
Automatic Program Generation for Convolutional
Neural Networks on Resource Constrained Devices

by

Cormac David Keane

Thesis

Submitted to the School of Computer Science and Statistics
in partial fulfillment of the requirements for the degree of

Master in Science
(Computer Science)

School of Computer Science and Statistics

TRINITY COLLEGE DUBLIN

June 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted

to this or any other University, and that unless otherwise stated, it is entirely

my own work.

. .

Cormac David Keane

Dated: September, 2022

2

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this

Thesis upon request.

. .

Cormac David Keane

Dated: September, 2022

3

Abstract

Convolutional Neural Networks (CNNs) are both arithmetically and memory

intensive when performing inference. This is a problem when executing CNNs

on resource constrained machines, such as small embedded devices. This thesis

proposes domain-specific program generators (DSPG), and automatic program

optimizers (APO) to improve the resource usage (execution time, memory us-

age, energy usage) of CNN convolution on ARM devices.

We extend previous work on a DSPG and APO for direct CNN convolu-

tion to create Genvolution. Genvolution can automatically generate optimized

implementations for CNN convolution on Intel and ARM NEON devices. Gen-

volution implementations outperforms vendor library im2col implementations

for 33% of tested CNN convolutions. Genvolution was also used to investigate

the use of Flyte, a reduced precision floating-point storage datatype, on CNN

convolution on ARM devices. We demonstrate that generated code using the

Flyte datatype improves energy usage while maintaining execution speed for

60% of tested CNN convolutions.

We also propose Winogen, a second DSPG and APO created to produce

Winograd CNN convolution implementations. Winogen implementations out-

perform vendor library Winograd implementations for 90% of tested CNN con-

volutions. Winogen is also used to investigate a novel Winograd CNN convo-

lution algorithm. Our proposed algorithm reduces the memory overhead of

standard Winograd CNN convolution, while still leveraging the problem com-

plexity reduction Winograd convolution allows. We found our new algorithm

outperforms standard Winograd convolution for 33% of tested CNN convolu-

tions.

We demonstrate that automatic program generation can be used to improve

the resource usage of CNNs on ARM devices. All CNN resource reduction is

significant when embedded devices will run the same CNN countless times

over their lifespan.

4

Acknowledgements

Many people helped me directly and indirectly throughout the course of this

project. I would like to thank my family for support, especially Jacinta for all

the meals she made for me over the last few months. I’d like to thank my super-

visor Dr. David Gregg. His advice throughout this work has been invaluable.

Finally, I’d like to thank everyone who I shared an office space with for keeping

me company throughout this research.

This work was supported, in part, by Science Foundation Ireland grants

12/IA/1381 and 10/CE/I1855 to Lero - the Irish Software Engineering Re-

search Centre (www.lero.ie).

5

Contents

1 Introduction 25

2 Background 30

2.1 Convolution and CNNs . 30

2.1.1 Overview of the CNN Convolution Operation 30

2.1.2 Dealing with Edge Points in CNN Convolution 32

2.1.3 Direct CNN Convolution Implementation 34

2.1.4 Im2Col CNN Convolution Implementation 35

2.2 SIMD Vectors . 35

2.2.1 Flynn’s Taxonomy and SIMD 35

2.2.2 SIMD Vector . 36

2.2.3 Data Layout . 37

2.2.4 Horizontal Instructions . 37

2.3 Data Blocking . 38

2.3.1 Implicit Tile Blocking . 39

2.3.2 Explicit Tile Blocking . 42

3 Tools and Experimental Set Up 44

3.1 Tools and Libraries . 44

3.1.1 Intel SIMD Libraries . 44

3.1.2 ARM Neon Libraries . 45

3.1.3 PAPI . 45

3.1.4 ARMCL: ARM Compute Library 45

3.1.5 MKLDNN Library . 46

6

3.1.6 TriNNity Library . 46

3.1.7 Miscellaneous Tools and Libraries 46

3.2 Test Machines . 46

3.2.1 ARM . 46

3.2.2 Intel . 47

4 Automating the Search for CNN Convolutions 48

4.1 Chapter Motivation . 48

4.2 Previous Work during Final Year Project 49

4.2.1 General Overview . 49

4.2.2 Strengths and Weaknesses 50

4.2.3 Results . 50

4.3 New Generator Overview . 51

4.4 Genvolution Workflow . 51

4.5 Traversing the Search Space . 53

4.5.1 Building the Search Space 53

4.5.2 Optimizing using the Search Space 53

4.6 Creating Parameter Sets . 55

4.7 Intermediate Representation AST 56

4.8 Constructing the AST . 59

4.8.1 Microkernels . 59

4.8.2 Dimension Loops . 59

4.8.3 Inserting Extra Constructs 61

4.8.4 AST Manipulators . 62

4.9 Generating C++ . 62

4.10 Evaluation of Results . 64

4.10.1 ARM Target 1 . 65

4.10.2 ARM Target 2 . 66

4.10.3 Intel . 68

4.11 Conclusions . 69

4.12 Results . 70

4.12.1 ARM . 70

7

4.12.2 Intel . 81

5 Genvolution Generated Code Design 84

5.1 Microkernels . 84

5.2 Pairwise Channels SIMD Strategy 85

5.2.1 Strategy Outline . 85

5.2.2 Effect on Performance . 86

5.2.3 Pairwise Channels Microkernels 87

5.3 Parallel Kernels SIMD Strategy . 88

5.3.1 Implementation Outline . 88

5.3.2 Broadcast Versus Scale . 90

5.3.3 Effects On Performance . 90

5.3.4 Parallel Kernels Microkernel 92

5.4 Outer Product SIMD Strategy . 92

5.4.1 Implementation Outline . 92

5.4.2 Intel . 93

5.4.3 ARM . 96

5.4.4 Register Blocking The Running Total Matrix 96

5.4.5 Effects On Performance . 98

5.4.6 Outer Product Microkernels 100

5.5 W-M-C SIMD Strategy . 101

5.5.1 Implementation Outline . 101

5.5.2 Effects On Performance . 103

5.5.3 W-M-C Microkernels . 105

6 Automatic Winograd Optimization and Generation 106

6.1 Chapter Motivation . 106

6.2 Winograd Convolution . 107

6.2.1 2D Winograd Convolution 110

6.3 Winograd CNN Convolution . 111

6.4 Winograd CNN Convolution Outline 111

6.5 Fixed Input Sizes . 112

8

6.5.1 Upper Bound on Input Sizes 112

6.5.2 Tiling the Input and Output Tensor 113

6.5.3 Winograd Convolution per Tile 115

6.6 Handling Input Channels . 116

6.7 Optimizing Element-Wise Multiplication 118

6.8 Winogen: Winograd Generator . 124

6.9 Optimizing Winograd Transformations 126

6.9.1 Equation Generation . 129

6.9.2 Sub-Expression Generation 131

6.9.3 Transformation Generation 133

6.10 Creating i-tiles, and Synthesizing i-tile Values 137

6.10.1 I-Tile Buffer . 138

6.10.2 Indirection Buffer . 140

6.10.3 Loop Unswitching the Transformation 141

6.11 Impact of skipping half-tiles during Winograd 146

6.12 CNN Convolution using Multiple 1D Winograd Convolutions . . 146

6.12.1 2D Convolution as a Sum of 1D Convolutions 147

6.12.2 2D Convolution as a Sum of 1D Winograd Convolutions . 148

6.12.3 Input Channels . 149

6.12.4 Extending the Height of the Input Tensor 151

6.12.5 Accumulating using 1D Convolution 153

6.12.6 Tiling the Input and Output Tensor 154

6.12.7 Temporary Memory and Genvolution 158

6.13 Evaluation Of Results . 160

6.13.1 ARM Target 1 . 161

6.13.2 ARM Target 2 . 162

6.14 Conclusions . 162

6.15 Results . 164

7 Optimizing GEMM for Low Power ARM Devices 173

7.1 Chapter Motivation . 173

7.2 Data Prefetching . 174

9

7.2.1 Software Prefetching in Genvolution 175

7.3 Other Genvolution Modifications 176

7.4 Evaluation Of Results . 176

7.4.1 ARM Target 1 . 177

7.4.2 ARM Target 2 . 178

7.5 Conclusions . 178

7.6 Results . 179

7.6.1 Execution Time . 179

8 Improving Energy Usage with Flyte Quantization 188

8.1 Reducing Energy Consumption With Quantization 188

8.2 Flyte Overview . 189

8.2.1 IEEE-754 2008 Standard Overview 190

8.2.2 Accuracy Loss From Truncating Mantissa 192

8.2.3 Flyte Datatype Layout . 192

8.2.4 Reducing the Transformation Overhead 194

8.3 Flyte Librarys for ARMv7 NEON and AArch64 NEON 195

8.3.1 Table Lookup Intrinsics . 196

8.3.2 Loading Values . 197

8.3.3 Storing Values . 199

8.3.4 Data Alignment . 202

8.4 Data Blocking Flyte Transformation 204

8.5 Evaluation Of Results . 205

8.6 Conclusion . 207

8.7 Results . 209

9 Conclusion 217

9.1 Revisiting Goals . 217

9.2 Future Work . 218

9.2.1 Multi-Threaded Performance 218

9.2.2 Automatic Generation of CNN Convolution Variants . . . 219

9.2.3 Automatic Generation of GPU CNN Convolution 219

10

9.3 Final Thoughts . 219

Bibliography 220

11

List of Figures

2-1 Single Channel CNN convolution. The value of an output point

P is the sum of products of the overlapping input tensor and

input kernel points centred at P. 31

2-2 Equation for single-channel CNN convolution. 31

2-3 Equation for multi-channel CNN convolution. 32

2-4 Input Kernel tensor overlayed on an input image tensor such

that some values outside the image are required.. 33

2-5 Pseudo-code implementation of direct convolution using zero-

padding. 34

2-6 Overlapping memory usage from two convolutions (centered on

the circle, and the star) using a 3x3 kernel. The dotted line shows

the order the convolutions are performed. 39

2-7 Overlapping memory usage from two convolutions (centered on

the circle, and the star) using a (3 × 3) kernel. The dotted line

shows the order the convolutions are performed. 40

4-1 Simplified tree representing the implementation search space.

Each path from the root to a leaf is a unique set of parameters. . . 54

4-2 Simplified example of the AST. 57

4-3 Scalar code generated from figure 4-2 with no unrolling. 58

4-4 SIMD code generated from figure 4-2 with the loop unrolled one

time. 58

4-5 Lowering a DefinitionNode twice using a SIMD transformer. . . . 63

4-6 Execution Time on AlexNet and Inception V4 convolutions on

ARM Target 1. 70

12

4-7 Execution Time on MobileNet V2 and ResNet-152 convolutions

on ARM Target 1. 70

4-8 Execution Time of Genvolution implementations on VGG IL-

SRVC convolutions on ARM Target 1. 71

4-9 Execution Time on AlexNet and Inception V4 convolutions on

ARM Target 2. 71

4-10 Execution Time on MobileNet V2 and ResNet-152 Convolutions

on ARM Target 2. 72

4-11 Execution Time of Genvolution implementations on VGG IL-

SRVC convolutions on ARM Target 2. 72

4-12 L1 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 1. 73

4-13 L1 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 1. 73

4-14 L1 Cache Miss Rate of Genvolution implementations on VGG

ILSRVC convolutions on ARM Target 1. 74

4-15 L1 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 2. 74

4-16 L1 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 2. 75

4-17 L1 Cache Miss Rate of Genvolution implementations on VGG

ILSRVC convolutions on ARM Target 2. 75

4-18 L2 cache miss rate on AlexNet and Inception V2 convolutions on

ARM Target 1. 76

4-19 L2 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 1. 76

4-20 L2 Cache Miss Rate of Genvolution implementations on VGG

ILSRVC Convolutions on ARM Target 1. 77

4-21 L2 cache miss rate on AlexNet and Inception V2 convolutions on

ARM Target 2. 77

13

4-22 L2 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 2. 78

4-23 L2 Cache Miss Rate of Genvolution implementations on VGG

ILSRVC Convolutions on ARM Target 2. 78

4-24 Execution time on AlexNet and Inception V4 convolutions on

Intel Target 1. 81

4-25 Execution time on MobileNet V2 and ResNET-152 convolutions

on Intel Target 1. 81

4-26 Execution Time of Genvolution implementations on VGG IL-

SRVC Convolutions on Intel Target 1. 82

5-1 Scalar implementation of the dot product between two vectors

of input channels, one from the input image tensor and one from

the input kernel tensor. 85

5-2 Equivalent SIMD implementation of figure 5-1. 86

5-3 ARMv7 NEON Horizontal Add operation 87

5-4 Pairwise channels strategy that also includes for loops across the

kernel height 𝑌 and the kernel width 𝑋 . This reduces the num-

ber of horizontal adds and writes to the output image. 88

5-5 Convolving 3 input kernels with an input image in parallel using

3-lane SIMD vectors. 89

5-6 Parallel Kernels Pseudocode Microkernel 91

5-7 Parallel Kernels SIMD strategy with the input channels as the

innermost loop. 91

5-8 Convolving (1𝑥1) kernels with a 1D input image using an outer

product. 93

5-9 Efficient permutations of two AVX registers to calculate outer

product values. 95

5-10 ARMv7 NEON Pseudocode for a outer product microkernel. 97

5-11 Using 2 4-lane NEON registers to construct logically eight-lane

𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐 and 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐. 16 registers are used to store an (8×

8) output matrix. 98

14

5-12 The major steps in the W-M-C SIMD strategy. 102

5-13 ARMv7 NEON Pseudocode for a W-M-C microkernel. 104

6-1 Minimal multiplication algorithm for performing 𝐹 (2, 3) using 4

multiplications. 108

6-2 Matrix form algorithm for 1D minimal multiplication algorithms.

108

6-3 Matrices representing the minimal multiplication algorithm for

𝐹 (2, 3) shown in figure 6-1. 109

6-4 Performing the minimal multiplication algorithm for 𝐹 (2, 3) shown

in figure 6-1, using the matrices given in figure 6-3. 109

6-5 Matrix form algorithm for 2D minimal multiplication algorithms

created from nesting the same 1D minimal multiplication algo-

rithm. 110

6-6 Performing a CNN Convolution by performing 4 smaller 2D Wino-

grad convolutions on tiles from the input tensor. 114

6-7 Pseudo-code implementation of a single-channel CNN convolu-

tion using a tiled Winograd Convolution algorithm. 117

6-8 Performing multi-channel convolution using a sum of single-

channel Winograd convolutions. 117

6-9 Performing multi-channel convolution using a sum of single-

channel Winograd convolutions. 118

6-10 Example 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 values. 119

6-11 Performing Winograd Convolution using vector scales to calcu-

late the necessary element-wise multiplications. 120

6-12 Performing a vector-scale between 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[0] and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[0].

120

6-13 Example values for a 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 constructed from 𝑀 different

input kernels. 120

6-14 An Outer product between a vector of values taken from dif-

ferent i-tiles, and a vector of values taken from different trans-

formed kernels. 121

15

6-15 Performing multi-channel convolution using a sum of single-

channel Winograd convolutions. 122

6-16 Example values for 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 with multiple

input kernels and multiple input channels. 123

6-17 Performing a matrix multiplication between a matrix containing

values from 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠, and a matrix containing values from

𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙. 123

6-18 Performing Winograd CNN convolution using 𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠

matrix multiplications. 124

6-19 Pseudo-code implementation of Winograd CNN convolution us-

ing 𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠 matrix multiplications. 125

6-20 Matrix form algorithm for 2D Winograd Convolution created

from nesting the same 1D Winograd Convolution algorithm. . . 127

6-21 Reducing matrix multiplications to a set of expressions. 128

6-22 Calculating the initial set of equations for transforming the input

kernel for a 𝐹 (2× 2, 3× 3) 2D Winograd convolution. 130

6-23 Simplification transformations applied to the initial set of equa-

tions representing Winograd transformations. 130

6-24 Example of simplifying an equation using the transformations in

figure 6-23. 131

6-25 Collecting all the var-sets from two equ-sets into a single set (iii).

Set (iv) also contains the var-sets with signs inverted. 131

6-26 Set Builder equation for creating the L1 var-set set. 132

6-27 Example of the common sub-expression hierarchy. The L2 var-

set set is created from the L1 var-set set, and the L1 var-set set

from the L0 var-set set. 132

6-28 Replacing sub-expressions in the var sets of equ-set 1 with refer-

ences to common sub-expressions in the L1 var-set set. 133

6-29 Replacing a sub-expression in equ-set 1 with a (negated) refer-

ence to an equivalent sub-expression in the L1 var-set set. 134

16

6-30 Pseudo-code implementation of 𝐵𝑇 * 𝑏 * 𝐵 for F(2x2, 3x3) trans-

forming the kernel to the Winograd domain. The matrix multi-

plications have been simplified to a set of equations. 135

6-31 The same implementation as figure 6-30 however common sub-

expression code has been inserted. 136

6-32 Calculating trans-i-tiles using values taken directly from the in-

put tensor (𝑖𝑚𝑔 in the pseudocode). 137

6-33 A (4 × 3) input tensor being split into four i-tiles. Each i-tile

requires some synthesized values. 138

6-34 Creating i-trans-tiles using an i-tile buffer to store the current i-

tile being transformed. The buffer includes any required synthe-

sized values. 139

6-35 Using an indirection buffer to point at the data needed for an i-

tile. One column of the i-tile requires (zero-padded) synthesized

values. 140

6-36 Creating i-trans-tiles using an i-tile buffer to point at the data

that makes up the current i-tile. The buffer also points at any

required synthesized values. 141

6-37 Pseudocode to double the first 100 elements of a list, and square

the rest of the elements. 142

6-38 Equivalent pseudocode to figure 6-37, however the loop has been

unswitched. 142

6-39 Code snippet from figure 6-32. The snippet creates an i-trans-tile

using data directly from the input tensor (𝑖𝑚𝑔). 143

6-40 Similar code to figure 6-39, however every access to the input

tensor is guarded by a conditional to check if it should return a

synthesized value instead. 144

6-41 Diagram showing how different i-tiles can be grouped based on

what values they synthesized. Each grey square marks the po-

sition of the top-left corner of an i-tile. The letters denote the

groupings. 145

17

6-42 Performing a 2D CNN convolution as a sum of 1D convolutions. 148

6-43 Matrix form algorithm for performing 1D Winograd Convolu-

tion. 149

6-44 Performing 2D Winograd convolution by summing 1D Wino-

grad Convolutions . 150

6-45 Pseudocode for performing 2D Winograd convolution using sums

of 1D Winograd convolutions. 151

6-46 Pseudocode for performing multi-channel 2D Winograd convo-

lution using sums of 1D Winograd convolutions. 152

6-47 Example values for 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠, 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠, and 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠.

153

6-48 Calculating the values in 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠 by performing 1D con-

volution between the columns of 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠, and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠.

153

6-49 Example values for multi-channel 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠, 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠,

and 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠. 154

6-50 Calculating the values in 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠 by performing multi-

channel 1D convolution between the columns of 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠,

and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠. 154

6-51 Splitting each row of a (2× 5) output tensor into 3 o-tiles. 155

6-52 Splitting each row of a (4 × 5) input tensor into 3 overlapping

i-tiles. 156

6-53 Example values for the transformed row i-tile, created from the

example values in figure 6-52. 157

6-54 Performing 2D convolution using smaller convolutions between

values from 𝑡𝑟𝑎𝑛𝑠_𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠 and the columns of 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠.

158

6-55 Execution time on AlexNet and Inception V4 convolutions on

ARM Target 1. 164

6-56 Execution time on MobileNet V2 and ResNET-152 convolutions

on ARM Target 1. 164

18

6-57 Execution Time of Winogen implementations on VGG ILSRVC

Convolutions on ARM Target 1. 165

6-58 Execution time on AlexNet and Inception V4 convolutions on

ARM Target 2. 165

6-59 Execution time on MobileNet V2 and ResNET-152 convolutions

on ARM Target 2. 166

6-60 Execution Time of Winogen implementations on VGG ILSRVC

Convolutions on ARM Target 2. 166

6-61 L1 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 1. 167

6-62 L1 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 1. 167

6-63 L1 Cache Miss Rate of Winogen implementations on VGG IL-

SRVC Convolutions on ARM Target 1. 168

6-64 L1 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 2. 168

6-65 L1 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 2. 169

6-66 L1 Cache Miss Rate of Winogen implementations on VGG IL-

SRVC Convolutions on ARM Target 2. 169

6-67 L2 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 1. 170

6-68 L2 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 1. 170

6-69 L2 Cache Miss Rate of Winogen implementations on VGG IL-

SRVC Convolutions on ARM Target 1. 171

6-70 L2 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 2. 171

6-71 L2 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 2. 172

19

6-72 L2 Cache Miss Rate of Winogen implementations on VGG IL-

SRVC Convolutions on ARM Target 2. 172

7-1 Performing a (1 × 1) kernel convolution as a matrix multiplica-

tion . 173

7-2 Using the GCC macro __builtin_prefetch to preform software prefetch-

ing. 175

7-3 Execution Time on Inception V4 and AlexNet matrix multiplica-

tions on ARM Target 1. 179

7-4 Execution Time on ResNET-152 matrix multiplications on ARM

Target 1. 179

7-5 Execution Time on SqueezeNet matrix multiplications on ARM

Target 1. 180

7-6 Execution Time on Inception V4 and AlexNet matrix multiplica-

tions on ARM Target 2. 180

7-7 Execution Time of Genvolution implementations on ResNET 152

matrix multiplications on ARM Target 2. 181

7-8 Execution Time on SqueezeNet matrix multiplications on ARM

Target 2. 181

7-9 L1 cache miss rates on Inception V4 and AlexNet matrix multi-

plications on ARM Target 1. 182

7-10 L1 cache miss rate on ResNET 152 matrix multiplications on ARM

Target 1. 182

7-11 L1 cache miss rate on SqueezeNet matrix multiplications on ARM

Target 1. 183

7-12 L1 cache miss rates on Inception V4 and AlexNet matrix multi-

plications on ARM Target 2. 183

7-13 L1 cache miss rate on ResNET 152 matrix multiplications on ARM

Target 2. 184

7-14 L1 cache miss rate on SqueezeNet matrix multiplications on ARM

Target 2. 184

20

7-15 L2 cache miss rates on Inception V4 and AlexNet matrix multi-

plications on ARM Target 1. 185

7-16 L2 cache miss rate on ResNET 152 matrix multiplications on ARM

Target 1. 185

7-17 L2 cache miss rate on SqueezeNet matrix multiplications on ARM

Target 1. 186

7-18 L2 cache miss rates on Inception V4 and AlexNet matrix multi-

plications on ARM Target 2. 186

7-19 L2 cache miss rate on ResNET 152 matrix multiplications on ARM

Target 2. 187

7-20 L2 cache miss rate on SqueezeNet matrix multiplications on ARM

Target 2. 187

8-1 IEEE-754 formula for calculating the value 𝑣𝑎𝑙 stored in a floating-

point datatype. 190

8-2 IEEE-754 formula for calculating the sub-normal value 𝑠𝑣𝑎𝑙 stored

in a floating-point datatype. 191

8-3 Binary layout of IEEE 754 binary32 and related Flyte datatypes. . 193

8-4 A binary32 (i) value transformed to flyte-16 and flyte-8 (parts (ii)

and (iii)). the flyte values transformed to binary32 (parts (iv) and

(v)). 194

8-5 Example table look-up operation. 196

8-6 All byte-level table look-up intrinsics available. 197

8-7 NEON7-flyte function to load 2 flyte-24 values into 2 binary32

lanes. 198

8-8 Simplified example of reading two flyte-24 values as two float-

32. 199

8-9 NEON64-flyte function to load 4 flyte-24 values into 4 binary32

lanes. 200

8-10 NEON7-flyte function to store 2 binary32 lanes as 2 flyte-24 values.201

8-11 Storing two binary32 values as two flyte-24 while preserving

data that would be overwritten. 201

21

8-12 NEON7-flyte function to store 4 binary32 lanes as 4 flyte-8 values. 203

8-13 Loading four flyte-24 values using 3 32-bit vector register so that

all memory accesses are aligned. 204

8-14 Relative energy efficiency on AlexNet and Inception V4 convo-

lutions on ARM Target 1. 209

8-15 Relative energy efficiency on MobileNet V2 and ResNET-152 con-

volutions on ARM Target 1. 209

8-16 Relative energy efficiency of Flyte implementations on VGG IL-

SRVC Convolutions on ARM Target 1. 210

8-17 Execution times on AlexNet and Inception V4 convolutions on

ARM Target 1. 211

8-18 Execution times on MobileNet V2 and ResNET-152 convolutions

on ARM Target 1. 211

8-19 Execution Time of Flyte implementations on VGG ILSRVC Con-

volutions on ARM Target 1. 212

8-20 L1 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 1. 213

8-21 L1 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 1. 213

8-22 L1 cache miss rate of Flyte implementations on VGG ILSRVC

Convolutions on ARM Target 1. 214

8-23 L2 cache miss rate on AlexNet and Inception V4 convolutions on

ARM Target 1. 215

8-24 L2 cache miss rate on MobileNet V2 and ResNET-152 convolu-

tions on ARM Target 1. 215

8-25 L2 cache miss rate of Flyte implementations on VGG ILSRVC

Convolutions on ARM Target 1. 216

22

List of Tables

4.1 Temporary Memory Overhead on ARM Target 1. 79

4.2 Temporary Memory Overhead on ARM Target 2. 80

4.3 Temporary Memory Overhead on Intel Target 1. 83

6.1 Memory Size Reduction of transformed tensors using 1D Wino-

grad vs 2D Winograd . 159

6.2 Reduction in number of multiplications required for convolution

when using 2D Winograd CNN convolution, and when using

our sum of 1D Winograd CNN convolution. 160

23

24

Chapter 1

Introduction

Convolution neural networks (CNNs) are a type of neural network present in

machine learning. A CNN is a directed acyclic graph where each node repre-

sents a data transformation (LeCun et al. 1989). Inputs are fed into the bottom

of the graph, and move up through the graph. The input is transformed by

the nodes as it passes through them. The leaf nodes of the graph contain the

outputs of the CNN, generated from a given input. CNNs were originally de-

signed for image classification (LeCun et al. 1989), but they have also been used

to solve other vision (Gatys, Ecker, and Bethge 2016), and non-vision problems

such as text processing (Jacovi, Shalom, and Goldberg 2018).

The main operation used by CNNs is CNN convolution. CNN convolu-

tion takes in an input tensor, and an input kernel. The input kernel is applied

to each point in the input tensor to produce a new output tensor. There are

multiple common methods for implementing CNN convolution. CNN con-

volution can implemented using a nest of loops that moves across the input

tensors. This is called direct convolution. CNN convolution can also be mapped

to matrix multiplication by producing a patch matrix from the input tensor (Va-

sudevan, Anderson, and Gregg 2017). This is called im2col convolution. There

are also so-called ’fast’ convolution algorithms that transform the inputs to an-

other representation. One ’fast’ method is Winograd Convolution (Lavin and

Gray 2016).

25

CNNs are extremely resource intensive, requiring a large amount of com-

putational work and memory. This becomes an issue when CNNs are used on

resource constrained machines, such as embedded devices. The majority of re-

sources are used performing CNN convolution. By reducing the resource usage

of CNN convolution, CNNs can be more easily ported to resource constrained

devices.

We investigated methods for reducing the execution time, memory size, and

energy usage of CNN convolution, with an emphasis on reducing resource us-

age on low-power single-threaded ARM devices. The principal contributions

of this thesis are as follows:

• We extend previous work on a domain-specific program generator to

develop Genvolution (Chapter 4). Genvolution is a program generator

and automated program optimizer that can be used to generate opti-

mized direct CNN convolution implementation for Intel, ARMv7, and

ARMv8 architectures. We found that the implementations generated by

Genvolution outperformed vendor library direct convolution implemen-

tations on tested ARM devices for all tested input sizes (section 4.12).

The generated code also outperformed vendor library Im2Col convolu-

tion implementations for a number of input sizes (Section 4.12). Also, all

Genvolution-generated implementations required only a fraction of the

temporary memory that im2col convolution requires which is important

on memory constrained devices.

• Genvolution was also used to automatically generate and optimize matrix

multiplication implementations on ARM devices (Chapter 7). We found

that the implementations generated by Genvolution outperformed ven-

dor library matrix multiplication implementations for a small number of

input sizes (Section 7.6).

• We developed Winogen, a domain-specific program generator and auto-

mated program optimizer for generating optimized Winograd convolu-

tion implementations for ARMv7 and ARMv8 architectures (Chapter 6).

26

We found that the implementations generated by Winogen outperformed

vendor library Winograd convolution implementations for a number of

input sizes (Section 6.15).

• We propose a new Winograd CNN convolution algorithm. Our method

uses a vertical 1D convolution to accumulate multiple 1D Winograd CNN

convolutions (Section 6.12). The result of the vertical 1D convolution is

same as a regular CNN convolution. This method requires less memory

than the standard Winograd convolution algorithm, but still reduces the

problem complexity of convolution using the Winograd algorithm. We

found our new method outperformed vendor library Winograd convolu-

tion implementations for a number of input sizes (Section 6.15).

• We investigated the usage of the Flyte floating-point datatype for reduc-

ing the energy and memory usage of direct convolution implementations

(Chapter 8). We developed an ARMv7, and ARMv8 library for transform-

ing multiple values to and from the Flyte datatype using ARM SIMD vec-

tor intrinsics (Section 8.3). We found that the total energy usage of direct

convolution implementations could be reduced, with no effect on execu-

tion time, for a number of input sizes by using the Flyte datatype with

our developed libraries (Section 8.7).

While in most of our research topics, we only improve resource usage for

some input sizes, our results are still significant. The input sizes of CNN con-

volutions in CNN networks are static and known in advance. This means that

it can be found empirically which layers our produced code performs better on.

While this adds some extra work for the network implementer, even a small in-

crease in performance can be very significant if the network is to be run many

times on many devices. This is especially true for CNN networks running on

mass-produced embedded devices.

The remainder of this thesis is structured as follows.

In Chapter 2, we describe background information referenced throughout

the rest of the thesis. This includes a review of CNN convolution, and neces-

27

sary terminology related to it. This chapter also introduces SIMD vector archi-

tectures which are referenced throughout this thesis. Data blocking to improve

data cache usage is also explained.

In Chapter 3, we cover tools used and experimental set-up. The libraries

used for collecting results, as well as the vendor libraries used for baseline

comparisons of results are outlined. The SIMD libraries used are also defined.

Finally, the specifications of the three test machines are given.

In Chapter 4, the design of Genvolution, our domain-specific program gen-

erator for direct convolution is explained. The general design of Genvolution is

given. How the search space for program optimizations is built and traversed is

also described. This chapter also covers how Genvolution generates C++ code

for direct convolution from a set of program parameters using an intermediate

representation abstract syntax tree.

In Chapter 5, we describe optimizations that can exist in the C++ code gen-

erated by Genvolution. We present a number of different ways SIMD vector-

ization can be used to implement CNN convolution, and the different strengths

and weaknesses associated with each way.

In Chapter 6, we first explain the theory of Winograd convolution, and the

standard algorithm for implementing Winograd convolution outlined by Lavin

et al. (Lavin and Gray 2016). We then cover different ways that Winograd

convolution can be optimized further. Finally, we outline our new Winograd

convolution algorithm in detail.

In Chapter 7, we describe how CNN convolution with a (1×1) input kernel

can be implemented as matrix multiplication without transforming the input

or output tensors. We then show how Genvolution can be used to generate

optimized matrix multiplication implementations for ARM devices.

In Chapter 8, we first introduce the Flyte datatype, a reduced precision

floating-point storage datatype. We then outline our ARM NEON libraries for

transforming multiple IEEE-754 binary32 floating-point values to and from the

Flyte datatype in parallel.

28

In Chapter 9, we present our conclusions. We evaluate the results of the

previous chapters as a whole, and mention possible topics of further research.

In the next chapter, we move from giving an overview of this thesis to de-

scribing background information needed throughout the rest of the thesis.

29

Chapter 2

Background

2.1 Convolution and CNNs

2.1.1 Overview of the CNN Convolution Operation

Convolution neural networks (CNNs) are a type of deep neural network (DNNs)

used within machine learning. CNNs are a type of multilayer perceptron, and

are constructed as a graph of operations that can be conceptually split into mul-

tiple layers (Vasudevan, Anderson, and Gregg 2017). Each layer is constructed

from one or more CNN nodes. To perform inference with a CNN (i.e. to use

it to estimate an output given an input), we feed the input values into the bot-

tom layer of the graph. The CNN nodes of each layer transforms the data fed

into them, and the node’s output propagates up the graph to the next layer.

Note that a CNN graph must be acyclic, and that every CNN node can have an

accompanying state used during input transformation (LeCun et al. 1989). In

theory, a CNN node can perform any transformation that is valid for its given

input. However, in practice there are a small number of CNN node types that

are shared across the majority of CNN designs.

The most common transformation performed by a CNN node is CNN con-

volution. CNN convolution takes an input image tensor and applies an in-

put kernel tensor to it to produce a new output image tensor. The simplest

form of CNN convolution is single-channel CNN convolution, where we take

30

Figure 2-1: Single Channel CNN convolution. The value of an output point P is the
sum of products of the overlapping input tensor and input kernel points centred at P.

a two-dimensional input image 𝑖𝑚𝑔 (with height 𝐻 and width 𝑊), and a two-

dimensional input kernel 𝑘𝑒𝑟 (with height 𝑋 and width 𝑌), and produce a two-

dimensional output tensor 𝑜𝑢𝑡 (also with height 𝐻 and width 𝑊). To calculate

the value of each point 𝑜𝑢𝑡(ℎ,𝑤) we overlay our kernel 𝑘𝑒𝑟 on top of 𝑖𝑚𝑔 so

that 𝑘𝑒𝑟 is centered on the point 𝑖𝑚𝑔(ℎ,𝑤). We then perform point-wise multi-

plication between the overlapping points of 𝑖𝑚𝑔 and 𝑘𝑒𝑟, and finally sum the

𝑋 × 𝑌 produced values to get the final value for the point 𝑜𝑢𝑡(ℎ,𝑤). Figure 2-2

gives the equation for single-channel CNN convolution. Also, if the input kernel

is square (i.e. 𝑋 = 𝑌), then the length of the kernel’s dimensions are equal, and

we refer to them as having length 𝐾 (where 𝐾 = 𝑋 = 𝑌).

𝑜𝑢𝑡(ℎ,𝑤) =
𝑋∑︁

𝑥=0

𝑌∑︁
𝑦=0

𝑖𝑚𝑔(ℎ+ (𝑦 − ⌊𝑌/2⌋), 𝑤 + (𝑥− ⌊𝑋/2⌋)) * 𝑘𝑒𝑟(𝑥, 𝑦)

Figure 2-2: Equation for single-channel CNN convolution.

Single-channel CNN convolution can be extended to multi-channel CNN con-

volution by adding an extra dimension 𝐶 to both the input image tensor 𝑖𝑚𝑔

and the input kernel tensor 𝑘𝑒𝑟. 𝑖𝑚𝑔 and 𝑘𝑒𝑟 are now three-dimensional ten-

31

sors with shapes (𝐻 × 𝑊 × 𝐶) and (𝑋 × 𝑌 × 𝐶) respectively. However, it is

often conceptually more helpful to think of them as two-dimensional tensors

where every point contains a vector of 𝐶 scalar values. To calculate the value of

𝑜𝑢𝑡(ℎ,𝑤) we again overlay 𝑘𝑒𝑟 to be centered on the point 𝑖𝑚𝑔(ℎ,𝑤). However,

we now perform a vector dot product between the vectors in the overlapping

points, and then sum those values together to get the output value. Figure 2-3

gives the equation for multi-channel CNN convolution.

𝑜𝑢𝑡(ℎ,𝑤) =
𝑋∑︁

𝑥=0

𝑌∑︁
𝑦=0

𝐶∑︁
𝑐=0

𝑖𝑚𝑔(ℎ+ (𝑦 − ⌊𝑌/2⌋), 𝑤 + (𝑥− ⌊𝑋/2⌋), 𝑐) * 𝑘𝑒𝑟(𝑥, 𝑦, 𝑐)

Figure 2-3: Equation for multi-channel CNN convolution.

Most CNN convolution nodes in a CNN perform multi-channel CNN convo-

lution. However, instead of having a single input kernel tensor 𝑘𝑒𝑟, they have

a vector of 𝑀 input kernels tensors. Every kernel tensor in the vector has the

same dimensions, and each kernel is applied in turn to the input image tensor

to create 𝑀 separate 2D output tensors. The 𝑀 2D outputs are concatenated to

create a final output image tensor with shape (𝐻 ×𝑊 ×𝑀).

2.1.2 Dealing with Edge Points in CNN Convolution

When we are calculating the edge values for an output tensor 𝑜𝑢𝑡 using CNN

convolution, we may need values from outside the boundaries of the input

image tensor (Sewak, Karim, and Pujari 2018). For example, if we are per-

forming single-channel CNN convolution and we want the value for the point

𝑜𝑢𝑡(0, 0) with 𝑋 = 3, 𝑌 = 3, then we will need to calculate the value of

𝑖𝑚𝑔(−1,−1)*𝑘𝑒𝑟(0, 0). However, 𝑖𝑚𝑔(−1,−1) is outside the boundaries of 𝑖𝑚𝑔

so we must select some method which will allow us to synthesis these needed

values. Figure 2-4 shows another example where an input kernel tensor is cen-

tered on the top-right point of an input image tensor. This causes the top row

and right column of the input kernel tensor to lay outside the bounds of the

input image tensor.

32

Figure 2-4: Input Kernel tensor overlayed on an input image tensor such that some
values outside the image are required..

There are a number of common methods of synthesizing the extra values

required:

• Zero-Padding: Assume all values outside the boundaries of 𝑖𝑚𝑔 have the

value 0. This is the simplest method and most commonly used one (Khan

et al. 2018).

• Mirroring: Assume that 𝑖𝑚𝑔 is conceptually mirrored at every edge. This

is equivalent to taking the absolute value of all 𝑖𝑚𝑔 indices before us-

ing them (i.e. 𝑖𝑚𝑔(| ℎ |, | 𝑤 |)). For example, the value of 𝑖𝑚𝑔(−2, 4) is

mapped to 𝑖𝑚𝑔(2, 4) (Sewak, Karim, and Pujari 2018).

• Extension: Assume that all the border points of 𝑖𝑚𝑔 extend infinitely out-

wards from 𝑖𝑚𝑔. This is equivalent to mapping every synthesized value

to the nearest valid value (using Euclidean distance) (Sewak, Karim, and

Pujari 2018).

• Cropping: Do not calculate the value of any output points that require

values from outside the boundaries of 𝑖𝑚𝑔. This will result in an output

tensor 𝑜𝑢𝑡 that is slightly smaller than 𝑖𝑚𝑔. In this case 𝑜𝑢𝑡 will have the

shape (𝐻 − (𝑋 − 1))× (𝑊 − (𝑌 − 1)) (Khan et al. 2018).

33

The same synthesizing methods are used for single-channel and multi-channel

convolution, with the multi-channel tensors being treated as two-dimensional

tensors where every point contains a vector of 𝐶 values.

2.1.3 Direct CNN Convolution Implementation

The simplest method for implementing CNN convolution is the direct convolu-

tion algorithm. Direct convolution consists of six nested loops that iterate over

the dimensions of the input tensors to perform the CNN convolution. The six

loops are independent and can be reordered in any manner. The dimensions

of the input and output tensors can also be arranged in any order. Figure 2-5

shows an example pseudo-code implementation of direct convolution.

1 i n _ t e n s o r [height] [width] [channels]
2 i n _ k e r n e l s [kerne l s] [X] [Y] [channels]
3 out_tensor [height] [width] [kerne l s]
4 for (m = 0 ; m < kerne l s ; m++) {
5 for (h = 0 ; h < height ; h++) {
6 for (w = 0 ; w < width ; w++) {
7 for (x = −(X/2) ; x <= X/2; x++) {
8 for (y = −(Y/2) ; y <= Y/2; y++) {
9 / / s k i p p i n g p o i n t s o u t s i d e i n _ t e n s o r i s t h e

10 / / same as m u l t i p l y i n g by zero , i . e . z e r o
11 / / padd ing
12 i f ((h+x >= 0 && h+x < height) &&
13 (w+y >= 0 && w+y < width)) {
14 for (c = 0 ; c < channels ; c ++) {
15 i = i n _ t e n s o r [h+x] [w+y] [c] ;
16 k = i n _ k e r n e l s [m] [x] [y] [c]
17 r = i * k
18 out_tensor [h] [w] [m] += r
19 }
20 }
21 }
22 }
23 }
24 }
25 }
26

Figure 2-5: Pseudo-code implementation of direct convolution using zero-padding.

34

2.1.4 Im2Col CNN Convolution Implementation

CNN convolution can also be implemented by transforming the problem to

matrix multiplication (Vasudevan, Anderson, and Gregg 2017). To do this, the

input tensor is transformed into a 2D tensor of size ((𝐻×𝑊)×(𝐶×𝐾×𝐾)), and

the input kernel is transformed into a 2D tensor of size ((𝐶 ×𝐾 ×𝐾)×𝑀). A

matrix multiplication is performed between the two transformed input tensors

to create a 2D output tensor of size ((𝐻 ×𝑊)×𝑀). The output tensor contains

all the output values of the wanted CNN convolution. Performing CNN convo-

lution using matrix multiplication is called im2col convolution, because the input

(image) tensor is transformed into a 2D matrix where each (𝐶×𝐾×𝐾) column

contains all the values needed to calculate one value in the output tensor.

Im2Col CNN convolution is often used in practice, because it allows pro-

grammers to make use of pre-existing highly optimized matrix multiplication

routines. This saves the time needed to optimize a CNN convolution imple-

mentation from scratch. However, im2col convolution introduces a very large

memory overhead, because memory for the transformed ((𝐻 ×𝑊)× (𝐶 ×𝐾 ×

𝐾)) input tensor must be allocated.

2.2 SIMD Vectors

2.2.1 Flynn’s Taxonomy and SIMD

Flynn’s taxonomy classifies the possible types of computer architectures into

four categories. One of these categories is Single Instruction Multiple Data, or

SIMD, which consists of any architecture that applies a single stream of opera-

tions/instructions to multiple data streams in parallel (Flynn 1972). An exam-

ple of this architecture is general purpose GPUs. General purpose GPUs typ-

ically have multiple arithmetic-logic-units (ALUs) all being fed with different

data streams, but every ALU applies the same operations to their data streams

in parallel as issued by a single instruction stream. Another example of a SIMD

architecture are SIMD vectors.

35

2.2.2 SIMD Vector

Typically, we visualize the data in a processor being stored in scalar registers,

i.e. registers that hold a single numeric value. A stream of scalar instructions

operates on the scalar registers, and each instruction produces a single result

(excluding edge-case instructions, such as division instructions that also pro-

duce a remainder). We can parallelize this design by extending our scalar reg-

isters so that they each hold several values at once. These are called SIMD

vector registers as they hold a vector of scalar values in a single register (Hen-

nessy and Patterson 2012). Logically each SIMD register is considered to be

split into an ordered list of scalar values, where each scalar value occupies one

lane of the vector.

SIMD instructions take a pair of SIMD vector registers as input, and pro-

duce a SIMD vector register of values as output, where each lane of the out-

put is calculated using the matching lanes of the two inputs. For example, an

add instructions between two SIMD vector registers containing {1,2,3,-1} and

{2,4,6,8} respectively would produce a SIMD vector register containing {3,6,9,7}

(Hennessy and Patterson 2012). This matches the definition of SIMD in Flynn’s

taxonomy, because given a single instruction stream, we operate on multiple

streams of data spread across the lanes of the vector registers.

Often SIMD instructions will have similar latency and throughput as their

scalar counterparts, meaning that vectorizing scalar code can have a significant

impact on performance. For example, on the Intel Skylake architecture, the

VMULPS instruction performs a SIMD multiplication between two SIMD reg-

ister holding eight 32-bit floats with a latency of 4 cycles and a throughput of

1 cycle (Intel 2019). FMUL, the scalar Skylake instruction for multiplying two

scalar 32-bit floats has the same latency and throughput (Fog 2018). This means

the vectorized VMULPS instruction can perform eight times more computation

than the scalar FMUL instruction in the same amount of time.

36

2.2.3 Data Layout

A limitation of modern general purpose processor SIMD architectures is that

it introduces some restrictions on data layouts. Most SIMD architectures only

implement performant vector register load and store operations, where all the

scalar values being accessed are contiguous in memory. For example, the In-

tel VMOVAPD instruction for loading 256-bit SIMD vectors from memory ef-

fectively just copies 256 bits starting at a given memory address into a vector

register (Intel 2019). This means data layout choices are restricted when using

SIMD vectorization, because the data being vectorized must be kept packed

and contiguous.

2.2.4 Horizontal Instructions

SIMD vector architectures are usually designed to prioritize operations that

work on pairs of values in matching lanes of distinct vector registers. These

include the obvious pairwise arithmetic and bitwise operations. However, as

each vector register already contains multiple values, we can apply operations

that work across the lanes of one register to produce a new value. These are

called horizontal operations.

Common horizontal operations are reordering the lanes in a vector register,

or summing all the values across the lanes of a vector register. Every major Intel

SIMD architectures offer some range of different vector reordering instructions.

Although, in general for the Intel architectures, as the size of the vector registers

increases more restrictions are placed on the reordering operations. For exam-

ple, in the Intel AVX architecture, the _mm_permute_ps intrinsic allows a 128-bit

register to be freely permuted as four 32-bit lanes. However the 256-bit equiv-

alent intrinsic, _mm256_permute_ps, includes the restriction that values cannot

be moved from the high 128-bits to the low 128-bits of the register or vice versa

(Intel 2019). The ARM NEON architectures offer a single set of reordering in-

structions that treat the input vectors as tables. They can be used to perform

any reordering operation, including duplicating lanes (ARM 2018).

37

2.3 Data Blocking

All tensor-based operations will exhibit data access characteristics inherent to

the operation being performed. For example, if we are performing single-channel

CNN convolution and wish to calculate the output point value at position

(ℎ,𝑤) in the output tensor, then we will need to access the values surround-

ing the point (ℎ,𝑤) in the input tensor. If we then calculated the value for

(ℎ + 1, 𝑤), there would be a large overlap with the values needed for calculat-

ing (ℎ,𝑤). CNN convolution can exhibit strong temporal locality in it’s data

accesses. Data caches and the memory hierarchy rely on exploiting temporal

and spatial locality to improve performance. Following the calculation of the

value at (ℎ,𝑤) with (ℎ + 1, 𝑤) will have good cache usage as the second calcu-

lation reuses many values from the first that should still be stored in the fastest

cache.

When implementing a tensor-based operation, it is important to take into

account the data access patterns of the problem to improve cache usage. How-

ever, the obvious approach to implementing tensor based operations can lead

to poor cache usage. Returning to the CNN convolution example outlined

above, the simplest implementation for calculating all the values of the output

tensor would be to have two nested for loops that run across the image height

𝐻 and image width 𝑊 dimensions of the output image tensor. This would lead

to the output points being calculated in the order (0, 0), (0, 1), ..., (0,𝑊 − 1),

(1, 0), (1, 1), ..., (𝐻 − 1,𝑊 − 1). However, calculating the output points in this

order would mean that there is a large gap between the calculation of (ℎ,𝑤)

and (ℎ + 1, 𝑤). If the values used in the calculation of (ℎ,𝑤) are evicted from

the cache by the intermediary points calculated before reaching (ℎ + 1, 𝑤), the

values would need to be refetched from a slower level of memory hierarchy

leading to worse performance.

Figure 2-6 shows how data can be shared between two convolutions when

using a 3x3 kernel. The convolution centered on the circle needs six of the same

data points as the convolution centered on the star. If these two convolutions

were performed sequentially much of the data required for the convolution

38

Figure 2-6: Overlapping memory usage from two convolutions (centered on the circle,
and the star) using a 3x3 kernel. The dotted line shows the order the convolutions are
performed.

centered on the star would already be in the L1 cache. However, the dotted

line in figure 2-6 shows the order the convolutions will be performed in when

using a pair of for loops to iterate through the needed convolutions. All the

other convolutions in the same row as the circle will be calculated before the

convolution centered on the star will be performed. By this time, the data over-

lapping with the convolution centered on the circle may have been evicted from

the faster caches.

The current loop ordering means that the point calculated after (ℎ,𝑤) would

be (ℎ,𝑤 + 1). These two points also have a large overlap in data usage. How-

ever, we can improve cache usage more by trying to perform all calculations

that share common data sequentially. This is the basis of ’data blocking’, which

attempts to improve cache usage by breaking larger loops into smaller sections

that iterate over small groups of values before moving to the next group.

2.3.1 Implicit Tile Blocking

Implicit tile blocking is a form of data blocking. Implicit tile blocking is based

around splitting the loops that iterate across the dimensions of a problem into

pairs of inner and outer loops. Each inner loop covers a small section of a given

dimension and the outer loops select what section the inner loops will iterate

over. When multiple dimensions are blocked like this, then the iteration space

39

is split into smaller blocks of data. Each block is completely iterated across

before moving onto the next block (Daydé, Marques, and Nakajima 2013). For

example, if we used implicit tile blocking on figure 2-6 to create data blocks

of (3 × 3) we would then iterate through the output points (ℎ,𝑤), (ℎ,𝑤 + 1),

(ℎ,𝑤 + 2), (ℎ + 1, 𝑤), (ℎ + 1, 𝑤 + 1), (ℎ + 1, 𝑤 + 2), (ℎ + 2, 𝑤), (ℎ + 2, 𝑤 + 1),

(ℎ + 2, 𝑤 + 2) sequentially for each data block. As the calculations for all these

points share many input data points, we could expect to see excellent cache

data usage.

Figure 2-7: Overlapping memory usage from two convolutions (centered on the circle,
and the star) using a (3 × 3) kernel. The dotted line shows the order the convolutions
are performed.

Figure 2-7 shows the effect implicit tile blocking can have on the order the

convolution are performed in. In part (b) of the figure, the dimensions of the

input image tensor have been broken into blocks of size (3 × 4). This means

that there are only three other convolutions performed between the calculation

of the convolution centered on the circle and the convolution centered on the

star, rather than the seven convolutions between them in part (a). This means it

is more likely that the overlapping values from the circle convolution will still

be in a fast cache when the star convolution is performed.

Implicit tile blocking does not guarantee better performing cache usage.

There may be high data reuse between points at the edge of a data block and

the points of a adjoining data block. However, implicit tile blocking does not at-

40

tempt to try and ensure that the cached data used by one set of edge points will

not be evicted before reaching adjoining edge points. More advanced block-

ing techniques attempt to exploit data reuse between adjoining blocks of data.

Hilbert curve blocking uses the recursive Hilbert curve to create a hierarchy of

data blocks. It attempts to retain data shared between smaller data blocks in

larger blocks stored in the L3 cache (Böhm, Perdacher, and Plant 2016). How-

ever, calculating the next point to iterate to is significantly more expensive than

implicit tile blocking. Implicit tile blocking attempts to improve the usage of

spatial locality in a problem with the minimum overhead possible, even if this

means not optimally designing for data cache reuse.

When performing implicit tile blocking, selecting the correct block size is

very important. A larger data block allows for more points that share com-

mon data to be iterated across sequentially, and reduces the number of points

that share data being split across different blocks. However, if the block is

too large the common data will be evicted from the data cache before it can

be reused, returning data usage to how it was pre-blocking (Park, Hong, and

Prasanna 2003). To reduce unwanted capacity cache misses inside the blocks,

the data blocks should be smaller then caches available. Lam et al prove that

in theory the optimal size for a square data block to reduce capacity misses is√︀
𝑎𝑠𝑜× 𝑐𝑠𝑐/𝑎𝑠𝑜+ 1 where 𝑎𝑠𝑜 is the associativity of the cache and 𝑐𝑠𝑐 is the size of

the cache (Lam, Rothberg, and Wolf 1991). This assumes that the program does

not need to share the cache hierarchy with any other program, and in prac-

tice the optimal block size may be much smaller due to this and other practical

constraints.

Implicit tile blocking will create data blocks that contain non-contiguous

data, which can increase the number of conflict cache misses that occur de-

pending on the alignment of data and the associativities of the caches in use

(Athanasaki, Koziris, and Tsanakas 2005). Typically, cache systems use the

lower bits of each memory address to select which cache set the address be-

longs to (excluding the lowest bits that index into each cache line). If an inner

loop iterates across a non-contiguous dimension, a large number of addresses

41

that map to the same cache set may be sequentially accessed, because all the ad-

dresses may share the same lower bits. This is more likely to occur if the inner

dimension sizes are powers of two. This leads to a large number of avoidable

cache misses as a disproportionate amount of accessed addresses map to the

same cache set which will need to evict entries while other cache sets still had

room.

The non-contiguous jumps caused by implicit tile blocking can also cause

performance issues if the jumps move across different virtual memory pages.

These jumps can cause poor translation look-ahead buffer (TLB) usage (Park,

Hong, and Prasanna 2003). Standard virtual memory pages each cover a 4KB

range of addresses, which can hold 1024 32-bit float values contiguously. This

means if the inner-most dimension of a matrix contain over 1024 values, when

we make a non-contiguous jump by iterating on one of the outer dimensions,

we will be moving to a new virtual page. This will occur every time we iterate

an outer dimension which occurs significantly more often when using implicit

tile blocking. If the chosen data blocks have more page-size jumps than there

are entry slots in the L1 TLB, then it can cause severe TLB thrashing. This is

because as we iterate through the final portion of any block 𝑏𝑙𝑘, we will evict

the older TLB entries that mapped the pages used by the earlier portions of 𝑏𝑙𝑘

from the TLB. However when we move to block 𝑏𝑙𝑘+1 we will need the earlier

mappings again so the new TLB entries will be evicted even though they’ll be

needed next. This will repeat for all the data blocks causing very poor L1 TLB

usage, where we must continually load virtual-physical page mappings from

slower levels of the memory hierarchy. This problem can be mitigated by only

selecting data blocks that contain few non-contiguous jumps, however this can

lead to worse data reuse when compared to more square data blocks (Park,

Hong, and Prasanna 2003).

2.3.2 Explicit Tile Blocking

Explicit tile blocking attempts to solve the problems that can arise using im-

plicit tile blocking. Explicit tile blocking does this by copying all data in the

42

current data block into a contiguous data buffer before the data is used (Daydé,

Marques, and Nakajima 2013). By moving the data block into a contiguous

buffer, we can expect the pressure each data block applies on the TLB to be

reduced significantly (Park, Hong, and Prasanna 2003). This is because the

contiguous buffer will only occupy the minimum number of virtual memory

pages required to fit it in, unlike in implicit data blocking where each data block

can be spread across a large number of virtual pages. Explicit tile blocking also

removes the possibility of many data block values all mapping to the same

cache sets thus creating avoidable conflict cache misses. This is because if the

data is stored in a contiguous buffer, then as iterate across the data block the

addresses will increment sequentially meaning the lower bits of the addresses

will be the one changing most often. As the lower bits of the memory addresses

select which cache set the addresses maps to, we can expect to see a much better

distribution of the cache sets being used.

The main drawbacks of explicit tile blocking is that it adds an extra mem-

ory and computational overhead for the allocation of the memory buffer, and

the time spent copying each block into the buffer before it’s data can be used.

Although, the size of the memory buffer is usually many times smaller than

the size of the input and output data structures, therefore it’s inclusion usually

has very little impact on the total memory footprint of the problem. It is hoped

that the computational cost of the data copying is counteracted by increased

cache performance caused by data blocking, while also avoiding the possibly

performance impediments that implicit tile blocking can cause.

Explicit data blocks can also be used to represent the output data structure

as well. Using an intermediate output buffer as an accumulator can signifi-

cantly reduce the number of writes required to the full output data structure,

with most output writes instead writing to a buffer that should be fully con-

tained in one of smaller faster caches.

Further background information required for specific chapters is introduced

at the start of each chapter. We now move from general background informa-

tion to general information about tools used during research and test set-ups.

43

Chapter 3

Tools and Experimental Set Up

3.1 Tools and Libraries

3.1.1 Intel SIMD Libraries

The Intel Streaming SIMD Extensions(SSD) are a set of instruction extensions

for Intel x86 and Intel x64 architectures that implements SIMD vector function-

ally. We used the FM3 SSD extension during experimentation. AVX1 is an SSD

extension that introduced 256-bit floating-point SIMD registers to Intel archi-

tectures, and AVX2 expanded the number of operations available, especially

vector reordering operations (Intel 2016). AVX2 also introduced 256-bit integer

SIMD registers (Intel 2016). FMA3 is a minor extension of AVX2 that adds a

number of tertiary operand fused-multiple-add instructions.

GCC gained full FMA3 support with GCC version 4.7.0 in June 2012 (Team

2019). Every instruction extension exposes a set of new x86 assembler instruc-

tions, however the SIMD functionality can be more easily accessed through the

Intel SIMD intrinsic libraries that Intel produces (Intel 2019). Each intrinsic li-

brary maps the SIMD x86 instructions to C functions, and allows a programmer

to use the Intel SIMD functionality, while removing unwanted micromanage-

ment like controlling register allocation, which the C compiler will perform

instead (Intel 2019). The intrinsic libraries were exclusively used to implement

SIMD functionality on Intel architectures during research.

44

3.1.2 ARM Neon Libraries

SIMD functionality was introduced into ARM devices with the ARMv6 SIMD

extension, but this was fully replaced with the NEON extension in ARMv7 in

2009. The ARMv7 NEON extension included a set of 32 128-bit programmer-

facing vector registers along with a SIMD instruction set to manipulate them.

With the release of ARMv8 and AARCH64, the NEON architecture was ex-

tended with a number of new instructions and many other instructions were

improved so they could also act on 128-bit registers, rather than just 64-bit

registers. It also introduced 64-bit scalar values to NEON, as well as mak-

ing NEON a standard extension rather than an optional one. Like Intel, ARM

has also produced a number of C intrinsic libraries that allow low-level ac-

cess to SIMD functionally while removing the need to manually allocate regis-

ters. ARMv7 NEON was used during testing on ARMv7 devices, and ARMv8

NEON was used when testing ARMv8 or AARCH64 devices.

3.1.3 PAPI

The Performance Application Programming Interface (PAPI) API was used for

gathering performance metrics on ARM processors (Müller et al. 2010). PAPI

exposes an API for measuring any performance metric, however the actual

metrics available depend on the hardware being used.

3.1.4 ARMCL: ARM Compute Library

The ARM Compute Library (ARMCL) was used as the baseline library for com-

paring the performance of different methods on ARM processors. ARMCL is

Machine Learning Library developed by ARM for the ARM Cortex-A family of

CPU processors. It contains optimized implementations for a number of stan-

dard CNN convolution implementations, such as direct convolution, im2col

convolution, and Winograd CNN convolution (ARM 2019b).

45

3.1.5 MKLDNN Library

The Micro-Kernel Library Deep Neural Network (MKLDNN) library was used

as a baseline library for comparing the performance of different methods on In-

tel processors. MKLDNN is a open-source performance library for deep learn-

ing applications developed by Intel for Intel CPU and GPUs (Intel 2018).

3.1.6 TriNNity Library

The TriNNity library was used as a baseline library for comparing the perfor-

mance of different methods on Intel processors. TriNNity is a low-level ma-

chine learning library developed at Trinity College Dublin (Anderson 2019).

TriNNity contains optimized implementations for a number of standard CNN

convolution implementations, such as direct convolution, and im2col convolu-

tion.

3.1.7 Miscellaneous Tools and Libraries

All generated code was written in C++17. GCC 9.1 was used to compile all gen-

erated source code for Intel devices, and GCC 9.0.0 was used to cross-compile

all generated code for ARM devices. GHC 8.5.6 was used to compile all Haskell

source code used. The thesis was written in Latex using TeXworks and TexStu-

dio as Latex IDEs. GnuPlot was used to produce all graphs shown in the thesis.

Inkscape 0.9.3 was used to draw all diagrams shown in the thesis.

3.2 Test Machines

3.2.1 ARM

Two ARM test machines were used during research to collect metrics between

the baseline implementations and the implementations created during research.

The first test machine was the ODROID XU3 produced by HardKernel. It

has an ARM armv7l big.LITTLE CPU arrangement with a Samsung Exynos5422

46

Cortex-A15 2.0Ghz quad-core ’big’ CPU and a Cortex-A7 quad-core ’little’ CPU.

All experiments were pinned to a single core on the A15 CPU. The device has

2GB of LPDDR3 RAM. The device has the ARMv7 NEON SIMD instruction

extension. The device also has energy monitoring hardware which can collect

energy readings for each CPU and DRAM in parallel. We used ARCH Linux

2018.08.1 4.14.127 as the operating system on this machine during experimen-

tation. This machine is referred to as ARM Target 1 in all results section.

The second test machine was the Nvidia Jetson TX1 Developer Kit. It has

a Quad-core ARM Cortex-A57 MPCore CPU ARMv8 Processor. The device

has 4GB of LPDDR4 RAM. The device has the AARCH ARMv8 NEON SIMD

instruction extension. All experiments were pinned to a single core on the A57

CPU. We used Ubuntu 18.04.2 LTS as the operating system on this machine

during experimentation. This machine is referred to as ARM Target 2 in all

results section.

3.2.2 Intel

To collect metrics for Intel Architecture performance, the following target ma-

chine was used.

The target machine had a 64-bit Sandybridge Intel Core i7-2600 eight-core

CPU. All cores ran at 3.4GHz. Each core had a 32KB private instruction L1

cache, a 32KB private data L1 cache, a private 256KB L2 cache, and a shared

8192KB L3 cache. The machine used Linux Arch-Linux 2019.06.01 x86_64 as an

operating system with the 5.0.4-arch1-1-ARCH Linux kernel. This machine is

referred to as Intel Target 1 in all results section.

We have now completed covering general information, and are ready to

begin examining the research conducted for this thesis. The next chapter intro-

duces Genvolution, an automatic program generator for direct CNN convolu-

tion.

47

Chapter 4

Automating the Search for CNN

Convolutions

4.1 Chapter Motivation

Most CNNs spend the majority of their execution time performing CNN con-

volution. Therefore, by improving the performance of CNN convolution, we

improve the performance of many CNNs. However, optimizing any operation

is a time consuming task, this includes CNN convolution. Also, optimizing

CNN convolution for one machine architecture does not guarantee that it will

run efficiently on other machine architectures.

Direct CNN Convolution implements CNN convolution directly (hence the

name), using a nest of loops to move across the input tensors. However, it is

very common to instead implement CNN convolution by mapping it to other

problems that already have optimized solutions on most machine architectures.

The im2col algorithm maps CNN convolution to matrix multiplication (Vasude-

van, Anderson, and Gregg 2017), and CNN convolution is also often mapped to

fast Fourier transform (FFT) operations (Abtahi et al. 2018). Optimized libraries

for performing matrix multiplication and the FFT exist for most machine archi-

tectures. This produces fast CNN convolutions that can be more easily ported

without spending a large amount of time optimizing CNN convolution directly.

48

However, mapping CNN convolution to other methods has two major draw-

backs. Firstly, it introduces the computational overhead of transforming the in-

puts and outputs of the CNN convolution to and from the intermediate prob-

lem domain. Secondly, it introduces a large memory overhead to store the in-

puts and outputs in the intermediate problem format. For example, the im2col

algorithm requires (𝐻 ×𝑊 × 𝐶 ×𝐾 ×𝐾) extra values to store a transformed

version of the input tensor (Vasudevan, Anderson, and Gregg 2017).

We investigate the use of a domain-specific program generator that auto-

matically generates and optimizes direct CNN convolution implementations.

Direct CNN convolution does not require the memory overhead of indirect

CNN convolution implementations, like im2col. The generator can automat-

ically optimize direct CNN convolution implementations for major modern

Intel architecture (e.g. SandyBridge, Haswell, SkyLake), and any ARMv7 or

ARMv8 architecture with the NEON SIMD hardware extension. Our aim is

to automate the production of efficient CNN convolution code that does not

require a large temporary memory overhead. Also, automatic code genera-

tion allows us produce a unique code implementation for every layer in a net-

work, opening the possibility to tailor optimizations for all expected input ten-

sor sizes.

4.2 Previous Work during Final Year Project

4.2.1 General Overview

Our undergraduate final year project focused on the creation of a program gen-

erator to try and optimize direct CNN convolution on Intel architectures. A

large part of work for this thesis was spent addressing the weaknesses of the

previously created program generator, as well as adding significant modifica-

tions and more advanced features. The previous program generator viewed di-

rect CNN convolution in two sections: an outer macro-program, and an inner

microkernel. The macro-program would implement data transformations and

large-scale control flow, while the microkernel would be used by the macro-

49

program to implement the hottest sections of the generated convolution im-

plementation. Structuring convolution like this was based off the BLIS frame-

work developed at the University of Texas, which is used to optimize simi-

lar matrix-matrix mathematical problems (Zee and Geijn 2015). The generator

used a brute-force method to find performant CNN convolution implemen-

tations. Given the dimensions of the convolution to optimize, the generator

would create a large number of varied implementations. Each implementation

would use different macro-program techniques, different microkernels, differ-

ent data layouts, and other different alterations to try and find performant im-

plementations. The performance of each implementation would be measured

to find the most optimal.

4.2.2 Strengths and Weaknesses

The previous program generator was able to generate a large search space of

possible CNN convolution implementations. It had the ability to produce valid

convolution implementations with arbitrary loop ordering, arbitrary data lay-

outs, and was able to generate convolution implementations that used implicit

loop blocking and explicit loop blocking with arbitrary block sizes. However,

it also had a large number of limitations. As the microkernels used for the in-

nermost loops were hand-written, the generator had no ability to manipulate

and permute the most important code used in it’s generated implementation.

Also, the generator could produce implementations that only worked with the

Intel AVX2 architecture. This was due to the fact that the hand-coded microker-

nels used AVX2 intrinsics to implement SIMD functionality. The fact that the

micro-kernels were mostly immutable limited the number of implementation

variations that could be generated.

4.2.3 Results

The original program generator was mostly successful. Using it, we were able

to find a number of direct CNN convolution implementations that used dra-

50

matically less memory than a normal im2col CNN convolution, while also out-

performing an im2col CNN convolution for a number of input sizes.

4.3 New Generator Overview

The new program generator (from here on referred to as ‘Genvolution’) ad-

dresses the problems present in the old generator. Genvolution is also much

more flexible, and can be used in a number of new ways (such as matrix mul-

tiplication generations (section 7), and using irregular datatypes (section 8)).

Most importantly is that Genvolution produces the entire generated solution in

an intermediate representation first. this allows Genvolution to permute and

modify any part of the implementation before it is converted into a concrete

C++ implementation. This is in contrast to the old generator, which could ma-

nipulate only parts of the outer loops, and none of the microkernel inner loops

in any code it generated. By representing the entire problem in the intermedi-

ate representation first, Genvolution can be used to investigate the optimization

potential of a number of techniques. Genvolution can also produce C++ code

for any SIMD architecture given a mapping that maps symbols in the interme-

diate representation to concrete SIMD architecture instructions. The other main

difference is that Genvolution does not use solely brute force to find good op-

timizations. Instead, Genvolution will build a model of the entire search space

of possible optimizations. Genvolution can use this model to perform different

optimization strategies, fine grain search space control, and pruning optimiza-

tions based on heuristics or past performances.

4.4 Genvolution Workflow

Genvolution breaks the process of optimizing a given CNN convolution into a

number of steps.

1. Genvolution collects a set of values that describes the problem to be im-

plemented. The set members are taken from command line arguments

51

and/or configuration files. Example set members include the sizes of the

input and output tensors, and the target architecture. This set is referred

to as the problem description.

2. Genvolution constructs a model of the entire search space of possible

valid implementations. The search space is represented as a lazily evalu-

ated tree.

3. The problem description tells Genvolution what traversal algorithm it

should use to traverse the search space. With the given traversal algo-

rithm, Genvolution will select a set of implementation parameters from

the search space.

4. The set of implementation parameters describes one concrete implemen-

tation of the CNN convolution that we wish to optimize. An intermediate

representation of the implementation is generated using the set of param-

eters.

5. Genvolution applies a set of optimizations to the intermediate represen-

tation. An example of this is inserting software prefetching operations.

The optimizations to apply can be set in the problem description.

6. A concrete C++ implementation is generated from the intermediate rep-

resentation.

7. The generated C++ implementation is benchmarked on the target ma-

chine, and the collected performance statistics are stored with the set of

implementation parameters used to generate the implementation.

8. Genvolution returns to step three of the workflow, and selects another

set of implementation parameters. This is repeated for a fixed number of

iterations.

9. Based on the performance of previous implementations, Genvolution may

manipulate the search space data structure. An example of this is reduc-

52

ing the search space to parameters that have only appeared in fast imple-

mentations so far.

4.5 Traversing the Search Space

4.5.1 Building the Search Space

After producing the problem description, Genvolution creates a search space that

represents all possible valid implementations of the problem to optimize. The

search space is dependent on the type of convolution being requested and cer-

tain input parameters (such as target architecture). The range of valid values

for a search space parameter can be given as a command line argument (such

as: -layout image data {HWC, CHW}), which would limit the possible layouts for

the input image tensor to either (𝐻×𝑊 ×𝐶) layout or (𝐶×𝐻×𝑊) layout. Pa-

rameter ranges can also be listed in a configuration file. For parameters where

no explicit value/range of values is requested, Genvolution will use heuristics

to estimate ’reasonable’ ranges (such as default possible data layouts, or cal-

culating ’reasonable’ blocking factors based on SIMD lane lengths and tensor

dimension lengths). For a standard CNN convolution optimization, there are

between twenty and thirty parameters in the search space to be selected for

each implementation.

4.5.2 Optimizing using the Search Space

To represent the search space, Genvolution uses a lazily evaluated decision tree.

The tree is 𝑝𝑛 nodes deep, where 𝑝𝑛 is the number of parameters to be chosen

before an implementation can be generated. Every layer on the tree represents

a different parameter to select. For example, the sixth layer may represent the

different data layouts that can be used for the input image tensor. Every node

in the fifth layer has a child for each possible selection in the sixth layer, and

every node in the sixth layer will have a child for every value in the seventh

layer. A path from the root of the tree to a leaf node represents one full set of

53

parameters that can be used to generate a unique implementation of the given

problem. Figure 4-1 shows a simple search space tree that represents the search

space for the input and output tensor data layouts.

Figure 4-1: Simplified tree representing the implementation search space. Each path
from the root to a leaf is a unique set of parameters.

Genvolution continually traverses the created search space to generate a

variety of implementations for the given problem. However, the total search

space is extremely large, even when we restraint many parameters of the search

space (e.g. fixing the input and output data layouts). For example, there are six

independent for loops in direct CNN convolution that can be nested in any con-

figuration. This creates 6! possible orderings. There also 3! possible data lay-

outs for the input image tensor, 4! possible layouts for the input kernel tensor,

and 3! for the output image tensor. This gives us 622,080 (6! * 3! * 4! * 3!) possi-

ble convolution implementations only from selecting the data layouts and the

order that dimensions are traversed. When we include more parameters such

as data blocking sizes, unrolling factors, and SIMD strategies, it is common to

have over ten million theoretically valid convolution implementations to select

from.

To limit how many implementations must be generated to meaningfully tra-

verse the search space, Genvolution makes use of parameter dependent heuris-

tics that apply weights to the search space parameters. These weights influence

how the search space is traversed. Parameter dependent heuristics are heuris-

tics that effect the selection of future parameters based on the parameters that

have already selected. For example, if the image input tensor layout chosen

54

for a given implementation is (𝐻 × 𝑊 × 𝐶), but the loop ordering parame-

ters have yet to be chosen, then the loop ordering parameters that work well

with a (𝐻 × 𝑊 × 𝐶) data structure are weighted more favourably. Parame-

ters that contradict the heuristics’ suggestions can still be chosen, but it is less

likely to occur. Search space parameters can also be pruned if they contradict

a parameter that has already been selected. For example, certain SIMD vector

parameters only work with certain input data layouts.

The decision tree representing the entire search space tree is extremely large

and constructing it would be very expensive. The tree is instead lazily evalu-

ated, and only the nodes of the tree that have been traversed to are allocated.

The weight of a node edge is calculated only when it is needed. Each leaf node

contains the collected performance information of the implementation that the

path to the leaf node represents.

4.6 Creating Parameter Sets

Every path from the root node of the search space tree to a leaf node will contain

all the parameters needed to generate a unique direct CNN convolution imple-

mentation. Genvolution will continually create paths through the tree from the

root to a leaf, and generate the corresponding CNN convolution. Genvolution

has a number of different algorithms for traversing the search space to try and

find the most performant implementations for the given model.

Pure Random

The search space tree is traversed randomly (excluding the node weighting

from the heuristics) for a fixed number of iterations .

Genetic Selection

1. The search space tree is traversed randomly (excluding the node weight-

ing from the heuristics) for a fixed number of iterations.

55

2. A subset of the best performing implementations is collected. A new

search space is created only using parameters that appeared in the imple-

mentations in the created subset. The size of the subset is configurable.

3. The first two steps are repeated a set number of times.

The number of iterations in step 1 and step 3 are configurable.

Narrowing Search

1. The search space tree is traversed randomly (excluding the weighting

from the heuristics) for a fixed number of iterations.

2. A subset of the best performing implementations is collected. For each

implementation in the subset, a fixed number of new implementations are

produced that are locally similar (i.e. they share many of the same param-

eters). How many parameters must be at least shared between ’similar’

sets is set in the problem description.

3. Step 2 is repeated for a fixed number of iterations.

4.7 Intermediate Representation AST

When a path from the root to a leaf node of the search space tree has been se-

lected, the set of parameters contained in the path are used by Genvolution

to generate a unique CNN convolution implementation. The implementation

is first constructed in an intermediate representation. The intermediate repre-

sentation is represented with a simplified abstract syntax tree (AST). Each AST

node of the AST represents a basic C++ statement (e.g. a variable declaration),

C++ construct (e.g. a for loop), or generic SIMD operation (e.g. loading a SIMD

vector). There is also a global data table shared between the nodes in the AST

which is used to share information between AST nodes, such as the names and

datatypes of variables that exist in the code the AST represents.

Figure 4-2 shows an simplified example of the AST. Line 1 shows a Defini-

tionNode. DefinitionNodes represent all C++ variable declaration and definition

56

1 DefinitionNode ("sum" , g loba l . baseType , 0) ,
2 ForNode (g loba l . dimens . C, g loba l . baseType , u n r o l l .C {
3 UnrollNode (u n r o l l . C, {
4 DefinitionNode (" t i " , g loba l . baseType) ,
5 DefinitionNode (" tk " , g loba l . baseType) ,
6 LoadNode (" t i " , l o c a l s . image) ,
7 LoadNode (" tk " , l o c a l s . kernel) ,
8 FMANode("sum" , " t i " , " tk ") ,
9 })

10 })
11 DefinitionNode (" sumScalar " , type . s c a l a r) ,
12 HorizontalAdd (" sumScalar " , "sum") ,
13 StoreNode (" sumScalar " , l o c a l s . output , type . s c a l a r)
14

Figure 4-2: Simplified example of the AST.

statements. They also create an entry in the global table for the variable they

declare, which can be accessed using the variable’s name. DefinitionNodes take

the name of the new variable, the type of the variable, and optionally a value

to initialize it to. The value global.baseType represents the variable type the con-

volution is based around (e.g. scalar floats, 4-lane SIMD vectors). ForNodes

represent for loops. Line 2 of figure 4-2 shows a specialized ForNode construc-

tor which takes the dimension it will loop over as it’s first parameter (in the

figure, this is the input channels dimension). The second parameter is used

to calculate how large the increment step should be. the third parameter (un-

roll.C) is a reference to the unrolling table. The unrolling table is part of the

global table and is used to control loop unrolling. Line 3 shows an UnrollN-

ode. UnrollNodes are used to unroll loops by duplicating it’s child nodes. It also

manipulates the duplicated nodes so there are no variable name clashes and

memory accesses behave correctly. Lines 6 and 7 show LoadNodes. These are

used to generate memory reads. In reality, they also take a small tree structure

representing the equation needed for the memory access, but this has been re-

moved from figure 4-2 for readability. LoadNodes determine if a scalar load, or a

SIMD load is needed based off the type of the variable they are writing to. An

FMANode is used to generate code that multiplies parameter 1 and parameter

2, and sums the result with parameter 0. HorizontalAdd nodes generate code

that sums all the values across the lanes of SIMD vector, and then store the re-

57

sults in the scalar variable passed in as parameter 0 to the HorizontalAdd node.

StoreNodes are the memory writing equivalent of LoadNodes. Figure 4-3 and fig-

ure 4-4 show two simplified examples of code that figure 4-2 could generate

depending on other parameters.

1 f l o a t sum = 0 ;
2 for (signed c = 0 ; c < CHANNELS; c ++) {
3 f l o a t t i ;
4 f l o a t tk ;
5 t i = image [h−(y/2)] [w−(x /2)] [c] ;
6 tk = kernel [m] [y] [x] [c] ;
7 sum += t i * tk ; / /FMA
8 }
9 f l o a t sumScalar ;

10 sumScalar = sum ; / / h o r i z o n t a l Add
11 output [m] [h] [w] = sumScalar ;
12

Figure 4-3: Scalar code generated from figure 4-2 with no unrolling.

1 f l o a t sum = 0 ;
2 for (signed c = 0 ; c < CHANNELS; c +=4*2) {
3 / / u n r o l l 0
4 f l o a t 3 2 x 4 t i _ 0 ;
5 f l o a t 3 2 x 4 tk_0 ;
6 load_32x4 (t i _ 0 , &(image [h−(y/2)] [w−(x /2)] [c + 4 * 0])) ;
7 load_32x4 (tk_0 , &(kernel [m] [y] [x] [c + 4 * 0])) ;
8 fma_32x4 (sum , t i _ 0 , tk_0) ;
9 / / u n r o l l 1

10 f l o a t 3 2 x 4 t i _ 1 ;
11 f l o a t 3 2 x 4 tk_1 ;
12 load_32x4 (t i _ 1 , &(image [h−(y/2)] [w−(x /2)] [c + 4 * 1])) ;
13 load_32x4 (tk_1 , &(kernel [m] [y] [x] [c + 4 * 1])) ;
14 fma_32x4 (sum , t i _ 1 , tk_1) ;
15 }
16 f l o a t sumScalar ;
17 horz_add_32x4 (sumScalar , sum) ;
18 output [m] [h] [w] = sumScalar ;
19

Figure 4-4: SIMD code generated from figure 4-2 with the loop unrolled one time.

58

4.8 Constructing the AST

4.8.1 Microkernels

The convolution implementations generated by Genvolution are based off the

program design used by the BLIS framework (Zee and Geijn 2015). The BLIS

framework implements matrix-matrix operations by splitting program imple-

mentations into highly optimized microkernels that implement the hottest loops

of an implementation, and macro-programs that implement the outer loops of

an implementation and make use of the microkernel.

Genvolution can generate a number of different microkernels to implement

CNN convolution. The microkernels do not all perform the same action (e.g.

some microkernels implement a dot product between two vectors, some per-

form an outer product between two small fixed size vectors). However, Genvo-

lution is still able to generate a valid direct CNN convolution implementation

no matter what microkernel is selected. The differences between the microker-

nels available are covered in detail in chapter 5.

All the microkernels are hand-written as a Genvolution AST. During the

traversal of the search space tree, a microkernel will be selected to use for the

current implementation. The AST of the selected microkernel becomes the first

part of the AST that will represent the entire CNN convolution implementation.

4.8.2 Dimension Loops

The algorithm for direct CNN convolution involves a number of loops that iter-

ate across the dimensions of the input tensor and the input kernel. These loops

need to be accounted for in any direct CNN convolution. After selecting the

microkernel to use as the start of the implementation AST, Genvolution inserts

the necessary loops into the AST. The loop list contains all the loops that still

need to be inserted into the AST to fully implement direct CNN convolution.

The loops are inserted through the following steps:

59

1. There are six major loops in total (one for the 𝑀 , 𝐻 , 𝑊 , 𝑌 , 𝑋 , and 𝐶

dimensions). These loops are added as the first elements to the loop list.

2. Genvolution can produce blocked and unblocked convolution implemen-

tations. Dimensions that have been blocked must be split into an outer

loop that moves between blocks, and an inner loop that iterates inside the

current block. Which dimensions to block is selected when traversing the

search space tree. The dimensions that are blocked are removed from the

loop list and replaced with two loops, one for the inner loop and the outer

loop of the blocked dimension.

3. The selected microkernel may contain loops that duplicate loops in the

loop list. For example, a microkernel may already iterate across the input

channels dimension of the input tensors, so this loop already exists in the

implementation and does not need to be inserted again. The AST of the

microkernel is traversed and any loops that also exist in the loop list are

removed from the loop list. If a dimension has been split into an inner and

outer loop, then only the inner loop is removed. The loop nodes in the AST

of the microkernel are updated according to what loops they replaced

from the loop list (i.e. did they replace an inner loop that only iterates

across a block, or a full loop that iterates across an entire dimension).

4. The loop list is reordered to match how the loops will be nested when

added to the AST (and how they’ll be nested in the generated code). The

ordering of the loop is selected when traversing the search space tree. The

edges of the search space tree are weighted by a heuristic such that the

ordering of the loops are more likely to match the data layout of the input

and output tensors. For example, if the input image tensor has the layout

(𝐻 ×𝑊 × 𝐶), then it will be more likely that the loop that moves across

𝑊 is nested inside the loop that moves across 𝐻 . Nesting dependencies

between inner and outer loops are also preserved during reordering, as

an inner loop must be nested within it’s corresponding outer loop. Also,

while not technically needed, having any outer loops nested inside an

60

inner loop (even if the loops move across different dimensions) leads to

very poor performance, so this is also disallowed.

5. The loop list is converted into a nest of AST ForNodes, with the root node

of the AST for the microkernel connected as a child node to the innermost

loop from the loop list.

4.8.3 Inserting Extra Constructs

After the major loops have been added to the convolution AST, a number of

other constructs are inserted into the AST. Genvolution is used to generate zero-

padded CNN convolution. Zero padding implementations assumes if we try

to access an out-of-bounds point from the input tensor, that point has the value

zero. A simple way of implementing this in practice is to skip all computations

which involves data from outside the dimensions of the input image tensor,

because convolution is built from multiplication and multiplication with zero

produces zero.

Genvolution inserts up to four conditional statements that check if the im-

plementation is currently performing calculations outside the dimensions of

the input image tensor. The four statements check if 1) The implementation is

underflowing on the 𝐻 dimension, 2) The implementation is overflowing on

the 𝐻 dimension, 3) The implementation is underflowing on the 𝑊 dimension,

and 4) The implementation is overflowing on the 𝑊 dimension. Each condition

is inserted into the AST as a IfNode. Each conditional statement is inserted at

the outermost valid point in the AST, so that it lead to the largest amount of

code being skipped when it is false. To do this, Genvolution traverses the AST

and tracks what information is available at any point in the AST. It then inserts

each IfNode at the earliest possible point.

Not all four conditional statements must be inserted into the AST. Before

inserting the IfNodes, Genvolution inspects the AST of the microkernel to check

if the microkernel already handles any of the four conditional statements. Also,

if the 𝐻 dimension or the 𝑊 dimension are being blocked using explicit tile

blocking, then the conditional statements relating to them are unneeded. This

61

is because the generated code for explicit tile blocking already handles padding

by explicitly padding data in the created tile buffers.

If explicit tile blocking is being used, this is also the point in AST construc-

tion when the AST nodes for copying data to the tile buffers is inserted. The

nodes for copying data are also inserted at the outermost point in the AST, so

the data copying is performed the minimal number of times.

4.8.4 AST Manipulators

The final step of AST construction is to apply a list of AST manipulators that

transform the AST. Each manipulator walks the entire AST, and checks each

node against a predicate. If that predicate is true for a given node, it performs

some transformation to the AST at the node’s position. An example manip-

ulator is the prefetching manipulator that walks the AST, and inserts software

prefetching AST nodes before some or all memory access nodes. The set of AST

manipulators is decided by the parameters selected when traversing the search

space tree, and/or the problem description.

4.9 Generating C++

To convert the AST to concrete C++ code, two transformation stages are used.

The first stage uses a set of node translators that perform lowering operations

on the AST nodes. Lowering operations replace complex nodes with trees of

simpler nodes. The second stage convert the nodes in the AST to C++ snippets.

The C++ snippets are then concatenated to produce the final C++ implementa-

tion.

The first transformation stage used a set of AST transformers called the low-

ering set. The lowering set contains a number of lowering transformers. Each

lowering transformer contains a predicate which checks if an AST node can be

lowered by said transformer, and a function to perform a given lowering op-

eration. The predicate stored in each lowering transformer checks the type of

the AST node, as well as the data stored inside, and variables it references (e.g.

62

1 DefinitionNode ("sum" , g loba l . baseType , 0)
2

(a) AST node for a variable definition.

1 DeclarationNode ("sum" , g loba l . baseType) ,
2 AssignmentNode ("sum" , 0)
3

(b) DefinitionNode from (a) lowered by a SIMD transformer.

1 / / D e c l a r a t i o n N o d e (" sum " , g l o b a l . ba s eType)
2 ConcatNode ({
3 TypeNode (g loba l . baseType) ,
4 VarNode ("sum") ,
5 SemicolonNode ()
6 }) ,
7 / / AssignmentNode (" sum " , 0)
8 ConcatNode ({
9 FunctionNameNode (g loba l . baseType , funcs . simd_set) ,

10 BracketsNode ({
11 CommaListNode ({
12 VarNode ("sum") ,
13 LiteralNode (" 0 ")
14 })
15 }) ,
16 SemicolonNode ()
17 })
18

(c) AST nodes from (b) lowered by a SIMD transformer.

Figure 4-5: Lowering a DefinitionNode twice using a SIMD transformer.

does the node reference SIMD or scalar variables). There are general lowering

transformers, and specific lowering transformers for each hardware architecture.

If we have a FMA Node that acts on three 4-lane SIMD variables, and we are

generating C++ code for the ARMv7 NEON architecture, then we will use the

NEONv7 lowering transformer to lower the FMA Node. If the FMA Node acted

on scalar variables instead, then we would use the scalar lowering transformer.

The lowering operation transforms an AST node into a tree of simpler AST

nodes. For example, the DefinitionNode in part (a) of figure 4-5 is transformed

into two simpler AST nodes. However, the lowering operation can also trans-

form AST nodes into tree of extremely simpler nodes. For example, each AST

node in part (b) of figure 4-5 represent a full C++ statement, but in part (c) they

63

are transformed into AST nodes which each represent much simpler constructs.

The lowering operations is also be used to synthesize generic SIMD operations

that are not available on all architectures. For example, there is no single in-

struction in the Intel AVX SIMD architecture to perform a horizontal add of a

256-bit vector register containing 8 32-bit floats. Instead, when a HorizontalAdd

Node representing this operation is lowered, it is replaced with an AST repre-

senting a block of instructions that performs the operation in software.

The AST is repeatedly traversed, and every node in the AST is checked by

every lowering transformer to see if it can be lowered. If the AST is fully traversed

with no lowering operations performed, then Genvolution moves onto the next

step of transformation.

When the lowering phase is complete, the AST will no longer contain AST

nodes that represent full statements or operations, instead the AST will be built

from much simpler nodes that each represent only a fragment of code. Part (c)

of figure 4-5 shows an simplifed example of these nodes. The TypeNode rep-

resents a datatype type, the ConcatNode represents the idea concatenating the

code snippets of it’s child nodes, the LiteralNode represents a literal value (e.g.

a string literal, an integer value, etc). The simpler nodes are transformed into

C++ code snippets, and concatenated in a depth-wise first order to construct

the final C++ implementation. The transformations are usually very simple.

For example, the FunctionNameNode node is a set of table look-ups to find the

name of the function it represents.

4.10 Evaluation of Results

To evaluate the effectiveness of Genvolution, Genvolution was used to gen-

erate direct convolution implementations for a set of CNN convolution input

sizes for three target machines (ARM Target 1, ARM Target 2, and Intel Target

1). The CNN convolution input sizes were taken from five commonly used

CNN networks: AlexNet (Krizhevsky, Sutskever, and Hinton 2012), Inception

V4 (Singh and Markovitch 2017), MobileNet V2 (Howard et al. 2017), ResNET-

64

152 (He et al. 2016), and VGG ILSRVC (Bengio and LeCun 2015). A unique

convolution implementation was generated and optimized for each input size

on each target machine. The average execution time and cache miss rate for

each generated implementation was collected on each target machine. The exe-

cution time and cache miss rates are the mean average of 20 runs. The average

execution time and cache miss rate of a relative vendor library were also col-

lected on each target machine to act as a baseline.

Execution time is given as a relative speed-up against a baseline method in

the graphs in section 4.12. This means that higher is better for execution time

graphs. Cache miss rates are given as the average measured rate. A rate of 0.0

denotes no cache misses, and a miss rate of 1.0 denotes that all cache accesses

were cache misses. This means that lower rates are better in cache miss rate

graphs.

4.10.1 ARM Target 1

The ARMCL library (see section 3.1.4) was used as the baseline library for eval-

uating the performance of direct convolution implementations generated by

Genvolution for ARM Target 1.

For all input sizes, Genvolution-generated code (labelled ’Genvolution’ in

all graphs in section 4.12) executed faster than the direct CNN convolution im-

plementation given by ARMCL (labelled as ’ARMCL-Direct’ in all graphs in

section 4.12). For 10 of the 29 input sizes, Genvolution-generated code also

executed faster than the im2col CNN convolution (see section 2.1.4) given by

ARMCL (labelled as ’ARMCL-im2col’ in all graphs in section 4.12).

Genvolution-generated code outperformed ARMCL-Im2Col by the largest

margin in the first input size of figures 4-7(a) (where 𝐻=224, 𝑊=224, 𝐶=3,

𝑀=32, 𝐾=3). Figure 4-13(a) and figure 4-19(a) show that the Genvolution-

generated code had a much lower L1 and L2 cache miss rate than ARMCL-

Im2Col for this input size. The lower cache miss rates may explain the large

difference in performance. A similar pattern of Genvolution-generated code

outperforming ARMCL-Im2Col can be seen in the first input sizes of figures

65

4-6(a) (where 𝐻=229, 𝑊=229, 𝐶=3, 𝑀=32, 𝐾=3), and figure 4-8 (where 𝐻=224,

𝑊=224, 𝐶=3, 𝑀=64, 𝐾=3). For all three of these input sizes, the number of

input channels 𝐶 is very small. It is possible that ARMCL-Im2Col is optimized

for larger 𝐶 values, and the matrix multiplication is not as efficient when the

input matrices are very thin (the rows of the first matrix in the Im2Col matrix

multiplication will only have 9 values (𝐾 ×𝐾 × 𝐶 = 9) for these input sizes).

Genvolution-generated code has the smallest relative speed-up compared

to ARMCL-Direct in the 8th input size of figure 4-8 (where 𝐻=28, 𝑊=28, 𝐶=256,

𝑀=512, 𝐾=3). This may be due to fact that there is a larger relative number of

synthesized values to handle when the height and width of an input tensor

(i.e. 𝐻 and 𝑊) are small. An input tensor needs 𝐻 × 𝑊 explicit points and

𝐻 × (𝐾 − 1) + 𝑊 × (𝐾 − 1) synthesized implicit edge points to produce a

(𝐻 × 𝑊) output tensor using a (𝐾 × 𝐾) input kernel. This means the ratio

between synthesized and explicit points is (𝐻×(𝐾−1)+𝑊×(𝐾−1)) : (𝐻×𝑊),

which grows as 𝐻 and 𝑊 shrink. For example, (112× 1+ 112× 1) : (112× 112)

is 0.0179, while (28 × 1 + 28 × 1) : (28 × 28) is 0.0714. This means as 𝐻 and 𝑊

shrink, the less optimal edge-case code for handling synthesized values takes

up more of the runtime, which effects performance. Figure 4-8 may support

this idea as it somewhat shows a relationship between the relative performance

of Genvolution-generated code and the size of 𝐻 . However, this trend is not

replicated in figure 4-7(a) or figure 4-6(b) so other factors may also be involved.

Table 4-1 shows that for all input sizes, Genvolution-generated code used

significantly less memory than ARMCL-Im2Col. In many cases, Genvolution-

generated code required no temporary memory, and in the worst case (where

𝐻=14, 𝑊=14, 𝐶=256, 𝑀=256, 𝐾=3), it only only required 0.7% of the temporary

memory im2col requires.

4.10.2 ARM Target 2

The ARMCL library was used as the baseline library for evaluating the per-

formance of direct convolution implementations generated by Genvolution for

ARM Target 2.

66

For all input sizes, Genvolution-generated code executed faster than the di-

rect CNN convolution implementation given by ARMCL. For 7 of the 29 input

sizes, Genvolution-generated code also executed faster than the im2col CNN

convolution given by ARMCL.

Similar to ARM Target 1, Genvolution-generated code outperforms ARMCL-

Im2Col by a large margin in the first input size from Inception V4 (figure 4-

9(b)), MobileNet V2 (figure 4.10(a)), and VGG ILSRVC (figure 4.11). The rele-

vant L1 and L2 cache miss rate graphs show that Genvolution-generated code

had lower L1 and L2 cache miss rates than ARMCL-Im2Col for the three men-

tioned input sizes. It is possible that the poor performance of ARMCL-Im2Col

for these input sizes is again the fact that 𝐶 is very small, which ARMCL-

Im2Col may not be optimized for.

Genvolution-generated code has the smallest relative speed-up compared

to ARMCL-Direct in the first input size of figure 4-9(a) (where 𝐻=27, 𝑊=27,

𝐶=96, 𝑀=256, 𝐾=5) on ARM Target 2. Figure 4-21(a) shows that the Genvolution-

generated code has a slightly higher L2 cache miss rate than ARMCL-Direct for

the first input size. This may explain why the performance between the two

is similar. Figure 4-15(a) also shows there is not a very large difference in L1

cache miss rates between the Genvolution-generated code and ARMCL-Direct.

The first input size of figure 4-9(a) is also the only input where 𝐾 = 5. A larger

𝐾 value will lead to more synthesized values being needed. Handling synthe-

sized values requires less optimal edge-case code being run, which could effect

the performance of Genvolution-generated code.

Table 4-2 shows that for all input sizes, Genvolution-generated code used

significantly less memory than ARMCL-Im2Col on ARM Target 2. In many

cases, Genvolution-generated code required no temporary memory, and in the

worst case (where 𝐻=112, 𝑊=112, 𝐶=128, 𝑀=128, 𝐾=3), it only only required

0.7% of the temporary memory Im2Col requires.

67

4.10.3 Intel

The TriNNity library (see section 3.1.6), and the MKLDNN library (see section

3.1.5) were used as the baseline libraries for evaluation the performance of di-

rect convolution implementations generated by Genvolution for Intel Target 1.

In the figures in section 4.12.2, ’Direct’ refers to the direct CNN convolution im-

plementation given by the TriNNity library, ’Im2Col’ refers to the Im2Col CNN

convolution implementation given by the TriNNity library, and ’MKL’ refers to

the direct CNN convolution implementations given by the MKLDNN library.

Genvolution-generated code outperformed TriNNity-Direct for all 29 input

sizes, it outperformed TriNNity-Im2Col for 3 inputs sizes, and it outperformed

MKLDNN for 8 input sizes. Genvolution-generated code was the fastest method

for 3 of the 29 input sizes. Two of the input sizes where Genvolution-generated

code was the fastest were input sizes where 𝐶 was 3. This is similar to the re-

sults on ARM Target 1 and 2, and may be explained for the same reason. For

every input where Genvolution-generated code outperformed MKLDNN, 𝐶

and 𝑀 were both relatively small values. Figures 4-25(a), 4-25(b), and 4-26 all

suggest there being some relationship between the relative speed of MKLDNN

and the ratio between 𝐻 ×𝑊 and 𝐶 ×𝑀 . In these figures, as 𝐻 ×𝑊 shrinks

and 𝐶×𝑀 grows, the relative performance of MKLDNN to the baseline grows.

This suggests that MKLDNN may be better optimized for large input kernels

than other methods, or that it can handle the synthesized values better (which

become more common relatively as 𝐻 ×𝑊 shrinks).

Table 4-2 shows that for all input sizes, Genvolution-generated code used

significantly less memory than ARMCL-Im2Col on Intel Target 1. In many

cases, Genvolution-generated code required no temporary memory, and in the

worst case (where 𝐻=28, 𝑊=28, 𝐶=256, 𝑀=512, 𝐾=3), it only only required

4.3% of the temporary memory Im2Col requires.

68

4.11 Conclusions

We believe our research into the use of automatic code generation to improve

the performance and memory usage of CNN convolution has been successful.

For 10 inputs on ARM Target 1 and 7 inputs on ARM Target 2, Genvolution-

generated code outperformed a vendor library Im2Col implementation while

needing less than one percent of the Im2Col’s temporary memory. While we

were not able to match the performance of Im2Col for every input size, we be-

lieve our results are still significant. Reducing the execution time and memory

usage of just some CNN convolutions in a CNN network can have a major im-

pact if that network is to be run many times. While extra work is required by

the network programmer up front to find empirically which input sizes Genvo-

lution performs well on, over the lifetime of the network’s use, a small increase

in performance can have a big impact.

It can also be difficult fitting larger networks on small resource-constrained

devices (while still executing the network quickly enough). Therefore, even

reducing the memory overhead of some CNN convolutions in a CNN net-

work can make the difference in deciding if the network can fit on a resource-

constrained device or not.

We believe that the success of Genvolution also suggests that the perfor-

mance of other problems may be improved by using automatic code generation

and optimization. For example, Genvolution was only used to optimize "stan-

dard" CNN convolution. However, there are many CNN convolution variants

(such as dilated CNN convolution) that need unique implementations. Pro-

ducing a hand optimized implementation for every CNN convolution variant

would be very time consuming. Therefore, it may be advantageous to investi-

gate automating the generation and optimization of CNN convolution variants.

Having completed outlining the design of Genvolution, the following chap-

ter covers how the code generated by Genvolution is optimized using SIMD

vectorization.

69

4.12 Results

4.12.1 ARM

Relative Execution Speed-Up

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 4-6: Execution Time on AlexNet and Inception V4 convolutions on ARM Target
1.

(a) MobileNet V2 convolutions. (b) ResNet-152 convolutions.

Figure 4-7: Execution Time on MobileNet V2 and ResNet-152 convolutions on ARM
Target 1.

70

Figure 4-8: Execution Time of Genvolution implementations on VGG ILSRVC convo-
lutions on ARM Target 1.

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 4-9: Execution Time on AlexNet and Inception V4 convolutions on ARM Target
2.

71

(a) MobileNet V2 convolutions. (b) ResNet-152 convolutions.

Figure 4-10: Execution Time on MobileNet V2 and ResNet-152 Convolutions on ARM
Target 2.

Figure 4-11: Execution Time of Genvolution implementations on VGG ILSRVC convo-
lutions on ARM Target 2.

72

L1 Cache Miss Rate

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 4-12: L1 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 1.

(a) MobileNet V2 convolutions. (b) ResNet-152 convolutions.

Figure 4-13: L1 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 1.

73

Figure 4-14: L1 Cache Miss Rate of Genvolution implementations on VGG ILSRVC
convolutions on ARM Target 1.

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 4-15: L1 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 2.

74

(a) MobileNet V2 convolutions. (b) ResNet-152 convolutions.

Figure 4-16: L1 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 2.

Figure 4-17: L1 Cache Miss Rate of Genvolution implementations on VGG ILSRVC
convolutions on ARM Target 2.

75

L2 Cache Miss Rate

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 4-18: L2 cache miss rate on AlexNet and Inception V2 convolutions on ARM
Target 1.

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 4-19: L2 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 1.

76

Figure 4-20: L2 Cache Miss Rate of Genvolution implementations on VGG ILSRVC
Convolutions on ARM Target 1.

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 4-21: L2 cache miss rate on AlexNet and Inception V2 convolutions on ARM
Target 2.

77

(a) MobileNet V2 convolution. (b) ResNET-152 convolutions.

Figure 4-22: L2 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 2.

Figure 4-23: L2 Cache Miss Rate of Genvolution implementations on VGG ILSRVC
Convolutions on ARM Target 2.

78

Temporary Memory Usage

Network H W C M K
Genvolution
Temporary
Bytes

Im2Col
Temporary
Bytes

Temporary
Memory
Ratio

AlexNet 27 27 96 256 5 0 6998400 0
AlexNet 13 13 256 384 3 0 1557504 0
AlexNet 13 13 384 384 3 0 2336256 0
AlexNet 13 13 384 256 3 0 2336256 0
Inception V4 299 299 3 32 3 0 9655308 0
Inception V4 149 149 32 32 3 0 25575552 0
Inception V4 147 147 64 64 3 0 49787136 0
Inception V4 73 73 64 96 3 0 12278016 0
Inception V4 35 35 64 96 3 0 2822400 0
MobileNetV2 224 224 3 32 3 0 5419008 0
MobileNetV2 112 112 32 32 3 50176 14450688 0.003472
MobileNetV2 112 112 56 56 3 7168 25288704 0.000283
MobileNetV2 56 56 128 128 3 0 14450688 0
MobileNetV2 28 28 256 256 3 6272 7225344 0.000868
MobileNetV2 14 14 512 512 3 1416 3612672 0.000392
ResNet-153 56 56 64 64 3 3584 7225344 0.000496
ResNet-153 28 28 128 128 3 0 3612672 0
ResNet-153 14 14 256 256 3 1416 1806336 0.000784
ResNet-153 7 7 512 512 3 392 903168 0.000434
VGG ILSVRC 224 224 3 64 3 0 5419008 0
VGG ILSVRC 224 224 64 64 3 0 115605504 0
VGG ILSVRC 112 112 64 128 3 0 28901376 0
VGG ILSVRC 112 112 128 128 3 0 57802752 0
VGG ILSVRC 56 56 128 256 3 0 14450688 0
VGG ILSVRC 56 56 256 256 3 7296 28901376 0.000252
VGG ILSVRC 28 28 256 512 3 904 7225344 0.000125
VGG ILSVRC 28 28 512 512 3 2592 14450688 0.000179
VGG ILSVRC 14 14 512 512 3 1416 3612672 0.000392

Table 4.1: Temporary Memory Overhead on ARM Target 1.

79

Network H W C M K
Genvolution
Temporary
Bytes

Im2Col
Temporary
Bytes

Temporary
Memory
Ratio

AlexNet 27 27 96 256 5 0 6998400 0
AlexNet 27 27 96 256 5 0 6998400 0
AlexNet 13 13 256 384 3 0 1557504 0
AlexNet 13 13 384 384 3 0 2336256 0
AlexNet 13 13 384 256 3 0 2336256 0
Inception V4 299 299 3 32 3 0 9655308 0
Inception V4 149 149 32 32 3 0 25575552 0
Inception V4 147 147 64 64 3 2480 49787136 0.000050
Inception V4 73 73 64 96 3 0 12278016 0
Inception V4 35 35 64 96 3 6528 2822400 0.002313
MobileNetV2 224 224 3 32 3 0 5419008 0
MobileNetV2 112 112 32 32 3 25088 14450688 0.001736
MobileNetV2 112 112 56 56 3 100352 25288704 0.003968
MobileNetV2 56 56 128 128 3 32256 14450688 0.002232
MobileNetV2 28 28 256 256 3 6528 7225344 0.000903
MobileNetV2 14 14 512 512 3 6528 3612672 0.001807
ResNet-153 56 56 64 64 3 25088 7225344 0.003472
ResNet-153 28 28 128 128 3 101920 3612672 0.028212
ResNet-153 14 14 256 256 3 6528 1806336 0.003614
ResNet-153 7 7 512 512 3 6528 903168 0.007228
VGG ILSVRC 224 224 3 64 3 0 5419008 0
VGG ILSVRC 224 224 64 64 3 1792 115605504 0.000016
VGG ILSVRC 112 112 64 128 3 25088 28901376 0.000868
VGG ILSVRC 112 112 128 128 3 426496 57802752 0.007378
VGG ILSVRC 56 56 128 256 3 3584 14450688 0.000248
VGG ILSVRC 56 56 256 256 3 1792 28901376 0.000062
VGG ILSVRC 28 28 256 512 3 392 7225344 0.000054
VGG ILSVRC 28 28 512 512 3 25344 14450688 0.001754
VGG ILSVRC 14 14 512 512 3 6528 3612672 0.001807

Table 4.2: Temporary Memory Overhead on ARM Target 2.

80

4.12.2 Intel

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 4-24: Execution time on AlexNet and Inception V4 convolutions on Intel Target
1.

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 4-25: Execution time on MobileNet V2 and ResNET-152 convolutions on Intel
Target 1.

81

Figure 4-26: Execution Time of Genvolution implementations on VGG ILSRVC Con-
volutions on Intel Target 1.

82

Temporary Memory Overhead

Network H W C M K
Genvolution
Temporary
Bytes

Im2Col
Temporary
Bytes

Temporary
Memory
Ratio

AlexNet 27 27 96 256 5 0 6998400 0
AlexNet 27 27 96 256 5 0 6998400 0
AlexNet 13 13 256 384 3 0 1557504 0
AlexNet 13 13 384 384 3 0 2336256 0
AlexNet 13 13 384 256 3 0 2336256 0
Inception V4 299 299 3 32 3 0 9655308 0
Inception V4 149 149 32 32 3 0 25575552 0
Inception V4 147 147 64 64 3 3136 49787136 0.000063
Inception V4 73 73 64 96 3 0 12278016 0
Inception V4 35 35 64 96 3 6272 2822400 0.002222
MobileNetV2 224 224 3 32 3 0 5419008 0
MobileNetV2 112 112 32 32 3 14336 14450688 0.000992
MobileNetV2 112 112 56 56 3 109760 25288704 0.004340
MobileNetV2 56 56 128 128 3 7168 14450688 0.000496
MobileNetV2 28 28 256 256 3 54272 7225344 0.007511
MobileNetV2 14 14 512 512 3 12544 3612672 0.003472
ResNet-153 56 56 64 64 3 3584 7225344 0.000496
ResNet-153 28 28 128 128 3 12544 3612672 0.003472
ResNet-153 14 14 256 256 3 6272 1806336 0.003472
ResNet-153 7 7 512 512 3 1568 903168 0.001736
VGG ILSVRC 224 224 3 64 3 0 5419008 0
VGG ILSVRC 224 224 64 64 3 71680 115605504 0.000620
VGG ILSVRC 112 112 64 128 3 57344 28901376 0.001984
VGG ILSVRC 112 112 128 128 3 25088 57802752 0.000434
VGG ILSVRC 56 56 128 256 3 25088 14450688 0.001736
VGG ILSVRC 56 56 256 256 3 50176 28901376 0.001736
VGG ILSVRC 28 28 256 512 3 309248 7225344 0.042800
VGG ILSVRC 28 28 512 512 3 31360 14450688 0.002170
VGG ILSVRC 14 14 512 512 3 12544 3612672 0.003472

Table 4.3: Temporary Memory Overhead on Intel Target 1.

83

Chapter 5

Genvolution Generated Code

Design

This chapter covers optimization strategies that can be leveraged in the CNN

convolution code generated by Genvolution. It mainly focuses on the different

ways SIMD vectorization can be used to improve the execution time of direct

CNN convolution.

5.1 Microkernels

As covered in chapter 4, all code generated by Genvolution can be split into two

sections: a micorkernel, and a macro-program. The microkernel implements

the hottest loops of the convolution implementation, and the macro-program

implements the control flow of the convolution and makes use of the microker-

nel.

Genvolution has access to a number of different microkernels. Every mi-

crokernel makes use of SIMD vectorization in some way. These microkernels

can be broken up into different classes of microkernel depending on how they

use SIMD vectorization to implement direct CNN convolution. The different

classes will be referred to as SIMD strategies. A number of the SIMD strategies

had originally been developed as part of our final year project.

84

1 f l o a t sum = 0 ;
2 for (signed c = 0 ; c < CHANNELS; c ++) {
3 sum += input_image [h+y] [w+x] [c]
4 * input_kernel [m] [y+(y/2)] [x +(x /2)] [c]
5 }
6 output_image [m] [h] [w] = sum ;
7

Figure 5-1: Scalar implementation of the dot product between two vectors of input
channels, one from the input image tensor and one from the input kernel tensor.

5.2 Pairwise Channels SIMD Strategy

5.2.1 Strategy Outline

The pairwise channels SIMD strategy vectorizes the dot product between two

vectors of input channels. This strategy was originally developed as part of

our final year project. When performing multi-channel CNN convolution, we

continually calculate the dot product between vectors of input channels from

the input tensor and the input kernel. This is typically implemented as a for

loop that iterates across the two vectors, multiplying each pair of scalar values,

and accumulating the results of the multiplications in a running total. Figure

5-1 shows a code snippet implementing this.

We can vectorize the calculations in the for loop by replacing the scalar op-

erations with their SIMD equivalent. Instead of loading scalar values from the

two input tensors, we load a SIMD vector of values from each and perform

multiple pairwise multiplications in parallel using a SIMD multiplication. We

also store the running total in a vector register, and change the increment of

the loop so it matches the number of lanes in the vector registers being used.

After completing the vectorized for loop, the final value will be split across the

lanes of the running total vector register. A horizontal add operation is used to

sum the lanes of the running total register into a single scalar value, which is

written out. Figure 5-2 shows a code snippet implementing the above. In figure

5-2, four-lane SIMD vectors that store 4 32-bit floats are used (float_32x4). The

multiplication of the input values, and the accumulation with the running total

85

1 f l o a t _ 3 2 x 4 sum = 0 ;
2 for (signed c = 0 ; c < CHANNELS; c +=4) {
3 f l o a t _ 3 2 x 4 i =
4 load_32x4 (&(input_image [h+y] [w+x] [c])) ;
5 f l o a t _ 3 2 x 4 k =
6 load_32x4 (&(input_kernel [m] [y+(Y/2)] [x +(X/2)] [c])) ;
7 sum = fused_mult_add_32x4 (sum , i , k) ;
8 }
9 f l o a t r e s u l t = horzitonal_add_32x4 (sum) ;

10 output_image [m] [h] [w] += r e s u l t ;
11

Figure 5-2: Equivalent SIMD implementation of figure 5-1.

are performed with a single fused multiple add (FMA) that multiples two inputs

together and adds the product to a third input.

5.2.2 Effect on Performance

By replacing the scalar operations with SIMD equivalent operations, we would

hope to see a reduction in the number of cycles spent performing calculations.

In modern general purpose processors (GPPs), SIMD instructions usually re-

quire a similar number of clock cycles as their scalar equivalent. By replacing

scalar instructions with SIMD instructions, we may see up a 𝐿 times speed-

up, where 𝐿 is the number of lanes in the SIMD vector registers being used.

For example, on the Intel Skylake architecture, the VFMADD132PS instruc-

tion performs a fused multiply-add on a 256-bit AXV register holding eight

32-bit floats with a latency of 4 cycles and a throughput of 1 cycle (Intel 2019).

FMUL, the scalar Skylake instruction for multiplying two scalar 32-bit floats

has the same latency and throughput (Fog 2018). In theory, vectorizing using

VFMADD132PS would give an 8X reduction in computational time. However,

this increase in performance relies on the input values being read from the in-

put tensors in a timely manner. If the memory reads continually stall, then

the dot product will become memory bound rather than computational bound,

and vectorizing it will have less of an impact on performance.

The pairwise channels SIMD strategy also relies on a horizontal add opera-

tion to sum the values across the lanes in the running total vector register. This

86

1 f l o a t 3 2 x 4 input = / * . . . i n p u t t o horz add . . . * /
2 f l o a t 3 2 x 2 t0 = vadd_f32 (
3 vget_high_f32 (input) ,
4 vget_low_f32 (input)) ;
5 f l o a t r e s u l t = vget_ lane_f32 (
6 vpadd_f32 (t0 . t0) ,
7 0) ;
8

Figure 5-3: ARMv7 NEON Horizontal Add operation

operation often has poor performance on GPP SIMD architectures, or is not

implemented in hardware, and must be performed using a sequence of other

instructions. For example, the ARMv7 NEON SIMD architecture does not have

an instruction to perform the horizontal add operation for a 128-bit vector reg-

ister split into 4 32-bit floats. Instead, figure 5-3 shows an efficient horizontal

add operation for a 128-bit vector register holding 4 32-bit floats on ARMv7

NEON implemented in software.

5.2.3 Pairwise Channels Microkernels

There are two microkernels that implement the Pairwise Channels SIMD strat-

egy. The CI_SSO microkernel is roughly equivalent to the code snippet shown

in figure 5-2. It can be used to generate code for all the tested architectures (In-

tel AVX2, ARMv7 NEON, ARMv8 NEON). The input channels for loop can be

unrolled by Genvolution. If the length of the input channels dimension is not

a perfect multiply of the number of lanes in the SIMD vectors being used, then

Genvolution can insert a clean-up loop that covers the ragged end of the input

channels dimension.

Figure 5-4 shows a simplified example of code produced by the YXCI_SSO

microkernel. The YXCI_SSO microkernel implements the pairwise channels SIMD

strategy. However, it also includes for loops that move across the input kernel’s

height 𝑌 and input kernel’s width 𝑋 . The same running total is used for the en-

tire microkernel. This reduces the number horizontal adds required by 𝑌 *𝑋 .

It also reduces the number of memory writes to the output image tensor by

𝑌 *𝑋 . However, conditional statements that control when zero-padding is re-

87

1 f l o a t _ 3 2 x 4 sum = 0 ;
2 for (signed y = −(Y/2) ; y <= Y/2; y++) {
3 for (signed x = −(X/2) ; x <= X/2; x++) {
4 i f (/ * h+y and w+x in t h e bounds o f input_ image * /) {
5 for (signed c = 0 ; c < CHANNELS; c +=4) {
6 f l o a t _ 3 2 x 4 i =
7 load_32x4 (
8 &(input_image [h+y] [w+x] [c])) ;
9 f l o a t _ 3 2 x 4 k =

10 load_32x4 (
11 &(input_kernel [m] [y+(Y/2)] [x +(X/2)] [c])) ;
12 sum = fused_mult_add_32x4 (sum , i , k) ;
13 }
14 }
15 }
16 }
17 f l o a t r e s u l t = horzitonal_add_32x4 (sum) ;
18 output_image [m] [h] [w] += r e s u l t ;
19

Figure 5-4: Pairwise channels strategy that also includes for loops across the kernel
height 𝑌 and the kernel width 𝑋 . This reduces the number of horizontal adds and
writes to the output image.

quired (i.e. when computations should be skipped) must be inserted into the

microkernel. This is because we need to know the values of the 𝑋 and 𝑌 iter-

ators to be able to perform the conditional checks. If the 𝑋 and 𝑌 loops are in

the microkernel, then the conditional statements must in the microkernel too.

This is unwanted as having conditional statements in hot sections of code (e.g.

the microkernels) can lead to a higher number of branch mispredictions.

5.3 Parallel Kernels SIMD Strategy

5.3.1 Implementation Outline

The Parallel Kernels SIMD strategy uses SIMD vectorization to convolve the in-

put tensor with multiple input kernels in parallel. This strategy was originally

developed as part of our final year project. During CNN convolution, the same

input tensor is convolved with 𝑀 input kernel tensors to produce an output

tensor with 𝑀 output channels. We can convolve the input tensor with 𝐿 ker-

nels in parallel by storing the same point from 𝐿 kernels in a 𝐿 width SIMD

88

vector. This SIMD vector is then used with a second SIMD vector that has the

same value from the input image tensor stored in every lane. By multiplying

these two vectors together, we perform 𝐿 convolutions in parallel.

Figure 5-5: Convolving 3 input kernels with an input image in parallel using 3-lane
SIMD vectors.

Figure 5-5 shows this strategy in a graphical form. The value at the point

(2, 1) is taken from input kernels A, B, and C and stored in a SIMD vector to-

gether. The point (2, 2) from the Input Image is broadcasted to all the lanes of

a second SIMD vector. The two SIMD vectors are multiplied, and each lane

of the result is summed with the same point in the three output images. This

process would be repeated with every point in the three input kernels to fully

perform the convolution centered at (1, 2) (the point marked by the circle in the

input image). While figure 5-5 may suggest that a gather operation is used to

89

build the SIMD vector of input kernel values, in practice the tensor of input

kernel tensors is ordered so that the 𝑀 dimension is the innermost contiguous

dimension (e.g. ordered (𝑌 × 𝑋 × 𝐶 × 𝑀)). This means the SIMD vector of

input kernel values can be created using a normal SIMD load operation. The

output image tensor is also stored with the output channels dimension being

the innermost contiguous dimension (e.g. ordered (𝐻×𝑊×𝑀)), so that values

can be written to it using a normal SIMD store operation.

5.3.2 Broadcast Versus Scale

In the previous subsection, the Parallel Kernels SIMD strategy was described as

using a broadcast operation to create SIMD vectors, where every lane contains

the same value from the input tensor. This SIMD vector is then multiplied with

a second vector of input kernel values. This step can be replaced with a vector-

scale operation that would scale all the values in the vector of input kernel val-

ues by a value taken from the input tensor. Both these approaches produce the

same result, with the difference in performance between them relying only on

the difference in performance between a broadcast+multiply versus a vector-

scale. None of the tested Intel SIMD architectures contain any form of floating-

point SIMD vector-scale, so the broadcasting approach must be used for them.

ARMv7 NEON and ARMv8 NEON are able to implement both approaches.

Our empirical tests found that the vector-scale approach was marginally faster,

however both approaches were used to produce the final performance results.

5.3.3 Effects On Performance

Similar to the pairwise channels SIMD strategy, we can expect to see a roughly

𝐿 reduction in the number of cycles needed to perform the numeric arithmetic

of the CNN convolution as the arithmetic has been vectorized. The Parallel

Kernels SIMD strategy also allows us to reduce the number of memory reads

required from the input tensor, because we read from the input tensor before

entering the innermost loop. However, this is counteracted by the fact that we

90

1 f l o a t 3 2 x 4 i = broadcast_32x4 (input_image [h+y] [w+x] [c])
2 for (signed m = 0 ; m < KERNELS ; m+=4) {
3 f l o a t 3 2 x 4 k =
4 load_32x4 (
5 &(input_kernel [y+(Y/2)] [x +(X/2)] [c] [m])) ;
6 f l o a t 3 2 x 4 old =
7 load_32x4 (
8 &(output_image [h] [w] [m])) ;
9 f l o a t 3 2 x 4 current =

10 fused_mult_add_32x4 (old , i , k) ;
11 s tore_32x4 (current , &(output_image [h] [w] [m])) ;
12 }
13

Figure 5-6: Parallel Kernels Pseudocode Microkernel

1 for (signed m = 0 ; m < KERNELS ; m+=4) {
2 f l o a t 3 2 x 4 sum = { 0 , 0 , 0 , 0 } ;
3 for (signed c = 0 ; c < CHANNELS; c ++) {
4 f l o a t 3 2 x 4 i = broadcast_32x4 (input_image [h+y] [w+x] [c])
5 f l o a t 3 2 x 4 k =
6 load_32x4 (
7 &(input_kernel [y+(Y/2)] [x +(X/2)] [c] [m])) ;
8 fused_mult_add_32x4 (sum , i , k) ;
9 }

10 f l o a t 3 2 x 4 old =
11 load_32x4 (
12 &(output_image [h] [w] [m])) ;
13 f l o a t 3 2 x 4 current = add_32x4 (old , sum) ;
14 s tore_32x4 (current , &(output_image [h] [w] [m])) ;
15 }
16

Figure 5-7: Parallel Kernels SIMD strategy with the input channels as the innermost
loop.

must continually read and write to the output tensor while using this strategy.

This is due to the fact that we are iterating across one of the dimensions of

the output tensor in the innermost loop (the 𝑀 dimension). Using explicit tile

blocking on the output tensor can have very positive effects on the performance

of the Parallel Kernels SIMD strategy, because it now only reads and writes to a

much smaller buffer which can hopefully be fully stored in the L1 cache.

An alternative approach to reducing the number of reads and writes to the

output image tensor is to make the input channels loop the innermost loop as

shown in figure 5-7. This reduces the number of reads and writes to the output

91

image tensor required. However, it does mean that the input tensor must be

read from in the innermost loop now. It also means that we are now no longer

iterating contiguously along the tensor of input kernel tensors which can lead

to poorer cache performance.

5.3.4 Parallel Kernels Microkernel

There are six Parallel Kernels microkernels. Two implement the strategy simi-

larly to figure 5-6, with the main difference being one uses broadcasting, and

one uses a vector-scale. Two microkernels implement the strategy similarly to

figure 5-7. they are also differentiated by their use of broadcasts, and vector-

scales respectively. Finally, there are two other microkernels that are similar

to figure 5-7, but the for loops across the kernel height 𝑌 , and kernel width 𝑋

dimensions are moved inside the 𝑀 loop as well. This reduces the number of

reads from both input image tensor and the output image tensor. There is a

version that uses broadcasting, and a version that uses vector-scales. All the

microkernels can handle a ragged end on the 𝑀 dimension by inserting scalar

code if necessary. The unrolling factor of the 𝑀 loop (and the 𝐶 loop when it

applies) can be controlled by Genvolution for all the microkernels.

5.4 Outer Product SIMD Strategy

5.4.1 Implementation Outline

The Outer Product SIMD strategy uses an outer product between two vectors to

perform CNN convolution. The Intel AVX version of this strategy was origi-

nally developed as part of our final year project.

Convolving a single-channel 1D input image tensor by a single-channel (1×

1) kernel (i.e. a kernel that is a single value) is equivalent to scaling all the

values in the input image tensor by the kernel. If we have multiple (1 × 1)

kernels stored in a vector, performing an outer product between the 1D input

92

image tensor and the vector of kernels is equivalent to convolving the input

image tensor by all the kernels.

Figure 5-8: Convolving (1𝑥1) kernels with a 1D input image using an outer product.

Figure 5-8 shows an example of this. In the figure, the input kernels are

packed into a vector, and an outer product is performed with the 1D input

image. Each row of the outer product is a convolution between the input image

and one of the kernels. Multi-channel convolution between a (𝐻 × 𝑊 × 𝐶)

input image tensor and a (𝑀 × 𝑌 ×𝑋 × 𝐶) tensor of input kernel tensors can

be performed as a sum of the outer product method detailed above. This is the

approach taken by the Outer Product SIMD strategy.

In the Outer Product SIMD strategy, two SIMD vectors registers are pro-

duced. One register contains the same value from multiple kernels (like in the

Parallel Kernels SIMD strategy), the other contains consecutive values across the

𝑊 dimension of the input image tensor. An outer product is then performed

between the two vector registers, with the resulting matrix being stored in a

running total matrix made from a set of SIMD vector registers.

5.4.2 Intel

the Outer Product SIMD strategy is based upon performing an outer product

between two SIMD vector registers. Due to differences between Intel SIMD ar-

93

chitectures and ARM SIMD architectures, how the outer product is performed

differs greatly. On Intel Architectures, the outer product is performed by con-

tinually multiplying two SIMD registers while reordering their contents after

each multiplication. For the remainder of this subsection, we will consider only

256-bit eight-lane Intel SIMD registers, although the 128-bit four-lane imple-

mentation is very similar.

The outer product of two AVX registers, 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐 (which contains data

from the input image tensor), and 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐 (which contains data from the

tensor of input kernels), will be a (8×8) matrix where each column of the matrix

is 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐 scaled by one of the lanes of 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐. However, as the Intel

AVX architecture has no vector-scale operations, we must use a different ap-

proach to calculate the values of the outer product. We can calculate all the val-

ues required for the outer product by multiplying 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐 and 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐

eight times, and barrel-shifting the lanes of 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐 after each multiplica-

tion. This produces all the needed multiplication pairs, however barrel-shifting

an AXV register is very expensive. While the AVX registers are logically 256-

bits wide, in many cases the lower 128-bits and the upper 128-bits are isolated

from one another. For example, the _mm256_permute_ps intrinsic allows us to

swap values in AXV register lanes, however values cannot be moved across

the 128-bit divide. The _mm256_permute2f128_ps intrinsic allows us to swap

the upper and lower 128 bits of an AVX register, however it has three times the

latency of _mm256_permute_ps because it crosses the 128-bit divide (Intel 2019).

Barrel-shifting the lanes of 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐 would be very expensive, because we

would move values across the 128-bit divide on every shift. Instead of this,

figure 5-9 shows a cheaper list of transformations that also allow us to produce

all the values required for the outer product.

The transformation in figure 5-9 only requires a single movement across the

128-bit divide. The results of the eight multiplications in figure 5-9 are each

stored in a separate AVX regsiter. The result registers act as a running total

matrix, and multiple outer products can be accumulated on top of one another

without having to perform any memory writes. The main issue with this ap-

94

Figure 5-9: Efficient permutations of two AVX registers to calculate outer product val-
ues.

proach is that the values in the running total matrix will be in the completely

wrong order. This means that before they can be written out to the output ten-

sor, they must be reordered. However, this does not occur nearly as often as the

outer product itself. With the correct loop ordering, the matrix of registers only

needs to reordered and written out once for each 𝑌 × 𝑋 × 𝐶 outer products

calculated.

A second minor issue is that it is possible that we will have an input SIMD

vector of input image values, where some values need to be synthesized and

some don’t. To solve this issue, there is conditional code that will mask out any

lanes that need to be synthesized from the SIMD vector containing values from

the input tensor. This replaces the incorrect/junk data in the lanes with zeroes,

i.e. it fills the lanes with zero-padded synthesized values.

95

5.4.3 ARM

Both ARMv7 and ARMv8 NEON have access to vector-scale operation, there-

fore for these architectures we calculate outer products by scaling 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐

multiple times by the lanes of 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐.

In theory, this means that 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐 does not actually need to be created,

as we can just use scalar values from the input tensor to scale 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐. How-

ever, in practice it is worth it so we can make use of the fused-scale-add opera-

tions NEON offers. Both NEON architectures contain a fused-scale-add opera-

tion, accessed as vmlaq_lane_f32 in the NEON intrinsic libraries. vmlaq_lane_f32

takes a lane from a 64-bit 2-lane vector register, scales a 128-bit 4-lane register

by the lane, and adds the scaled register to a second 128-bit vector register. By

splitting 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐 across two 64-bit vector registers we can make use of this

faster operation. Figure 5-10 shows a simplified example of the outer product

SIMD strategy on the ARMv7 NEON architecture. The outer products are still

accumulated in a matrix of vector registers. The matrix of registers will also be

in correct order with this approach, so no reordering is required when writing

them out.

5.4.4 Register Blocking The Running Total Matrix

As mentioned in sections 5.4.3 and 5.4.2, there is a running total matrix of outer

products that have been calculated. The running total matrix is stored in a set

of registers. As covered in section 2.3, memory blocking can be used to reduce

pressure on the memory hierarchy, and reduce the number of cache misses

by splitting large data structures into smaller blocks that fit in the faster data

caches. Section 2.3 only considers blocking on the cache level, but we can also

consider blocking on the register level. While values in the L1 cache can be ac-

cessed very quickly, there is still a delay in accessing them of several cycles. For

example, there is an approximately 4 cycle delay for accessing the data in the L1

cache on an Intel Core i7 Sandybridge processor (Fog 2018). However, values

already stored in registers incur no access cost. Also, SIMD register files can

hold many values, with many registers to store data. For example, the ARMv7

96

1 for (signed m = 0 ; m < KERNELS ; m+=4) {
2 for (signed w = 0 ; w < WIDTH; w+=4) {
3 / / o u t e r p r o d u c t running t o t a l ma t r ix
4 f l o a t 3 2 x 4 mat_row_0 = { 0 , 0 , 0 , 0 } ;
5 f l o a t 3 2 x 4 mat_row_1 = { 0 , 0 , 0 , 0 } ;
6 f l o a t 3 2 x 4 mat_row_2 = { 0 , 0 , 0 , 0 } ;
7 f l o a t 3 2 x 4 mat_row_3 = { 0 , 0 , 0 , 0 } ;
8 for (signed y = −(Y/2) ; y <= Y/2; y++) {
9 for (signed x = −(X/2) ; x <= X/2; x++) {

10 for (signed c = 0 ; c < CHANNELS; c ++) {
11 f l o a t 3 2 x 4 op_ker_vec =
12 load_32x4 (
13 &(input_kernel [y+(Y/2)] [x +(X/2)] [c] [m])) ;
14 f l o a t 3 2 x 2 op_img_vec0 =
15 load_32x4 (
16 &(input_image [c] [h+y] [w+x +0])) ;
17 f l o a t 3 2 x 2 op_img_vec1 =
18 load_32x4 (
19 &(input_image [c] [h+y] [w+x +2])) ;
20 / / f u s e d _ s c a l e _ a d d (a , b , c , d) => (a += b * c [d])
21 fused_scale_add (mat_row_0 ,
22 op_ker_vec , op_img_vec0 , 0) ;
23 fused_scale_add (mat_row_1 ,
24 op_ker_vec , op_img_vec0 , 1) ;
25 fused_scale_add (mat_row_2 ,
26 op_ker_vec , op_img_vec1 , 0) ;
27 fused_scale_add (mat_row_3 ,
28 op_ker_vec , op_img_vec1 , 1) ;
29 }
30 }
31 }
32 s tore_32x4 (mat_row_0 , &(output_image [h] [w] [m])) ;
33 s tore_32x4 (mat_row_1 , &(output_image [h] [w+ 1] [m])) ;
34 s tore_32x4 (mat_row_2 , &(output_image [h] [w+ 2] [m])) ;
35 s tore_32x4 (mat_row_3 , &(output_image [h] [w+ 3] [m])) ;
36 }
37 }
38

Figure 5-10: ARMv7 NEON Pseudocode for a outer product microkernel.

NEON SIMD architecture has a register file of 32 128-bit vector registers. This

allows up to 128 32-bit floats to be stored in registers simultaneously. In the

Outer product SIMD strategy, we use register blocking to store a running total

of all the outer products that have been performed in the innermost loop of

the strategy. Figure 5-11 shows an example of how registers from the ARMv7

NEON register file can be allocated to store the running total matrix, and the

97

current input vectors. Sixteen 128-bit registers are used to store the (8× 8) run-

ning total matrix in figure 5-11, and 4 registers are used to store op_ker_vec and

op_img_vec.

5.4.5 Effects On Performance

The crux of the outer product SIMD strategy is the ratio between computations

and memory reads. The outer product SIMD strategy allows us to read in two

vectors of length 𝐿, and use them to calculate 𝐿2 values. The large ratio be-

tween memory accesses and computations means there is significantly reduced

pressure on the memory hierarchy. The outer product SIMD strategy is often

computational-bound in terms of performance, and does not become stalled

waiting for values to be retrieved from caches.

Figure 5-11: Using 2 4-lane NEON registers to construct logically eight-lane 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐
and 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐. 16 registers are used to store an (8× 8) output matrix.

98

The larger the size of 𝐿, the greater the ratio between computational oper-

ations and memory operations. By choosing vector registers with more lanes,

we can increase 𝐿. However, we can also increase 𝐿 by using multiple vectors

to represent the conceptional input vectors to the outer product. Figure 5-11

shows an example of this, 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐 and 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐 are made from 2 NEON

registers each. The size of 𝐿 is limited by the number of registers available

in the architecture being used, because we need enough registers to store the

output of the outer products efficiently. The Intel AVX architecture exposes 16

256-bit YMM vector registers. The largest output matrix we can create with

this is an (8× 8) output matrix, with 8 AVX regsiters used for the matrix, one to

store 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐, and one to store 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐, and six left unused. The ARMv7

and ARMv8 NEON architecture offer 32 128-bit NEON registers. Using 29

NEON registers we can create an output matrix of (12 × 8), with twenty-four

NEON registers for the output matrix, two registers for a logically eight-lane

𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐, and three registers for a logically twelve-lane 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐.

Special data layouts for the input tensors are required to improve cache

performance when accessing the input tensor and kernel. Figure 5-10 shows

pseudo-code for implementing a NEON outer product microkernel. The code

in the figure minimizes the number of writes to the output image required by

nesting the 𝑌 , 𝑋 , and 𝐶 loops inside the 𝑀 and 𝑊 loops. As we can loop across

the 𝑌 , 𝑋 , and 𝐶 without changing what points we are calculating for the out-

put tensor, we can keep accumulating to the registers that store the outputs of

the outer products without having to write them out often. However, in figure

5-10, the code does not move across the input tensor or kernel contiguously.

The input image tensor, input_image, is a (𝐶 × 𝐻 ×𝑊) array, while the tensor

of input kernel tensors, input_kernel, is a (𝑌 × 𝑋 × 𝐶 × 𝑀) array. They have

these data layouts so a normal SIMD load operation can be used to load the

values for 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐, 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐1, and 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐2 quickly, without having

to perform an expensive gather operation. However, we iterate across the 𝐶 di-

mension in the innermost loop of figure 5-10. This will most likely reduce cache

performance as we making large jumps every time we access the input tensors.

99

However, this can be solved by rearranging the input tensors so that there are 𝐿

contiguous values from the vectorized dimension as the innermost dimension

of the input tensors, but the entire vectorized dimension is dispersed across the

entire input tensors. For example, the new input tensors for figure 5-10 would

have the layouts (𝐻 × (𝑊/4) × 𝐶 × 4), and ((𝑀/4) × 𝑌 × 𝑋 × 𝐶 × 4) for the

input image tensor, and the tensor of input kernel tensors respectively. With

these data layouts, we can iterate across the 𝐶 dimension as the innermost loop

of the microkernel, while still being able to use a normal SIMD load instruction

to create 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐, 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐1, and 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐2 quickly, and have better

cache performance as we would now be iterating across the input tensors con-

tiguously. However, for our evaluation we only allowed the input kernel to use

the special data layout, because in practice we can preprocess kernel data be-

forehand for free, however the input image tensor is only available at runtime,

so would need to reorder it during the actual inference.

5.4.6 Outer Product Microkernels

There are four outer product SIMD strategy microkernels. There are two for

ARM NEON, which use vector-scaling to perform the outer product, and two

for Intel AVX, which use vector reordering to calculate the outer product val-

ues. Each architecture has a microkernel that contains the smallest number of

loops, but will need to write out the outer product matrix often, and a larger mi-

crokernel that contains more loops, allowing it write out the outer product ma-

trix less often. Loop unrolling is used to search for the best performing length

for 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐 and 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐. Genvolution will also investigate if 𝑜𝑝_𝑘𝑒𝑟_𝑣𝑒𝑐

and 𝑜𝑝_𝑖𝑚𝑔_𝑣𝑒𝑐 should be of equal length or not for better performance. The

microkernels can be generated to use the standard input data layouts, or the

special layouts covered in the previous section.

100

5.5 W-M-C SIMD Strategy

5.5.1 Implementation Outline

The W-M-C SIMD strategy is inspired by an implementation for SGEMM (bi-

nary32 GEneral Matrix Multiplication) in the QNNPack CNN Library (Face-

book 2018). Like the outer product SIMD strategy, the W-M-C SIMD strategy

also implements an outer product along the 𝑀 dimension of the input kernels,

and the 𝑊 dimension of the input image tensor. However, instead of vectoriz-

ing along the 𝑊 dimension of the input image tensor, the W-M-C SIMD strategy

vectorizes along the 𝐶 dimension of the input image tensor.

The W-M-C SIMD strategy is an ARM NEON only SIMD strategy. This

is because its design relies heavily on the vector-scale-and-add vmlaq_lane_f32

operation detailed in section 5.4.3. On many ARM devices, vmlaq_lane_f32 is

significantly faster than using a separate scale and add operations. For exam-

ple, on the Cortex A-7 processor, the result of vmlaq_lane_f32 is available after 5

cycles, while the result of a separate scale and add operation is available after

8 cycles (Rullgard 2014).

Figure 5-12 shows the major steps of the W-M-C SIMD strategy. The in-

nermost loop of the W-M-C SIMD strategy iterates across the 𝐶 dimension in

increments of two. Inside this loop, two vectors of length 𝐿 are read from the

input kernels. The two vectors are vectorized along the 𝑀 dimension, however

one vector takes values from the current position in the 𝐶 dimension (see line

21 of figure 5-13), and the other takes values from the current position in the 𝐶

dimension plus one (see line 24 of figure 5-13). In part (ii) of figure 5-12, the two

vectors from the input kernels contain {A, C, E} and {B, D, F} respectively. The

{A, C, E} vector takes values from the 𝐶[0] dimension, and the {B, D, F} vector

takes values from the 𝐶[1] dimension.

While the two vectors from the input kernels are being loaded, 𝐿 2-lane

vectors from the input image tensor are also created. The 𝐿 vectors take values

from consecutive points in the 𝑊 dimension. For example, in figure 5-12, there

are 3 vectors taken from the input image tensor. The first vector takes the first

101

Figure 5-12: The major steps in the W-M-C SIMD strategy.

two input channels from the point at 𝑊 [0] (the {G, H} vector), the second vector

takes from the 𝑊 [1] point (the {J, K} vector), and the third vector takes from the

𝑊 [2] point (the {L, M} vector). These three vectors are vectorized along the 𝐶

dimension, and take values from the same position in the 𝐶 dimension as the

two vectors taken from the input kernels.

The first 𝐿-lane vector taken from the input kernels is then used with the

first value from ech of the 𝐿 vectors taken from the input image tensor to calcu-

late an (𝐿× 𝐿) outer product. See the section labelled ’Outer product for 𝐶[0]’

from part (iii) of figure 5-12 for an example. The same is then done with the

second vector from the input kernels, and the other lane from the vectors taken

102

from the input image tensor. The results from both these outer products are

accumulated onto a set of registers like in the outer product SIMD strategy.

Each outer product is calculated using the vmlaq_lane_f32 operation, using

a vector from the input kernels, and a lane from each of vectors from the input

image tensor (see lines 25 to 28 of figure 5-13). In figure 5-12, 3-lane vectors are

taken from the input kernels, however in practice the vectors must be 4-lanes

to match the parameter requirements of vmlaq_lane_f32. However, we can take

more vectors from input kernels to create logically 8 or 12-lane input vectors

for the outer product, building the larger vectors from many 4-lane vectors.

The data layout of the input kernels shown in figure 5-12 is also incorrect. In

practice, the special data layout (𝑀/𝐿×𝑌×𝑋×𝐶×𝐿) must be used for the input

kernels (see line 2 of figure 5-13 for an example, where 𝐿 = 4). The special data

layout allows the code to iterate over the input kernels contiguously, while also

being able to load vectors from the input kernels using a normal SIMD vector

load operation (see line 21, 24 of figure 5-13).

5.5.2 Effects On Performance

The rational for the design of the W-M-C SIMD strategy is similar to the ra-

tional of the outer product SIMD strategy. The W-M-C SIMD strategy performs

an outer product that requires 𝐿 data to calculate 𝐿2 values, creating an excel-

lent computational work to memory access ratio. This reduces pressure on the

memory hierarchy, and on the bandwidth between the caches and the proces-

sors. It is hoped that this will keep any implementation computational bound,

rather then memory bound from data stalls.

Also similarly to the outer product SIMD strategy, the result of the outer

products are stored in a set of registers. A larger output matrix creates a better

computational:memory ratio, but the size of the matrix is bound by the num-

ber of registers available. The max possible output matrix is a (8 × 12) output

matrix, using 24 NEON registers, 4 NEON registers for values from the input

image tensor, and 3 NEON registers for values from the input kernels, leaving

1 register unused. The registers storing data from the input image tensor also

103

1 / / input_ image [H] [W] [C]
2 / / i n p u t _ k e r n e l [M/ 4] [Y] [X] [C] [4]
3 / / ou tput_ image [H] [W] [M]
4 for (signed w = 0 ; w < W; w+=4) {
5 for (signed m = 0 ; m < (M/4) ; mf++) {
6 f l o a t 3 2 x 4 mat_row_0 = { 0 , 0 , 0 , 0 } ;
7 f l o a t 3 2 x 4 mat_row_1 = { 0 , 0 , 0 , 0 } ;
8 f l o a t 3 2 x 4 mat_row_2 = { 0 , 0 , 0 , 0 } ;
9 f l o a t 3 2 x 4 mat_row_3 = { 0 , 0 , 0 , 0 } ;

10 for (signed c = 0 ; c < CHANNELS; c f +=2) {
11 f l o a t 3 2 x 2 iV0 ;
12 iV0 = load_32x2 (&(input_image [h+y] [w+x + 0] [c])) ;
13 f l o a t 3 2 x 2 iV1 ;
14 iV1 = load_32x2 (&(input_image [h+y] [w+x + 1] [c])) ;
15 f l o a t 3 2 x 2 iV2 ;
16 iV2 = load_32x2 (&(input_image [h+y] [w+x + 2] [c])) ;
17 f l o a t 3 2 x 2 iV3 ;
18 iV3 = load_32x2 (&(input_image [h+y] [w+x + 3] [c])) ;
19 f l o a t 3 2 x 4 _ t kV0 ;
20 kV0 = load_32x4 (
21 &(input_kernel [m] [y+(Y/2)] [x +(X/2)] [c + 0] [0])) ;
22 f l o a t 3 2 x 4 _ t kV1 ;
23 kV1 = load_32x4 (
24 &(input_kernel [m] [y+(Y/2)] [x +(X/2)] [c + 1] [0])) ;
25 vsum00 = vmlaq_lane_f32 (mat_row_0 , kV0 , iV0 , 0) ;
26 vsum01 = vmlaq_lane_f32 (mat_row_1 , kV0 , iV1 , 0) ;
27 vsum10 = vmlaq_lane_f32 (mat_row_2 , kV0 , iV2 , 0) ;
28 vsum11 = vmlaq_lane_f32 (mat_row_3 , kV0 , iV3 , 0) ;
29
30 vsum00 = vmlaq_lane_f32 (mat_row_0 , kV1 , iV0 , 1) ;
31 vsum01 = vmlaq_lane_f32 (mat_row_1 , kV1 , iV1 , 1) ;
32 vsum10 = vmlaq_lane_f32 (mat_row_2 , kV1 , iV2 , 1) ;
33 vsum11 = vmlaq_lane_f32 (mat_row_3 , kV1 , iV3 , 1) ;
34 }
35 s tore_32x4 (&(output_image [h] [w+ 0] [m* 4]) , mat_row_0) ;
36 s tore_32x4 (&(output_image [h] [w+ 1] [m* 4]) , mat_row_1) ;
37 s tore_32x4 (&(output_image [h] [w+ 2] [m* 4]) , mat_row_2) ;
38 s tore_32x4 (&(output_image [h] [w+ 3] [m* 4]) , mat_row_3) ;
39 }
40 }
41

Figure 5-13: ARMv7 NEON Pseudocode for a W-M-C microkernel.

only need to be updated after every second outer product, as only a lane from

each float_32x2 vector is used. (Note that a single 128-bit NEON register can

store two float_32x2 vectors at the same time).

104

The most important difference between the W-M-C and the outer product

SIMD strategy is that vectorizing along the 𝐶 means that the input image ten-

sor can be in (𝑊 × 𝐻 × 𝐶) format. In the outer product SIMD strategy, the 𝑊

dimension must be the innermost dimension of the input image tensor, because

we use vectors that vectorize across the 𝑊 dimension in the outer product SIMD

strategy. To reduce the number of times that the outer product running total

(stored in the set of registers) must be written out, we want the 𝐶 dimension

as the innermost loop of the microkernel, because moving across the 𝐶 dimen-

sion does not change what output values we are currently calculating. With the

input image tensor being stored in (𝑊 × 𝐻 × 𝐶) format for the W-M-C SIMD

strategy, we can loop across the 𝐶 dimension in the innermost loop while still

moving across the input image tensor contiguously, which is not possible with

the outer product SIMD strategy.

5.5.3 W-M-C Microkernels

There are two W-M-C microkernels. One contains the minimal number of loops

in the microkernel (i.e. loops for 𝑀 , 𝑊 , and 𝐶). The output matrix needs to

written at the end of every 𝐶 loop. There is also a larger microkernel which

nests a 𝑌 and a 𝑋 loop inside the 𝑊 loop. This reduces the number of times

the output matrix needs to be written out.

This chapter concludes the discussion of Genvolution as it relates to CNN

convolution. The following chapter details our other largest topic of research:

Winogen, a second automatic program generator for Winograd CNN convolu-

tion.

105

Chapter 6

Automatic Winograd Optimization

and Generation

6.1 Chapter Motivation

The majority of the runtime of a CNN is spent performing CNN convolution.

Therefore, by improving the performance of CNN convolution, we improve

the performance of many CNNs.

Winograd CNN convolution is one method for implementing CNN convo-

lution (Lavin and Gray 2016). Winograd convolution involves reducing the

computational complexity of CNN convolution using minimal multiplication

algorithms. It has been shown that Winograd convolution can be extremely

performant, and outperform other CNN convolution methods, such as Im2Col

(Maji et al. 2019).

However, implementing Winograd convolution efficiently can be a time

consuming task. Winograd convolution involves three large data transforma-

tions that must be optimized to have an efficient implementation. There are

also many different sets of transformations that offer different trade-offs in

computational complexity reduction and additional memory required. De-

pending on the input sizes for a given CNN convolution, different transfor-

mation sets may perform more efficiently. There are also a number of other

optimizations that can be applied to a Winograd convolution implementation.

106

To explore the impact of selecting different transformation sets and other op-

timizations, we developed Winogen. Winogen is a domain specific program

generator that automatically generates and optimizes Winograd convolution

implementations given a set of CNN convolution input sizes.

While Winograd convolution implementations can be very fast, they require

a large temporary memory overhead to store the transformed data structures.

This can be a problem on memory constrained devices, such as embedded

ARM devices. We propose a novel CNN convolution algorithm which uses

a sum of 1D Winograd convolution to perform normal CNN convolution. Our

novel algorithm uses significantly less memory than the standard Winograd

CNN convolution algorithm, while still reducing the computational complex-

ity of CNN convolution.

6.2 Winograd Convolution

Convolution is a form of filtering, where the input kernel acts as a filter on

the input tensor. Normally, performing a 1D convolution using an input ker-

nel with 𝑘𝑒𝑟_𝑒𝑙𝑠 elements to produce 𝑜𝑢𝑡_𝑒𝑙𝑠 output points requires (𝑘𝑒𝑟_𝑒𝑙𝑠×

𝑜𝑢𝑡_𝑒𝑙𝑠) multiplications. This is because for each output point we must per-

form 𝑘𝑒𝑟_𝑒𝑙𝑠 pair-wise multiplications between the values in the input kernel,

and values in the input tensor. However, it is possible the perform convolution

using fewer multiplications.

Winograd showed that, given a kernel with 𝑘𝑒𝑟_𝑒𝑙𝑠 values, the minimum

number of multiplications required to calculate 𝑜𝑢𝑡_𝑒𝑙𝑠 output points is (𝑘𝑒𝑟_𝑒𝑙𝑠+

𝑜𝑢𝑡_𝑒𝑙𝑠 − 1) multiplications (Winograd 1980). (𝑖𝑛_𝑒𝑙𝑠) is the number of ele-

ments needed in the input tensor to perform the convolution, and is equal

to the minimal number of multiplication required. In other words, 𝑖𝑛_𝑒𝑙𝑠 =

(𝑘𝑒𝑟_𝑒𝑙𝑠 + 𝑜𝑢𝑡_𝑒𝑙𝑠 − 1). We use 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) to refer to a

minimal multiplication convolution that uses a input kernel with 𝑘𝑒𝑟_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

to calculate 𝑜𝑢𝑡_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 output values (and which needs an input tensor with

(𝑘𝑒𝑟_𝑒𝑙𝑠+ 𝑜𝑢𝑡_𝑒𝑙𝑠− 1) elements).

107

𝐹 (2, 3) =

[︂
𝑑0 𝑑1 𝑑2
𝑑1 𝑑2 𝑑3

]︂ ⎡⎣𝑔0𝑔1
𝑔2

⎤⎦ =

[︂
𝑚1 +𝑚2 +𝑚3

𝑚2 −𝑚3 −𝑚4

]︂
where

𝑚1 = (𝑑0 − 𝑑2)𝑔0

𝑚2 = (𝑑1 + 𝑑2)(
𝑔0 + 𝑔1 + 𝑔2

2
)

𝑚3 = (𝑑2 − 𝑑1)(
𝑔0 − 𝑔1 + 𝑔2

2
)

𝑚4 = (𝑑1 − 𝑑3)𝑔2

Figure 6-1: Minimal multiplication algorithm for performing 𝐹 (2, 3) using 4 multipli-
cations.

Figure 6-1 shows an example of a minimal multiplication algorithm for

𝐹 (2, 3) created by Winograd, which uses 4 multiplications to perform 1D con-

volution. A normal convolution would require 6 multiplications to calculate

the same number of output points. The divisions required to calculate 𝑚2

and 𝑚3 in figure 6-1 are not included in multiplication count, because they

are constants that only involve values from the input kernel 𝑔, and can be pre-

calculated once in advance before performing any convolutions. Minimal mul-

tiplication algorithms for 1D convolution can also be written in a matrix form.

Figure 6-2 gives the equation for the matrix form of the minimal multiplication

algorithms. For example, the algorithm shown in figure 6-1 can be represented

using the matrices shown in figure 6-3. Figure 6-4 shows an example of using

the matrices in figure 6-3 to perform 1D convolution.

𝑌 = 𝐴𝑇 × ((𝐺× 𝑔)⊙ (𝐵𝑇 × 𝑑))

where
⊙ is element-wise multiplication.

𝑔 is the input kernel.
𝑑 is the input tensor.

𝐴𝑇 , 𝐺,𝐵𝑇 are the matrices representing the minimal multiplication algorithm.

Figure 6-2: Matrix form algorithm for 1D minimal multiplication algorithms.

The matrices 𝐴𝑇 , 𝐺, and 𝐵𝑇 represent the minimal multiplication algorithm.

The input vector 𝑑 is multiplied with 𝐵𝑇 to produce a new vector 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑣𝑒𝑐,

the input kernel 𝑔 is multiplied with 𝐺 to produce a new vector 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑣𝑒𝑐.

108

𝐴𝑇 =

[︂
1 1 1 0
0 1 −1 −1

]︂

𝐺 =

⎡⎢⎢⎣
1 0 0
0.5 0.5 0.5
0.5 −0.5 0.5
0 0 1

⎤⎥⎥⎦

𝐵𝑇 =

⎡⎢⎢⎣
1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

⎤⎥⎥⎦
Figure 6-3: Matrices representing the minimal multiplication algorithm for 𝐹 (2, 3)
shown in figure 6-1.

Figure 6-4: Performing the minimal multiplication algorithm for 𝐹 (2, 3) shown in fig-
ure 6-1, using the matrices given in figure 6-3.

An element-wise multiplication is performed between 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑣𝑒𝑐 and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑣𝑒𝑐

to produce a new vector 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡. The vector 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 is multiplied

by 𝐴𝑇 to produce the output of a 1D convolution between 𝑑 and 𝑔. The triplet

of 𝐴𝑇 , 𝐺, and 𝐵𝑇 will be referred to as the transformation matrices. A different

triplet of transformation matrices is needed to perform a minimal multiplica-

tion algorithm depending on the size of the input kernel and the number of

output points wanted. For example, 𝐹 (2, 3) will use a different triplet of trans-

formation matrices than 𝐹 (4, 3) or 𝐹 (2, 5). Triplets of transformation matrices

can be calculated using Winograd’s algorithm or the Toom-Cook algorithm (Blahut

2010). In the CNN community, performing convolution using transformation

109

matrices generated using either algorithm is usually called Winograd convolu-

tion, no matter which algorithm was used to generate the matrices. Also, there

are an infinite number of different valid minimal multiplication algorithms

(and matching transformation matrices) for all input sizes.

6.2.1 2D Winograd Convolution

It is valid to combine two 1D minimal multiplication convolution algorithms

to create a 2D minimal multiplication algorithms. Given the 1D minimal mul-

tiplication algorithms 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑠) and 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠′, 𝑘𝑒𝑟_𝑒𝑙𝑠′), we can cre-

ate the 2D minimal filtering algorithm 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠× 𝑜𝑢𝑡_𝑒𝑙𝑠′, 𝑘𝑒𝑟_𝑒𝑙𝑠× 𝑘𝑒𝑟_𝑒𝑙𝑠′)

by nesting one 1D algorithm inside another 1D algorithm (Lavin and Gray

2016). The number of multiplications required for 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠×𝑜𝑢𝑡_𝑒𝑙𝑠′, 𝑘𝑒𝑟_𝑒𝑙𝑠×

𝑘𝑒𝑟_𝑒𝑙𝑠′) is (𝑘𝑒𝑟_𝑒𝑙𝑠+ 𝑜𝑢𝑡_𝑒𝑙𝑠− 1)(𝑘𝑒𝑟_𝑒𝑙𝑠′ + 𝑜𝑢𝑡_𝑒𝑙𝑠′ − 1). The size of the input

tensor required for 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠 × 𝑜𝑢𝑡_𝑒𝑙𝑠′, 𝑘𝑒𝑟_𝑒𝑙𝑠 × 𝑘𝑒𝑟_𝑒𝑙𝑠′) is also (𝑘𝑒𝑟_𝑒𝑙𝑠 +

𝑜𝑢𝑡_𝑒𝑙𝑠 − 1)(𝑘𝑒𝑟_𝑒𝑙𝑠′ + 𝑜𝑢𝑡_𝑒𝑙𝑠′ − 1). We can also nest the same 1D minimal

multiplication algorithm with itself to produce a 2D minimal multiplication

algorithm. The matrix form equation for performing a 2D minimal multipli-

cation algorithm created from nesting a 1D minimal multiplication algorithm

with itself is shown in figure 6-5. The same transformation matrices are used

for 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑠) and 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠×𝑜𝑢𝑡_𝑒𝑙𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑠×𝑘𝑒𝑟_𝑒𝑙𝑠). For example,

𝐹 (2, 3) and 𝐹 (2× 2, 3× 3) use the same transformation matrices.

𝑌 = 𝐴𝑇 × ((𝐺× 𝑔 ×𝐺𝑇)⊙ (𝐵𝑇 × 𝑑×𝐵))× 𝐴

where
⊙ is element-wise multiplication.

𝑔 is the input kernel.
𝑑 is the input tensor.

𝐴𝑇 , 𝐺,𝐵𝑇 are the matrices representing the minimal multiplication algorithm.

Figure 6-5: Matrix form algorithm for 2D minimal multiplication algorithms created
from nesting the same 1D minimal multiplication algorithm.

110

6.3 Winograd CNN Convolution

Lavin et al. proposed implementing CNN Convolution using Winograd con-

volution. Lavin et al. also showed that CNN convolution implemented us-

ing Winograd convolution can outperform other CNN convolution algorithms

(Lavin and Gray 2016). Winograd convolution reduces the number of multi-

plication required to perform convolution, while increasing the number of ad-

ditions and requiring some kernel pre-processing. In general, the number of re-

quired multiplications is reduced by ((𝑘𝑒𝑟_𝑒𝑙𝑠2)(𝑜𝑢𝑡_𝑒𝑙𝑠2))/(𝑘𝑒𝑟_𝑒𝑙𝑠+ 𝑜𝑢𝑡_𝑒𝑙𝑠− 1)2

times when using a 2D Winograd convolution. For example, 𝐹 (2 × 2, 3 × 3)

reduces the number of required multiplications by 2.25× (from 36 to 16 multi-

plications), and 𝐹 (4×4, 3×3) reduces it by 4× (from 144 to 36 multiplications).

When performing floating-point arithmetic, floating-point multiplications are

usually more expensive to perform then floating-point additions. For example,

on the Intel Skylake architecture, a binary32 floating-point addition has 3 cycles

of latency, while a binary32 floating-point multiplication has 5 cycles of latency

(Fog 2018). By reducing the number of expensive floating-point multiplications

required, we hope that performance of the CNN convolution increases. To im-

plement CNN convolution using Winograd convolution, a number of issues

must be accounted for that are covered in sections 6.4 through 6.5.

6.4 Winograd CNN Convolution Outline

Winograd CNN convolution takes in an input tensor 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟 and an input

kernel 𝑖𝑛_𝑘𝑒𝑟𝑛𝑒𝑙. It produces an output tensor 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 that is the CNN con-

volution between 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟 and 𝑖𝑛_𝑘𝑒𝑟𝑛𝑒𝑙. A simple outline of Winograd CNN

convolution is:

1. 𝐺 * 𝑖𝑛_𝑘𝑒𝑟𝑛𝑒𝑙 *𝐺𝑇 is calculated. The result of this is a transformed kernel

tensor, denoted by 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟.

2. 𝐵𝑇 * 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟 * 𝐵 is calculated. The result of this is a transformed input

tensor, denoted by 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛.

111

3. Calculate the element-wise product between the elements of 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟

and 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛. The result of this is denoted by 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡. 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡

contains the result of the convolution between 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟 and 𝑖𝑛_𝑘𝑒𝑟𝑛𝑒𝑙,

in a transformed format (sometimes referred to as "in the Winograd do-

main").

4. 𝐴𝑇 *𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡*𝐴 is calculated. The result of this is the CNN convolu-

tion between 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟 and 𝑖𝑛_𝑘𝑒𝑟𝑛𝑒𝑙. The result is stored in 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟.

6.5 Fixed Input Sizes

6.5.1 Upper Bound on Input Sizes

Winograd convolution algorithms function on inputs and output tensors of

known sizes (Blahut 2010). For example, 𝐹 (2 × 2, 3 × 3) only accepts an input

tensor of size (4×4), input kernel of size (3×3), and produces an output tensor

of size (2×2). A Winograd convolution algorithm for any input size can be gen-

erated. For example, the Toom-Cook algorithm can be used to generate a triplet

of transformation matrices for a 𝐹 (48 × 48, 11 × 11) 2D Winograd convolution

algorithm, if desired. However, as the input sizes of a Winograd convolution

increases, the inaccuracy of the result also increases. Barabasz et al. proved that

the error introduced by the Toom-Cook algorithm grows at least exponentially

with the size of the input tensor in the worst case (Barabasz and Gregg 2019).

Empirically, we found that Winograd convolution algorithms that accepted an

input tensor larger than (8×8) produced results that were consistently accurate

to only two significant digits (i.e. the third digit of most produced results was

wrong).

CNN convolutions often work on much larger input tensors. For example,

half of the layers of the MobileNet V2 CNN use an input image tensor with an

image height and width of at least 56 (Howard et al. 2017). We cannot generate

a Winograd convolution algorithm that takes input tensors of this size directly

while retaining accuracy. Lavin et al. propose using a tiling approach, where

112

we split large input and output tensors into a number of smaller tensors, and

perform convolution on the smaller tensors separately using Winograd convo-

lution (Lavin and Gray 2016).

6.5.2 Tiling the Input and Output Tensor

Given a 2D Winograd convolution 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠 × 𝑜𝑢𝑡_𝑒𝑙𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑠 × 𝑘𝑒𝑟_𝑒𝑙𝑠), we

can perform a convolution with an input and output tensor of arbitrary size

by splitting the input and output tensor into tiles. The size of the tiles will

match the expected input and output sizes of 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠 × 𝑜𝑢𝑡_𝑒𝑙𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑠 ×

𝑘𝑒𝑟_𝑒𝑙𝑠). The output tensor 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 is split into non-overlapping tiles of

size (𝑜𝑢𝑡_𝑒𝑙𝑠 × 𝑜𝑢𝑡_𝑒𝑙𝑠). The tiles covering 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 are referred to as o-

tiles. The entire 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 needs to be covered by o-tiles, meaning we need

((⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)×(⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)) o-tiles in total, where 𝐻 is the height of 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟

and 𝑊 is the width of 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟. For example, in figure 6-6, we are using a

𝐹 (2× 2, 3× 3) Winograd convolution, and an 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 with size (4× 3). The

𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 is split into four o-tiles (labelled o-tiles 0 through 3).

We use a chosen 2D Winograd convolution algorithm 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠×𝑜𝑢𝑡_𝑒𝑙𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑠×

𝑘𝑒𝑟_𝑒𝑙𝑠) to produce the output for each o-tile that makes up 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟. To do

this, for each o-tile, we need a tile containing the relevant data from the in-

put tensor. Each o-tile has a matching tile in the input tensor. Tiles from the

input tensor are referred to as i-tiles. For example, in figure 6-6, o-tile 0 from

𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 is matched with i-tile 0 from 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟, o-tile 1 from 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 is

matched with i-tile 1 from 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟, and so on. The size of each i-tile will be

(𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠), where 𝑖𝑛_𝑒𝑙𝑠 = (𝑜𝑢𝑡_𝑒𝑙𝑠 + 𝑘𝑒𝑟_𝑒𝑙𝑠 − 1). This is because the

size of the input tensor required by a 𝐹 (𝑜𝑢𝑡_𝑒𝑙𝑠× 𝑜𝑢𝑡_𝑒𝑙𝑠, 𝑘𝑒𝑟_𝑒𝑙𝑠× 𝑘𝑒𝑟_𝑒𝑙𝑠) 2D

Winograd convolution algorithm is (𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠). Each i-tile is positioned at

a different point on the 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟, and the i-tile’s position corresponds the po-

sition of its matching o-tile on the 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟. Assuming the top-left element of

a given o-tile was at position (𝑜𝑡ℎ, 𝑜𝑡𝑤) in the 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟, then the top-left ele-

ment of the o-tile’s matching i-tile will be at position (𝑜𝑡ℎ−⌊𝐾/2⌋, 𝑜𝑡𝑤−⌊𝐾/2⌋),

where 𝐾 is the height and width of the input kernel. For example, in figure 6-6,

113

Figure 6-6: Performing a CNN Convolution by performing 4 smaller 2D Winograd
convolutions on tiles from the input tensor.

114

the top-left element of o-tile 1 is at position (0, 2), and the top-left element of

i-tile 1 is at position (−1, 1), because (0− ⌊3/2⌋, 2− ⌊3/2⌋) = (−1, 1).

Some parts of an i-tile can lie outside the bounds of the input tensor. For

example, in figure 6-6, the first row and the first column of i-tile 0 lie outside

the bounds of 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟. These values in the i-tiles need to be synthesized.

They can be synthesized using any of the standard methods for synthesizing

extra input tensor values, e.g. zero padding, mirroring values. In figure 6-6,

zero padding is used. For example, the first row and column of i-tile 0 are filled

with zeroes.

In CNN convolution, the height and width of the input kernels are often

very small, usually either (3× 3) or (5× 5). The input kernels of CNN convolu-

tion are small enough that they do not need to be split into tiles to be used with

a Winograd convolution algorithm. For example, the 𝐹 (2× 2, 3× 3) Winograd

convolution algorithm accepts a (3× 3) kernel. In figure 6-6, the input kernel is

not tiled because it is only (3× 3) in size.

6.5.3 Winograd Convolution per Tile

Once the input tensor 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟 is split into i-tiles, a 2D winograd convolu-

tion is performed between each i-tile and the input kernel. The results of the

convolutions are the o-tiles that cover the output tensor 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟.

1. Each i-tile is transformed into a i-trans-tile using the equation 𝐵𝑇 × 𝑑×𝐵

where 𝑑 is one of the i-tiles. For example, in figure 6-6, i-tiles 0 through 4

are transformed into the i-trans-tiles 0 through 4.

2. The input kernel is transformed into the 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙, using the equation

𝐺× 𝑔 ×𝐺𝑇 , where 𝑔 is the input kernel.

3. An element-wise multiplication is performed between each i-trans-tile

and the 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙. The result of these are the trans-product-tiles. For

example, in figure 6-6, the element-wise multiplication between i-trans-

tile 2 and the 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 produces trans-product-tile 2.

115

4. Each trans-product-tile is transformed by the equation 𝐴𝑇 × 𝑎×𝐴 to pro-

duce an o-tile, where 𝑎 is a trans-product-tile. For example, in figure 6-6,

trans-product-tile 2 is transformed into o-tile 2.

5. The results in the o-tiles are stored into the output tensor 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟.

Some values in the o-tiles are not required, and are discarded. For ex-

ample, the values in the second column of o-tile 1 in figure 6-6 are not

needed, because they are outside the boundaries of the output. The out-

put tensor now contains the result of the CNN convolution between the

input tensor and the input kernel.

Figure 6-7 shows simplified pseudocode that uses the tiled Winograd convolu-

tion method to perform single-channel CNN convolution.

6.6 Handling Input Channels

2D Winograd Convolution works on single-channel inputs to produce single-

channel outputs. To perform multi-channel CNN convolution using 2D Wino-

grad convolution, a separate single-channel convolution is performed for every

input channel in the input tensor. The results of each single-channel convolu-

tion are then summed to produce the multi-channel convolution result. For ex-

ample, in figure 6-8, the input tensor 𝑖𝑛_𝑡𝑒𝑛𝑠𝑜𝑟 and the input kernel 𝑖𝑛_𝑘𝑒𝑟𝑛𝑒𝑙

both have 5 input channels. The loop from lines 4 to 12 performs a single chan-

nel convolution for each input channel. The results of each convolution are

accumulated in the output tensor 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 on line 11.

In figure 6-8, we must apply a transformation to the values in 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡

5 times, once for each input channel. The results of the transformation are accu-

mulated in 𝑜𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟. However, accumulating all the results in the 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡

tensor, and then only transforming it once at the end will yield the same re-

sults (Lavin and Gray 2016). Line 10 of figure 6-9 shows an example of this,

where we accumulate the results of the element-wise multiplications between

𝑡𝑟𝑎𝑛𝑠_𝑖𝑛 and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 in 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡. The values in 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 are

116

1 i n _ t e n s o r [H] [W]
2 input_kernel [K] [K]
3 out_tensor [H] [W]
4 i n t o u t _ e l s = 2 ; / / s i z e o f t h e ou tp ut t i l e s
5 i n t i n _ e l s = o u t _ e l s + K − 1 ; / / s i z e o f t h e i n p u t t i l e s
6 / / number o f i− t i l e s / o− t i l e s ne ede d i s TILED_H*TILED_W
7 i n t TILED_H = c e i l i n g (H, o u t _ e l s)
8 i n t TILED_W = c e i l i n g (W, o u t _ e l s)
9 i _ t i l e s [TILED_H*TILED_W] [i n _ e l s * i n _ e l s]

10 t r a n s _ i _ t i l e s [TILED_H*TILED_W] [i n _ e l s * i n _ e l s]
11 t r a n s _ k e r n e l [i n _ e l s * i n _ e l s]
12 t r a n s _ p r o d u c t _ t i l e s [TILED_H*TILED_W] [i n _ e l s * i n _ e l s]
13 o _ t i l e s [TILED_H*TILED_W] [o u t _ e l s * o u t _ e l s]
14
15 / / s p l i t image i n t o i _ t i l e s and t r a n s f o r m s them
16 i _ t i l e s = s p l i t I n t o T i l e s (input_image) ;
17 t r a n s _ i _ t i l e s = t r a n s f o r m I T i l e s (i _ t i l e s)
18 / / t r a n s f o r m k e r n e l t o winograd domain
19 t r a n s _ k e r n e l = transformKernel (input_kernel)
20
21 for (signed i = 0 ; i < TILED_H*TILED_W ; i ++) {
22 t r a n s _ p r o d u c t _ t i l e s [i] = element_wise_mult (
23 i _ t r a n s _ t i l e [i] , t r a n s _ k e r n e l) ;
24 }
25 / / t r a n s f o r m r e s u l t b a c k t o s p a t i a l domain
26 o _ t i l e s = transformOutput (t r a n s _ p r o d u c t _ t i l e s) ;
27 output_image = i n s e r t T i l e s (o _ t i l e s) ;
28

Figure 6-7: Pseudo-code implementation of a single-channel CNN convolution using
a tiled Winograd Convolution algorithm.

1 i n _ t e n s o r [5] [4] [4] ; / / i n _ t e n s o r [C] [H] [W]
2 in_kerne l [5] [3] [3] ; / / i n p u t _ k e r n e l [C] [K] [K]
3 out_tensor [2] [2] = { 0 } ; / / z e ro−out ou tpu t
4 for (c = 0 ; c < 5 ; c ++) {
5 t r a n s _ i n [4] [4] ;
6 t r a n s _ k e r n e l [4] [4] ;
7 trans_product [4] [4] ;
8 t r a n s _ i n = transform_input (i n _ t e n s o r [c]) ;
9 t r a n s _ k e r n e l = transform_kernel (in_kerne l [c]) ;

10 trans_product = element_mult (t rans_ in , t r a n s _ k e r n e l) ;
11 out_tensor += transform_output (trans_product) ;
12 }
13

Figure 6-8: Performing multi-channel convolution using a sum of single-channel Wino-
grad convolutions.

117

then only transformed once, on line 12. This method of handling input chan-

nels is much more efficient then the one shown in figure 6-8, because we need to

only transform 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 once, no matter how many input channels there

are.

1 i n _ t e n s o r [3] [4] [4] ; / / i n _ t e n s o r [C] [H] [W]
2 in_kerne l [3] [3] [3] ; / / i n p u t _ k e r n e l [C] [K] [K]
3 out_tensor [2] [2] ;
4 trans_product [4] [4] = { 0 } ; / / z e r o out
5 for (c = 0 ; c < 3 ; c ++) {
6 t r a n s _ i n [4] [4] ;
7 t r a n s _ k e r n e l [4] [4] ;
8 t r a n s _ i n = transform_input (i n _ t e n s o r [c]) ;
9 t r a n s _ k e r n e l = transform_kernel (in_kerne l [c]) ;

10 trans_product += element_mult (t rans_ in , t r a n s _ k e r n e l) ;
11 }
12 out_tensor = transform_output (trans_product) ;
13

Figure 6-9: Performing multi-channel convolution using a sum of single-channel Wino-
grad convolutions.

6.7 Optimizing Element-Wise Multiplication

In section 6.5.2, the technique of splitting large input tensors into smaller i-

tiles is introduced. When the i-tiles are transformed, we end up with the data

structure 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠. The transformed i-tiles 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 is a 3D tensor of

size (⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × (𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠)). We also end up with the data

structure 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 after transforming the kernel. The transformed kernel

𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 is a 1D array of size ((𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠)). Figure 6-10 shows an

example 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠, and an example 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙, where ⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ = 2,

⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ = 2, and 𝑖𝑛_𝑒𝑙𝑠 = 4.

The elements of 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 are reordered so that it was now a 2D ten-

sor of size ((𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠) × (⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)). In other words, we

reordered the elements of 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 so that every element from the same

position in the transformed i-tiles would be contiguous. For example, if we re-

ordered the elements of 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 in figure 6-10, the elements would be or-

118

Figure 6-10: Example 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 values.

dered {𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑎1, 𝑏1, 𝑐1, 𝑑1, ...𝑎15, 𝑏15, 𝑐15, 𝑑15}. In C code, the reordered

𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 would be defined (𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[𝑖𝑛_𝑒𝑙𝑠*𝑖𝑛_𝑒𝑙𝑠][(𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠)*(𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠)]).

The innermost dimension of the reordered 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 is a vector contain-

ing the values from the same position in all transformed i-tiles. For exam-

ple, (𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[2]) would give an address pointing to an array containing

the third value from every transformed i-tile. Figure 6-11 shows how we can

use the reordered 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 to perform the element-wise multiplication be-

tween the transformed i-tiles and the transformed kernel. For each inner vector

of 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 (i.e. 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[𝑖] in figure 6-11), we perform a vector scale

with the value from the same position in 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙. Performing the vector

scale for every point in a transformed i-tile performs all the needed element-

wise multiplication between the transformed i-tiles and the transformed kernel

for Winograd convolution. Lines 6 to 9 in figure 6-11 show a loop performing

all the necessary vector scales.

An example vector scale between (𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[0] and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[0]) is

shown in figure 6-12, using values from figure 6-10. The figure shows the

vector-scale between a vector containing the (0, 0) point from every transformed

i-tile and the (0, 0) point from 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙.

119

1 / / TILED_H = H/ o u t _ e l s ;
2 / / TILED_W = W/ o u t _ e l s ;
3 / / t r a n s _ i _ t i l e s [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] ;
4 / / t r a n s _ k e r n e l [I n _ e l s * i n _ e l s]
5 / / t r a n s _ p r o d u c t [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] ;
6 for (i = 0 ; i < i n _ e l s * i n _ e l s ; i ++) {
7 trans_product [i] <= v e c t o r _ s c a l e (
8 t r a n s _ i _ t i l e s [i] , t r a n s _ k e r n e l [i]) ;
9 }

10

Figure 6-11: Performing Winograd Convolution using vector scales to calculate the
necessary element-wise multiplications.

Figure 6-12: Performing a vector-scale between 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[0] and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[0].

In CNN convolution, we normally have multiple input kernels that are all

applied independently to the input tensor to produce multiple 2D output ten-

sors. Assume 𝑀 stands for the number of input kernels given. With multiple

input kernels, 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 gains another dimension. It is now a 2D tensor of

size ((𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠)×𝑀) or (𝑀 × (𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠)). Figure 6-13 is an exten-

sion to figure 6-10, where 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 now contains 𝑀 different transformed

kernels, where 𝑀 = 3.

Figure 6-13: Example values for a 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 constructed from 𝑀 different input
kernels.

120

If we assume 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 has the shape ((𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠) ×𝑀), a C code

definition of it would be similar to (𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[𝐼𝑛_𝑒𝑙𝑠 * 𝑖𝑛_𝑒𝑙𝑠][𝑀]). The in-

nermost dimension of this 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 is a vector containing the values from

the same position in all transformed kernels. For example, (𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[2])

would be the address of an array containing the 3rd value from every trans-

formed kernel. Assuming the values from figure 6-13, (𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[2]) would

reference a vector of length 3 containing {𝑖2, 𝑗2, 𝑘2}. We can now calculate the

element-wise multiplication between all the transformed i-tiles and the trans-

formed kernels using outer products. Figure 6-14 shows an outer product

between (𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[0] and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[0]), assuming the values from fig-

ures 6-10 and 6-13. The outer product produces a matrix of size ((⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ ×

⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉) × 𝑀), which contains the multiplication between the (0, 0) point

from every transformed i-tile, and the (0, 0) point from every transformed ker-

nel. If we perform this outer product for every point in a transformed i-tile, we

perform the entire element-wise multiplication required between every trans-

formed i-tile and transformed kernel for performing Winograd convolution.

Figure 6-14: An Outer product between a vector of values taken from different i-tiles,
and a vector of values taken from different transformed kernels.

Figure 6-15 shows pseudo-code using outer products to perform the element-

wise multiplication. The 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 data structure also gains an 𝑀 dimen-

sion, as there are now 𝑀 2D output tensors. Lines 6 to 9 perform the necessary

outer products.

As described in section 6.6, the input tensor and input kernels can have

multiple input channels. In this case, we perform a separate convolution for

every input channel, and then accumulate the results in 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 before

121

1 / / TILED_H = H/ o u t _ e l s ;
2 / / TILED_W = W/ o u t _ e l s ;
3 / / t r a n s _ i _ t i l e s [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] ;
4 / / t r a n s _ k e r n e l [I n _ e l s * i n _ e l s] [M]
5 / / t r a n s _ p r o d u c t [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] [M] ;
6 for (i = 0 ; i < i n _ e l s * i n _ e l s ; i ++) {
7 trans_product [i] <= outer_product (
8 t r a n s _ i _ t i l e s [i] , t r a n s _ k e r n e l [i]) ;
9 }

10

Figure 6-15: Performing multi-channel convolution using a sum of single-channel
Winograd convolutions.

transforming 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 to produce the o-tiles. If the input tensor, and input

kernels have an input channels dimension, denoted by 𝐶, the transformed i-

tiles and the transformed kernels will also have a 𝐶 dimension. 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒 is

now a 3D tensor with shape ((𝑖𝑛_𝑒𝑙𝑠×𝑖𝑛_𝑒𝑙𝑠)×(⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉×⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)×𝐶), and

𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 is now a 3D tensor with shape ((𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠)×𝐶 ×𝑀). Other

dimension orderings are valid, but we will assume these. Figure 6-16 shows

example values for a 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒, and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 where 𝐶 = 2, 𝑀 = 3,

𝑖𝑛_𝑒𝑙𝑠 = 4, ⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ = 2, and ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ = 2.

We need to update the pseudocode in figure 6-15 to account for the extra

dimension for input channels. To do this, the outer product is replaced with

a matrix multiplication. Each matrix multiplication takes an innermost ma-

trix from 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒 (i.e. a matrix of shape ((⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉) × 𝐶)),

and an innermost matrix from 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 (i.e. a matrix of shape (𝐶 × 𝑀)).

Performing a matrix multiplication between them produces a matrix of shape

((⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)×𝑀), like the outer product in figure 6-15.

Figure 6-17 shows an example matrix multiplication between 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠[0]

and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙[0], assuming the values from figure 6-16. The result matrix of

the matrix multiplication contains the multiplication between the (0, 0) point

from every transformed i-tile, and the (0, 0) point from every transformed ker-

nel. However, the input channels have also been correctly paired together and

accumulated. For example, in cell (0, 0) of the result matrix in figure 6-17, 𝑎0

and 𝑖0 from the first input channel are correctly paired together, and 𝑒0 and 𝑙0

122

Figure 6-16: Example values for 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙 with multiple input
kernels and multiple input channels.

Figure 6-17: Performing a matrix multiplication between a matrix containing values
from 𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠, and a matrix containing values from 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙.

from the second input channel are correctly paired together, with the result of

the two multiplications accumulated together.

We can now perform all the required element-wise multiplication between

𝑡𝑟𝑎𝑛𝑠_𝑖_𝑡𝑖𝑙𝑒𝑠 and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙, and correctly accumulated the results from the

123

different input channels using 𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠 matrix multiplications. Figure

6-18 shows pseudocode that performs this.

1 / / TILED_H = H/ o u t _ e l s ;
2 / / TILED_W = W/ o u t _ e l s ;
3 / / t r a n s _ i _ t i l e s [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] [C] ;
4 / / t r a n s _ k e r n e l [I n _ e l s * i n _ e l s] [C] [M]
5 / / t r a n s _ p r o d u c t [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] [M] ;
6 for (i = 0 ; i < i n _ e l s * i n _ e l s ; i ++) {
7 trans_product [i] <= matrix_mul (
8 t r a n s _ i _ t i l e s [i] , t r a n s _ k e r n e l [i]) ;
9 }

10

Figure 6-18: Performing Winograd CNN convolution using 𝑖𝑛_𝑒𝑙𝑠×𝑖𝑛_𝑒𝑙𝑠 matrix mul-
tiplications.

Using the approach outlined above, we can perform all the calculations, ex-

cept transforming the inputs and outputs, using 𝑖𝑛_𝑒𝑙𝑠×𝑖𝑛_𝑒𝑙𝑠 matrix multipli-

cations. This is very advantageous, as there has been a very significant amount

of work put into optimizing matrix multiplication, which can now be lever-

aged to implement Winograd CNN convolution. Lavin et al. were the first

to propose implementing Winograd CNN convolution using 𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠

matrix multiplications as outlined above (Lavin and Gray 2016). Figure 6-

19 shows a pseudocode implementation of Winograd CNN convolution using

𝐹 (2× 2, 3× 3) Winograd convolution, and the matrix multiplication method.

6.8 Winogen: Winograd Generator

When implementing a Winograd CNN convolution, selecting the correct min-

imal multiplication algorithm is important. This is because different mini-

mal multiplication algorithms require different amounts of temporary memory

overhead. For example, 𝐹 (2 × 2, 3 × 3) and 𝐹 (4 × 4, 3 × 3) requires different

amounts of temporary memory overhead. 𝐹 (2× 2, 3× 3) requires less memory

than 𝐹 (4× 4, 3× 3) when the input tensor is large and the input kernel is small,

and 𝐹 (4 × 4, 3 × 3) requires less memory than 𝐹 (2 × 2, 3 × 3) when the input

tensor is small and the input kernel is large. Larger minimal multiplication

124

1 / /−− Data S t r u c t u r e s −−
2 i n _ t e n s o r [H] [W] [C]
3 input_kernel [K] [K] [M] [C]
4 out_tensor [H] [W] [M]
5 i n t o u t _ e l s = 2 ; / / s i z e o f t h e ou tp ut t i l e s
6 i n t i n _ e l s = o u t _ e l s + K − 1 ; / / s i z e o f t h e i n p u t t i l e s
7 / / number o f i− t i l e s / o− t i l e s ne ede d i s TILED_H*TILED_W
8 i n t TILED_H = c e i l i n g (H, o u t _ e l s)
9 i n t TILED_W = c e i l i n g (W, o u t _ e l s)

10 t r a n s _ i _ t i l e s [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] [C]
11 t r a n s _ k e r n e l [i n _ e l s * i n _ e l s] [C] [M]
12 t r a n s _ p r o d u c t _ t i l e s [i n _ e l s * i n _ e l s] [TILED_H*TILED_W] [M]
13 o _ t i l e s [o u t _ e l s * o u t _ e l s] [TILED_H*TILED_W] [M]
14
15 / /−− p e r f o r m a l l t r a n s f o r m a t i o n s in advance −−
16 / / s p l i t image i n t o i _ t i l e s and t r a n s f o r m s them
17 / / in a s i n g l e s t e p
18 t r a n s _ i _ t i l e s = transformImage (i n _ t e n s o r)
19 / / t r a n s f o r m k e r n e l t o winograd domain
20 t r a n s _ k e r n e l = transformKernel (input_kernel)
21
22 / /−− p e r f o r m a l l e l ement−wise m u l t i p l i c a t i o n s −−
23 for (i = 0 ; i < i n _ e l s * i n _ e l s ; i ++) {
24 trans_product [i] = matrix_mul (
25 t r a n s _ i _ t i l e s [i] , t r a n s _ k e r n e l [i]) ;
26 }
27 / / t r a n s f o r m t r a n s _ p r o d u c t _ t i l e s t o o _ t i l e s and
28 / / i n s e r t i n t o o u t _ t e n s o r in one s t e p
29 out_tensor = transformOutput (t r a n s _ p r o d u c t _ t i l e s) ;
30

Figure 6-19: Pseudo-code implementation of Winograd CNN convolution using
𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠 matrix multiplications.

algorithms also require more complex transformations, but reduce the compu-

tational complexity of CNN convolution more. For inputs of a given size, it is

not entirely clear what the correct minimal multiplication algorithm to use is.

Also, producing transformation code for a minimal multiplication algorithm

by hand is a time consuming process which deters experimentation.

In an attempt to tackle these problems, we developed Winogen. Winogen is

a domain-specific program generator for Winograd CNN convolution. Given

the input dimensions of a CNN convolution, Winogen can generate a work-

ing Winograd CNN convolution implementation. Winogen automatically op-

timizes Winograd CNN convolution code by producing many code variants to

125

find well performing implementations. Using a bank of transformation ma-

trices, Winogen can generate optimized transformation code for a large set of

minimal multiplication algorithms. This allows it to evaluate the effect differ-

ent minimal multiplication algorithms have on the convolution performance

for a given input size, and select the correct minimal multiplication algorithm.

As well as investigating the effect of different minimal multiplication al-

gorithms on performance, Winogen is also able to explore the effect of other

optimization techniques on the performance of Winograd CNN convolution.

During research, we explored the impact of and gave Winogen the ability to:

• Automatically transform the transformations of the inputs and outputs to

a set of equations, and apply optimization rules to the equations (section

6.9).

• Explore ways to optimize the creation of the i-tiles (section 6.10).

• Explore how to handle tiles that are only partially used (section 6.11).

• Explore ways to perform Winograd CNN convolution as a sum of 1D

Winograd convolutions to reduce the temporary memory needed (section

6.12).

We found that Winogen was able to produce code that outperformed the

ARM Compute Library’s Winograd convolution implementation across a num-

ber of input sizes on our test-bench ARM microprocessors.

6.9 Optimizing Winograd Transformations

Figure 6-20 restates the equation for performing 2D Winograd convolution in

matrix form. To perform Winograd convolution, we perform three transforma-

tions represented using matrix multiplications: (𝐺 × 𝑔 × 𝐺𝑇) where 𝑔 is the

input kernel, (𝐵𝑇 × 𝑑×𝐵) where 𝑑 is the input tensor, and (𝐴𝑇 × 𝑦×𝐴) where

𝑦 is the result of the element-wise multiplication between the transformed in-

put tensor and input kernel. In practice, using the tiled Winograd CNN con-

126

𝑌 = 𝐴𝑇 × ((𝐺× 𝑔 ×𝐺𝑇)⊙ (𝐵𝑇 × 𝑑×𝐵))× 𝐴

where
⊙ is element-wise multiplication.

𝑔 is the input kernel.
𝑑 is the input tensor.

𝐴𝑇 , 𝐺,𝐵𝑇 are the matrices representing the Winograd Convolution algorithm.

Figure 6-20: Matrix form algorithm for 2D Winograd Convolution created from nesting
the same 1D Winograd Convolution algorithm.

volution algorithm outlined in sections 6.5.2 and 6.7, we will need to trans-

form (⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × 𝐶) i-tiles using the (𝐵𝑇 × 𝑑 × 𝐵) transfor-

mation, (𝑀 × 𝐶) input kernels using the (𝐺 × 𝑔 × 𝐺𝑇) transformation, and

(⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × 𝑀) trans-product-tiles using the (𝐴𝑇 × 𝑦 × 𝐴)

transformation. These transformations take up a large percentage of Winograd

CNN convolution runtime, so optimizing them is important.

The transformations are performed using the transformation matrices, 𝐺, 𝐵𝑇 ,

and 𝐴𝑇 . The values of the transformation matrices are calculated in advance,

and constant for any Winograd CNN convolution. This allows us to replace

the matrix multiplications involving the transformation matrices with a set of

equations. While it is possible to implement the transformations using matrix

multiplications and the transformation matrices, replacing the multiplications

with a set of optimized equations can lead to much more efficient code. There

are a number of reasons for this:

• The transformation matrices typically contain some zero values. Any

computations involving these values can be entirely removed.

• The transformation matrices also typically contain some ±1 values. Mul-

tiplications relating to these values can be removed or replaced with a

negation.

• There are usually many common sub-expressions between different equa-

tions in the created set of equations. These only need to be calculated once

and shared between equations to reduce computations.

127

• The transformation matrix multiplications involve very small matrices.

Standard matrix multiplication libraries are usually designed to be effi-

cient on very large inputs, and are often lackluster on small inputs (Zhang

and Gennady 2017).

Figure 6-21 shows an example of how the transformation using matrices

can be replaced with a much less computational expensive set of equations.

Performing the matrix multiplications in figure 6-21 as matrix multiplications

would require 16 multiplications and 8 additions. However, using the set of

optimized equations only requires 8 multiplications and 4 additions.

Most Winograd CNN convolution implementations replace the transforma-

tion matrix multiplications with a set of equations. For example, the ARMCL

library implements the transforms for 𝐹 (2 × 2, 7 × 7) using sets of equations

(ARM 2019c). However, creating the set of equations can be very laborious to

perform by hand. This is especially true for large transformation matrices. For

example, when using a 𝐹 (4× 4, 5× 5) 2D Winograd Convolution, the result of

(𝐵𝑇 × 𝑑 × 𝐵) is an (8 × 8) output matrix, where the equation for each point in

the output matrix contains 64 terms (if the equations have not been reduced in

any capacity).

Figure 6-21: Reducing matrix multiplications to a set of expressions.

128

6.9.1 Equation Generation

Given a set of transformation matrices, Winogen can produce three sets of

equations that perform the equivalent transformations needed for Winograd

convolution (i.e. transforming the input tensor, the input kernel, and the result

of the element-wise multiplication). Winogen also simplifies and optimizes the

produced equations using a set of simple algorithms.

First, all values stored in the transformation matrices are converted to a

rational format datatype. This datatype can represent any rational number ac-

curately, unlike standard IEEE754 floating point datatypes. This makes it much

simpler to search for common sub-expressions while optimizing and trans-

forming the set of equations, because it guarantees that values that should be

equal will be exactly equal. Irrational numbers are initially stored to 15 signif-

icant digits, but the precision of the datatype grows as needed. When the final

set of optimized equations are being produced, the rational datatype values are

replaced with the nearest IEEE754 binary32 floating-point value.

The set of equations for each transformation are generated separately. To

generate the initial set of equations for a transformation, the transformation

is performed using matrix multiplication on a input matrix containing place-

holder variables. For example, to calculate the initial set of equations for trans-

forming the input kernel, (𝐺 × 𝑓𝑎𝑘𝑒_𝑔 × 𝐺𝑇) is performed, where 𝑓𝑎𝑘𝑒_𝑔 is a

matrix containing variables representing the values that will be stored in the

input kernel during runtime. Figure 6-22 shows an example of the matrix mul-

tiplications, and a subset of the resulting set of equations for (𝐺×𝑓𝑎𝑘𝑒_𝑔×𝐺𝑇),

using a 𝐹 (2× 2, 3× 3) 2D Winograd convolution algorithm.

Following the creation of the initial set of equations, a list of simple trans-

formations is applied to each equation in the set. The transformations are listed

in figure 6-23.

Figure 6-24 shows an example of how the list of transformations in figure

6-23 can simplify an equation. Applying rule (1) from figure 6-23 to equation

(i) in figure 6-24 results in equation (ii) in figure 6-24. Applying rule (2) from

figure 6-23 to equation (ii) in figure 6-24 results in equation (iii) in figure 6-24.

129

(𝐺× 𝑓𝑎𝑘𝑒_𝑔 ×𝐺𝑇) =

⎡⎢⎢⎣
1 0 0
0.5 0.5 0.5
0.5 −0.5 0.5
0 0 1

⎤⎥⎥⎦×

⎡⎣𝑔00 𝑔01 𝑔02
𝑔10 𝑔11 𝑔12
𝑔20 𝑔21 𝑔22

⎤⎦×

⎡⎢⎢⎣
1 0 0
0.5 0.5 0.5
0.5 −0.5 0.5
0 0 1

⎤⎥⎥⎦
𝑇

𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙00 = 1(1𝑔00 + 0𝑔10 + 0𝑔20) + 0(1𝑔01 + 0𝑔11 + 0𝑔21)

+ 0(1𝑔02 + 0𝑔12 + 0𝑔22)

𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙01 = 0.5(1𝑔00 + 0𝑔10 + 0𝑔20) + 0.5(1𝑔01 + 0𝑔11 + 0𝑔21)

+ 0.5(1𝑔02 + 0𝑔12 + 0𝑔22)

...
𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟𝑛𝑒𝑙33 = 0(0𝑔00 + 0𝑔10 + 1𝑔20) + 0(0𝑔01 + 0𝑔11 + 1𝑔21)

+ 1(0𝑔02 + 0𝑔12 + 1𝑔22)

Figure 6-22: Calculating the initial set of equations for transforming the input kernel
for a 𝐹 (2× 2, 3× 3) 2D Winograd convolution.

1. Multiplications by 1 are removed, and multiplications by −1 are replaced
with negations. Values multiplied by zero are removed, double negations
are recursively replaced.

2. All bracketed sub-expressions are expanded so every term is a co-efficient
with a single variable.

3. Terms that share the same variable are combined by summing their co-
efficients.

4. Terms that share the same co-efficient are combined. The co-efficients
only need to match in scale, not sign.

Figure 6-23: Simplification transformations applied to the initial set of equations rep-
resenting Winograd transformations.

This pattern repeats for rules (3) and (4) from figure 6-23, and equations (iv)

and (v) from figure 6-24.

After the list of transformations have been applied, every equation can be

represented by a set of terms. Each term is a tuple that contains a co-efficient,

and a set of positive or negative variables. The variables are stored as a tuple

containing the sign, and the variable. For example, equation (v) in figure 6-24

can be represented as {(30, {(+, 𝑥), (−, 𝑧)}), (7, {(+, 𝑦)})}. In it, 30(𝑥 − 𝑧) be-

comes (30, {(+, 𝑥), (−, 𝑧)}) and 7𝑦 becomes (7, {(+, 𝑦)}). The set representing

130

an equation is be referred to as the equ-set for that equation. In tuples rep-

resenting a term, the set of variables is referred to as a var-set. For example,

{(+, 𝑥), (−, 𝑧)} is the var-set in the tuple (30, {(+, 𝑥), (−, 𝑧)}).

𝑖) 𝑝1 = 5(3𝑥+ 2𝑦) + 0(2𝑥+ 𝑦)− 3(−5𝑥+ 1𝑦)−−30(−𝑧)

𝑖𝑖) 𝑝1 = 5(3𝑥+ 2𝑦)− 3(−5𝑥+ 𝑦)− 30𝑧

𝑖𝑖𝑖) 𝑝1 = 15𝑥+ 10𝑦 + 15𝑥− 3𝑦 − 30𝑧

𝑖𝑣) 𝑝1 = 30𝑥+ 7𝑦 − 30𝑧

𝑣) 𝑝1 = 30(𝑥− 𝑧) + 7𝑦

Figure 6-24: Example of simplifying an equation using the transformations in figure
6-23.

6.9.2 Sub-Expression Generation

Once an equ-set has been created for each equation in the set of equations, Wino-

gen attempts to find common sub-expressions between the equations. A new

set is created that contains all the var-sets from any equ-set. This var-set set

also contains every var-set with the signs of the variables inverted. For exam-

ple, set (iii) in figure 6-25 is a var-set set created from all the var-sets present

in equ-set-1 and equ-set-2 in figure 6-25. Set (iv) in 6-25 is the same as set (iii),

except it also contains every var-set with it’s signs inverted. For example, set

(iv) contains {(−, 𝑥), (+, 𝑧)}, which is the var-set {(+, 𝑥), (−, 𝑧)} from equ-set-1

with it’s signs inverted.

𝑖) 𝑒𝑞𝑢-𝑠𝑒𝑡-1 = {(30, {(+, 𝑥), (−, 𝑧)}), (7, {(+, 𝑦)})}
𝑖𝑖) 𝑒𝑞𝑢-𝑠𝑒𝑡-2 = {(5, {(−, 𝑥), (−, 𝑧)}), (2, {(+, 𝑦)}), (8, {(+, 𝑝), (+, 𝑞)})}

𝑖𝑖𝑖) 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {{(+, 𝑥), (−, 𝑧)}, {(+, 𝑦)}, {(−, 𝑥), (−, 𝑧)}, {(+, 𝑝), (+, 𝑞)}}
𝑖𝑣) 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {{(+, 𝑥), (−, 𝑧)}, {(+, 𝑦)}, {(−, 𝑥), (−, 𝑧)}, {(+, 𝑝), (+, 𝑞)},

{(−, 𝑥), (+, 𝑧)}, {(−, 𝑦)}, {(+, 𝑥), (+, 𝑧)}, {(−, 𝑝), (−, 𝑞)}}

Figure 6-25: Collecting all the var-sets from two equ-sets into a single set (iii). Set (iv)
also contains the var-sets with signs inverted.

131

We use the var-set set to create a hierarchy of common sub-expressions be-

tween the equations. First, we rename the var-set set as the L0 var-set set. Next,

we create the L1 var-set set. The L1 var-set set is the set containing all inter-

sections between two elements in the L0 var-set set. Figure 6-26 shows the

construction of the L1 var-set set.

𝐿1 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {𝑥 | 𝑦 ∈ 𝐿0 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡, 𝑧 ∈ 𝐿0 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡, 𝑦 ̸= 𝑧, |𝑥| > 1, 𝑥 = 𝑦 ∩ 𝑧}

Figure 6-26: Set Builder equation for creating the L1 var-set set.

The elements of the L1 var-set set represent sub-expressions that exist be-

tween the equations in the set of equations. Note that, sub-expressions of a sin-

gle variable are not included in the L1 var-set set, because no performance gain

can be gotten from pre-computing them. Sub-expressions can also be found

between the sub-expressions represented by the var-sets in the L1 var-set. To

find these sub-expressions, we construct the L2 var-set set. It is constructed in

the same way as the L1 var-set set, except the L1 var-set set is used as the input

set. This is repeated until a 𝐿𝑁 var-set set is created which has no elements.

The L0 to LN var-set sets represent a hierarchy of common sub-expressions,

where the 𝐿(𝑁) var-set set contains the sub-expressions in the elements of the

𝐿(𝑁 − 1) var-set set. Figure 6-27 shows an example hierarchy with an L0, L1,

and L2 var-set set.

𝐿0 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {{(+, 𝑥), (+, 𝑦), (+, 𝑧), (+, 𝑤)}, {(+, 𝑦), (+, 𝑧), (+, 𝑤), (+, 𝑝)},
{(+, 𝑢), (+, 𝑣), (+, 𝑝)}, {(+, 𝑢), (+, 𝑣), (+, 𝑤), (+, 𝑧)}}

𝐿1 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {{(+, 𝑦), (+, 𝑧), (+, 𝑤)}, {(+, 𝑢), (+, 𝑣)}, {(+, 𝑤), (+, 𝑧)}}
𝐿2 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {{(+, 𝑤), (+, 𝑧)}}

Figure 6-27: Example of the common sub-expression hierarchy. The L2 var-set set is
created from the L1 var-set set, and the L1 var-set set from the L0 var-set set.

132

6.9.3 Transformation Generation

Once the hierarchy of sub-expressions has been created, the var-sets in the equ-

sets and the var-sets in the var-set sets are updated. First, the var-set in ev-

ery equ-set is compared with every var-set in the L1 var-set set. For every

var-set 𝑉 𝑆 in an equ-set, a reference to the largest var-set in the L1 var-set set

that is subset of 𝑉 𝑆 is inserted into 𝑉 𝑆, and every element in the subset is re-

moved from 𝑉 𝑆. For example, in figure 6-28, equation (i) contains the var-set

{(+, 𝑥), (+, 𝑦), (−, 𝑧)}. The largest element in the L1 var-set set (equation (ii)

in figure 6-28) that is a subset of {(+, 𝑥), (+, 𝑦), (−, 𝑧)} is {(+, 𝑥), (−, 𝑧)}. There-

fore, the elements (+, 𝑥) and (−, 𝑧) are removed from {(+, 𝑥), (+, 𝑦), (−, 𝑧)} and

replaced with a reference to the element in the L1 var-set set (i.e. 𝐿1-𝑒𝑙𝑒𝑚𝑒𝑛𝑡-0).

𝑖) 𝑒𝑞𝑢-𝑠𝑒𝑡-1 = {(30, {(+, 𝑥), (+, 𝑦), (−, 𝑧)}), (7, {(+, 𝑝), (−, 𝑞)}), (1, {(+,𝑚)})}
𝑖𝑖) 𝐿1 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {{(+, 𝑥), (−𝑧)}, {(+, 𝑝), (−, 𝑞)}, }

𝑖𝑖𝑖) 𝑒𝑞𝑢-𝑠𝑒𝑡-1 = {(30, {(+, 𝐿1-𝑒𝑙𝑒𝑚𝑒𝑛𝑡-0), (+, 𝑦)}),
(7, {(+, 𝐿1-𝑒𝑙𝑒𝑚𝑒𝑛𝑡-1)}), (1, {(+,𝑚)})}

Figure 6-28: Replacing sub-expressions in the var sets of equ-set 1 with references to
common sub-expressions in the L1 var-set set.

Note that a sub-set of a var-set can be replaced by a reference to an element

in the L1 var-set set if the sub-set and the element share the same variables, but

have opposite signs. For example, in figure 6-29, the element {(+, 𝑤), (−, 𝑥), (+, 𝑧)}

from the L1 var-set set can be inserted into the var-set {(−, 𝑤), (+, 𝑥), (+, 𝑦), (−, 𝑧)},

because it shares the same variables, but with the signs inverted. The only dif-

ference is that it is inserted with a negative sign (e.g. (−, 𝐿1-𝑒𝑙𝑒𝑚𝑒𝑛𝑡-0)), rather

then a positive sign (like (+, 𝐿1-𝑒𝑙𝑒𝑚𝑒𝑛𝑡-0) in equation (iii) of figure 6-28).

Next, subsets from the var-sets in the L1 var-set are replaced by references

to the L2 var-set sets in a similar manner. This repeats for all levels of the sub-

expression hierarchy.

The equ-sets and the sub-expression hierarchy are now used to generate

a C++ code implementation of the set of equations that perform the wanted

133

𝑖) 𝑒𝑞𝑢-𝑠𝑒𝑡-1 = {(30, {(−, 𝑤), (+, 𝑥), (+, 𝑦), (−, 𝑧)})}
𝑖𝑖) 𝐿1 𝑣𝑎𝑟-𝑠𝑒𝑡 𝑠𝑒𝑡 = {{(+, 𝑥), (−𝑧)}, {(+, 𝑤), (−, 𝑥), (+, 𝑧)}, }

𝑖𝑖𝑖) 𝑒𝑞𝑢-𝑠𝑒𝑡-1 = {(30, {(−, 𝐿1-𝑒𝑙𝑒𝑚𝑒𝑛𝑡-0), (+, 𝑦)})}

Figure 6-29: Replacing a sub-expression in equ-set 1 with a (negated) reference to an
equivalent sub-expression in the L1 var-set set.

transformation. The equ-sets are converted into a simple AST similar to the

ASTs covered in section 4.7. The AST is then used to generate C++ in a sim-

ilar manner to Genvolution. However, before a sub-tree representing an equ-

set is generated, the equ-set is checked to see if it refers to any common sub-

expressions that must be generated first. This is applied recursively, so that

common sub-expressions of larger sub-expressions are also correctly gener-

ated. All sub-expressions that have already been generated are tracked so that

sub-expressions aren’t needlessly generated multiple times. Figure 6-30 shows

example generated code without the use of common sub-expressions. Figure

6-31 shows the same example code with sub-expressions. The version with-

out sub-expressions needs 48 additions/substractions in total, while the sub-

expression version needs 27 additions/substractions in total.

134

1 kerTrans [0] = (ker [0]) ;
2 kerTrans [1] = (1 . 0 / 2 . 0) * (ker [0] + ker [3] + ker [6]) ;
3 kerTrans [2] = (1 . 0 / 2 . 0) * (ker [0]− ker [3] + ker [6]) ;
4 kerTrans [3] = (ker [6]) ;
5 kerTrans [4] = (1 . 0 / 2 . 0) * (ker [0] + ker [1] + ker [2]) ;
6 kerTrans [5] = (1 . 0 / 4 . 0) * (ker [0] + ker [1] + ker [2] + ker [3]
7 +ker [4]+ ker [5]+ ker [6]+ ker [7]+ ker [8]) ;
8 kerTrans [6] = (1 . 0 / 4 . 0) * (ker [0] + ker [1] + ker [2]− ker [3]
9 −ker [4]− ker [5] + ker [6] + ker [7] + ker [8]) ;

10 kerTrans [7] = (1 . 0 / 2 . 0) * (ker [6] + ker [7] + ker [8]) ;
11 kerTrans [8] = (1 . 0 / 2 . 0) * (ker [0]− ker [1] + ker [2]) ;
12 kerTrans [9] = (1 . 0 / 4 . 0) * (ker [0]− ker [1] + ker [2] + ker [3]
13 −ker [4] + ker [5] + ker [6]− ker [7] + ker [8]) ;
14 kerTrans [1 0] = (1 . 0 / 4 . 0) * (ker [0]− ker [1] + ker [2]− ker [3]
15 +ker [4]− ker [5] + ker [6]− ker [7] + ker [8]) ;
16 kerTrans [1 1] = (1 . 0 / 2 . 0) * (ker [6]− ker [7] + ker [8]) ;
17 kerTrans [1 2] = (ker [2]) ;
18 kerTrans [1 3] = (1 . 0 / 2 . 0) * (ker [2] + ker [5] + ker [8]) ;
19 kerTrans [1 4] = (1 . 0 / 2 . 0) * (ker [2]− ker [5] + ker [8]) ;
20 kerTrans [1 5] = (ker [8]) ;
21

Figure 6-30: Pseudo-code implementation of 𝐵𝑇 * 𝑏 * 𝐵 for F(2x2, 3x3) transforming
the kernel to the Winograd domain. The matrix multiplications have been simplified
to a set of equations.

135

1 kerTrans [0] = (ker [0]) ;
2 f l o a t t 0 = ker [0] + ker [6] ;
3 kerTrans [1] = (1 . 0 / 2 . 0) * (t0+ker [3]) ;
4 kerTrans [2] = (1 . 0 / 2 . 0) * (t0−ker [3]) ;
5 kerTrans [3] = (ker [6]) ;
6 f l o a t t 1 = ker [0] + ker [2] ;
7 kerTrans [4] = (1 . 0 / 2 . 0) * (t1+ker [1]) ;
8 f l o a t t 2 = ker [3] + ker [5] ;
9 f l o a t t 3 = t2+ker [4] ;

10 f l o a t t 4 = ker [1] + ker [7] ;
11 f l o a t t 5 = ker [6] + ker [8] ;
12 f l o a t t 6 = t5+t1 ;
13 f l o a t t 7 = t4+t6 ;
14 kerTrans [5] = (1 . 0 / 4 . 0) * (t3+t7) ;
15 kerTrans [6] = (1 . 0 / 4 . 0) *(− t 3+t7) ;
16 kerTrans [7] = (1 . 0 / 2 . 0) * (t5+ker [7]) ;
17 kerTrans [8] = (1 . 0 / 2 . 0) * (t1−ker [1]) ;
18 kerTrans [9] = (1 . 0 / 4 . 0) *(− t4−ker [4] + t2+t6) ;
19 kerTrans [1 0] = (1 . 0 / 4 . 0) *(− t 4+ker [4]− t 2+t6) ;
20 kerTrans [1 1] = (1 . 0 / 2 . 0) * (t5−ker [7]) ;
21 kerTrans [1 2] = (ker [2]) ;
22 f l o a t t 8 = ker [2] + ker [8] ;
23 kerTrans [1 3] = (1 . 0 / 2 . 0) * (t8+ker [5]) ;
24 kerTrans [1 4] = (1 . 0 / 2 . 0) * (t8−ker [5]) ;
25 kerTrans [1 5] = (ker [8]) ;
26

Figure 6-31: The same implementation as figure 6-30 however common sub-expression
code has been inserted.

136

6.10 Creating i-tiles, and Synthesizing i-tile Values

As covered in section 6.5.2, large input tensors are split into a number of over-

lapping i-tiles. Each separate i-tile is used as the input to a different Winograd

convolution, and the output of the convolution is part of the output tensor. In

section 6.5.2, it was suggested that all the i-tiles are calculated and stored sep-

arately in a single step, and then a second step would transform all the i-tiles

to i-trans-tiles. In practice, i-tiles are not actually constructed. Instead, the i-

trans-tiles are constructed by transforming data taken directly from the input

tensor. Figure 6-32 contains pseudo-code that creates all the necessary i-trans-

tiles, using a 𝐹 (2× 2, 3× 3) Winograd convolution without creating the i-tiles.

The i-tiles are not explicitly created, instead the top left corner position of every

i-tile is calculated, and the i-tile data is read data directly from the input tensor

(called 𝑖𝑚𝑔 in figure 6-32).

1 img [H] [W] [C] ; / / t h e i n p u t t e n s o r f o r t h e CNN c o n v o l u t i o n
2 t r a n s _ i _ t i l e s [i n _ e l s * i n _ e l s] [H/ o u t _ e l s] [W/o u t _ e l s] [C] ;
3 for (hT i le = 0 ; hTi le < H/o u t _ e l s ; hT i le ++) {
4 for (wTile = 0 ; wTile < W/o u t _ e l s ; wTile ++) {
5 for (c = 0 ; c < C; c ++) {
6 / / (h ,w) i s top− l e f t c o r n e r o f c u r r e n t i− t i l e
7 h = hTi le * o u t _ e l s − K;
8 w = wTile * o u t _ e l s − K;
9 / / c r e a t e i−t r a n s− t i l e from i− t i l e a t (h ,w)

10 t r a n s _ i _ t i l e s [0] [h] [w] [c] =
11 img [h] [w] [c] − img [h] [w+ 2] [c]
12 − img [h + 2] [w] [c] + img [h + 2] [w+ 2] [c] ;
13 t r a n s _ i _ t i l e s [1] [h] [w] [c] =
14 img [h + 1] [w] [c] − img [h + 1] [w+ 2] [c]
15 + img [h + 2] [w] [c] − img [h + 2] [w+ 2] [c] ;
16 / * . . . t r a n s _ i _ t i l e s [2] [h] [w] [c] th ru
17 t r a n s _ i _ t i l e s [1 4] [h] [w] [c] . . . * /
18 t r a n s _ i _ t i l e s [1 5] [h] [w] [c] =
19 img [h + 1] [w+ 2] [c] − img [h + 1] [w+ 3] [c]
20 − img [h + 3] [w+ 1] [c] + img [h + 3] [w+ 3] [c] ;
21 }
22 }
23 }
24

Figure 6-32: Calculating trans-i-tiles using values taken directly from the input tensor
(𝑖𝑚𝑔 in the pseudocode).

137

Figure 6-33: A (4× 3) input tensor being split into four i-tiles. Each i-tile requires some
synthesized values.

However, i-tiles often contain data that must be synthesized from the input

tensor. For example, in figure 6-33, the first row and column of i-tile 1 lie outside

the bounds of the input tensor, and must be filled with synthesized values.

In figure 6-33, zero-padding is used to synthesize values, so the first row and

column of i-tile 1 are filled with zeroes. The code in figure 6-32 can not handle

i-tiles that lay partially outside the input tensor, and will produce incorrect i-

trans-tiles because of this. Handling synthesized values is difficult, because the

position of the values in an i-tile that must be synthesized change for every i-

tile. We investigated three methods for handling the synthesized values. For

all three methods, we assumed the synthesizing method was zero padding (i.e.

all synthesized values are zero).

6.10.1 I-Tile Buffer

The first method tested for handling synthesized values was the i-tile buffer. The

i-tile buffer contained all the values from the i-tile currently being transformed,

including synthesized values. Figure 6-34 shows a pseudo-code example of

using an i-tile buffer. Lines 5 and 6 open two loops that iterate across (the po-

sitions) of all the i-tiles. Lines 13 to 24 fill up the i-tile buffer with values from

the current i-tiles. The i-tile buffer stores 𝐶 i-tiles in figure 6-34. We construct

𝐶 i-tiles at a time because for every (ℎ,𝑤) position calculated from ℎ𝑇 𝑖𝑙𝑒 and

𝑤𝑇𝑖𝑙𝑒, there is an i-tile for every input channel. These 𝐶 i-tiles all have synthe-

138

sized values in the same positions, so we can construct all of them at once using

the same conditional checks. Lines 25 to 38 then create 𝐶 trans-i-tiles using the

data in the i-tile buffer.

1 img [H] [W] [C] ; / / t h e i n p u t t e n s o r f o r t h e CNN c o n v o l u t i o n
2 / / b u f f e r f o r c o n t a i n i n g C i− t i l e s
3 i _ t i l e _ b u f f e r [i n _ e l s] [i n _ e l s] [C] ;
4 t r a n s _ i _ t i l e s [i n _ e l s * i n _ e l s] [H/ o u t _ e l s] [W/o u t _ e l s] [C] ;
5 for (hT i le = 0 ; hTi le < H/o u t _ e l s ; hT i le ++) {
6 for (wTile = 0 ; wTile < W/o u t _ e l s ; wTile ++) {
7 / / (h ,w) i s top− l e f t c o r n e r o f c u r r e n t i− t i l e
8 h = hTi le * o u t _ e l s − K;
9 w = wTile * o u t _ e l s − K;

10 / / f i l l up t h e i− t i l e b u f f e r wi th C i− t i l e s
11 / / A l l C i− t i l e s w i l l have s y n t h e s i z e d v a l u e s
12 / / a t t h e same p o s i t i o n
13 for (ih = 0 ; ih < i n _ e l s ; ih ++) {
14 for (iw = 0 ; iw < i n _ e l s ; iw++) {
15 / / f i l l s y n t h e s i z e d p o s i t i o n s wi th z e r o e s
16 i f (synthesized (h+ih , w+iw)) {
17 memset (i _ t i l e _ b u f f e r [ih] [iw] , C, 0) ;
18 } e lse { / / i f not−s y n t h e s i z e d , copy from img
19 memcpy(
20 i _ t i l e _ b u f f e r [ih] [iw] ,
21 C, img [h+ih] [w+iw]) ;
22 }
23 }
24 }
25 for (c = 0 ; c < C; c ++) {
26 / / c r e a t e i−t r a n s− t i l e from i− t i l e a t (h ,w)
27 t r a n s _ i _ t i l e s [0] [hTi le] [wTile] [c] =
28 i _ t i l e _ b u f f e r [0] [0] [c] − i _ t i l e _ b u f f e r [0] [2] [c]
29 − i _ t i l e _ b u f f e r [2] [0] [c] + i _ t i l e _ b u f f e r [2] [2] [c] ;
30 t r a n s _ i _ t i l e s [1] [hTi le] [wTile] [c] =
31 i _ t i l e _ b u f f e r [1] [0] [c] − i _ t i l e _ b u f f e r [1] [2] [c]
32 + i _ t i l e _ b u f f e r [2] [0] [c] − i _ t i l e _ b u f f e r [2] [2] [c] ;
33 / * . . . t r a n s _ i _ t i l e s [2] [h T i l e] [wTi l e] [c] th ru
34 t r a n s _ i _ t i l e s [1 4] [h T i l e] [wTi l e] [c] . . . * /
35 t r a n s _ i _ t i l e s [1 5] [hTi le] [wTile] [c] =
36 i _ t i l e _ b u f f e r [1] [2] [c] − i _ t i l e _ b u f f e r [1] [3] [c]
37 − i _ t i l e _ b u f f e r [3] [1] [c] + i _ t i l e _ b u f f e r [3] [3] [c] ;
38 }
39 }
40 }
41

Figure 6-34: Creating i-trans-tiles using an i-tile buffer to store the current i-tile being
transformed. The buffer includes any required synthesized values.

139

The main issue with this method is that it is very memory movement in-

tensive. In total, approximately ⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑤/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × 𝐶 values will be

copied into the i-tile buffer, depending on the shape of the i-tiles and the input

tensor. The amount of time spent copying data can have a noticeably effect on

performance.

6.10.2 Indirection Buffer

The second method tested is an optimization of the i-tile buffer method. The

i-tile buffer is replaced with a buffer of (𝑖𝑛_𝑒𝑙𝑠 × 𝑖𝑛_𝑒𝑙𝑠) pointers. Instead of

copying data into the i-tile buffer, the indirection buffer points at the data for

the current i-tile(s) in the input tensor. If a position in the current i-tile needs to

be synthesized, the matching pointer in the indirection buffer points at the zero-

vector instead. The zero vector is a zero-filled array of 𝐶 elements. Figure 6-35

shows a diagram of the indirection buffer that points to the data for 𝐶 i-tiles,

where the right-most column of each i-tile is synthesized. Figure 6-36 shows

a pseudo-code example of using the the indirection buffer. The pseudocode

is similar to that in figure 6-34. The main differences is the zero vector (line

4), and how only a reference to the data is made, rather then copying the data

(line 19 in figure 6-34 and line 17 in figure 6-36). For all tested input sizes, the

indirection buffer method was found to be faster then the i-tile buffer method.

Figure 6-35: Using an indirection buffer to point at the data needed for an i-tile. One
column of the i-tile requires (zero-padded) synthesized values.

140

1 img [H] [W] [C] ; / / t h e i n p u t t e n s o r f o r t h e CNN c o n v o l u t i o n
2 / / b u f f e r f o r p o i n t i n g a t i− t i l e d a t a in img
3 f l o a t * i n d i r e c t _ b u f r [i n _ e l s] [i n _ e l s] ; / / p o i n t e r s
4 zero_vector [C] = { 0 } ; / / z e ro− f i l l e d
5 t r a n s _ i _ t i l e s [i n _ e l s * i n _ e l s] [H/ o u t _ e l s] [W/o u t _ e l s] [C] ;
6 for (hT i le = 0 ; hTi le < H/o u t _ e l s ; hT i le ++) {
7 for (wTile = 0 ; wTile < W/o u t _ e l s ; wTile ++) {
8 / / (h ,w) i s top− l e f t c o r n e r o f c u r r e n t i− t i l e
9 h = hTi le * o u t _ e l s − K;

10 w = wTile * o u t _ e l s − K;
11 / / c r e a t e i n d i r e c t i o n b u f f e r f o r c u r r e n t i− t i l e
12 for (ih = 0 ; ih < i n _ e l s ; ih ++) {
13 for (iw = 0 ; iw < i n _ e l s ; iw++) {
14 i f (synthesized (h+ih , w+iw)) {
15 i n d i r e c t _ b u f r [ih] [iw] = &(zero_vector [0]) ;
16 } e lse {
17 i n d i r e c t _ b u f r [ih] [iw] = &(img [h+ih] [w+iw] [0]) ;
18 }
19 }
20 }
21 for (c = 0 ; c < C; c ++) {
22 / / c r e a t e i−t r a n s− t i l e from i− t i l e a t (h ,w)
23 t r a n s _ i _ t i l e s [0] [hTi le] [wTile] [c] =
24 i n d i r e c t _ b u f r [0] [0] [c] − i n d i r e c t _ b u f r [0] [2] [c]
25 − i n d i r e c t _ b u f r [2] [0] [c] + i n d i r e c t _ b u f r [2] [2] [c] ;
26 t r a n s _ i _ t i l e s [1] [hTi le] [wTile] [c] =
27 i n d i r e c t _ b u f r [1] [0] [c] − i n d i r e c t _ b u f r [1] [2] [c]
28 + i n d i r e c t _ b u f r [2] [0] [c] − i n d i r e c t _ b u f r [2] [2] [c] ;
29 / * . . . t r a n s _ i _ t i l e s [2] [h T i l e] [wTi l e] [c] th ru
30 t r a n s _ i _ t i l e s [1 4] [h T i l e] [wTi l e] [c] . . . * /
31 t r a n s _ i _ t i l e s [1 5] [hTi le] [wTile] [c] =
32 i n d i r e c t _ b u f r [1] [2] [c] − i n d i r e c t _ b u f r [1] [3] [c]
33 − i n d i r e c t _ b u f r [3] [1] [c] + i n d i r e c t _ b u f r [3] [3] [c] ;
34 }
35 }
36 }

Figure 6-36: Creating i-trans-tiles using an i-tile buffer to point at the data that makes
up the current i-tile. The buffer also points at any required synthesized values.

6.10.3 Loop Unswitching the Transformation

Loop unswitching is a loop optimization technique. The code in figure 6-37 is a

for loop that iterates over 𝑁 elements. Inside the for loop is a conditional state-

ment dependant on the iterator (i.e. dependent on the variable 𝑖). We can opti-

mize this code snippet by splitting the one single loop into two smaller loops,

and removing the conditional statement. The optimized code is shown in fig-

141

ure 6-38. This is an example of loop unswitching. Loop unswitching is where

a loop containing a conditional statement is split into multiple smaller loops

containing no conditional statements. The smaller loops are either nested in-

side a new conditional statement, or the differences between the smaller loops

encode the conditional statement implicitly. For example, the condition of the

if statement in figure 6-37 (line 4) is made into the iteration condition for the

first for loop in figure 6-37 (line 3).

1 f l o a t in [N] ;
2 f l o a t out [N] ;
3 for (i n t i = 0 ; i < N; i ++) {
4 i f (i < 100) { out [N] = 2 * in [N] ; }
5 e lse { out [N] = in [N] * in [N] ; }
6 }
7

Figure 6-37: Pseudocode to double the first 100 elements of a list, and square the rest
of the elements.

1 f l o a t in [N] ;
2 f l o a t out [N] ;
3 for (i n t i = 0 ; i < 1 0 0 ; i ++) {
4 out [N] = 2 * in [N] ;
5 }
6 for (i n t i = 1 0 0 ; i < N; i ++) {
7 out [N] = in [N] * in [N] ;
8 }
9

Figure 6-38: Equivalent pseudocode to figure 6-37, however the loop has been
unswitched.

Figure 6-39 shows a code snippet for constructing an i-trans-tile using data

directly from data from the input tensor. This code snippet is the same as the

transformation code shown in figure 6-32. As covered in section 6.10, this code

is incorrect as it cannot handle when a value needs to be synthesized. For

example, (ℎ,𝑤) will equal (−1,−1) when constructing the first i-trans-tile (as

the top-left element of the first i-tile is located at (−1,−1)). However, if we are

using zero padding to synthesize values, then we know that every synthesized

value is equal to zero. Following this, a method to fix the code in figure 6-

142

39 is to wrap every access to the input tensor in a conditional statement, that

either returns the value in the input tensor if the values does not need to be

synthesized, or returns zero if it does. Figure 6-40 shows an example of this

approach. The 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑(𝑖𝑛𝑡, 𝑖𝑛𝑡) function returns true if the position given

lies outside the bounds of the input tensor, and it returns false otherwise. The

code in figure 6-40 is correct, and will construct all the trans-i-tiles correctly.

However, performing a conditional statement before every access to the input

tensor has a significant effect on performance.

1 t r a n s _ i _ t i l e s [0] [h] [w] [c] =
2 + img [h] [w] [c]
3 − img [h] [w+ 2] [c]
4 − img [h + 2] [w] [c]
5 + img [h + 2] [w+ 2] [c] ;
6 t r a n s _ i _ t i l e s [1] [h] [w] [c] =
7 + img [h + 1] [w] [c]
8 − img [h + 1] [w+ 2] [c]
9 + img [h + 2] [w] [c]

10 − img [h + 2] [w+ 2] [c] ;
11 / * . . . t r a n s _ i _ t i l e s [2] [h] [w] [c] th ru
12 t r a n s _ i _ t i l e s [1 4] [h] [w] [c] . . . * /
13 t r a n s _ i _ t i l e s [1 5] [h] [w] [c] =
14 + img [h + 1] [w+ 2] [c]
15 − img [h + 1] [w+ 3] [c]
16 − img [h + 3] [w+ 1] [c]
17 + img [h + 3] [w+ 3] [c] ;
18

Figure 6-39: Code snippet from figure 6-32. The snippet creates an i-trans-tile using
data directly from the input tensor (𝑖𝑚𝑔).

However, we can remove these conditional checks using loop unswitching.

Each i-tile will have different synthesized values depending on its position. If

we know the height and width (i.e 𝐻 and 𝑊) of the input tensor before com-

pilation, we can calculate the position of every i-tile beforehand, and gener-

ate a separate code block for each i-tile (or more specifically, a code block for

the construction of each i-trans-tile). Each code block would replace any ac-

cesses to synthesized values with zeroes. Creating a separate code block for ev-

ery i-tile would increase the amount of transformation code by approximately

(⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉), the number of i-tiles needed. This amount of

143

1 t r a n s _ i _ t i l e s [0] [h] [w] [c] =
2 + (synthesized (h ,w) ? 0 : img [h] [w] [c])
3 − (synthesized (h ,w+2) ? 0 : img [h] [w+ 2] [c])
4 − (synthesized (h+2 ,w) ? 0 : img [h + 2] [w] [c])
5 + (synthesized (h+2 ,w+2) ? 0 : img [h + 2] [w+ 2] [c]) ;
6 t r a n s _ i _ t i l e s [1] [h] [w] [c] =
7 + (synthesized (h+1 ,w) ? 0 : img [h + 1] [w] [c])
8 − (synthesized (h+1 ,w+2) ? 0 : img [h + 1] [w+ 2] [c])
9 + (synthesized (h+2 ,w) ? 0 : img [h + 2] [w] [c])

10 − (synthesized (h+2 ,w+2) ? 0 : img [h + 2] [w+ 2] [c]) ;
11 / * . . . t r a n s _ i _ t i l e s [2] [h] [w] [c] th ru
12 t r a n s _ i _ t i l e s [1 4] [h] [w] [c] . . . * /
13 t r a n s _ i _ t i l e s [1 5] [h] [w] [c] =
14 + (synthesized (h+1 ,w+2) ? 0 : img [h + 1] [w+ 2] [c])
15 − (synthesized (h+1 ,w+3) ? 0 : img [h + 1] [w+ 3] [c])
16 − (synthesized (h+3 ,w+1) ? 0 : img [h + 3] [w+ 1] [c])
17 + (synthesized (h+3 ,w+3) ? 0 : img [h + 3] [w+ 3] [c]) ;
18

Figure 6-40: Similar code to figure 6-39, however every access to the input tensor is
guarded by a conditional to check if it should return a synthesized value instead.

code growth is unwanted though, as it would make compilation time extremely

long. It would also reduce performance by increasing pressure on the instruc-

tion cache, and increase the number of compulsory instruction cache misses.

However it is not necessary to generate (⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉× ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉) differ-

ent code blocks, because many i-tiles share the same pattern for which values

are synthesized. For example, if the input tensor is large, a large number of

i-tiles use no synthesized values. Theses i-tiles can all use the same transforma-

tion code block.

Figure 6-41 shows how i-tiles can be grouped by what values in the i-tiles

need synthesized. Figure 6-41 shows an (8×8) input tensor for a 𝐹 (2×2, 3×3)

tiled Winograd CNN convolution. Each i-tile is (4 × 4). The cell marked with

an X marks the (0, 0) position in the input tensor. Each coloured cell represents

the top-left corner position of one of the necessary i-tiles. The letters in each

coloured cell show which i-tiles can be grouped together based on which values

must be synthesized. For example, The B-group of i-tiles (at positions (−1, 2)

and (−1, 4)) need the top row of values synthesized. The E-group of i-tiles

need no values synthesized. In total, for the dimensions in figure 6-41, nine

separate transformation code blocks would be needed to construct all the i-

144

Figure 6-41: Diagram showing how different i-tiles can be grouped based on what
values they synthesized. Each grey square marks the position of the top-left corner of
an i-tile. The letters denote the groupings.

trans-tiles while handling synthesized values without conditional statements.

In general, no matter what size the input tensor is, between 9 and 14 distinct

code blocks are required. Winogen was extended to be able to perform the loop

unswitching and i-tile grouping technique covered above.

Grouping i-tiles by their synthesized values allows us to perform loop unswitch-

ing to remove conditionals, while limiting how much code growth occurs. We

found that the loop unswitching method produced the fastest transformation

code in the majority cases, with the indirection buffer method being marginally

slower. However, even with i-tile grouping, the code growth of the transfor-

mation code had a significant effect on compilation time. This is especially true

when using aggressive optimization flags and function inlining. The effect on

compilation time is so significant that the loop unswitching technique was not

considered when producing final evaluation results for Winogen, as it would

make building the experiments prohibitively long.

145

6.11 Impact of skipping half-tiles during Winograd

As covered in section 6.5.2, large output tensors must be broken into smaller o-

tiles to cover the output tensor, each with a matching i-tile from the input tensor.

Also the i-tiles and o-tiles may lie partially outside the bounds of tensors if the

tile’s sides are not perfect multiplies of the tensor they cover. For example, if

the dimensions of an o-tile are (3× 3), but the output image tensor is (28× 28),

then to cover the entire output tensor we will need 30 o-tiles. This means we

will calculate the values for 900 output points, even though the output tensor

only has 784 output points. We will discard around 14.7% of the output points

calculated. While it is possible to avoid the final 𝐴𝑇 * 𝑦 * 𝐴 transformation for

the unnecessary output points, the entire trans-i-tile, and trans-product-tile must

be calculated even if they are only used to produce a single valid output point.

An alternative to the above approach is to only use Winograd convolution

to convolve the output points that would be part of an entirely used o-tile, and

use a second method to convolve the remaining points. Winogen was used to

investigate this approach of handling partial o-tiles. When generating a con-

volution, Winogen can either use Winograd convolution for all output points,

or use a mix of Winograd convolution and direct convolution. During testing,

both versions were generated for all problem sizes to see what effect it had on

performance. In the worst case, direct convolution will be used to calculate

(𝐻 * (𝑜𝑢𝑡_𝑒𝑙𝑠 − 1) + 𝑊 * (𝑜𝑢𝑡_𝑒𝑙𝑠 − 1) − ((𝑜𝑢𝑡_𝑒𝑙𝑠 − 1) * (𝑜𝑢𝑡_𝑒𝑙𝑠 − 1)) output

points for each kernel used, where 𝐻 and 𝑊 are the width and height of the

output tensor.

6.12 CNN Convolution using Multiple 1D Winograd

Convolutions

Winograd CNN convolution has been used to create fast CNN convolution im-

plementations. However, the standard Winograd CNN convolution requires

a significant extra memory overhead. Storing the transformed i-tiles requires

146

(⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)× (⌈𝑤/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)× (𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠)× 𝐶 floats, storing the trans-

formed kernel requires (𝑖𝑛_𝑒𝑙𝑠×𝐾)×𝐶×𝑀 floats, and storing the 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑑𝑢𝑐𝑡

requires (⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)× (⌈𝑤/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)× (𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠)×𝑀 floats. On lower

end devices, with less memory and smaller caches, this amount of memory

overhead can have a significant impact on performance, or place a limit on the

size of the convolutions possible. We propose a new CNN convolution method

that uses sums of 1D Winograd convolutions to perform CNN convolution.

The new method attempt to leverage the reduction in problem complexity that

Winograd convolution causes, while reducing the amount of temporary mem-

ory required.

6.12.1 2D Convolution as a Sum of 1D Convolutions

2D convolution can be implemented as a sum of multiple 1D convolutions.

First, the (𝐾 ×𝐾) input kernel is split into 𝐾 1D kernel row vectors of length

𝐾. Each kernel vector is convolved with the input tensor to produce 𝐾 inter-

mediate outputs. The 𝐾 intermediate outputs are then summed with an offset

to produce the final output tensor. The output tensor contains the result of the

wanted 2D convolution. Figure 6-42 shows an example of this.

In figure 6-42, The (3 × 3) input kernel is split into three kernel row vec-

tors. Each kernel row vector is convolved with the input tensor to produce 3

intermediate outputs. The intermediate outputs are summed to produce the

final output tensor. Note that only the full output points (i.e. the output points

that rely on no synthesized values) are calculated in figure 6-42. The offset of

the intermediate outputs is related to the row of the 2D kernel used to pro-

duce it. In general, the intermediate output calculated using the 𝑘𝑟 row from

the 2D kernel is vertical offset up by 𝑘𝑟 when summing intermediate outputs,

assuming 𝑘𝑟 is zero-indexed. For example, in figure 6-42, the intermediate out-

put calculated using 𝑘𝑒𝑟_𝑟𝑜𝑤_0 has an vertical offset of 0 when summing the

intermediate outputs, because 𝑘𝑒𝑟_𝑟𝑜𝑤_0 is the first row of the 2D input ker-

nel. The intermediate output from 𝑘𝑒𝑟_𝑟𝑜𝑤_1 has a vertical offset of 1, and the

intermediate output from 𝑘𝑒𝑟_𝑟𝑜𝑤_2 has a vertical offset of 2.

147

Figure 6-42: Performing a 2D CNN convolution as a sum of 1D convolutions.

6.12.2 2D Convolution as a Sum of 1D Winograd Convolutions

2D Winograd convolution can also be performed as a sum of 1D Winograd

convolutions. Figure 6-44 shows an example of this, performing a 𝐹 (2×2, 3×3)

Winograd convolution by summing multiple 𝐹 (2, 3) Winograd convolutions.

First, the input tensor and the input kernel are split into rows. Each row is

148

𝑌 = 𝐴𝑇 × ((𝐺× 𝑔)⊙ (𝐵𝑇 × 𝑑))

where
⊙ is element-wise multiplication.

𝑔 is the input kernel vector.
𝑑 is the input vector.

𝐴𝑇 , 𝐺,𝐵𝑇 are the matrices representing the fast filtering algorithm.

Figure 6-43: Matrix form algorithm for performing 1D Winograd Convolution.

then transformed using the appropriate matrix, following the equation shown

in figure 6-43. For example, in figure 6-44, the first row of the input kernel

(containing {k0, k1, k2}) is transformed into 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤_0 (containing {w0,

w1, w2, w3}). Another example is the third row of the input tensor (containing

{i8, i9, i10, i11}), which is transformed into 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤_2 (containing {c0, c1,

c2, c3}).

Each row of the output tensor is calculated using a different sum of 1D

Winograd convolutions. In general, the 𝑁𝑡ℎ row of the output tensor is the sum

of the 1D Winograd convolutions between the [𝑁+0] trans input row and the [0]

trans kernel row, the [𝑁+1] trans input row and the [1] trans kernel row, and the

[𝑁+2] trans input row and the [2] trans kernel row. For example, to calculate the

0th row of the output tensor in figure 6-44 (containing {o0, o1}), we sum the 1D

convolutions between 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤_0 with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤_0, 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤_1

with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤_1, and 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤_2 with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤_2. The result

of the summing is stored in 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤_0. As shown in figure 6-44, the cor-

rect result is still obtained if the results of the 3 1D convolutions are summed

in the Winograd domain. The result of the summing can then be transformed

to the spatial domain once, which reduces the number of transforms required.

Figure 6-45 shows a pseudo-code implementation of figure 6-44.

6.12.3 Input Channels

Performing 2D Winograd convolution as a sum of 1D Winograd convolutions

can also be performed on input tensors with multiple input channels. The pro-

cess for handling multiple input channels is the same as for how it was handled

when performing 2D Winograd convolution directly. In other words, separate

149

Figure 6-44: Performing 2D Winograd convolution by summing 1D Winograd Convo-
lutions

Winograd convolutions are performed for every input channels, which are then

all summed together to produce the final result. The different input channel re-

sults are again summed while the values are in the Winograd domain. This

reduces the number of elements that must be transformed back to the spatial

domain. Figure 6-46 shows how the pseudo-code from figure 6-45 can be ex-

tended to handle an arbitrary number of input channels.

150

1 in [4] [4] ;
2 ker [3] [3] ;
3 out [2] [2]
4 trans_in_rows [4] [4] ;
5 trans_ker_rows [3] [4] ;
6 / / t r a n s f o r m t h e rows o f t h e two i n p u t s
7 for (h=0; h < 4 ; h++) {
8 trans_in_rows [h] = transform (in [h] , B^T) ;
9 }

10 for (kh = 0 ; kh < 3 ; kh++) {
11 trans_ker_rows [kh] = transform (ker [kh] , G) ;
12 }
13 / / f o r e a c h ou tp ut row , c a l c u l a t e t h e sum o f 1D
14 / / c o n v o l u t i o n s a t [N+0] , [N+1] , and [N+ 2] .
15 for (oh = 0 ; oh < 2 ; oh++) {
16 r0 [4] , r1 [4] , r2 [4] , rx [4] ;
17 / / assume * p e r f o r m s e l ement−wise m u l t i p l i c a t i o n
18 / / on v e c t o r s
19 r0 = trans_in_rows [oh+0] * trans_ker_rows [0] ;
20 r1 = trans_in_rows [oh+1] * trans_ker_rows [1] ;
21 r2 = trans_in_rows [oh+2] * trans_ker_rows [2] ;
22 rx = (r0 + r1 + r2) ;
23 out [oh] = transform (rx , A^T) ;
24 }
25

Figure 6-45: Pseudocode for performing 2D Winograd convolution using sums of 1D
Winograd convolutions.

6.12.4 Extending the Height of the Input Tensor

Section 6.12.2 shows how 2D Winograd convolution can be performed by sum-

ming multiple 1D Winograd convolutions. In section 6.12.2, the height of the

input tensor is a fixed size, however there are actually no restraints on the

height of the input tensor (and the output tensor). As we are only applying

1D Winograd convolution on the rows of the input tensor, only the width of

the input tensor must be fixed size. For example, if we are using a 𝐹 (2, 3) 1D

Winograd convolution, the width of the input tensor must be 4, but the height

of the input tensor is not constrained. For example, the input tensor could be a

(7× 4) tensor, which will produce a (5× 2) output tensor. Although, before the

output tensor is transformed to the spatial domain, it will be stored in a (5× 4)

trans_sum_rows tensor. Figure 6-47 shows an example transformed (7×4) trans-

formed input tensor, transformed kernel, and trans_sum_rows tensor. Each

151

1 in [C] [4] [4] ;
2 ker [C] [3] [3] ;
3 out [2] [2]
4 trans_in_rows [C] [4] [4] ;
5 t r a n s _ i n _ k e r s [C] [3] [4] ;
6 for (c =0; c < C; c ++) {
7 for (h=0; h < 4 ; h++) {
8 trans_in_rows [c] [h] = transform (in [c] [h] , B^T) ;
9 }

10 for (kh = 0 ; kh < 3 ; kh++) {
11 t r a n s _ i n _ k e r s [c] [kh] = transform (ker [c] [kh] , G) ;
12 }
13 }
14 for (oh = 0 ; oh < 2 ; oh++) {
15 sum_row [4] = { 0 , 0 , 0 , 0 } ;
16 / / Per form a c o n v o l u t i o n f o r e a c h i n p u t c h a n n e l s , and
17 / / sum them up .
18 for (c = 0 ; c < C; c ++) {
19 r0 [4] , r1 [4] , r2 [4] ;
20 r0 = trans_in_rows [c] [oh+0] * trans_ker_rows [c] [0] ;
21 r1 = trans_in_rows [c] [oh+1] * trans_ker_rows [c] [1] ;
22 r2 = trans_in_rows [c] [oh+2] * trans_ker_rows [c] [2] ;
23 sum_row += (r0 + r1 + r2) ;
24 }
25 out [oh] = transform (sum_row , A^T) ;
26 }
27

Figure 6-46: Pseudocode for performing multi-channel 2D Winograd convolution us-
ing sums of 1D Winograd convolutions.

row of the output tensor is calculated in the same way as outlined in section

6.12.2. The 𝑁𝑡ℎ output tensor row is the sum of the 1D Winograd convolution

between the 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠[𝑁 + 0] and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[0], 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠[𝑁 +

1] and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[1], and 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠[𝑁 + 1] and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[1].

These three convolutions are summed in the Winograd domain and the result

is stored in the 𝑁𝑡ℎ row of trans_sum_rows, to be transformed to the spatial

domain later. For example, in figure 6-47, 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠[3] is calculated as

(𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠[3]⊙ 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[0] + 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠[4]⊙ 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[1]

+ 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠[5] ⊙ 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[2]), where ⊙ is element-wise multiplica-

tion.

152

Figure 6-47: Example values for 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠, 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠, and
𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠.

6.12.5 Accumulating using 1D Convolution

It’s possible to calculate the values of the trans_sum_rows tensor using 1D

convolutions between the columns of trans_in_rows and trans_ker_rows. The

(𝐻 × 𝑖𝑛_𝑒𝑙𝑠) trans_in_rows tensor is split into 𝑖𝑛_𝑒𝑙𝑠 column vectors of length

𝐻 , and the (𝐾 × 𝑖𝑛_𝑒𝑙𝑠) trans_ker_rows tensor is split into 𝑖𝑛_𝑒𝑙𝑠 column vec-

tors of length 𝐾. A 1D convolution is then performed between matching pairs

of column vectors from from trans_in_rows and trans_ker_rows to calculate

the matching column in trans_sum_rows. For example, in figure 6-48, the

second column vector from trans_in_rows is convolved with the second col-

umn vector from trans_ker_rows to calculate values for the second column of

trans_sum_rows.

Figure 6-48: Calculating the values in 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠 by performing 1D convolution
between the columns of 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠, and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠.

Using 1D convolution to calculate trans_in_rows can also be used when the

input tensors have multiple input channels. The input tensor is now a (𝐻 ×

𝑖𝑛_𝑒𝑙𝑠 × 𝐶) tensor, and the trans_ker_rows tensor is a (𝐾 × 𝑖𝑛_𝑒𝑙𝑠 × 𝐶) 3D

153

tensor. Figure 6-49 shows the values from figure 6-47 with an input channels

dimension added.

Figure 6-49: Example values for multi-channel 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠, 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠, and
𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠.

Now to calculate the values in trans_sum_rows, the 3D trans_in_rows ten-

sor is split into 𝑖𝑛_𝑒𝑙𝑠 2D matrices with shape (𝐻 × 𝐶), and trans_ker_rows

is split into 𝑖𝑛_𝑒𝑙𝑠 2D matrices with shape (𝐾 × 𝐶). A 1D convolution is per-

formed between the matching matrices to calculate each column of trans_sum_rows.

Figure 6-50 shows an example of this, where trans_in_rows and trans_ker_rows

have been split into 4 2D matrices. Four 1D convolutions are then performed

to calculate the values in the four columns of 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠.

Figure 6-50: Calculating the values in 𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑟𝑜𝑤𝑠 by performing multi-channel
1D convolution between the columns of 𝑡𝑟𝑎𝑛𝑠_𝑖𝑛_𝑟𝑜𝑤𝑠, and 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠.

6.12.6 Tiling the Input and Output Tensor

Up to now, our sum of 1D Winograd method can only handle input tensors

with a width equal to the size expected by the 1D Winograd convolution algo-

154

rithm being used. For example, if we are using a 𝐹 (2, 3) Winograd convolution,

the width of the input tensor must be 4 (and the width of the output tensor will

be 2). However, by tiling the rows of the input and output tensor in a similar

manner to section 6.5.2, we can handle input tensors with any width.

First, the rows of the output tensor are split into non-overlapping 1D tiles.

The length of the tiles is equal to the output given by the 1D Winograd convolu-

tion being used. For example, if a 𝐹 (2, 3) Winograd convolution is being used,

each row of the output tensor is split into tiles of length 2, as 𝐹 (2, 3) produces

2 output points.

Figure 6-51: Splitting each row of a (2× 5) output tensor into 3 o-tiles.

Figure 6-51 shows an (2 × 5) output tensor, where each row has been split

into 3 tiles of length 2. The last tile of each row partially lays outside the bounds

of the row. The points outside the bounds of the row will be discarded if they

are calculated during convolution.

The rows of the input tensors are also split into 1D tiles. The tiles are over-

lapping, and are the size of the input expected by the 1D Winograd convolu-

tion being used. For example, a 𝐹 (2, 3) Winograd convolution expects 4 input

points, so the input tensor tiles would be have a length of four. The first tile

on each row starts at position (−⌊𝐾/2⌋), where 𝐾 is length of the kernel ex-

pected by the 1D Winograd convolution being used. The next tile is placed

𝑜𝑢𝑡_𝑒𝑙𝑠 steps ahead of the previous tile, where 𝑜𝑢𝑡_𝑒𝑙𝑠 is the number of output

155

points produced by the 1D Winograd convolution being used. For example, if

a 𝐹 (2, 3) Winograd convolution was being used, the tiles for each row of the in-

put tensor would be at positions {−1, 1, 3, 5, ...}, and they would all be of length

4.

Figure 6-52: Splitting each row of a (4× 5) input tensor into 3 overlapping i-tiles.

Figure 6-52 shows each row of a (4× 5) input tensor being split into 3 over-

lapping tiles, each of length 4. As some tiles lie outside the bounds of the input

tensor, they have values that must be synthesized. For example, the first value

of 𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠[0][0] in figure 6-52 must be synthesized.

Each tile of an input tensor row (now referred to as a row i-tile) is trans-

formed separately to create the transformed row i-tiles. The transformed row

i-tiles are stored in trans_row_i_tiles. Figure 6-53 shows the trans_row_i_tiles

data structure created from the row_i_tiles data structure in figure 6-52. The in-

put kernel is not tiled, and is transformed in the same way as covered in section

6.12.2 to create the trans_ker_rows data structure.

Calculating the values of the tiles that make up the rows of the output ten-

sor (now referred to as row o-tiles) is similar to the process for calculating the

output points in section 6.12.2. To calculate the values in 𝑟𝑜𝑤_𝑜_𝑡𝑖𝑙𝑒𝑠[𝑁][𝑀],

we sum the results of the 1D Winograd convolutions between 𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠[𝑁 +

0][𝑀] with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[0], 𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠[𝑁 + 1][𝑀] with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[1],

and 𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠[𝑁+2][𝑀] with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[2]. For example, to calculate the

156

Figure 6-53: Example values for the transformed row i-tile, created from the example
values in figure 6-52.

values in 𝑟𝑜𝑤_𝑜_𝑡𝑖𝑙𝑒𝑠[1][2] from figure 6-51, we sum the results of the 1D Wino-

grad convolution between 𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠[1][2] with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[0], 𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠[2][2]

with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[1], and 𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠[3][2] with 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠[2].

Section 6.12.5 covered how all the values in the trans_sum_rows data struc-

ture (the data structure that contains all the output tensor values in the Wino-

grad domain) can be calculated using in_els 1D convolutions between the columns

of the input tensor and the columns of the input kernel. This technique can still

be used when the input and output tensor are tiled. The trans_ker_rows is split

into in_els columns like in section 6.12.5. The values in the transformed row

i-tiles are split into in_els matrices of shape (𝐻 × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉). ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉ is

the number of tiles need to cover each row of the input (or output) tensor. The

first matrix is filled with the first value from every transformed row i-tile of the

input tensor, the second matrix is filled with the second value from every trans-

formed row i-tile, and so on. Figure 6-54 shows an example of four matrices,

constructed using the values from figure 6-53. A convolution is then performed

between each matrix and a column from trans_ker_rows. This creates in_els 2D

matrices of shape ((𝐻 − (2 × ⌊𝐾/2⌋)) × ⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉). Figure 6-54 shows four

convolutions performed to produce the output matrices using the values from

figure 6-53.

The values spread across the in_els output matrices are the values of the

row_trans_sum_tiles data structure. row_trans_sum_tiles contains (𝐻−(2×⌊𝐾/2⌋))×

⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉) tiles of length in_els. Each tile in row_trans_sum_tiles can be trans-

formed by 𝐴𝑇 (one of the transformation matrices) to calculate the values in a

corresponding o-tile from the output tensor. Figure 6-54 shows how the values

in the output matrices are reordered to create row_trans_sum_tiles. The tile at

157

Figure 6-54: Performing 2D convolution using smaller convolutions between values
from 𝑡𝑟𝑎𝑛𝑠_𝑟𝑜𝑤_𝑖_𝑡𝑖𝑙𝑒𝑠 and the columns of 𝑡𝑟𝑎𝑛𝑠_𝑘𝑒𝑟_𝑟𝑜𝑤𝑠.

position 𝑟𝑜𝑤_𝑡𝑟𝑎𝑛𝑠_𝑠𝑢𝑚_𝑡𝑖𝑙𝑒𝑠[𝑁][𝑀] is used calculate the o-tile 𝑟𝑜𝑤_𝑜_𝑡𝑖𝑙𝑒𝑠[𝑁][𝑀]

that makes up the output tensor.

6.12.7 Temporary Memory and Genvolution

In comparison to a normal Winograd CNN convolution that uses a 2D Wino-

grad convolution with matrix multiplication to perform the element-wise mul-

tiplication, the CNN convolution outlined above requires significantly less tem-

porary memory. The extra memory for the transformed i-tiles is reduced from

(⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)×(⌈𝑤/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)×(𝑖𝑛_𝑒𝑙𝑠×𝑖𝑛_𝑒𝑙𝑠)×𝐶 floats to 𝐻×(⌈𝑤/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)×

(𝑖𝑛_𝑒𝑙𝑠) × 𝐶 floats. This is a reduction of ((𝑜𝑢𝑡_𝑒𝑙𝑠 + 𝐾 − 1)/𝑜𝑢𝑡_𝑒𝑙𝑠) times.

The memory required for the transformed kernels is reduced from (𝑖𝑛_𝑒𝑙𝑠 ×

𝑖𝑛_𝑒𝑙𝑠) × 𝐶 × 𝑀 floats to (𝑖𝑛_𝑒𝑙𝑠 × 𝐾) × 𝐶 × 𝑀 floats, which is a reduction

of ((𝑜𝑢𝑡_𝑒𝑙𝑠 + 𝐾 − 1)/𝐾) times. The data structure containing the output val-

ues in the Winograd domain is reduced from (⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉) × (⌈𝑤/𝑜𝑢𝑡_𝑒𝑙𝑠⌉) ×

(𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠)×𝑀 floats to 𝐻 × (⌈𝑤/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)× (𝑖𝑛_𝑒𝑙𝑠)×𝑀 floats. This is

158

also a reduction of ((𝑜𝑢𝑡_𝑒𝑙𝑠+𝐾 − 1)/𝑜𝑢𝑡_𝑒𝑙𝑠) times. The reduction in the tem-

porary memory required is because the input tensor and input kernel are only

transformed in one dimension, rather then two. Table 6.1 shows the reduction

in temporary memory between standard 2D Winograd CNN convolution and

our Sum of 1D Winograd Convolution, for six common Winograd input sizes.

Winograd Trans Ker-
nel Reduc-
tion

Trans
I-Tiles
Reduction

Winograd
Output
Reduction

𝐹 (2, 3) 11/3 2 2

𝐹 (3, 3) 12/3 12/3 12/3

𝐹 (4, 3) 2 11/3 11/3

𝐹 (2, 5) 11/6 3 3

𝐹 (3, 5) 12/7 21/7 21/7

𝐹 (4, 5) 13/8 2 2

Table 6.1: Memory Size Reduction of transformed tensors using 1D Winograd vs 2D
Winograd

Standard CNN convolution requires (𝐾 × 𝐾) × (𝐻 × 𝑊) multiplications

to perform a single channel CNN convolution and produce (𝐻 × 𝑊) output

points. Winograd CNN Convolution using 2D Winograd convolution and tiling

requires ((⌈𝐻/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)× (⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉)× (𝑖𝑛_𝑒𝑙𝑠× 𝑖𝑛_𝑒𝑙𝑠)) multiplications to

produce (𝐻 × 𝑊) output points. This reduces the number of multiplications

needed by roughly ((𝑜𝑢𝑡_𝑒𝑙𝑠2𝐾2)/(𝑜𝑢𝑡_𝑒𝑙𝑠 +𝐾 − 1)2) times, depending on the

effect of the two ceiling operations. Our sum of 1D Winograd convolutions

requires (𝐻 × (⌈𝑊/𝑜𝑢𝑡_𝑒𝑙𝑠⌉) × 𝐾 × 𝑖𝑛_𝑒𝑙𝑠) multiplications. This reduces the

number of multiplications needed by roughly ((𝑜𝑢𝑡_𝑒𝑙𝑠×𝐾)/(𝑜𝑢𝑡_𝑒𝑙𝑠+𝐾−1))

times, depending on the effect of the two ceiling operations. This reduction is

((𝑜𝑢𝑡_𝑒𝑙𝑠×𝐾)/(𝑜𝑢𝑡_𝑒𝑙𝑠+𝐾−1)) times smaller than the reduction in multiplica-

tions allowed by the 2D Winograd CNN convolution method. It is hoped that

for low end devices, the decrease in memory usage will outweigh the theoret-

ically better computational load. Table 6.2 show the reduction in the number

of multiplication required using the standard 2D winograd CNN convolution,

and our sum of 1D Winograd method, assuming we are using a 𝐹 (2, 3) Wino-

grad convolution.

159

Method H/W=13 H/W=14 H/W=27 H/W=28 H/W=56
CNN Convolution 1521 muls 1764 muls 6561 muls 7056 muls 28224 muls
2D Winograd CNN 1.94 × 2.25 × 2.092 × 2.25 × 2.25 ×
Sum of 1D CNN 1.393 × 1.5 × 1.446 × 1.5 × 1.5 ×
Method H/W=96 H/W=127 H/W=192 H/W=227
CNN Convolution 82944 muls 145161 muls 331776 muls 463761 muls
2D Winograd CNN 2.25 × 2.214 × 2.25 × 2.23 ×
Sum of 1D CNN 1.5 × 1.488 × 1.5 × 1.493 ×

Table 6.2: Reduction in number of multiplications required for convolution when us-
ing 2D Winograd CNN convolution, and when using our sum of 1D Winograd CNN
convolution.

As covered in section 6.7, 2D Winograd CNN convolution uses matrix mul-

tiplication to perform element-wise multiplication and input channel accumu-

lation. Matrix multiplication is a heavily researched topic and the matrix mul-

tiplications in the convolution can be performed by a highly optimized ma-

trix multiplication library on the majority of processors. As covered in section

6.12.5, our sum of 1D Winograd CNN convolution uses a smaller convolution

with a 1D kernel to perform the necessary element-wise multiplication and in-

put channel accumulation. This means we cannot use the optimized matrix

multiplication libraries available. Instead, Genvolution is used to generate fast

convolution implementations that perform the necessary convolutions.

6.13 Evaluation Of Results

To evaluate the effectiveness of Winogen, Winogen was used to generate Wino-

grad Convolution implementations for a set of CNN convolution input sizes for

two target machines (ARM Target 1, and ARM Target 2). The CNN convolu-

tion input sizes were taken from five commonly used CNN networks: AlexNet

(Krizhevsky, Sutskever, and Hinton 2012), Inception V4 (Singh and Markovitch

2017), MobileNet V2 (Howard et al. 2017), ResNET-152 (He et al. 2016), and

VGG ILSRVC (Bengio and LeCun 2015). A unique implementation using stan-

dard Winograd convolution was generated for each input size on each target

machine (labelled as ’Winogen’ in section 6.15). A unique implementation us-

160

ing our novel Winograd method (covered in section 6.12) was also generated

for each input size on each target machine (labelled as ’Winogen-1D’ in section

6.15). The average execution time and cache miss rate for each generated im-

plementation was collected on each target. The execution time and cache miss

rates are the mean average of 20 runs. The ARMCL Library (see section 3.1.4)

implementation of Winograd convolution was used as the baseline method to

compare performance against. The ARMCL Winograd convolution implemen-

tation is labelled as ’ARMCL-Winograd’ in section 6.15.

6.13.1 ARM Target 1

Winogen outperformed ARMCL-Winograd for all input sizes. Winogen-1D

outperformed ARMCL-Winograd for 14 of 29 input sizes. Winogen performed

best overall in 17 of the 29 input sizes. Winogen-1D performed best in 12 of the

29 input sizes.

Figures 6-55, 6-56, and 6-57 suggest that there is a relationship between the

relative performance of Winogen-1D, and the ratio between 𝐻×𝑊 and 𝐶×𝑀 .

When the height and width of the input tensor (i.e. 𝐻 and 𝑊) is much larger

than the number of input channels and input kernels (i.e. 𝐶 and 𝑀), Winogen-

1D is significantly faster than ARMCL-Winograd. For example, in the first two

input sizes of figure 6-56(a) and 6-57, 𝐻 and 𝑊 are much larger than 𝐶 and

𝑀 , and Winogen-1D performs very well relative to ARMCL-Winograd. The

opposite is also true. In the last two input sizes of figure 6-56(a) and 6-57,

𝐻 and 𝑊 are much smaller than 𝐶 and 𝑀 , and Winogen-1D performs very

poorly. Figures 6-61, 6-62, and 6-63 also suggest that the ratio between 𝐻 ×𝑊

and 𝐶×𝑀 has an effect on the L1 cache miss rate of Winogen-1D. Figures 6-67,

6-68, and 6-69 also suggest that this relationship holds for L2 cache miss rates

too. The higher cache miss rates may explain the worse relative performance

when 𝐶 and 𝑀 are larger than 𝐻 and 𝑊 .

161

6.13.2 ARM Target 2

Winogen outperformed ARMCL-Winograd for 8 of 29 input sizes. Winogen-1D

outperformed ARMCL-Winograd for 2 of 29 input sizes.

Winogen performed best when compared to ARMCL-Winograd in the first

input size of figure 6-58(a) (where 𝐻=27, 𝑊=27, 𝐶=96, 𝑀=256, 𝐾=5). Figure

6-64 shows that Winogen has a lower L1 cache miss rate for this input size,

which may explain the difference in performance. This input size is also the

only tested input size with a (5 × 5) input kernel. Like Winogen-1D on ARM

Target 1, both Winogen and Winogen-1D on ARM Target 2 show a relationship

between performance and the ratio between 𝐻 × 𝑊 and 𝑀 × 𝐶. This can be

most clearly seen in figures 6-59(a) and 6-60, where the relative performance of

both Winogen and Winogen-1D degrade as the ratio between 𝐻×𝑊 and 𝑀×𝐶

inverts. However, the relationship between the ratio of 𝐻 ×𝑊 and 𝑀 ×𝐶, and

higher cache miss rates is not as distinct in the cache miss rate graphs for ARM

Target 2 as it was in cache miss rate graphs for ARM Target 1.

6.14 Conclusions

Our two main goals relating to Winograd convolution were: 1) investigate a

number of Winograd convolution optimizations and produce a program gen-

erator that would produce optimized Winograd convolution implementations,

and 2) investigate the performance of a novel CNN convolution algorithm that

used a sum of 1D Winograd convolutions to reduce the temporary memory

overhead needed by standard Winograd implementations.

We believe we were successful in achieving our first goal. With very min-

imal user input, Winogen was able to generate optimized Winograd convolu-

tion implementations for a number of different input sizes that matched or out-

performed vendor library (ARMCL) Winograd convolution implementations.

Winogen was extremely successful on ARM Target 1. We believe this shows

that automatic code generation should definitely be considered when optimiz-

ing single threaded code for smaller ARM devices.

162

We believe we were also successful in achieving our second goal. Our novel

algorithm performed better than our standard Winograd implementation and

the vendor library Winograd implementation for 12 of 29 input sizes on ARM

Target 1. For these input sizes, our novel algorithm required significantly less

memory. Our novel algorithm was not as successful on ARM Target 2, not

being the fastest for any input size. However, we do not consider this as sig-

nificant, because our novel algorithm was designed with cache and memory

constrained devices such as ARM Target 1 in mind. We believe we have shown

that our novel algorithm should be considered when implementing Winograd

convolution on memory constrained devices. The increased performance and

reduced temporary memory overhead, even if only for certain CNN convolu-

tions in a CNN network, could have a significant impact if the network is to be

run many times over it’s lifetime.

We have now concluded our discuss of Winogen and Winograd convolu-

tion. We now return to Genvolution, and investigate alternative uses. Starting

with using Genvolution to generate matrix multiplication implementations.

163

6.15 Results

Execution Time

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 6-55: Execution time on AlexNet and Inception V4 convolutions on ARM Target
1.

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 6-56: Execution time on MobileNet V2 and ResNET-152 convolutions on ARM
Target 1.

164

Figure 6-57: Execution Time of Winogen implementations on VGG ILSRVC Convolu-
tions on ARM Target 1.

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 6-58: Execution time on AlexNet and Inception V4 convolutions on ARM Target
2.

165

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 6-59: Execution time on MobileNet V2 and ResNET-152 convolutions on ARM
Target 2.

Figure 6-60: Execution Time of Winogen implementations on VGG ILSRVC Convolu-
tions on ARM Target 2.

166

L1 Cache Miss Rate

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 6-61: L1 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 1.

(a) MobileNet convolutions. (b) ResNET-152 convolutions.

Figure 6-62: L1 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 1.

167

Figure 6-63: L1 Cache Miss Rate of Winogen implementations on VGG ILSRVC Con-
volutions on ARM Target 1.

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 6-64: L1 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 2.

168

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 6-65: L1 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 2.

Figure 6-66: L1 Cache Miss Rate of Winogen implementations on VGG ILSRVC Con-
volutions on ARM Target 2.

169

L2 Cache Miss Rate

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 6-67: L2 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 1.

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 6-68: L2 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 1.

170

Figure 6-69: L2 Cache Miss Rate of Winogen implementations on VGG ILSRVC Con-
volutions on ARM Target 1.

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 6-70: L2 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 2.

171

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 6-71: L2 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 2.

Figure 6-72: L2 Cache Miss Rate of Winogen implementations on VGG ILSRVC Con-
volutions on ARM Target 2.

172

Chapter 7

Optimizing GEMM for Low Power

ARM Devices

7.1 Chapter Motivation

Figure 7-1: Performing a (1× 1) kernel convolution as a matrix multiplication

Figure 7-1 shows how a CNN convolution using input kernels with a kernel

height and width of 1 (i.e. the input kernels are stored in a tensor (𝑀 × 1× 1×

𝐶)) can be performed using a matrix multiplication. The input image tensor

173

(𝐻 × 𝑊 × 𝐶) is converted into a 2D matrix ((𝐻 × 𝑊) × 𝐶), and the input

kernels (𝑀 × 1× 1×𝐶) are converted into a 2D matrix (𝐶 ×𝑀). Performing a

matrix multiplication between the two 2D matrices will perform the necessary

dot products between the input channels from the input image tensor and the

input kernels. The result of the matrix multiplication is a 2D matrix ((𝐻×𝑊)×

𝑀), which can be converted into the output image tensor (𝐻 × 𝑊 × 𝑀). The

reverse is also true, a matrix multiplication can be implemented using CNN

convolution code. This means we can apply our previous work on optimizing

CNN convolution to also optimize matrix multiplication.

We focus on improving matrix multiplication solely on low power ARM

devices, because there has already been an extremely large amount of research

put into optimizing matrix multiplication on Intel architecture processors. Gen-

volution was used to automatically optimize and tune matrix multiplication

implementations. The same microkernels covered in chapter 5 were used for

generating matrix multiplication implementations. Minor alteration were re-

quired that are covered in sections 7.2.1 and 7.3.

7.2 Data Prefetching

Data prefetching is an optimization technique for reducing processor stalls

caused by slow memory accesses (Callahan, Kennedy, and Porterfield 1991).

Often in computer programs, memory locations are accessed in a consistent

manner, where there is a constant stride between all the locations being ac-

cessed. For example, when iterating across an array, memory addresses are

accessed sequentially. Data prefetching is where some mechanism will attempt

to predict what memory addresses will be accessed next, based on previous

accesses or other information about the program. The data in the predicted ad-

dresses is pre-emptively moved into a faster cache. If the prediction is correct,

the executing program will soon request the predicted data, and it will be able

to access it faster because the data is waiting in a fast cache. Data prefetching

can have very positive effects on performance. However, in the worst case data

174

1 / / f l o a t in1 [N] ;
2 / / f l o a t in2 [N] ;
3 f l o a t sum = 0 ;
4 for (signed i = 0 ; i < N; i ++) {
5 sum += in1 [i] * in2 [i] ;
6 / / _ _ b u i l t i n _ p r e f e t c h (c o n s t v o i d * a d d r _ t o _ p r e f e t c h)
7 _ _ b u i l t i n _ p r e f e t c h (&(in1 [i +128])) ;
8 }
9

Figure 7-2: Using the GCC macro __builtin_prefetch to preform software prefetching.

prefetching can hurt performance (Cao et al. 1995). If the predicted data is not

used, it will take up space in the faster caches, and can cause important data

to be evicted from the cache. Data prefetching also uses memory bandwidth,

which may be needed by other memory activities.

7.2.1 Software Prefetching in Genvolution

Prefetching can be performed by hardware, or in software. In software, this

usually takes the form of special instructions that prefetch the address given as

a parameter. Line 7 of figure 7-2 shows a GCC macro for adding prefetching

to C and C++ code. In the example, data at index (𝑖 + 128) from the in1 array

is prefetched because we know that it will be used used in a later loop itera-

tion. Software prefetching is either added by the programmer, or by a compiler

optimization (Mowry, Lam, and Gupta 1992).

Large Out-of-Order processors (such as the major Intel processors) have

pieces of hardware that perform data prefetching (Chen and Baer 1995) by

tracking previous memory accesses at runtime. However, many smaller pro-

cessors, such as low power ARM devices, do not have (or have limited) hard-

ware prefetchers. While adding software prefetching can be beneficial on any

architecture, it usually has a greater positive effect on devices without (or with

limited) hardware prefetchers (Lee, Kim, and Vuduc 2012).

Software prefetching tuning was added to Genvolution. A new AST ma-

nipulator (see section 4.8.4 for more on AST manipulators) was added. The

new manipulator walks the AST and inserts PrefetchNodes into the AST. The

PrefetchNodes are inserted after memory accesses. The manipulator uses a pred-

175

icate function to filter what type of memory accesses (e.g. only on memory

reads, only on accesses to the input) have prefetching attached to them. The

parameter search space (see section 4.5) is expanded so that Genvolution will

attempt to find the optimal number of bytes to jump ahead when prefetching

data.

7.3 Other Genvolution Modifications

Other changes were also made to Genvolution. Generation of code for the 𝑌 ,

and 𝑋 loops of the input kernel were removed as they are not required. Code

that is used to perform zero-padding is also removed, because the input kernels

are guaranteed to have a height and width of one.

7.4 Evaluation Of Results

To evaluate the effectiveness of Genvolution at generating matrix multiplica-

tion implementations, Genvolution was used to generate matrix multiplication

implementations for a set of CNN convolution input sizes for two target ma-

chines (ARM Target 1, and ARM Target 2). The CNN convolution input sizes

were taken from four commonly used CNN networks: AlexNet (Krizhevsky,

Sutskever, and Hinton 2012), Inception V4 (Singh and Markovitch 2017), ResNET-

152 (He et al. 2016), and SqueezeNet (Iandola et al. 2016). A unique implemen-

tation was generated for each input size on each target machine. The average

execution time and cache miss rate for each generated implementation was col-

lected on each target machine. The execution time and cache miss rates are the

mean average of 20 runs. The ARMCL library (see section 3.1.4) was used as

the baseline library for evaluation. The ARMCL matrix multiplication imple-

mentation is referred to as ARMCL-GEMM in sections 7.4 and 7.5.

176

7.4.1 ARM Target 1

Genvolution-generated code outperforms ARMCL-GEMM for 7 of the 42 tested

input sizes.

Genvolution-generated code performs best relatively in the second input

of figure 7.5 (where 𝐻=56, 𝑊=56, 𝐶=64, 𝑀=16, 𝐾=1). Figure 7.11 shows that

Genvolution-generated code and ARMCL-GEMM has similar L1 cache miss

rates for this input size. However, figure 7.17 shows that Genvolution-generated

code has a significantly lower L2 cache miss rate. The lower L2 cache miss

rate may explain the difference in performance. Genvolution-generated code

performs worst relatively in the 15th input of figure 7.5 (where 𝐻=14, 𝑊=14,

𝐶=512, 𝑀=64, 𝐾=1). Figures 7-11 and 7-17 show that Genvolution-generated

code has higher L1 and L2 cache miss rates for this input size. The higher cache

miss rates may explain the poor performance for this input size.

Figure 7-5 and 7-3(b) both suggest that there may be a relationship between

the relative performance of Genvolution-generated code and the ratio between

𝐻 × 𝑊 and 𝐶 × 𝑀 . As 𝐻 × 𝑊 shrinks and 𝐶 × 𝑀 grows the relative perfor-

mance of Genvolution-generated code drops. This is most obvious between the

second and ninth input size of figure 7-5. The best and worst performing input

sizes for Genvolution-generated code also fit into this pattern. One possible

explanation for this is that the baseline ARMCL-GEMM is better optimized for

input matrices that have many values to sum up. The length of the rows of

the first input matrix for the matrix multiplication is 𝐶. Therefore, as 𝐶 grows,

more values must be multiplied and summed to produce a value in the out-

put matrix. It is possible ARMCL-GEMM is optimized for these sorts of input

matrices, and is not well optimized for long thin input matrices (for example,

for the input size where Genvolution-generated code performed best, the two

input matrices had sizes 16× 64 and 3136× 64).

However, it should be noted that the relationship between the relative per-

formance of Genvolution-generated code and the ratio between 𝐻 × 𝑊 and

𝐶 ×𝑀 is not present in figures 7-3(a) or 7-4.

177

7.4.2 ARM Target 2

Genvolution generated code is outperformed by ARMCL-GEMM for all 42

tested input sizes. There is one input size where Genvolution generated code

has a lower L1 cache miss rate, and four input sizes where Genvolution gener-

ated code has a lower L2 cache miss rate. There is no input size where Genvolu-

tion generated code has both lower L1 and L2 cache miss rates when compared

to ARMCL-GEMM.

7.5 Conclusions

Our goal for this chapter was to see if Genvolution could be leveraged to also

optimize matrix multiplication implementations. We found Genvolution had

limited success in producing optimized matrix multiplication implementations

automatically. However, only limited success is still important. We believe

this shows that automatic code generation and optimization can create perfor-

mance improvements, even in well established areas like matrix multiplica-

tions, and further research may yield stronger results.

We now move from one alterative Genvolution use to another. The fol-

lowing chapter discusses the Flyte datatype, a quantized floating point format,

and how Genvolution can be used to generate Flyte-based CNN convolution

implementations to reduce CNN convolution energy usage.

178

7.6 Results

7.6.1 Execution Time

(a) Inception V4 matrix multiplications. (b) AlexNet matrix multiplications.

Figure 7-3: Execution Time on Inception V4 and AlexNet matrix multiplications on
ARM Target 1.

Figure 7-4: Execution Time on ResNET-152 matrix multiplications on ARM Target 1.

179

Figure 7-5: Execution Time on SqueezeNet matrix multiplications on ARM Target 1.

(a) Inception V4 matrix multiplications. (b) AlexNet matrix multiplications.

Figure 7-6: Execution Time on Inception V4 and AlexNet matrix multiplications on
ARM Target 2.

180

Figure 7-7: Execution Time of Genvolution implementations on ResNET 152 matrix
multiplications on ARM Target 2.

Figure 7-8: Execution Time on SqueezeNet matrix multiplications on ARM Target 2.

181

L1 Cache Miss Rate

(a) Inception V4 matrix multiplications. (b) AlexNet matrix multiplications.

Figure 7-9: L1 cache miss rates on Inception V4 and AlexNet matrix multiplications on
ARM Target 1.

Figure 7-10: L1 cache miss rate on ResNET 152 matrix multiplications on ARM Target
1.

182

Figure 7-11: L1 cache miss rate on SqueezeNet matrix multiplications on ARM Target
1.

(a) Inception V4 matrix multiplications. (b) AlexNet matrix multiplications.

Figure 7-12: L1 cache miss rates on Inception V4 and AlexNet matrix multiplications
on ARM Target 2.

183

Figure 7-13: L1 cache miss rate on ResNET 152 matrix multiplications on ARM Target
2.

Figure 7-14: L1 cache miss rate on SqueezeNet matrix multiplications on ARM Target
2.

184

L2 Cache Miss Rate

(a) Inception V4 matrix multiplications. (b) AlexNet matrix multiplications.

Figure 7-15: L2 cache miss rates on Inception V4 and AlexNet matrix multiplications
on ARM Target 1.

Figure 7-16: L2 cache miss rate on ResNET 152 matrix multiplications on ARM Target
1.

185

Figure 7-17: L2 cache miss rate on SqueezeNet matrix multiplications on ARM Target
1.

(a) Inception V4 matrix multiplications. (b) AlexNet matrix multiplications.

Figure 7-18: L2 cache miss rates on Inception V4 and AlexNet matrix multiplications
on ARM Target 2.

186

Figure 7-19: L2 cache miss rate on ResNET 152 matrix multiplications on ARM Target
2.

Figure 7-20: L2 cache miss rate on SqueezeNet matrix multiplications on ARM Target
2.

187

Chapter 8

Improving Energy Usage with Flyte

Quantization

8.1 Reducing Energy Consumption With Quantiza-

tion

Many CNNs use the standard floating point types (IEEE-754 single precision

32-bit binary32 and IEEE-754 double precision 64-bit binary64) as the base nu-

merical unit for computation. They are often chosen due to the fact that most

general purpose processors are optimized for, and usually have hardware for

computing binary32 and binary64 values. However, CNN models can often

perform inference with much lower precision datatypes while still retaining

accuracy. For example, Zhu et al. found that they could quantize kernel values

from 32 bits to 2 bits, but only incur a 3% loss in top-1 accuracy on an AlexNet

CNN model classifying the ImageNet dataset (Zhu et al. 2017).

The memory footprint of a CNN model has significant impact on the energy

needed for model inference. Dally et al. found that on a typical embedded

processor, 28% of the processor energy is used on supplying data, while only

6% was used on arithmetic (Dally et al. 2008). This means by quantizing the

input and output tensors of a CNN convolution, the energy needed to perform

the convolution is reduced, because the memory footprint of the convolution

188

is reduced and less energy is be needed supplying data to the processor. Also,

by reducing the size of tensors, a larger percentage of the tensors can be stored

in the on-chip caches. Hu et al. and Han et al. both found that accessing on-

chip SRAM required at most 10% of the energy needed to access data stored

on off-chip DRAM using simulated 45nm processors (Hu et al. 2011) (Han et

al. 2016). This means that quantizing the CNN values can lead to less energy

consumption, because there will be less off-chip memory accesses.

Quantizing the data tensors to fit better in the on-chip caches will also im-

prove data access performance, because more values can be stored in the caches

at once. Arithmetic involving quantized values can also be faster as less bits

must be calculated (or more values can be calculated in parallel), however this

is only the case if hardware for the quantized values is available.

8.2 Flyte Overview

While quantizing CNN tensor values to lower precision can have multiple ad-

vantages as covered in section 8.1, if values are quantized to a datatype that

does not have custom hardware support on the processors being used, then

execution time performance can drop dramatically. If no hardware support is

available, arithmetic using the quantized datatypes must be implemented in

software, where each operation will be much slower than an equivalent hard-

ware implementation. Quantized datatypes using software-based arithmetic

will nearly always be slower than larger datatypes with hardware support.

This difference in performance is a deterrent to using quantized datatypes for

CNN convolution.

The flyte datatypes (FLoating-point multi-bYTE) represent a set of IEEE-754

related non-standard floating point multi-byte types. flyte are a quantized stor-

age datatypes (i.e. datatypes that values are stored in, but calculations aren’t

performed with), that can be converted to and from binary32 and binary64

datatypes very quickly. They were proposed by Anderson et al. as a quan-

tized datatype to reduce energy consumption by reducing a problem’s memory

189

footprint, while still leveraging the performance of pre-existing binary32 and

binary64 hardware (Anderson and Gregg 2016). Anderson et al. found that the

binary32 values in common BLAS routines (e.g. matrix multiplication) could

be quantized to half-precision with only minimal performance loss using flyte

datatypes on Intel Haswell processors (Anderson and Gregg 2016).

8.2.1 IEEE-754 2008 Standard Overview

The IEEE-754 2008 standard outlines a number of binary data structures for

representing finite precision real numbers. The most important of which are

binary32 and binary64, because they are the datatypes that have the most sup-

port in existing general purpose processors. Floating-point numbers use an

exponential number format with the form: 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 * 𝑚𝑎𝑛𝑖𝑡𝑖𝑠𝑠𝑎. For example,

21.536 is represented as 24 * 1.346. Floating-point numbers are encoded using

three unsigned integer values: a sign value 𝑠𝑖𝑔𝑛, an exponent value 𝑒𝑥𝑝𝑜, and

a mantissa value 𝑚𝑎𝑛𝑡. Figure 8-1 shows the formula used for calculating the

value stored in a binary32 or binary64 value when 𝑒𝑥𝑝𝑜 is non-zero and 𝑒𝑥𝑝𝑜 is

not the maximum value it can represent (Zuras et al. 2008).

𝑣𝑎𝑙 = (−1)𝑠𝑖𝑔𝑛 * (1 + (
𝑀𝐴𝑁𝑇∑︁
𝑖=1

(𝑚𝑎𝑛𝑡𝑖 * 2−𝑖)) * 2𝑒𝑥𝑝𝑜−𝑏𝑖𝑎𝑠)

where
𝑀𝐴𝑁𝑇 = number of bits used for the mantissa value

𝑚𝑎𝑛𝑡𝑖 = the value of the 𝑖𝑡ℎ bit of 𝑚𝑎𝑛𝑡
𝑏𝑖𝑎𝑠 = (−1 * 2𝐸𝑋𝑃𝑂−1) + 1

𝐸𝑋𝑃𝑂 = number of bits used to store 𝑒𝑥𝑝𝑜
𝑣𝑎𝑙 = the value represented by the floating-point value

Figure 8-1: IEEE-754 formula for calculating the value 𝑣𝑎𝑙 stored in a floating-point
datatype.

The sign value 𝑠𝑖𝑔𝑛 is a single bit which indicates whether the value is pos-

itive or negative. The exponent value 𝑒𝑥𝑝𝑜 is used to calculate a power-of-two

value which is then multiplied with the value 𝑓𝑟𝑎𝑐, where 𝑓𝑟𝑎𝑐 is a fixed-point

fractional value between [1, 2) calculated using the mantissa value 𝑚𝑎𝑛𝑡. To

190

calculate 𝑓𝑟𝑎𝑐, we first assign every bit in 𝑚𝑎𝑛𝑡 a numeric value equal to 2𝑖−1

where 𝑖 is the position of the bit in 𝑚𝑎𝑛𝑡 (with the lowest bit having a position

of 𝑖 = 1). We then sum all represented numeric value of the bits in 𝑚𝑎𝑛𝑡 which

are set to one. Finally we add a one to this value to calculate 𝑓𝑟𝑎𝑐.

In theory, there are multiple valid representations for the same value in the

format used by binary32/64. For example, 4.0 can be represented as 22 * 1.0,

or 21 * 2.0. To avoid difficulties that could arise from having multiple represen-

tations for same values, all binary32/64 values are normalized. They are nor-

malized so that the mantissa value represented by 𝑚𝑎𝑛𝑡 must be in the range

[1, 2). As all values 𝑚𝑎𝑛𝑡 can represent are in the form 1.0+𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙, only the

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 is stored in 𝑚𝑎𝑛𝑡, and the extra 1.0 is implicitly stored. This is why

an extra 1 is added when calculating 𝑓𝑟𝑎𝑐.

When 𝑒𝑥𝑝𝑜 and 𝑚𝑎𝑛𝑡 are set to zero, equation 8-1 is not applied, instead

the value is treated as the value ±0.0, where 𝑠𝑖𝑔𝑛 is used to control the sign.

If only 𝑒𝑥𝑝𝑜 is zero, then the value is treated as being sub-normal. Subnormal

values are used to represent extremely small values that can’t be represented

using equation 8-1. Equation 8-2 is used to calculate sub-normal values. The

main difference is that the implicit 1.0 is removed from 𝑚𝑎𝑛𝑡, and 𝑚𝑎𝑛𝑡 now

represents values in the range [0, 1).

𝑠𝑣𝑎𝑙 = (−1)𝑠𝑖𝑔𝑛 * ((
𝑀𝐴𝑁𝑇∑︁
𝑖=1

(𝑚𝑎𝑛𝑡𝑖 * 2−𝑖)) * 2−𝑏𝑖𝑎𝑠)

where
𝑀𝐴𝑁𝑇 = number of bits used for the mantissa value

𝑚𝑎𝑛𝑡𝑖 = the value of the 𝑖𝑡ℎ bit of 𝑚𝑎𝑛𝑡
𝑏𝑖𝑎𝑠 = (−1 * 2𝐸𝑋𝑃𝑂−1) + 1

𝐸𝑋𝑃𝑂 = number of bits used to store 𝑒𝑥𝑝𝑜
𝑠𝑣𝑎𝑙 = the sub-normal value represented by the floating-point value

Figure 8-2: IEEE-754 formula for calculating the sub-normal value 𝑠𝑣𝑎𝑙 stored in a
floating-point datatype.

When 𝑒𝑥𝑝𝑜 and 𝑚𝑎𝑛𝑡 are both set to their maximum possible value, the

value is treated as being ±∞, where 𝑠𝑖𝑔𝑛 controls the sign of the infinity. If

191

only 𝑒𝑥𝑝𝑜 is set to it’s maximum possible value, then the value is assumed to

store a 𝑁𝑎𝑁 value. 𝑁𝑎𝑁 values represent the results of invalid operations

(such as 0/0), or if some other error occurred during calculation. An error code

and a signal to throw an exception can be stored in 𝑚𝑎𝑛𝑡 when a value is 𝑁𝑎𝑁

(Zuras et al. 2008).

8.2.2 Accuracy Loss From Truncating Mantissa

When calculating the value of normalized binary32/binary64 values, the low-

est bits of 𝑚𝑎𝑛𝑡 have only a small effect on the final value. As we move down

the bits of 𝑚𝑎𝑛𝑡, the values they represent become quadratically smaller, as

does their effect on the represented value. Removing these bits causes only

a minor loss in accuracy. For example, the maximum percentage error from

truncating the lowest byte from the 𝑚𝑎𝑛𝑡 of a normalized binary32 value is

0.00152%.

If the binary32/binary64 value is in a special state, truncating the lower

bits from the 𝑚𝑎𝑛𝑡 can have greater effects. Removing bits from the 𝑚𝑎𝑛𝑡 of a

subnormal binary32/64 value can have an extremely large effect on accuracy.

Removing 𝑚𝑎𝑛𝑡 bits from a subnormal number can change a non-zero number

to zero, which has a relative error of 1. Removing 𝑚𝑎𝑛𝑡 bits from 𝑁𝑎𝑁 values

can change the error code encoded in 𝑚𝑎𝑛𝑡. The highest bit of 𝑚𝑎𝑛𝑡 represents

if a 𝑁𝑎𝑁 value should throw an exception, therefore this information won’t be

lost unless the entire 𝑚𝑎𝑛𝑡 is removed. The value zero is preserved correctly.

8.2.3 Flyte Datatype Layout

The flyte datatypes are a reduced precision storage format. The flyte datatypes

share the same binary layouts as IEEE-754 binary32 or binary64, just with one

or more of the lowest bytes removed. The layouts for the three smallest flyte

datatypes are shown in figure 8-3. For example, flyte-24 has the same layout as

binary32 except that the lowest byte (which stores the lowest bits of the man-

tissa 𝑚𝑎𝑛𝑡) has been removed. The removal of the eight bits of mantissa has

192

an effect on the accuracy of flyte-24 when compared to binary32, however as

covered in section 8.2.2, the effect is small unless the binary32 value represents

a sub-normal value.

Figure 8-3: Binary layout of IEEE 754 binary32 and related Flyte datatypes.

To convert a binary32/64 value to a flyte value, the least significant bytes of

the binary32/64 value are removed until the value is the correct length. Figure

8-4 shows a binary32 value (part (i) of the figure) containing the value 21.35

being transformed to a flyte-16 (part (ii)) and a flyte-8 (part(iii)) value by trun-

cating two, and three bytes respectively. To transform a flyte datatype to a

binary32/64 datatype, zero padded bytes are appended until the value is the

correct length in bytes. Figure 8-4 shows a flyte-16 value (part (ii) in the fig-

ure) being transformed to a binary32 value (part (iv)) by appending two bytes.

The figure also shows a flyte-8 (part (iii)) being transformed to a binary32 value

(part (v)) by appending three bytes. We can see in figure 8-4 that transforming

values to and from the flyte datatypes can introduce accuracy problems. Part (i)

of figure 8-4 stores the value 21.35, but when transformed to and from a flyte-16

datatype (part (iv)) the value is now 21.25, a 4.7% relative error. This is because

193

the data in the lower bytes is lost when a binary32/64 value is truncated to fit

in a flyte datatype.

Figure 8-4: A binary32 (i) value transformed to flyte-16 and flyte-8 (parts (ii) and (iii)).
the flyte values transformed to binary32 (parts (iv) and (v)).

Computations are not performed using flyte values. The flyte datatypes

only work as a storage format. When a calculation is needed, flyte values are

expanded to a computation format datatype. While in memory, values are stored

in a flyte datatype. However, when a value needs to moved into a register,

the end of the flyte value is padded with zero-padded bytes to expand it to a

binary32/64 value. When a binary32/64 value is being stored from a register

to memory, the lowest bytes of the datatype are truncated to convert it back to

a flyte datatype. This allows us to use the datatypes with hardware support for

calculations, and the quantized datatypes in memory.

8.2.4 Reducing the Transformation Overhead

The flyte datatypes are designed to minimise the cost of transforming to and

from flyte datatypes and binary32/64 datatypes. However, using flyte values

as a storage type still introduces an extra overhead whenever a value is being

loaded or stored into memory. Anderson et al. found that this overhead has a

noticeable impact on performance if the transformation is not optimized. An-

194

derson et al. propose a method of reducing this overhead cost by designing a

SIMD library for transforming multiple values to and from a flyte datatype for

Intel SIMD architectures. They found that this optimization allowed flyte based

solutions to match binary32 solutions for a set of BLAS operations, especially

those with a large memory footprint (Anderson and Gregg 2016).

We extend their work by writing a flyte transformation SIMD library for the

ARMv7 NEON and AArch64 NEON architectures. We also investigate the pos-

sibility of using conventional data blocking strategies to transform flyte values

in memory to float values in chunks, with the aim of reducing the transforma-

tion overhead by reducing how many flyte-float transformations are necessary

while not increasing the memory usage of the programs significantly.

8.3 Flyte Librarys for ARMv7 NEON and AArch64

NEON

We created two SIMD libraries for transforming flyte values. One library for

the ARMv7 NEON instruction set architecture (ISA), called NEON7-flyte, and

a library for the AArch64 NEON ISA, called NEON64-flyte. Both libraries are

very similar, because the ARMv7 NEON ISA and the AArch64 NEON ISA are

very similar. The AArch64 NEON ISA contains every ARMv7 NEON instruc-

tion, with 16 more 128-bit vector registers, more instructions that use binary64

lanes, and extending some instructions to work on 128-bit registers, rather than

just 64-bit registers (ARM 2019a).

Both flyte libraries implement two basic operations. The first is loading a

fixed number of flyte values from memory, transforming them to binary32/64

values, and putting them into the lanes of a vector register. The second is trans-

forming the binary32/64 values in a vector register to flyte values, and stor-

ing the flyte values into memory. The number of values that can be stored or

loaded depends on the size of the flyte datatypes (see subsection 8.3.3 for an

example), and the ISA being used (see subsection 8.3.2 for an example). The

two flyte libraries are written using the official ARM NEON intrinsic libraries

195

1 / / u i n t 8 x 8 _ t = 128− b i t r e g i s t e r s p l i t i n t o 8 8− b i t
l a n e s

2 u in t 8x 8 _ t i n _ t a b l e = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } ;
3 / / w i l l be used as l o o k u p : l a n e s i n d e x e d r i g h t −to− l e f t
4 u in t 8x 8 _ t in_lookup = { 0 , 2 , 2 , 1 , 8 , 5 , 8 , 3 } ;
5 u in t 8x 8 _ t out = vtbl1_u8 (i n _ t a b l e , in_lookup) ;
6 / / out == { 8 , 6 , 6 , 7 , 1 , 3 , 1 , 5 }
7

Figure 8-5: Example table look-up operation.

to access NEON operations on the two ISA. Most intrinsic functions map to a

single NEON instruction.

8.3.1 Table Lookup Intrinsics

Transforming between flyte datatypes and binary32/64 datatypes involves re-

moving lower bytes, and inserting zero bytes. To perform this operation on

multiple values at once, we use the NEON table lookup operations available

in ARMv7 NEON and AArch64 NEON. The table lookup operations take two

input vector registers. The first input vector register is treated as a table, where

each lane of the vector is a table entry. Each lane of the second input vector

register is a lookup key into the table. The operation uses the table vector, and

the lookup vector to fill the lanes of a third register with values from the ta-

ble vector. Figure 8-5 shows a code snippet using one of the available table

lookup operations. vtbl1_u8 takes in two parameters: a 128-bit register con-

taining eight 8-bit lanes, which is treated as a table with eight byte-size entries,

and a second eight lane 128-bit register, which is used to lookup entries in the

created table. The lanes of the first input register are indexed right-to-left in the

table, e.g. in figure 8-5, in_table[0] would contain 8, in_table[1] would contain 7,

and in_table[7] would contain 1. vtbl1_u8 fills a 128-bit register as an eight lane

8-bit vector using values from the table vector, and the lookup entries from the

second input vector. The most important table lookup intrinsics are covered in

table 8-6.

The table lookup operations also have a special action which is very useful

for transforming flyte values to binary32/64 values. If an entry in the lookup

196

Intrinsic Table Vector Lookup Vector Output Vector ARMv7 AArch64
vtbl1_u8 uint8x8_t uint8x8_t uint8x8_t Yes Yes
vtbl2_u8 uint8x8x2_t uint8x8_t uint8x8_t Yes Yes
vqtbl1q_u8 uint8x16_t uint8x16_t uint8x16_t No Yes

Figure 8-6: All byte-level table look-up intrinsics available.

vector attempts to access a non-valid entry in the table vector (e.g. the 9th

lane of an eight lane vector), the value zero is returned for that table lookup.

Subsections 8.3.2 and 8.3.3 cover how the table lookup operations are used in

our NEON flyte libraries.

8.3.2 Loading Values

Both NEON flyte libraries allow multiple flyte values to be loaded from mem-

ory, transformed to binary32/64 values in parallel, and then stored in the lanes

of a vector register. Figure 8-7 shows the NEON7-flyte function for loading two

flyte-24 values from memory, and storing them in two 32-bit lanes of a 64-bit

vector register.

The function in figure 8-7 assumes that the flyte values are stored in a packed

format in memory. The first step is to load the bytes of wanted flyte values from

memory into a vector register with 8-bit lanes. To do this, we use the NEON

load operation with the smallest datatype that will load the necessary bytes.

For example, in figure 8-7, we want to load 2 flyte-24 values, so we want to

load six bytes from memory. As there is no operation to load 6 bytes, we use

the intrinsic for loading eight contiguous bytes into a 64-bit vector register in-

stead. The extra two bytes will be discarded when the flyte values are being

transformed. Line 11 of figure 8-7 shows eight contiguous bytes from memory

being loaded into source, a 64-bit vector register containing eight 8-bit lanes.

The first six lanes of source contains the data for two flyte-24 values.

After performing the load operation, we will have a vector register contain-

ing the flyte values we need. However, the data will not be correctly aligned in

the vector register. Part (ii) of figure 8-8 shows an example of this. If the vector

register in part (ii) was treated as a two-lane 32-bit vector, then the first byte

197

1 s t a t i c i n l i n e f l o a t 3 2 x 2 _ t neon7_load2_f24 (f24 * m) {
2 / / t a b l e l o o k u p s e t u p
3 constexpr u i n t 8 _ t WZ = −1; / /WZ => WRITE_ZERO
4 # i f d e f ARM_FLYTE_CONFIG_LITTLE_ENDIANESS
5 u in t 8x 8 _ t lookup = { 0 , 1 , 2 ,WZ, 3 , 4 , 5 ,WZ} ;
6 # endi f
7 # i f d e f ARM_FLYTE_CONFIG_BIG_ENDIANESS
8 u in t 8x 8 _ t lookup = { WZ, 0 , 1 , 2 , WZ, 3 , 4 , 5 } ;
9 # endi f

10 / / expand f 2 4 t o 32 b i t
11 u in t 8x 8_ t source=vld1_u8 (r e i n t e r p r e t _ c a s t < u i n t 8 _ t * >(m)) ;
12 u in t 8x 8_ t r e s u l t =vtbl1_u8 (source , lookup) ;
13 return r e i n t e r p r e t _ c a s t < f l o a t 3 2 x 2 _ t >(r e s u l t) ;
14 }
15

Figure 8-7: NEON7-flyte function to load 2 flyte-24 values into 2 binary32 lanes.

of flyte-24-B would be in the wrong lane, and the other two bytes of flyte-24-B

would be misaligned in the second lane. We need to insert bytes containing

zero into the vector register first, before it can be treated as a two-lane 32-bit

vector. To insert the bytes containing zero into the vector register, we use the

table lookup operations covered in subsection 8.3.1. As mentioned in subsec-

tion 8.3.1, if the lookup vector attempts to lookup an invalid lane in the table

vector, the lookup for that lane returns zero. This means we can use a table

lookup operation to copy the bytes containing flyte data into a new vector reg-

ister, while also inserting bytes containing zeroes as necessary. Line 12 of figure

8-7 shows a table lookup to transform two flyte-24 values. Parts (ii) and part

(iii) of figure 8-8 shows the input and output of line 12 of figure 8-7.

As we are using the table lookup instructions to effectively build binary32/64

values at the byte-wise level, our NEON flyte libraries need to take into account

the endianness of the architecture being used. Both ARMv7 and AArch64 can

support big endian and little endian memory layouts. Depending on the en-

dianness being used, the table lookups being used to transform flyte values to

binary32/64 values must be changed. Lines 5 and 8 of figure 8-7 show different

lookup vectors needed for little endianness and big endianness.

To transform the flyte values to binary32/64 values, we need to manipulate

them on a byte-wise level. To do this, we use the byte-wise table lookup op-

198

Figure 8-8: Simplified example of reading two flyte-24 values as two float-32.

erations available in NEON instruction sets. However, table 8-6 shows that all

the byte-wise table lookup intrinsics available on ARMv7 NEON can only fill

the lanes of a 64-bit vector register (given as a 8-bit eight lane vector register).

This means we can only load two flyte values in parallel in NEON7-flyte, be-

cause the table lookup operations can only be used to produce two binary32

values in parallel. Also, NEON7-flyte can not be used to load binary64 values

in parallel.

However, the AArch64 ISA includes the vqtbl1q_u8 intrinsic, which is a byte-

level table lookup intrinsic that can fill the lanes of a 128-bit vector register

(given as 8-bit 16 lane vector register). This means NEON64-flyte can be used

to load four binary32 values, or two binary64 values in parallel. Figure 8-9

shows the NEON64-flyte equivalent of figure 8-7. The function in figure 8-9

uses vqtbl1q_u8 to transform 4 flyte-24 values to binary32 values in parallel.

8.3.3 Storing Values

Our NEON flyte libraries allow multiple binary32/64 values (stored in the

lanes of a vector register) to be stored as flyte values in a packed data format.

Figure 8-10 shows the NEON7-flyte function for storing two binary32 values

(stored in a 64-bit vector register) as two flyte-24 values in memory.

The first step of the storing operation is using a byte-level table lookup op-

eration to remove the unwanted bytes from the input vector of binary32/64

199

1 s t a t i c i n l i n e f l o a t 3 2 x 4 _ t neon64_load4_f24 (f24 * m) {
2 / / t a b l e l o o k u p s e t u p
3 constexpr u i n t 8 _ t WZ = −1; / /WZ => WRITE_ZERO
4 # i f d e f ARM_FLYTE_CONFIG_LITTLE_ENDIANESS
5 uint8x16_t lookup = { 0 , 1 , 2 ,WZ, 3 , 4 , 5 ,WZ,
6 6 , 7 , 8 ,WZ, 9 , 1 0 , 1 1 ,WZ, } ;
7 # endi f
8 # i f d e f ARM_FLYTE_CONFIG_BIG_ENDIANESS
9 uint8x16_t lookup = { WZ, 0 , 1 , 2 , WZ, 3 , 4 , 5 ,

10 WZ, 6 , 7 , 8 , WZ, 9 , 1 0 , 1 1 } ;
11 # endi f
12 / / expand f 2 4 t o 32 b i t
13 uint8x16_t source = vld1q_u8 (r e i n t e r p r e t _ c a s t < u i n t 8 _ t * >(

m)) ;
14 uin t8x16_t r e s u l t = vqtbl1q_u8 (source , lookup) ;
15 return r e i n t e r p r e t _ c a s t < f l o a t 3 2 x 4 _ t >(r e s u l t) ;
16 }
17

Figure 8-9: NEON64-flyte function to load 4 flyte-24 values into 4 binary32 lanes.

values. The output of the table lookup operation will be a vector register con-

taining the bytes of the flyte values packed together. If not all lanes of the

output vector register are needed, the unneeded lanes are filled with zeroes.

Line 12 of of figure 8-10 shows the code to transform two binary32 values to

two flyte-24 values, and packing the six remaining bytes into an eight-lane vec-

tor register. Parts (i) and (ii) of figure 8-11 show the input and output vectors

of line 12 of figure 8-10.

In part (ii) of figure 8-11, we can see that while the first six lanes of the

vector register contain valid data, the last two lanes contain junk data. This

will occur whenever the flyte values we wish to store do no fully fill a vector

register. When we use a NEON SIMD store operation to write out the vector

register containing flyte data, the junk data lanes will also be written out, and

will overwrite some data in memory. This can be a problem if the data being

overwritten is still needed. For example, if we have an array of packed flyte-24

values, and we write out the vector register in part (ii) of 8-11, two bytes of

following flyte-24 value in memory will be overwritten. There are two ways to

solve this problem. the first is to use multiple smaller store operations to only

write out the valid parts of the vector register. For example, the vector register

200

1 s t a t i c i n l i n e void neon7_store2_f24 (f l o a t 3 2 x 2 _ t r , f24
* m) {

2 / / t a b l e l o o k u p s e t u p
3 constexpr u i n t 8 _ t WZ = −1; / /WZ => WRITE_ZERO
4 # i f d e f ARM_FLYTE_CONFIG_LITTLE_ENDIANESS
5 u in t 8x 8 _ t lookup = { 0 , 1 , 2 , 4 , 5 , 6 ,WZ,WZ } ;
6 # endi f
7 # i f d e f ARM_FLYTE_CONFIG_BIG_ENDIANESS
8 u in t 8x 8 _ t lookup = { 1 , 2 , 3 , 5 , 6 , 7 ,WZ,WZ } ;
9 # endi f

10 / / pack f l o a t v a l u e s t o f 2 4
11 u in t 8x 8_ t source = r e i n t e r p r e t _ c a s t <uint8x8_t >(r) ;
12 u in t 8x 8_ t r e s u l t = vtbl1_u8 (source , lookup) ;
13 / / w r i t e out f 2 4 w h i l e p r e s e r v i n g surround ing v a l u e s
14 # i f d e f ARM_FLYTE_PRESERVE_MODE
15 u in t 8x 8_ t bitmask = { 0 , 0 , 0 , 0 , 0x0 , 0 x0 , 0 xFF , 0 xFF } ;
16 u in t 8x 8_ t dst= vld1_u8 (r e i n t e r p r e t _ c a s t < u i n t 8 _ t * >(m)) ;
17 u in t 8x 8_ t mix= vorr_u8 (r e s u l t , vand_u8 (dst , bitmask)) ;
18 vst1_u8 (r e i n t e r p r e t _ c a s t < u i n t 8 _ t * >(m) , mix) ;
19 # e lse
20 / / w r i t e out and c o r r u p t f o l l o w i n g d a t a
21 v s t 1 _ f 3 2 (r e i n t e r p r e t _ c a s t < f l o a t 3 2 x 2 _ t * >(m) ,
22 r e i n t e r p r e t _ c a s t < f l o a t 3 2 x 2 _ t >(r e s u l t)) ;
23 # endi f
24 }
25

Figure 8-10: NEON7-flyte function to store 2 binary32 lanes as 2 flyte-24 values.

Figure 8-11: Storing two binary32 values as two flyte-24 while preserving data that
would be overwritten.

201

in part (ii) of 8-11 can be treated as a 16-bit 4-lane vector register, and then use

the vst1q_u16 intrinsic (which stores a single lane from a 16-bit 4-lane vector

register) three times to write out the valid 6 bytes of flyte-24 data only, and skip

the junk data. The second approach is shown in parts (iii) through (vi) of figure

8-11. This approach involves first loading the data at location we will write

the data to into a vector register (part (iv) of figure 8-11), masking out the data

that should be overwritten (part(v)), then performing a bitwise OR operation

with the vector register we want to store, replacing the junk data with the data

already in memory (part (vi)).

However, if the data being incorrectly overwritten is also overwritten (e.g.

initializing an empty array with values), no special code is needed, and the

vector register can be written out normally.

As covered in subsection 8.3.2 and shown in table 8-6, the largest vector reg-

ister that can be filled by a byte-level table lookup intrinsic on ARMv7 NEON

is 64-bit. This means we can only transform two binary32 values to flyte-24

values in parallel, as we can only fit at most two flyte-24 values in parallel.

However, we can fit four flyte-16, or eight flyte-8 values in a 64-bit vector reg-

ister. Also the vtbl2_u8 intrinsic (the second entry in table 8-6) is a byte-level

table lookup function that can take an 128-bit vector register as input (repre-

sented as a uint8x8x2_t vector register matrix). A 128-bit vector register can

hold four binary32 values. This means we can store four binary32 values as

either flyte-16 or flyte-8 values with our NEON7-flyte library, but not as flyte-24

values. Figure 8-12 shows the NEON7-flyte function for storing four binary32

values (stored in a 128-bit vector register) as four flyte-8 values. AArch64 has

access to vqtbl1q_u8 (the third entry in table 8-6), which can output into 128-bit

register, meaning we can transform four binary32 values to four flyte-24 values

in parallel.

8.3.4 Data Alignment

SIMD vector architectures can make a distinction between aligned and un-

aligned memory accesses. For example, the Intel AVX architecture has separate

202

1 s t a t i c i n l i n e void neon7_store4_f8 (f l o a t 3 2 x 4 _ t r , f8 * m)
{

2 / / t a b l e l o o k u p s e t u p
3 constexpr u i n t 8 _ t WZ = −1; / /WZ => WRITE_ZERO
4 # i f d e f ARM_FLYTE_CONFIG_LITTLE_ENDIANESS
5 u in t 8x 8 _ t lookup = { 0 , 2 , 4 , 6 , WZ,WZ,WZ,WZ } ;
6 # endi f
7 # i f d e f ARM_FLYTE_CONFIG_BIG_ENDIANESS
8 u in t 8x 8 _ t lookup = { 9 , 1 1 , 1 3 , 1 5 , WZ,WZ,WZ,WZ } ;
9 # endi f

10 / / pack f l o a t v a l u e s t o f 8
11 uint8x8x2_t source = r e i n t e r p r e t _ c a s t <uint8x8x2_t >(r) ;
12 u in t 8x 8_ t r e s u l t = vtbl2_u8 (source , lookup) ;
13 / / w r i t e out f 8 w h i l e p r e s e r v i n g surround ing v a l u e s
14 vst1_lane_u32 (r e i n t e r p r e t _ c a s t < u i n t 3 2 _ t * >(m) ,
15 r e i n t e r p r e t _ c a s t <uint32x2_t >(r e s u l t) , 0) ;
16 }
17

Figure 8-12: NEON7-flyte function to store 4 binary32 lanes as 4 flyte-8 values.

loading intrinsics for loading a 256-bit vector from an address that is aligned on

a 32-byte boundary, and from an address that is not aligned. Using an aligned

AVX load intrinsic on an unaligned memory address can cause an exception.

However, an aligned intrinsic can have better performance.

When using SIMD operations with flyte datatypes, we often need to load

a SIMD vector from an unaligned address. For example, the neon7_load2_f24

function from figure 8-7 loads two flyte-24 values from memory using a 64-bit

NEON vector load. If we iterated across a packed array of flyte-24 values using

neon7_load2_f24 we would increment the address we were reading from by six

bytes (2 * 3 bytes per flyte-24) each iteration. As we increment the loading ad-

dress by six bytes, we will quickly try to access an unaligned address (addresses

for 64-bit NEON vectors are eight byte aligned). This creates an optimization

problem, because aligned memory accesses can be faster, but wouldn’t work

with the above example.

One solution to this problem is to load flyte values in blocks that match

the alignment of the vector type being used. Figure 8-13 shows an example

of this. In figure 8-13, four flyte-24 values are loaded using three 32-bit vector

loads (storing the results in four-lane 32-bit vector registers). By loading four

203

flyte-24 values on every loop iteration, we would move the load address by

12 bytes (4 * 3 bytes per flyte-24) every iteration. Assuming the 32-bit vector

load expects data to be aligned to four bytes, we will always perform aligned

accesses with this approach. The issue is that some flyte data is spread across

registers. Reordering the data between the registers can be expensive.

Figure 8-13: Loading four flyte-24 values using 3 32-bit vector register so that all mem-
ory accesses are aligned.

The above method of blocking loads was not implemented in our NEON

flyte libraries. We found that on our test ARM boards, the cost of performing

all memory operations as unaligned operations executed faster then having to

reorder data between registers. Also, managing aligned and unaligned data

accesses is less important on NEON architectures than on other SIMD vector

architectures (like Intel AVX). Many ARM processor have near equal perfor-

mance when accessing aligned and unaligned memory. For example, the per-

formance of all memory accesses on the ARM Cortex-57 are equal, unless the

access breaks a 64-byte cache line boundary.

8.4 Data Blocking Flyte Transformation

Anderson et al. showed that vectorizing the results of flyte values improves

the performance when compared to scalar transformation code (Anderson and

Gregg 2016). However, there is still the constant overhead that all values must

be transformed between flyte and binary32/64 form with every use. A possible

solution to this is to use a blocking strategy where small blocks of values are

transformed at a time. The values inside each block would be transformed to

204

a binary32/64 datatype, and would be used as many times as possible before a

new block was transformed. This is the same concept as data blocking, except

instead of blocking values so we can reuse data in fast data caches, we block

values to reuse data that has been transformed to a binary32/64 datatype.

The incentives and disincentives for flyte blocking are the same as data

blocking. Using large blocks of data means more opportunities to reuse trans-

formed data. However, larger blocks may not fit entirely in the fast data caches.

If part of a block ends up in the slower sections of the memory hierarchy, we

lose the advantages in performance and energy consumption from using flyte

datatypes.

8.5 Evaluation Of Results

To evaluate the effectiveness of flyte datatypes for reducing energy usage, Gen-

volution was used to generate direct convolution implementations for a set

of CNN convolution input sizes for three different flyte datatypes: Flyte-24,

Flyte-16, and Flyte-8. The CNN convolution input sizes were taken from five

commonly used CNN networks: AlexNet (Krizhevsky, Sutskever, and Hinton

2012), Inception V4 (Singh and Markovitch 2017), MobileNet V2 (Howard et al.

2017), ResNET-152 (2016 IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016 2016), and VGG ILSRVC

(Bengio and LeCun 2015). A unique implementation was generated for each in-

put size for each flyte datatype. The average execution time and cache miss rate

for each generated implementation was collected on each target. The execution

time and cache miss rates are the mean average of 20 runs. Genvolution was

also used to generate direct convolution implementations that used binary32

floats only for each input size. The generated binary32 implementations were

used as the baseline for evaluation (labelled as ’Float’ in section 8.7).

Energy measurements were collected using current and voltage sensors present

in ARM Target 1. The energy consumption of a given implementation is treated

205

as the sum of the DRAM energy consumption and the energy consumption of

the CPU that the implementation ran on.

Execution time is given as a relative speed-up against the baseline method

in the graphs in section 8.7. This means that higher is better for execution time

graphs. Energy usage is given as relative energy efficiency against the baseline

method in the graphs in section 8.7. This means that higher is better for energy

usage graphs. Cache miss rates are given as the average measured rate. A rate

of 0.0 denotes no cache misses, and a miss rate of 1.0 denotes that all cache

accesses were cache misses. This means that lower rates are better in cache

miss rate graphs.

Flyte-8 had the best energy efficiency for 18 of the 29 input sizes. It also

had the lowest execution time for 17 of the 18 input sizes where it was most

energy efficient. Flyte-16 was more energy efficient than the baseline for 12 of

the 29 input sizes. Flyte-24 was more energy efficient for 10 of the 29 input

sizes. Flyte-8 had the lowest L1 cache miss rate for 23 of the 29 input sizes, and

had the lowest L2 cache miss rate for 25 of the 29 input sizes.

We would suspect that the lower cache miss rates of Flyte-8 were due to the

fact that Flyte-8 needed the least total memory to store the input and output

data (only needing a byte per value). The lower memory size meant that more

of the total problem could be stored in the L1 and L2 caches. Less memory

needed to be loaded and stored in total for Flyte-8 implementations as well,

which is not shown in the cache miss rate values. As covered in section 8.1,

memory operations take up a large amount of total energy consumption, so we

would expect to see Flyte-8 implementations using less energy (as happened

for 18 of 29 input sizes), because Flyte-8 implementations need the fewest mem-

ory operations.

The largest energy efficiency improvement was obtained by Flyte-8 for the

last input size of figure 8-16 (where 𝐻=14, 𝑊=14, 𝐶=512, 𝑀=512, 𝐾=3). This

was also the input size with the largest execution time improvement, also by

the Flyte-8 implementation. The worst relative energy efficiency was obtained

by Flyte-24 for the last input size of figure 8-14(b) (where 𝐻=35, 𝑊=35, 𝐶=64,

206

𝑀=96, 𝐾=3). The execution time of Flyte-24 on this input size was also much

slower than the baseline method. Figure 8-20(b) and 8-23(b) show that the

L1 and L2 cache miss rates of the baseline method and Flyte-24 were simi-

lar. Flyte-24 implementations reduce the total memory footprint by the least

amount when compared to binary32 implementations (as they only reduce the

required memory by 25%). It’s possible that the reduction in memory opera-

tions was not large enough for the last last input size of figure 8-14(b) to cancel

out the cost of transforming between Flyte-24 and binary32 for computations.

8.6 Conclusion

Our goal for this chapter was to reduce the energy requirement of CNN convo-

lution without effecting execution time using Quantized Flyte datatypes. We

believe we were successful in achieving our goal. Our quantized implemen-

tations lowered the energy usage for performing a CNN convolution for 18 of

29 input sizes. This was done without effecting performance in the 18 input

sizes, and in 17 of the input sizes execution time was also lowered. Our Flyte-8

implementation had the best relative energy efficient for the last input size of

figure 8-16 (where 𝐻=14, 𝑊=14, 𝐶=512, 𝑀=512, 𝐾=3) with 1.206× relative en-

ergy efficiency (i.e. 82.92% of the energy required). The average relative energy

efficiency for the 18 input sizes was 1.093×. However, we had hoped to see a

larger average drop in energy consumption, and that we would be more energy

efficient for every input size, not just some of them.

Despite this, we still think our work was significant. Reducing the energy

usage of a CNN network by even 1% has a very significant impact if that net-

work is to be run many times on an energy-constrained embedded device.

We also believe our work suggests that investigating the usage of quantized

datatypes and automatic code generation to reduce energy usage may have

positive results.

207

We have now completed discussion of the our research material. the fol-

lowing and final chapter evaluates the research discussed in it’s entirety, and

topics of possible future research.

208

8.7 Results

Relative Energy Efficiency

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 8-14: Relative energy efficiency on AlexNet and Inception V4 convolutions on
ARM Target 1.

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 8-15: Relative energy efficiency on MobileNet V2 and ResNET-152 convolutions
on ARM Target 1.

209

Figure 8-16: Relative energy efficiency of Flyte implementations on VGG ILSRVC Con-
volutions on ARM Target 1.

210

Execution Time

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 8-17: Execution times on AlexNet and Inception V4 convolutions on ARM Tar-
get 1.

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 8-18: Execution times on MobileNet V2 and ResNET-152 convolutions on ARM
Target 1.

211

Figure 8-19: Execution Time of Flyte implementations on VGG ILSRVC Convolutions
on ARM Target 1.

212

L1 Cache Miss Rate

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 8-20: L1 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 1.

(a) MobileNet V2 convolutions. (b) ResNET-152 convolutions.

Figure 8-21: L1 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 1.

213

Figure 8-22: L1 cache miss rate of Flyte implementations on VGG ILSRVC Convolu-
tions on ARM Target 1.

214

L2 Cache Miss Rate

(a) AlexNet convolutions. (b) Inception V4 convolutions.

Figure 8-23: L2 cache miss rate on AlexNet and Inception V4 convolutions on ARM
Target 1.

(a) MobileNet convolutions. (b) ResNET-152 convolutions.

Figure 8-24: L2 cache miss rate on MobileNet V2 and ResNET-152 convolutions on
ARM Target 1.

215

Figure 8-25: L2 cache miss rate of Flyte implementations on VGG ILSRVC Convolu-
tions on ARM Target 1.

216

Chapter 9

Conclusion

9.1 Revisiting Goals

The main goal of this thesis was to investigate automatic code generation and

optimization to reduce the execution time, memory allocation size, and energy

usage of CNN convolution, with an emphasis on reducing resource usage on

low-power ARM devices.

We believe we were successful in achieving this goal. Genvolution was suc-

cessfully used to automatically generate direct convolution implementations

that matched the execution time of more memory intensive Im2Col convolu-

tion implementations for 10 of 29 input sizes, and 7 of 29 input sizes on ARM

Targets 1, and 2 respectively (section 4.12). Winogen was also successfully used

to automatically generate Winograd convolution implementations that outper-

formed vendor library Winograd convolution implementations for all input

sizes on ARM Targe 1 (section 6.15). To a lesser extent, Genvolution was also

successfully used to generate efficient matrix multiplication algorithms (section

7.6).

We were also successful in reducing CNN convolution resource usage through

other means. Our novel Winograd CNN convolution implementation (section

6.12) was able to outperform standard Winograd convolution implementations

for 17 of 29 input sizes while using less temporary memory overhead. We were

217

also able to reduce the energy usage of direct CNN convolution on ARM de-

vices by storing the tensors in a quantized Flyte datatype (section 8.7).

We believe we have shown that automatic code generation can be used to

improve the performance of CNN convolution. While we only improve re-

source usage for some input sizes in most cases, our results are still significant.

On mass produced embedded devices, small improvements to software can

lead to important gains when reproduced at scale. While extra programmer

work is required to empirically test if vendor library code or our automatically

generated code performs better for each CNN convolution of a given CNN net-

work, this effort is warranted if the network is going to run many times.

We believe our work also suggests that it may be fruitful to investigate if

automatic program generation can be used to improvement the performance

of code in other computer science problems. We believe this is especially true

in domains where there is a large amount of static information available at

program generation time.

9.2 Future Work

9.2.1 Multi-Threaded Performance

As our research focused on resource constrained devices, such as embedded

ARM devices, we restricted research to single-threaded performance only. We

would be interested in extending the functionality of Genvolution and Wino-

gen to include generating and optimizing multi-threaded CNN convolution

implementations. Either by generating multi-threaded code directly (e.g. gen-

erating POSIX pthread code), or generating code that made use of pre-existing

multi-threading frameworks, such as inserting OpenMP multi-threading prag-

mas.

218

9.2.2 Automatic Generation of CNN Convolution Variants

Our research focused entirely on "standard" CNN convolution, where we use

a dense input tensor and a dense input kernel to produce every output point

in an output tensor. However, there are many CNN convolution variants, such

as strided CNN convolution, dilated CNN convolution, and depthwise CNN

convolution. All these variants need separate implementations and have dif-

ferent memory access and performance characteristics. The number of CNN

convolution variants is also increasing as more CNN research is performed.

Hand-optimizing all CNN convolution variants is a very large task. Therefore,

automating the generation and optimization of these variants could be very

beneficial to save on programmer time.

9.2.3 Automatic Generation of GPU CNN Convolution

We had originally considered investigating using Genvolution to also generate

GPU CNN convolution implementations. In particular, using Genvolution to

generate OpenCL GPU kernel functions, because OpenCL kernels are written

in subset of C++14 which Genvolution already generates. However, due to

time constraints, we chose not to pursue this topic of research.

9.3 Final Thoughts

Computer architectures continue to become more complex. New hardware

mechanisms (e.g. L0 data caches, larger SIMD registers, hardware accelera-

tors) are continually being introduced that make producing optimal code more

complex. It is becoming more difficult for human programmers to reason about

optimization problems, and to correctly optimize code using all the available

resources on a machine. We believe automatic and/or machine-assisted op-

timization will become more common in the future as computer architecture

complexity grows.

219

Bibliography

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las

Vegas, NV, USA, June 27-30, 2016 (2016). IEEE Computer Society.

Abtahi, Tahmid et al. (2018). “Accelerating Convolutional Neural Network With

FFT on Embedded Hardware”. In: IEEE Trans. VLSI Syst. 26.9, pp. 1737–

1749.

Anderson, Andrew (2019). TriNNity Library. https://bitbucket.org/STG-

TCD/trinnity/src/master/.

Anderson, Andrew and David Gregg (2016). “Vectorization of Multibyte Float-

ing Point Data Formats”. In: CoRR abs/1601.07789. arXiv: 1601.07789.

ARM (2018). Arm A64 Instruction Set Architecture: Armv8, for Armv8-A architec-

ture profile: SIMD and Floating-point Instructions.

— (2019a). “Arm Architecture Reference Manual Armv8, for Armv8-A archi-

tecture profile”. In: Arm Architecture Reference Manual.

— (2019b). ARM Compute Library. https : / / github . com / ARM - software /

ComputeLibrary.

— (2019c). ARMCL 19.05 Doxygen: winograd_input_transform.cl File Reference.

ARM.

Athanasaki, Evangelia, Nectarios Koziris, and Panayotis Tsanakas (2005). “A

tile size selection analysis for blocked array layouts”. In: 9th Annual Work-

shop on Interaction between Compilers and Computer Architectures, INTERACT-

9 2005, San Francisco, California, USA, February 13, 2005. IEEE Computer So-

ciety, pp. 70–80.

Barabasz, Barbara and David Gregg (2019). “Winograd Convolution for DNNs:

Beyond linear polinomials”. In: CoRR abs/1905.05233. arXiv: 1905.05233.

220

Bengio, Yoshua and Yann LeCun, eds. (2015). 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-

ference Track Proceedings.

Blahut, Richard E. (2010). “Fast algorithms for short convolutions”. In: Fast Al-

gorithms for Signal Processing. Cambridge University Press, 145âĂŞ193.

Böhm, Christian, Martin Perdacher, and Claudia Plant (2016). “Cache-oblivious

loops based on a novel space-filling curve”. In: 2016 IEEE International Con-

ference on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016.

Ed. by James Joshi et al. IEEE Computer Society, pp. 17–26.

Callahan, David, Ken Kennedy, and Allan Porterfield (1991). “Software Prefetch-

ing”. In: ASPLOS-IV Proceedings - Forth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, Santa Clara,

California, USA, April 8-11, 1991. Ed. by David A. Patterson. ACM Press,

pp. 40–52.

Cao, Pei et al. (1995). “A Study of Integrated Prefetching and Caching Strate-

gies”. In: Proceedings of the 1995 ACM SIGMETRICS joint international confer-

ence on Measurement and modeling of computer systems, Ottawa, Canada, May

15-19, 1995. Ed. by Blaine D. Gaither. ACM, pp. 188–197.

Chen, Tien-Fu and Jean-Loup Baer (1995). “Effective Hardware Based Data

Prefetching for High-Performance Processors”. In: IEEE Trans. Computers

44.5, pp. 609–623.

Dally, William et al. (2008). “Efficient Embedded Computing”. In: IEEE Com-

puter 7.

“High Performance Computing for Computational Science - VECPAR 2012,

10th International Conference, Kobe, Japan, July 17-20, 2012, Revised Se-

lected Papers” (2013). In: ed. by Michel J. Daydé, Osni Marques, and Kengo

Nakajima. Vol. 7851. Lecture Notes in Computer Science. Springer, p. 395.

Facebook (2018). Pytorch QNNPack Library. Facebook.

Flynn, Michael J. (1972). “Some Computer Organizations and Their Effective-

ness”. In: IEEE Trans. Computers 21.9, pp. 948–960.

221

Fog, Agner (2018). Instruction tables: Lists of instruction latencies, throughputs and

micro-operation breakdowns for Intel, AMD and VIA CPUs. Technical Univer-

sity of Denmark.

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge (2016). “Image Style

Transfer Using Convolutional Neural Networks”. In: The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Han, Song et al. (2016). “Deep compression and EIE: Efficient inference engine

on compressed deep neural network”. In: 2016 IEEE Hot Chips 28 Symposium

(HCS), Cupertino, CA, USA, August 21-23, 2016. IEEE, pp. 1–6.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, pp. 770–778.

Hennessy, John L. and David A. Patterson (2012). “Computer Architecture - A

Quantitative Approach, 5th Edition”. In: Morgan Kaufmann, pp. 282–288.

Howard, Andrew G. et al. (2017). “MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications”. In: CoRR abs/1704.04861. arXiv:

1704.04861.

Hu, Jingtong et al. (2011). “Towards energy efficient hybrid on-chip Scratch

Pad Memory with non-volatile memory”. In: Design, Automation and Test in

Europe, DATE 2011, Grenoble, France, March 14-18, 2011. IEEE, pp. 746–751.

Iandola, Forrest N. et al. (2016). “SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and <1MB model size”. In: CoRR abs/1602.07360. arXiv:

1602.07360.

Intel (2016). Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel.

— (2018). MKLDNN Library. https://github.com/intel/mkl-dnn.

— (2019). Intel Intrinsics Guide. Intel.

Jacovi, Alon, Oren Sar Shalom, and Yoav Goldberg (2018). “Understanding

Convolutional Neural Networks for Text Classification”. In: Proceedings of

the Workshop: Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP

2018, Brussels, Belgium, November 1, 2018. Ed. by Tal Linzen, Grzegorz Chru-

222

pala, and Afra Alishahi. Association for Computational Linguistics, pp. 56–

65.

Khan, S. et al. (2018). “A Guide to Convolutional Neural Networks for Com-

puter Vision”. In: Synthesis Lectures on Computer Vision. Morgan & Clay-

pool Publishers, pp. 49–50.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet

Classification with Deep Convolutional Neural Networks”. In: Proceedings

of the 25th International Conference on Neural Information Processing Systems -

Volume 1. NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., pp. 1097–

1105.

Lam, Monica S., Edward E. Rothberg, and Michael E. Wolf (1991). “The Cache

Performance and Optimizations of Blocked Algorithms”. In: ASPLOS-IV

Proceedings - Forth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Santa Clara, California, USA, April

8-11, 1991. Ed. by David A. Patterson. ACM Press, pp. 63–74.

Lavin, Andrew and Scott Gray (2016). “Fast Algorithms for Convolutional Neu-

ral Networks”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer

Society, pp. 4013–4021.

LeCun, Yann et al. (1989). “Backpropagation Applied to Handwritten Zip Code

Recognition”. In: Neural Computation 1.4, pp. 541–551.

Lee, Jaekyu, Hyesoon Kim, and Richard W. Vuduc (2012). “When Prefetching

Works, When It Doesn’t, and Why”. In: TACO 9.1, 2:1–2:29.

Maji, Partha et al. (2019). “Efficient Winograd or Cook-Toom Convolution Ker-

nel Implementation on Widely Used Mobile CPUs”. In: CoRR abs/1903.01521.

arXiv: 1903.01521.

Mowry, Todd C., Monica S. Lam, and Anoop Gupta (1992). “Design and Eval-

uation of a Compiler Algorithm for Prefetching”. In: ASPLOS-V Proceed-

ings - Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, Boston, Massachusetts, USA, October 12-15,

1992. Ed. by Barry Flahive and Richard L. Wexelblat. ACM Press, pp. 62–73.

223

Müller, Matthias S. et al., eds. (2010). Tools for High Performance Computing 2009

- Proceedings of the 3rd International Workshop on Parallel Tools for High Perfor-

mance Computing, September 2009, ZIH, Dresden. Springer.

Park, Neungsoo, Bo Hong, and Viktor K. Prasanna (2003). “Tiling, Block Data

Layout, and Memory Hierarchy Performance”. In: IEEE Trans. Parallel Dis-

trib. Syst. 14.7, pp. 640–654.

Patterson, David A., ed. (1991). ASPLOS-IV Proceedings - Forth International Con-

ference on Architectural Support for Programming Languages and Operating Sys-

tems, Santa Clara, California, USA, April 8-11, 1991. ACM Press.

Rullgard, Mans (2014). Cortex-A7 Instruction Cycle Timings.

Sewak, M., M.R. Karim, and P. Pujari (2018). “Practical Convolutional Neural

Networks: Implement advanced deep learning models using Python”. In:

Packt Publishing, pp. 53–54.

Singh, Satinder P. and Shaul Markovitch, eds. (2017). Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Fran-

cisco, California, USA. AAAI Press.

Team, GCC (2019). “GCC 4.7 Release Series Changes, New Features, and Fixes”.

In:

Vasudevan, Aravind, Andrew Anderson, and David Gregg (2017). “Parallel

Multi Channel convolution using General Matrix Multiplication”. In: 28th

IEEE International Conference on Application-specific Systems, Architectures and

Processors, ASAP 2017, Seattle, WA, USA, July 10-12, 2017. IEEE Computer

Society, pp. 19–24.

Winograd, S. (1980). Arithmetic Complexity of Computations. CBMS-NSF Regional

Conference Series in Applied Mathematics. Society for Industrial and Ap-

plied Mathematics.

Zee, Field G. Van and Robert A. van de Geijn (2015). “BLIS: A Framework for

Rapidly Instantiating BLAS Functionality”. In: ACM Trans. Math. Softw. 41.3,

14:1–14:33.

Zhang, Zhang and F Gennady (2017). “Improve Intel MKL Performance for

Small Problems: The Use of MKL_DIRECT_CALL”. In:

224

Zhu, Chenzhuo et al. (2017). “Trained Ternary Quantization”. In: 5th Interna-

tional Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. OpenReview.net.

Zuras, Dan et al. (2008). “IEEE Standard for Floating-point Arithmetic”. In:

IEEE Std 754-2008.

225

