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ABSTRACT With the increased accuracy available from state of the art deep learning models and new
embedded devices at the edge of the network capable of running and updating these models there is potential
for urban intelligence at the edge of the network. The physical proximity of these edge devices will allow for
intelligent reasoning one hop away from data generation. This will allow a range of modern urban reasoning
applications that require reduced latency and jitter such as remote surgery, vehicle collision detection and
augmented reality. The traffic flow from IoT devices to the cloud will also be reduced as with the increased
accuracy from deep learning models only a subset of the data will need to be reported after a first pass
analysis. However, the training time of deep learning models can be long, taking weeks on multiple desktop
GPUs for large datasets. In this paper we show how transfer learning can be used to update the last layers
of pre-trained models at the edge of the network, dramatically reducing the training time and allowing
the model to perform new tasks without data ever having to be sent to the cloud. This will also improve
the users’ privacy, which is a key requirement for urban intelligence applications with the introduction of
GDPR. We compare our approach to alternative IoT urban intelligence architectures such as cloud-based
architectures and deep learning algorithms trained only on local data.

INDEX TERMS Edge computing, transfer learning, deep learning, urban intelligence, IoT, QoS.

I. INTRODUCTION
Urban intelligence can provide insight into a number of the
major problems being faced by our cities, such as air pol-
lution, increased mobile communication network demand,
traffic congestion and water floods, etc., through the use of
data from IoT sensors and intelligent analytics on the data.
This can allow for the efficient running of a smart city, making
the most of the resources available. Problems in smart cities
such as increased network demand and crowd congestion are
set to get increasingly difficult with the UN predicting 60%
of people globally will live in cities with at least half a million
inhabitants by 2030 [1]. This will exacerbate the current
problems in our cities, so it will be critical to mange these
problems with intelligent urban reasoning algorithms and
a suitable deployment architecture. IoT devices will enable
access to a range of devices and information that was not
available to urban authorities before. This additional infor-
mation from air pollution sensors, CCTV cameras, vehicles
and so on will allow the development of more advanced urban
reasoning applications [2].

The associate editor coordinating the review of this manuscript and
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The development and rising popularity of bandwidth-heavy
applications such as self-driving cars and CCTV footage
will mean that smart cities in the future will have much
more data being generated. As some of these applications
such as self-driving cars have strict tolerable delay require-
ments there is a need to be able to avoid congestion on
the core network. The number of IoT devices is also set to
increase, with forecasts predicting 25-50 billion IoT devices
by 2020 [3]. Smart cities of the future will need edge com-
puting, which is an architecture with additional computing
resources made available at the edge of the network close
to the end-devices [4], [5]. The physical proximity of the
devices will reduce the latency to support applications with
strict QoS requirements such as augmented reality and vehi-
cle collision detection. Applications such as vehicle collision
detection are safety critical as they can seriously injure or
kill a person if the algorithm fails to work properly. Deep
neural networks have shown increased accuracy in a number
of recent benchmark competitions in machine learning and
pattern recognition [6]. In previous work we have shown how
the combination of deep neural networkmodels one hop away
from data generation enables a range of new urban reasoning
applications and services in smart cities [7]. This architecture
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TABLE 1. Urban intelligence applications.

is called ‘‘deep edges’’ as it combines the accuracy of deep
neural networks and the reduced delay of edge networks.
In this paper, we extend this initial proposal and show how
transfer learning can be used to update pretrained deep neural
network models at the edge. We also include a detailed
analysis of the requirements of current urban intelligence
applications and deep learning algorithms that can be applied
to urban intelligence problems.

With the recent success of deep learning a number of
pre-trained models are now available to users who may not
have the data or computational capability to train them.
The computational capability at the edge of the network is
limited compared to the cloud. Machine learning libraries
such as Tensorflow have set up hubs that allow for the easy
sharing of pre-trained models.1 This allows easy access to
large models that can take a very long time to train. For
example, the VGG-16model used in the results section of this
paper took 2-3 weeks to train fully using four Nvidia Black
GPUs on the ImageNet dataset [8]. Recent transfer learning
techniques such as feature extraction and fine tuning allow
us to use and update the model at the edge of the network.
As we update only the last few layers of the network, we can
download the model to an edge device, such as a Jetson
Tx2 and update the model for domain-specific tasks using
local data that never leaves the edge device. For example,
we can update the pre-trained VGG-16 model using transfer
learning for a number of classification tasks at the edge using
local data [9]. By using the pre-trained model and transfer
learning with local images from the camera a more accurate
model can be obtained with less training time and increased
accuracy compared to just training the model on the local
dataset. The ability to do all the training at the edge also
increases privacy as none of the local images leave the edge.

The remainder of the paper is organised as follows:
Section II highlights urban intelligence applications and the
recent challenges for reduced delay and increased band-
width in urban applications such as augmented reality and
autonomous vehicles. This section also shows the variety of
deep learning models that have recently been used for urban
intelligence applications. Section III describes the deep edge

1https://www.tensorflow.org/hub

TABLE 2. Computing layer characteristics.

architecture and how this can allow for alternative training
methods such as transfer learning at the edge of the network.
Section IV describes the experimental setup and Section V
presents the results of those experiments. Section VI con-
cludes the paper.

II. URBAN INTELLIGENCE AT THE EDGE
Urban computing and intelligence can bridge the gap
of pervasive computing, intelligent computing, cooperative
communication, mass data management technologies and
artificial intelligence to improve urban environments and
quality of life in smart city systems. These applications can
have a range of demands in traffic rate, tolerable delay and
criticality. Modern applications with high criticality and low
tolerable delay show the need for accurate models at the edge
of the network.

A. EDGE COMPUTING
Table 1 shows a selection of urban applications and illus-
trates significant differences in their requirements in terms
of tolerable delay and traffic rate. Traditional smart city
applications that researchers envisioned five years ago had
tolerable delays of over one minute [10]. This typically
involved applications such as air quality monitoring, traffic
congestion and structural health that have a larger tolerable
delay suitable for a cloud architecture. However, more recent
urban applications such as augmented reality, smart energy
and autonomous vehicles have much stricter tolerable delays,
which have only become achievable with recent advances
in edge computing. Table 2 highlights the major difference
between the computing architectures in terms of their com-
putation, storage and QoS characteristics. In this section we
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describe the benefits that edge computing can bring to current
urban intelligence problems.

1) LOW LATENCY
Recent urban intelligence applications such as autonomous
vehicles not only increase the network demand but also
require urban reasoning services that can provide information
about congestion and collision detection [14]. Applications,
such as urban congestion that do not have strict requirements
with latency can be deployed in a typical cloud-based archi-
tecture, but applications, such as augmented reality have strict
requirements for low delay and jitter. There are a growing
number of urban reasoning applications, as shown in Table 1,
that require this additional level of low latency and jitter to
provide effective applications such as remote surgery, smart
grid and collision detection [15].

2) BANDWIDTH-INTENSIVE APPLICATIONS
Modern cloud-based urban intelligence applications such as
CCTV pedestrian detection and users transmitting 1080p
videos are bandwidth intensive. The cumulative data rate
for these data heavy applications could quickly saturate the
metropolitan area network if growth continues at the current
rate: 12,000 users in a city streaming 1080p video requires
a network that can deliver 100 gigabits per second and a
million users would require a network capable of transmitting
8.5 terabits per second [15]. An edge computing framework
such as Gigasight can be used to stop flooding in the network,
as video from amobile device only travels as far as the nearest
edge device [16]. Computer visions algorithms can run on
the edge device in almost real time to allow only the results
of the processing e.g., recognised faces, vehicle accidents,
content tags, etc., along with the metadata e.g., size, date
captured, capture location, etc., to the cloud. This will result
in a massive reduction in data sent to the cloud by three to six
of magnitude.

3) MASKING CLOUD OUTAGES
Cloud providers have become increasingly reliable over the
years however a total reliance on cloud computing can
increase the applications vulnerability to cloud outages. This
can be caused by a wide variety of factors that can be outside
the cloud providers control such as a failure in the network
infrastructure or a cyber-attack such as denial of service being
carried out against the provider [17]. The failure of a cloud
provider can also happen internally due to the failure of a
cluster of machines or through human error as in the case
where Amazon S3 web services failed due to a typo [18].
To prevent the loss of data during a web service failure,
the edge device can act as a proxy for the cloud to back
up the data and perform the critical functionalities needed
by the user on local data [15]. This allows the application to
correctly function and provide services even during a cloud
outage. When access to the cloud is fixed, the actions per-
formed on the edge devices and data stored can be propagated
to the cloud for reconciliation.

FIGURE 1. Augmented reality for urban visualisation. [22].

4) PRIVACY-POLICY ENFORCEMENT
Privacy-policy enforcement has become increasingly impor-
tant with the ratification of the General Data Protection Reg-
ulation (GDPR) on the 25th May 2018 as part of the EU Data
Protection Directive. This has allowed users to have much
more control over the data that is being stored about them and
who will receive access to this data [19]. With a number of
other regions in the world expected to enforce similar legis-
lation privacy-policy enforcement will become increasingly
important [20]. Citizens in a smart city should be able to
delete data that they deem to be highly sensitive or private.
Service providers should use data aggregated across multiple
people at certain times of the day and denatured images such
as faces being blurred. Cloud-based architectures for urban
reasoning make this extremely difficult as the data can be
transported from an IoT device to a data centre located in any
part of the world. Using an edge device can solve some of
these problems by running trusted software modules called
privacy mediators that execute on an edge device and provide
denaturing of data one hop away from the source [21]. The
edge device can provide a clear natural boundary of trust with
a foundation of scalable and secure privacy that aligns with
the users boundaries of trust, while still allowing for urban
computing and intelligence.

5) AUGMENTED REALITY FOR URBAN VISUALISATION
Augmented reality and IoT are a highly compatible com-
bination as IoT is a combination of physical objects with
virtual representation and augmented reality superimposes
additional virtual information to users about smart objects
and service in the user’s view of the world [22]. Augmented
reality can use local information beacons and sensors to
provide context-aware suggestions that can be displayed to
users [23]. Figure 1 shows a use case where a tourist may
want information about the buildings and statues that they
are seeing as well as recommendations for places to visit
next. This information can be provided through augmented
reality, which also gives the opportunity for highly creative
applications such as the statues coming to life to explain
their achievements to the user. There are a number of strict
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TABLE 3. Deep learning for urban intelligence.

QoS requirements needed for AR applications as they require
reduced latency and jitter meaning they need to be deployed
at the edge of the network.

B. DEEP LEARNING
Table 3 shows the variety of deep learning models and the
applications to which they can be applied. These models have
become very popular in recent years as they have shown
increased accuracy using big data, with most of the research
being published in the last three years. In this subsection we
give an overview of several common deep learning architec-
tures as well as the urban intelligence applications to which
they have been applied.

1) AUTOENCODER (AE)
An AE is a type of deep learning algorithm that consists
of an input layer, an output layer and one or more hidden
layers connecting them, with the output layer having the same
number of nodes as the input layer. AEs have two main com-
ponents an encoder that receives the input data and transforms
it to a lower dimensional latent variable and a decoder that
uses this latent variable to try to reconstruct the original input.
AEs are useful for unsupervised learning tasks as the training
procedure tries to minimise the error between the input and
output, which allows it to notice any unexpected changes
in the output. This is useful for a number of applications
in urban intelligence such as detection of road traffic acci-
dents [26], fault diagnosis in city devices and machines and
object tracking [24]. They can also be used to make accurate
QoS predictions at the edge of the network [25], which allows
for the composition of more reliable urban applications that
have stricter QoS requirements in terms of delay, throughput
and jitter.

2) RECURRENT NEURAL NETWORK (RNN)
There are many tasks in a smart city that have a sequence or
time series component such as traffic congestion, electricity
grid demand, network quality etc. In such applications, a deep
learning model is needed that is capable of learning these
dependencies, as a traditional feed-forward neural network
assumes no time dependency between input and output lay-
ers. RNNs and subsequently LSTMs as an extension have
been developed to address this issue. The data used to train
an RNN consists of both the current training data and the
feedback loop in the RNN network that returns the current

output as an input for the next data point. The network is
trained using an extension of the original backpropagation
algorithm, called backpropogation through time [65]. RNNs
have been used for a number of sequence prediction tasks
such as car park occupancy prediction [27], energy demand
prediction [28], metro density prediction [29] and waste gen-
eration prediction [30].

3) RESTRICTED BOLTZMANN MACHINE (RBM)
RBM are a stochastic neural network consisting of two
main layers: a visible layer that has the input that is known
through the data and a hidden layer that has the latent vari-
ables. The restricted in a Restricted Boltzmann Machine
refers to the connectivity of the neurons compared to a tra-
ditional Boltzmann machine. RBMs build a bipartite graph
where each visible neuron is connected to all hidden neurons
and each hidden neurons is connected to all visible neurons.
The restriction is that there is no connection between any
two units on the same layer. RBMs also contain a bias unit
that is connected to all the visible and hidden neurons. RBMs
are used as a building block to create Deep Belief Networks.
They can be used in a variety of urban intelligence applica-
tions, such as urban object recognition [31], intrusion detec-
tion [32], object classification [33] and city event detection
from Twitter [34].

4) DEEP BELIEF NETWORK (DBN)
DBNs are a type of generative neural network composed of
multiple layers of latent variables with connections between
the layers but not between units in the same layer and a visible
layer corresponding to the inputs [66]. DBN can be used in a
range of applications to extract a hierarchical representation
of the training data. Training a DBN is performed in a layer
by layer fashion. By adding a classification layer such as
softmax to the network it can also be used for prediction
tasks. This makes it useful for a range of urban intelligence
application such as network traffic assignment [35], indoor
localisation [36] and facial expression recognition [37].

5) LONG SHORT TERM MEMORY (LSTM)
LSTMs developed from RNNs due to some of the training
problems. LSTMs improved on the initial RNN architecture
by saving and retrieving data over a long period with an in
built error carousel and an explicit gating mechanism [67].
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This change in training method addressed many of the diffi-
culties of training RNNs, where the dynamics of backprop-
agation error would increase or decrease to the point that
the gradients in the RNN would explode or vanish. LSTMs
also introduced a new gating mechanisms compared to the
basic RNN approach that would compute a weighted sum
of the inputs and apply a nonlinear function. This gating
mechanism allows the LSTM to decide whether or not to
keep the existing memory or to overwrite it. This means that
if the LSTM unit detects an important feature from an input
sequence, this feature will be carried over a long distance and
used to capture long-distance dependencies. This allows them
to be used for a number of forecasting applications such as
traffic flow prediction [38], QoS forecasting [39], air quality
prediction [40], particle matter forecasting [41] and energy
load forecasting [42].

6) CONVOLUTIONAL NEURAL NETWORK (CNN)
For image and sound based tasks, standard deep neural net-
works with dense connections between the layers are hard
to train and encounter a number of problems when try-
ing to scale. Traditional dense connections do not have the
translation-invariance property, so any slight change in the
size or placement of an image would be difficult to detect.
CNNs solve this problem by using multiple hidden convo-
lutional layers that extract high level features. Convolutional
layers consist of learnable parameters, called filters that go
through the whole image (e.g., in an image, it goes across the
width and length) and calculates the inner product of the input
and the filter. This leads to a feature map of the filter. Another
building block of convolution networks, which can be seen
in the VGG-16 model in Figure 6, is a pooling layer, which
operates on the feature maps. The pooling layer reduces the
spatial size of the representation to reduce the chance of
overfitting and cuts down the number of parameters. Max
pooling is an approach that divides the space into individual
regions and picks the maximum value for each region. CNNs
also make heavy use of the ReLu activation function of the
form f (x) = max(0, x) as this leads to faster training without
effecting the accuracy of the network [68]. CNNs have a
huge range of applications in urban intelligence, with some
of the most recent papers published in the last three years
using CNNs for license plate recognition [43], pedestrian
detection [44] (tested on our local images in Figure 2), object
detection [45], street cleaning [46], noise recognition [47] and
predictive driving control [48].

7) VARIATIONAL AUTOENCODER (VAE)
VAEs are a generative neural network model that have weak
assumptions about the structure of data, while allowing
for fast training through the use of backpropagation [69].
They can also be used for semi-supervised learning making
them useful for urban applications with diverse and scarcely
labelled data [70]. Such examples include house number
classification [49], motion prediction [49] and anomaly
detection [50].

FIGURE 2. Pedestrian detection using pre-trained model.

8) GENERATIVE ADVERSARIAL NETWORK (GAN)
GANs consist of two neural networks, a generative and
discriminative network that compete against each other to
produce synthetic high quality data [71]. The generator is
responsible for generating new data after the distribution has
been learned from the training dataset. The discriminator
is then responsible for discriminating between the real data
from the training set and the fake data being produced by
the generator. The generative network is trained to produce
data that is deceiving for the discriminator. Thus the two
networks are in competition as training occurs. The objective
function used to train GANs is based on minimax games
where one network tries to maximise the value of a function
and the other tries to minimise it. GANs have a wide range
of urban applications such as path planning [51], IoT wire-
less classification [52], adversarial video classification [53],
vehicle re-identification [54] and intelligent transport system
analytics [55].

9) DEEP-Q-NETWORK (DQN)
DQN is a deep reinforcement learning algorithm that builds
from Q-learning, where the goal was learn a policy, which
tells an agent what action to take under certain circumstances
by learning a table of states and actions Q(s, a). The DQN
approach uses a neural network instead of the Q learning
table to approximate a large number of Q values. The neural
network is referred to as the approximation function denoted
as Q(s, a; θ ), where θ represents the trainable weights of the
network [72]. DQN has huge potential for controlling a num-
ber of services in a smart city as it can continuously update
to new data. In the last two years it has already been applied
to routing for crowd management [56], energy efficient data
collection [57], low latency microgrid communication [58]
and resource allocation at the edge [59].

10) ASYNCHRONOUS ACTOR-CRITIC AGENTS (A3C)
A3C has recently been introduced as a competitor to
DQN [73]. A3C uses an alternative approach to DQN that
utilises multiple incarnations of an agent represented by a
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FIGURE 3. Small scale demonstration.

neural network interacting with an environment to learn more
effectively. A3C contains multiple worker agents in a global
network, which each have their own network parameters.
Each of these agents can interact with an individual copy
of the environment in parallel with other agents who have
their own separate environments. This allows for increased
speedup and also increases the overall experience available
for training as agents can be more diverse. These networks
have already been applied to adaptive video streaming [60],
network topology management [61], content caching [62],
service selection [63] and traffic signal control [64].

III. DEEP EDGES
Deep edges combine the increased accuracy of deep learning
models with the reduced latency, increased bandwidth and
privacy of edge networks [7]. The ability to train and update
these models at the edge of the network has not been possible
before as devices capable of updating and training these
networks at the edge have only been developed in recent
years, such as the Nvidia Jetson Tx2. These edge device can
provide effective communication and increasedAI at the edge
by arranging them as a network as shown in Figure 3. At the
edge of the network these devices can use data from the large
number of service providers in a smart city to add auxiliary
information to their models. Here the embedded GPU devices
(Jetson Tx2) have a number of services registered on them
that provide real-time data for air pollution, water levels and
traffic information in the city.

The additional processing power available from the
embedded GPUs at the edge compared to traditional IoT
gateways (e.g., Raspberry Pis and Intel Galileos) allows
the devices to run more complex prediction models for
the QoS of services in the environment [74], [25], [39].

FIGURE 4. Middleware architecture.

These predictions can be used as part of a middleware archi-
tecture to compose more reliable services even in dynamic
environments. Figure 4 shows a middleware architecture that
allows the QoS predictions in a prediction engine to be used
by a Service Composition & Execution Engine (SCEE). The
main components are the Request Handler (RH), the Service
Registration Engine (SRE), the Service Discovery Engine
(SDE), the QoSMonitor and the Service Composition&Exe-
cution Engine. The RH establishes a request/response com-
munication channel with the user and forwards the request
to the other middleware components. The SRE registers the
available services in the environment using consumer feed-
back [75]. The SDE uses the backward-planning algorithm
to identify the concrete services, which can be used to sat-
isfy the request and sends this list of services to the SCEE.
The QoS monitor is used to monitor these services and can
forecast when a service is about to degrade in quality [39]
and predict possible candidate services to switch to when
this degradation happens [74], [25]. The SCEE will use these
services to create a response for the request using a stigmergic
service composition algorithm [76]. This improves the QoS
for service-based urban intelligence applications.

A. TRANSFER LEARNING
The goal of transfer learning is to improve learning in the
target task by levering knowledge from the source task [77].
It can provide several benefits, such as improving baseline
performance, speeding up overall model development and
training time and also getting an overall improved and supe-
rior model performance compared to building the model from
scratch. This is especially important in deep learning models
that have a large training time. Transfer learning can be
applied to all the Deep LearningModels discussed in Table 3.
Access to open evaluation datasets, such as the Caltech Pedes-
trian Dataset [78] makes these models more easily available.
Table 4 shows the five best performing models for pedestrian
detection on this dataset, with code available.
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TABLE 4. Pedestrian detection models.

FIGURE 5. Transfer learning categories.

Figure 5 shows the different categories of transfer learn-
ing based on the relationship between the source and target
distributions. The most simple case is regular learning where
the source and target have the same distributions and are
required to perform the same tasks. When the source and
target have the same distribution or are in the same domain
but the tasks that they are required to perform are different this
is called inductive transfer learning. This category can further
be broken down depending upon whether the source domains
contain labelled data or not: if a lot of labelled data in the
source domain are available then it is multi-task learning and
if there is no labelled data from the source domain then it is
self-taught learning [83]. When the source and target distri-
bution are not the same but the tasks are similar it is called
transductive transfer learning. In this situation, no labelled
data in the target domain are available while a lot of data in the
source domains are available. The final category is unsuper-
vised transfer learning where there is a difference in both the
source and target distribution and tasks. This category focuses
on solving unsupervised tasks in the target domain such as
clustering [84] and dimensionality reduction [85], with no
labelled data available in the source and target domains in
training. A linear cost function can be used to minimise the
difference between the source and target domain distribution
in unsupervised transfer learning [86], [87]. In this paper we
focus on two specific transfer learning techniques of feature
extraction and fine-tuning. We also use data augmentation to
increase the amount of training data.

1) DATA AUGMENTATION
Generating artificial data based on existing observations is a
technique in machine learning to control overfitting, improve
model accuracy and generalisation [88]. The idea behind
this technique also known as data augmentation is that we
follow a set process, taking existing data, such as images from
our training set and applying some image transformation
operations on them, such as translation, zooming, shearing
and rotation to produce a new set of alternative images. The
randomness of the process means that we do not get the same

FIGURE 6. Deep transfer learning approaches.

images each time. This helps to stop the deep learning model
from overfitting on the local training data. In our experiments
we use the ImageDataGenerator class2 from Keras to pro-
vide a number of transformations for generating new images,
such as: zooming, rotation, translation, randomly flipping
images horizontally, and filling new pixels with their nearest
surround pixels.

2) FEATURE EXTRACTION
Deep learning models are layered architectures that learn
different features at different layers. These layers are finally
connected to a last layer, which is usually fully connected
in the case of classification to get the final output. This
layered architecture allows us to utilize pre-trained net-
works without a final layer as a fixed feature-extractor for
other tasks. Figure 6 shows the different transfer learning

2https://keras.io/preprocessing/image/#imagedatagenerator-class
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approaches that can be applied to this task. Figure 6a shows
the VGG-16 model that can be downloaded directly to an
edge device. Figure 6b shows the VGG model as a feature
extractor where we freeze (fix weights and don’t train) all
the blocks of convolutions layers and flattening layer in
the dashed blue box. We only update the fully connected
classifier block at the end of the model. This allows the
new model in this case to transform the image from a new
domain task into a large dimension vector based on hid-
den states, thus enabling us to extract features from a new
domain task using the source domain. This is one of the most
widely used methods of transfer learning using deep neural
networks.

3) FINE TUNING
In fine tuning the weights of the last few layers of the network
are updated as shown in Figure 6c with a pink box and trained
as well as the fully connected layers at the end of the model,
for the classification task. This means that this method is
slightly more resource intensive as we have to train some
of the previous layers. As deep neural networks are layered
with the initial layers capturing the most basic features such
as edges and the later layers capturing more specific details
about the task, we can freeze some of the first blocks and
update the later ones. In Figure 6c we freeze the first three
layers in the dashed blue box, while fine tuning the last two
blocks to suit the task. This allows us to use the knowledge
in terms of the overall architecture of the network and use its
states as the starting point for our retraining step allowing us
to achieve better performance in less time.

One of the problems with updating a model using
fine-tuning is that that some of the parameters in the
non-frozen layers have to be updated to solve the new prob-
lem. This can overwrite parameters that the network has
learned before and lead to ‘‘catastrophic forgetting’’ of the
knowledge that was previously acquired [89], [90]. Previ-
ous approaches to preventing catastrophic forgetting have
used an ensemble of neural networks. When there is a new
task, the algorithm creates a new network and shares the
representation between the tasks [91], [92]. However, these
approaches are not suitable for the edge due to the space and
complexity restrictions as the number of networks increases
linearly with the number of new tasks to be learned.

In this paper instead of using a traditional optimisation
approach, such as RMSProp [93] we use a cyclical learning
rate (CLR) [94]. Specifically, we use an exponential cyclical
learning rate (ECLR), which can be seen in Figure 7. The
learning rate is varied between the base learning rate and the
max learning rate, with the value changing from one bound to
the other after 500 training iterations. Updating the layers at
different learning rates allows the network to initially come
out of any saddle points or local minima in the base network.
The max learning weight then decreases exponentially as
the number of training iterations increase to avoid drastic
updates, which can lead to divergent behaviour.

FIGURE 7. Exponential cyclical learning rate.

IV. EXPERIMENTAL SETUP
In our experiments, we test the effect that different net-
work topologies have on the performance of the packet
loss and response time. We consider a number of devices
from alternative architectures including local edge devices
and cloud-based approaches. A Nvidia Jetson Tx2 is used
as an edge device connected to a router one hope away,
a Rapberry Pi 3 Model B+ (RPi) is connected in a mobile
ad hoc network one hop away and a desktop computer is
connected to an alternative network three hops away.We con-
sider a range of more traditional cloud-based approaches
using a number of Amazon EC2 instances in five locations:
Dublin, Paris, Frankfurt, Bahrain and Seoul. This provides
a global perspective of response times from data centres
located around the world. We conduct the network test in
Trinity College Dublin and record the round trip time (RTT)
between the client and server obtained through ICMP ping
messages. To obtain a comprehensive distribution of the
response time values 5000 ping messages are sent to each of
the servers at one second intervals. The device are connect
using a Wi-Fi-based network and the RTT is recorded in
milliseconds.

We also implement the neural network architectures in
Figure 6 and show how the different training methods effect
the accuracy of the final model. We test how the training
and validation loss improve over the epochs by using image
augmentation. We use the Dogs vs. Cats3 dataset to evaluate
the accuracy of our transfer learning algorithms. We also
create a basic CNN model trained only on the dogs vs cats
dataset to allow for comparison between a traditional learning
approach and transfer learning. The basic CNN model has
three convolutional layers of size 16, 64 and 128 with max
pooling after each convolution. This is then followed by a
flattening layer and two fully connected layers. The effects
of transfer learning are also tested on two other much deeper
models, Inception ResNet V2 [95] and Xception [96].

3https://www.kaggle.com/c/dogs-vs-cats/
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FIGURE 8. Network delay times.

A. METRICS
We use a number of classificationmetrics to comprehensively
show how the classification models perform. The metrics
are based on the number of True Positives (TP), False Pos-
itives (FP), True Negatives (TN) and False Negatives (FN)
and are defined as:

Accuracy =
True Positive+ True Negative

TP+ TN + FP+ FN
(1)

Precision =
True Positive

True Positive+ False Positive
(2)

TPR/Recall =
True Positive

True Positive+ False Negative
(3)

F1 =
2 · Precision · Recall
Precision+ Recall

(4)

We also use a receiver operating curve (ROC) that provides
a clear visual illustration of the overall performance as well
as the area under the curve (AUC), which measures the
degree of separability (how much a model can distinguish
between classes). A higher AUC means the model is better at
classification, with anAUCnear 1 showing a goodmeasure of
separability, while ameasure of 0.5 shows no class separation.
The curve uses the true positive rate (TPR) defined previously
and the false positive rate (FPR) defined as:

FPR =
False Positive

False Positive+ True Negative
(5)

The training time per epoch of each of the models is also
evaluated on a range of devices: a Titan V with 5120 CUDA
Cores and 12GB RAM requiring 250W power, a Jetson
Tx2 with 256 CUDA Cores and 8GB RAM requiring 12W,
and a Raspberry Pi 3 Model B with a Broadcom Video-
Core IV GPU and 1GB of RAM requiring 1.2W.

V. RESULTS
A. NETWORK DELAY
Figure 8 shows the network delay for the device configura-
tions that were described in Section IV. A box plot is used
to show the distribution of network delay for each of the
configurations. The blue line in the box plot indicates the
median response time and the average delay is indicated by

FIGURE 9. Network packet loss.

the dashed orange line. Figure 8 shows that the best per-
forming configuration is the Jetson connected one hop away
from with a median delay of 2.3ms and mean of 5.39ms. The
raspberry pi (RPi) connected one hop away in a MANET
has a slightly longer response time with a median delay
of 5.1ms and mean of 8.5ms. The local desktop (CPU) that
is connected to a different network has a slightly increased
delay with a median of 8.0ms and mean of 10.8ms. The
data centres are then used to evaluate the impact of using a
cloud architecture in different locations. The Amazon Dublin
instance has the lowest response time with a median of 7.5ms
and mean of 24.1ms, this can be seen as a special case of a
cloud provider as the data centre is located close to the Trinity
College Dublin, where the test was conducted. However, even
in this special case the average delay is larger than the tolera-
ble delay required by applications such as augmented reality.
To fully evaluate the impact of the data centre location we
evaluate the response time of four other cloud locations two
in Europe (Paris, Frankfurt), one in theMiddle East (Bahrain)
and one in Asia Pacific (Seoul).

The median response time for the data centre in Paris
was 24.905ms with a mean of 40.2ms and the data center
in Frankfurt has a median delay of 27.5ms with a mean
of 36.2ms. However, in terms of geographical locations this
is still quite optimistic as Dublin is relatively close with good
communication links. The data centre in Bahrain had a much
increased response timewith amedian of 136.0ms and amean
of 155.2ms. This can be seen be the noticeable jump in the
results in Figure 8. The results for Seoul are not plotted in
this figure as they are much larger with a median of 334.1ms
and a mean of 342.8ms.

B. PACKET LOSS
Figure 9 shows the percentage of the total 5000 packets that
were lost during the experimentation. The first noticeable
difference is the change in packet loss between the first
three local configurations and the cloud-based approaches.
The local approaches of Jetson and CPU both have a 0%
packet loss with the raspberry pi having a 1% packet loss.
The packet loss for the data centre-based approaches were
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FIGURE 10. Augmented data loss.

4.1% for Dublin, 4.3% for Paris, 2.1% for Frankfurt, 4.0%
for Bahrain and 4.1% for Seoul. The packet loss matters
for streaming services such as collision detection or CCTV
footage analysis as a drop in one of the frames can cause a
person or object not to be detected. For critical applications
such as collision avoidance in autonomous vehicles it is
important to have a low packet loss to avoid frames not being
processed.

C. DATA AUGMENTATION
One of the problems with training on data at the edge is that
it can lead to overfitting on the training data. This can lead to
models achieving very low training loss on the training data
set with a larger validation loss when the model is used on
the validation data set. Figure 10 shows this clearly with the
Basic CNN model achieving the best training loss, however
we can see that the validation loss increases suggesting that
themodel is overfitting on the training data. This figure shows
the benefit of data augmentation as the model that is trained
using image augmentation has almost the same validation and
training loss. This shows that the model is not overfitting on
the training data and is able to perform better on the unseen
validation test set compared to the basic model.

D. TRANSFER LEARNING ACCURACY
Table 5 and Figure 11 show the overall results of the classifi-
cation models. Table 5 show the improvement in accuracy,
precision, recall and F1 score achieved by using transfer
learning with pretrained models over training a model from
scratch. Image augmentation shows less improvement on the
feature extraction model compared to the Basic CNN model.
This could be because many of the lower layers of this model
are frozen, which may help to stop overfitting on the training
data.

The feature extraction and fine tuning of the pretrained
VGG model are both improved through the use of the Expo-
nential cyclical learning rate (ECLR) compared to the exist-
ingRMSPropmethod. The fine tuningmodel for VGG,which
updates the weights of the last two convolutional blocks as
well as the fully connected dense layers at the end of the

TABLE 5. Transfer learning results.

FIGURE 11. Receiver operating curve (ROC) curve.

model as shown in Figure 6c shows further improvement in
classification accuracy compared to the feature extraction and
basic CNN model. In Table 5 we can see that accuracy has
improved to 0.956 using fine tuning with ECLR from 0.779 in
the basic model a 0.177 increase.

Using larger pretrained models can help to further improve
the final accuracy of the model after transfer learning. The
Xception and InceptionResNet model show further improve-
ment compared to the fine tuned VGG model with ECLR.
The two most accurate models both use ECLR with the
most accurate model being the Fine Tuning Image Aug-
mentation Xception ECLR model. This model achieves an
F1 score of 0.967 compared to 0.956 for the VGG model a
0.011 increase.

Figure 11 gives an intuitive view into the improvement
of the model using image augmentation, feature extraction
and fine tuning for the models. We can see how the AUC
as shown in the legend increases from the basic model with
AUC= 0.85 to the fine tuning VGGmodel with AUC= 0.99.
The most accurate Xception model in Table 5 also achieve
an AUC = 0.99. Figure 11 shows the benefit of transfer
learning in this case as the transfer learning models achieve
better baseline performance at the start, better efficiency gains
(higher slope) and better final performance as shown by the
AUC value.

E. TRANSFER LEARNING PARAMETERS
Table 6 shows the number of total parameters, trainable
parameters and depth for each of the models. For the Basic
CNN model we have 3,706,113 parameters and have to
train all of these from scratch. Although image augmentation
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TABLE 6. Transfer learning parameters.

does not increase the number of parameters, it does increase
the training time per epoch by increasing the size of the
training data set. Transfer learning gives access to a much
larger model, such as VGG with 19,172,673 total parameters
and various amounts of trainable parameters depending on
whether the base model is used for feature extraction or fine
tuning. The trainable parameters for the feature extraction
model are 4,457,985, fine tuning increases the amount of
parameters dramatically to 17,437,185. Xception and Incep-
tionResNetV2 increases the total number of parameters avail-
able for transfer to 47,339,561 and 61,678,305. These models
are very deep with Xception having 126 layers and Inception-
ResNetV2 having 572 layers.

Table 6 also show the training time per epoch for a range
of device categories. Titan V is a cloud GPU that requires
a large amount of power, Jetson Tx2 is an embedded GPU
edge device and Raspberry Pi is a low powered IoT device.
The Raspberry Pi is not capable of training the Basic CNN
or performing feature extraction or fine tuning due to lack of
resources such as only having 1GBmemory. This is indicated
by N/A in the table. The Jetson Tx2 edge device is capable
of training the Basic CNN and performing transfer learning
on the VGG model. However, when the models get very
deep (>125 layers) the Jetson recieves a resource exhaustion
error for limited memory. The Tintan V cloud GPU is capa-
ble of training and updating all the models. The additional
trainable parameters can lead to a better final model as seen
in Figure 11 and Table 5 but come at the cost of increased
training resources. There is a diminishing return on the num-
ber of parameters with the Fine Tuning Image Augmenta-
tion VGG model capable of being updated at the edge with
19,172,673 parameters achieving an F1 Score of 0.956 and
the best performing Fine Tuning Image Augmentation Xcep-
tion with 47,339,561 parameters and an F1 Score of 0.967.
In Figure 11 these models both have an AUC of 0.99.

VI. CONCLUSION
The results of the experiments have provided a number of
insights into using a deep edge architecture. The network
delay experiments showed a dramatic reduction to an aver-
age of 5.39ms on the Jetson at the edge compared to the
cloud approaches in Paris that were 40.2ms and Bahrain that
were 155.2ms. The low network delay and packet loss at the
edge allows for a range of modern urban reasoning appli-
cations such as collision detection and augmented reality.

This improves the privacy and security of the data used to
create the model.

IoT devices are not suitable for training or updating large
deep learning models. The training of the large models that
can be used for transfer learning should take place in the cloud
with access to large GPUs such as a Titan V that can train a
model in reduced time as shown by the results in Table 6.
Edge devices such as a Jetson Tx2 can be used to update
these models at the edge one hop away from data generation.
This allows for increased security and privacy of local user
data when updating the model. As show in Section II there
are a range of urban intelligence applications that can benefit
from the reduced latency at the edge combined with the
improvements in accuracy that we have shown using transfer
learning with an exponential cyclical learning rate.
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