed (x-axis) or predicted (y-axis) at any given site.  
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Supplementary material S2.6: Reparametrization of the Beverton Holt Equation 

 

  



34 

 

Supplements to: Chapter 3 Intraspecific variation in functional traits 
and their demographic consequences along an environmental 
suitability gradient for a perennial herb 
 

Added information on the SDM: see Supplementary material S2.1.1 
In an attempt to reduce redundancy, this section is presented only once, in Chapter 2.  

Figure S3.1 Plots of the raw data and correlations between traits 

Supplement S3.1 Plots of the raw data and correlations between traits (if available) 
S3.1.1 Correlations between predictors. One observation = one site 
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S3.1.2 Correlation between leaf traits. One observation = one individual
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S3.1.3 Specific Leaf Area over predictors 

 

S3.1.4 Leaf Mass over predictors
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S3.1.4 Leaf Area over predictors

 

S3.1.1 Seed Mass. One observation = average mass of one seed, on one inflorescence 

 

S3.1.1 Seed Number. One observation = one inflorescence 
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Supplement S3.2 Details of the survival models  

 

Table S3.2.1 Survival as a function of Leaf Area in interaction with suitability 

MODEL INFO: 
Observations: 4047 
Dependent Variable: individual survival at time t + 1 
Type: Mixed effects generalized linear regression 
Error Distribution: binomial 
Link function: logit  
 
MODEL FIT: 
AIC = 3764.17, BIC = 3808.31 
Pseudo-R² (fixed effects) = 0.18 
Pseudo-R² (total) = 0.35  
 
FIXED EFFECTS: 
----------------------------------------------------------- 
                                 Est.    2.5%   97.5%   z val. 
-------------------- ------- ------- ------- -------------- 
(Intercept)             2.96    2.56    3.36    14.54 
LA                           -0.45   -0.83   -0.07    -2.32 
suitability              -0.34   -0.65   -0.02    -2.09 
transition              -1.14   -1.32   -0.97   -12.67 
LA:suitability         0.61    0.36    0.86     4.71 
----------------------------------------------------------- 
 
RANDOM EFFECTS: 
------------------------------------------------- 
   Group      Parameter    Std. Dev.  
----------- ------------- ----------------------- 
   plot           (Intercept)     0.88     
 site_code   (Intercept)     0.34     
------------------------------------------------- 
 
Grouping variables: 
----------------------------- 
   Group     # groups   ICC   
----------- ---------- ------ 
   plot        362      0.18  
 site_code      18      0.03  
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Table S3.2.2 Survival as a function of Leaf Area without interaction with suitability 

MODEL INFO: 
Observations: 4047 
Dependent Variable: individual survival at time t + 1 
Type: Mixed effects generalized linear regression 
Error Distribution: binomial 
Link function: logit  
 
MODEL FIT: 
AIC = 3779.97, BIC = 3811.49 
Pseudo-R² (fixed effects) = 0.08 
Pseudo-R² (total) = 0.35  
 
FIXED EFFECTS: 
---------------------------------------------------------- 
                             Est.    2.5%   97.5%   z val. 
----------------- ------- ------- ------- ----------------- 
(Intercept)          3.35    2.86    3.84    13.41 
LA                       -0.33   -0.70    0.05    -1.69 
transition          -1.14   -1.32   -0.97   -12.69 
---------------------------------------------------------- 
 
RANDOM EFFECTS: 
--------------------------------------------------- 
   Group      Parameter    Std. Dev.  
----------- ------------- ------------------------- 
   plot            (Intercept)     0.87     
 site_code    (Intercept)     0.76     
--------------------------------------------------- 
 
Grouping variables: 
----------------------------------- 
   Group     # groups   ICC   
----------- ---------- ------------ 
   plot             362      0.16  
 site_code      18      0.13  
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Table S3.2.3 Survival as a function of Specific Leaf Area in interaction with suitability 

MODEL INFO: 
Observations: 4047 
Dependent Variable: individual survival at time t + 1 
Type: Mixed effects generalized linear regression 
Error Distribution: binomial 
Link function: logit  
 
MODEL FIT: 
AIC = 3768.58, BIC = 3812.72 
Pseudo-R² (fixed effects) = 0.16 
Pseudo-R² (total) = 0.35  
 
FIXED EFFECTS: 
------------------------------------------------------ 
                              Est.    2.5%   97.5%   z val. 
--------------------- ------- ------- ------- -------- 
(Intercept)          3.01    2.57    3.45     13.27 
SLA                     -0.43   -0.77   -0.08    -2.42 
suitability          -0.24   -0.57    0.09    -1.42 
transition           -1.14   -1.32   -0.97  -12.70 
SLA:suitability     0.55    0.21    0.89    3.14 

 
RANDOM EFFECTS: 
----------------------------------------------- 
   Group      Parameter    Std. Dev.  
----------- ------------- --------------------- 
   plot            (Intercept)     0.87     
 site_code   (Intercept)     0.43     

 
Grouping variables: 
-------------------------------------- 
   Group      # groups   ICC   
----------- ---------- ---------------- 
   plot             362      0.18  
 site_code      18      0.04  
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Table S3.2.4 Survival as a function of Specific Leaf Area without interaction with suitability 

MODEL INFO: 
Observations: 4047 
Dependent Variable: individual survival at time t + 1 
Type: Mixed effects generalized linear regression 
Error Distribution: binomial 
Link function: logit  
 
MODEL FIT: 
AIC = 3774.05, BIC = 3805.58 
Pseudo-R² (fixed effects) = 0.12 
Pseudo-R² (total) = 0.35  
 
FIXED EFFECTS: 
-------------------------------------------------------- 
                              Est.    2.5%   97.5%   z val. 
----------------- ------- ------- ------- --------------- 
(Intercept)          3.36     2.91    3.81    14.73 
SLA                      -0.55   -0.89   -0.22    -3.24 
transition           -1.14   -1.32   -0.97   -12.69 
-------------------------------------------------------- 
 
RANDOM EFFECTS: 
--------------------------------------------------- 
   Group      Parameter    Std. Dev.  
----------- ------------- ------------------------- 
   plot           (Intercept)     0.87     
 site_code   (Intercept)     0.63     
--------------------------------------------------- 
 
Grouping variables: 
----------------------------- 
   Group     # groups   ICC   
----------- ---------- ------ 
   plot             362      0.17  
 site_code      18      0.09  

 
Summary tables printed with use of the jtools package (Long 2020).  
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Supplement S3.3 Relationship between functional traits and elevation 

 

Figure S3.3.1 Relationship between elevation and functional traits: A) SLA, B) LA, C) 
Number of seeds per inflorescence D) seed mass. The prediction line and 95% confidence 
intervals stem from a linear mixed model with suitability as a fixed effect and site as a 
random effect. Suitability is the mean standardized output of the Species Distribution Model. 
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Figure S3.3.1 Relationship between LA (A) or SLA (B) on survival in interaction with 
elevation. Panel A shows the relationship between LA (x-axis) and survival probability (y-
axis). Panel B shows the relationship between SLA (x-axis) and survival probability (y-axis). 
The interaction between elevation and the functional trait in explaining survival is 
represented by the two colored lines, where deep purple shows the relationship at the lowest 
elevation where a population was monitored. Light yellow shows the relationship at the 
highest elevation. Points are coloured as per the lines. The shaded areas represent the 95% 
confidence interval for the predictions. Each observation is an individual from one of the 18 
populations: points are shown with jitter to avoid overlap. Plots created using the ggeffects 
package (Lüdecke 2018) using the viridis colour-blind friendly colour maps (Garnier et al. 
2021).  
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Supplements to: Chapter 4 - Evidence for a slower life cycle in low 
SDM-predicted probability of occurrence areas in the perennial herb 
Plantago lanceolata L. 
 

Supplement S4.1: Supplement to data sources 
In this study, we focused on the first two transitions of the PlantPopNet database. We used 

the Y0_V1.02, Y1_V1.1. and Y2_V1.1 standard data products. In addition, we performed the 

following data cleaning and investigation steps. Population CDF was excluded as the number 

of individuals still alive (i.e., the population excluding dead plants and new recruits) in Y1 did 

not match with the number of individuals in Y0 or Y2. A shift in columns for individuals 121 

and 121 in population LK1 (LK1_T1_P8_121 and LK1_T1_P8_122) was detected and 

corrected (no leaves = NA, leaf length = 95, respectively 72 and leaf width = 6, respectively 

28) and individual 8 in population SW242 (SW242_T2_P20_8) was deleted following an issue 

on tracking the rosettes between year 0 and y1.  

 

 

Life cycle of the focal species: see Figure S2.2.1 
In an attempt to reduce redundancy, this figure is presented only once, in Chapter 2.  
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Supplement S4.2 Variable importance in the two SDM approaches represented in the 
main text.  

 

Figure S4.2.1 Relative influence of each environmental predictors in the species-specific 
SDM-approach. The relative influence is computed as the squared error attributed to each 
variable in the random boosted regression tree technique applied for the species specific SDM 
(Elith et al. 2008; Greenwell et al. 2018). Legend of layer’s names: SoilSand_reproj = soil sand 
contents (proportion of sand), bio15 = precipitation seasonality, bio 12 = annual 
precipitation, bio 1 = mean annual temperature, GlobCov_reproj = global land use cover, 
WorldPop_reproj = population density, hf_repro = human footprint. 
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Supplement S4.2.2 Variable importance of each environmental predictors in the generic 
SDM. The variable importance is a standardized metric of the mean importance of each 
variable across the different runs of the different algorithms included in the final ensemble 
model as a max-TSS weighted average (Thuiller et al. 2016). Legend of predictors’ names: 
bio1 = mean annual temperature, bio 4 = temperature seasonality, bio 10 = mean 
temperature of the warmest quarter, bio 11 = mean temperature of the coldest quarter, bio 
15 = precipitation seasonality, bio 16 = precipitation of the wettest quarter, moist = annual 
potential evapo-transpiration, moist_SD = seasonality of the annual potential evapo-
transpiration.  
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Supplement S4.2.3 Relative influence of each environmental variable when the species 
specific-SDM approach is applied on the generic SDM predictors (Hybrid approach 1, 
Supplement S4.3). The relative influence is computed as the squared error attributed to each 
variable in the random boosted regression tree technique applied for the species specific SDM 
(Elith et al. 2008; Greenwell et al. 2018). Legend of predictors’ names: bio1 = mean annual 
temperature, bio 4 = temperature seasonality, bio 10 = mean temperature of the warmest 
quarter, bio 11 = mean temperature of the coldest quarter, bio 15 = precipitation seasonality, 
bio 16 = precipitation of the wettest quarter, moist = annual potential evapo-transpiration, 
moist_SD = seasonality of the annual potential evapo-transpiration. 
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Supplement S4.2.4 Variable importance of each environmental predictors when the 
generic SDM approach is applied on the species-specific environmental predictor (Hybrid 
approach 2, Supplement S4.3). The variable importance is a standardized metric of the mean 
importance of each variable across the different runs of the different algorithms included in 
the final ensemble model as a max-TSS weighted average (Thuiller et al. 2016). Legend of 
layer’s names: SoilSand_reproj = soil sand contents (proportion of sand), bio15 = 
precipitation seasonality, bio 12 = annual precipitation, bio 1 = mean annual temperature, 
GlobCov_reproj = global land use cover, WorldPop_reproj = population density, hf_repro = 
human footprint. 
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Supplement S4.3 Consequences of a swap of predictors between SDM-approaches. 
 

As the relationships between life history strategies (LHS) and environmental suitability as 

predicted by a Species Distribution Model (SDM-suitability) were so distinct between the 

two Species Distribution Models (SDM), we performed a reciprocal swap between predictors 

of the two modelling techniques. We performed the generic SDM-approach using the 

environmental predictors from the species-specific SDM approach (hybrid 1: Figure S4.3.1). 

Vice versa, we performed the species-specific SDM modelling on the “classic” plant-SDM 

environmental predictors (Broennimann et al. 2007; Csergő et al. 2017; Petitpierre et al. 

2012; Thuiller et al. 2005). We will call this second swap hybrid 2 (Figure S4.3.2 and S4.3.3). 

Our expectation was that the environmental predictors of the species-specific SDM would 

produce the same trends in demography in both techniques, and that the environmental 

predictors of the generic SDM would fail to detect meaningful trends in both techniques. 

We expected each SDM approach to have better evaluation metrics when applied on the 

species specific environmental predictors. We expected the generic SDM approach to always 

yield better evaluations, as it uses repeated split sampling rather than spatial blocks for the 

cross validation. Results are displayed and discussed hereafter.  

The generic SDM method with specific predictors (hybrid 1) had excellent evaluation 

metrics, with Kappa = 0.84, max-TSS = 0.832 and AUC = 0.969. Overall, the average trends of 

the Generic-SDM with the species-specific predictors were similar to those of the original 

GBM approach, but the confidence intervals were broader (Figure S4.3.1, compared to 

Figure 4.4, main text).  
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Figure S4.3.1 Speed of the life cycle over the SDM-predicted suitability for P. lanceolata, 
when the generic-SDM procedure is applied using the species-specific predictors [Hybrid 
1]. Black lines and shaded areas are the predictions and 95% confidence interval of a linear 
model predicting each life history metric as a function of SDM-suitability. Reproductive life 
expectancy, mean yearly reproduction, generation time were log transformed in the models. 
One observation = one PlantPopNet population (time averaged). 

 

When applying the species-specific modelling approach on the classic SDM predictors 

(hybrid 2), a methodological modification had to be performed. The number of spatial blocks 

had to be decreased to 2 when using this set of predictors, based on the results of the 

spatialAutoRange analysis in BlockCV (Valavi et al. 2019). The performance metrics were 

high: Kappa = 0.78, max-TSS = 0.78, AUC = 0.95, but over only two spatial blocks, which 

makes it not directly comparable to the 5-spatial block result on the species-specific 

environmental predictors. The demographic over suitability models supported a quadratic 

relationship between LHS and SDM-suitability Figure S4.3.2). If a straight relationship was 
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fitted, trends similar as when  using the species specific predictors emerged, but much 

weaker (Figure S4.3.3, compared to Figure 4.4, main text).  

Discussion 

The consequences of our swap in environmental predictors between the two SDM 

approaches seems to indicate several important results. First, the generic SDM-approach 

can capture the same trends in demographic strategies when applied on the species specific 

predictors. Nonetheless, the trends are not as clear, and the evaluation metrics of the SDM 

 

 

Figure S4.3.2: Speed of the life cycle over the SDM-predicted suitability for P. lanceolata, 
when the species specific-SDM approach is applied using the classic predictors. The AICc 
values of models supposing a quadratic relationship between LHS and suitability were lower 
than for a linear model (see Figure S2.3). The AICc values are displayed in each panel (Bartoń 
2018). 
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itself are not as high as with the original predictors. The results of the species-specific SDM 

applied on classic environmental predictors (hybrid 2) are harder to interpret. The 

evaluation metrics of this SDM were higher than the original species-specific SDM, but this 

is probably due to the fact that only two spatial blocks could be used in the spatial block 

cross validation. A spatial block cross validation uses data from another geographic area to 

validate the model, making it harder to obtain good evaluation metrics than with a repeated 

split sampling (where the dataset is randomly separated in two parts, with 70% of the data 

being used for model calibration and 30%, randomly selected from any geographic area, for 

model evaluation). The number and size of the blocks is chosen based on the spatial 

correlation of 

 

Figure S4.3.3: Speed of the life cycle over the SDM-predicted suitability for P. lanceolata, 
when the species specific-SDM approach is applied using the classic predictors, and when 
the relationship between Life History Strategy metrics and suitability is forced to be linear. 
The AICc values are displayed in each panel (Bartoń 2018). 
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predictors in space (Roberts et al. 2017; Valavi et al. 2019). With the original species-specific 

environmental predictors, five spatial blocks were selected, making it harder to obtain good 

evaluation metrics.  

Then, the relationships between demography and suitability as predicted by our hybrid 2 

are hard to interpret. A quadratic relationship between LHS and suitability was supported 

by our LHS over suitability models (Figure S4.3.2). Quadratic relationships are common in 

ecology, with optima at intermediate values of an environmental driver and conditions 

decreasing in optimality on both sides of that optimum (Begon, Townsend, and Harper 

2006). There is very little theoretical support for a quadratic relationship between overall 

demographic performance and probability of occurrence. Indeed, the expectation is that a 

decreasing environmental optimality on both sides of an environmental gradient would 

result in a decreasing probability of occurrence (see for instance (Maguire, 1973). Rather, 

we take this quadratic trend to be an effect of the lack of information at the middle range 

of suitability values, and the difficulty to fit any meaningful trend in these SDM-suitability to 

LHS models. Indeed, the confidence interval of the linear models are very broad (Figure 

S4.3.3).  

Except for the probability of survival across the reproductive life, slopes are similar to those 

detected with the original species- specific SDM (though they could very well be flat), which 

is counter to our expectations. There is hence something further than the choice of 

environmental predictors to our species specific SDM that makes it capture the demographic 

trends we were expecting. 

The generic SDM approach did not include interactions between predictors (Csergő et al. 

2017). In comparison, we chose to use a random boosted regression tree as a fitting 

algorithm in our species specific SDM. We selected this approach as it made it possible to 

capture interactions between environmental predictors, without having to stipulate them a-

priori (Elith et al. 2008). Random boosted regression trees are a machine learning technique 

which will create repeated splits of the data based on the values of the provided predictors. 

It will split the data multiple times, based on which predictor can explain the most variance 

at the current split. As a consequence, any interaction or any for and between any predictors 

can be easily captured. It is likely that there were interactions between predictors that could 
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not be captured by several of the algorithms used in the ensemble model forming our 

Generic-SDM approach. This is supported by the fact that a preliminary model excluding the 

Maxent algorithm (another machine learning technique that could capture interactions 

included in the Generic-SDM approach (Phillips, Anderson, and Schapire 2006) provided 

flatter and more uncertain relationships between SDM-suitability and Life History Strategy 

Metrics (not shown). 

One last point to these technical considerations is the overall evaluation metrics of the SDM. 

The best SDM in terms of Kappa, max-TSS and AUC remains the generic-SDM approach, with 

Kappa = 0.849, Max-TSS = 0.857 and AUC = 0.983. This is part due to the use of a different 

cross validation strategy in the species-specific versus generic SDM approaches. The use of 

spatial block cross validation approach in our species-specific SDM makes it harder to obtain 

very high evaluation metrics. But the generic-SDM is an ensemble of algorithms, which 

includes a similar random boosted regression tree. This algorithm alone had evaluation 

metrics of Kappa =  0.782, Max-TSS = 0.779 and AUC = 0.942 using the repeated split 

sampling evaluation of the Generic-SDM. While this remains excellent, it is lower than the 

evaluation scores of the generic SDM. This has two important consequences: first, the 

species-specific SDM, which does capture the trends in demography along suitability 

gradients we were expecting, would not be selected based on evaluation metrics, and thus 

would probably be discarded by a scientist willing to predict its distribution. Second, a 

demographer willing to interpolate the demography of the species along large geographic 

distances using SDM-suitability could not use the SDM-evaluation metrics alone to guide 

their choices. 
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Supplement S4.4 relationship between SDM-suitability and observed abundance and 
population growth rates.  
 

Methods 

We measured the performance of each populations using six metrics: the observed transient 

population growth rate, the observed density on the field and the asymptotic population 

growth rate (predicted by our non-stochastic population model). We extracted the transient 

population growth rate (the ratio of the observed number of individuals at time t+1 over the 

number of individuals at time t) for all populations at each observed demographic 

transitions. The observed population density (number of observed individuals in any given 

year over the number of plots of the population when observed in the wild) was also 

extracted for all populations in each observed year. The asymptotic population growth rate 

was obtained by projecting our structured population model until stable stage (500 

iterations) on an identical starting population. We then computed the asymptotic 

population growth rate as the ratio of the observed number of individuals at time 500 over 

the number of individuals at time 499, but because of the microsite limited recruitment in 

our model, it will be equal to one for all populations. 

The relationship between observed density and population growth rate and SDM-suitability 

was assess through a series of linear mixed models with SDM-suitability as a fixed effect and 

site of origin and year as random factors. The models were fitted using the lme4 package in 

R (Bates et al. 2015). The relationship between SDM-suitability and the modelled 

performance metric (the asymptotic population growth rate, the carrying capacity, the 

average life time reproductive effort and the maximal life time reproductive effort) was 

computed through linear mixed models. Results are displayed in Figure S4.4.1 and S4.4.2 
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Figure S4.4.1 relationship between population performance and SDM-suitability as 
predicted by our species-specific SDM. A) observed population growth rate B) asymptotic 
population growth rate C) observed population density (number of individuals per 50 cm x 
50 cm plot). 
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Figure S4.4.2 relationship between population performance and SDM-suitability as 
predicted by our generic SDM. A) observed population growth rate B) asymptotic population 
growth rate C) observed population density (number of individuals per 50 cm x 50 cm plot). 
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