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Abstract—Modern vehicles employ a large amount of distributed computation and require the underlying communication scheme to
provide high bandwidth and low latency. Existing communication protocols like Controller Area Network (CAN) and FlexRay do not
provide the required bandwidth, paving the way for adoption of Ethernet as the next generation network backbone for in-vehicle
systems. Ethernet would co-exist with safety-critical communication on legacy networks, providing a scalable platform for evolving
vehicular systems. This requires a high-performance network gateway that can simultaneously handle high bandwidth, low latency, and
isolation; features that are not achieveable with traditional processor based gateway implementations. We present VEGa, a
configurable vehicular Ethernet gateway architecture utilising a hybrid FPGA to closely couple software control on a processor with
dedicated switching circuit on the reconfigurable fabric. The fabric implements isolated interface ports and an accelerated routing
mechanism, which can be controlled and monitored from software. Further, reconfigurability enables the switching behaviour to be
altered at run-time under software control, while the configurable architecture allows easy adaptation to different vehicular architectures
using high-level parameter settings. We demonstrate the architecture on the Xilinx Zynq platform and evaluate the bandwidth, latency,

and isolation using extensive tests in hardware.

Index Terms—Automotive Ethernet Gateway, Field Programmable Gate Arrays, FlexRay, Automotive Networks.

1 INTRODUCTION

ODERN vehicles are complex distributed computer
Msystems where interactions between the vehicle and
its driver or the environment are constantly monitored
and controlled by a large number of embedded comput-
ing units (ECUs). These include time- and safety-critical
functions like anti-lock braking systems, mixed-criticality
features like driver assistance systems, and non-critical
comfort features like infotainment systems. The different
ECUs that implement these features in a distributed manner
are interconnected using efficient time-triggered and event-
triggered networks that provide high levels of determinism
and reliability. ECUs are typically segmented into domains,
such as the Drive-Train, Body, and Infotainment domains,
depending on the criticality and bandwidth requirements of
these functions, and are often served by different network
protocols like FlexRay, Controller Area Network (CAN), or
Media Oriented Systems Transport (MOST).

Multiple in-vehicle networks are normally intercon-
nected by a central gateway (CG), allowing ECUs to com-
municate and share information with other ECUs in a differ-
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Fig. 1: Typical vehicular network structure with multiple
network protocols interconnected by Central Gateway (CG).

ent domain, as shown in Fig. 1. The gateway receives mes-
sages from one branch, performs translation from one pro-
tocol to another and broadcasts them on the corresponding
target branches. CG implementations are usually processor-
based, running software to perform the tasks of message
reception, lookup, translation, and transmission [1].

For evolving applications like advanced driver assis-
tance systems (ADAS) that integrate a large number of
sensors and actuators, new network protocols with higher
bandwidth interconnect are appearing. Recent develop-
ments point to Ethernet as a likely candidate for backbone
connectivity, with Broadcom’s BroadR-Reach physical layer
chips shown to support 100 Mbps bandwidth reliably over
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unshielded cables [2]. However, vehicular systems will still
depend on CAN and FlexRay for safety-critical function-
ality. The Ethernet backbone infrastructure illustrated in
Fig. 2 is a viable solution for allowing existing systems to
operate without modification, while providing high perfor-
mance interconnect for functions that utilise information
from existing systems as well as volume data sensors,
which are connected through an Ethernet Gateway (EG).
The EG would be an additional ECU on the network, with
software control mechanisms allowing each branch of the
network to be independently controlled and disconnected
(if needed), to meet the reliability requirements of criti-
cal systems. Also, the interconnect must offer low-latency
switching with priority-based routing to support exchange
of mixed criticality messages across domains.

Though an ASIC implementation of the EG would
provide performance, energy and cost benefits, ECU and
network architectures often differ across a range of vehicle
models and thus the gateway needs flexibility to accom-
modate the different architectures (existing and evolving).
This has prompted the use of processor-based gateways in
current vehicles, with software-based routing and hardened
network interfaces to cater to multiple architectures [1], [3],
[4]. Adaptability is also a requirement for integrating se-
curity standards into automotive embedded systems, which
have a lifetime of 10 or more years. However, achieving real-
time routing on mixed-criticality networks at high band-
width is difficult on general purpose processors, and scales
poorly with increasing network complexity and require-
ments (like security).

An alternative solution is the use of FPGA-based gate-
ways that use custom architectures to provide acceler-
ated computation and routing, while providing adaptability
through reconfiguration. Researchers have explored FPGA-
based gateways for legacy automotive networks, utilising
software-based routing on soft processors [1] and with ded-
icated routing hardware [5]. Extending these architectures
for Ethernet backbone networks is impractical since they
are optimised for low-bandwidth legacy networks like CAN
and FlexRay which have very different properties compared
to standard Ethernet (priority-driven and time-triggered v/s
best-effort). FPGAs are widely used in general network-
ing due to their ability to offer low-latency switching [6],
[7]. Although a standalone Ethernet switch on an FPGA
can cater to the performance requirements in vehicles, the
switch architecture must be significantly adapted to sup-
port the deterministic nature and real-time requirements of
automotive systems. Furthermore, the architecture must be
modular to enable easy (parametric) adaptation to different
network architectures that are employed in low/high-end
vehicles.

Unlike generic Ethernet gateways, vehicular ECUs re-
quire some level of software intervention for monitoring,
control, debugging and certification. On an FPGA, software
control can be added using soft processors instantiated in
the logic; however, they do not offer sufficient computa-
tional capability to implement complex algorithms with
time-bound performance [8]. The FPGA fabric can also be
connected as an extension of a standard automotive mi-
crocontroller unit (MCU) as an accelerator. This approach
only provides a loose coupling between the function on
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Fig. 2: Proposed vehicular network structure using the
VEGa Ethernet Gateway (EG). Non-critical functions on
legacy networks use the Ethernet backbone via Domain
Controllers (DC), while critical functions are directly inter-
faced to the EG over corresponding networks.

the MCU and the accelerator, impacting overall latency,
especially when there is frequent data movement between
the two processing elements (MCU and accelerator). Tightly
coupling the computational logic with the network interface
can allow for extended functionality as well as enhanced
capabilities [9].

In this paper, we present VEGa, a vehicular Ethernet
gateway architecture. It exploits the tight coupling between
processors and programmable logic in hybrid FPGAs like
the Xilinx Zynq to provide a scalable switching architecture
with software control. The reconfigurable fabric implements
the communication interfaces and the switching infrastruc-
ture, which can be controlled and configured at run-time by
the software on the processing system. Switching branches
are designed in a modular fashion to allow adaptability to
different in-vehicle network designs, by tuning configurable
parameters at design time. The tightly coupled architecture
and modular design offers pathways for integration of se-
curity approaches such as light weight authentication [10]
in software or hardware [11]. It also ensures isolation be-
tween the communication channels and predicable latencies
through hardware implementation, unlike the case with
software-based switching. We evaluate VEGa on the Zynq
ZC702 and ZC706 platforms to quantify switching perfor-
mance (predictability and latency) and compare it against
existing FPGA-based and processor-based automotive gate-
ways as well as low-latency Ethernet switch architectures.

The contributions of this work are two-fold: First, it
describes a modular infrastructure for Ethernet backbone
automotive architectures, that can seamlessly exchange in-
formation between legacy protocols and high-speed Ether-
net devices. Our evaluation shows that VEGa is capable
of achieving low-latency and deterministic switching in a
priority-aware manner, which can scale to complex net-
works and high network utilisation. Second, the extension
and integration of a scheduling mechanism to translate in-
formation between legacy networks and standard Ethernet,
in a manner that is transparent to the networks involved.
The remainder of the paper is organised as follows: Section 2
introduces the related work on automotive networks and
gateways. In Section 3.2, we describe the architecture of
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VEGa and highlight the design considerations and optimisa-
tions. In Section 4, we present a performance evaluation of
VEGa in actual hardware with different traffic conditions.
Finally, we conclude the paper in Section 5 and outline
future work.

2 BACKGROUND

Early automotive systems used simple switches and actu-
ators, and their functionality was achieved using point-to-
point wiring. As more complex systems were introduced,
point-to-point connections became infeasible due to the
complexity of the wiring harness and the resulting addi-
tional weight and volume [12]. The early 1980s marked
the introduction of vehicle networking as a step to re-
duce wiring costs and complexity. Bosch introduced the
Controller Area Network (CAN) in the mid-1980s and it
gained widespread acceptance in the automotive industry,
later becoming the most widely used networking backbone
for in-vehicle systems. CAN provides flexibility to the user,
since it can be operated at multiple speeds and thus varied
costs. For instance, low-speed CAN runs at 125 kbps and can
cater to all the user oriented electronics in a car, like power
windows, electric seats and air conditioning, while high-
speed CAN can run at up to 1 Mbps, serving real-time and
safety-critical applications like engine management, anti-
lock braking system (ABS), and others.

Following CAN, a variety of in-vehicle networks
evolved, driven primarily by cost and performance re-
quirements. CAN proved too expensive and complicated
for simple functions like power windows or boot release.
Simpler schemes like the Local Interconnect Network (LIN)
offered similar functionality at lower cost per module and
power consumption, and thus found widespread adoption
for non-critical functions. CAN also proved too slow for
high bandwidth applications like multimedia in higher end
vehicles resulting in the development of high bandwidth
protocols like Media Oriented Systems Transport (MOST)
for such applications. As the number of communicating
nodes in networks has increased, CAN has proven incapable
of consistently providing deterministic data transfer rates,
primarily due to its event-triggered architecture. Emerging
safety-critical applications demand higher levels of deter-
minism, which cannot be consistently ensured by event-
triggered networks. The FlexRay protocol, developed by the
FlexRay consortium, offers a combination of time-triggered
and event-triggered communication for in-vehicle applica-
tions to enhance reliability with higher bandwidth [13]. Sim-
ilarly Time-triggered Ethernet (TTE), has recently emerged
for such applications. However, more widespread adoption
of FlexRay and TTE is limited by the higher cost per node.

Computation in vehicle is segmented into different do-
mains, and each domain uses network protocol(s) that
closely match its requirements and properties [12], [14], [15].
Message exchange between different domains is enabled by
a gateway ECU. With traditional automotive network pro-
tocols (like CAN, LIN and FlexRay), gateway ECUs are im-
plemented on automotive microcontrollers with software-
based routing algorithms to control message exchange [1],
[16], [17], [18], [19]. Many papers describe gateway ar-
chitectures without reporting key performance parameters
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like end-to-end latency measured through experiments.
Processor-based gateway architectures that incorporate Eth-
ernet have also been discussed in the literature [20], [21],
[22]. Evaluations show that this approach cannot provide
reliable and efficient switching at full throughput with large
payload sizes. A simulation model for switched Ethernet-
based in-vehicle networks is presented in [23] for evaluating
topologies and to predict network latencies under realistic
automotive conditions.

FPGAs are ideally suited for such mixed mode data ex-
change where custom datapaths can analyse traffic critical-
ity and prioritise switching in real-time. FPGA-based ECUs
have been proposed in the automotive domain for compute-
intensive non-safety-critical functions like real time vision-
based driver assistance [24], [25]. FPGA-based ECU archi-
tectures have also been explored for critical applications. In
[26], the authors describe an architecture for implementing
fail-safe safety-critical ECU systems on FPGAs leveraging
dynamic reconfiguration (complete reconfiguration). The
described architecture uses FPGA logic as a fail-safe back-
up, which is reconfigured to one of the back-up modes when
errors are detected. Partial reconfiguration (PR) has been
used in non-safety-critical automotive applications such as
driver assistance systems [27], [28]. In such cases, using PR
can allow a reduction in the required target FPGA size by
time-multiplexing different functionality.

Fault-tolerant ECU architectures have also been demon-
strated for critical ECUs where PR was used to dynami-
cally reconfigure a faulty network controller [29] and for
integrating self-healing properties at the ECU-level [30]. A
generic mechanism to ensure AUTOSAR compliance for
FPGA-based ECUs is discussed in [31], using soft proces-
sors as microcontroller unit (MCU) replacements. Here, the
AUTOSAR run-time environment is mapped to a register
interface on the FPGA, providing the same functionality as
standard AUTOSAR compliant MCUs.

Automotive gateways on FPGAs have been proposed
in the literature [1], [5], providing deterministic message
routing between traditional automotive networks like LIN,
CAN, and FlexRay. In [1], a multi-FPGA architecture is
used with a Xilinx Virtex-4 host platform that performs the
switching and a Altera Stratix-3E daughter card implement-
ing the interface protocols (CAN, LIN and FlexRay). Switch-
ing is performed using software running on the PowerPC
core available on the Virtex-4 device. However, no exper-
imental results like end-to-end latency or implementation
results like resource utilisation are presented in the work for
comparison with our approach. In [5], the authors present
a modular gateway architecture with dedicated routing
modules that allows accelerated switching between different
interfaces. Their results show that custom architectures can
provide deterministic routing between the different CAN
networks even at high network utilisation.

FPGAs have been coupled with dedicated network host
processors for reliable exchange of control information
over time-triggered networks in critical systems like X-by-
wire [32]. Such work mainly explores the case for acceler-
ating the routing of messages between legacy automotive
networks, which have a maximum data-rate of 10 Mbps and
packet size of up to 256 bytes (in the case of FlexRay), which
can be statically defined. The introduction of high-speed
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Fig. 3: Zynq Architecture showing the Processor Subsystem
(PS), Programmable Logic (PL), and the high-level architec-
ture of VEGa in the PL region.

Ethernet presents new challenges like variable message
sizes, mixed criticality messages, and higher bandwidth,
which must be interfaced with traditional automotive net-
works. Our approach explores the use of hybrid FPGAs to
achieve deterministic message exchange in a heterogeneous
network environment involving legacy networks and Gi-
gabit Ethernet, modelling the scenario in future Ethernet-
backbone vehicular architectures.

In the case of generic networks, FPGAs have been widely
employed in line-rate switching systems for high perfor-
mance Ethernet [7], [33], where custom architecture de-
sign offers low-latency switching performance. FPGA-based
custom network interface modules were shown to offer
improved switching latency over off-the-shelf components
in Ethernet networks supporting real-time high-bandwidth
communication [34]. Customisable datapaths allow FPGA-
based switches to analyse traffic during the switching op-
eration [35], which can also be extended to incorporate
some level of security like intrusion detection [36], [37]. Our
approach aims to bring such high-performance, low-latency
switching to the multi-standard mixed-criticality network
structure used in the automotive domain.

3 THE VEGA ARCHITECTURE
3.1 Overview of Zynq FPGAs and VEGa on Zynq

The Zynq family from Xilinx are hybrid reconfigurable
devices that offer tight integration of a capable processing
system (PS) with configurable programmable logic (PL) on
the same die, as shown in Fig. 3 [38]. The PS is a hardened
region of the die that combines a dual-core ARM Cortex-
A9 processor along with several memory and connectivity
interfaces. The Cortex-A9 along with its memory subsystem
is capable of hosting a fully-fledged operating system like
Linux and can operate as a standalone device without any
support from the PL, providing a familiar environment for
embedded software developers. The connectivity to periph-
eral blocks is established through ARM’s AMBA eXtensible
Interface (AXI) interconnect. This wide array of interfaces in
the PS makes it ideally suited as a hardware platform for a
highly connected embedded system.
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The functionality of the PS can be further extended
with custom logic in the PL region. The Zynq offers high
bandwidth interconnect between the PS and PL. Further-
more, dedicated direct memory access (DMA) blocks enable
high-speed data movement between the PL and interfaces
managed by the PS, like DRAM or the Ethernet interface.
The PL is based on the Xilinx 7-series architecture, combin-
ing flexibility features like partial reconfiguration, advanced
computational capabilities (like advanced DSP48E1 blocks)
and lower power consumption. The hybrid architecture
enables scalable and parallel implementations of complex
processing blocks in the PL, while retaining software-based
control through the tightly coupled ARM cores [8]. As
shown in Fig. 3, VEGa is completely contained within the
PL region of the Zynq, whose behaviour can be controlled
dynamically through software running in the PS.

3.2 System Architecture of VEGa

At a high-level, VEGa instantiates multiple physical ports
and a priority aware switching fabric that allows informa-
tion to be exchanged between the different physical ports, as
shown in Fig. 3. The top-level architecture of VEGa offers a
configurable set of parameters (in the Verilog description)
that control the number and type of network interfaces
that need to be implemented. Multiple physical switching
port combinations can be implemented by configuring a
parameter (4 in the default case, numbered 1 to 4) during the
physical implementation phase (FPGA design phase), each
capable of providing up to 1 Gbps throughput. Each port im-
plements independent transmit (Tx) and receive (Rx) paths
to handle connections from the network interfaces to the
switch fabric, as shown in Fig. 4. FIFOs embedded within
the paths help to decouple the network interface from the
switch fabric. The network interface logic is responsible for
implementing the communication protocol, and interfaces
the gateway through its corresponding port. The network
interfaces can be Gigabit Ethernet, FlexRay, or CAN, which
are also configured using the top-level parameters, and
for our experiments we use Gigabit Ethernet and FlexRay
interfaces. The number of branches and interface types are
defined using top-level (Verilog) parameters, which can be
altered for different configurations (during the FPGA design
phase). All forwarding decisions are based on the Ethernet
layer-2 headers, with each non-Ethernet ECU having a vir-
tual mapping in the medium access control (MAC) address
space.

3.2.1 Receive Path

The receive path buffers incoming frames and makes the
forwarding decision based on the Ethernet MAC header. It
employs three modules that operate on-the-fly on received
frames as they are passed up to the switching infrastructure.
The header extraction logic determines the header segment,
classifies the frame and passes the information to the lookup
module which determines the output port for the frame in
the form of a binary vector (called the port vector). The input
queue acts as a temporary buffer for incoming packets, before
they are forwarded to the switch logic. These modules oper-
ate in parallel, allowing the destination port for a packet to
be determined before the complete frame has been received,
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even for the smallest allowed payload size. The high-level
block representation of the receive path is shown in Fig. 5.

The header extraction module determines the start of
each frame and extracts the destination MAC address, vir-
tual LAN (VLAN) tag, and frame priority from the frame
header as they are received. With the first data byte, it also
records the 64-bit arrival timestamp for the packet (called
the ingress timestamp), with a resolution of 8ns (125 MHz).
This timestamp is used by later stages of the logic to ensure
latency-based routing and also by the management interface
at higher layers to determine performance and worst case
delays. The extracted header information is passed to the
lookup module to determine the destination port mapped
to the destination MAC address.

The lookup module implements a binary search on
the sorted list of MAC address values to determine the
destination port for a given address. Since all possible desti-
nations are predefined in an automotive system, a sorted
table structure presents a more efficient scheme for look
up than specialised associative mechanisms like a content-
addressable memory. Use of binary search allows the 1000
MAC entries in the table to be searched within a maximum
of log, 1000 ~ 10 clock cycles. The lookup memory contains
three types of memory entries; the configuration entry, the
lookup entries, and the default entry, as shown in Fig. 6.

The configuration entry is the first in the lookup table and
is read by default before each search is initiated. It provides
information about the lookup memory organisation; the
lower field indicates the lowest MAC address, the upper field
indicates the highest address in memory and the default field
specifies the default destination port in case no entries are
matched. The search_enable bit indicates the status of the
lookup table and if set to zero, indicates that the lookup
should not be performed, forcing the use of the default
setting (which could be to drop the frame). This bit can also
be used to isolate a branch, in the case of persistent faults,
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allowing communication from other ports to be handled
without introducing errors.

If enabled, the search algorithm operates on the lookup
entries, the sorted array of MAC addresses and their des-
tinations in MAC address order. Each entry has a 48-bit
destination MAC field, the associated output port vector
and a 4-bit priority value. During the lookup, if a match is
found between the incoming MAC address and the location,
then the corresponding port vector is used. The priority field
indicates the priority that will be allocated to the frame if it
is not VLAN-tagged, else this field is ignored. The default
configuration also uses the same structure as the lookup
entries, but uses a skip_frame bit, which, when set, forces the
input path to drop the frame instead of forwarding it.

The input queue module buffers incoming frames until
they can be transmitted to the output port, and is composed
of five sub-modules: queue control, queue buffer (labelled
as Buffer in Fig. 5), scheduler FIFO (labelled as FIFO in
Fig. 5), overflow control logic and the queue arbitration logic
(labelled as Arbiter in Fig. 5). The high level organisation of
the different sub-modules is shown in Fig. 7.

The queue control module interfaces the lookup module
with the Rx FIFO. It initiates a read from the Rx FIFO
when a frame becomes available, and a write into the queue
buffer, saving the location of the first write as the mem_ptr
for that frame. Locations are dynamically allocated (next
free space) in the queue buffer which is configured as a
ring buffer. Further, the length of the frame and the error
indications from the MAC (mac_error) are also saved when
an entire frame is received. Once the lookup information
for the corresponding frame is available, and if there are no
errors (mac_error and skip_frame are both 0), the mem_ptr
and length, along with the lookup information (port vector,
prio) and timestamp are written into one of the scheduler
FIFO blocks, depending on the frame priority (i.e., highest
priority frame written to the highest priority FIFO and
so on). In the present system, we have only two possible
priority settings (real-time traffic and non-real-time traffic)
and thus only two scheduler FIFOs are used, but this is
modifiable at design time.

The queue arbitration logic forms the interface to the
switch fabric and constantly monitors the scheduler FIFOs
for new entries. If an entry is available in any of them, a
read is issued to the highest priority scheduler FIFO among
the ones which have an entry. The arbitration logic requests
access to the switch fabric for the destination ports, along
with the priority and timestamp information. The switch
fabric acknowledges the request allowing the data to be
forwarded. In the case of multi-port forwarding, the switch
fabric can issue a partial acknowledge for only a subset of
the requested ports. For example, if the request was 0111 (i.e,
access to ports 3, 2, and 1), the switch fabric may approve
only ports 3 and 1.

If at least one port is acknowledged, and no higher-
priority frames have arrived at the scheduler FIFO, the ar-
biter initiates a read from the queue buffer. At the end of
transmission, the arbitration logic updates its port request
vector by setting the acknowledged port to ‘0" (i.e., in the
above case, the vector now is reset to 0010), indicating that
the frame still needs attention. If no higher priority frames
are available, the updated port vector is presented to the
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switch to request transmission to port 2. Once all ports
have been acknowledged and transmission is complete, the
vector is updated to 0000 and the arbiter waits for the
next frame. However, if a higher priority frame becomes
available in memory, the updated port vector (0010) and its
corresponding timestamp, prio, length, and mem_ptr signals
are buffered, and the higher priority frame is serviced first.
Once all higher priority frames are served, the arbiter serves
the buffered frame.

The overflow control logic monitors the scheduler FIFOs
and the circular queue buffer for overflows. Since frame trans-
missions could be deferred in case of higher priority traffic,
it is possible for incoming frames to overwrite a lower
priority frame. The overflow control logic tracks such issues
and drops stale frames by removing buffered entries in the
arbitration logic (or its corresponding entries in the FIFO)
in favour of incoming data. To ensure that such cases are
minimised in normal operation, the queue buffer is designed
with sufficient depth to handle multiple outstanding frames
and incorporates a wider 4-byte interface to the switch
interface (compared to the byte-wide interface to the Rx
FIFO) for providing 4 x higher read-bandwidth.

3.2.2 Configurable Switch Interconnect

The central element of the gateway architecture is the con-
figurable crossbar switching interconnect, allowing multiple
ports to be active simultaneously. Fig. 8 shows the architec-
ture of our configurable switching interconnect. Each receive
interface can be connected to any transmit path except its
own. To guarantee latencies we use a strict latency arbiter
that selects the next port based on the priority value (prio) of
the frame (range 0 to 7, 7 being highest) to be transmitted.
The priority of frames is determined during the scheduling
process (offline) and loaded into the lookup module in the
receive path of each port.

At each clock cycle, the arbiter checks the states of all
receive interfaces to see if they are requesting a connection
to a transmit path. If any request is active, the arbitration
module checks if the connection can be established to the
corresponding transmit path. If the transmit path is free and
can hold another frame, the arbitration module enables the
connection and initiates transfer of the frame, along with the
status information of the frame like priority, timestamp and
length. If multiple ports request access to the same transmit
path, the arbiter chooses the receive port with the higher
priority frame and enables this connection. Simultaneously,
the arbiter can also establish another non-intersecting path,
allowing multiple ports to be connected in the same cycle.
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Once the frame has been transferred, the arbitration module
releases the connection and enables any pending requests to
this path, if the transmit path has enough space to hold the
frame.

Integrating the fabric arbitration module into the switch
logic, rather than the interfaces, allows the design to be
scaled more easily as the necessary paths can be scaled for
any number of connections. For example, upgrading to a 6-
port switch requires minor changes to the switch fabric and
replication of transmit and receive interfaces.

3.2.3 Transmit Path

The transmit path receives frames from the switch fabric,
buffers them and schedules the output messages according
to their priority. The functionality is implemented in mul-
tiple sub-modules of the output queue control logic, which
have similar functions to those in the receive path. These
sub-modules queue memory monitor, scheduler FIFOs, queue
buffer, and queue arbitration logic along with their operations
are shown in Fig. 9.

When a new frame is to be received into the transmit
path from the switch logic, the queue memory monitor logic
examines the output queue buffer, and acknowledges the
transfer, if the entire frame can be buffered. Depending
on the priority of the arriving frame (prio), the frame data

and its control information are directed to the appropriate
priority queue buffer and scheduler FIFO. The memory pointer
corresponding to the first data word is appended to the re-
ceived control information and stored in the corresponding
priority FIFO, once a complete frame is received.

The output queue arbitration logic forms the interface
to the physical transmit path and constantly monitors the
scheduler FIFOs for available frames. When the Tx path
MAC is ready to accept a frame and a frame is ready
for transmission, the arbitration logic fetches the highest
priority control information and the data corresponding to
that entry from the corresponding output queue buffer. With
the last data word, the queue arbitration signals an end-of-
frame to the MAC using the last_word signal, and starts
arbitration for the next frame. The MAC then performs the
required protocol operations and pushes the data to the PHY
to drive the physical network.

The queue arbitration takes a timestamp corresponding
to the first data write to the Tx FIFO (called the egress times-
tamp), marking the completion of the switching process. The
module computes the switching latency as the difference
between the egress timestamp and ingress timestamp (from the
control information) of the frame, which is then passed to
the VEGa monitoring module for software-level monitoring.

3.2.4 Translation for FlexRay/CAN Systems

Unlike Ethernet, which uses explicit addresses to identify
destination and source nodes, automotive networks are
based on a broadcast scheme with no explicit identification
for sources/sinks. The priority of messages in CAN and
assigned transmission slots in FlexRay are statically defined
parameters that can implicitly identify a source node. Fur-
ther, a translation scheme is required to determine the desti-
nation port on the switch interface and to manage message
mapping due to different payload sizes and priorities.

The tblock handles this message translation from the
switch to CAN/FlexRay networks — it includes:
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Fig. 9: Block diagram of the output queue module and its sub-modules.

e An address mapping scheme that relates the implicit
identifiers on CAN or FlexRay to destination port-
s/addresses on the gateway.

o A data-packing scheme that respects the deadlines
and payload sizes on the CAN/FlexRay networks for
mapping messages.

o A stream-based data interface to the Tx/Rx path of
the gateway from the CAN/FlexRay Communication
Controllers.

In this paper, we present the approach for FlexRay (dis-
cussed below), which can be modified for application to
CAN networks.

Mapping Logic: For the FlexRay static segment, a purely
time-triggered scheme is used where messages are assigned
fixed slot(s) in every FlexRay cycle. This means that a receiv-
ing ECU can subscribe to a set of slots on which messages
are scheduled, creating an implicit addressing scheme.

Policy-based scheduling [39] provides a mechanism to
translate this implicit addressing scheme, and is employed
in our gateway. It allows packing of event-triggered mes-
sages into time-triggered FlexRay slots, with consideration
for their real-time deadlines.

As with standard FlexRay, messages are analysed at
design time when generating the message schedule for the
FlexRay network. This schedule is used by all participating
nodes on the FlexRay network, including the gateway’s
FlexRay interface. The static schedule assigns transmission
slots to all nodes and allows normal FlexRay interfaces to
subscribe to pre-determined slots to receive messages from
the network. These slots, however, do not directly contain
messages, but are combined to form a virtual communica-
tion channel per node (see Fig. 10).

To send messages, a node participating in policy-based
FlexRay needs to add a header to every message before

Message arrival time

o
I I

Y Y Y

> time
Virtual communication

channel

PIh[ i b] 2 [[pib|ms] me |

Header format

“vLength ‘ Message Type ‘

Fig. 10: Message transmission in policy-based FlexRay via
packing in the virtual communication channel. Preemption
Indicator (PI) and headers, including message length and
message type identifier, need to be added by the transmit-
ting node. Messages can be split across slot borders and
preempted. Reproduced from [39].

passing them to the virtual communication channel. As the
virtual communication channel abstracts away slots, the im-
plicit addressing scheme following these slots is lost. Nodes
can thus not identify where messages begin and which type
of message is received. To combat this, the message header
contains the length of the message, allowing receivers to
identify beginnings and ends of messages as they arrive.
Furthermore, a message type identifier is added to allow
identification of the kind of message received. This needs
to be performed for every message sent via policy-based
scheduling. Every slot further contains a Preemption Indica-
tor (PI). This PI allows preemption of long messages by high
priority messages and can be used to implement Ethernet
priority schemes, such as Time-Sensitive Networking (TSN).
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Fig. 11: Architecture of the tblock and its integration with
the FlexRay communication controller (CC).

When the gateway is forwarding messages from Ether-
net to FlexRay, it acts as a sender on the FlexRay network.
In this case, message lengths are straightforward to fill for
the gateway, based on the received message length on the
Ethernet branch. The message identifier is based on the mes-
sage received. Here, a translation based on a virtual MAC
address is used. The virtual MAC address corresponds to
a data type and a set of receivers and which is pre-loaded
into the tblock (details in tblock architecture discussed below)
together with the FlexRay message type identifier. This as-
signment is highly dependent on the content of the message
and is done at design time, similar to message IDs in other
communication systems (e.g. CAN). After translating the
virtual MAC address into a message type identifier, the
message is sent via the virtual communication layer in the
next available time slot(s) (see Fig. 10).

Similarly, when the gateway is forwarding messages
from FlexRay to Ethernet, the messages need to be trans-
lated. Here, the message length from the policy-based
FlexRay header is used as the content length for the Eth-
ernet message. Furthermore, the message type needs to be
translated to a virtual MAC address, used as the receiver
address when transmitting the message on Ethernet. The
sending MAC is the MAC address of the gateway.

Through the use of conventional FlexRay time slots for
policy-based messages, policy-based FlexRay is compatible
with the FlexRay standard. Thus, devices which do not
implement policy-based scheduling and communicate only
via plain FlexRay, do not need to be altered to be used in
this setup.

Architecture of the tblock: The tblock comprises
Tx_lookup and Rx_lookup memories, an Rx_packer module to
handle FlexRay — Ethernet messages, and a Tx_unpacker
module to handle Ethernet — FlexRay messages, as shown
in Fig. 11. The FlexRay parameter KeySlotID, which is a
unique slot assigned to each node by the schedule, is used as
the transmit/receive identifier for the data-headers, forming
a one-to-one mapping to a virtual MAC address. These
mappings are generated offline (during scheduling) and
preloaded into the Tx_lookup and Rx_lookup memories of the
tblock.

When a frame is received from the switch for forwarding
on the FlexRay network, the tblock buffers the frame and
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strips the Ethernet headers. A lookup is performed in the
Tx_lookup memory to determine the corresponding data-
header and this is appended to the frame data. The list of
transmit slots assigned to the gateway’s FlexRay interface is
then sorted based on the current slot-cycle in progress on the
network. The frame along with the sorted list is forwarded
to the Tx_unpacker module, which then segments the data
(if needed), adds FlexRay frame headers and writes to the
FlexRay interface’s frame buffers. As the data segment of the
frame is temporarily buffered in the Tx_unpacker module, a
configurable pattern detector examines the frame to detect
the presence of the specific pattern in the data segment,
like an ECU configuration request. If detected, the tblock
module can interrupt the software running on the ARM core
to monitor the source port and to disable the sender address
(or the port itself) in case of a security threat.

On the receive side, the messages received from the
FlexRay network are handled by the Rx_packer module. At
every slot/cycle boundary, the tblock performs a prefetch
on the Rx_lookup memory to determine if there are any
Ethernet addresses mapped to the slot-cycle combination
that has just ended. Since the FlexRay protocol requires the
frame to be completely received before validating it, the
prefetch operation enables Rx_packer to prepare the Ethernet
container before the FlexRay frame is completely received
from the network. The FlexRay payload is directly filled into
the Ethernet container and presented to the Rx Path of the
port. The Rx_packer also appends the receive packet with ‘0’s
if the FlexRay frame does not satisfy the minimum payload
size for Ethernet.

We have integrated our extensible FlexRay communi-
cation controller (CC) [9] as the network interface for one
of the ports. The host interface of the FlexRay CC has
been altered to a streaming interface to the thlock, based on
the AMBA Advanced eXtensible Interface (AXI) streaming
interface standard. FIFOs are instantiated at the interface to
decouple the tblock from the CC’s clock and data rates. The
configuration of the protocol parameters is now integrated
using a state machine that interfaces over a separate AXI
bus. The isolation of the configuration and datapath inter-
faces of the CC enable a generic tblock architecture that can
be directly reused for other network protocols like CAN.
Further, security aware FlexRay interface(s) (such as the
one discussed in [11]) could be integrated into the port(s)
and extended using software-security schemes to ensure
that the safety-critical network segments are protected from
malicious attacks.

3.2.5 Run-Time Management of Interface Configurations

The lookup memory within the receive path of each port is
mapped as an addressable location from the ARM core on
the Zynq device. The mapping allows the configuration of
each individual port to be altered in isolation or to update
all tables in a single write operation. The routing paths,
message priorities as well as the behaviour of the switching
system can thus be controlled from the monitoring software
on the ARM core. The lookup memory within the tblock is
also mapped to the address space, allowing changes to be
made in the FlexRay/CAN message routing. In addition,
the software on the processor can also monitor the latency
of packets on the individual interfaces to further fine-tune
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the routing performance and to isolate paths in real-time. We
show the effectiveness of this run-time management using a
case study that detects a suspicious activity and isolates the
corresponding port by reconfiguring the lookup memory
content in Section 4.1.

4 EVALUATING VEGA

To evaluate the switching performance of VEGa, we have
implemented the architecture on both the ZC702 develop-
ment board and the ZC706 board featuring two different
Zynq devices. The ZC702 board features a smaller Xilinx
Zynq XC7Z020 device that incorporates an Artix-7 grade
fabric, while the ZC706 board features a XC7Z045 device
that incorporates a superior ARM core and a Kintex-7
grade fabric. For the evaluation, we have chosen a design
that incorporates 3 Ethernet ports and 1 FlexRay port. The
Ethernet port interfaces are connected through the FPGA
Mezzanine Card (FMC) interface to two Gigabit Ethernet
FMC cards (FMCL-GLAN-B) from Inrevium Inc. The re-
source utilisation on the XC7Z020 device is shown in Table 1.
As can be observed, VEGa consumes 55% of the resources
on a small device, and can easily be extended to support
more ports. On the larger XC7Z045 device, the maximum
resource consumption is under 15% (BRAMs) for the same
combination (20191 LUTs, 20741 FFs 76 BRAMs, 2 DSPs). The
superior programmable fabric on the XC7Z045 offers higher
performance and is thus a better implementation platform
for supporting more interfaces (ports). On both platforms,
we are able to achieve the required operating frequencies
for the different modules: 80 MHz for the FlexRay port and
125 MHz for the Ethernet ports and the switch module. For
our experiments, we have configured the FlexRay interface
for 10 Mbps data rate (80 MHz clock, to support the 8 x serial
redundancy required by the FlexRay standard [13]) and the
Ethernet links were set for 1Gbps throughput (125MHz
clock).

To observe the end-to-end latencies of VEGa under cross-
traffic and isolated traffic conditions, we use a test setup
with 3 Ethernet links and one FlexRay link on the larger
XC7Z045 device (ZC706). The Ethernet ports are connected
to independent and isolated traffic sources and sinks which
are implemented on separate AC701 and VC707 FPGA
development boards. Each link is capable of handling traffic
at 1Gbps. For FlexRay, we have integrated a small cluster
of nodes on the ZC706 device that also includes the FlexRay
interface of VEGa. This allows us to measure end-to-end
latencies in all possible combinations: Real-time network
Non-real-time network, Non-real-time <+ Non-real-time and
Real-time (FlexRay/Ethernet) — Real-time (Ethernet) <
Non-real-time cross traffic. The frame sizes and rates for our
evaluation were generated based on the case studies in [40]
and in [7] for FlexRay and Ethernet networks respectively.

Fig. 12 shows the average latency incurred by VEGa for
different data sizes in the absence of cross traffic for non-
real time Ethernet <+ Ethernet traffic (Fig. 12(a)) and real-
time FlexRay <+ Ethernet traffic (Fig. 12(b)). The latency is
computed end-to-end: from the start of frame transmission
at the transmitter to the frame header reception at the
receiver. For larger data sizes, we see an increase in latency
due to the increased data movement within the switch, the
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Fig. 12: Switching bandwidth of VEGa for different data-
sizes in absence of cross traffic: Plot (a) corresponds to non-
real-time Ethernet<«>Ethernet traffic, while plot (b) corre-
sponds to real-time Ethernet<+FlexRay traffic.

transmit and receive interfaces of the gateway and at the
source and sink interfaces. In the absence of cross traffic,
we observe that the maximum variation in latency is about
40ns and is insignificant compared to the end-to-end latency
values.

For Ethernet — FlexRay transfers (Fig. 12(b)), the mea-
surement is terminated at the FlexRay interface, since the
transmission of the message on the FlexRay network is
guaranteed by the policy-based schedule. It can be observed
that there is no appreciable variation in latency below the
64-byte frame size, since the tblock pads smaller frames
to meet the minimal Ethernet frame size requirement. For
128-byte data, we observe a slightly increased latency due
to the larger data size. For data packets forwarded from
FlexRay to an Ethernet link, the prefetch mechanism helps
to reduce lookup latencies compared to the Ethernet —
FlexRay transfers.

Fig. 13 shows worst case VEGa latency compared with
existing work in the literature, in the absence of cross traffic.
As observed, our architecture outperforms gateway struc-
tures based on software-based approaches (Lim ef al. [23]
{simulation results}, Kim et al. [20], Yang et al. [18], and
Miiller et al. [22]) and FPGA-based gateways for tradi-
tional networks (Sander et al. [5]). The proposed architecture
also provides over 300x lower latency (priority mode, 8-
byte message) than automotive-grade microcontroller-based
gateways between traditional networks (LIN, CAN, and
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TABLE 1: VEGa: Resource Consumption on Zynq XC7Z020.

Function Submodule FFs LUTs BRAMs DSPs
CC 5572 9768 20 2
Tblock 2227 1849 13 0
Rx_Path 662 492 4 0
FlexRay Port -
exay o Tx_Path 160 121 5 0
Total 8576 12230 42 2
Frequency 80MHz
MAC 2619 1851 1 0
Rx_Path 661 476 4 0
Ethernet Ports x3  Tx_Path 160 121 5 0
Total 3549 2559 10 0
Frequency 125MHz
Switch - 204 856 0 0
Frequency 125MHz
Total (%) 19585 (18.4) 21095 (39.7) 72 (54.75) 2(0)
180 o
| VEGa Priority
*  VEGa Non-priority
= 100 o ®  CAN-to-CAN [5]
= o A Atacama [7]
8\ 25 1 ¢ Inter-domain Priority [23]
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Fig. 13: Comparison of end-to-end latencies of VEGa with other implementations from literature.

FlexRay) described in Schmidt et al. [17], Kim et al. [16] and
Seo et al. [19]. Our architecture also outperforms the FPGA-
based Ethernet switching infrastructure Atacama (Carvajal
et al. [7]), though the margin is small (1.3x lower latency at
128-byte priority data). Further improvements in latency can
be achieved by enhancing the Ethernet MAC/PHY mod-
ules (over the standard MAC/PHY modules that we have
used in our platform) at the expense increased hardware
resources and limited portability [34].

We also evaluate the performance of VEGa in the pres-
ence of cross-traffic. For this evaluation, priority and non-
priority traffic were directed to the same destination at an
aggregate bandwidth that nearly saturates the gateway. The
setup generates non-priority traffic at 600 Mbits/s with a
1 KB payload size and variable rate priority traffic (10-200
Mbits/s) with a 64-byte payload. Fig. 14 shows the variation
in latency in the presence of cross traffic, measured with
long duration tests. It can be observed that additional (and
varying) latency is incurred in the case of priority frames
compared to the fixed deterministic latency in the absence
of cross-traffic. This is due to the non-preemptive nature

of the switch fabric that blocks the priority frame once a
non-priority frame has entered the switch, resulting in a
maximum end-to-end latency of 21.3ps for priority data.
In the case of non-priority traffic, the smaller size of the
priority frame causes only a minor increase in end-to-end
latency as the blocking period (due to the real-time frame)
is much shorter than the transmission latency of the non-
priority frames. When the rate of priority frames reaches 200
Mbits/s, we observe that the non-priority frames start accu-
mulating within the Rx port buffers, which eventually leads
to dropped frames. However, in the same conditions, the
priority frames were routed without any data loss, ensuring
that critical data is always delivered to the destination.
In comparison, the Atacama switch achieves better perfor-
mance in cross-traffic conditions due to its dedicated routing
structure for priority traffic. However, this higher perfor-
mance is achieved at the expense of increased resource
consumption and lower scalability: a 4-port Atacama switch
consumes 19223 LUTs and 138 18K BRAMs on a Virtex-2
device (LUT-4 architecture) compared to 10422 LUTs and
40 BRAMs (32x36K BRAMs and 8x18K BRAMSs) used by
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Fig. 14: End-to-end latency measurements using VEGa in
the presence of cross-traffic.

VEGa on a low-end Zynq ZC7020 (LUT-6 architecture).
Furthermore, for a higher number of ports, the dedicated
routing resources in Atacama would increase complexity
and resource consumption significantly compared to VEGa.

4.1 Case Study: Managing Ports in Real-Time

Researchers have identified vulnerabilities in current auto-
motive gateways that allow a reconfigure command from a
low priority network to force a configuration change on a
higher priority network [41], [42]. This bridging enables a
simple exploit on a low criticality ECU to gain access to
safety critical network segments and to alter the software
code on safety critical ECUs. The software monitoring on
VEGa can respond to such threats dynamically by isolating
the compromised segment of the network, preventing the
attack from spreading.

For this experiment, we create a remote reconfiguration
message from a low priority Ethernet port to a safety-critical
ECU on the FlexRay network. The message is configured
as a sequence of 64-byte messages with a specific identifier
that can trigger a software update sequence on the ECU.
The pattern detector extension in the tblock is configured to
detect this identifier in messages received from the switch
fabric and pass the interrupt to the monitoring software task
running on the ARM core. The trigger can also be used to
drop the current frame within the tblock by setting a bit in
the tblock configuration (which also configures the pattern
detector). We measure the latency incurred from receiving
the malicious frame at the receiving port of VEGa to the
software updating the configuration entry in the lookup
memory, using a dedicated hardware timer that was added
for this experiment. The latencies of these steps are shown
in Table 2.

The measurements are performed with the ARM cores
running the standalone OS, a minimalist operating system
from Xilinx and in the absence of any cross traffic. We have
assumed that the reconfigure message is mapped as a high-
priority message, to ensure that the switching latency is
minimised. It was observed that the average latency from
the time the packet was recieved at the Ethernet port to
the interrupt being raised by the tblock was 5.101 ps. The
interrupt was serviced within an average latency of 2.96 s,
while a single configuration entry could be updated in
300ns, resulting in a total delay of 8.3611s to update the

12

TABLE 2: VEGa: Latency incurred in run-time management
of ports.

Block Latency Components
Mode Routing Interrupt  Software  Total
ps Hs ps ps
Src/Dest MAC 5.101 2.96 0.3 8.361
Port forwarding 5.101 2.96 21.25 29.311

lookup memory content. However, this would only block
a single Ethernet address from transmitting a message to
a single location on the safety-critical network. It is also
possible to block the entire port from forwarding any infor-
mation to the safety-critical FlexRay port; for this, the entire
lookup memory must be updated. The software code was
able to generate the new routing table and update it in the
lookup memory in 21.25 ps using the DMA write mechanism,
thus completely disabling the port in 29.311us from the
reception of the malicious frame. Finally, it is also possible
to completely disable the port by setting the search_enable bit
in the lookup memory to ‘0’.

This experiment demonstrates how VEGa can react to
dynamic network conditions by actively managing the cen-
tral switching module in real-time (with a bounded latency
of under 30 ps). Other scenarios that can benefit from this ca-
pability include dynamic routing of messages to support ac-
tive fault-tolerance, run-time priority management for task
migration in case of permanent faults in critical systems,
and on-demand services such as emergency assistance.

5 CONCLUSION

Ethernet is widely expected to be the network backbone for
next generation vehicular architectures, while existing net-
works like CAN, LIN and FlexRay continue to support their
respective classes of applications. While gateways based
on MCUs allow reliable message exchange for traditional
networks like CAN or FlexRay that operate at 1-10 Mbps,
they cannot cope with the 100 Mbits or higher data rates of
Ethernet networks, especially when operating close to full
utilisation. In this paper, we presented VEGa, a configurable
low-latency gateway architecture on hybrid FPGAs like the
Xilinx Zynq. VEGa allows accelerated message exchange
with minimal latency with selectable priority levels for
handling critical control messages. Also, the tight coupling
with a capable processing system allows traffic monitoring
and control of individual ports in real-time. We also defined
a message translation mechanism that allows high-priority
CAN and FlexRay networks to be directly interfaced to gate-
way ports for better determinism and lower latency message
exchange. Experiments show that VEGa is able to achieve
sustained switching performance at high network utilisation
and provides a reliable path for critical messages even in the
presence of cross traffic, without using dedicated switching
paths. The modular architecture maps well to the require-
ments of the automotive domain, allowing model varia-
tions with a manageable, scalable architecture. The run-time
adaptability of the switch also addresses emerging concerns
like network security in connected vehicles. We are also
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exploring the integration of security primitives (like light-
weight encryption and authentication frameworks) within
VEGa to provide a secure communication infrastructure for
next generation vehicular systems.
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