Y
w

;
'

B

o

IR

v

=

“V—-‘

Please CAREFULLY check throughout paying special attention to ALL MATHEMATICAL
(._%EXPRESSIONS, since XML conversion of your source file may have generated unwanted o

mistakes, Copy-edited manuseript.

A LETTERS JounnaL ExpLoRrinG
THE FRONTIERS OF PHYSICS

.. Thaok you

% ORGENT[SCANNED QROTFS ¥y

EPL, 3¢ (2010) xxxxx
doi: 10.1209/0298-5075/xx/xxxxx

www . epljonrnal..org

Equilibrium configurations of hard spheres in a cylindrical

harmonic potential

J. WINKELMANN!, A. MucHAL?, D. WEAIRE' and §. HUTZLER!

1 School of Physics, Trinity College Dublin, The Universily of Dublin - Dublin, Ireland
2 Department of Mathematics, Aberystwyth University, Penglais - Aberystwyth, Ceredigion, Wales, SY23 3BZ, UK

received 28 June 2019; accepted in final form 1% August 2019

published online xx Koo xooxx

PACS 46.70.-n— Granular systems

PAQS 47.57.-8 — Complex fluids and colloidal systems
PACS 61.5C.Ah — Theory of crystal structure, erystal symmetry; caleulations and modeling

Abstract — A line of hard spheres confined by a transverse harmonic potentlal, with hatd walls st
its enda, exhibits a variety of buckled structures as it is compressed longitudinally. Here we show
that these may be conveniently obssrved in & Totating liquid-filled tube (originally introduced by
Lee et ol. (Adv. Mater., 20 (2017) 1704274) to assemble ordered three-dimensionel structures at
higher compressions). The corresponding theoretical model is transparent snd easily investigated
numerically, a8 well as by analytic approximations. Hence we explore a wide range of predicted
structures occurring via bifurcation, of which the stable ones are also obgerved in our experiments.
Qualitatively similar structures have previously been found in trapped ion systems.

Copyright @ EPLA, 2019

Tntroduction. — Particles confined In the vicinity of &
straight Jine by a transverse potentla] have been found
to exhibit & rich variety of structures, particular dis-
torted linear chains [1]. In detail they depend on the
internctions between the particles, the confining poten-
tial and any boundary conditions at the end of » finite
sample. Previous observations have been made with ion
traps [2-8], but also finite dust clusters [9], overdemped
colloidal systems [10] and microfluidic crystals comprising
of droplets {11]. The complex scenario of the appearsnce
of such siructures, induced by bifurcations upon increas-

O ing compression, has been sketched by Landa et al. [12] for

the case of quadripolar eonfining potentiel and Coulomb
interactions.

Here we introduce a much more elementary experimen-
tal system for such an investigation. Qur theoretical model
is amenable to an analysis using stmple numerical and an-
alytical methods,

The experimental system consists of N equal-size hard
polypropylene spheres in & horizontal liquid-filled tube,
rotating in a lathe. The spheres are buoyant, so that a
centripetal force drives them towards the central axis; the
rotation speed is high enough to make pravity negligi-
ble. This set-up was first introduced by Lee ef ol [13]
in order to determine the equilibrium phases (ordered
three-dimensional (3¢} structures) over a wide range of

dimensionless compressions A,
A = (Nd - L)/d = N — L{d, (1)

where  is the sphere diameter and L is the tube length.

The present application is at very low compression, where™

the linear chain of contacting spheres is observed to buckle.
In this rangs, the structures are alf_planar. This is as-
sumed in the stepwise method described below, but not
in the method of ensrgy minimisation, which indeed finds
planar configurations.

The rich scenario of structural transitions within this
regime under increasing compression is predicted in de-
tail by the analysis provided below. It uses two numer-
icel methods: an iterative stepwise solution for force
equilibrium positions and a simulation based on energy
minimisation.

Theory and numerical analysis. -

Ferative stepuwise method.  In his“éxperimental sys-
tem, detailed below, each sphere of mass m experiences
a centripetal force f, == mw®R, where R is the distance
of Its centre from the central axis of the tube and w the
rotational speed. For the case of no compression (A = 0)
the spheres align in a linear chain along the central axis.
At a finite compression (A > 0) the chain starts to buckle
and the equilibrivm structures take the form of moduleted
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the central axis (cfashad line) by the dimensionless distence T, experlences & dimensionless céntripetal force F,
towards this axis and a compressive foree Gy, 5 is the anglo between
direction, i.c., 01 = 8x4a = 0.

and the central axis. At the wall the line of contact is in the 1~

zig-zag structures as illustrated in fig. 1. We developed an
elementary stepwise method to describe such structures
for low energies.

"In the following we will use the dimensionless distance
from the central axis for each sphere 7 = R/d and the
dimensionless centripetal force F = f,/(mw?d) = r,

Our aim is to calculate the dimensionless forces F), = Ty
and tilt angles 0, as defined in fig. 1, for n = 1 to IV
spheres. Considerations of fores equilibrium and geomet-
rical equations yiold iterative relations for F}, (or Tn) and
&y a8 follows,

The compressive forces Gy, between contacting spheres,
are given by G, casfy, = (g from the condition of force
equilibrium in the 2-direction, which is that of the central
axis, (i is the magnitude of the compressive force at each
end of the system.

The equilibrium of centripetal forces F, on the n-th

sphere gives
Py = Gpseinfy, + Gniy8inbyy; '7"{
= Gg(tan 8y +tan 9,;4.1). E\)'

The centres of contacting spheres are separated by thefr
diameter. Hence the radial distances and forces are

1 1 3 Ty g1 == 608y, ?
E, + Foiq = 8ind, 4;.
Suodion nt+ Frga el a(v\?

sy\oRrThe above equations then relate py; and
‘A éhaand F, i,
i

niddis.

(7
/

i

F“.f_l to 91-;

F,
On+1 = arctan (——'1 —tan ﬁn) .
Go

Py == sin [arctau (g’l — tanﬂﬂ)] - B,
0

T

e

These equations may be used in a “shooting method”
to find solutions for e specified value of Gy. The hard-wall
boundary condition for sphere n = 1 requires the first tilt-
| angle 91 to be zero, with an arbitrary F}. Using eqs. (4)
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Fig. 1. Armngeme:z/oéheres at the two walls and the interior of t'l%(a wnodulated zigzag structure;f that is formed when N
ed betwesn hard walls, showing the notation used for the stepwise solution. Each sphere, displaced from

=1y pulling it
the line conrecting the centres of spheres n — 1 and n

we proceed iteratively to (Fy41,8n41). The angle Oy
corresponds to the contact of the Nth sphere with the
wall, as {llustrated in fig. 1.

We gearch for values of F} (in general more than one)
such that the angle 6.y is zero, satisfying the second
hard-wall boundary conditions. This search is performed
by coarse graining the initial force Fy over a range of 0 <
F; <0.01 in ateps of 1074, These values sre then used as
brackets in & bisection method.,

The non-dimensionsl total energy K of such & hard
sphere structure can be caleulated as

1 N
§ZT31’

n=1

A ®)
where as in [14] we have omitted the (constant) energy
contribution due to the moment of inertia of the spheres,

The compression A from eq. {1) is given by

N .
AmN—Zcoan,

],

(6)

By performing the root search at varying compressive
force (Fp, we can accumulate a data set, for which we can
calculate the energies and compressions in this WO, oo

Simulations based on energy minimisation. To con-
firm and supplement the resulte of the shooting method
we also sesk equilibrium configurations using energy min-
imisation starfing from random configurations. These sim-
ulations are more general than the stepwise method since
they are not restricted to be planar, -
_In-practice we encounter difficulties with the shooting 7
ethod beyond a compression of A > 0.9 (for N = 20). /
bove this point our implementation of the bisection |
earch method has problems to find all solutions. We ex-
ect to suceessfully extend the application of the stepwise
ethod to this regime in the future, o
¢ Results for larger compressions can also m\
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o

energy minimigation on a system of goff spheres, extraf:% 0.36 e

lating to the limit of hard spheres, in order to corroborate.- t.a04 A aA =088 !

the results of the stepwise celculations, -~~~ ‘ R ¢t
“"""Tn the soft sphere model, the overlapping spheres repel 0.2 i Drpnelily structure

i} each other according to Hooke's law with a spring con-
4 gtant k. This crude formalism is often used in the theery
of foam structures ﬁﬁr\ ol F el s

The non-dimensional total energy Eg for N soft spheres

(of dismeter d),longitudinally confined between length L

// is given by
N ) N 2
1 1 k Snm
[ aeiBai(s) | 5.0)

=1 n,m=l
m<n

RORC!

The first term is the rotational energy of each sphere. The
gecond term accounts for the overlap between any two
spheres, where the overlap between spheres n and m is
defined as 8, = |Rp — Rm| — d, where R, and R,, are
the centre positions of two contacting spheres. The final
term accounts for the overlaps 61 and &y of the two end
spheres with the two boundaries.

Tor any given values of compression A and kfmw? we
@ find equilibrium solutions {stable or metastable) by vary-
e ing the coordinates of the sphere centres. Finally, by
.Q;f'ed performing a series of simulations with increasing values
el of kfmw? we can extrapolate to the hard sphere case
s (ie., kfrw? — co) end compare directly with the shoot-
mmtlng method,

e The solutions from the stepwise method are only in force

equilibrium, 4.¢., they can be stable or unstable solutions.
hQ!'C-J We have also used energy minimisation to check the sta-
6‘/7 ble/unstable character of the solutions.

N Numerical results, — We present results for & variety

'T of low energy structures. Many other equilibrium strue-

tures could be found with higher energy, i we were to
‘g;’ extend the range of our search pavameters. These may be
“{\ of limited physical significanf and will not be pursued in
1 | the present paper. ce

Typical profiles.  For low compressions our search
x yields only one structure that we will refer to as the sym-
metric structure S, since the profile for F, (or displace-
ment 1) Is symmetric around the midpoint of the system.
{Note thet we have defined Fy, and 7y, to be positive.)

Examples of such a profile for N = 20 are presented
in fig. 2 for & low (green triangles) and high (blue stars)
compression where we show the displacement 7, from the
centrsl axis us. the (dimensionless) position mn = 1/2+
E?‘-“a COS(@{) .

These results show perfect agreement with the sym-
metric structure generated by energy minimisation and
extrapolated to the hard sphere limit. The structures
obtained by energy minimisation are necessarily confined
to stable cases.

.
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Fig. 2 Sphere displacements ry a5 a function of position s
for a symmetric (blue stars) and a stable asymmetric struc-
ture (red crosses) at a compression of A = 0.65. Also shown
is the displacement rn for the symmetric structure at a lower
compression of A = 0.08 (green triangles). (All quantities are
dimensionless, see definitions in main text.) The peak posi-
tion of the asymmuetric structure for A = 0.85, estimated by a
guadratic fit of the displacements around the yaximum, is dis-
played by the vertical dotted red line, The vertical blue dashed
and the green solid line display the midpoint of the system. The
distance between mg and Ty is equel to N — A~ 1.

For high compressions additional asymmetric structures
are obtained from the stepwise method. An gxa.mple for
the displacement profile for such a structure is given by

" tha red crosses in fig. 2.

Bifurcation dicgrams. We have used the iterative
stepwise method to search for low energy structures in the
range of the compressive forces hetween 0.2 < Gp < 0.25
and initial forces between 0 < Fy < 0.01, These structures
correspond to relative compression below A < 0.9. They
were computed for both an even (N = 20) sand an odd
(N = 19) number of spheres, for which the results differ
qualitatively. _

In these parameter ranges the total energy Egymm of the
symmetric structure S increases from 0 to roughly 0.15,
whereas the difference between the energies of alternative
structures is only of arder 1074, We therefore computed
the energy AE = E — Egymm relative to that of the sym-
metric structure at the same compressive force Gy and
plotted them against their compression for even (fig. 3(a))
and odd case (fig. 3(b)).

‘We present these relative energles in the vicinity of the
compression range where the first asymmetric structures
are created by bifurcation. While both cases of even and
odd N feature an increasing mumber of bifurcations as
compression is increased, they are qualitatively different
and will thus be discussed soparately.

For the even case N = 20 an increasing number of
asymmetric structures (A-¥) are introduced by bifurca-
tion as compression increases. The unstable structures
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Fig. 3: Bifurcation diagram: relative energies AE = E— Fsymm
{where Esyum is the energy of the symmetric structure S), are
plotted sgalnst compression A around the first bifurcation for
the cass of even number of spheres (a} and odd number of
spheres (b). Unstable structures are marked with an asterisk.
Examples of all structures in the even case are displayed in
fig. 4,

are marked with an asterisk, 'The first two additional
branches A* and B emerge from an “out-of-the-biug" bi-
furcation at A = 0.558 without any preceding structure.
Of these two branches, structures on branch B are stable,
whereas structures from A* are unstable, as verified by
energy minimisation.

Two further structures C* and I, appear via a pitch-
fork bifurcation out of the previous stable structurs B at
A = 0.588. B and the additionsl branch of lower energy
1> are stable, whereas the upper one O is not, A similar
pitch-fork bifurcation of the D branch occurs for the next
two structures at A = 0,622, from which the lower branch
F is again stable and E* unstable,

Exemples of atructures from all of the seven branches
for the even case in fig. 3(a) are given in fig, 4. The ver-
tical black solid line in these plots represents the centre

of the structure; the vertical red dashed line indicates -

the peak position of the sphere profile, as estimated by
% quadratic fit to the sphere positions around the maxi-
murm. For unstable structures the peak position coincides
roughly with the centre position of a sphers. Note the

00 25 50 7b 100 125 150 17§ 200
A* o e g e A
: ) /W
00 25 50 75 100 125 150 175 w0
a * X
° s WA P IIATTT
00 25 B0 75 100 125 150 176 200
Dl VN Y Y Y
* . o
C ORIARARAAAARS
00 25 B0 TS5 100 135 160 176 200
. o Yodi 0 YN TN TN TN TS
D KA AR AT AT
00 25 &0 T4 100 125 150 i7h 200
E* 3 . VWWWY‘\F\
N ATRATA AT AN AR AR AT A
60 25 50 & 100 125 160 175 200
. s oY N O TN TN NN N TN
F : .. : WW}
00 25 60 TS5 100 125 150 175 %0

Fig. 4: Examples of buckled chain structures from the § and
A-F branches, s labslled In fig. 3. Ths structures were created
by the stepwise mothod with N == 20 spheres at & compression
of /A = 0.65. Structures marked by an asterisk are unstable,
The solid black vertical line marks the centre of the system,
while the dashed red vertical line marks the peak position of
the position profile. Asymmetric structures (A—F) are doubly
degenerate (i.e., can have a peak on the Ioft or on the right of
the centra).

degeneracy: ssymmetric structures may have the peak left
or right of the centre.

The energy diagram for the odd case of 19 spheres (in
fig. 3(b}) differs with respect to the first bifurcation. Here
only a single new stable structure {branch B) emerges.
From then on bifurcations follow the pattern of the even
case, in which previous structures remain stable and new
structures of lower energy are stable (i.e., D and F are
stable, while C* and E* are unstabls). '

While the structures that we have identified here ap-
pear to be the only equilibria within the specified range
in energy and compression, structures with s more com-
plicated profile occur at higher energy, which we have not
addressed here. The displacement profiles of these struc-
tures can contain two or more off-centred peaks.

Mazimum engles.  'We have algo computed the maxi-
murm angle Omqy of the symmetric structure with varying
compression for the step-wise method and energy minimi-
sation, see fig. 5. This is & quantity that can readily be
extracted from experimental data, see below.

‘While our results for the stepwise method stop at &
compression of 0.9, the maximum angle @ from the
energy minimisation was computed up to a compression
of A < 1.3. At this point the modulated zigzag struc-
ture acquires an additional contact with the next-nearest
neighbour sphere.
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1210 4 Adjusted experimental dotn| o
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Compression & /

Fig. 5: Maximum angle fmax of the symmetric structurgja
function of compression A for an even number of spheres N.
Blue circles and] orange solid line axe obtained from numerical
calculations (stepwise method and energy minimisetion). The
green orosses with low opacity refer to the raw experimentsal
date. points. For the green crosses with high opacity, the in-
creasad effective sphere diameter attributed o vibrations in the
system was taken into account in the compression calculation,
The uncerteinty in the, fme: was obtained by averaging the
angles aver five ima‘geﬁ)f the structure aﬂiiame compression.
-~

e,

At low compressions (A S 0.1), where the displacement
profile ig of the type shown by the green triangles in fig. 2,
Bmax voTies a3 VA,

f g

Linear approximation. — In order to better under-
gtand the sbove results, we have developed an approx-
imate, linear analytic description as follows. For small
angles 0y, and forces Fy, linearisation of eq. (4} leads to

1

— -1 ~1
Fn. = GU anl (8)
Bn _]:_ —i Bn-l !

o

Recursive substitution of Fy, and 6y, and setiing 35; -
4 + ¢ for & small and positive, results in:

F.\ _ (8+e —1\" (R

[/ “\d+e -1 th )
The largest possible value for the compressive force is
Gl = 1/4, which, for the case of an infinitely long chain,
corresponds to the uniform zigzag structure (rn = ~Tp-1)s

A solution for (F,8»)T may be expressed in terms of
eigenvalues As 2 and eigenvectors Vi,2 of the above matrix

" as (B 6)T = aX2'Vi + b3 V3. To lowest order in

¢ the eigenvalues are given by Ayg = 1 % /¢ with the
corresponding eigenvectors Viz = (§(1 £ -\’2‘—-’.), 1)T. The
prefactors a and b are obtained from the initial conditions
Fy and 6. :

Compression A = 0,500

"
0.4 / b
Balk
A

0.04—e L

Angle 8,

0.2

0
s Sphers number n
A J
Fig. 6: Variation of angle fn with sphera. inber n as ob-

tained from the exact stepwise method{of.{blue dots) and from
the linearised theory (11) (blue solid Iine) (for N = 20) at &
compression of A = 0.500. Note that there are 21 angles, since
@41 is associated with the wall contact of sphere N.

The solution in the linearised approximation for §; =0
is then given by

Fy = a;h%smh(ﬁ(n -n+4) Q0
b = %amh(\/z(m 1), (11)

with the offset in the forces ¢ = arctanh{y/e/2). Note that
#,, does not have an offset, since 01 = 0.

A comparison of angles 8, using the approximated lin-
earised equation (11) and the previously numericel exact
stepwise method is shown in fig. 6 for a compressive force
of (Gp = 0.234, resulting in a compression of A = 0.500.
The starting value Fy in the linearised scheme was taken
from the corresponding value in the stepwise method.

We find excellent agreement between the linearised the-
ory and the stepwise method up to about n = 8. The
linear theory produces s monotonically increasing func-
flon {fig. 6), whereas the accurate golution “rolls over”
and decresses towsrds the second boundary. This can be

understood in terms of the role of nonlinearity, and ap- .~
proximated in an ad hec manner: we will leave this to
(9) | subsequent, paper.

Comparison with experiment, — Our experimental
procedure is similar to that of Lee &t ol [13]. We placed
an even number of N = 34 polypropylene beads of density
p = 0.900 g/em? and diameter d = 3.000 % 0.001 méin
a cylindrical tube (inner diameter 15.91 & 0.01 mm; outer
diameter 20.17 = 0.01 mm; lengih 130.55:k 0.01 mm) flle
with water {(density p, = 1g/cm®) (gﬁ] N

The tube is sealed on both ends Witli stoppers, making
sure that no air bubbles remain within the system. The
extent to which the stoppers intrude into the tube can be
varied, allowing us to adjust the compression A,
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Fig. 7: Photographs of & variety of buckled strustures for
N = 34, obtained by the rapid rotation of a waterfilled tube
containing polypropylene beads (density df p = 0.800 g/cm®},
using a Jathe. The structures 8, B, D, and F are labelled as in
fig. 3. The vertical line represents the centre of the system and
the horizontal line the central wxds of rotation.

The tube is then mounted onto & commercial lathe
(Charnwood W824), for which we set the rotation fre-
quency fo w = 1800 4 50rpm. In order to record the
structures we used a stroboscople lamp, whose frequency
is matched to that of the lathe. A slight off-set between
both frequencies is used so that recorded structures appear
to be slowly rotating {see example in the supplemental
Lvidg_g LatheExperiments.mp4),

Figure 7 shows images of the structures that we identi-
fied with the branches 8, B, I, and F by comparing them
with to the numerical resulis from fig, 4. The experimen-
tal structures can be identified by the distance of the peak
position to the structure centre. This is independent of N
for large number of spheres because the wall effects can be
neglected. The identified structures correspond to all the
stable structures of fig. 3. Structure S, as well as structure
B, are at a compression of A = 0.444-0.02, while the com-
pressions for structure D was A = 0,59 £ 0.02 and for F,
A = 0.68 +0.02.

However, in order to reconcile these experimental re-
sulte with the theoretical predictions of previous sections,
it i8 necessary to Introduce an effective diameter for the
spheres, about 1% greater than the true value, This in-
creases the effective compressions by a constant shift of
roughly 0.36, We attribute it to the offects of vibration
of the lathe, and will explore strategies for its mitigation
in future work. This shift also features in previous results
from Lee et al. [13,14].

‘We extracted the maximum angle fya, for the symumet-
ric structure with varying compression for the experiments
(see fig. B). It shows very clealy the necessity for the ad-
Jjustment of sphere diameter. Due to the neglecting wall
effects, these results only depend on N being odd or even
for a large enough number of spheres.

Conclusion. — The compressed and confined sphere
chain presents a variety of fascinating observations, previ-
ously described in terms of “kinks” or. “solitons” [6]). We
have succeeded in exploring many of its properties, using
simple apparatus and theoretical methods.

Recently we have found & yet simpler experimental
method which should be useful, at least for purposes
of demonstration, It consisis of & horizontal tube into
which ball bearings ere introduced. Slight agltation en-
ables them to settle in modulated zigzag structures similar
to those depicted above {17). A further variation, which
appears to be promising, uses bubbles in a liquid-filled
tube.

While we have so far investigated only simple siruc-
tures with single peaks in the displacement profile, more
complicated structures exist at higher energies, and may
also be found with the stepwise method. Among these are
structures that can be created by concatenating one of
the single-peak atructures with it mirrored counterpart.
Their compression and energy will be doubled.

Other extensions will include the case of soft {elastic)
epheres, for which we have already observed similar effscta,
using hydrogel particles and bubbles. Also the observa-
tions can be extended to much higher compression, making
contact with the work of Lee ef af, [13] and Winkelmann
et al. [14], for the 3d structures generated, It may also be
possible to take advantage of a technique that uses pho-

toelastic material to indicate the megnitude of the com-

pressive forces [18,19]. -

Congiderable current interest in the compressed sphere
chain focusses on motion of kinks and the corresponding
Pejorls-Nabarro potential. This may be estimated by male-
ing & smooth interpolation of the energy values for stable
and unstable states as calculated here.

We hope that the results presented here will find direct
compazrison with previous work, particularly with regards
to jons confined in traps [1-8,12] as well as assemblies of
magnetic particles in 4 chapnels [20]. This work should
also be relevant to othir systems in which buclding Is a key
foature: for example localised buckling has recently been
observed in experiments involving an expanding (growing)
elastic beam pinned to & substrate [21].
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