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Abstract 30 

In humans, impaired response inhibition is characteristic of a wide range of psychiatric 31 

diseases and of normal aging. It is hypothesised that the right inferior frontal cortex plays a 32 

key role by inhibiting the motor cortex via the basal ganglia. The electroencephalography-33 

derived β-rhythm (15-29 Hz) is thought to reflect communication within this network, with 34 

increased right frontal β-power often observed prior to successful response inhibition. Recent 35 

literature suggests that averaging spectral power obscures the transient, burst-like nature of 36 

β-activity. There is evidence that the rate of β-bursts following a Stop signal is higher when a 37 

motor response is successfully inhibited. However, other characteristics of β-burst events, and 38 

their topographical properties, have not yet been examined. Here, we used a large human 39 

(male and female) electroencephalography Stop Signal Task dataset (n=218) to examine 40 

averaged normalised β-power, β-burst rate and β-burst ‘volume’ (which we defined as burst 41 

duration x frequency span x amplitude). We first sought to optimise the β-burst detection 42 

method. In order to find predictors across the whole scalp, and with high temporal precision, 43 

we then used machine learning to (1) classify successful vs. failed stopping and to (2) predict 44 

individual Stop Signal Reaction Time. β-Burst volume was significantly more predictive of 45 

successful and fast stopping than β-burst rate and normalised β-power. The classification 46 

model generalised to an external dataset (n=201). We suggest β-burst volume is a sensitive 47 

and reliable measure for investigation of human response inhibition.   48 
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Significance Statement 49 

The electroencephalography-derived β-rhythm (15-29 Hz) is associated with the ability 50 

to inhibit ongoing actions. In this study, we sought to identify the specific characteristics of β-51 

activity that contribute to successful and fast inhibition. In order to search for the most relevant 52 

features of β-activity – across the whole scalp and with high temporal precision – we employed 53 

machine learning on two large datasets. Spatial and temporal features of β-burst ‘volume’ 54 

(duration x frequency span x amplitude) predicted response inhibition outcomes in our data 55 

significantly better than β-burst rate and normalised β-power. These findings suggest that 56 

multidimensional measures of β-bursts, such as burst volume, can add to our understanding 57 

of human response inhibition.  58 
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Introduction 59 

The ability to inhibit unwanted or inappropriate behaviours relies on effective response 60 

inhibition in the brain. The Stop Signal Task (SST) measures this cognitive process (Logan 61 

and Cowan, 1984) by requiring the participant to cancel an already initiated motor response 62 

following an infrequent Stop cue. If the response is withheld following the Stop cue then the 63 

trial is classified as a ‘success’. If a response is made then the trial is classified as a ‘failure’. 64 

The Stop Signal Reaction Time (SSRT) is an estimation of the covert latency of the action 65 

cancellation process (Verbruggen et al., 2019). The SSRT is ~200-250 ms in healthy adults, 66 

and slower SSRTs are characteristic of several psychiatric diseases (Lijffijt et al., 2005; Luijten 67 

et al., 2011) and normal aging (Hsieh and Lin, 2017). 68 

Many previous studies have suggested that right inferior frontal cortex (rIFC) is 69 

involved in response inhibition through a rIFC-basal ganglia-motor cortex pathway (Aron et 70 

al., 2014; Wessel and Aron, 2017). Jana et al. (2020) recently supported the role of this 71 

pathway in action stopping by suggesting an exact temporal cascade: rIFC activation at 120 72 

ms post Stop signal, global motor suppression at 140 ms, muscle inhibition at 160 ms and 73 

SSRT at 220 ms. Communication in this pathway may be facilitated through brain oscillations 74 

in the β-frequency band (15-29 Hz), and several studies have reported an increase in 75 

averaged β-power over the rIFC at the moment of stopping a movement (Swann et al., 2009; 76 

Wagner et al., 2017; Schaum et al., 2020).  77 

Recent literature suggests that the cortical β-rhythm is by nature characterised by 78 

short-lasting, transient bursts and only appears to change in sustained amplitude if it is 79 

averaged over multiple trials (Feingold et al., 2015; Sherman et al., 2016). Various 80 

characteristics of β-bursts have been analysed in previous studies, such as rate, timing, 81 

probability, peak power, duration and interval time (Feingold et al., 2015; Sherman et al., 2016; 82 

Shin et al., 2017; Tinkhauser et al., 2017; Errington et al., 2020; Hannah et al., 2020; Jana et 83 

al., 2020; Seedat et al., 2020; Wessel, 2020). Three recent studies have investigated the role 84 

of β-bursts in human response inhibition using electroencephalography (EEG) and have 85 
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reported mixed findings. Wessel (2020) found a larger fronto-central β-burst rate for successful 86 

compared to failed action stopping whereas Jana et al. (2020) did not find a significant 87 

difference. Another study reported that earlier right frontal β-bursts were associated with faster 88 

CancelTime, a measure of stopping latency using electromyography (EMG) (Hannah et al., 89 

2020). 90 

Here, we aimed to further quantify the role and nature of β-bursts in human response 91 

inhibition in two large Stop Signal Task EEG datasets (n = 419) by using machine learning to 92 

search a wide range of spatial and temporal features. First, we sought to optimise the β-burst 93 

detection method. In a second step, we conducted two different single-trial analyses to (1) 94 

classify successful vs. failed Stop trials and (2) predict an individual’s SSRT. We investigated 95 

two β-burst characteristics: rate and volume (a composite measure of burst duration, 96 

frequency span and amplitude) and also compared them to averaged normalised β-power. 97 

Given the high dimensional nature of the data, we employed a machine-learning approach, 98 

employing best-practice for quantifying the generalisability of our results (Poldrack et al., 99 

2019). We trained the models on 60% of our data (internal validation set; n = 130) and 100 

subsequently applied the resulting models on the remaining, unseen 40% of our data (holdout 101 

validation set; n = 88). We then aimed to validate results on an external dataset (n = 201; 102 

Wessel (2020)). We hypothesised that β-burst features will be more predictive than averaged 103 

normalised β-power for classifying successful vs. failed Stop trials, and for predicting individual 104 

SSRTs. We also hypothesised that β-bursts over the right frontal scalp region would be most 105 

predictive.  106 
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Materials and Methods 107 

Participants 108 

The internal and holdout validation dataset consisted of 282 healthy adult human 109 

volunteers (age: 35.03 ± 14.72 years (mean ± SD); 175 female) who were pooled from four 110 

studies conducted in University College Dublin and Trinity College Dublin, Ireland. The studies 111 

were approved by the ethics committees of University College Dublin School of Psychology 112 

and Trinity College Dublin School of Psychology. Participants provided written informed 113 

consent. The raw data from this dataset formed the basis of another study that did not focus 114 

on spectral properties (Rueda-Delgado et al., 2019). The inclusion and exclusion criteria of 115 

each project are available in the Supplementary Material in Rueda-Delgado et al. (2019). 116 

The external validation dataset consisted of 214 healthy adult human volunteers (age: 117 

22.51 ± 6.67 years (mean ± SD); 121 female). This dataset was published as part of another 118 

study investigating β-bursts in response inhibition (Wessel, 2020) and is openly available on 119 

the Open Science Framework (https://osf.io/v3a78/). 120 

Task 121 

The task used for this study is described in detail in Rueda-Delgado et al. (2019). 122 

Briefly, participants underwent an adaptive visual SST. Each trial lasted 1000 ms and was 123 

preceded by a fixation cross (1000 ms duration). Participants were then presented with arrows 124 

pointing either to the right or left (Go stimulus) and they were instructed to respond with their 125 

right or left index finger, respectively, as fast as possible via an Xbox 360 game controller. In 126 

one of four Go trials, the Go stimulus was followed by an arrow pointing upwards (Stop signal) 127 

after a varying stop-signal delay (SSD). The participants were instructed to inhibit their button 128 

press on these Stop trials. The SSD was adjusted by a tracking algorithm, aiming to achieve 129 

a task difficulty resulting in 50% successful and 50% failed Stop trials. After a successful Stop 130 

trial, the SSD was increased, making the task harder and after a failed Stop trial, the SSD was 131 

decreased, making the task easier. The initial SSD was 250 ms and was subsequently 132 
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adjusted using a double-limit algorithm (see Richards et al., 1999). The SSD could vary 133 

between 50 ms and 450 ms. Following a Stop trial, the subsequent SSD value was chosen 134 

randomly between the current SSD and a pair of limits (higher or lower, as appropriate). These 135 

limits were designed to converge on the SSD that produced a 50% success rate and to be 136 

robust to fluctuations on individual trials. If a participant responded to the Go stimulus before 137 

Stop signal presentation, then the SSD was decreased for subsequent trials. The task 138 

consisted of 135 Go trials and 45 Stop trials and was presented in 3 blocks of 60 trials. 139 

Participants in the external dataset performed a slightly different version of the SST 140 

which is described in Wessel (2020). The main differences were a higher Stop trial probability 141 

(0.33), a different visual Stop signal (arrow turned from white to red), different response 142 

buttons (q and p buttons on a QWERTY keyboard), the tracking algorithm (+/- 50 ms) was 143 

implemented independently for left- and rightward Go stimuli, and a larger number of trials (6 144 

blocks of 50 trials). 145 

SSRT analysis 146 

The SSRT was calculated using the integration method with replacement of Go 147 

omissions by the maximum RT (Verbruggen et al., 2019). All Go trials were included in the Go 148 

RT distribution, including Go trials with choice errors. Premature responses on failed Stop 149 

trials were included when calculating the probability of responding on a Stop trial 150 

(p(respond|signal)) and mean SSD. Participants with SSRT < 125 ms and > 98th percentile 151 

of total SSRT distribution (303.7 ms) were excluded from the analysis (n = 47). The same 152 

criteria were applied to the external dataset (SSRT < 125 ms and > 98th percentile SSRT 153 

distribution (385.7 ms)) and 11 participants were excluded. 154 

EEG recording and preprocessing 155 

64-channel EEG data in the 10-5 system were recorded during the SST in a 156 

soundproof, darkened room using the ActiveTwo Biosemi system. Four additional electrodes 157 

recorded the electrooculogram from ~2 cm below the eyes (vertical eye movements) and from 158 
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the outer canthi (horizontal eye movements). Two further electrodes recorded from bilateral 159 

mastoids.  160 

EEG data were digitised with a sampling rate of 512 Hz. EEG data preprocessing was 161 

carried out using the EEGLAB toolbox (Delorme and Makeig, 2004; 162 

http://sccn.ucsd.edu/eeglab) in conjunction with the Fully Automated Statistical Thresholding 163 

for EEG artefact Rejection plug‐in (FASTER; Nolan et al., 2010; 164 

http://sourceforge.net/projects/faster). The data were initially bandpass filtered between 0.1 165 

Hz and 95 Hz, notch filtered at 50 Hz and average referenced across all scalp electrodes. 166 

Data were subsequently epoched from 500 ms prior to Go/Stop stimulus onset to 2000 ms 167 

after Go/Stop stimulus onset for Go trials and Stop trials, respectively. FASTER identified and 168 

removed artefactual (i.e., non-neural) independent components, removed epochs containing 169 

large artefacts (e.g., muscle twitches) and interpolated channels with poor signal quality. The 170 

remaining EEG data were then visually inspected by trained raters to ensure good quality and 171 

that any remaining noisy data were removed. Specifically, trained raters identified any 172 

remaining artefacts in independent components (e.g., eyeblinks), epochs containing 173 

idiosyncratic muscle/movement or transient electrode artifacts, high amount of alpha and 174 

interpolated any channels that were noisy throughout all epochs of a participant. Datasets with 175 

a large amount of artefacts (e.g., due to chewing) and/or with >40% of epochs removed were 176 

excluded from further analysis. The remaining datasets were further checked for noisy data 177 

by calculating each dataset’s event-related potential (ERP) and calculating z-scores across 178 

all ERPs. Datasets with z-scores > 15 were excluded. After exclusion of these, new z-scores 179 

were calculated and datasets with z-scores > 3 were excluded from further analysis. Fifteen 180 

participants were rejected from further analysis due to these artefacts or noisy data (in 181 

accordance with the exclusion criteria in Rueda-Delgado et al., 2019). The remaining 220 182 

participants were subjected to further analysis. Details for EEG recording and preprocessing 183 

steps of the external dataset can be found in the original publication (Wessel, 2020). The 184 

external data was recorded using a different 62-channel array. We therefore interpolated the 185 
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channel locations from the preprocessed external data to match our 64-channel locations 186 

using the EEGLAB function pop_interp.  187 

After channel interpolation, both internal and external EEG data were analysed 188 

identically. The analysis was applied to individual successful and failed Stop trial epochs (-189 

500 ms to +2000 ms with respect to the Stop signal) using custom scripts in MATLAB 2017b 190 

and 2018b (Mathworks, USA). After preprocessing, EEG data were transformed using the 191 

current source density method (CSD; Kayser and Tenke, 2006; 192 

https://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html) which is a 193 

reference-free montage to attenuate the effect of volume conduction in scalp EEG. 194 

Time-frequency transformation 195 

For all epochs, 2-dimensional representations of each electrode’s time-frequency were 196 

estimated using a complex Morlet wavelet (range of logarithmically spaced 4-10 cycles for 15 197 

linearly spaced frequencies across 15-29 Hz). The squared magnitude of the convolved data 198 

was calculated to obtain power estimates. β-Bursts were extracted from time-frequency power 199 

estimates without baseline normalisation. Baseline normalisation was separately performed 200 

to compute averaged normalised β-power. Time-frequency power estimates were converted 201 

to decibel (dB) using a 100 ms baseline prior to the Stop signal. β-Power was estimated over 202 

whole epochs and was only later subdivided into smaller time bins. It therefore does not matter 203 

if time bin sizes are smaller than the β-cycle length. 204 

Β-burst detection 205 

Β-burst detection was performed using the same general method as described in 206 

Wessel (2020), originally reported in Shin et al. (2017). For each time-frequency power matrix, 207 

local maxima were detected using the MATLAB function imregionalmax, from -25 ms to +1000 208 

ms with respect to the Stop signal. The imregionalmax function identifies data with higher 209 

values that are surrounded by data with lower values (starting at -25 ms is necessary to inspect 210 

lower values for maxima located close to 0 ms). β-Bursts were then defined as local maxima 211 
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that exceeded a defined threshold. While Wessel (2020) and Shin et al. (2017) employed a β-212 

burst detection threshold of 6x median power calculated from -500 ms to +1000 ms with 213 

respect to the Stop signal (across all trials per subject), we used machine learning to search 214 

across six different thresholds ranging from 1x to 6x median power of each individual time-215 

frequency power matrix. We also tested two different baselines to calculate median power 216 

from, either using the whole epoch including stopping (-500 ms to +1000 ms with respect to 217 

the Stop signal) or using 300 ms during the fixation cross period. The purpose of this was to 218 

establish an optimal burst detection method for detecting β-bursts in human EEG that yielded 219 

the highest predictive ability for the behaviour under investigation (the 6x median power 220 

threshold employed by Shin et al. (2017) was decided following a search procedure through 221 

a range of thresholds based on pre-stimulus β-power derived from murine local field potentials 222 

and human magnetoencephalography (MEG)). 223 

β-features extraction 224 

The time-frequency power matrices of each participant were epoched from -125 ms to 225 

+100 ms with respect to each participant’s SSRT, calculated for each of the 64 scalp 226 

electrodes. For each individual 225 ms time-frequency power matrix, features were 227 

individually extracted for either 25 ms, 45 ms or 75 ms time bins (i.e., 9, 5 or 3 bins, 228 

respectively). Three types of beta-band activity features were extracted in each time bin 229 

(Figure 1): (1) β-Burst rate; the sum of the number of supra-threshold bursts (2) β-Burst 230 

volume; the area under the curve of supra-threshold datapoints, individually calculated for 231 

each frequency and subsequently summed up over all frequencies within each time bin to 232 

obtain volume (β-burst volume was calculated per time bin, and not per burst, so that each 233 

trial would have the same number of features for inclusion in the regression models) (3) 234 

Normalised β-power; the mean of the baseline normalised power estimates. 235 

Data preparation for the machine learning analysis 236 

Our internal dataset (n = 218) was divided into two groups: the internal validation set 237 

(n = 130) and the holdout validation set (n = 88). In order to balance the internal and holdout 238 
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validation sets with respect to gender, participants were assigned to each set randomly but 239 

the assignment was iterated until the female:male ratio fell within the range 1.545:1 to 1.655:1 240 

in each set. Data from Wessel (2020) served as the external validation set (n = 201). 241 

The goal of the analysis was to predict individual trial outcomes (successful or failed 242 

stopping) and, separately, individual SSRTs from EEG data. Thus, each trial was regarded as 243 

an independent observation. This resulted in 2546 successful Stop trials and 2087 failed Stop 244 

trials for the internal validation set, 1814 successful Stop trials and 1454 failed Stop trials for 245 

the holdout validation set and 7809 successful Stop trials and 6449 failed Stop trials for the 246 

external validation set. For each trial, we obtained a value for each electrode and time bin for 247 

each of the three β-features as described in ‘Β-features extraction’.  248 

Experimental design and statistical analysis 249 

Behavioural analysis 250 

In addition to the SSRT analysis described earlier, means and standard deviations 251 

were extracted for each subject for the following behavioural SST measures: Go trial reaction 252 

time (RT), failed Stop trial RT, SSD, number of successful Stop trials, number of failed Stop 253 

trials, probability of successful stopping, probability of Go omissions, probability of choice 254 

errors. These measures were compared between the internal and the holdout as well as the 255 

external validation sets using a two sample t-test. Go trial RT and failed Stop trial RT were 256 

compared within each validation set using a paired t-test and effect sizes were estimated using 257 

Cohen’s d. Participants were excluded from analysis if their failed Stop trial RT was larger 258 

than Go trial RT (Bissett et al., 2019; Verbruggen et al., 2019), violating an assumption of the 259 

horse-race model.  260 

Machine learning analysis of the internal validation set 261 

The detailed method for the machine learning used in this study is described in Rueda-262 

Delgado et al. (2019) and is briefly explained here. We used logistic regression to classify 263 

successful vs. failed Stop trials (‘Stop trial classification’) and, separately, linear regression to 264 
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predict individual SSRT for each trial (‘SSRT prediction’). For both analyses we used a form 265 

of penalised regression (specifically, the Elastic Net; Zou and Hastie, 2005) to attenuate 266 

overfitting (Jollans et al., 2019). The Elastic Net constrains the size of regression coefficients 267 

and can also set regression coefficients to zero (i.e., it is a form of feature selection). A 268 

modification for this study was that the range of the two hyperparameters (alpha and lambda) 269 

were expanded, and the search grid altered. For logistic regression, alpha ranged from 0.01 270 

to 1 across 10 logarithmically-spaced values and lambda ranged between 0.2 to 1 across 10 271 

linearly-spaced values  (i.e., a search grid of 100 parameter-pair values). For linear regression, 272 

alpha ranged from 0.3 to 1 in 10 linearly-spaced values and lambda ranged from 3 to 7 in 10 273 

linearly-spaced values. Model hyperparameters were determined using nested cross-274 

validation. In contrast to Rueda-Delgado et al. (2019), here we used 5-fold rather than 10-fold 275 

cross-validation. The main- and subfolds were assigned across subjects. In each subfold, the 276 

data were z-scored and then Winsorized (i.e., values > |3| were replaced with a value of +/-3). 277 

The entire analysis was iterated 100 times for each model, with a new random assignment of 278 

training and test sets on each iteration. 279 

We adjusted for age and sex by adding them as additional features to each model 280 

(Rubia et al., 2013; Hsieh and Lin, 2017). For the internal and holdout validation sets we 281 

additionally controlled for the four different data collection projects by adding 3 dummy-coded 282 

regressors. 283 

To quantify the model performance, the entire procedure was repeated using random-284 

label permutation (i.e., to generate a ‘null’ model) where trial outcomes were randomly shuffled 285 

(i.e., the successful or failed Stop trial label for the logistic regression, or SSRT for the linear 286 

regression). Note that covariates were not shuffled for null models, thereby quantifying their 287 

contribution to the actual model (Dinga et al., 2020). That is, any increase in performance 288 

between the actual and null models can be attributed to the contribution of the EEG data. The 289 

performance metrics for the logistic regression consisted of the area under the receiver 290 

operating characteristic curve (AROC; chance = 0.5) and Brier score (i.e., mean squared error 291 
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between predicted probabilities and expected values) (Dinga et al., 2019). The performance 292 

metrics for the linear regression consisted of mean absolute error (MAE) and coefficient of 293 

determination (R2) (Poldrack et al., 2019). Results reported for the internal validation are mean 294 

values across all 100 iterations of the analysis. To assess the significance of the actual model 295 

predictions we calculated P which is equal to the fraction of iterations on which the 296 

performance metrics of the null model were more predictive than the performance metrics of 297 

the actual model (cf., Greene et al., 2018). 298 

We sought to first determine the optimal β-burst detection method by utilizing the 299 

internal validation dataset. For this, we tested two parameters: (1) six different thresholds (1x, 300 

2x, 3x, 4x, 5x or 6x median power) and (2) two different baselines to calculate median power 301 

of, either using the whole epoch including stopping (-500 ms to +1000 ms with respect to the 302 

Stop signal) or using 300 ms during the fixation cross period. In addition to these burst 303 

detection parameters, we also tested a third parameter: (3) three different time bin sizes to 304 

partition the 225 ms time-frequency power matrix (9x25 ms, 5x45 ms or 3x75 ms). We tested 305 

all 36 possible combinations of these three parameters using a “burst features” model that 306 

consisted of β-burst rate and β-burst volume. Depending on the time bin size, this model 307 

consisted of 1152, 640 or 384 spatio-temporal features (2 burst features x 64 channels x 9, 5 308 

or 3 time bins). The analysis was iterated 100 times for each combination. We ran this analysis 309 

both for the Stop trial classification and for the SSRT prediction. We then determined the most 310 

predictive parameter combination across both analyses.  311 

Following determination of the optimal β-burst detection method and time bin size, the 312 

internal validation analysis was tested on five final main models using the most predictive 313 

parameter combination (see Results): (1) Full features model (β-burst rate, β-burst volume, 314 

normalised β-power; 1728 spatio-temporal features), (2) Burst features model (β-burst rate, 315 

β-burst volume; 1152 spatio-temporal features) and three Single feature models (3) Β-burst 316 

rate (576 spatio-temporal features), (4) Β-burst volume (576 spatio-temporal features) and (5) 317 

Normalised β-power (576 spatio-temporal features). The performance metrics of the five main 318 
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models were compared using a one-way repeated measures ANOVA test (omnibus p 319 

threshold = 0.05) and a post hoc t-test with Bonferroni correction to determine if the 320 

performance metric means of the models were significantly different. Effect sizes were 321 

estimated using eta-squared (η2). 322 

Validation analysis of the holdout and external validation sets 323 

The results of the five main models from the internal validation were tested on the 324 

holdout and external validation sets. This involved applying the optimum burst detection 325 

parameters and time bin size as well as regression weights from the internal set to the external 326 

and holdout sets (neither the optimum burst detection parameters and time bin size nor the 327 

regression weights could be derived from the holdout and external sets as this would violate 328 

the independence between training and test sets (Poldrack et al., 2019)). The holdout and 329 

external validation sets were scaled to the internal validation data by z-scoring and 330 

Winsorizing using the mean and standard deviation of the internal validation set. The mean 331 

SSRTs of the holdout and external validation sets were 5 ms and 51 ms longer, respectively. 332 

Therefore, for the SSRT prediction, the SSRTs in the holdout and external validation sets were 333 

scaled to the same mean and standard deviation of the internal validation set SSRT. For each 334 

model, the average regression coefficients from the 100 iterations of the internal validation 335 

were then applied to the holdout and external validation data. The same metrics to evaluate 336 

model performance were utilised for holdout and external validation sets. This procedure was 337 

again repeated using random-label permutation (null model).  338 

Data interpretation 339 

To further interrogate the data and identify the most predictive features in successful 340 

models, we calculated the ‘selection frequency’ of each individual feature. This was calculated 341 

by summing each feature’s non-zero count in each main fold and subsequently averaging 342 

across the 100 iterations. Features were then ranked first by selection frequency and second 343 

by the absolute regression coefficient. Solely to aid interpretation, we applied spatial and 344 

temporal feature reduction to summarise the results. We created boxplots by grouping data 345 
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from 64 electrodes into 8 different regions (Table 1) and amalgamated the data into 3 time 346 

bins (-125 ms to -50 ms before SSRT, -50 ms to +25 ms around SSRT, +25 ms to +100 ms 347 

after SSRT). 348 

Code accessibility 349 

Custom written scripts can be downloaded on the Open Science Framework at 350 

https://osf.io/4tznd/. 351 
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Results 352 

Behavioural results 353 

The behavioural data and statistical comparisons of all three validation sets are 354 

displayed in Table 2. Failed Stop RT was larger than Go RT for 2 participants in the internal 355 

validation set, 0 participants in the holdout validation set and 2 participants in the external 356 

validation set. These data were therefore excluded from further analysis. Within each 357 

validation set, failed Stop RTs were significantly faster than Go RTs (internal: t(129) = 28.51, 358 

p = 1.6*10-57, d = 2.50; holdout: t(87) = 23.74, p = 9.0*10-40, d = 2.53; external: t(200) = 33.54, 359 

p = 4.6*10-84, d = 2.37), in accordance with the horse-race model assumption. There were no 360 

significant differences in the behavioural measures between internal and holdout validation 361 

sets. There were significant differences between every behavioural SST measure except the 362 

SSD when comparing internal and external validation sets, which used slightly different 363 

versions of the SST. 364 

Machine learning results 365 

Optimal β-burst detection method and time bin size 366 

The results of the analyses to determine the optimal β-burst detection method and 367 

optimal time bin size are displayed in Figure 2. The differences in performance metrics across 368 

the 36 models were small. Both the Stop trial classification and the SSRT prediction yielded 369 

most predictive results using 1x median power as the burst detection threshold. However, after 370 

visual inspection of the data it was apparent that thresholds below 2x median power 371 

occasionally mis-registered background β-oscillatory activity as bursts. For interpretability 372 

(i.e., to distinguish between averaged β-power and β-burst events), therefore, we used 2x 373 

median power as the burst detection threshold for both Stop trial classification and SSRT 374 

prediction. Further, there was no difference between using either baseline method to calculate 375 

median power. This was further supported when correlating the data coming from either 376 

baseline which showed that these data correlated (for β-burst rate: r = 0.83, for β-burst volume: 377 
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r = 0.99). Therefore, we chose -500 ms to +1000 ms as a baseline for compatibility with 378 

previous studies (i.e., Shin et al., 2017; Wessel, 2020). Finally, there was little difference 379 

among different time bin sizes. We therefore chose the 25-ms time bin size because it afforded 380 

greater temporal precision. 381 

Stop trial classification (logistic regression results of five main models) 382 

Figure 3A displays the results for the Stop trial classification for all five main models 383 

plus corresponding null models for internal, holdout and external validation sets. 384 

We aimed to find the features that best classified successful vs. failed Stop trials. The 385 

mean AROCs of the five models were unequal according to a one-way repeated measures 386 

ANOVA (F(4,396) = 1185, p = 8.1*10-219, η2 = 0.92). Post hoc comparisons (Bonferroni 387 

corrected at 0.05/10 = 0.005) indicated that mean AROC of the single feature β-burst volume 388 

model (mean AROC = 0.57, mean Brier score = 0.244) was significantly larger than mean 389 

AROC of the full features model (mean AROC = 0.56, mean Brier score = 0.245) and of the 390 

burst features model (mean AROC = 0.56, mean Brier score = 0.246). The full features model 391 

and the burst features model were the only two models which were not significantly different 392 

from each other. The single feature β-burst volume model outperformed the null model on 393 

every iteration (PAROC = 0, PBrier = 0). The holdout (mean AROC = 0.58, mean Brier score = 394 

0.243) and the external (mean AROC = 0.57, mean Brier score = 0.244) validations yielded 395 

similar results when applying the regression coefficients from the internal validation single 396 

feature β-burst volume model. As a next step, we compared the mean AROCs of the three 397 

single feature models and the post hoc test revealed that they were all significantly different 398 

from each other. The β-burst rate model showed the worst classification accuracy (mean 399 

AROC = 0.51, mean Brier score = 0.248) although generally outperformed the null model 400 

(PAROC = 0.24, PBrier = 0.25). The null model results of the Stop trial classification (AROCs 401 

around 0.5, i.e., chance level) indicate that the model accuracies did not depend on the 402 

inclusion of the covariates.  403 
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SSRT prediction (linear regression results of five main models) 404 

Figure 3B displays the results for the SSRT prediction for all five main models plus 405 

corresponding null models for internal, holdout and external validation sets. 406 

The mean MAEs of the five models were unequal according to a one-way repeated 407 

measures ANOVA (F(4,396) = 36.23, p = 8.3*10-26, η2 = 0.27). Post hoc comparisons 408 

(Bonferroni corrected at 0.05/10 = 0.005) indicated that mean MAEs of the full features model 409 

(mean MAE = 28.77, mean R2 = 0.02), the burst features model (mean MAE = 28.78, mean 410 

R2 = 0.02) and the single feature β-burst volume model (mean MAE = 28.82, mean R2 = 0.01) 411 

were not significantly different, however, they were significantly more predictive than the single 412 

feature models β-burst rate and normalised β-power. There was a modest performance 413 

improvement in comparison to the null model: full features model (PMAE = 0.27, PR2 = 0.28), 414 

burst features model (PMAE = 0.29, PR2 = 0.23) and single feature β-burst volume model (PMAE 415 

= 0.34, PR2 = 0.36). The respective holdout and the external validations yielded similar results. 416 

The mean MAEs of the two remaining single features models, β-burst rate (mean MAE = 417 

29.18, mean R2 = 0.00) and normalised β-power (mean MAE = 29.17, mean R2 = 0.01), were 418 

not significantly different. Neither model outperformed the null models (β-burst rate: PMAE = 419 

0.52, PR2 = 0.54); normalised β-power: PMAE = 0.49, PR2 = 0.49). The coefficients of 420 

determination (R2) of the null models of the SSRT prediction are slightly above zero, showing 421 

an additional, but quite small, effect of the covariates on the SSRT prediction. 422 

Spatial and temporal dynamics of β-burst volume 423 

The β-burst volume model could predict Stop trial classification. We therefore present 424 

the spatial and temporal dynamics for this model in more detail. The models did not robustly 425 

predict SSRT and therefore we do not interpret their detailed spatial and temporal dynamics 426 

here.  427 

Stop trial classification 428 

Figure 4 shows the spatial and temporal dynamics of β-burst volume for classifying 429 

successful vs. failed Stop trials. Larger β-burst volume in right frontal, fronto-central and 430 
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bilateral sensorimotor was predictive of successful stopping -125 ms to -50 ms before SSRT. 431 

In centroparietal and occipital sites smaller β-burst volume was predictive of successful 432 

stopping (from the other perspective; larger β-burst volume was predictive of failed stopping). 433 

A similar pattern was observed from -50 ms to +25 ms around the SSRT where smaller β-434 

burst volume in centroparietal and occipital sites was predictive of successful stopping. After 435 

the SSRT (+25 ms to +100 ms), larger β-burst volume in bilateral sensorimotor areas was 436 

predictive of successful stopping. 437 

Spatial and temporal dynamics of response inhibition across validation sets 438 

Figure 5 presents topoplots of successful minus failed Stop trials. The three main rows 439 

show the data for each β-feature (i.e., β-rate, burst volume and normalised β-power). 440 

Topoplots are shown for each validation set (i.e., internal, holdout and external) separately in 441 

sub-rows. The pattern of activation across time for β-burst volume and normalised β-power is 442 

broadly similar across all three validation sets. Β-burst rate is less consistent across validation 443 

sets due to the low frequency of burst detection. 444 
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Discussion 445 

Here, we investigated the role of β-bursts for successful response inhibition and their 446 

impact upon the speed of stopping (SSRT). We used machine learning to search across a 447 

wide span of temporal and spatial features on a large dataset, and employed best practice for 448 

validation, including external validation. Results partially supported our hypothesis. Β-burst 449 

volume, but not rate, was the superior predictor for Stop trial classification. However, 450 

normalised β-power was a better predictor than β-burst rate. Stop trial classification (success 451 

vs. fail) generalised to an external dataset, but prediction of individual SSRT did not. 452 

To the best of our knowledge, this study is the first to introduce β-burst volume as a 453 

key behaviourally relevant measure of human action stopping. Burst volume is a composite 454 

measure, capturing in single metric features previously studied in isolation: burst peak 455 

amplitude (Feingold et al., 2015; Sherman et al., 2016; Shin et al., 2017; Tinkhauser et al., 456 

2017; Little et al., 2019), burst duration (Feingold et al., 2015; Sherman et al., 2016; Shin et 457 

al., 2017; Tinkhauser et al., 2017; Little et al., 2019), and burst frequency span (Shin et al., 458 

2017). Burst amplitude increases in proportion with burst duration (Tinkhauser et al., 2017), 459 

suggesting a single generating mechanism and therefore suitable to be combined. The 460 

inclusion of a third dimension (frequency span) allows a compact assessment across the 461 

entire set of beta-range frequencies (Zich et al., 2020). The β-rhythm likely inhibits neural 462 

processing (Sherman et al., 2016) and the brevity of β-bursts may be critical for intact 463 

messaging in the brain (Feingold et al., 2015). In patients with Parkinson’s disease shorter β-464 

burst duration was related to improved motor function (Tinkhauser et al., 2017). Taken 465 

together, these findings suggest burst volume better captures the multifaceted nature of the 466 

β-bursts rather than merely their presence or rate. 467 

Machine learning facilitates a data-driven approach, searching a large area of scalp 468 

and wide temporal window. Increased right frontal β-burst volume from -100 ms to -50 ms 469 

before SSRT was predictive of successful stopping. This is spatially and temporally consistent 470 

with β-rhythm findings using electrocorticography (ECoG; Swann et al., 2009, 2012), EEG 471 
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(Wagner et al., 2017; Hannah et al., 2020; Jana et al., 2020) and MEG (Schaum et al., 2020). 472 

The rIFC is thought to act as a brake for motor output that can be triggered by a unexpected 473 

event (Aron et al., 2014; Schaum et al., 2020). We used scalp EEG, which cannot identify the 474 

source generator. However, studies using ECoG (Swann et al., 2009, 2012), MEG/functional 475 

magnetic resonance imaging (fMRI; Schaum et al., 2020) and fMRI-guided repetitive 476 

transcranial magnetic stimulation (Sundby et al., 2021) have empirically demonstrated the link 477 

between right frontal scalp activity and rIFC. The larger β-burst volume recorded from right 478 

frontal scalp therefore likely indicates rIFC-related motor braking triggered by the Stop signal. 479 

Additionally, we found that early increased bilateral sensorimotor β-burst volume from -125 480 

ms to the time of SSRT predicted successful stopping. This is consistent with β-burst studies 481 

(Jana et al., 2020; Wessel, 2020) that related this finding to global motor suppression during 482 

non-selective movement stopping (Badry et al., 2009; Wessel and Aron, 2013). An 483 

unexpected result occurred in most time bins: a relative decrease in β-burst volume in 484 

centroparietal and occipital areas for successful Stop trials, potentially indicating relatively 485 

more focused activity in successful stopping. Finally, +75 to +100 ms after the SSRT, there 486 

was a clear sensorimotor signature where decreasing β-burst volume predicted failed 487 

stopping, consistent with the well-known β-desynchronisation over motor cortex during motor 488 

preparation, which occurs during failed Stop trials where a button press takes place (Zhang et 489 

al., 2008; Swann et al., 2009; Fonken et al., 2016).  490 

In contrast to the findings relating to burst volume, burst rate was not a robust predictor 491 

of stopping behaviour. Similarly, Jana et al. (2020) found no difference in right frontal β-burst 492 

rate between successful vs. failed Stop trials, but Wessel (2020) (i.e., our external dataset) 493 

did at a single fronto-central electrode (FCz). The external dataset SST had a higher Stop trial 494 

probability than the internal dataset (0.33 vs. 0.25). Increased Stop trial probability may recruit 495 

a more proactive response inhibition (Castro-Meneses et al., 2015). Some studies suggested 496 

that pre-SMA is more strongly activated during proactive response inhibition (Sharp et al., 497 
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2010; Hu et al., 2015), potentially explaining a more fronto-central signature in the external 498 

dataset (also cf., Leunissen et al., 2020). 499 

Several methods for β-burst detection amidst background brain activity have been 500 

described (cf., Shin et al., 2017; Tinkhauser et al., 2017; Little et al., 2019; Seedat et al., 2020). 501 

There is no consensus on the methodology for optimal β-burst detection and therefore we 502 

tested several thresholds. A threshold of 2x median β-power was most sensitive for 503 

investigation of the brain’s stopping process, suggesting β-burst information might be lost by 504 

using a higher detection threshold. Threshold selection is also relevant to the relationship 505 

between burst rate and volume. At higher thresholds, only the larger amplitude bursts will be 506 

identified and burst rate will be somewhat confounded with burst volume. Additionally, we 507 

tested two different baselines to calculate median power: there was no difference in results 508 

and therefore it appears either method can be used for burst threshold calculation. 509 

Stopping behaviour can be described by formal computational models (cf., Bissett et 510 

al., 2019). For example, the Interactive Race (Boucher et al., 2007) and the Blocked Input 511 

(Logan et al., 2015) models both characterise Stop and Go processes as stochastic 512 

accumulators. For both models, the Stop unit should be active on every successfully inhibited 513 

trial (Logan et al., 2015; Errington et al., 2020) to either inhibit or block the Go unit. Despite 514 

evidence for β-involvement in stopping, studies to date have not shown that β-bursts are 515 

causally linked as a mechanism for the Stop unit. We consider a number of potential, not 516 

mutually exclusive, explanations (see also Errington et al., 2020; Wessel, 2020). First, 517 

infrequency of β-burst detection is due to the low signal-to-noise ratio (SNR) in EEG (e.g., 518 

Jana et al., 2020). However, Errington and colleagues demonstrated similar frequency of β-519 

burst detection using intracranial electrodes in macaques, a method with better signal fidelity 520 

than EEG. It therefore seems unlikely that poor SNR is the sole reason for the low detection 521 

rate. Second, β-activity is produced by multiple brain sources that reflect different processes: 522 

our results clearly support this interpretation. Β-activity topography changed over time, and 523 

different scalp regions were predictive of stopping at different times. Third, (as suggested by 524 
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Errington et al., 2020), some informative β-bursts may be subthreshold. Here, we utilised a 525 

training dataset to optimise burst detection threshold, which was lower than previous studies. 526 

There was an improvement in prediction accuracy using this lower threshold, but it did not 527 

approach the one-to-one mapping necessary to characterise the Stop unit. We suggest that 528 

brain activity needs to be recorded with improved SNR (perhaps recording many more trials 529 

for EEG). In addition, more sophisticated methods (e.g., Deep Learning (Abrol et al., 2021)) 530 

may improve detection of informative bursts and could better integrate information from 531 

multiple regions to adequately capture the complexity of β-band activity in stopping behaviour. 532 

The internal validation for the SSRT prediction revealed a weak model that did not 533 

generalise to the holdout and external validation data. It is possible that β-band activity is 534 

unimportant for speed of stopping. Another potential explanation is that we relied on the 535 

stopping speed derived from a button press to measure SSRT. While this is a widely used 536 

measure in response inhibition research, it has its drawbacks (e.g., Skippen et al., 2020). Most 537 

importantly for our study, the SSRT is only a summary measure for each participant and does 538 

not provide single trial information. It is likely that using single trial EMG data to calculate 539 

CancelTime (Jana et al., 2020; also cf., Thunberg et al., 2020) as the stopping outcome 540 

measure would have yielded a more predictive model. 541 

In conclusion, β-burst volume was superior to both β-burst rate and averaged 542 

normalised β-power for classifying successful response inhibition. To date, several studies 543 

have shown a statistical association between β-band activity and stopping (e.g., Wagner et 544 

al., 2017; Jana et al., 2020; Schaum et al., 2020; Wessel, 2020). Here, a machine learning 545 

approach reliably showed that β-bursts are implicated in human action stopping. The models 546 

significantly outperformed a random model suggesting a real effect of β-activity and the 547 

classification models were validated on unseen and independent external data. This first 548 

validation of neural EEG SST data on a holdout and external dataset therefore fulfils the 549 

requirement for establishing prediction (Poldrack et al., 2019). These results support the 550 
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emerging view that transient β-bursts are a more accurate representation of oscillatory β-551 

activity in the brain, and suggest an important role for β-bursts in human response inhibition.  552 
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Figures  682 
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Figure 1. β-Feature extraction from a representative single trial. A) Each trial consisted 683 

of a 15 (frequencies) x 117 (time points; 225 ms, 512 Hz) time-frequency power matrix. The 684 

117 time points were divided into nine 25-ms time bins, from -125 ms before SSRT to +100 685 

ms after SSRT. β-bursts were defined as local maxima which exceeded a predefined 686 

threshold. B) β-Burst rate: Shown are all datapoints exceeding the threshold (2x median 687 

power). Each local maximum (indicated with red dashed circle) exceeding the threshold was 688 

counted as one β-burst for the time bin where it occured. C) β-Burst volume: All timepoints 689 

exceeding the threshold (2x median power) were included for the volume calculation. The 690 

volume was spread across the different time bins and frequencies. D) Normalised β-power: 691 

The normalised power values over all frequencies were averaged for each time bin (means 692 

per time bin are indicated with black line). Abbreviation: SSRT: Stop Signal Reaction Time. 693 
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Figure 2. Machine learning results for ‘Optimal β-burst detection method and time bin 694 

size’ (36 parameter combination models: burst detection threshold x baseline for 695 

median power calculation x time bin size). A) Logistic regression results over 100 iterations 696 

for the Stop trial classification are shown. Two performance metrics are reported; AROC: area 697 

under the receiver operating characteristics curve and Brier score. The models are sorted by 698 

AROC from most predictive to least predictive. Respective null models of each model are 699 

indicated with an asterisk symbol (*). B) Linear regression results over 100 iterations for SSRT 700 

prediction are shown. Two performance metrics are reported; MAE: mean absolute error and 701 

R2: coefficient of determination. The models are sorted by MAE from most predictive to least 702 

predictive. Respective null models of each model are indicated with an asterisk symbol (*). 703 

Arrows below each performance metric indicate the direction for higher prediction.   704 
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Figure 3. Machine learning results for internal, holdout and external validation and the 

corresponding null models of the 5 main models. A) Logistic regression results over 100 

iterations for the Stop trial classification are shown. Two performance metrics are reported; 

AROC: area under the receiver operating characteristics curve and Brier score. B) Linear 

regression results over 100 iterations for the SSRT prediction are shown. Two performance 

metrics are reported; MAE: mean absolute error and R2: coefficient of determination. Dotted 

lines represent chance level for the respective metric. Arrows beside each performance metric 

indicate the direction for higher prediction. The holdout and external validations are indicated 

with a single cross (instead of a distribution over 100 iterations) because mean regression 

coefficients from the internal validation were applied to the holdout and external data, which 

resulted in a single performance metric. Abbreviation: Norm.: Normalised.
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Figure 4. Spatial and temporal β-burst volume dynamics for the Stop trial classification. 705 

A) Boxplots display the machine learning feature ranking (ranked after selection frequency 706 

and absolute regression coefficient). Low ranking means more predictive in the machine 707 

learning analysis. These were averaged over three time bins (75 ms each) and for each time 708 

bin averaged over eight different brain regions. B) β-Burst volume data (successful minus 709 

failed Stop trials, a.u.) from the top 75 features (over all time bins) are shown for each 25 ms 710 

time bin with the rest of the electrodes masked. C) Regression coefficients from the machine 711 

learning logistic regression analysis from the top 75 features (over all time bins) are shown for 712 

each 25 ms bin with the rest of the electrodes masked. Abbreviations: SS: Successful Stop 713 

trial; FS: Failed Stop trial; SSRT: Stop Signal Reaction Time. *β-burst volume is burst duration 714 

x frequency span x amplitude.  715 
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Figure 5. Topoplots of each β-feature (β-burst rate, β-burst volume, normalised β-716 

power) for the internal, holdout and external validation sets. Topoplots are shown for 717 

each 25 ms bin. β-Band frequency range was 15-29 Hz. Β-bursts were calculated using 2x 718 

median power as burst detection threshold. Means are shown for β-burst rate and normalised 719 

β-power, medians are shown for β-burst volume. Data are shown for successful minus failed 720 

Stop trials for each β-feature. Abbreviations: SS: Successful Stop trial; FS: Failed Stop trial; 721 

SSRT: Stop Signal Reaction Time. *β-burst volume is burst duration x frequency span x 722 

amplitude.  723 
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Tables 724 

Table 1. Electrode labels (64 channels, 10-5 system) grouped into eight different brain 725 

regions. This step reduced spatial features to aid data interpretation. 726 

 

 

  

Brain area Electrode labels 

Left parietal CP5, TP7, P3, P5, P7, P9, PO3, PO7 

Left sensorimotor FC3, T7, C5, C3, C1, CZ, CP1, CP3 

Left frontal FP1, AF7, AF3, F7, F5, F3, FT7, FC5 

Fronto-central FPZ, AFZ, FZ, F1, F2, FC1, FC2, FCZ 

Centroparietal/occipital PZ, P1, P2, POZ, OZ, O1, O2, IZ 

Right frontal FP2, AF8, AF4, F8, F6, F4, FT8, FC6 

Right sensorimotor FC4, T7, C6, C4, C2, CPZ, CP2, CP4 

Right parietal CP6, TP8, P4, P6, P8, P10, PO4, PO8 
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Table 2. Characteristics and statistical comparison of the internal, holdout and external 727 

validation sets. For all analyses, t-tests were used, except for sex comparisons, for which we 728 

used a Chi-square test. Means and standard deviations are reported, except for sex. 729 

Abbreviations: df: degrees of freedom; SSRT: stop signal reaction time; SSD: stop-signal 730 

delay; RT: reaction time.  731 

 

    Internal – Holdout Internal – External 

 
Internal  
validation set 

Holdout  
validation set 

External  
validation set Statistical test (df) p-value Statistical test (df) p-value 

Sex (female:male) 78:52 55:33 120:81 X2(1) = 0.14 0.71 X2(1) = 0.01 0.96 

Age (years) 35.39 (14.41) 33.78 (15.35) 22.70 (6.83) t(216) = 0.79 0.43 t(329) = 10.76 2.44*10-23 

SSRT (ms) 190 (36) 195 (34) 241 (49) t(216) = -1.13 0.26 t(329) = -10.31 8.55*10-22 

SSD (ms) 278 (61) 266 (66) 284 (123) t(216) = 1.35 0.18 t(329) = -0.57 0.57 

Mean Go RT (ms) 486 (62) 479 (71) 535 (105) t(216) = 0.85 0.40 t(329) = -4.79 2.55*10-6 

Mean failed Stop 
RT (ms) 

421 (58) 409 (66) 460 (92) t(216) = 1.42 0.16 t(329) = -4.25 2.79*10-5 

No. of successful 
Stop epochs 

22.68 (3.49) 22.78 (3.69) 38.85 (4.46) t(216) = -0.22 0.83 t(329) = -35.00 5.98*10-113 

No. of failed Stop 
epochs 

19.63 (3.70) 20.16 (3.95) 32.09 (5.11) t(216) = -1.01 0.32 t(329) = -24.02 2.30*10-74 

Probability of  
successful Stop 

0.54 (0.07) 0.53 (0.09) 0.52 (0.03) t(216) = 0.51 0.61 t(329) = 3.17 0.002 

Probability of Go 

omission 
2.49 (3.53) 2.27 (4.16) 0.03 (0.04) t(216) = 0.43 0.67 t(329) = 9.93 1.65*10-20 

Probability of 
choice errors 

2.33 (2.00) 2.57 (3.37) 0.01 (0.02) t(216) = -0.67 0.50 t(329) = 16.46 8.20*10-45 


