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Abstract

This thesis investigates the response and optimisation of wind turbine tower

structures with a particular emphasis on hybrid steel-concrete towers. The

wind turbine blades with tower interaction are represented through equa-

tions of motion where mass, stiffness and damping properties have a time

varying component. This thesis investigates the response and optimisation

of these towers in a global and local sense through review of global tower

top behaviour as well as the response at selected local locations from around

the tower shell. Structural models of the tower are presented and used in

analysing the response. An exact, closed form analytical model was devel-

oped using classical beam bending theory, with boundary and compatibility

conditions imposed to generate a system of homogeneous linear equations

with non-trivial solutions. Approximate, Finite Element models of the tower

were constructed using both modified Euler-Bernoulli beam elements and

also Reissner-Mindlin shell finite elements of varying numbers of degrees of

freedom.

Two reduced order dynamic multi-degree of freedom (MDOF) models for

an overall wind turbine assembly are then presented using a mixed formu-

lation approach including Finite Element models incorporated into Euler-

Lagrangian based systems. Discrete, global interpolation functions are used

to reduce the total number of degrees of freedom (DOF) of the tower models

to a selected reduced number of DOF. Continuous mode shapes are used to

reduce the blade elements to selected DOF. Rotating blades are exposed



to time varying load application through aerodynamic load and periodicity

introduced by gravity. Axial effects through gravity and centrifugal stiffen-

ing act on the blades to vary their stiffness. Aerodynamic loading has been

simulated using the modified blade element momentum (BEM) algorithm

which accounts for the angle of attack, blade pre-twist, pitch angle and wind

shear. Turbulence was generated from a Kaimal spectrum.

The closed form analytical model was used to assess tower free vibration

response and MDOF dynamical models were used to investigate forced vi-

bration response of towers of varying properties. The nacelle mass and

hybrid interface height had the most significant impact on the first natural

frequency of the tower. This was observed through free vibration response

but also through frequency domain review of the forced response. Hybrid

interface height was strongly correlated with the mean displacement but to

a lesser extent on the velocity and acceleration response. Concrete com-

pressive strength and structural damping properties had an influence on the

tower response. The first and second natural frequency of the tower was

slightly reduced when introducing and increasing a prestress into the mod-

els. The global forced vibration response of the tower showed insignificant

change as a result of the introduction of prestress. The effect of prestress was

more significant at a local finite element level on review of strain response in

three principal directions. Separately, the frequency content of local finite

element strain response was significantly different to the frequency content

of the global tower top response. This was deemed to be due to the effects

of combined deformation through all tower global DOF.

A methodology has been proposed for the optimisation of hybrid concrete-

steel wind turbine towers. This methodology incorporates the generalisa-

tion of free and forced vibration results of such towers using a configuration

of Artificial Neural Networks, which are embedded within an optimisation

algorithm which itself is a hybrid of a Genetic Algorithm and a Pattern



Search Algorithm. Objective functions are defined in terms of both struc-

tural and non-structural criteria. Fundamental fore-aft frequency was max-

imised, peak tower displacement was minimised, as was a weighted sum of

concrete and steel stress utilisation ratios. Levelised Cost of Energy (LCoE)

was set as an objective and was minimised for a series of load cases and

hub heights. Concrete and prestressed reinforcement contributed most sig-

nificantly to the breakdown of LCoE. The Climate Change Potential (CPP)

was also set as an objective to be minimised and followed similar patterns

to the LCoE in terms of sensitivity to change in wind speed and height.

Contributions to the overall CCP are much more equally spread than was

the case in LCoE, with each contributing similar amounts. Multi-objective

optimisation was carried out using the epsilon constraint method.

A method was proposed to utilise and process spatial strain and accelera-

tion signals as a means of damage detection around the shell of the finite

element model of the wind turbine tower. Processing involved passing the

signals through the Discrete Wavelet Transform (DWT) signal processing

technique. The spatial signals were all transformed and co-efficients were

found for low and high frequency components. GIS spatial images were

presented to represent aerodynamic loading and tower responses generated

using BEM and the 11 DOF structural models described earlier in the thesis.

By generalising the loading and response quantities as a function of spatially

distributed environmental exposure conditions, it is possible to plot these

loading and response quantities spatially.
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Chapter 1

Introduction

1.1 Historical

Historically, wind energy has been captured by mankind to serve a wide range of pur-

poses. Wind has been used to propel sail ships, to power windmills used to process grain

and to pump water from wells. Whilst wind was used for energy for at least the past

3000 years, it was used specifically as a source of mechanical energy to power windmills

by the seventh century BC, where such windmills were constructed in Afghanistan.

These windmills were vertical axis machines, based on drag loading. Evidence of the

first horizontal axes turbines can be found in historical documents from Persia, Tibet

and China dating from circa 1000 AD (Ackermann and Söder [2000]).

Windmills were developed in Europe in the middle ages and at the time were used to

power a range of devices in terms of providing a source to carry out mechanical tasks

such as grinding grain, pumping water and cutting timber (Manwell et al. [2010]). In

Ireland, the earliest recorded windmill dates from 1281 at Kilscanlon, Co. Wexford. By

1840, there were 250 windmills in place across Ireland.

From the 12th to the 19th century, around the time of the industrial revolution, wind-
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1. INTRODUCTION

mills continued to be of great use to society and continued to be developed technically.

Their demise did occur during the industrial revolution and this is attributed to a num-

ber of factors. The steam engine had been developed by this time by engineers and,

along with coal as a fuel source, was providing energy which was effectively mobile and

could be dispatched. This was in contrast to the energy available from windmills which

was fixed to the local site of the windmill. Energy from the steam engine could also

be adjusted by adjusting the rate of fuel input, again, providing more flexibility than

windmills. Despite the perceived redundancy of wind energy by this time, there were

a number of technical advancements made which contributed to the design of modern

machines. For example, the blades of windmills had developed to take on the shape of

an efficient airfoil.

The towers were constructed as fixed structures and a manually operated yaw mecha-

nism allowed for the orientation of the rotor to be adjusted to face the wind. In addition,

the blades had taken on a twist to improve lift performance. An English Civil Engineer,

John Smeaton (credited as being the founder of the civil engineering profession in Great

Britain) had also observed three important characteristics which are still relevant today.

These include; the speed of the blade tips is ideally proportional to the wind speed, the

maximum torque is proportional to the wind speed squared and finally, the maximum

power is proportional to the wind speed cubed. During the period of the 18th century,

windmills were also in development in the United States (US), being especially useful

in western states to pump water for agricultural purposes and used by early settlers in

the area. The US Department of Agriculture by that time had developed a standard

design of a so-called ‘fan mill’, which was known for its multiple blades. This windmill

included a simple regulation system which allowed for its unattended use for prolonged

periods and can be described as a forerunner to modern control systems (Manwell et al.

[2010]). This self-regulating system turned the rotor windward during periods of high

wind to avoid damage.
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Figure 1.1: Turbine Built by Charles F. Brush (Danish Wind Industry Association [2010])

1.2 Wind Energy for Electrical Power

By the late 19th century, efforts were being made to convert wind energy to electricity.

Charles F. Brush was the first to construct a wind turbine used to generate electricity in

Cleveland, Ohio, in 1888 (Righter [1996]). This machine was capable of generating 12

kW, with notable features including a 17m diameter rotor which was constructed using

multiple blades and a ‘picket-fence’ design, as shown in fig 1.1. It was also the first

windmill to incorporate a step-up gearbox. In 1891, Poul LaCour built the first wind

turbine machine which had an electrical output in Askov, Denmark (Ackermann and

Söder [2000]). This turbine was more aerodynamically efficient given a low solidarity

ratio compared to that of Charles F. Brush and by the end of World War I was in

widespread use across Denmark.

Wind turbines used to generate electricity were now being developed both in the US and

Europe. Small machines capable of generating 1-3 kW were available from companies

like Parris-Dunn and Jacobs Wind-electric and were in widespread use across rural parts

3



1. INTRODUCTION

of the US. While new installations of these small systems effectively ceased by the 1950s

due to the availability of the electricity grid in the US, their use continued in Europe,

Asia and parts of Africa and Australia.

Large scale wind turbines became of interest internationally when in 1931 a 100kW

wind generator was constructed in Russia at the Caspian Sea. This machine produced

power for 2 years. In 1941, the 1.25 MW Smith-Putnam machine was constructed in

Vermont. This turbine was a horizontal axis machine, with two blades and a rotor

which was 175 feet (approximately 58m) in diameter. This operated until 1945, when a

blade failed apparently as a result of fatigue damage. Although this machine operated

only intermittently, it showed, along with other large scale turbines, that large scale

power generation could be achieved.

In the 1960s, work carried out in Denmark and Germany laid the way prior to when

wind energy production would again become competitive due to the oil crisis of the

1970’s. Work in Denmark around this time included design of the three-bladed upwind

rotor concept, where blades had a fixed pitch. Aerodynamic design and controls were

being incorporated by this time. Development in blade designs by this stage meant

most designers were using blades of fibreglass, which were shaped like airfoils and based

on propeller design of the period.

As noted, interest in energy production from wind resources increased in the early

1970s with the onset of the oil crisis. Funding was put in place by governments of

the time in the US and Europe whereby multi-megawatt prototype machines would be

developed. Wind farms were being constructed to achieve large scale energy production

using turbines of rated capacities of between 50kW and 200kW. Development in multi-

megawatt machines was hampered by technical difficulties, particularly around blade

pitching.

The European Wind Energy Association (EWEA) was formed in 1982 in Stockholm

at a time considered to be the beginning of the modern wind energy industry. That

4



same year, a group of agricultural machinery manufacturers travelled from Europe to

California to assess the market for wind energy (European Wind Energy Association

[2012]). As a result of this assessment, orders were received for 25-30 turbines. The

following year, 350 turbines with a total capacity of 20MW were installed. This period

became known as the ‘California wind rush’. Although development in the 1990s slowed

in the US, it continued apace in Europe. Part of the reason for this was the imposition by

European governments of feed-in tariffs for suppliers of renewable energy/wind energy

to national electricity grids. Similarly in India, tax deductions were put in place for the

same purposes, again stimulating research and development in the industry.

In the period since the establishment of the EWEA a number of basic features and

performance indicators have changed drastically. Two such features include individual

turbine rated capacities and rotor diameters. Turbine rated capacities have increased

from 55kW to modern day machines which can achieve 5000kW. Similarly, rotor diam-

eters have increased from just 15m up to 126m.

1.3 Present Day Industry

Since the first testing of multi megawatt machines in the 1970s and 1980s, they have now

become a well-established machine in terms of their rating in industrial wind farm ap-

plications, with onshore machines typically rated between 2MW and 3MW. The growth

of wind energy over the past decade has been remarkable. The global total installed

capacity for wind power at the end of 2017 was 539.8 GW (Global Wind Energy Coun-

cil [2017]), representing an increase of almost ten-fold compared to the 2005 figure of

59.1 GW (Global Wind Energy Council [2006]). This exponential increase in installed

capacity in only ten years has been made possible due to developments in wind turbine

technology and design. A visual presentation of the trend in installed capacity is pro-

vided in fig 1.2. Wind is now an established source of electricity for the global market

and contributes 5% of the global electricity demand. Countries including Ireland, Den-

mark, Spain, Portugal, United Kingdom and Germany have actually already exceeded
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1. INTRODUCTION

Figure 1.2: Global Cumulative Installed Capacity, 2011-2017 (Global Wind Energy Council [2017])

10% in terms of the amount of their electricity demand produced by wind. Europe’s

installed power by 2012 accounted for 7% of the total demand for European countries

at 106 GW (European Wind Energy Association [2012]).

The European Union is working towards achieving a target of 20% of its total energy

demand, provided from renewable resources by the year 2020. This has been set out

in the EU’s Renewable Energy Directive. Looking to the future, all EU countries have

agreed to a target amount of 27% of demand being provided by renewables by the year

2030. In terms of the target for 20% by 2020, it is estimated by the EWEA that by

that stage, wind will have reached an installed capacity of 230 GW. In Ireland, there

are is currently a total of 233 wind farms in place, which contributes slightly over 3

GW to the national electricity grid. In 2014, 18.3% of Ireland’s electricity demand was

provided by wind energy.

In terms of turbines currently on the market, the MHI Vestas V164 turbine has a rated

capacity of 9.5 MW and was designed for the offshore market. It has a rotor diameter

of 164m and is the largest machine in terms of capacity, since its construction in 2014.

This turbine has been chosen to power part of the Walney Extension project in the Irish

Sea, due to go online in summer 2018. The Enercon E-126 wind turbine has a slightly

lower capacity of 7.5 MW. It has a hub height of 135m and a rotor diameter of 126m

and unlike many of the other turbines at this scale, has been developed for onshore

applications. Fig 1.3 taken from Premalatha et al. [2014] outlines the increasing size in
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Figure 1.3: Historical Increase in Industrial Turbine Size

turbines in recent years and some predition for the future.

1.4 Research Aims

Given the increasing demand to improve the efficiency of wind turbines around the world

to harness as much energy as possible from available sites, there is a need to consider the

design of supporting towers to heights in excess of 100m. Although tubular steel towers

have been the traditional tower design up to heights of this order, there is a need to assess

the viability of other solutions due to transportation and relative stiffness limitations

when using steel alone. Given the well-established concrete design and construction

techniques utilised in industrial chimney applications, designers have been looking to

incorporating concrete into wind turbine tower configurations to overcome some of the

difficulties presented at hub heights of the order of 100m (Lanier [2005]).

In the literature, authors have cited the availability of hybrid concrete-steel towers and

its cost-competitiveness in terms of Cost of Energy (CoE), which compares favourably

to towers consisting of steel alone at high hub-height levels. The cost of the tower has

been reported to be between 20-30% of the overall capital cost of the wind turbine

(Colherinhas et al. [2016]). This cost contribution adds to the need to investigate the

various costs and performance measures attributed to hybrid towers.
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In order for engineers to design wind turbines, there is a need both to have suitable

numerical and analytical models to carry out the design and in addition, there is a need

to understand the key response characteristics. The design of a turbine or a compo-

nent such as the tower will often be carried out within an environment of optimising

a particular objective, be that a structural performance characteristic or some mone-

tary function. As such, there is a need to develop suitable optimisation strategies and

algorithms to contribute to understanding and expand on available tools for the wind

energy industry.

This research will address these problems in four ways -

• Derivation and construction of analytical and finite element models to establish

the free vibration response characteristics of hybrid towers and utilise these models

to interrogate responses.

• Derivation of multi-degree of freedom (MDOF) mixed-formulation reduced order

models of wind turbines including hybrid towers to establish forced vibration

characteristics and utilise these models to interrogate responses.

• Development and application of optimisation strategies to allow for the design and

optimisation of hybrid concrete-steel towers whilst accounting for dynamic model

responses in a computationally efficient manner.

• Application of models developed to local and global applications including struc-

tural health monitoring at a local level and spatial response review at a geograph-

ically global level.

1.5 Organisation of the Thesis

The thesis has eight chapters in total including Chapter 1 and seven further chapters

outlined below.
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Chapter 2 covers the literature review section of the thesis. General wind turbine

features and properties will be introduced. Fundamental concepts around finite element

modelling, structural dynamics and structural optimisation will be introduced. Turbine

towers and the development of hybrid steel and concrete towers are to be outlined.

Chapter 3 is concerned with the modelling of tower structures. It will broadly include

the derivation and benchmarking of analytical and discretised finite element models of

hybrid towers.

Chapter 4 consists of modelling wind turbine assemblies as Multi-Degree of Freedom

(MDOF) models capable of being subjected to coherent, turbulent wind field drag forces.

Two 11 DOF mixed formulation Finite Element (FE) and Euler-Lagrangian models

will be developed. The aerodynamic loading, including the derivation of lift and drag

forces and the generalisation of forces according to the Principal of Virtual Work is also

outlined.

In Chapter 5, the response of hybrid concrete-steel towers is examined in detail using

the models developed in Chapters 3 & 4. Global and local strain responses are exam-

ined in the time and frequency domains under variable design criteria and exposure

conditions.

In Chapter 6, the development of an optimisation algorithm to arrive at a near global

optimum design for a hybrid tower under conditions of dynamic load application and

imposition of structural constraints is carried out. Optimisations are conducted under

single and multiple objective problems, which themselves consist of structural and non-

structural goals.

Chapter 7 presents two distinct applications of the MDOF models developed. The first

application is to use the high-fidelity nature of the tower model to examine its potential

in detecting damage through signal processing of local signals. The second application

is to couple the MDOF model with a Geographical Information Systems (GIS) model

to present turbine load and response solutions spatially.
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1. INTRODUCTION

Finally, Chapter 8 is used to present some discussion and conclusions which can be

taken from the work. Some suggestions for areas which could be developed through

further research are given.

10



Chapter 2

Literature Review

2.1 Introduction

This chapter proposes to outline the literature review carried out in the work. Some

of the fundamental features of wind turbine assemblies will be presented. In addition,

the fundamental engineering considerations in terms of design such as free and forced

vibration characteristics and time varying loading and structural response. A review of

the published literature is also given, describing the current state of knowledge around

the modelling, response and optimisation of hybrid wind turbine towers, with an em-

phasis on works investigating the response and optimisation of these towers and wind

turbine support structures.

2.2 Wind

Wind can be defined as a body of moving air in the earth’s atmosphere, moving in three

dimensions but primarily moving parallel to the ground. Wind occurs as a result of

pressure differences caused by uneven heating of the earth’s surface by the sun between

regions around the equators and the regions around the poles. It is also caused by the

rotation of the earth, an effect known as the Coriolis effect. As the earth rotates at a
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faster rate around the equators than at the poles, this will affect the movement of air

between the two extremities.

2.2.1 Wind Shear

In engineering applications, wind is described using a number of measures. The most

important measure is that of wind speed. Wind speed at any point in time and space

is defined by a mean wind speed component and a turbulent wind speed component.

The mean component will vary as a function of height and a parameter known as shear

exponent. This change in wind speed with height is known as wind shear. The steady

state or mean wind speed, v̄(h) can be found using the two available mathematical

approaches. One is known as the Power Law and the other the Logarithmic Law. The

Power Law is given in Eq 2.1 and an example of a typical profile is given in fig 2.1.

v̄(h) = v̄(href)

(
h

href

)α
(2.1)

Where, in Eq 2.1, v̄(href) is the wind speed at a reference height and α is the shear ex-

ponent value, which defines the surface roughness. Typical values of the shear exponent

values range from 0.15-0.25.

2.2.2 Turbulence

For any one site, wind speeds will vary over short term and long term periods. In both

cases, probability distribution functions are used to express the probability of occurrence

of any given wind speed over the expected range of speeds. For long-term applications,

a Rayleigh or Weibull probability distribution function can be used (annual) (Interna-

tional Electrotechnical Commission [2005]). In the case of short term predictions (up

to one hour), a Gaussian probability distribution function is appropriate.

Turbulence occurs in the atmosphere and causes the wind speed to change on a continual
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Figure 2.1: Varying Mean Wind Speed with Height (Wind Shear)
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basis. This turbulence creates the fluctuating component of wind speed. The energy

present which causes this turbulence is described using a spectral density function,

which outlines the energy content in the frequency domain. One model is the Kaimal

PSDF, presented in Eq 2.2

PSD(f) =
4σ2

wLw/v(hhub)

(1 + 6fLw/v(hhub))
5
3

(2.2)

An important property of the PSDF plot is that the integral of power over the fre-

quency range will equal the total variance (Manwell et al. [2010]). The variance in this

expression is a function of some specified wind turbulence intensity, I and the mean

wind speed. Turbulence intensity is defined as per Eq 2.3. Other variables in Eq 2.2

include an Integral Scale Length, Lw and frequency, f .

I =
σw
v̄(h)

% (2.3)

Wind turbulence intensity is directly related to the surface roughness at any specific

site. Turbulence intensity will increase as the surface roughness increases due to the

increased friction experienced by the moving air. An example of a turbulent wind speed

time history, vt(t), for two different shear exponent values is given in fig 2.2.

Figure 2.2: Turbulent Component of Wind Speed
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2.2.3 Capture of Kinetic Energy

Wind is essential to the operation of wind turbines. The law of conservation of energy

states that the total energy in an isolated system remains constant and so cannot be

created nor destroyed. It can only be transformed from one state to another. This is the

fundamental principle which makes the generation of electrical Potential Energy possi-

ble, by virtue of harnessing the Kinetic Energy (T ) present in the wind and using this

to create mechanical energy, which is then transformed to electrical Potential Energy.

It is possible to determine the amount of energy available in the body of moving air

which passes through the wind turbine rotor through simple derivations of the Kinetic

Energy present, as follows in Eq 2.4. The terms Ar, ρa and ma refer to the swept rotor

area, density of air and mass of air respectively.

T =
1

2
mav̄

2 =
1

2
Arv̄tρav̄

2 =
1

2
Artρav̄

3 (2.4)

Power(wind) =
dT

dt
=

1

2
Arρav̄

3 (2.5)

Power is simply a measure of energy per unit time, which is given in Eq 2.5. This is a

fundamental equation in terms of the wind energy industry. It can be seen that power

is a multiple of the rotor area (or in other words the square of the rotor diameter) and

of the wind speed cubed and so these two variables are key in assessing the wind energy

resource at any location for a given rotor diameter.

Eq. 2.5 presents the total amount of power available from the wind as it passes through

the rotor disk. However, not all of this power can be captured by the wind turbine due

to the fact that the air will not be stopped by the rotor, rather it will pass through the

rotor and some of this Kinetic Energy will be passed to the rotor blades generating lift

and drag. The maximum amount of energy which can theoretically be extracted from
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Figure 2.3: Power Co-efficient vs Tip Speed Ratio

the wind is 59% of the total Kinetic Energy and this limit is known as the Betz limit.

A power co-efficient (Cp), with an upper limit of 0.59 is therefore introduced as per Eq.

2.6. The value of Cp is also known to be a function of the Tip Speed Ratio (TSR), which

is the ratio of the speed of the tip of the blade to the prevailing wind speed. Figure 2.3

gives a typical plot of Cp vs TSR for a modern horizontal axis wind turbine (HAWT).

Power(turbine) =
1

2
CpArρav̄

3 (2.6)

The rated power output of modern HAWTs are often described using power curves.

These are two dimensional plots of the power output which can be achieved at a given

wind speed.

An example of a HAWT power curve is given in Figure 2.4, taken from Hall et al.

[2011]. The curve is divided into three distinct regions, which are delineated by defined

wind speeds, namely the cut-in wind speed, the rated wind speed and the cut-out wind

speed. Below the cut-in wind speed, there is not enough energy available from the wind

to cause sufficient lift for the blades to rotate. Once the cut-in speed is exceeded, some
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Figure 2.4: Sample Turbine Power Curve

rotation and power generation will occur. From this point, rated power will increase

non-linearly with wind speed until the rated wind speed is reached. At this speed, the

turbine is operating at its optimum efficiency and in order to maintain the required

speed of rotation and lift force, modern turbines will use pitch control to alter the

angle of attack of the blades. The power output between the rated wind speed and the

cut-out speed is held constant on this basis. Finally, if wind speeds increase above the

cut-out speed, the turbine will cease to operate as it will have reached its operating and

structural capacity. In order to bring the rotation to rest, blades will pitch to a point

where stall is induced and lift is eliminated, with a braking mechanism then used to

hold the rotor in a fixed position.

2.2.4 Wind Turbine General Properties

Wind turbines have been going through engineering development in terms of form and

shape since the first windmills were constructed to grind grain in 1000 AD. At the

present time, there are two dominant forms of turbine, namely the Vertical Axis Wind

Turbine (VAWT) and the Horizontal Axis Wind Turbine (HAWT). The latter will be

used in detail in this work. A VAWT consists of a central vertical tower, with blades

which rotate around the tower which also acts as a vertical axis. The blades have a

fixed pitch and the generator and gearbox typically sit at ground level.

A HAWT consists of a vertical tower and a number of blades which radiate from a rotor
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which is supported at the top of the tower. The rotor has a horizontal axis. This type

of turbine can either be an upwind turbine with the rotor/blades located on the upwind

side of the tower or a downwind turbine with the rotor/blades on the downwind side of

the tower. The former has been optimised over time to include three blades, with the

latter formed using two blades.

2.2.4.1 Rotor

In the majority of modern HAWT, there are three blades connected to a hub. The

assembly of the three blades and the hub are known as the rotor and this sits at the top of

the tower. Blades are one of the most expensive components of the overall wind turbine.

The blades are designed to achieve optimal structural and aerodynamic performance.

Structurally, they must have a high strength to mass ratio. Aerodynamically, they are

designed such that the amount of Kinetic Energy extracted from the wind is maximised.

Drag and lift are generated as a result of their shape and effective pitching of the blades

by the wind turbine controller.

2.2.4.2 Nacelle

The nacelle houses a number of components. These components include the rotating

shaft from the hub, the emergency brake, the gear box and high speed shaft and the

generator. The nacelle housing is placed onto a nacelle yawing mechanism which can

rotate the entire assembly so that the plane of the rotor is perpendicular to the wind

direction. All of the rotating parts will have associated couplings and bearings also

housed in the nacelle.

Modern turbines include a braking system in order to hold the rotor in position in

the event of an emergency shut-down of the machine. In such an event, typical pitch

controlled rotors will pitch the blades such that the rotor moves from a condition of

generating lift to one where dynamic stall is induced and rotation is stopped. The brake

would then be activated to hold the idle blades in position.
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2.2.4.3 Tower

The tower of a HAWT provides the elevation required by the hub such that the plane

of rotation for the blades is sufficiently clear of ground level and any obstacle above

ground. Towers are typically 1 to 1.5 times as tall as the diameter of the rotor. As with

any component, the height will vary from one supplier to the next and will be selected

to suit the characteristics of the site and the required rated power output of the turbine.

The tower must be sustain different types of loading during its lifetime, all of which

have a dynamic component in their application. These include axial forces and bending

moments in various directions, generally applied at the tower top.

Towers have been historically constructed as masonry structures in early windmills.

Other forms of construction have included lattice and cable stayed structures. Modern

forms of construction include tubular steel, timber, lattice construction, reinforced con-

crete or some hybrid of concrete and steel. The choice of tower construction will depend

on its suitability to the site environment, the structural demand and its monetary and

environmental cost.

2.2.4.4 Foundations

The foundations must transfer all structural load to the underlying soils. Onshore tur-

bine foundation types include gravity based spread foundations and piled foundations.

These foundations have been discussed in many texts including Tricklebank et al. [2007].

Subject to the availability of suitably stiff ground conditions, spread foundations are

the most economical form of foundation. In this case, the large overturning moment

and vertical loading is transferred to the underlying soils across a large footprint, thus

reducing bearing pressure to within the prevailing allowable soil bearing pressures and

avoiding unwanted uplift.

Offshore foundations are an area of significant research effort, with a wide variety of

19



2. LITERATURE REVIEW

types under development. These can broadly be described as those which are fixed to

the sea floor and those which are buoyant and semi-submersed in the water. A review

paper by Schaumann and Wilke [2005] provides a summary of the different types in use.

Gravity based offshore foundations are application in depths up to 10m. From 10-30m,

a monopile foundation is the most popular type. In deeper waters or where a wind

turbine of relatively large size is proposed, a monopile becomes impractical. Multi-pile

foundations, suction-bucket foundations, jacket and floating foundations are all options

for deeper or large turbine applications.

2.3 Dynamical Numerical Modelling of Wind Turbines

Research on the subject of forced simulations of wind turbines has been presented to

date under a broad range of themes. These themes include review papers, tower analysis

and design papers, condition monitoring papers, structural control and aerodynamic

and hydrodynamic load description papers among others. In the case of most works,

authors have either presented a new mathematical description of the turbine (or local

element), or constructed a model using well established engineering tools such as the

Finite Element Method (FEM) and then followed with a numerical study to investigate

some aspect of the theme in question.

2.3.1 Model Formulations

In terms of established model formulation approaches, these formulations can be broadly

split in three categories (Hansen et al. [2006]), 1) Full FEM modelling, 2) multi-body

modelling where the flexible members are divided into rigid elements connected with

springs and dampers and 3) reduced order models such as the use of virtual work

and modal functions where physical movements can be described using a linear combi-

nation of realistic modes of vibration. Recently, authors have produced models which

have consisted of mixed-formulations where combinations of the above three approaches

have been utilised. These mixed approaches propose to capture the benefits of FEM and
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multi-body modelling in terms of accuracy and ability to account for non-linearity, whilst

also utilising assumed shapes of vibration to minimise computational effort. (Wang et al.

[2010], Gebhardt and Roccia [2014]). Most works to date have accounted for the tower

component of the assembly using the analogy of an Euler-Bernoulli beam element or

series of beam elements. Whilst this allows for the derivation of global structural re-

sponses, it means that a further step of computation is required to establish local shell

strains and stresses. This is significant in the sense that structural health monitoring of

local connections will require collection and analysis of strain or stress time histories. It

is also significant in terms of the analysis and design of towers before construction. An-

other consequence of simplified tower modelling is often that deformations attributed to

shear deformation are omitted. Finally, in terms of improving accuracy in defining dy-

namic performance, simplified tower definition can also reduce the accuracy in defining

modal mass quantities.

2.3.2 Numerical Modelling Applications

Authors have established the importance of considering the dynamic response of the

tower as a result of its interaction with the rotor and nacelle in the literature (Murtagh

et al. [2005]) and the increased displacement which occurs due to this interaction. As

such, there has been an effort to construct multi-degree of freedom (MDOF) models

when considering the deformation of these structures. As well as studying tower defor-

mations, reasons behind constructing holistic models range from the study of founda-

tions (Ramachandran et al. [2014]) to the study of vibration suppression applications

(Zhang et al. [2015]) to developing techniques for the structural health monitoring of

various components.
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2.4 The Finite Element Method

2.4.1 Introduction

In solid mechanics, an expression for the response of a body can be derived using

a combination of ordinary and partial differential equations, with exact solutions to

these equations then found through either numerical or analytical means. However,

in the case of irregular solid shapes, the task of deriving such expressions can become

impractical if not impossible. Finite Element Analysis (FEA) developed out of the

need to find approximate solutions to such problems, which were either impossible or

impractically time-consuming to solve exactly by analytical means. In simple terms, the

Finite Element Method (FEM) is a means of creating a discretized model of a continuous

structural body or system by describing that system using a definite number of nodes

and associated degrees of freedom. The exact differential equations are replaced by a

system of approximate algebraic equations with a view to solving the problem. Cook

et al. [2007] describes it as a method for numerical solution of a field problem, which is

said to be a problem which requires us to find the spatial distribution of one or more

dependent variables.

In terms of the development of the FEM, a piece of work by Schellbach in 1851 is seen

as being the origins of discretizing a continuous domain to derive an approximate solu-

tion to degrees of freedom at node points. In 1943, Courant et al. [1943] described the

torsional rigidity of a hollow shaft by discretising the cross section and then interpolat-

ing a stress function over each ‘element’. At this time, the FEM was seen as a sort of

engineering method rather than something with a sound mathematical basis, however,

in the early 1960s it was given academic respectability, having been seen as a form of

the classical approximation method known as the Rayleigh-Ritz method (Clough and

Penzien [1993]), shortly after the term ‘finite element’ had been proposed by Clough.

The Rayleigh-Ritz method itself originated in the 1870’s when Lord Rayleigh was work-

ing in the area of vibrations. Ritz then extended the method in 1909, with it being a
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method whereby responses of a continuum can be found without the need to explicitly

solve the governing differential equations of that continuum.

2.4.2 Mathematical Formulation

In the FEM, individual ‘finite elements’ are assembled to describe the behaviour of an

overall structural model and are connected at node points, all of which combine to form

a finite element mesh. The behaviour of each element is described mathematically using

some generalisation, such as the use of polynomials to portray the spatial distribution of

displacement or rotation across the element. In structural mechanics, the most widely

used elements are displacement elements, where assumed displacement fields are used

to derive a response. In these cases however, the displacement solution over the domain

will be closer to the exact solution than in the case of the stress solution given that

stresses will be taken from derivatives of the displacement. The description for each

local elements are initially generated by way of a characteristic or ‘stiffness’ matrix,

before each elements’ stiffness matrix is combined into a global structural description.

Such elemental stiffness matrices are at the basis of any FEM model and can be found

using one of the following approaches –

• Direct formulation

• Virtual work

• Variational arguments applied to functionals

• Weighted residual methods

Direct formulation is the most elementary approach to the formation of a set of alge-

braic equations with respect to system degrees of freedom and is based on a physical

understanding of the external and internal forces which must be at equilibrium for the

existence of a stable system. An example would be in the direct application of Hooke’s
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Figure 2.5: Bar/Spring Elements - Direct Formulation of Stiffness Matrix

Law to construct a set of equations for a pair of springs in series. Translational de-

grees of freedom are assigned to three nodes as shown in Figure 2.5. After an external

force is applied, the system will be at equilibrium after some displacement and inter-

nal force has developed. In this case, each spring can be considered as a local finite

element, connected at node points to form the complete system. For equilibrium to

exist, the internal forces at each node must balance. Assembling these equations into

matrix form yields vectors for the force and displacement quantities and also what is

known as the elemental stiffness matrix. At this point it is worth understanding that

the elemental stiffness matrix is symmetric and singular in linear algebra terminology.

This process can be repeated for the second spring, using nodes 2 and 3 and building

another associated stiffness matrix.

[k]{u} = {F} (2.7)

 k1 −k1

−k1 k1

u1

u2

 =

F1

F2

 (2.8)

Application of the principle of virtual work is a slightly more rigorous method in for-

mulating finite element matrices than the use of direct formulation only. The principle
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of virtual work can be written as

∫
{δε}T {σ}dV =

∫
{δu}T {F}dV +

∫
{δu}T {Φ}dS (2.9)

Where {δε}T = [δεx, δεy, δγxy] is a three dimensional strain vector produced by impos-

ing a virtual displacement {δu}. This equation states that for any admissible virtual

displacement from equilibrium, the strain energy stored is equal to the work done by

body forces F in the volume, V . The last term in the above equation defines the virtual

displacement times the surface tractions on the surface S. The displacements can be

interpolated over a finite element as

{u} = [N ]{d} (2.10)

In this expression, {d} represents the nodal displacement degrees of freedom and [N ]

is a matrix of elemental shape (also known as interpolation) functions, which describe

the expected deformed shape of the element. The strain can be found using Eq. 2.11.

{ε} = [B]{d} = [δ][N ]{d} (2.11)

In this expression, [B] is known as a strain-displacement matrix. From the above and

from basic stress-strain relations of structural mechanics, the elemental stiffness matrix

can be determined as follows.

{σ} = [E]{ε} (2.12)

{δu}T = {δd}T [N ]T (2.13)
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{δε}T = {δd}T [B]T (2.14)

Taking equations 2.12, 2.13 and 2.14 and inserting into 2.9, the following expression is

found

{δd}T
∫

[B]T [E][B]dV {d} = {δd}T
∫

[N ]T {F}dV + {δd}T
∫

[N ]T {Φ}dS (2.15)

In the case of loads applied only at nodal points and not across the surface of the body,

this expression can be shortened to read

[k]{d} = {f}, [k] =

∫
[B]T [E][B]dV (2.16)

Variational methods in the context of formulating finite element matrices are most

commonly based on the functional of Potential Energy. The Rayleigh-Ritz method is

one such method. The total Potential Energy of any structural system is equal to the

strain energy of the system, less the Potential Energy of applied loads. Once an external

force has been applied to a body, at some point afterwards, when the change in Potential

Energy is zero, the strain energy in the body is equal to the Potential Energy of the

applied loads. This stationary position in the total Potential Energy of the system

is found by differentiating the Potential Energy with respect to the system degrees of

freedom. In simple terms, at equilibrium, the change in strain energy generated in a

body will be equal to the change in Potential Energy of the applied loading (leading to

distortion of the body and hence strain energy).

The total Potential Energy of any system is described symbolically by the equation

below, including terms for strain energy, U , and potential due to applied loads Φ.

Π = U + Φ (2.17)
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The strain energy held in a linear elastic body with volume V , is defined as

U =
1

2

∫
{ε}T [E]{ε}dV (2.18)

By relating the strain to the displacement by way of a strain-displacement entity, as

Eq. 2.18 can be written as

U =
1

2

∫
{d}T [B]T [E][B]{d}dV

=
1

2
{d}T [k]{d}

(2.19)

[k] =

∫
[B]T [E][B]dV (2.20)

The matrix [k] is known as the elemental stiffness matrix. The equation for strain

energy is also valid in a larger sense where a global structure is comprised of many local

finite elements. In this case, the equation can be written as

U =
1

2
{D}T [K]{D} (2.21)

With regards to the Potential Energy of applied loads acting on the global system, this

is defined in structural mechanics as being the work done by an applied force, or

Π = {D}T {F} (2.22)

Using the principle of stationary Potential Energy, when the change in total Potential

Energy with respect to the system degrees of freedom is at zero, the system has reached
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equilibrium.

dΠ

d{D}
=

d

d{D}

(
1

2
{D}T [K]{D}

)
+

d

d{D}

(
− {D}T {F}

)
= 0 (2.23)

From matrix linear algebra, and because of the symmetry inherent in the global stiffness

matrix, this equation reduces to

[K]{D} − {F} = 0,

[K]{D} = {F}
(2.24)

This equation appears to be the same as that given by Hooke’s Law in the simple case

of a spring elements. However, this form can now be used for any global stiffness matrix

assembly in order to solve for the unknown degrees of freedom.

2.4.3 Forms of Finite Element

The choice of a suitable form of finite element is dependent on a number of concerns,

primarily, the anticipated physical behaviour of the structure and the required fidelity

of the model. In the case of a truss structure where all elements are expected to sustain

axial loading only, then a suitable element could be a 1-D bar element. In the case

of a long, slender element which is expected to bend out-of-plane due to out-of-plane

loading, a 1-D beam element might be preferred. Planar structures such as slabs and

membranes can also be described using 2-D membrane, plate or shell elements. Finally,

solid, 3-D elements may be applied to problems where highly complex three dimensional

stresses are expected, such as local steel-steel connection details.

2.4.3.1 Bar/Spring Elements

The example provided of spring elements used in determining the system equations

through the direct method is also an example of 1-Dimensional bar elements. These
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Figure 2.6: Bar Element, Axial DOF

elements include a bar, which possesses axial stiffness only and an element node at each

end of the bar. With 1 degree of freedom (DOF) per node, it has a total of 2 DOF and

has an elemental displacement vector, {d} of {d}T = [u1,Z , u2,Z ]. Figure 2.6 identifies

these DOF and the elemental stiffness matrix.

The stiffness matrix for the element can be constructed by using linear shape functions

to relate the nodal displacements to the nodal degrees of freedom. This stiffness matrix

is given in Eq. 2.25.

[k] =
AE

L

 1 −1

−1 1

 (2.25)

2.4.3.2 Beam Elements

In terms of beam elements, these are a well-established form of finite element and

can be used to describe structures which deform primarily in flexure as a result of

out-of-plane loading. This is the case in terms of the flexible elements of wind turbines

including the tower and blades. In a finite element model, a beam element consists of an

element connecting two end nodes. These nodes will each have corresponding degrees of

freedom depending on the type of beam element in question. Beam elements are often
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described in the literature as being ‘Euler-Bernoulli’ beam elements or ‘Timoshenko’

beam elements. The former is an element which conforms to classical beam bending

theory, whereas the latter incorporates shear deformation into its composition as well

as flexure. The stiffness matrix for an Euler-Bernoulli element can be derived as follows

on the basis of the fourth order equation of the out-of-plane displacement of a uniform

beam element.

F = EI
d4u

dz4
(2.26)

M = EI
d2u

dz2
(2.27)

In these equations, the force F is the applied out of plane force, u is the resulting

displacement and M is the applied and internally developed bending moment. For

this beam element, degrees of freedom are given at each node and include a trans-

lation and rotation degree of freedom. Local shape functions are used in describing

the assumed deformed shape of the element and in the case of a beam element, cubic

curve functions are fitted to the deflected profiles of the beam when subjected to a unit

displacement/rotation in the case of each degree of freedom.

{u} = [N ]{d}, d2u

dz2
= [B]{d} (2.28)

[N ] = [N1, N2, N3, N4] (2.29)
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N1 = 1− 3z2

L2
+

2z3

L3

N2 = z − 2z2

L
+
z3

L2

N3 =
3z2

L2
− 2z3

L3

N4 =
z2

L
+
z3

L2

(2.30)

It is noted that N1 and N3 refer to displacement degrees of freedom and N2 and N4

refer to the rotational degrees of freedom. Using these expressions and in this case the

principle of virtual work,

[B] =
d2

dz2
[N ] (2.31)

[k] =

∫ L

0
[B]TEI[B]dz =

EI

L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

 (2.32)

This beam element has an elemental displacement vector, {d}T = [u1,X , θ1,Y , u2,X , θ2,Y ].

Figure 2.7 identifies these DOF and the elemental stiffness matrix.

An extension of this element is possible in terms of extending the number of DOF

available to the element by also considering either axial DOF or torsion-rotation DOF.

Axial DOF may be added in the manner of the 1-D bar elements described above.

Torsional DOF may be added by considering the DOF identified in Figure 2.8. This

element torsional stiffness matrix is given in Eq. 2.33, where G and J refers to the
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Figure 2.7: Beam Element, Flexural DOF

Figure 2.8: Beam Element, Torsional DOF

Modulus of Rigidity (or Shear Modulus) and the Torsional Constant respectively.

[k] =
GJ

L

 1 −1

−1 1

 (2.33)

This torsional element has an elemental displacement vector, {d}T = [θ1,Z , θ2,Z ] where

the rotational DOF are seen to be about the Z axis identified in Figure 2.8.
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2.4.4 Global System Matrices

It has been noted that the basis of the FEM is to take a system which is described using

exact differential equations and represent it by a system of approximately equivalent

algebraic equations. To this end, it is required to take the representative matrices from

each local finite element and compile global system matrices which can be used to solve

for the unknown degrees of freedom at a structural level as per Eq. 2.24.

In Eq 2.24 the global stiffness matrix is assembled by first writing a global vector of the

system degrees of freedom, {D}. An example is given in the case of the system of two

spring (bar) elements connected in series. The combined stiffness matrix is given below.

This was assembled through overlaying entries of each of the local finite elements into

the global matrix at locations associated with the global degrees of freedom. It can be

seen that the entries for element 1, associated with degree of freedom u1 and u2 are

found in the upper left corner of the matrix. Entries for element 2, associated with

u2 and u3 are given in the lower right, with an overlapping term in the centre of the

matrix. This approach is replicated in the form of global matrices with many thousands

of degrees of freedom through careful book-keeping practices.

At this point, externally applied forces can be input as they are applied to the global

system and the equations can be solved through linear algebra to derive the unknown

displacements in this case.


F1

F2

F3

 =


k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2



u1

u2

u3

 (2.34)

Eq. 2.34 can be re-written by isolating the unknown displacements and inverting the

33



2. LITERATURE REVIEW

stiffness matrix as follows


u1

u2

u3

 =


k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2


−1

F1

F2

F3

 (2.35)

2.4.5 Finite Elements in Structural Dynamics

The Equation of Motion for a discretised system, in matrix form is given in Eq. 2.36.

[M ]{ü}+ [C]{u̇}+ [K]{u} = {F} (2.36)

The matrices [M ] and [C] represent the global mass and damping matrices respectively.

Once local mass matrices are determined, these can be compiled into a global matrix

as outlined in the case of stiffness matrices in 2.4.4 The global damping matrix can be

found by way of proportional damping, which will be described below.

2.4.5.1 Mass

Mass matrices are described in the FEM in terms of structural dynamics as being either

‘lumped element mass matrices’ or ‘consistent mass matrices’. The difference being that

lumped mass attributes mass to each node of the element, primarily for the purposes

of accounting for translational inertia only. As such, lumped mass matrices are often

diagonal. An example is in the case of bar element, whose stiffness and lumped mass

matrices are given as follows

[k] =
AE

L

 1 −1

−1 1

 (2.37)
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[m] =
m

2

1 0

0 1

 (2.38)

The consistent mass matrix can be formed by using the same shape functions as are ap-

plicable in defining the stiffness matrix and which describe the expected deformed shape

of the element. Using the shape functions applicable to a bar element, the consistent

mass matrix is given as

[N ] =

[
L− z
L

,
z

L

]
(2.39)

[m] =

∫ L

0
[N ]T [N ]ρALdz =

m

6

2 1

1 2

 (2.40)

In the case of an Euler-Bernoulli beam element and all other elements described using

shape functions, the same principle can be applied to find the consistent mass matrix.

2.4.5.2 Damping

The damping quantity is defined to take account of the various forms of energy dissi-

pation present within the structure, whether inherent in the construction or added to

suppress vibrations. Damping is described in finite element applications using Propor-

tional or Rayleigh Damping. The damping matrix is found to be a linear combination

of the global stiffness and mass matrices

[C] = a0[M ] + a1[K] (2.41)

The terms a0 and a1 are found on the basis of the frequency range of interest and
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Figure 2.9: Rayleigh Damping & Frequency Dependence

the damping is therefore said to be frequency dependent. Expressions for finding these

terms are given in Appendix B. The frequency dependence for a typical system can be

seen in fig 2.9, taken from Chopra [1995].

2.4.6 Use of Finite Element Method in Wind Industry

The FEM is widely used in the design of flexible and rigid components in wind turbine

towers. It can be applied to situations where loading is applied statically or dynamically,

however typically it has been used in static loading scenarios given the inherent high-

fidelity nature of such models. In terms of the finite element modelling of wind turbine

towers, authors have modelled the towers using beam elements and as shell/membrane

elements. Studies have been presented in papers by Lavassas et al. [2003] and Bazeos

et al. [2002] of towers constructed using shell elements. Lavassas et al. [2003] modelled

the tower and foundation as a meshed finite element continuum, with 5208 4-noded

quadrilaterals used to represent the tower. Bazeos et al. [2002] modelled the tower using

8-noded quadrilateral shell elements. These models were used in static analysis of the

tower in question and lead to resulting membrane stresses around the tower continuum.

They were also used to determine free vibration properties of the towers. These finite

element models were effective and accurate in providing free vibration properties of the

towers in question.
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Authors have utilised the FEM as a tool to optimise the design of wind turbine com-

ponents. AlHamaydeh and Hussain [2011] used the FEM in order to optimise a wind

turbine foundation by preparing several designs and assessing patterns in results to

determine optimal conditions. Formal optimisation algorithms have also been utilised

with the FEM included as a nested function. Cai et al. [2012] and Zhu et al. [2014] used

the FEM in the deterministic optimisation of a wind turbine blade mass, by applying

static loading and conducting the accompanying analysis at each iteration of the opti-

misation. Perelmuter and Yurchenko [2013] used the FEM in optimising wind turbine

towers, again assessing the performance of the tower through loading and analysis at

each iteration.

2.5 Optimisation in Engineering Applications

2.5.1 Introduction

In engineering problems, it is often the case that a certain goal is to be either maximised

(for example design life) or minimised (for example, cost). The goal to be optimised is

known as the objective function, and this can be selected according to the problem at

hand. In many design situations, this objective function will be optimised by carrying

out a limited number of iterations of that design (three or four) and by using each

iteration to modify one of the design variables in an ad-hoc manner in order to converge

on a ‘near-optimal’ solution. In the literature, (Yang et al. [2013]) this type of approach

has been called the ‘expert-based optimisation’ approach as the optimisation is carried

out on the basis of expert judgement as to the most suitable combination of design

variables and how constraints are to be managed and weighted. Formal mathematical

algorithms were then developed to provide for the rigorous optimisation of an objective

function such as cost, mass or other, which is dependent on a set of design variables

and often constrain conditions.
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2.5.2 Mathematical Formulation

It is possible to write the optimisation problem in a format known as Nonlinear Pro-

gramming (NLP).

Minimise f(x), subject to

gj(x) ≥ 0, and j = 1, 2, · · · , J

hk(x) = 0, and k = 1, 2, · · · ,K

x
(L)
i ≤ xi ≤ x(U)

i , and i = 1, 2, · · · , N

(2.42)

The objective function is written as f(x), with {x} denoting a vector of design vari-

ables such that {x}T = [x1, x2, x3, . . . , xN ]. In this formulation, g(x) are inequality

constraints and h(x) are equality constraints. The above formulation is written such

that the objective function is to be minimised, however it is noted that it can equally

be written to maximise the objective using the duality principle.

2.5.3 Traditional Optimisation Methods

Traditional optimisation methods were developed on the basis of optimising a contin-

uous, differentiable objective function dependent on a limited number of independent

design variables. Such methods rely on the ability to assess the objective function value

(also known as objective fitness) on an iterative basis, from at least two consecutive

locations in the solution space and then use this information to form a path to a loca-

tion of improved objective fitness. Iterations are repeated until a point where a global

optimum has been converged upon. Various texts on the subject (Koziel and Yang

[2011],Deb [2012]) define some of the better known traditional methods.

Gradient based methods use the gradient of the objective function line or surface to

move in the direction of the optimum solution.
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Direct search methods have been used where a gradient is not available. Although not

as efficient as gradient based methods, they can prove to be successful in converging

on local minima. They are based up searching a number of points at the same time in

order to converge on an optimum on the basis of discrete point objective functions.

Region elimination methods are used in the case of single variable problems, whereby

zones of the solution space are sequentially eliminated based on proven fitness of objec-

tive functions, thus allowing convergence on an optimum.

Finally, the Generalised reduced gradient method has been used in constrained op-

timisation problems and is a variant of the gradient methods used in unconstrained

problems.

2.5.4 Non-Traditional Optimisation Methods

Optimisation in complex engineering applications often means considering an objective

function which is not a continuous or differentiable function. Similarly, constraints on

the design variables or the objective may be either continuous or otherwise and may

be implicit rather than explicit, requiring numerical calculation within the optimisation

routine. This is a fundamental problem in terms of applying traditional gradient-based

methods.

Non-traditional methods have developed in light of the above challenges and are known

as nature-inspired metaheuristic algorithms (Yang et al. [2013]). These algorithms at-

tempt to mimic facets of nature on the basis that optimisation is continually happening

in nature in search of a better solution than the one at hand. These optimisation algo-

rithms have been used extensively in the literature (Karpat [2013], Kusiak et al. [2010])

and include techniques such as Genetic Algorithms, Greedy Algorithms (GA’s), Particle

Swarm Optimisation, Fire Fly Optimisation and Cuckoo Search Optimisation. A subset

of these algorithms are described as Evolutionary Algorithms (EA). The Genetic Algo-

rithm is one such EA given the concept of taking a population of design points within
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Figure 2.10: Flow Diagram of Typical Genetic Algorithm

a domain and using features of genetic evolution to create a next generation of search

points on the basis of assessment of objective fitness and selection of those of higher

level of fitness. In this way, the objective function is used as a performance indicator at

each population point and its fitness is used as a measure of the probability of a global

optimal point being present in its vicinity. A flow diagram of a typical GA is provided

in fig 2.10, taken from a paper by Taghavifar et al. [2015].

The ability to search multiple points without gradient information and converge on a

global optimal location is one of the advantages held by EAs over traditional methods.

However, there are a number of disadvantages to these algorithms including the require-

ment to adjust factors such as population size, and the rates of evolutionary factors such

as mutation and gene crossover, which are problem-specific and require an amount of

trial and error. A second issue is that an exact optimum is difficult to achieve, rather a

‘near-optimum’ location will be found. To overcome this, practitioners have sometimes

used EAs to arrive at a location close to the optimum and then use this location as a

start point for a more traditional approach to arrive closer to the global optimum.
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2.6 Optimisation in Wind Energy

2.6.1 Optimisation of Wind Turbine Towers

In terms of wind turbines, a substantial amount of work has been carried out into the

optimisation of dynamically sensitive components such as the blades, tower and recently

foundations. A single objective function is typically defined in works in the literature

and this is usually element mass, which was assumed to have the most significant impact

on cost. Perelmuter and Yurchenko [2013] optimised the mass of a steel wind turbine

tower subject to operational and survival loading conditions and a series of performance

constraints. The rotor diameter and tower height were both design variables in this

work.

Studies have been carried out into assessing which forms of objective function perform

best in terms of wind turbine optimisation. Objectives used in the literature include

structural measures such as maximising stiffness or minimising vibrations (Colherinhas

et al. [2016], Negm and Maalawi [2000]), minimisation of mass or construction cost

(Fylling and Berthelsen [2011]), maximisation of Annual Energy Production (AEP)

(Zahle et al. [2015]) or some combination of these objectives.

In terms of mathematically optimising the solution in a domain of feasible solutions,

engineers have used a number of optimisation algorithms. Both evolutionary methods

and traditional methods have been used either in isolation or within a hybrid approach

to initially establish a ‘near-global’ optimum using one algorithm and then refining the

solution using a second. Evolutionary algorithms have been used extensively in the

literature (Karpat [2013],Kusiak et al. [2010]). Gradient descent methods have been

used successfully elsewhere (Ashuri et al. [2014]) in the optimisation of Cost of Energy,

however this requires generalisation of objective and constraint functions to allow for

differentiation which is not always possible.

One common feature in terms of optimising the structural or aerodynamic performance
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of any element has been the need to assess the performance of selected points in the

search space by using some nested tool, for example a finite element analysis tool. Lee

et al. [2016] optimised the topology of a jacket foundation of an offshore wind turbine by

using a nested finite element step. Yang and Zhu [2015] studied the probabilistic optimi-

sation, again of an offshore foundation, using metamodels and evolutionary algorithms.

A critical simplification which is often imposed is that loadings imposed on these nested

models are applied statically, such that the assessment of a search point’s fitness against

constraints (such as stress or displacement) can be achieved in a computationally accept-

able manner. Wind turbine towers have been optimised in the literature by imposing

static rotor loading and tower wind loading (Lagaros and Karlaftis [2015]). This has

the effect of potentially underestimating the dynamic deformation of the tower which

can result from interaction of the tower with the coupled rotor, as well as removing

any time-history loading information from the optimisation routine which is required

to assess fatigue damage accumulation.

2.7 Wind Turbine Tower Design

In terms of the design of wind turbine towers including hybrid concrete-steel towers,

designers must account for a wide range of actions and ensure structural capacities can

sustain all actions. What follows are the key design criteria.

2.7.1 Primary Design Situations

The primary force the tower must sustain is lateral bending. Bending will occur during

operation as a result of drag forces acting on the blades and these forces coupled with

the inertial forces of the vibrating blades are then transferred to the top of the tower.

In addition, wind will create a drag force on the tower itself over the height of the

tower. This condition is known as a normal operating condition, and is included in

IEC 61400-1 (International Electrotechnical Commission [2005]) as one of a number of

‘Power Production’ design situations. In the event of cut-out wind speed being reached,
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the blades will cease to attract any drag force and so this thrust will become negligible

at the top of the tower. This design situation is referred to as ‘Shutdown’. Although

thrust from the rotor has been eliminated in this case, there will be a marked increase

in the drag created over the height of the tower as a result of the high wind speeds,

with the result being a lateral load and bending moment of similar scale to that created

during operating conditions.

2.7.2 Global Design Criteria

Global design criteria include the global buckling strength of the tower, the free vibration

properties of the tower and overall displacement and rotation. Global buckling failure

has occur as a result of exceeding the permissible axial or lateral load of the tower and

is seen as a severe failure mechanism, resulting in the collapse of the tower. Authors

have studied buckling based on numerical models and on physical tower failures in the

literature (Chen et al. [2015],Guo et al. [2011]). There are examples of this failure

occurring as a direct result of typhoon wind speeds acting on the tower alone, with

rotor blades having been pitched to avoid any lift or drag.

Free vibration properties include the natural frequencies and mode shapes of the global

tower structure. In order to avoid resonance, there must be adequate separation between

the natural frequencies of the tower and those of other components as well as the

frequencies of load application. The free vibration properties are gathered through

carrying out an Eigenanalysis of the tower structure, including the mass placed on top

from the nacelle and rotor. In practical terms, designers will initially seek to ensure that

the fundamental frequency is sufficiently removed from the 1P and 3P frequencies of

the rotation of the overall rotor and individual blade respectively. Mode shapes of the

towers are often utilised in dynamic simulations where modal analysis is undertaken.

Tower top displacement is another important design criteria to be met. Historically,

displacement would have been found by applying a static load to the top of the tower in

a numerical model and applying some dynamic amplification factor to find the equiv-
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alent dynamic displacement. Given the established dynamic coupling effect between

the blades and the tower (Murtagh et al. [2005]), modern tall towers are analysed in a

dynamic simulation model with the result that more accurate dynamic displacements

are generated. It is important to limit the lateral displacement at the top of the tower

primarily to avoid contact between the rotating blades and the face of the tower. Al-

though IEC 61400-1 does not limit the amount of displacement which can occur, an

established limit of height/100 has been used.

2.7.3 Local Design Criteria

Local design criteria include local stresses and strains, local buckling, local fatigue

damage estimates and in the case of multi-member towers such as lattice towers, local

free vibration and response properties. Stresses and strains will be incurred in the

structure as it deforms in response to applied forces. Lateral bending of the tower

will lead to tensile and compressive stresses on opposing sides of the tower over its

height. Torsion transferred at the connection to the yawing mechanism will also lead

to a torsional stress within the tower. Stresses in many different directions must be

taken and transformed into principal stresses. In the case of a homogenous material

such as steel, operating in its linear elastic region, stresses can be transformed into a

single stress entity by using various hypotheses such as the Von Mises hypothesis. In the

case of reinforced or prestressed concrete, stresses must be considered in perpendicular

directions given the structures heterogeneous nature. Areas particularly susceptible to

high stress concentrations are areas around doors and connections.

Local buckling can occur where a local member or shell element experiences a level of

stress in excess of its buckling capacity, which may also be below its yield capacity. In

the case of a tubular steel tower, local buckling can occur within the shell in regions

between ring stiffeners, given the high length to thickness ratios present within the

plates. In the case of concrete, this length to thickness ratio is greatly reduced with

the result that local buckling will not occur. Lattice towers with many members can
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experience local buckling given the use of members with high slenderness ratios.

Fatigue damage will occur over the lifetime of the tower given the high number of oscil-

lations the tower will experience. Locally sensitive areas include those which experience

high stress levels such as around doors and in the region of section connections. Fatigue

damage can lead to the formation of cracks which can propagate and result in a global

failure if not detected locally. Wind turbines are typically designed to achieve a twenty

year lifespan as minimum and as such, each component must achieve this lifespan prior

to failure as a result of fatigue damage.

Local free vibration properties are important in the case of lattice towers. In the same

way as high slenderness ratios will increase sensitivity to local buckling of members,

this characteristic can also lead to local resonance if local member frequencies coincide

with other structural or forcing function frequency.

2.8 Hybrid Concrete-Steel Towers

Given the established engineering practice of using concrete in forming industrial chim-

neys, this has lead engineers to study the practicalities and nuances present in adopting

concrete into the tower design. Concrete provides a relatively thick shell which in turn

leads to improvements in the local and global stiffness of the tower structure. Given

its heightened structural damping properties, it will offer inherent damping in ambi-

ent operational vibrations. Any improvement in stiffness or improvement in vibration

suppression can be seen to benefit the entire assembly as the reduced peak vibrations

will not only improve the fatigue life and stress level of the tower but also of any con-

nected vibrating elements within the turbine assembly. Concrete can be either poured

on site or fabricated using precast elements and so addresses transportation difficulties

as compared to steel.

Recent publications have studied the emergence of hybrid towers as a conceptual so-

lution in applications where tall wind turbines are desired (Agbayani and Vega [2012],

45



2. LITERATURE REVIEW

Figure 2.11: ATS Hybrid Concrete-Steel Tower
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(Tricklebank et al. [2007], Lanier [2005]). Many of the above advantages offered by

concrete as a partial replacement for steel in the lower section of the tower are cited

by these authors. A report by LaNier (Lanier [2005]) was prepared on behalf of the

National Renewable Energy Laboratory (NREL) in the US as a study of the cost com-

petitiveness of hybrid towers, particularly in locations of low wind speed (mean annual

wind speed of 5.8m/s at 10m). The authors designed hybrid towers for rated turbine

capacities of 1.5MW, 3.6MW and 5.0MW but also designed fully concrete and fully

steel options for each machine. For the 1.5MW machine, the authors found the cost

of the three types were within 33% of each other. For the 3.6MW machine and the

5MW machine, the hybrid towers were found to be significantly more expensive than

the other options. In the case of each rated machine, the fully concrete (cast in-situ)

towers were the most cost-effective. The 1.5MW towers were more economical than the

larger machines in terms of absolute costs, whereas in terms of cost per kW, the 3.6MW

and 5.0MW concrete towers were said to be more effective.

Analyses of hybrid towers was carried out by Lee et al. [2010] with a view to establishing

an optimum hybrid interface level when considering the initial capital cost of the tower.

A Finite Element Analysis (FEA) is carried out including modal, buckling and static

analysis for a series of 100m high hybrid towers.

Brughuis [2006] carried out a study which accounted for the cost of hybrid towers and

drew comparisons against steel towers of the same height. It was found that hybrid tow-

ers become more economical than steel towers in terms of the Cost of Energy associated

with the towers, from a height of 90m. Transportation costs were included in the Cost

of Energy calculations and this was found to affect the results. At sites in India and

the US, where transportation costs of steel are significant, hybrid tower fitness proved

better than where transportation costs were lower.

Quilligan et al. [2012] studied the performance of concrete and steel towers from the

point of view of fragility analyses. The performance of steel and concrete towers at

different hub heights is presented through the use of fragility curves, based on response
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time histories of the tower top displacement when turbines are subjected to turbulent,

coherent wind fields. Fragility curves are given which show the probability of any peak

tower top displacement exceeding an imposed limit level. The steel towers display

consistently higher probability of limit state exceedance.

Other literature has also been published to investigate the performance of concrete

wind turbine towers (Harte and Van Zijl [2007], BI et al. [2011]). Harte and Van Zijl

[2007] presented the key criteria of tower frequency placement relative to other dominant

component and loading frequencies as well as the difference in assessing concrete fatigue

life compared to steel fatigue life. BI et al. [2011] presented a study of the performance

of prestressed concrete towers when excited seismically. A door was included in the

model to assess its affect on dynamic performance and the authors found this effect to

be minimal.

Work has been published which examines the performance of high strength cementi-

tious materials and the implications of their use in hybrid tower configurations (Wu

et al. [2013]). Compressive strengths of 200N/mm2 were said to be possible from these

materials. The authors propose their use in tall wind turbine towers. The authors carry

out some numerical modelling to assess the performance of different thicknesses over

the height of the tower and include recommendations for future limitations on shell

thickness in design standards.

An example of a hybrid concrete-steel tower is given in Figure 2.11, provided by Dywidag

(Dywidag Systems International). This tower is supplied by Dutch companies MECAL

Engineering and HURKS BETON have developed this design, consisting of a 74m tall

lower concrete section and 55m tall steel section.
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Chapter 3

Wind Turbine Towers - Numerical

and Analytical Models

3.1 Introduction

This chapter proposes to describe a number of structural models which can be used to

represent a hybrid wind turbine tower in isolation. Models of the tower structure are to

be presented in a number of different formulations, all of which can be used to examine

free and forced vibrations of such a structure.

3.2 Closed Form Analytical Model

3.2.1 Transverse Vibrations of Uniform Beam Element

A uniform beam consisting of homogenous, isotropic, linear elastic material is presented

here. The well-known governing partial differential equation of motion of a beam ele-
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ment, sometimes known as the Euler-Bernoulli differential equation, is given as

∂2

∂z2

(
EI(z)

∂2u(z, t)

∂z2

)
+ ρ(z)A(z)

∂2u(z, t)

∂t2
= r(z, t) (3.1)

In the case of uniform beam elements, where free vibration only is under consideration

such that there is no externally applied load, Eq. 3.1 can be simplified to a fourth

order homogeneous equation, with flexural rigidity and mass density distribution held

constant

EI
∂4u(z, t)

∂z4
+ ρA

∂2u(z, t)

∂t2
= 0 (3.2)

The unknown transverse displacement in Eq. 3.2 is said to vary both spatially and

temporally. Assuming that the shape of vibration will be harmonic, it is possible to re-

write Eq. 3.2 such that the transverse displacement varies only in space, transforming

it from a Partial Differential Equation (PDE) to an Ordinary Differential Equation

(ODE). This method is known as the separation of variables and has been used in a

number of works (Auciello [1996], Posiadała [1997], Naguleswaran [2002]).

u(z, t) = φ(z)e−iωt (3.3)

In Eq. 3.3, φ(z) is a function of z alone so refers to the spatially varying shape of

vibration. The resulting ODE can be manipulated such as to arrive at a special form

of second order ODE which has a known, general solution as per Eq. 3.4

EI
d4φ(z)

dz4
− ρAω2φ(z) = 0 (3.4)
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d4φ(z)

dz4
− β4φ(z) = 0 (3.5)

Where, the non-dimensional term β is defined as

β4 =
ρAω2

EI
(3.6)

The general solution to Eq. 3.5 reads

φn(z) = C1cosh(βnz) + C2sinh(βnz) + C3cos(βnz) + C4sin(βnz) (3.7)

This equation includes four unknown constants, C1−C4. Using known boundary condi-

tions at points along the beam, it is possible to determine the unknowns in this equation

and plot mode shapes. Typical mode shape plots are provided in Appendix E. It is also

possible to show that non-trivial solutions exist only if

cosh(βnL)cos(βnL) + 1 = 0 (3.8)

This transcendental equation can then be solved numerically to give the roots β1L =

1.875, β2L = 4.694.... From this, circular frequencies are found from

ωn = β2
n

√
EI

ρA
(3.9)
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3.2.2 Transverse Vibrations of a Hybrid Tower with Lumped Mass

3.2.2.1 Introduction

In the literature there is an extensive amount of work in the area of proposing exact

solutions to practical vibration problems involving flexible structural members. These

problems typically included the introduction of some variance in terms of support con-

dition, variation of profile or rigidity over its length or additional imposed mass at-

tachments or externally applied loading in the preparation of solutions and review of

resulting vibrations.

Authors have presented work on the subject of variable cross sectional area, rigidity and

mass over the length of a beam. Kirchhoff et al. [1879] presented a seminal paper in

1879 which gave the solution to the motion of a particular form of tapered beam using

Bessel Functions to solve the governing ordinary differential equations (ODEs). Other

authors have since extended this work using other methods to solve the ODEs including

Frebonious method, (Naguleswaran [1994]) and the Feldholm integral equation, (Huang

and Li [2010]). Approximate methods were also presented for beams of variable profile,

rigidity or mass in the form of Rayleigh-Ritz formulations (Klein [1974]).

Authors have considered the attachment of additional masses in the vibration of beams

(Auciello [1996], Posiadała [1997]). In these cases, authors have made use of kinetic and

potential energy expressions to find exact solutions for natural frequencies.

Authors have also considered the motion of beams consisting of two connected but dis-

tinctly different elements. Auciello and Ercolano [1997] considered a beam a part of

which was uniform in profile and a part of which was tapered. Uściłowska and Kołodziej

[1998] presented a solution for the free vibration of a column which was partially im-

mersed in water, describing the motion using two connected uniform beam elements

with continuity enforced through the applied boundary conditions at the interface.
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Figure 3.1: Closed Form Model - Displacement/Axes Convention

Specifically in terms of wind turbine towers, authors have presented solutions to describe

their free vibration properties in closed form in recent years. Murtagh et al. [2004]

described a lattice tower with mass on top. Adhikari and Bhattacharya [2012] provided

a solution to a tower with an applied axial force, tower top mass, uniform cross section

and also a spring rather than fixed base connection. A simple equation was provided by

van der Tempel and Molenaar [2002] to find the natural frequency of a uniform tower

with lumped mass on top to represent the nacelle.

3.2.2.2 Governing Equations & Transformation

A closed form solution is developed here on the basis of a hybrid tower with two uniform

tower sections, one of concrete and one of steel, with an elevated lumped mass at the

top of the tower to represent the nacelle and hub. The interface height between the steel

and concrete segments will be a variable within the resulting expression. A schematic

for this model is presented in Figure 3.1. Based on the co-ordinate system presented,

two governing equations can be written to describe the motion of each portion of the
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tower.

d4u1

dz4
1

− β4u1 = 0 0 ≤ z1 ≤ hint (3.10)

d4u2

dz4
2

− α4u2 = 0 0 ≤ z2 ≤ H − hint (3.11)

In Eqs. 3.10 and 3.11, the terms α and β are co-efficients defined as per Eqs. 3.12 and

3.13,

β4 =
ρcAcω

2

EcIc
(3.12)

α4 =
ρsAsω

2

EsIs
(3.13)

Having established these equations, the next step is to introduce some dimensionless

quantities which can be used to normalise the lengths of both the concrete and the steel

segments of the tower, thus allowing for the direct differentiation of terms within the

general solutions for displacement which are expressed in terms of segment length.

ξ =
z1

hint
0 < ξ < 1 (3.14)

η =
z2

H − hint
0 < η < 1 (3.15)

Using these expressions and the Chain Rule, Eq 3.10 and Eq 3.11 can be transformed
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as follows to create ODEs which are functions of the dimensionless quantities ξ and η.

∂4u1

∂z4
1

=
∂4u1

∂ξ4

(
∂ξ

∂z1

)4

+ 6
∂3u1

∂ξ3

(
∂ξ

∂z1

)2 ∂2ξ

∂z2
1

+
∂2u1

∂ξ2

(
4
∂ξ

∂z1

∂3ξ

∂z3
1

+ 3

(
∂2ξ

∂z2
1

)2
)

+
∂u1

∂ξ

∂4ξ

∂z4
1

(3.16)

Eq. 3.16 reduces to Eq. 3.17 on introduction of derivatives ∂ξ
∂z1

, ∂
2ξ
∂z21

and higher deriva-

tives.

∂4u1

∂z4
1

=
∂4u1

∂ξ4

(
1

hint

)4

(3.17)

Thus the dimensionless ODEs read

(
1

hint

)4d4u1

dξ4
− β∗u1 = 0 (3.18)

(
1

H − hint

)4d4u2

dη4
− α∗u2 = 0 (3.19)

where

β∗4 =
ρcAcω

2

EcIc
h4

int (3.20)

α∗4 =
ρsAsω

2

EsIs
(H − hint)

4 (3.21)

General solutions to Eq 3.20 and Eq 3.21 are written as

u1(ξ) = C1cosh(β∗ξ) + C2sinh(β∗ξ) + C3cos(β∗ξ) + C4sin(β∗ξ) (3.22)
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u2(η) = C5cosh(α∗η) + C6sinh(α∗η) + C7cos(α∗η) + C8sin(α∗η) (3.23)

3.2.2.3 Boundary & Continuity Conditions

Eq. 3.22 and Eq. 3.23 describe the displaced shape of each section of the tower in terms

of the circular frequency and unknown constants of integration. In order to progress to a

solution of the unknowns, the boundary and continuity conditions can be applied which

will enforce the known properties in terms of the mode shape and various derivatives of

the shape, at the base of the tower, hybrid interface location and tower top. There are

two boundary conditions for the base of the tower, which are given in Eq. 3.24 .

u1(0) = 0

du1(0)

dξ
= 0

(3.24)

There are four continuity conditions which exist at the hybrid interface height account-

ing for continuity in shape, rotation, moment and shear force across this connection.

These are given in Eq. 3.25.

u1(1) = u2(0)

du1(1)

dξ
=
du2(0)

dη

−EcIc
d2u1(1)

dξ2
= −EsIs

d2u2(0)

dη2

−EcIc
d3u1(1)

dξ3
= −EsIs

d3u2(0)

dη3

(3.25)

In order to enforce the application of mass at the top of the tower in terms of the

transverse vibration, an applied shear force is imposed instead of the normal assumption

of zero shear force at a cantilever free end. The shear force is equal to the mass of the

nacelle times the acceleration of the tower at this location. The two tower top boundary

equations are given in Eq. 3.26. Figure 3.2 indicates the boundary conditions and
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Figure 3.2: Closed Form Model - Boundary Conditions

locations.

−EsIs
d2u2(1)

dη2
= 0

−EsIs
∂3u2(1)

∂η3
= Mnac

∂2u2(1)

∂t2

(3.26)

Eq. 3.26 is a PDE which contains terms which vary both temporally and spatially. The

right hand side of this expression can be transformed to be a function of space only

using the method of seperation of variables as follows in Eq. 3.27.

Mnac
∂2φ(z)

∂t2
= Mnacω

2φ(z) (3.27)

Thus

−EsIs
∂3u2

∂η3
(1) = Mnacω

2u2(1) (3.28)
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3.2.2.4 Transcendental Equations

After applying the boundary conditions at the base of the tower, it is possible to find that

C1 = −C3 and C2 = −C4. By applying all other boundary and continuity conditions,

it is possible to collect the constant terms and realise the following equation,

[A]{C} = 0 {C}T =
[
C1 C2 C5 · · · C8

]
(3.29)

It is noted that there is now one unknown quantity, β, which has an infinite number

of possible solutions, all of which are valid roots of this expression. The matrix, [A] is

given as



(cosh(β∗)− cos(β∗)) (sinh(β∗)− sin(β∗)) −1 0 −1 0

(sinh(β∗) + sin(β∗)) (cosh(β∗)− cos(β∗)) 0 −c1 0 −c1

(cosh(β∗) + cos(β∗)) (sinh(β∗) + sin(β∗)) −c2
1c2 0 c2

1c2 0

(sinh(β∗)− sin(β∗)) (cosh(β∗) + cos(β∗)) 0 −c3
1c2 0 c3

1c2

0 0 cosh(c3) sinh(c3) −cos(c3) −sin(c3)

0 0 c5 c6 c7 c8


(3.30)

In order for there to be a non-trivial solution to this expression, the determinant of the

matrix shown must equate to zero. In Linear Algebra, this expression is often written

as

[A]{C} = 0, [A] 6= 0 (3.31)
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Co-efficient terms c1 to c8 are listed as follows.

c1 =

(
EcIc
ρcAc

× ρsAs
EsIs

) 1
4

(3.32)

c2 =
EsIs
EcIc

(3.33)

c3 = β∗
H − hint

hint
c1 (3.34)

c4 =
Mnacc3

ρsAs(H − hint)
(3.35)

c5 = −sinh(c3)− c4cosh(c3) (3.36)

c6 = −cosh(c3)− c4sinh(c3) (3.37)

c7 = −sin(c3)− c4cos(c3) (3.38)

c8 = cos(c3)− c4sin(c3) (3.39)

It can be seen from Eq 3.26 that the mass of the nacelle is accounted for by its inclusion

within the boundary conditions, rather than explicitly including it in the equation of

motion. This is a simplification of sorts and does not account for the fact that the

nacelle will impart an axial force as well as a shear force. The effects of this axial force

on the free vibration properties is expected to be minimal in comparison to the effects

of the shear force and so is ignored.

Having solved for the unknown quantity β from Eq. 3.30, it is possible to solve for the
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circular frequencies and the unknown constants of integration C1 to C8. There are an

infinite number of roots to these equations and so each solution, βn is associated with

an nth circular frequency of the hybrid tower, ωn.

3.2.2.5 Evaluation of Mode Shapes

Mode shapes corresponding to each natural frequency of the hybrid tower, ωn, can be

found by finding solutions to the constants of integration, C1 to C8 and by then solving

Eqs. 3.22 and 3.23. Work in this area has been carried out by authors such as Mao

[2011] and Naguleswaran [2002]. Naguleswaran [2002] presented a work providing the

mode shapes of a beam with a single step in distributed properties. The author used

a technique of applying the known boundary conditions to express certain constants of

integration in terms of others and then imposed a unit displacement to each mode shape

at the location of the step in properties. The author noted this does not lead to any loss

in generality. The same technique is adopted in this section, using the characteristic

equations written in Eqs. 3.24 to 3.26.

By considering the two boundary conditions at the base of the tower and the four conti-

nuity equations at the interface location, it is possible to write the following equations.

C1

(
cosh(β∗)− cos(β∗)

)
+ C2

(
sinh(β∗)− sin(β∗)

)
− C5 − C7 = 0

C1

(
sinh(β∗) + sin(β∗)

)
+ C2

(
cosh(β∗)− cos(β∗)

)
− c1C6 − c1C8 = 0

C1

(
cosh(β∗) + cos(β∗)

)
+ C2

(
sinh(β∗) + sin(β∗)

)
− c2

1c2C5 + c2
1c2C7 = 0

C1

(
sinh(β∗)− sin(β∗)

)
+ C2

(
cosh(β∗) + cos(β∗)

)
− c3

1c2C6 + c3
1c2C8 = 0

(3.40)

Through a linear combination of the first and third expression within Eq. 3.40, constant

C7 can be eliminated to find an expression for C5 alone. The same can be achieved in

the case of finding an expression for C7. The second and fourth expressions may be
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combined to find equations for C6 and C8. These formulations are given in Eq. 3.41.

C5 = C1

(
c10

2
+

c12

2c2
1c2

)
+ C2

(
c11

2
+

c13

2c2
1c2

)
C6 = C1

(
c13

2c1
+

c11

2c3
1c2

)
+ C2

(
c10

2c1
+

c12

2c3
1c2

)
C7 = C1

(
c10

2
− c12

2c2
1c2

)
+ C2

(
c11

2
− c13

2c2
1c2

)
C8 = C1

(
c13

2c1
− c11

2c3
1c2

)
+ C2

(
c10

2c1
− c12

2c3
1c2

) (3.41)

The terms c10 to c13 introduced above are given as the following trigonometric functions

c10 = cosh(β∗)− cos(β∗)

c11 = sinh(β∗)− sin(β∗)

c12 = cosh(β∗) + cos(β∗)

c13 = sinh(β∗) + sin(β∗)

(3.42)

Eq. 3.41 can be re-written in shortened form as

C5 = C1c20 + C2c21

C6 = C1c22 + C2c23

C7 = C1c24 + C2c25

C8 = C1c26 + C2c27

(3.43)

Eqns 3.22 and 3.23 can now be re-written in terms of C1 and C2 to describe the shape

of both the concrete and the steel sections of the tower, u1 and u2.

u1(β∗ξ) = C1c10(β∗ξ) + C2c11(β∗ξ) (3.44)
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u2(α∗η) = C5cosh(α∗η) + C6sinh(α∗η) + C7cos(α∗η) + C8sin(α∗η)

=

(
C1c20 + C2c21

)
cosh(α∗η) +

(
C1c22 + C2c23

)
cos(α∗η) · · ·

+

(
C1c24 + C2c25

)
sinh(α∗η) +

(
C1c26 + C2c27

)
sin(α∗η)

= C1

(
c20cosh(α∗η) + c22cos(α∗η) + c24sinh(α∗η) + c26sin(α∗η)

)
· · ·

+ C2

(
c21cosh(α∗η) + c23cos(α∗η) + c25sinh(α∗η) + c27sin(α∗η)

)
(3.45)

In order to solve for the final remaining constants of integration, C1 and C2, two equa-

tions with two unknowns can be written, which will enforce known properties of both

sections of the tower. For the lower concrete section, the mode shape given in Eq. 3.44

is taken and the magnitude of the mode shape at the interface height (ξ = 1) is set to

unity. For the upper section of the tower, the bending moment is set to zero at (η = 1).

Thus the following equations are written in terms of C1 and C2.

C1c10 + C2c11 = 1 (3.46)

C5cosh(c3η) + C6sinh(c3η)− C7cos(c3η)− C8sin(c3η) = 0

∴

(
C1c20 + C2c21

)
cosh(c3η)−

(
C1c22 + C2c23

)
cos(c3η)

+

(
C1c24 + C2c25

)
sinh(c3η)−

(
C1c26 + C2c27

)
sin(c3η) = 0

∴ C1

(
c20cosh(c3η)− c22cos(c3η) + c24sinh(c3η)− c26sin(c3η)

)
+ C2

(
c21cosh(c3η)− c23cos(c3η) + c25sinh(c3η)− c27sin(c3η)

)
= 0

(3.47)

The terms c30 and c31 are used to represent the multipliers to C1 and C2 in the previous
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equation,

c30 =

(
c20cosh(c3η)− c22cos(c3η) + c24sinh(c3η)− c26sin(c3η)

)
c31 =

(
c21cosh(c3η)− c23cos(c3η) + c25sinh(c3η)− c27sin(c3η)

)
(3.48)

C1c30 + C2c31 = 0
(3.49)

By combining Eqs. 3.46 and 3.49, values for C1 and C2 are written as

C1 =
1

c11

(
c10

c11
− c30

c31

)
(3.50)

C2 =
1

c10

(
c11

c10
− c31

c30

)
(3.51)

Figure 3.3 provides an example of mode shapes associated with the first and second

natural frequency of a sample hybrid tower, with shapes found using the closed form

expressions given above. Note the value of unity of each shape at the interface location

of 60% of the beam length.

63



3. WIND TURBINE TOWERS - NUMERICAL AND ANALYTICAL
MODELS

(a) 1stModeShape (b) 2ndModeShape

Figure 3.3: Closed Form Model - Sample Tower Modes Shapes

3.3 Global Beam (Modified Euler-Bernoulli) Finite Element

Model

3.3.1 Introduction

Authors have proposed the use of finite element modelling in describing wind turbine

towers in a number of works, specifically in terms of approximating the tower behaviour

using beam finite elements. Yan et al. [2012] described a model of a wind turbine consist-

ing of a tower and three blades which used beam elements to describe these components.

Xiong et al. [2010] presented a model of a tower using the finite element method and

Euler-Bernoulli beam elements. This was then used to find the free vibration properties

of a 1MW wind turbine. A software code made available by the National Renewable

Energy Laboratory (NREL) known as BModes, Bir [2005] uses beam elements within a

finite element domain to calculate the free vibration properties of towers and blades in

isolation.

Here, a Global Beam Finite Element (GBFE) model of a tower is proposed, consisting

of beam elements with five degrees of freedom per node.
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3.3.2 Beam Element Stiffness Matrix

In this section, the hybrid tower will be described using an approximation of the exact

solution through the use of the finite element method (FEM). Euler-Bernoulli beam

elements have been augmented such that the represent out-of-plane displacement and

also rotational degrees of freedom along their longitudinal axes in two orthogonal direc-

tions. Each element node offers five degrees of freedom. The displacement vector for

each element is given as {d}, as per Eq. 3.52.

{d}T = [u1,X , u1,Y , θ1,X , θ1,Y , θ1,Z , u2,X , u2,Y , θ2,X , θ2,Y , θ2,Z ] (3.52)

The local stiffness matrix for the element is given in Eq. 3.53.

[k] =
EI

L3



12 0 0 6L 0 −12 0 0 6L 0

0 12 6L 0 0 0 −12 6L 0 0

0 6L 4L2 0 0 0 −6L 2L2 0 0

6L 0 0 4L2 0 −6L 0 0 2L2 0

0 0 0 0 GJL2

EI 0 0 0 0 −GJL2

EI

−12 0 0 −6L 0 12 0 0 −6L 0

0 −12 −6L 0 0 0 12 −6L 0 0

0 6L 2L2 0 0 0 −6L 4L2 0 0

6L 0 0 2L2 0 −6L 0 0 4L2 0

0 0 0 0 −GJL2

EI 0 0 0 0 GJL2

EI


(3.53)
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3.3.3 Beam Element Mass Matrix

The local beam mass matrix for the element is given in Eq. 3.54.

[m] =
ρAL

420



156 0 0 22L 0 54 0 0 −13L 0

0 155 22L 0 0 0 54 −13L 0 0

0 22L 4L2 0 0 0 13L −3L2 0 0

22L 0 0 4L2 0 13L 0 0 −3L2 0

0 0 0 0 2Γtor 0 0 0 0 Γtor

54 0 0 13L 0 156 0 0 −22L 0

0 54 13L 0 0 0 156 −22L 0 0

0 −13L −3L2 0 0 0 −22L 4L2 0 0

−13L 0 0 −3L2 0 −22L 0 0 4L2 0

0 0 0 0 Γtor 0 0 0 0 2Γtor


(3.54)

The term Γtor defines the torsional entries and is defined as Γtor =
70(Ix+Iy)

A . This matrix

has been formed by combining the co-efficients of the Euler-Bernoulli beam element of 4

DOF which was derived in a consistent manner and adding torsional stiffness and mass

inertia derived directly.

Although not part of the structural mass of the tower, it is important to account for

the mass of the nacelle at the top of the tower as it will influence the free and forced

vibration responses. In order to include this mass (Mnac) at the top of the tower, it

can be considered as a lumped mass and directly summed to the relevant co-efficients

(uN,X , uN,Y ) at this node. The mass moment of inertia (Inac) of the nacelle is assumed to

be constant around each axis and is summed to rotational degrees of freedom (θN,X , θN,Y

and θN,Z) co-efficients associated with this top node. Thus, the local element at the
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top of the tower, [m]Nels
, is amended to incorporate this lumped mass as per Eq. 3.55.

[m]Nels
= [m]Nels

+



[0]5×5 [0]5×5

[0]5×5



Mnac 0 0 0 0

0 Mnac 0 0 0

0 0 Inac 0 0

0 0 0 Inac 0

0 0 0 0 Inac




(3.55)

3.3.4 Global Matrix Assembly

The construction of global mass and stiffness matrices is required prior to carrying out

free or forced vibration analyses on an overall tower. The steps involved in construct-

ing the tower hybrid model using these beam elements such that global matrices are

assembled include -

• Determine the number of local beam elements to be used to describe the tower

and assign local lengths to each beam

• Split the tower into elements and assign global structural node numbers to each

node

• Based on local element material and geometrical properties, establish local ele-

mental matrices

• Populate global matrices with degree of freedom entries from local matrices

Each local matrix must first be expanded such that their elemental co-efficients are

aligned with the global structure node numbers and associated degrees of freedom. The
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Figure 3.4: GBFE Tower Model - Axes and Nodal DOF

global structure displacement vector for a tower of Nels elements is given in Eq. 3.56.

{D}T = [u1,X , u1,Y , θ1,X , θ1,Y , θ1,Z , u2,X , · · · , uN,Y , θN,X , θN,Y , θN,Z ] (3.56)

For a tower consisting of Nels elements, there will be N = Nels + 1 nodes and 5N DOF.

A schematic for this model is provided in Figure 3.4 which also identifies the nodal

degrees of freedom.

Assembling this global matrix requires superposition of entries of each local element

matrix co-efficient into the global matrix, such that co-efficients associated with local

nodes are assigned to their global node position. Once local elements have been trans-

formed, they will each now be aligned with the global displacement vectors and so can

be directly summed to find the global matrices, as outlined in Eqs. 3.57 and 3.58.

[Kg,T ] ∈ R5N×5N =

Nels∑
i=1

[k] (3.57)

[Mg,T ] ∈ R5N×5N =

Nels∑
i=1

[m] (3.58)
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In the case of a model consisting of two beam elements (Nels = 2), there will be three

nodes (N = Nels + 1) and thus 5N DOF. As a result the global matrices will each be of

size 5N × 5N .

In order to generate a global damping matrix, [Cg,T ], Rayleigh damping may be used

whereby the damping matrix is found to be a linear combination of the global stiffness

and mass matrices and is frequency dependent. As such, a free vibration analysis of the

tower must first be carried out to determine relevant frequencies.

[Cg,T ] = a0[Mg,T ] + a1[Kg,T ] (3.59)

In the same manner as the exact solution methodology, in order to solve for free or

forced vibration properties, boundary conditions must be enforced on the model. For

this tower, the conditions of zero displacement and zero rotation exist at the base of

the structure. Refer to Appendix B for further details. In the FEM, these conditions

are enforced numerically by assigning zero values to the known responses at the base of

the tower.

3.4 Local Shell (Reissner-Mindlin) Finite Element Model

3.4.1 Introduction

Authors have used two dimensional elements to describe towers where the form of tower

construction chosen is to be a tubular form. By making use of these types of elements, it

is possible to create a continuous, densely discretised, three dimensional shell model of a

tower, which offers distinct advantages over more simplistic beam-column type models.

Some of the benefits offered by shell element based models over beam element models

include -

69



3. WIND TURBINE TOWERS - NUMERICAL AND ANALYTICAL
MODELS

• Potential to extract local strains and stresses,

• Potential to incorporate initial stresses in shell structure,

• Potential to conduct local condition monitoring

• Incorporation of features such as opes and ring stiffeners,

• Potential to carry out local and global buckling analysis,

• Eigenanalyses leading to three dimensional modes of vibration,

• More accurate reflection of changing tower material and geometric profiles.

Lavassas et al. [2003] modelled a tower for a prototype tower which was 44m in height

and used to support a 1MW turbine. The tower was modelled using 5208 4-noded

quadrilateral elements and was used in vibration and stress analyses. In a similar way,

Bazeos et al. [2002] described a wind turbine tower structure using 8-noded quadrilateral

shell elements. The shell nature of the finite element model allowed the authors to study

in detail the stresses present around door opes and also to determine stresses and free

vibration properties. Local stresses around the door opening at the base of the tower

were studied by Long and Wu [2012].

Hu et al. [2014] put forward a study on the effects of internal ring stiffeners and wall

thickness on the response characteristics of towers at various heights. A steel tubular

tower is studied using the FEM with the towers described as shell structures. Von Mises

stress and displacement results are given for each tower configuration modelled.

Makarios et al. [2015] used three dimensional FE models of towers to study the torsional-

translational responses. The authors cite a number of tower collapses which have been

attributed to torsional effects. A continuous model method is used to simulate the

structural response of the tower.

Shell models have been used in terms of condition monitoring in review of potential

damage to local areas of the structure. Kenna and Basu [2015a] presented a technique
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whereby strain signals were extracted from defined circumference locations from a shell

model of a wind turbine tower and then processed using a Discrete Wavelet Transform

(DWT) such that damage could be identified.

3.4.2 Reissner-Mindlin Shell Elements

The total potential energy within each shell element includes strain energy held within

the body under consideration and the potential of all applied loads. The total strain

energy held in a body is as follows

U =
1

2

∫
{ε}T [E]{ε}dV (3.60)

By relating the strain to the displacement by way of a strain-displacement entity, {ε} =

[B]{d} = ∂[N ]{d}, Eq. 3.60 can be re-written as shown in Eq. 3.61. Reference is made

to Appendix A for the derivation of the strain-displacement matrix in the case of a four

node membrane element.

U =
1

2

∫
{d}T [B]T [E]{d}[B]dV =

1

2
{d}T [K]{d} (3.61)

The elemental stiffness matrix, k is extracted from the elemental strain energy equation

and reads

[k] =

∫
[B]T [E][B]dV (3.62)

The element form used in defining the tower continuum in this section is an isopara-

metric bilinear quadrilateral, with membrane and plate bending properties to give

the element shell capabilities. A sketch of the membrane and plate elements com-

bined to form the complete shell element is given in Figure 3.5. The membrane
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part of the element accounts for the in-plane displacement degrees of freedom at each

node, in the local x-y plane of the element. The vector of membrane degrees of

freedom reads {dm}T = [u1,x, u1,y, u2,x, · · · , u4,y]. As such, there are co-efficients for

eight degrees of freedom defined for the membrane action. Part of the definition of

a shell element is its ability to account for out-of-plane actions in addition to in-

plane actions and as such, a Mindlin plate element is used to account for these ac-

tions and degrees of freedom. The associated vector of plate degrees of freedom reads

{dp}T = [u1,z, θ1,x, θ1,y, u2,z, · · · , u4,z, θ4,x, θ4,y]. In total, there are 20 DOF per shell

element on summation of these two components.

When the membrane and plate degrees of freedom are all incorporated, each shell ele-

ment will have a displacement vector, {d} as per Eq. 3.63.

{d}T = [u1,x, u1,y, u1,z, θ1,x, θ1,y, u2,x, · · · , u4,z, θ4,X , θ4,y] (3.63)

The element is referred to as being "bilinear" because of the nature of its shape func-

tions, which are products of one dimensional linear polynomial functions. The complete

displacement field for the element degrees of freedom, {u} = [N ]{d}, is given as



ux

uy

uz

θx

θy


=



N1 0 0 0 0 N2 0 · · · 0 0

0 N1 0 0 0 0 N2 · · · 0 0

0 0 N1 0 0 0 0 · · · 0 0

0 0 0 N1 0 0 0 · · · N4 0

0 0 0 0 N1 0 0 · · · 0 N4





u1,x

u1,y

u1,z

θ1,x

...

u4,z

θ4,x

θ4,y



(3.64)
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Figure 3.5: Local Shell Element - Axes and Nodal DOF

The shape functions themselves are given as

N1 =
1

4
(1− ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1− ξ)(1 + η)

(3.65)
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3.4.3 Shell Element Stiffness Matrix

Eq. 3.62 is written in terms of a two dimensional element with a constant thickness t,

as

[k] = t

∫∫
[B]T [E][B]dA (3.66)

In order to integrate each element over its area, Gauss-quadrature numerical integration

is used (see Appendix A), where the element is first mapped to a local co-ordinate

system. The membrane part of the shell element stiffness matrix expressed in Cartesian

co-ordinate space of x and y is transformed as

[km] = t

∫∫
[Bm]T [Em][Bm]dxdy (3.67)

This principle is outlined by Moaveni [2003], explaining numerical implementation of the

finite element method. The subscript m here denotes the application to the membrane

degrees of freedom of the element. In local co-ordinates, where it is mapped in ζ and

η, the element stiffness matrix is

[km] = t

∫∫
[Bm]T [Em][Bm]|J |dξdη (3.68)

where J denotes the Jacobian matrix, used to transform derivatives of displacements

with respect to x and y to those with respect of ξ and η (see Appendix A). Notwithstand-

ing the requirement for transformation to a local axis system in order to numerically

integrate, mapping the element to a local system with nodes at ξ = +/-1 and η = +/-1

also means that the element does not need to be rectangular and can take any quadri-

lateral shape. This suits the case of a tapered cylinder where elements will become

truncated towards the top of the tower.
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Figure 3.6: Local Shell Element - Co-ordinate Transformation

In terms of the plate part of the shell element stiffness matrix, the same form of integral

is used to define this section of the element stiffness matrix as was used to define the

membrane part. One important difference is that separate strain-displacement matrices

need to be used for the bending and shear degrees of freedom.

The Mindlin plate stiffness matrix is thus defined as follows

[kp] = t

∫∫
[Bpb]

T [Epb][Bpb]|J |dξdη + t

∫∫
[Bps]

T [Eps][Bps]|J |dξdη (3.69)

where in Eq. 3.69, the subscripts pb and ps refer to bending and shear strain-displacement

of the plate respectively. It is noted that although the strain-displacement matrices are

slightly lengthier to set up, the same shape functions are used throughout to generate

all membrane and plate co-efficients. Once the membrane and plate co-efficients are in

place for each element, they are then combined to form the shell element elastic stiffness
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matrix as follows.

[k] ∈ R20×20 = [km]⊕ [kp] =

[km] [0]

[0] [kp]

 (3.70)

Note that there are no coupling terms between the membrane and plate co-efficients

in this matrix. The material constitutive matrices used in defining the membrane and

plate co-efficients are as follows

[Em] =
E

(1− ν2)


1 ν 0

ν 1 0

0 0 (1−ν)
2

 (3.71)

[Eb] =
Et3

12(1− ν2)


1 ν 0

ν 1 0

0 0 (1−ν)
2

 (3.72)

[Es] =
Et5

6

2(1 + ν)

1 0

0 1

 (3.73)

In Eq 3.73 an empirical value of 5
6 is included, which is a shear correction value. This

is applied to correct for a limitation in Reissner-Mindlin plate theory which assumes

a constant shear strain distribution across the thickness of the plate, rather than the

parabolic distribution expected in reality. This correction ensures a more accurate

reflection of the shear strain energy which is present.

3.4.4 Shell Element Mass Matrix

The mass matrices are generated in a consistent manner using the same shape functions

used to derive the stiffness matrices. The expression for the consistent mass matrix of
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a membrane element reads

[mm] = ρt

∫∫
[N ]T [N ]dA

= ρt

∫∫
[N ]T [N ]|J |dξdη (3.74)

while the expression for a plate element reads

[mp] = ρt

∫∫
[N ]T [κ][N ]dA

= ρt

∫∫
[N ]T [κ][N ]|J |dξdη

(3.75)

[κ] =


1 0 0

0 t2

12 0

0 0 t2

12

 (3.76)

Again, as was the case for the element stiffness matrix, the mass matrix is found nu-

merically using Gauss-quadrature integration. The complete shell element mass matrix,

with entries from the membrane and plate locations reads

[m] ∈ R20×20 = [mm]⊕ [mp] =

[mm] [0]

[0] [mp]

 (3.77)

In order to include the nacelle mass (Mnac) at the top of the tower, it can be considered

as a lumped mass and directly summed to the relevant co-efficients for elements at the

top of the tower. The mass moment of inertia (Inac) of the nacelle is assumed to be

constant around each axis and is summed to rotational degrees of freedom for elements

at the top of the tower. Thus, each local element located around the circumference of

the top of the tower was amended to incorporate a portion of these quantities. These
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shell elements were amended as per Eq. 3.78 and 3.79.

[mnac] =



Mnac
seg×2 0 0 0 0 0

0 Mnac
seg×2 0 0 0 0

0 0 Mnac
seg×2 0 0 0

0 0 0 Inac
seg×2 0 0

0 0 0 0 Inac
seg×2 0

0 0 0 0 0 Inac
seg×2


(3.78)

In this equation, the term seg refers to the number of elements around the circumference

of the tower. The total mass and inertia are divided as given to account for overlap

between each element in constructing the overall mass matrix, such that the total mass

and inertia achieved when considering all tower top nodes is Mnac and Inac respectively.

[m]n = [m]n +

[0]6×6 [0]6×6

[mnac] [mnac]

 , (Nels − seg ≤ n ≤ Nels) (3.79)

3.4.5 Global matrix assembly

As outlined in Chapter 2, a required step in forming the overall tower model is to

establish global descriptive matrices to account for stiffness, [Kl,T ] in the case of static

analysis and extended to stiffness [Kl,T ], mass [Ml,T ] and damping [Cl,T ] ∈ R6N×6N

matrices in the case of dynamic analysis. Appendix C outlines steps in constructing

these matrices. A plot of the assembled tower using the Cartesian co-ordinates for each

local element is provided in Figure 3.7.
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Figure 3.7: 3D Plot of Local Shell Finite Element Model
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3.5 Local Shell Finite Element Model - Prestressed or Post-

Tensioned

3.5.1 Introduction

The numerical modelling of prestressed concrete structures has been of great interest to

civil engineers for many years. The structures examined in the literature were of histor-

ical importance in construction and remain of importance today – consisting mainly of

prestressed simply supported beams, prestressed bridge decks and containment struc-

tures.

Law and Lu [2005] modelled a prestressed concrete beam for the purpose of system

identification using Bernoulli-Euler assumptions. In this work, the elastic and geometric

stiffness matrices of the beam element were defined, with geometric stiffness being a

function of the prestress force. The tendon was not included in terms of the overall

system stiffness and prestress is accounted for as an externally applied load.

Saiidi et al. [1994] carried out laboratory and field testing of prestressed beams. It was

found, contrary to simple ’compression-softening’ estimations that the first bending

frequency of the beams increased with increasing prestress force. This is attributed

to the fact that micro-cracks present in the physical beams are closed as a result of

prestress, leading to stiffer sections. This non-linear behaviour of the concrete, the

presence of the tendon and also the magnitude of prestress were thus shown to influence

the dynamic properties of the section. These factors are all to be built into the model

proposed here.

Kerr [1976] studied the dynamic response of prestressed beams and concluded that

where the prestressing cable passes through the centroid of the member and where the

cable is supported by the member laterally, that the magnitude of prestress does not

affect its natural frequency.

80



Figure 3.8: Mapping of Post-tensioning Tendons onto LSFE Model at Element Nodes

Chan and Yung [2000] proposed a method of identifying axle loads of moving vehicles

from responses of prestressed concrete bridges. It was concluded that ignoring the

effects of prestress in the identification process introduces inaccuracies which increase

with increasing prestress. Material non-linearity was not included in the study, nor was

the prestressed tendon(s) included in the model stiffness descriptions.

Kenna and Basu [2015b] presented a finite element shell model of a wind turbine tower

where prestressed tendons were imposed as 1-D bar elements. The work presented in

this paper is described in detail in the current section of this thesis.

3.5.2 Bar Element Stiffness Matrix

The tendons to be modelled are those of post-tensioned towers and are to be unbonded

to the ducts they pass through. Kwak and Filippou [1990] described how steel reinforce-

ment can be mapped directly onto the nodes of a shell or membrane element to include

them in the overall structure stiffness. This method is used here, where the tendons are

modelled as bar elements, with their end nodes mapped onto the shell element nodes

used as anchorage locations. Figure 3.8 identifies how such bar elements are overlaid

onto the tower model.
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Figure 3.9: Concrete Constitutive Model in Tension (Vecchio [1989] and Compression (Eurocode 3,
British Standards Institution [1993]

3.5.3 Material Non-linearity

In order to model non-linear behaviour of the concrete the modified Hognestad model

was chosen, as described by Kwak and Filippou [1990]. This model is based on the

behaviour of concrete under uniaxial loading. The shell elements in this model will

generate biaxial stress results; however, as the principal stresses are not expected to be

close to each other in magnitude, a constitutive model based on uniaxial loading will

be applied. In tension, the concrete is assumed to have a linear stiffness until the point

of cracking at its tensile strength and then to exhibit strain softening until ultimate

failure. A strain softening curve suggested by Vecchio [1989] for cracked membrane

elements is used. Expressions for stress at various levels of strain are shown in Figure

3.9. Values for the compressive strength, f ′c; the tensile strength, fcracked; the yield

strain, ε0 and ultimate compressive strain εcu are available in Eurocode 3 (British

Standards Institution [2004]). The prestressed steel in the model is assumed to behave

in an elastic-perfectly plastic manner, with a bilinear curve.

82



3.5.4 Initial Stress (Prestress) Condition

The effect of applying a prestress needs to be accounted for in terms of the stiffness of the

shell continuum. Prestress will be applied by externally applied loads to the concrete

structure. The imposition of the prestress into the system will have implications for

the global stiffness of the tower in that it will result in a stress stiffening effect on the

tendons but a stress-softening effect on the shell continuum. In order to describe how

this is represented in a finite element framework, some background is given in Appendix

F.

In order to describe the lateral displacements of elements, Green Strain is used. This is

a measure of strain used in finite element methods where deformations lead to a change

in stiffness of the structure, as described by Cook et al. [2007]. The stiffness in such

global structures is directly related to the deformed shape of the structure/element.

With this approach, strains are described as follows in the normal and shear directions

respectively

εx =
δux
δx

+
1

2

((
δux
δx

)2

+

(
δuy
δx

)2

+

(
δuz
δx

)2
)

(3.80)

γxy =
δux
δy

+
δuy
δx

+

((
δux
δx

)(
δux
δy

)
+

(
δuy
δx

)(
δuy
δy

)
+

(
δuz
δx

)(
δuz
δy

))
(3.81)

where ux, uy and uz are the displacements along the three orthogonal X, Y and Z

directions respectively. The membrane strain energy for any element is equivalent to

the work carried out by a membrane force (or axial force in the case of a 1-D bar) in

lengthening or shortening an element by an infinitesimal length described by the strain

in that particular direction. Thus for a bar element, the strain energy reads

Um =
1

2

∫ L

0
Pεmdz (3.82)
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where P equals the applied axial load and εm is the axial strain. When the only

displacement is through the in-plane degrees of freedom, Greens Strain states

εm =
1

2

(
δuy
δx

)2

(3.83)

As such, the geometric stiffness, at an element level, is derived as follows

Um =
1

2

∫ L

0
P

(
δuy
δx

)2

dx

=
1

2

∫ L

0

(
δuy
δx

)T
P

(
δuy
δx

)
dx

=
1

2
{d}[kgeo]{d}

(3.84)

In terms of a physical interpretation of the effect of stress stiffening/softening on the

overall tower, it is assumed that the out-of-plane stiffening experienced by the tendon

is of no benefit to the concrete shell. As it is unbonded to the concrete, it is free to

vibrate laterally between restraint locations. Any increase in its out of plane stiffness

does not therefore offset the softening experienced by the concrete shell. As such, for

the purpose of this thesis, the geometric stiffness of the tendons will not be included.

3.5.5 Shell Element Geometric Stiffness & Non-linearity

The principle of work performed by membrane forces carried through small changes in

length owing to lateral displacements describes the change in strain energy and is used

in defining the geometric stiffness of the shell elements. The membrane forces in the

normal (i.e. X and Y) and shear (X–Y) directions are Rx, Ry and Rxy. The strain

energy is thus

Um =

∫ (
1

2
Rx

(
δuz
δx

)2

+

(
1

2
Ry

(
δuz
δy

)2

+

(
1

2
Rxy

(
δuz
δx

)(
δuz
δy

))
dA (3.85)
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which can alternatively be written as

Um =
1

2

∫∫  δuz
δx

δuz
δy


T Rx Rxy

Rxy Ry

 δuz
δx

δuz
δy

 dxdy (3.86)

The lateral displacement is again described by the shape functions and degrees of free-

dom. The derivatives of the displacement is expressed as

 δuz
δx

δuz
δy

 = [G]{d} (3.87)

where [G] is the matrix denoting the derivative of the shape function matrix. Manip-

ulation of the above equations leads to an expression for the geometric stiffness of the

local shell element of

[Kgeo] =

∫∫
[G]T

Rx Rxy

Rxy Ry

 [G]dxdy (3.88)

It can be seen from Eqs. 3.87 and 3.88 that the only coefficients resulting from this

description are those relating to the out-of-plane displacements of each element node.

Where the applied membrane loads are tensile or compressive in the shell element, this

will lead to an increase or reduction in the membrane stiffness of the shell.

The first-order derivatives of the out-of-plane displacements have been used here to

generate the geometric stiffness. Other works on this subject, particularly in the area of

large-displacement theory, have also included the first-order derivatives of the bending

degrees of freedom in describing the geometric stiffness. As the members to be analysed

by this model are assumed to develop small lateral displacements without coupling of

bending and membrane actions at any point prior to buckling, the bending degrees of

freedom are not considered in the geometric stiffness matrices.
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3.5.6 Prestress Losses

Losses will take place in the transfer of the tendon force to the concrete element, which

needs to be accounted for in any analysis of such structural members. Some of these

losses will occur during construction, whilst others will occur slowly over time. Losses

occur because of friction, anchorage draw-in, elastic deformation of concrete, shrinkage,

creep and relaxation.

In applying tension to the pre-stressed tendons, a certain amount of this force will be

lost through friction between the tendon and the duct that the tendon passes through.

This will result in the force present in the tendon varying along the length of the duct

and thus along the height of the tower. In this work, it will be assumed that the tendon

force is applied at the base of the tower. The expression for calculating the change in

tendon force due to friction at a distance from the base is given in Eurocode 3 (British

Standards Institution [2004]) as

∆P (x) = Pmax(1− exp−µ(ϑ+υx)) (3.89)

where Pmax is the maximum value of the force, µ is the friction coefficient and ϑ is

the change in tendon angle along its length. The coefficient υ is known as a ‘wobble’

coefficient of friction (dependent on type of tendon). The values incorporated in this

model for µ and υ are taken from a report by Concrete Society [2005] and are 0.06 and

0.05 rad/m, respectively. Elastic deformation of the concrete as it takes up stress will

lead to losses in tendon force. Time-dependent sources of loss of force in the tendons

include creep and shrinkage of the concrete and relaxation of the tendons themselves.

Expressions for all of the aforementioned losses are available in Eurocode 2 (British

Standards Institution [2004]), and will be used in this model. Figure 3.10 shows how

the tendon force would typically vary over the height of the tower.
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Figure 3.10: Immediate and Long Term Losses in Prestress Force over Tower Height
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Properties Sym BM Tower 1 BM Tower 2 BM Tower 3
Height (m) H 100 100 100
Interface (m) hint 20 60 N/A
Base Dia (m) Dc 7 7 6
Base Shell (mm) tc 300 300 24
Top Dia (m) Ds 3 3 3.87
Top Shell (mm) ts 25 25 24
Density (steel) (kg/m3) ρs 7890 7890 7890
Youngs Mod (steel)(GPa) Es 205 205 205
Poissons ratio (steel) νs 0.3 0.3 0.3
Density (conc)(kg/m3) ρc 2450 2450 N/A
Youngs Mod(conc)(GPa) Ec 30 30 N/A
Poissons ratio (conc) νc 0.15 0.15 N/A
Mass Ratio (%) Mnac

MTower
25 50 0

Table 3.1: Sample Towers used in Benchmarking - Model Properties

3.6 Benchmarking

3.6.1 Free Vibration Response

Validation of the closed form, analytical model and global beam FE model was carried

out by completing a number of free-vibration analyses of sample benchmark hybrid

towers and comparing resulting eigen-pairs of frequencies and mode shapes. Two sample

benchmarking towers were chosen and are given as BM Tower 1 and BM Tower 2 in

Table 3.1.

The results of this comparison are presented in Table 3.2 and fig 3.11. Both the mode

shapes and frequencies are in good agreement.

Validation of the shell model was carried out in terms of its ability to generate the

free vibration properties of a tower. Tower stiffness and mass matrices were assembled

based on the input properties listed as BM Tower 3 in Table 3.1 (note this is a fully steel

tower) and an Eigenanalysis was carried out to obtain frequencies and associated mode

shapes. A comparison between the output of the shell model and the commercially

available software is included below in Table 3.3. Figure 3.12 provides plots of the first
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(a) BM Tower 2, 1st Mode, Closed Form & GBFE
Models

(b) BM Tower 2, 2nd Mode, Closed Form & GBFE
Models

Figure 3.11: Benchmarking Results 1 (Mode Shapes); Closed Form & GBFE Model Free Vibration

Model BM Tower f1(Hz) f2(Hz) f3(Hz)

Closed Form Model 1 0.2252 2.1222 6.3338
Global Beam FE Model 1 0.2252 2.1222 6.3339
Closed Form Model 2 0.2738 1.6086 7.0146
Global Beam FE Model 2 0.2738 1.6086 7.0148

Table 3.2: Benchmarking Results 1 (Natural Frequencies); Closed Form & GBFE Model Free Vibration

three benchmarked mode shapes from the LSFE model.

3.6.2 LSFE Model Stress Analysis

Finally, a stress analysis was carried out using the LSFE model and the commercial FE

package Autodesk Robot and the results compared, using a steel tower defined by BM

Tower 3 as the input. This was carried out by applying a static lateral load to the top of

the tower. For the local response, a local finite element was considered at the base of the

tower. In the case of both models, a mesh density equating to 20 elements around the

Model BM Tower f1(Hz) f2(Hz) f3(Hz)

Local Shell FE Model 3 0.817 4.213 10.8133
Autodesk Robot 3 0.82 4.2 10.7

Table 3.3: Benchmarking Results 2; LSFE Model Free Vibration
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Figure 3.12: Benchmarking Results 2 (Mode Shapes); LSFE Model 1st, 2nd, 3rd Mode Shapes

Model P (kN) uN,X (mm) σ1,x σ1,y τxy
Local Shell FE Model 800 607.7 -2.24 98.38 -0.55
Autodesk Robot 800 604 -2.23 101.66 0.11

Table 3.4: Benchmarking Results 3; LSFE Model Stress Analysis

tower circumference and 25 elements along the height of the tower was chosen. Results

for the stress vector {σ1}T = [σ1,x, σ1,y, τxy], for the first finite element at the base of

the tower are given in Table 3.4. A plot of the LSFE elemental vertical stress, σ1,y

is provided in Figure 3.13 as well as an overlay of the out-of-plane displacement, un,X

(1 ≤ n ≤ N) profile for both models. Both sets of results are in good agreement.

3.7 Conclusions

A number of numerical models were developed to describe the structure of a hybrid

concrete-steel wind turbine tower with nacelle and hub mass at its top. Models devel-

oped included an exact, analytical model, an approximate finite element model formu-

lated using beam elements and a further finite element model formulated using bilinear

shell elements.
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(a) Displacement, (ux), LSFE & Autodesk Robot (b) Tower Stress Distribution (σy), LSFE Model

Figure 3.13: Benchmarking Results 3; Displacement & Stress Analysis Plots, LSFE Model and Au-
todesk Robot Model

The finite element models are given the names Global Beam Finite Element model

(GBFE) and Local Shell Finite Element model (LSFE) based on their make-up.

Finally, a benchmarking exercise has shown that the response of the models developed

are as expected and for cases selected, are in agreement with responses from commer-

cially available software models. The approximate FE models will now be taken forward

for inclusion in MDOF wind turbine models and will be used in applications such as

optimisation and damage detection in other parts of the thesis. The GBFE model will

be used in situations where only a global response is required, whereas where a local

response is required, the LSFE model will be used.
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Chapter 4

Multi Degree of Freedom Turbine

Models - Formulation &

Generalised Loading

4.1 Introduction

In this chapter, a mixed-formulation approach will be presented for the incorporation

of finite element models of a tower into two MDOF models. The FE models will be

incorporated into Euler-Lagrangian reduced order models where all turbine components

follow deformation paths assigned by assumed shapes of vibration. The models will

account for in-plane and out-of-plane deformation of the tower and three blades. They

will account for tower-rotor dynamic interaction by way of deformation coupling within

the equations of motion.

A Global Beam FE (GBFE) model will be used in one model to describe the tower. This

will allow for the extraction of global responses of the tower and turbine at each degree

of freedom to any external excitation. A second MDOF model, which will be called a
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Local Shell FE (LSFE) model will then describe the tower using a highly discretised 3D

shell. This second model will allow for the direct extraction of shell nodal deformations

and shell element strains immediately after carrying out any simulations. Both models

will also address the issue of variable structural damping properties between the concrete

and steel sections of the tower.

This chapter will also introduce the concept of numerically describing the physical forces

generated when a wind field passes around and against the wind turbine structural

components, namely the rotating blades and the tower. Loading is applied to the

model in each DOF to represent loading arising through the following mechanisms –

aerodynamic load and gravitational load.

In the literature, the most common means of describing the turbine in terms of a

dynamical model is to use a reduced order model. This allows for the representation of

flexible components such as blades and the tower using modal co-ordinates and assumed

shapes of vibration. Rigid component movement can be described using virtual work

within the same model.

Lagrangian dynamics have been widely used as a means of describing turbine element

motion and interaction where the total system Potential and Kinetic Energy descriptions

can be put to use (Simani [2015]). Fitzgerald et al. [2013] presented an Euler-Lagrangian

model to develop an active structural control scheme would include as Active Tuned

Mass Damper (ATMD) to limit the responses of the nacelle/tower in the out of plane

direction, based on an Energy formulation. Zhang et al. [2014] also studied the im-

plications of a damper on a turbine assembly. The authors propose a 13 DOF model

which includes tower-drive train-blade interaction to model the responses of the lateral

vibrations of a tower subjected to wind and wave loading. The model is formulated

using an Euler-Lagrangian approach.

One of the novelties of this thesis is the combination of continuous and discrete functions

as assumed shapes in constructing the MDOF model. The use of continuous functions
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would be a typical approach and have been used in the literature in works by Quilligan

et al. [2012] and Harte and Basu [2013]. Discrete shapes are not apparent in the liter-

ature and are used here in order to incorporate a highly discretised three-dimensional

FE model into a reduced order MDOF dynamical model.

4.2 Lagrangian Formulation

The Lagrangian formulation of the dynamic equations of motion is provided by Clough

and Penzien [1993] as a function of a systems total Potential (U) and Kinetic (T ) Energy

expressions. This expression is given in Eq. 4.1.

∂

∂t

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂U

∂qi
= Qi (4.1)

In Eq. 4.1, Qi refers to a generalised loading quantity and qi defines the ith generalised

co-ordinate or degree of freedom of the system. The generalised co-ordinates are related

to physical displacements through the use of assumed shapes of vibration, φi as in Eq.

4.2, which is a general form of this relationship. The assumed shapes are sometimes

taken to be the mode shape associated with the frequency the structure is assumed

to vibrate at. Alternatively, some other assumed shape which satisfies the elemental

boundary conditions could be used.

ui(z, t) = φi(z)qi(t) (4.2)

4.3 Generalised Degrees of Freedom

The model presented here will include the structural components of wind turbine blades,

nacelle and tower and each of the degrees of freedom associated with these members.

The vector of generalised co-ordinates for both the GBFE model and LSFE model will
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read as given in Eq 4.3 to 4.5.

qT11DOF =
[
qTB qTT

]
(4.3)

qTB =
[
qb,1,x qb,1,y qb,2,x qb,2,y qb,3,x qb,3,y

]
(4.4)

qTT =
[
q7 q8 q9 q10 q11

]
(4.5)

Co-ordinates qb,1,x to qb,3,y will describe the flapwise and edgewise motion of the blades,

while co-ordinates q7 to q11 describe motion of the tower in translation and rotation,

as shown in Figure 4.1. The tower DOFs include fore-aft (q7) and side-side (q9) dis-

placement as well as tilting (q8), rolling (q10) and torsional (q11) rotation of the tower.

A local co-ordinate system (x, y, z) is used for each of the rotating blades, with its ori-

gin at the centre of rotation. The global co-ordinate system (X,Y, Z) is used for the

tower, with its origin at the base of the tower. In terms of numerical descriptions of

the main turbine components, the NREL 5MW baseline turbine (Jonkman et al.) was

used for the blades and nacelle, whereas the tower properties were found through the

optimisation design variables, which are outlined elsewhere in this work.

4.4 Tower Model Order Reduction

Harte and Basu [2013] used a beam element to represent a tower within a wind turbine

assembly and used modal analysis, and tower mode shapes, to reduce the tower motion

to a single fore-aft generalised DOF. Zhang et al. [2014] also used a beam element to

represent the tower component of a wind turbine model but in this case used cubic

shape functions to represent the tower response, with one shape function to describe

tower top side-side response and a second to describe tower top rolling response.
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Figure 4.1: Turbine MDOF Model Co-ordinate Systems and Degrees of Freedom
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In both 11 DOF models, the tower element of the model is initially constructed using

a finite element description. In the case of the GBFE model, Euler-Bernoulli beam

elements which have been extended to include torsional degrees of freedom are used

to describe tower elements, such that its stiffness matrix is [Kg,T ] ∈ R5N×5N . In the

case of the LSFE model, a high-fidelity 3D tower model is constructed using Reissner-

Mindlin shell elements, such that the tower stiffness matrix, [Kl,T ] ∈ R6N×6N is found.

A description for the construction of both tower models is found in Chapter 3 of this

thesis.

Discrete shape functions, sj(X,Y, Z) are used to reduce the FE DOF’s to five DOF

to represent tower top fore-aft (q7), tilting (q8), side-side (q9), rolling (q10) and torsion

(q11). These five directions are chosen due to the primary aerodynamic and inertial

loading of the tower being in these directions at its top and as such, they are expected

to dominate the real physical response.

It is important to differentiate these global shape functions from the local elemental

shape functions used to describe the local displaced shape of a given finite element.

This method of order reduction is similar to methods such as the use of Rayleigh-Ritz

vectors.

In order to realise each tower shape function, sj , a technique described in a text by

Chopra [1995] is used. Chopra [1995] describes a means of establishing a shape which

will automatically satisfy the boundary conditions of the model by using statically

deformed shapes to represent each DOF. Boundary conditions of the tower shape include

zero displacement and rotation of the tower at its base (ui,X , ui,Y , ui,Z , θi,X , θi,Y , θi,Z =

0, 1 ≤ i ≤ seg in the case of the LSFE model, where ′seg′ refers to the number of

elements at the base of the tower). Figures 4.2 and 4.3 provides some of the shape

functions used for the tower in the case of both the GBFE and LSFE models.

The use of statically deformed shapes is a simplification which will lead to some mea-

sure of error, as tower mass inertia forces have not been included in their generation.
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However, justification for this approach is found in the knowledge that the dominant

inertia loading will occur at the tower top, through the motion of the nacelle. In addi-

tion to this, large shear and bending inertia forces will be applied to the tower by the

nacelle/rotor, which will also occur at the tower top. Both of these forms of loading

are expected to be far more significant than any inertia occurring over the height of the

tower.

4.5 Rotating Blades

For both the GBFE model and LSFE model, the assumed shapes of vibration for the

blades in their flapwise and edgewise directions are the mode shapes associated with

their fundamental frequencies in these directions. Polynomial expressions to the order

of six were fitted to the mode shapes, which themselves were extracted using the NREL

finite element (FE) based code BModes (Bir [2005]). The flapwise motion occurs in the

x direction, with edgewise motion occurring in the y direction. The z axis is in line with

the longitudinal axis of the blade, with any point along the blade being at a distance

(z) from its origin. Blade relative displacements in the flapwise and edgewise directions

are given in Eq. 4.6.

ub,i,x = φb,x(z)qb,i,x(t) ub,i,y = φb,y(z)qb,i,y(t) (4.6)

4.6 11 DOF Models

The 11 DOF models are constructed by first determining the assumed shapes of vi-

bration of the tower associated with each of the generalised DOFs. Following this, the

turbine assembly Potential and Kinetic Energy expressions are written. Finally, the

system equations of motion are determined through incorporating the Potential and

Kinetic Energy expressions into the Lagrangian Formulation.
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Figure 4.2: GBFE Model, Shapes of Vibration; Fore-aft (q7), Tilting (q8) and Torsional (q11) DOFs

4.6.1 11 DOF GBFE Model - Assumed Shapes of Vibration

The shape functions for the 11 DOF GBFE model are found using the expression given

in Eq. 4.7, where the vector {Rg,j} ∈ R5N represents external load vectors applied to

achieve the desired unit displacement/rotation for the jth shape function.

{sg,j} = [Kg,T ]−1{Rg,j} j ∈ [7, 8, 9, 10, 11] (4.7)

The assumed shapes for the fore-aft (q7), tilting (q8) and torsional (q11) DOFs for the

11 DOF GBFE model are given in Figure 4.2.

After undergoing any level of deformation, the physical deformed shape of the tower

can be described using the form given in Eq. 4.8, which gives the response for each of
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the physical FE DOF, {Dg} ∈ R5N .

{Dg}T = [ug,1,X , ug,1,Y , θg,1,X , θg,1,Y , θg,1,Z , ug,2,X , · · · , uN,Y , θN,X , θN,Y , θN,Z ] (4.8)

The shape function vectors, {sg,j}, will each take the same form as that given in Eq.

4.8. The relationship between the physical FE response, the generalised tower DOF

responses and these shape functions is given in Eq. 4.9.

{Dg} = {sg,7}q7 + {sg,8}q8 + {sg,9}q9 + {sg,10}q10 + {sg,11}q11

= [Sg]{qT }
(4.9)

[Sg] ∈ R5N×5 =



{sg,7}ug,1,X {sg,8}ug,1,X · · · {sg,11}ug,1,X
{sg,7}ug,1,Y {sg,8}ug,1,Y · · · {sg,11}ug,1,Y
{sg,7}θg,1,X {sg,8}θg,1,X · · · {sg,11}θg,1,X

...
...

. . .
...

{sg,7}θg,N,Z {sg,8}θg,N,Z · · · {sg,11}θg,N,Z


(4.10)

4.6.2 11 DOF LSFE model - Assumed Shapes of Vibration

The shape functions for the 11 DOF LSFE model are found using the expression given

in Eq. 4.11, where the vector {Rl,j} ∈ R6N represents external load vectors applied to

achieve the desired unit displacement/rotation for the jth shape function.

{sl,j} = [Kl,T ]−1{Rl,j}, j ∈ [7, 8, 9, 10, 11] (4.11)

The assumed shapes for the fore-aft (q7), tilting (q8) and torsional (q11) DOFs for the

11 DOF LSFE model are given in Figure 4.3.

After undergoing any level of deformation, the physical deformed shape of the tower

101



4. MULTI DEGREE OF FREEDOM TURBINE MODELS -
FORMULATION & GENERALISED LOADING

Figure 4.3: LSFE Model, Shapes of Vibration; Fore-aft (q7), Tilting (q8) and Torsional (q11) DOFs
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can be described using the form given in Eq. 4.12, which gives the response for each of

the physical FE DOF, {Dl} ∈ R6N .

{Dl}T = [ul,1,X , ul,1,Y , ul,1,Z , θl,1,X , θl,1,Y , θl,1,Z , ul,2,X , · · · , ul,N,Z , θl,N,X , θl,N,Y , θl,N,Z ]

(4.12)

The shape function vectors, {sl,j}, will each take the same form as that given in Eq.

4.12. The relationship between the physical FE response, the generalised tower DOF

responses and these shape functions is given in Eq. 4.13.

{Dl} = {sl,7}q7 + {sl,8}q8 + {sl,9}q9 + {sl,10}q10 + {sl,11}q11

= [Sl]{qT }
(4.13)

[Sl] ∈ R6N×5 =



{sl,7}ul,1,X {sl,8}ul,1,X · · · {sl,11}ul,1,X
{sl,7}ul,1,Y {sl,8}ul,1,Y · · · {sl,11}ul,1,Y
{sl,7}ul,1,Z {sl,8}ul,1,Z · · · {sl,11}ul,1,Z

...
...

. . .
...

{sl,7}θl,N,Z {sl,8}θl,N,Z · · · {sl,11}θl,N,Z


(4.14)

4.6.3 Tower Potential Energy

The total Potential Energy of the tower structure can be written in terms of the phys-

ical DOF and stiffness matrix as per Eq. 4.15. Depending on which model is to be

developed, the terms {DT }, [KT ] and {ST } are given by {DT } ∈ [{Dg}, {Dl}], [KT ] ∈

[[Kg,T ], [Kl,T ]] and {ST } ∈ [{Sg}, {Sl}]

UT =
1

2
{DT }T [KT ]{DT } (4.15)

By combining Eq. 4.10 and Eq. 4.15, the Potential Energy may now be re-written as
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given in Eq. 4.16.

UT =
1

2
{qT (t)}T [ST ]T [KT ][ST ]{qT (t)} =

1

2
{qT (t)}T [KTR]{qT (t)} (4.16)

The matrix [KTR] ∈ R5×5 is a reduced order stiffness matrix. This reduced stiffness

matrix, aligned with tower DOFs {qT }T = [q7, q8, q9, q10, q11] is given in Eq. 4.17.

[KTR] =



[KTR]1,1 [KTR]1,2 0 0 0

[KTR]2,1 [KTR]2,2 0 0 0

0 0 [KTR]3,3 [KTR]3,4 0

0 0 [KTR]4,3 [KTR]4,4 0

0 0 0 0 [KTR]5,5


(4.17)

4.6.4 Tower Kinetic Energy

The total Kinetic Energy of the tower structure can be written in terms of the physical

DOF and stiffness matrix as per Eq. 4.18. Depending on which model is to be developed,

the term [MT ] is given by [MT ] ∈ [Mg,T ], [Ml,T ].

TT =
1

2
{ḊT }T [MT ]{ḊT } (4.18)

By combining Eq. 4.9 and Eq. 4.18, the Kinetic Energy may now be re-written as given

in Eq. 4.19.

TT =
1

2
{q̇T (t)}T [ST ]T [MTR][ST ]{q̇T (t)}

=
1

2
{q̇T (t)}T [MTR]{q̇T (t)}

(4.19)

The matrix [MTR] ∈ R5×5 is a reduced order mass matrix. This reduced mass matrix,

aligned with tower DOFs {qT }T = [q7, q8, q9, q10, q11] is given in Eq. 4.20, taking the
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same form as Eq. 4.17.

[MTR] =



[MTR]1,1 [MTR]1,2 0 0 0

[MTR]2,1 [MTR]2,2 0 0 0

0 0 [MTR]3,3 [MTR]3,4 0

0 0 [MTR]4,3 [MTR]4,4 0

0 0 0 0 [MTR]5,5


(4.20)

4.6.5 MDOF Equations of Motion

In order to couple the motion of the various degrees of freedom using Lagrangian dy-

namics, expressions for the systems Potential and Kinetic Energies are to be established.

The total Potential Energy is written as

U =
1

2
{qT (t)}T [KTR]{qT (t)}

+
1

2

3∑
i=1

{∫ Rb

0

[
EIb,x(z)(

δ2φb,x
dz2

)2q2
b,i,x

+ EIb,y(z)(
δ2φb,y
dz2

)2q2
b,i,y

]
dz

+ Ug + Uc

}
(4.21)

The total Kinetic Energy allows for coupling of the blades and the tower through incor-

porating the tower top motion in finding the absolute velocity of the blades in any degree

of freedom direction. In the fore-aft direction, the appropriate entry of the tower shape

vector {s7} is used to describe the magnitude of deformation of the top of the tower.

Any of the tower top nodes in the FE model can be used as they will all have the same

magnitude of deformation. The ’N th’ node will be used for this purpose ({s7}uN,X ).
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The total Kinetic Energy can be written as

T =
1

2
{q̇T (t)}T [MTR]{q̇T (t)}

=
1

2
Mnac

(
{s7}uN,X q̇7(t)

)2
+

1

2
Inac,tilt

(
{s8}θN,Y q̇8(t)

)2
+

1

2
Mnac

(
{s9}uN,Y q̇9(t)

)2
+

1

2
Inac,roll

(
{s10}θN,X q̇10(t)

)2
+

1

2
Inac,tor

(
{s11}θN,Z q̇11(t)

)2
+

1

2

3∑
i=1

∫ Rb

0
mb(z)(v

2
b,i,x + v2

b,i,y + v2
b,i,z)dz

(4.22)

The terms vb,i,x, vb,i,y and vb,i,z refer to the absolute velocity of the blades in their

respective local co-ordinate axes. Numerical values for the nacelle mass, Mnac, and the

moment of inertia associated with the nacelle in various directions (Inac,tilt, Inac,roll and

Inac,tor) are provided in the appendices. The velocity of a point on the blade in each of

the local blade directions are as follows

vb,i,x = {s7}uN,X q̇7(t) + φb,x(z)q̇b,i,x(t)

vb,i,y = {s9}uN,Y q̇9(t)sin(ψi)− Ωφb,y(z)qb,i,y(t)

vb,i,z = {s9}uN,Y q̇9(t)cos(ψi) + Ωz + φb,y(z)q̇b,i,y(t)
(4.23)

The absolute velocity of any location on a blade (z) in the x direction is found through

the direct summation of the tower top fore-aft velocity and the blade flexural velocity.

In the plane of the rotor, the velocity of any point on the blade is a function of the

tower side-side velocity, the blade edgewise velocity and the rotational frequency of the

rotor, Ωr. It is noted that the tower top rotational motions are not included in the

blade velocity expressions as these are expected to be insignificant in their effect on the

blades motion.

ψi(t) = Ωrt+ ψi(t0)

ψi(t0) =
2π

3
(i− 1)

(4.24)
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Using Eqns. 4.21 to 4.23, equations of motion for the structure can be written. System

matrices cater for each of the blade and tower DOF’s.

[M(t)]{q̈(t)}+ [C(t)]{q̇(t)}+ [K(t)]{q(t)} = {Q(t)} (4.25)

[M(t)] ∈ R11×11 =


[Mb] [0] [0] [Mbt(ψi)]

[0] [Mb] [0] [Mbt(ψi)]

[0] [0] [Mb] [Mbt(ψi)]

[Mtb(ψi)] [Mtb(ψi)] [Mtb(ψi)] [M̄TR]

 (4.26)

[C(t)] ∈ R11×11 =


[Cb] [0] [0] [0]

[0] [Cb] [0] [0]

[0] [0] [Cb] [0]

[Ctb(ψi)] [Ctb(ψi)] [Ctb(ψi)] [CTR]

 (4.27)

[K(t)] ∈ R11×11 =


[Kb] [0] [0] [0]

[0] [Kb] [0] [0]

[0] [0] [Kb] [0]

[Ktb(ψi)] [Ktb(ψi)] [Ktb(ψi)] [KTR]

 (4.28)

The term [M̄TR] = [MTR] + [MTB] incorporates the reduced order mass matrix of the

tower, plus co-efficients derived where interaction with blades are included at relevant

matrix entries. Equation of motion matrix entries are defined in Appendix D.

4.7 Structural Damping

Whilst damping in general refers to the Energy dissipation present within the system,

whether inherent in the construction material, through some artificial damping device or

through aero-elastic interaction, the Lagrangian formulation does not explicitly account
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for all forms of damping. The effects of structural damping are not explicitly accounted

for and so the associated quantities must be superimposed into the system equations of

motion.

Structural damping is accounted for in the models using Proportional or Rayleigh Damp-

ing. The relationship between the critical damping ratio, ξn and natural frequency, ωn

of the nth natural frequency is given as follows, showing that the damping ratio is a

function of natural frequency.

ξn =
1

2ωn
a0 +

ωn
2
a1 (4.29)

The values of a1 and a0 can be selected using experience such that the critical-damping

ratio is given at two known frequencies. If the damping ratios (ξi and ξj) associated

with two specific frequencies (ωi and ωj) are known, the two Rayleigh damping factors

a1 and a0 can be evaluated by the solution of a pair of simultaneous equations.

ξiξj
 =

1

2

 1
ωi

ωi

1
ωj

ωj

a0

a1

 (4.30)

In order to simplify the derivation of a1 and a0 further, it may be assumed that ξ =

ξi = ξj , such that

a1 =
2ξ

ωi + ωj

a0 = a1ωiωj

(4.31)

Therefore, in the case of the blades, the superimposed structural damping quantity
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reads as given in Eq. 4.32.

Cb,i,x = a0Mb,i + a1Kb,i,x

Cb,i,y = a0Mb,i + a1Kb,i,y

(4.32)

In the case of the tower, a global damping matrix is found using Eqns 4.30 and 4.31

on the basis of finding values for a1,s a1,c a0,s and a0,c (note subscripts c and s refer

to the concrete and steel elemental properties) using the method prescribed here. Us-

ing the global damping matrix, a reduced version is then found for each of the tower

modes of vibration, which is the superimposed structural damping quantity for these

modes. Depending on which model is to be developed, the term [CT ] is given by

[CT ] ∈ [Cg,T ], [Cl,T ].

[CTR] = [ST ]T [CT ][ST ] (4.33)

4.8 Aerodynamic Loading

Loading is applied to each DOF of the structure in the form of generalised time-varying

loading, Q(t). The aerodynamic load onto the rotor is based on drag and lift forces

created by the wind field acting on the rotating blades. The temporal variation in

loading arises due to turbulence in wind speeds and also the rotation of the rotor,

which changes the location of loaded blades.

In terms of realising the total wind speed at any elevation, h, this is the sum of the mean

wind speed and a turbulent component, v(t, h) = v̄(h) + vt(t, h). The mean wind speed

can be found using the Powers Law, which allows for wind shear close to ground level,

with speeds rising steadily with increasing height. The turbulent component is found

through using a prescribed Power Spectrum Density Function (PSDF), which describes

the frequency content of a given wind speed time-history. An Inverse Fourier Transform

of a PSDF will provide the required turbulent signal. In this work, an algorithm made
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Figure 4.4: 2D Time-Marching Matrices of Along-Wind Wind Speed (TurbSim); source Jonkman [2009]

available by the National Renewable Energy laboratory (NREL), namely TurbSim, has

been used (Jonkman [2009]) to simulate time series of three-component (X,Y & Z)

wind-speed vectors at points in a two-dimensional vertical rectangular grid that is fixed

in space.

Figure 4.4 provides a diagram which illustrates the time-marching time-series of wind

speed vectors which are generated using TurbSIM. A 2D matrix of wind speeds is

available at each time increment δt specified, for each global direction.

4.8.1 Blade Element Momentum Theory

Drag and lift forces acting on the blades are found using the Blade Element Momentum

method (BEM). This is a well-established tool in wind turbine design, used extensively

for this purpose. Aerodynamic properties of an airfoil (rotor blade) are utilised in

tandem with the prevailing wind speeds and blade rotational speed (Ωr) to generate

nodal drag and lift loadings acting on elements of the blades. This theory has been used

by a number of authors in preparing aerodynamic models used in the forced analysis

110



of wind turbine assemblies (Staino and Basu [2013], Harte and Basu [2013], Fitzgerald

et al. [2013]).

BEM theory encompasses principles from areas such as three-dimensional aerodynam-

ics, one-dimensional momentum theory and also incorporates a number of empirical

correction factors to allow for fluid dynamic effects specific to wind turbine rotors. The

form used here was put forward by Glauert (1935) and again presented by Hansen et al.

[2006].

Each blade is to be divided into a number of elements, with the result being that at

each time step, dt, a nodal drag and lift force is derived for that particular element of

the blade. In dividing the swept path into annular elements, the following is assumed

for each element –

• There is no radial dependency between elements, and

• The force imposed on the flow, from the blades, is constant in each annular element

assuming an infinite number of blades. This will be corrected using Prandtl’s tip

loss factor.

The division of the swept path of the blade into annular elements of size dz, with blade

chord width c(z) is outlined in Figure 4.5.

In order to define the local element loads, the relative wind velocity acting on the blade,

Vrel, must be found. This velocity is a function of the velocities seen by the blade in

the normal and tangential directions, which are in turn functions of the blade rotational

speed, the wind speed normal to the rotor and vortex effects created around the blade

by virtue of the rotation. The vortex effects are accounted for by way of axial and

tangential induction factors, a and a′. The vortex effects caused by blade rotation

create wind flow in the normal and tangential directions which lead to a net rise in

tangential flow but a net reduction in normal flow, which lead to the mathematical
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Figure 4.5: Blade Element Momentum; Blade Discretisation

expressions given.

Vrel(z, t) =

((
v̄(1− a) + vt

)2
+ Ω2

rz
2(1 + a′)2

) 1
2

(4.34)

Va = v̄(1− a) + vt

Vrot = Ωrz(1 + a′)
(4.35)

The relative velocity, Vrel is then the resultant of the axial and tangential velocity

components, Va and Vrot respectively as provided in Eq. 4.34 and 4.35. The local flow

angle, Φ, is found as per Eq. 4.36.

Φ(z, t) = tan−1

(
v̄(1− a) + v̄t
Ωrz(1 + a′)

)
ϕ(z, t) = Φ(z, t)− ω̄r(t)− κ̄(z)

(4.36)

The local ‘angle of attack’, ϕ is calculated using the flow angle (Φ(z, t)) and the in-

stantaneous blade pitching angle (ω̄r(t)) and local pre-twist (κ̄(z)) . If the lift and drag
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(a) BEM; Drag & Lift Loading

(b) BEM; Normal & Tangential Loading

Figure 4.6: Blade Element Momentum; Drag and Lift, Normal and Tangential Blade Element Loading
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co-efficients, Cl(ϕ) and Cd(ϕ) are known for the particular airfoil in use, as well as the

chord width c(z), the lift and drag forces can be found, as per Eqs 4.37 and 4.38. The

drag force acts parallel to the relative velocity component, Vrel, with the lift component

acting perpendicular to this direction.

Pl(z, t) =
1

2
ρaV

2
rel(z, t)c(z)Cl(ϕ) (4.37)

Pd(z, t) =
1

2
ρaV

2
rel(z, t)c(z)Cd(ϕ) (4.38)

In order to convert these forces to normal and tangential directions which will align

with the global axes directions of the wind turbine MDOF model, Eqs 4.39 and 4.40

can be used.

pN (z, t) = Pl(z, t)cos(ϕ) + Pd(z, t)sin(ϕ) (4.39)

pT (z, t) = Pl(z, t)sin(ϕ)− Pd(z, t)cos(ϕ) (4.40)

The mechanics of the BEM algorithm are aimed towards generating the axial and tan-

gential induction factors, a and a′ through in iterative procedure and then following

Eqs 4.34 to 4.40. The drag and lift co-efficients are taken from known airfoil data tables

and so do not have to be calculated within the algorithm. In calculating the induction

factors, the method imposes the Prandtl tip loss factor to correct for the condition of

a finite number of blades and the Glauert correction to account for unrealistically high

values of a. The Glauert correction is required to adjust the induction factor to ensure

the governing aerodynamic principles of the BEM are not violated.
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4.8.2 Virtual Work & Aerodynamic Loading of Tower

As well as creating lift and drag forces on the rotor blades, the passage of the wind

will also create drag forces on the surface of the tower. This load is small with respect

to the load applied through the rotor under normal operating conditions, however,

it can become significant under survival wind load conditions (when the rotor is not

operating, Ωr = 0) where wind speeds are far in excess of operating wind speeds (IEC

61400 extreme wind speed of up to 70m/s at the hub under class I conditions).

4.8.2.1 11 DOF GBFE Model

The force generated on the surface of the tower in the case of the 11 DOF GBFE model,

FT ∈ R5N , is given in discrete terms as follows, expressed as the force applied to each

tower FE node in its alongwind (X) direction, 1 ≤ n ≤ N .

fT ug,n,X =
1

2
ρav(t, n)2An (4.41)

{FT (t)}T ∈ R5N = [fT ug,1,X , 0, 0, · · · , 0, fT ug,N,X , 0, 0, 0, 0] (4.42)

Where in this expression the density of air is defined as ρa and the projected area of the

tower attributed to each node is given as An. The wind speed v is given as v = v(t, n).

Using the principle of virtual work, the total work is found through assuming a virtual

displacement experienced in line with the assumed shapes of vibration in the direction

of wind application. The expression for this total work is given in Eq. 4.43.

δWT = {FT }T {sg,7}δq7(t) + {FT }T {sg,8}δq8(t) (4.43)

The tower shapes {sg,7} and {sg,8} are used to represent the displaced shapes in the fore-

aft and tilting directions, which are influenced by the wind loading in these directions.
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4.8.2.2 11 DOF LSFE Model

The force generated on the surface of the tower in the case of the 11 DOF LSFE model,

FT ∈ R6N , is given in discrete terms as follows, expressed as the force applied to each

tower FE node, n = [1, 2, · · · , N ].

fT ul,n,X =
1

2
ρav(t, n)2An (4.44)

{FT (t)}T ∈ R6N = [fT ul,1,X , 0, 0, · · · , 0, fT ul,N,X , 0, 0, 0, 0, 0] (4.45)

The expression for this total work is given in Eq. 4.46.

δWT = {FT }T {sl,7}δq7(t) + {FT }T {sl,8}δq8(t) (4.46)

The tower shapes {sl,7} and {sl,8} are used in this case. The nodal loading attributed

to each shell node is illustrated in Figure 4.7.

4.8.3 Gravity Loading

Virtual work carried out through gravitational load on blades in their edgewise direction

can be written as per Eq. 4.47. This loading is to be applied to both 11 DOF models.

δWb,y,g =

3∑
i=1

g

∫ Rb

0
mb(z)φb,y(z)δqb,i,y(t)sin(ψi)dz (4.47)

Gravity acts on the blades in the edgewise direction at all times, however the direction

relative to the longitudinal axis of the blade varies as the blades rotate. This time

dependency is captured by accounting for the azimuth angle of a given blade, ψi.
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Figure 4.7: LSFE Model; Outline of Tower Nodal Loading

4.8.4 Generalised Loading

The virtual work expressions for the models are differentiated with respect to each

generalised degree of freedom to find a generalised applied loading, which has a general

form as per Eq. 4.48.

Q(t) =
δW

δq
(4.48)

Generalised loading resulting from the above mechanisms of aerodynamic loading onto

the rotor, aerodynamic loading onto the tower, gravity loading and the offset of the
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tower and hub are listed in Eqs 4.49 and 4.50.

{Q11DOF (t)}T =
[
Qb(t) QT (t)

]
{Qb(t)}T =

[
Qb,1,x(t) Qb,1,y(t) Qb,2,x(t) Qb,2,y(t) Qb,3,x(t) Qb,3,y(t)

]
{QT (t)}T =

[
Q7(t) Q8(t) Q9(t) Q10(t) Q11(t)

]
(4.49)

Qb,i,x(t) =

∫ Rb

0
pNb,i(z, t)φb,x(z)dz

Qb,i,y(t) =

∫ Rb

0
pTb,i(z, t)φb,y(z)dz + g

∫ Rb

0
mb(z)φb,y(z)sin(ψi)dz

(4.50)

In the case of both the GBFE model and LSFE model, the entries to vector QT (t) are

as follows in Eq 4.51.

Q7(t) =

3∑
i=1

∫ Rb

0
pNb,i(z, t){s7}uN,Xdz + {FT (t)}T {s7}

Q8(t) =
3∑
i=1

∫ Rb

0
pNb,i(z, t){s8}θN,Y zcos(ψi)dz +

(
Mnacg

)(
Lo
)
{s8}θN,Y + {FT (t)}T {s8}

Q9(t) =
3∑
i=1

∫ Rb

0
pTb,i(z, t){s9}uN,Y cos(ψi)dz

Q10(t) =
3∑
i=1

∫ Rb

0
pTb,i(z, t){s10}θN,Xzdz

Q11(t) =

3∑
i=1

∫ Rb

0
pNb,i(z, t){s11}θN,Zzsin(ψi)dz

(4.51)

The rolling moment applied to the tower top, Q10 is applied in this work assuming

a direct drive machine, such that all of the shaft moment generated through blade

edgewise loading is transferred through the generator into the nacelle and tower top.
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4.9 Benchmarking

In order to validate the 11 DOF GBFE model and LSFE model, a global assessment

of the NREL 5MW baseline turbine free vibration properties was carried out. This

exercise was completed using the two established models, along with the NREL code

FAST (Jonkman and Buhl Jr). Steady-state quantities are extracted from the 11 DOF

model EOM about initial conditions, assuming no rotor rotation. One of the blades is

set to the vertical position at an azimuth angle of 00. This results in the elimination of

centrifugal stiffening from the EOM. By taking the system mass and stiffness matrices,

it is then possible to carry out an eigen-analysis and to extract modal frequencies and

mode shapes.

In order to introduce steady state conditions within the FAST model, a facility known

as ‘Linearization’ can be used. Within the input properties for FAST, the rotor is to

be set to a static state (Ωr = 0). The degrees of freedom activated are chosen as the

fundamental tower fore-aft and side-side DOFs and the fundamental blade flapwise and

edgewise DOF for each blade. All other DOFs are de-activated in FAST. Linearized

state matrices are then produced by manipulating the system mass and forcing func-

tion matrices. The modal frequencies and shapes are extracted from the steady state

matrices using MATLAB.

Table 4.1 provides results from both the developed 11 DOF models and FAST. These

are in close agreement, particularly in the case of the towers. Differences in terms of

blade frequencies are thought to be due to the allowance of blade pre-twist within FAST.

4.10 Conclusions

In this chapter, the approximate, finite element models developed in Chapter 3 have

been incorporated into MDOF models based on Euler-Lagrangian dynamics. Tower

finite element displacement vectors are expressed as functions of the reduced order

tower DOF’s and the global interpolation functions. Total Potential and Kinetic Energy
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- FAST (Hz) 11 DOF LSFE Model (Hz) 11 DOF GBFE Model (Hz)
Tower 1 0.325 0.328 0.324
Tower 2 0.315 0.331 0.326
Flapwise 1 0.674 0.682 0.697
Flapwise 2 0.677 0.682 0.697
Flapwise 3 0.693 0.699 0.714
Edgewise 1 1.085 1.046 1.067
Edgewise 2 1.085 1.046 1.067
Edgewise 3 1.116 1.06 1.081

Table 4.1: 11 DOF Model Benchmarking; NREL FAST, 11 DOF LSFE Model & 11 DOF GBFE Model

formulations are described for the model, which are used to derive the equations of

motion. Damping is introduced directly as only conservative forces are included in the

Euler-Lagrangian formulation.

Generalised loading was found for each DOF through the use of the principle of virtual

work. The physical loading generated by the rotor, through the rotating blades has been

numerically determined using the BEM method. Drag and lift forces are calculated for

the blade aerfoil in an iterative manner and on the basis of a number of assumptions in

terms of the behaviour of the wind field and its interaction with the rotor blades. Drag

force developed through wind acting directly on the tower is also accounted for.

The 11 DOF GBFE Model was developed for use in situations where only global re-

sponses of the tower are required. Where review of local responses are required (for

local design, damage detection, prestress application for example), the 11 DOF LSFE

Model may be used. Both models will be applied to suitable scenarios in later parts of

this thesis.
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Chapter 5

Response of Hybrid Concrete -

Steel Towers

5.1 Introduction

In this chapter, the models formulated to describe the towers, both in isolation and

as part of overall turbine assemblies, will be used to examine the response of hybrid

concrete and steel wind turbine towers, subjected to varying design configurations. In

the first part of this chapter, a review of global and local response is carried out on the

basis of varying the external loading exposure conditions.

Next, taking a number of load cases, response behaviour based on varying the design

parameters specific to this hybrid form of construction are studied in detail. These

include the influence of varying levels of structural damping offered by the steel and

concrete parts of the tower, the influence of concrete compressive strength, and the

influence of an applied prestress.
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Properties Symbol Units Tower 1
Tower Height H m 100
Base Diameter Dc m 8.8
Base Shell tc mm 500-350
Top Diameter Ds m 3
Top Shell ts mm 40-25
Interface lvl hint m 60
Interface Dia Dint m 6.5
Fore-aft freq f Hz 0.53
Conc damping ξc - 0.05
Steel damping ξs - 0.02

Table 5.1: Hybrid Tower 1; Geometrical and Material Properties

5.2 Dynamic Response Simulations

In Chapter 4 the dynamic equations of motion for both the 11 DOF Global Beam FE

(GBFE) Model and 11 DOF Local Shell FE (LSFE) Model models were described. In

this section, the models will be exposed to a number of different load conditions and the

time varying load and responses of the models will be presented. The global responses

will be presented using the results of the 11 DOF GBFE model. Local element strain

responses will be presented using the results of the 11 DOF LSFE model.

The NREL 5MW baseline turbine (Jonkman et al.) was used to develop and benchmark

both coupled structural models. Properties of this turbine are given in Appendix G.

For the purposes of modelling typical responses in this chapter, the tower segment of

the NREL turbine was replaced with a hybrid steel and concrete tower taken from a

study carried out as part of the Vindforsk project V-342 into design and construction

approaches for such towers (Engström et al. [2010]). Whilst not all data required in

terms of modelling has been provided by this report, sufficient data was provided to be

able to tune input properties to match its given natural frequency of 0.53 Hz, allowing

for the nacelle mass provided with the NREL baseline turbine data. For the purposes

of use elsewhere in this thesis, it is termed Hybrid Tower 1. Geometrical and material

properties of this tower are given in 5.1.
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Loadcase v̄ (m/s) I (%) Ωr (rpm)
LC 1 12 0 12.1
LC 2 16 0 12.1
LC 3 20 0 12.1
LC 4 12 14 12.1
LC 5 16 14 12.1
LC 6 20 14 12.1
LC 7 12 25 12.1
LC 8 16 25 12.1
LC 9 20 25 12.1
LC 10 50 14 0

Table 5.2: Forced Simulation Loadcases 1 to 10

A total of ten load cases were applied to both 11 DOF models, designed to review the

variation in loading, global response and local response as a result of varying exposure

and operating conditions. The details of these loadcases are provided in Table 5.2

5.2.1 Global Loading

For operating conditions (Loadcases LC 1 to LC 9), the blades of the turbine are

rotating at a specified rate of rotation, with the result that an aerodynamic load is

being developed and transferred to the tower top. Blade drag forces are derived using

BEM theory. In the parked condition (Loadcase LC 10), blades are not rotating and

are pitched out of the wind. In this case, there is no drag force developed on the blades.

There is only a drag force developed over the surface of the tower.

5.2.1.1 Operating Conditions

Figure 5.1 identifies the generalised load applied in the fore-aft direction (Q7(t)) both

in the case of load cases LC 1 and LC 4, where in load case LC 1 there is no turbulence

and in load case LC 4, turbulence has been introduced. A mean wind speed, v̄, of 12m/s

has been used.

The load applied in LC1 is clearly a sinusoidal load. The period of the signal is a
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(a) Q7(t), LC 1 (b) Q7(t), LC 4

Figure 5.1: Fore-Aft Load Q7(t), LC 1 & LC 4, Variable Turbulence

function of the rotational speed of the rotor and is a result of a varying wind speed, and

thus drag force, with height. There is no temporal variation in wind speed. Conversely,

the introduction of turbulence in LC4 has produced a far more irregular loading time-

history. Variations in this signal are as a result of a variation in mean wind speed with

height and as a result of the turbulent part of the wind speed. It is apparent however

that the mean load over time is the same for both LC1 and LC4.

The impact of a variation in mean wind speed, v̄, and also turbulence level, I, can be

reviewed by presenting the fore-aft displacement initially for LC1, LC2 and LC3 and

then next for load cases LC2, LC5 and LC8. These plots are given in Figure 5.2.

The plots in the case of varying the mean wind speed illustrate the proportional increase

in mean fore-aft loading. In the case of the increasing turbulence levels, it is clear that

the mean fore-aft load is unaltered, however the temporal deviation in applied load

increases with increase in wind speed turbulence.
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(a) Variable Wind Speed (LC 1, 2 & 3), Q7(t)
(b) Variable Turbulence Intensity (LC 2, 5 & 8),
Q7(t)

Figure 5.2: Fore-aft Load Q7(t), Variable Wind Speed (LC 1, 2 & 3) and Turbulence (LC 2, 5 & 8)

5.2.1.2 Parked Conditions

The global load applied in the parked condition is due to wind drag forces generated

on the surface of the tower alone.

Figure 5.3 provides the fore-aft loading for the parked condition. The dominant fre-

quencies in this case are now clearly the frequencies in the turbulent wind speed, as

there is no frequency component associated with drag loading of the rotating blades.

Figure 5.3 also provides plots of this load for LC1 and LC10 to allow some comparison

in terms of order of magnitude. In this case, the parked condition provides a load which

is close to that of the operating condition, but does not exceed the loading in this case.

5.2.2 11 DOF GBFE Model - Global Response

Load cases LC1 to LC10 were each applied to the 11 DOF GBFE Model. The responses

are summarised below for some of these load cases in terms of the responses of the top

of the tower in its five degrees of freedom.
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(a) Fore-aft load, Q7(t), LC 10 (b) Fore-aft load, Q7(t), LC 1 & LC10

Figure 5.3: Fore-Aft Load Q7(t), (LC 1 & LC 10), Operating and Parked Conditions

5.2.2.1 Operating Conditions

In this case, the blades are rotating at the rated speed for the NREL turbine, which

is 12.1 rpm (Ωr = 12.1 rpm). Figure 5.4 identifies the displacement experienced in the

fore-aft direction (uN,X) both in the case of load cases LC1 and LC4. Where turbulence

is introduced, there is an ongoing level of vibration.

Figure 5.5 provides the displacement time histories for the tilting θN,Y and side-side

uN,Y motion of node N at the top of the tower. The side-side displacement is initially

large and through damping, dissipates to vibrate at a near mean level of 0.04m. The

slower reduction in peak displacement levels compared to the fore-aft time history can

be attributed to the lack of aerodynamic damping offered by the rotor blades in their

edgewise direction.

In order to review the effect of a change in mean hub height wind speed, v̄, the results

in terms of fore-aft tower top displacement can be viewed together, for load cases LC1,

LC2 and LC3 are presented in Figure 5.6.

The time histories shown in Figure 5.6 clearly show that the increase in mean wind
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(a) Fore-aft disp, uN,X , LC1 (b) Fore-aft disp, uN,X , LC4

Figure 5.4: Fore-Aft Displacement uN,X(t), LC 1 & LC 4, Variable Turbulence

(a) Tilting rotation, θN,Y , LC1 (b) Side-side disp, uN,Y , LC1

Figure 5.5: Tilting Rotation θN,Y (t) and Fore-Aft Displacement uN,Y (t), LC1, Zero Turbulence
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(a) uN,X (LC 1, 2 & 3), Variable Wind Speed (b) uN,X (LC 2, 5 & 8), Variable Turbulence Inten-
sity

Figure 5.6: Fore-Aft Displacement uN,X(t), Variable Wind Speed (LC 1, 2 & 3) and Turbulence (LC
2, 5 & 8)

speed leads to an increase in mean tower top displacement. The mean displacement

increases from 0.21m/s to 0.27m/s on increase in mean wind speed, v̄, from 12m/s to

20m/s.

In the same manner, it is possible to examine the effect of an increase in turbulence level

on the fore-aft displacement time history. Load cases LC2, LC5 and LC8 are considered

and the results presented in Figure 5.6 for this degree of freedom.

The time-histories presented indicate that the mean tower top displacement is consistent

and is not impacted by the change in turbulence level, I. When the turbulence level is

introduced and varied, there is an increase in peak displacement levels over the duration

of the simulation.

5.2.2.2 Parked Conditions

The fore-aft displacement experienced in the parked condition can be found through

applying loads generated for load case LC10.

Figure 5.7 provides the fore-aft displacement for the parked condition. The displacement
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(a) Fore-aft disp, uN,X , LC10 (b) Fore-aft disp, uN,X , LC1 & LC10

Figure 5.7: Fore-Aft Displacement uN,X(t), Operating (LC1) and Parked (LC10) Conditions

time history indicates that whilst there is an initial unsteady period of vibration, similar

to the time history of load cases both with and without turbulence under operating

conditions, the peak displacement level occurs after this initial transient period ends.

Figure 5.7 also provides plots of the displacement for LC1 and LC10 to allow some

comparison in terms of order of magnitude. In this case, the parked condition results

in a displacement which is close to that of the operating condition, but does not exceed

the loading in this case. However, ongoing vibration continues after the initial transient

period, unlike that of LC1.

5.2.3 11 DOF LSFE Model - Local Response

Load cases LC1 to LC10 were also applied to the 11 DOF LSFE Model. The local

responses were obtained for a shell element at the base of the tower, whose local out-

of-plane axis is parallel with the fore-aft direction.

The results are reviewed in terms of local principal strain including vertical εx, circum-

ferential, εy, and shear strain γxy. These quantities can be extracted from the 11 DOF

model through steps outlined elsewhere in this thesis. The element chosen is the first of
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5. RESPONSE OF HYBRID CONCRETE - STEEL TOWERS

the towers N elements and is denoted {ε1}T = [ε1,x, ε1,y, γ1,xy]. The element is shown

in more detail in Figure 5.13.

At the base of the tower, the vertical strain, ε1,y, is the dominant strain in terms of

magnitude when compared to the strain in the circumferential, ε1,x, or shear, γ1,xy,

directions.

5.2.3.1 Operating Conditions

Figure 5.8 identifies the strain experienced by the selected local element initially without

turbulence (LC1) and also with some level of turbulence (LC4).

Considering the strain time histories without turbulence initially, it is clear that the

vertical strain is the primary form of strain relative to circumferential and shear strain.

The vertical strain time history is similar to the fore-aft deflection time history in shape,

however there are some differences. The circumferential strain time history is similar to

that of the side-side global displacement time history, but again with some differences.

When comparing the strain time histories with turbulence to the displacement time

histories with turbulence, the strain histories appear to be vibrating over a broader

range of frequencies than the displacement histories in any direction. This could be

attributed to the fact that the strain at any point in time is a combination of the effects

of the global displacements at that point in time.

In terms of the strain time histories where turbulence is present, the mean strain is the

same as the mean strain without turbulence.

In order to review the effect of a change in mean hub height wind speed, v̄, the results

in terms of vertical strain, ε1,y, can be viewed together, for load cases LC1, LC2 and

LC3 are presented in Figure 5.9. There is an increase in vertical strain proportionate

with the increase in mean wind speed.
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(a) Time v ε1,x, LC1 (b) Time v ε1,x, LC4

(c) Time v ε1,y, LC1 (d) Time v ε1,y, LC4

(e) Time v γ1,xy, LC1 (f) Time v γ1,xy, LC4

Figure 5.8: Vertical, Circumferential and Shear Strain ε1(t), With & Without Turbulence (LC 1 & LC
10)
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(a) Variable Wind Speed, ε1,y (b) Variable Turbulence Intensity, ε1,y

Figure 5.9: Vertical Strain ε1,y(t), Variable Wind Speed & Variable Turbulence

5.2.3.2 Parked Conditions

The strain histories experienced in the parked condition can be found through applying

loads generated for load case LC10. Circumferential, vertical and shear strain are given

in Figure 5.10, along with the same histories compare to the LC1 strains.

The mean strain in the case of the vertical and circumferential strain is higher in the

operating condition than in the parked condition. However, the mean strain in shear

is highest in the parked condition. This is attributed to the fact that the tower will

deform differently in this condition as compared to the operating condition with high

bending and thrust applied at the tower top.

5.3 Hybrid Towers - Sensitivity Analysis

Two of the structural models constructed have been used in this part of the review. The

exact, analytical model of the tower was used to evaluate the free vibration response

KPIs. The 11 DOF GBFE model was used to evaluate the forced response KPIs.
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(a) Time v ε1,x, LC10 (b) Time v ε1,x, LC1 & LC10

(c) Time v ε1,y, LC10 (d) Time v ε1,y, LC1 & LC10

(e) Time v γ1,xy, LC10 (f) Time v γ1,xy, LC1 & LC10

Figure 5.10: Vertical, Circumferential & Shear Strain ε1(t), Operating (LC 1) & Parked (LC 10)
Conditions
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xi, Inputs Symbol Units xLBi xUBi
x1, Diameter Concrete Dc m 7.5 15
x2, Thickness Concrete tc m 0.1 0.4
x3, Diameter Steel Ds m 4 6
x4, Thickness Steel ts m 0.02 0.03
x5, Interface Height/Tower Height hint/H % 0.2 0.8
x6, Tower Top Mass Mnac kg 0 0.6

Table 5.3: KPI Design Variables

5.3.1 Design Parameters & Response Key Performance Indicators

A select number of fundamental design parameters are used in order to make some

initial findings as to their respective influence on the response characteristics. These

are listed in Table 5.4.

Key inputs were selected to represent the more fundamental design choices available in

the design of a hybrid concrete-steel tower. Five geometrical parameters were chosen

including the diameters of the respective portions of the tower and the thicknesses of

these shells. Also included is the height of the concrete-steel interface. Finally, a sixth

parameter to represent the mass of the nacelle as a percentage of the overall tower

mass was included as this is expected to have a significant influence on the response

characteristics of such a tower. The list of variables and range of each variable is

provided in Table 5.3. It is noted that there are many more design properties which

could have been included – for example, real towers would normally include some taper

of the tower diameter as well as a taper of the shell thickness with increasing height.

There would also be some prestressed and non-prestressed steel reinforcement in the

concrete section of tower to ensure cracking of the concrete did not occur. Whilst these

effects would have some effect on the response of the tower, they have been omitted for

the purposes of this initial review.
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Response KPI Symbol Units
1st Natural Frequency ω1 rad s−1

2nd Natural Frequency ω2 rad s−1

3rd Natural Frequency ω3 rad s−1

displacement uN,X m
velocity duN,X

dt m/s
acceleration d2uN,X

dt2
m/s2

Concrete Mass Mc kg
Steel Mass Ms kg
Total Tower Mass MTower kg

Table 5.4: Response KPIs

5.3.2 Design of Experiment/Model Configuration

There are six design parameters to be varied in modelling the performance of the tower.

Therefore there are six dimensions to the domain being considered. If design com-

binations were found by taking points at each of the upper and lower limits of each

dimension only, there would be 26 = 64 combinations required. If a mid-point input

was included, this would lead to 36 = 729 combinations. Another method of ensuring

a desired uniform spread of sampling points across the six dimensions chosen, without

the need to sub-divide each dimension, is to use the statistical point sampling method

known as the Latin Hypercube algorithm, as used by Olsson et al. [2003]. This method

was used here to generate a total of 2000 configurations using the six input parameters.

The implementation of this sampling method is carried out using an embedded MAT-

LAB function. A pre-defined number of 2000 configurations was taken as an input,

as well as defining six dimensions to the hypercube. The result is 2000 randomly dis-

tributed but entirely unique points within the domain.

5.3.3 Forced Response Applied Loading

Load case LC 4 is used in the sensitivity analysis. The rotor is operational and working

at a rated speed of Ω = 12.1rpm. Generalised loading values are evaluated using

135
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(a) Correlation values, ω1 (b) Correlation values, ω2

Figure 5.11: Absolute Values of Correlations between Input Variables & Selected Free Vibration Re-
sponses (ω1, ω2)

methods outlined in Chapter 4 (Aerodynamic Loading).

5.3.4 Key Performance Indicator Results

5.3.4.1 Free Vibration

Free vibration response KPIs are evaluated for each tower configuration using the exact

closed form expressions developed in Chapter 3. Figure 5.11 gives a graphical represen-

tation of the correlation values of the ω1 and ω2 responses in absolute terms. From the

correlation plots the factor which has the most significant impact on the first natural

frequency, ω1, is the tower top mass, Mnac (x6). An increase in the ratio of top mass

to tower mass will lead to a decrease in natural frequency. The interface height relative

to the height of the tower, hint/H (x5) also seems to have a significant impact, with an

increase in interface height yielding an increase in frequency. Other input parameters

do not appear to have a significant impact on the first natural frequency.

The second natural frequency, ω2, is most strongly impacted by the interface height

(x5). An increase in interface height relative to total height will lead to a decrease in
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(a) Correlation values, uN,X (b) Correlation values, d
2uN,X

dt2

Figure 5.12: Absolute Values of Correlations between Input Variables & Selected Forced Vibration
Responses uN,X ,

d2uN,X

dt2

this response KPI. Beyond this, there is a reasonably strong relationship between the

second frequency and the base diameter (x1) and to a lesser extent the upper, steel

diameter (x3). Increases in these input values will yield an increase in frequency.

5.3.4.2 Forced Vibration

Forced vibration response KPIs are evaluated for each tower configuration using the 11

DOF GBFE model.

The tower top displacement, uN,X is strongly correlated to the interface level. There

is a weak relationship between the displacement and the tower top mass. A moderate

relationship exists between the displacement and the diameter and thicknesses of the

lower and upper segments.

Figure 5.12 graphically demonstrates the correlation values in absolute terms for the

displacement and acceleration indicators.

In terms of velocity duN,X
dt and acceleration d2uN,X

dt2
, the tower top mass has a significant

influence. The interface height to total height ratio has a strong relationship with
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Figure 5.13: Local Shell Element Strain & Axes Convention

the velocity but a relatively weak relationship with acceleration. The tower segment

diameters have somewhat of an influence on the velocity and acceleration signals. The

tower thicknesses have a negligible impact on the forced vibration responses compared

to other inputs listed above.

5.4 Key Design Parameters – Forced Vibration Response

Global responses are generated using the 11 DOF GBFE model. Local strain responses

are found using the 11 DOF LSFE model. The element chosen for review is the first of

the towers N elements and is denoted {ε1}T = [ε1,x, ε1,y, γ1,xy]. This local finite element

is located such that the plane of the element is normal to the tower fore-aft degree of

freedom and parallel to the side-side degree of freedom. The element is shown in more

detail in Figure 5.13.
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Tower Properties Symbol Units Tower 2 Tower 3 Tower 4 Tower 5
Tower Height H m 100 100 100 100
Base Diameter Dc m 8.8 8.8 8.8 8.8
Base Shell tc mm 350 350 350 350
Top Diameter Ds m 3 3 3 3
Top Shell ts mm 25 25 25 25
Interface lvl hint m 20 40 60 80
Interface Dia Dint m 6.5 6.5 6.5 6.5
Fore-aft freq f1 Hz 0.550 0.647 0.678 0.671
Tower Top Mass Mnac kg 296,740 296,740 296,740 296,740
Tower Mass MTower kg 720,844 1,032,273 1,343,701 1,655,130
Mass Ratio Mnac

MTower
- 0.41 0.29 0.22 0.18

Conc damping ξc - 0.05 0.05 0.05 0.05
Steel damping ξs - 0.02 0.02 0.02 0.02
Conc stength fck MPa 50 50 50 50

Table 5.5: Hybrid Towers 2-5; Geometrical and Material Properties

5.4.1 Hybrid Concrete-Steel Interface Level

Loadcase LC5 was used to run simulations for each tower which is based on a mean hub

height wind speed, v̄ of 16m/s and a turbulence level, I of 14%. In this case, a series of

hybrid tower configurations will be used with varying properties in line with Table 5.5.

The global displacement and acceleration data is presented in Figure 5.14. Fore-aft

tower top displacement and acceleration is represented in the time and frequency do-

main. The mean tower top displacement reduces with increasing hybrid interface height.

From the Fast Fourier Transform (FFT) plot of this data, it is clear that the amplitude

of vibration about the mean also reduces with increase interface height, as represented

by the decrease in the peak at this frequency. The first peak represents the natural

frequency of the tower and is the dominant frequency in all cases. The FFT plot also

shows that the first peak moves to the right with increasing interface height. This in-

dicates that the stiffness of the tower is increasing. The second peak in the FFT plots

does not change location with increasing interface height. This peak represents the 3P

rotational frequency of the rotor.
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The global acceleration has a mean value of d2uN,X
dt2

= 0m/s2, which is unaffected by

changing tower properties. The amplitude of acceleration changes and increases with

increasing interface height. The acceleration FFT plot shows the change in location of

the first peak, coinciding with the change in tower natural frequency.

When considering the results of this review in terms of global response to the sensitiv-

ity analysis previously carried out, the results are as expected in light of the sensitivity

analysis results. There is a significant reduction in mean displacement with increase in

interface height. In addition, there is a reduction in vibration amplitude. The accel-

eration variation is not as pronounced as the displacement variation. The relationship

with tower natural frequency was identified in this assessment and was as expected when

considering the results of the sensitivity analysis carried out using the exact model.

Local strain signals are presented in the time and frequency domain in Figure 5.15 for

an element at the base of the tower. The time history of vertical shear strain is similar

to that of the fore-aft displacements in terms of individual signals and the change in

strain with changing interface height. A notable difference is the frequency content of

the strain signals compared to the fore-aft displacement signals. There are more peaks

in the FFT of vertical strain signals, which are as a result of deformation of the tower

due to various forcing functions both at the top of the tower and along its height, as

well as excitement from frequencies of each of the model components. The coincidence

of the fore-aft model frequency with the first blade flapwise frequency can be seen in

the case of the vertical strain signal in particular, where there is a peak in energy of the

signal at this frequency at both 60m and 80m interface levels.

The FFT of the circumferential, ε1,x signal also shows a number of peaks in energy

at various frequencies. These peaks are at multiples of the rotational frequency of the

rotor (1P and 3P) as well as the natural frequencies of the tower and blades.

The shear strain signal has a mean of close to zero over the time history studied. There

are fewer dominant frequencies in the case of these signals, which could be attributed
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(a) Time v Displacement (b) Freq v Displacement

(c) Time v Acceleration (d) Freq v Acceleration

Figure 5.14: Fore-aft Displacement & Acceleration uN,X(t), uN,X(f),
d2uN,X (t)

dt2
,
d2uN,X (f)

dt2
, Varied Con-

crete/Steel Interface Levels (20m, 40m ,60m & 80m)
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Tower Properties Symbol Units Tower 6 Tower 7 Tower 8 Tower 9
Tower Height H m 100 100 100 100
Base Diameter Dc m 8.8 8.8 8.8 8.8
Base Shell tc mm 350 350 350 350
Top Diameter Ds m 3 3 3 3
Top Shell ts mm 25 25 25 25
Interface lvl hint m 60 60 60 60
Interface Dia Dint m 6.5 6.5 6.5 6.5
Fore-aft freq f1 Hz 0.606 0.651 0.683 0.696
Tower Top Mass Mnac kg 537,480 403,110 268,740 134,370
Tower Mass MTower kg 1,343,701 1,343,701 1,343,701 1,343,701
Mass Ratio Mnac

MTower
- 0.40 0.30 0.20 0.10

Conc damping ξc - 0.05 0.05 0.05 0.05
Steel damping ξs - 0.02 0.02 0.02 0.02
Conc stength fck MPa 50 50 50 50

Table 5.6: Hybrid Towers 6-9; Geometrical and Material Properties

to the fact that the shear strain of this element is more affected by multiples of the 3P

(0.63Hz, 1.26Hz, . . . ) frequency than the 1P (0.21Hz, 0.42Hz, . . . ) frequency.

5.4.2 Tower Top Mass

Four models were constructed in order to assess the implications on forced response

characteristics when varying the mass at the top of the tower. The properties of the

tower were held constant for each of these models, with the tower top mass varied from

10% to 40%. Details are provided in Table 5.6.

The displacement time history provided in fig 5.16 shows that whilst there is some

variation in the amplitude of vibration as a result of varying the tower top mass, there

is no change in the mean fore-aft displacement. In this case, there is an increase in the

amplitude of vibration with a decrease in tower top mass. From the FFT plot, it is

evident that the dominant frequency of vibration changes with the change in tower top

mass. Increasing the mass results in a decrease in the dominant frequency. Multiples

of the 3P rotor frequency are evident but not significant on the FFT plots.
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(a) Time v ε1,x (b) Freq v ε1,x

(c) Time v ε1,y (d) Freq v ε1,y

(e) Time v γ1,xy (f) Freq v γ1,xy

Figure 5.15: Vertical Strain ε1(t), ε1(f), Varied Interface Levels (20m, 40m ,60m & 80m)

143



5. RESPONSE OF HYBRID CONCRETE - STEEL TOWERS

The acceleration time history and FFT plots display the same properties as the dis-

placement time history and FFT plots in terms of change in amplitude and frequency

of vibration, without a change in the mean acceleration values. The change in am-

plitude of the acceleration is more pronounced than the change in amplitude of the

displacement. This is evident in the time history plots and relative size of FFT peaks.

Local strain time histories and FFT plots are presented in Figure 5.17. There is clearly

an increase in vertical and circumferential strain with increasing mass. The mean strain

is expected to be the same for each model, however the varying level of mean strain can

be explained due to the vertical load induced by the tower top mass.

5.5 Influence of Structural Damping

One distinct characteristic of hybrid towers to be studied is the nature of the varying

structural damping afforded by the two material types. The influence of structural

damping is to be considered using both 11 DOF models, the GBFE model and LSFE

model. The ability to include separate structural damping properties for the concrete

and steel portions of the tower, afforded by these models will be put to use to this end.

It is noted that damping is generally not prescribed in any detail in the literature. For

example, IEC 61400 recommends that all towers have a structural damping ratio of 1%.

AWEA and ASCE recommend a value of 5% be used which includes both aerodynamic

and structural damping, regardless of tower construction.

Structural damping ratios were assigned to the steel and concrete as per Table 5.7. In

the case of Hybrid Towers 10, 11 and 12, damping ratios vary from model to model but

are consistent between the concrete and the steel elements. Hybrid Tower 4 incorporates

separate damping ratios of 5% for concrete and 2% for steel to represent anticipated

values.

Loadcase LC9 was used to run simulations for each tower which is based on a mean hub

height wind speed, v̄ of 20m/s and a turbulence level, I of 25%.

144



(a) Time v Displacement (b) Freq v Displacement

(c) Time v Acceleration (d) Freq v Acceleration

Figure 5.16: Fore-aft Displacement uN,X(t), uN,X(f),
d2uN,X (t)

dt2
,
d2uN,X (f)

dt2
, Varied Nacelle/Tower Mass

Proportion (10%, 20%, 30% & 40%)
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(a) Time v ε1,x (b) Freq v ε1,x

(c) Time v ε1,y (d) Freq v ε1,y

(e) Time v γ1,xy (f) Freq v γ1,xy

Figure 5.17: Vertical, Circumferential & Shear Strain ε1(t), ε1(f), Varied Nacelle/Tower Mass Propor-
tion (10%, 20%, 30% & 40%)
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(a) Time v Displacement (b) Freq v Displacement

(c) Time v Acceleration (d) Freq v Acceleration

Figure 5.18: Fore-aft Displacement uN,X(t), uN,X(f),
d2uN,X (t)

dt2
,
d2uN,X (f)

dt2
, Varied Structural Damping

(1%, 2%, 5% & Mixed)
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Tower Properties Symbol Units Tower 4 Tower 10 Tower 11 Tower 12
Tower Height H m 100 100 100 100
Base Diameter Dc m 8.8 8.8 8.8 8.8
Base Shell tc mm 350 350 350 350
Top Diameter Ds m 3 3 3 3
Top Shell ts mm 25 25 25 25
Interface lvl hint m 60 60 60 60
Interface Dia Dint m 6.5 6.5 6.5 6.5
Fore-aft freq f1 Hz 0.678 0.678 0.678 0.678
Tower Top Mass Mnac kg 296,740 296,740 296,740 296,740
Tower Mass MTower kg 1,343,701 1,343,701 1,343,701 1,343,701
Mass Ratio Mnac

MTower
- 0.22 0.22 0.22 0.22

Conc damping ξc - 0.05 0.01 0.02 0.05
Steel damping ξs - 0.02 0.01 0.02 0.05
Conc stength fck MPa 50 50 50 50

Table 5.7: Hybrid Towers 4, 10-12; Geometrical and Material Properties

There is a small but distinguished difference between the displacement and acceleration

time histories (fig 5.18) between the four models in terms of the amplitude of response.

Peaks in the FFT plots are larger for models with lowest damping ratios which emphasise

the increase in amplitude of vibration. Where variable damping is introduced, there is

a change in response as compared to models with constant damping properties.

From inspection of the local strain responses given in Figure 5.19, it is clear that by

varying the damping properties there is a small but noticeable change in the amplitude

of response. This is most apparent from review of the FFT plots of strain in each

direction. There is a decrease in peak strain in the initial, transient part of each signal

with an increase in damping ratio.

5.6 Influence of Concrete Compressive Strength

There is a defined relationship between the characteristic compressive strength of con-

crete, fck and the uncracked Youngs Modulus, Emod of concrete. This relationship has

been defined in Eurocode 2 (British Standards Institution [2004]) and is given in Eq.
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(a) Time v ε1,x (b) Freq v ε1,x

(c) Time v ε1,y (d) Freq v ε1,y

(e) Time v γ1,xy (f) Freq v γ1,xy

Figure 5.19: Vertical, Circumferential & Shear Strain ε1(t), ε1(f), Varied Structural Damping (1%, 2%,
5% & Mixed)
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Tower Properties Symbol Units Tower 5 Tower 13 Tower 14
Tower Height H m 100 100 100
Base Diameter Dc m 8.8 8.8 8.8
Base Shell tc mm 350 350 350
Top Diameter Ds m 3 3 3
Top Shell ts mm 25 25 25
Interface lvl hint m 80 80 80
Interface Dia Dint m 6.5 6.5 6.5
Fore-aft freq f1 Hz 0.671 0.654 0.680
Tower Top Mass Mnac kg 296,740 296,740 296,740
Tower Mass MTower kg 1,655,130 1,655,130 1,655,130
Mass Ratio Mnac

MTower
- 0.18 0.18 0.18

Conc damping ξc - 0.05 0.05 0.05
Steel damping ξs - 0.02 0.02 0.02
Conc stength fck MPa 50 30 70

Table 5.8: Hybrid Towers 5, 13-14; Geometrical and Material Properties

5.1

fcm = fck + 8(N/mm2)

Emod = 22×
(
fcm
10

)0.3 (5.1)

In Eq. 5.1, the term fcm refers to the mean compressive strength of concrete, whereas

fck refers to the characteristic compressive strength. In order to understand the effect

of compressive strength, three different hybrid towers were reviewed. The compressive

strength, fck, was varied between 30MPa and 70MPa. A summary of the properties

of each tower is given in Table 5.8. A hybrid interface height of 80m was chosen for

each tower with a view to identifying the impact of compressive strength as clearly as

possible. Loadcase LC7 was used to run simulations for each tower which is based on a

mean hub height wind speed, v̄ of 12m/s and a turbulence level, I of 25%.

Global tower top displacement and acceleration responses were collected using the 11

DOF GBFE model and are presented in Figure 5.20. From review of the time history

plot of displacement, there is clearly a variance in mean tower top displacement due to
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the change in concrete compressive strength. The frequency domain plot shows a small

increase in amplitude of vibration with increase in compressive strength. Therefore,

while there is a change in mean displacement, there is only a marginal change in the

amplitude.

Local strain time histories and FFT plots are presented in Figure 5.21. There is an

increase in the vertical and circumferential strain experienced at the given finite ele-

ment with increase in compressive strength. The change in amplitude of vertical and

circumferential strain is marginal only. However, there is a significant change in the

peak shear strain as compressive strength increases. This is evident from both the time

history and FFT plots for this component.

There was also a small change in the first fore-aft frequency of the model with the

change in concrete compressive strength. Natural frequency increased from 0.671 Hz to

0.680Hz with the increase in compressive strength.

5.7 Influence of Prestress

An exercise was carried out to review the effects of imposing prestressed tendons on a

concrete tower.

The tower configuration used was based on an example tower put forward by Lanier

[2005] as a possible fully concrete wind turbine tower designed to support a 5MW

turbine. Three variations of this tower were studied, with properties given in Table 5.9.

The shell thickness varies from 762mm at the base to 457mm at the top. The concrete

characteristic compressive strength is given as 48 MPa. Although not provided in the

literature, a density of 2450 kg/m3 and a Poisson’s ratio of 0.15 are assumed for the

concrete.

Post-tensioned tendons are to be unbonded to the surrounding concrete. The tendons

are defined by the NREL as having a modulus of elasticity of 196.5 GPa and a yield

stress of 1860 MPa. Concrete is modelled using a non-linear stress–strain relationship
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(a) Time v Displacement (b) Freq v Displacement

(c) Time v Acceleration (d) Freq v Acceleration

Figure 5.20: Fore-aft Displacement uN,X(t), uN,X(f),
d2uN,X (t)

dt2
,
d2uN,X (f)

dt2
, Varied Concrete Compres-

sive Strength (30MPa, 50MPa & 70MPa)
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(a) Time v ε1,x (b) Freq v ε1,x

(c) Time v ε1,y (d) Freq v ε1,y

(e) Time v γ1,xy (f) Freq v γ1,xy

Figure 5.21: Vertical, Circumferential & Shear Strain ε1(t), ε1(f), Varied Concrete Compressive
Strength (30MPa, 50MPa & 70MPa)
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Tower Properties Symbol Units Tower 15 Tower 16 Tower 17
Tower Height H m 100m 100m 100m
Base Diameter Dc m 7.62m 7.62m 7.62m
Base Shell tc mm 762-467mm 762-467mm 762-467mm
Top Diameter Ds m 3.68m 3.68m 3.68m
Top Shell ts mm - - -
Interface lvl hint m - - -
Interface Dia Dint m - - -
Fore-aft freq f1 Hz
Tower Top Mass Mnac kg 480,000 480,000 480,000
Tower Mass MTower kg 2,775,832 2,775,832 2,775,832
Mass Ratio Mnac

MTower
- 0.17 0.17 0.17

Conc damping ξc - 0.05 0.05 0.05
Steel damping ξs - - - -
Conc stength fck MPa 30 48 70

Table 5.9: Hybrid Towers 15-17; Geometrical and Material Properties

in the case of the free vibration analysis, and post-tensioned tendons are modelled using

an elastic–perfectly plastic relationship. Non-pre-stressed reinforcement has not been

included in the model. Losses have been incorporated in terms of friction, anchorage

and elastic deformation losses during construction. Long-term losses including creep,

shrinkage and relaxation have also been included.

Where a non-linear relationship for concrete was used, an iterative Newton–Raphson

algorithm was used to check the shell strain level after initial tendon anchorage and, if

necessary, update shell element stiffness matrices using secant moduli such that the FE

strain and the corresponding concrete stress were in agreement.

Pre-stress force is applied as a proportion of the critical buckling load of the tower, which

was estimated using a Rayleigh–Ritz energy formulation and an assumed deflected shape

at the point of buckling, Pcrit.
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5.7.1 Prestress Force

Figure 5.22 shows the variation of the first and second natural frequency of the tower

with varying levels of applied prestress and for three different compressive strengths.

Both linear and non-linear concrete constitutive properties are used, with non-linear be-

haviour modelled using a non-linear stress–strain relationship put forward by Hognestad

[1951].

The increase in prestress force results in a marginal net decrease in the frequency of

the tower. The induced compression within the concrete shell leads to a ‘softening’

of the shell elements, whereas the induced tension in the prestressed tendons leads to

a ‘stiffening’ in these bar elements. In combination, a net ‘softening’ is experienced.

The models with linear concrete properties show a linear reduction in stiffness with

increasing prestress. The largest decrease is experienced by the concrete with 30 MPa

compressive strength. The non-linear models show a change in the rate of reduction

of stiffness with increasing prestress. A reduction in stiffness of approximately 3.5% is

experienced by the concrete with 30 MPa compressive strength in this case at a prestress

level of 60% of the critical buckling load, whereas a reduction of approximately 2% only

is experienced in the case of the linear model. The softening effect seen on the first

natural frequency is also present in the case of the second natural frequency however to

a lesser extent.

In order to review the implications of prestress in terms of local and global responses

to a forced simulation, hybrid tower 15 was subjected to load case LC 7. Two different

levels of prestress were applied to the tower. Initially, zero prestress was applied and the

responses gathered. Next a prestress of 60% of the critical buckling load was applied

and results gathered.

The time history and FFT responses are presented in Figure 5.23. There is a negligible

change in the tower top displacement or acceleration in the fore-aft direction as a result

of applying the prestress. The slight change in natural frequency of the tower has been
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5. RESPONSE OF HYBRID CONCRETE - STEEL TOWERS

(a) Linear Model, P/Pcrit vs f1 (b) Linear Model, P/Pcrit vs f2

(c) Non-Linear Model, P/Pcrit vs f1 (d) Non-Linear Model, P/Pcrit vs f2

Figure 5.22: Change in Free Vibration Responses with Prestress Force Ratio P (f)/Pcrit, Varied Con-
crete Constitutive Model
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(a) Time v uN,X (b) Freq v uN,X

(c) Time v d2uN,X

dt2
(d) Freq v d2uN,X

dt2

Figure 5.23: Fore-aft Displacement uN,X(t), uN,X(f),
d2uN,X (t)

dt2
,
d2uN,X (f)

dt2
, With & Without Prestress

Force (P/Pcrit = 0.6)
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5. RESPONSE OF HYBRID CONCRETE - STEEL TOWERS

detected by the FFT plot, however there is no appreciable change in the mean or peak

displacement or acceleration.

At a local level, there is a much more appreciable change in the strain response as a

result of the presence of a prestress force. This is evident in the strain response for

shell element 1, {ε1}T = [ε1,x, ε1,y, γ1,xy], in each direction in the time domain. In the

frequency domain, there is little change in the response characteristics. The mean strain

in each direction is affected by the presence of prestress. These results can be seen in

Figure 5.24.

5.7.2 Time Dependencies

Figure 5.25 shows a plot of the first natural frequency versus pre-stress force for both

the linear and non-linear concrete model, with results shown for each point in time

considered. Prestress was considered immediately after prestress application, 1 year, 10

years and 30 years after prestress application, with a reduction in prestress experienced

over time due to various mechanisms. It can be seen that with increasing pre-stress,

there is a relative softening of the tower stiffness. The maximum softening for any given

load is experienced immediately after pre-stress is applied. When time-dependent losses

were taken into account, the pre-stress force reduced, and so some recovery in stiffness

occurred. Softening is more pronounced in the case of the non-linear concrete model.

The time history and FFT responses are presented in Figure 5.26. There is a negligi-

ble change in the tower top displacement or acceleration in the fore-aft direction as a

result of the change in prestress over time. There is no distinguishable change in the

acceleration signal or the frequency of response in terms of displacement or acceleration.

At a local level, the change in response is far more apparent due to the change in

prestress over time. This is evident in the strain response for shell element 1, {ε1}T =

[ε1,x, ε1,y, γ1,xy], in the vertical and circumferential directions but not to any extent in

terms of shear strain. The change in response is evident in the time and frequency
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(a) Time v ε1,x (b) Freq v ε1,x

(c) Time v ε1,y (d) Freq v ε1,y

(e) Time v γ1,xy (f) Freq v γ1,xy

Figure 5.24: Vertical, Circumferential & Shear Strain ε1(t), ε1(f), With & Without Prestress Force
(P/Pcrit = 0.6)
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5. RESPONSE OF HYBRID CONCRETE - STEEL TOWERS

(a) Linear Model; Time vs f1 (b) non-Linear Model; Time vs f1

Figure 5.25: Change in Free Vibration Response with Time; Variable Concrete Compressive Strength

domain. As prestress force reduces over time, the result is a decrease in the mean

vertical and circumferential strain. These results can be seen in Figure 5.27.

5.7.3 Constitutive Model

Where the constitutive relationship of the concrete was varied by changing from a

linear to non-linear description, the result in terms of the natural frequency response

was that towers with non-linear properties experienced a greater net level of softening.

This is outlined in Figure 5.28 where tower 15, which was composed of concrete with

a characteristic compressive strength, fck of 30 MPa concrete, using both linear and

non-linear properties.

5.8 Conclusions

In this Chapter, a review was carried out of the effect of various types of operating

conditions, magnitudes of wind speeds and magnitudes of turbulence on the generalised

loadings to be applied to any forced simulation. Both operating and parked conditions

were considered.
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(a) Time v uN,X (b) Freq v uN,X

(c) Time v d2uN,X

dt2
(d) Freq v d2uN,X

dt2

Figure 5.26: Fore-aft Displacement uN,X(t), uN,X(f),
d2uN,X (t)

dt2
,
d2uN,X (f)

dt2
, Immediately after Prestress-

ing & 30 years after Prestressing (significant losses in force)
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5. RESPONSE OF HYBRID CONCRETE - STEEL TOWERS

(a) Time v ε1,x (b) Freq v ε1,x

(c) Time v ε1,y (d) Freq v ε1,y

(e) Time v γ1,xy (f) Freq v γ1,xy

Figure 5.27: Vertical, Circumferential & Shear Strain ε1(t), ε1(f), Immediately after Prestressing & 30
years after Prestressing (significant losses in force)
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(a) P/Pcrit vs f1 (b) P/Pcrit vs f2

Figure 5.28: Change in Free Vibration Responses with Prestress Force Ratio P (f)/Pcrit, Linear &
Non-Linear Concrete Constitutive Model

Local strain signals in each principal direction were reviewed using the 11 DOF LSFE

model for an element at the base of the tower. For the element considered, the local

vertical direction, ε1,y, exhibits the highest magnitude of strain. In a sensitivity analysis

of impact of various design variables, the exact analytical model was used to assess free

vibration and the 11 DOF GBFE model was used in assessing forced vibration. The

nacelle mass had the most significant impact on the first natural frequency of the tower.

The hybrid interface height was also strongly correlated to the first natural frequency.

The mean global displacement was not impacted by the tower top mass, however the

acceleration was strongly impacted. Hybrid interface height was strongly correlated

with the displacement but to a lesser extent on the velocity and acceleration response.

The forced vibration response was reviewed in more detail in the time and frequency

domains to assess the impact of the changing interface height, tower top mass, concrete

compressive strength, prestress level and damping parameters. Again, global and local

responses have been reviewed.
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Chapter 6

Optimisation of Hybrid

Concrete-Steel Towers

6.1 Introduction

This chapter will encompass a number of different areas of optimisation relevant to

the Thesis. A methodology will be outlined which will allow for the optimisation of

a defined objective associated with these hybrid towers. Generalisation of simulation

data extracted based on a defined design of experiment programme of simulations, will

be carried out using Artificial Neural Networks (ANNs) machine learning applications.

Then, this methodology will be used to optimise hybrid towers in terms of individual

objective functions. Specific complexities in the field of wind turbines include the highly

dynamically coupled nature of the flexible components of the turbine (e.g. blade-tower

interaction), fluid-structure interaction between wind field and vibrating turbine, soil-

structure interaction, variable geometry and material composition and rotating turbine

blades. Constraints can also be widely varying including implicit and explicit structural

constraints, noise, environmental constraints, geographical constraints and construction

and operational issues.
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

Ma and Meng [2014] optimised a prestressed concrete tower consisting of stiffened con-

crete shell elements and prestressing tendons using a Genetic Algorithm. The tower is

designed to support a 5MW turbine and is to be 100m tall. The cross sectional shape

and tendon numbers were optimised. Inbuilt in the algorithm was the use of the finite

element package Abaqus. The objective function used was the cost of the tower, which

was written using the design variables. Yıldırım and Özkol [2010] optimised a tubu-

lar steel wind turbine tower used to support a 1.5MW wind turbine using a Genetic

Algorithm. Given the steel material, constraints included stress limitations to avoid

local shell buckling. The objective function in this work was the tower mass which was

to be minimised. The design variables were the shell thicknesses required to satisfy

constraints at intervals of 1m over the tower height of 52m. In the case of both of

these works the objective functions, variables and constraints are well defined by the

authors and optimised towers are presented. However, the authors do not explain how

dynamic effects such as dynamic tower top displacements due to interaction between

the optimised tower and the turbine are included in the result.

Karpat [2013] published a paper presenting a tool for the optimization of a wind turbine

tower, making use of another form of Evolutionary optimization method known the

particle swarm optimization (PSO) algorithm. Using the tool developed, the author

was able to improve on the design by Uys et al. [2007] both in terms of tower mass and

cost.

Cai et al. [2012] presented a paper identifying an optimisation method for the design

of blades using the PSO algorithm combined with Finite Element Method. The Finite

Element (FE) model is built into the PSO routine and activated in testing any set of

variables, where the FE model generates stresses and deflection values at predefined

locations around the blade so that constraint conditions can be checked. This work is

interesting as it shows both the effectiveness of the Evolutionary Algorithm adopted as

well as the integration of an FE model into the overall routine.

Metamodels or Artificial Neural Networks (ANN) are to be used currently. An ANN
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is a tool which can be built and trained to take a set of input variables and process

them in order to generate output data. The name neural network is taken from its

basis of having a configuration and internal processing ability likened to that of the

human brain including neurons and connecting circuits. Modern ANNs are said to have

developed from pioneering works by McCulloch and Pitts (1943), with their application

in civil engineering beginning in the 1980s (Flood and Kartam [1994]). In this thesis,

such a network will be used to generalize the results of a large number of wind turbine

tower dynamic simulations. In the literature, this tool has been successfully applied in

a range of engineering applications.

6.2 Non-Linear Programming

6.2.1 Formulation of Constrained Non-Linear Programming (NLP)

Problem

The problem in question is the optimisation of a wind turbine tower, which is a vibrating

tower structure, subject to a multitude of implicit and explicit nonlinear constraints.

The problem is therefore a constrained problem in terms of mathematical optimisation

and can be written as a Non-Linear Programming (NLP) problem as given in Eq. 6.1.

Minimise f(x), subject to

gj(x) ≥ 0, and j = 1, 2, · · · , J

hk(x) = 0, and k = 1, 2, · · · ,K

xLBi ≤ xi ≤ xUBi , and i = 1, 2, · · · , N

(6.1)

In this form, the terms gj(x) and hk(x) refer to the inequality and equality constraints

to be imposed on the solution. For example, implicit constraints such as the tower

natural frequency will need to satisfy some inequality expression where it will need to

be above or below a set measure. Lower and upper bounds xLBi , xUBi are imposed on

the design variables as also provided in Eq. 6.1.

167



6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

6.2.2 Optimisation Algorithms

Given the non-continuous nature of feasible objectives and constraints in this problem

and the multi-modal nature of the solution, an optimisation approach consisting of a hy-

brid of a non-traditional Evolutionary Algorithm and a more traditional Direct Search

algorithm was used here. A Genetic Algorithm was utilised to find near-optimum solu-

tions, with these solutions then used as a start point with a Pattern-Search algorithm

which found the global optimum results. In order to simulate this behaviour of repro-

ducing more optimal solutions in any given domain, Evolutionary Algorithms have been

developed in the past number of decades (Lagaros and Karlaftis [2015]). The Evolu-

tionary Algorithm chosen is the Genetic Algorithm, which is designed to mimic natural

selection behaviour in terms of survival of the fittest in order to generate an optimum

solution. Initially genetic descriptions are selected at random and the fitness of each

member is tested. Next, population members or chromosomes are ranked according to

their fitness and, on this basis, fitter members are used in genetic operations to produce

the next generation of the population with the intention being to continually improve

on fitness.

Direct Search methods are also suited to this form of problem where the objective

function is not continuous and so not differentiable (Deb [2012]). The algorithm assesses

the fitness of a mesh of points (known as polling of mesh points) located around a single

‘current’ point. Where a point being polled is found to have a better fitness than the

‘current’ point, the polling is found to be successful and the point with best fitness then

becomes the ‘current’ point. After polling is complete, the algorithm changes the mesh

size for the next step such that the mesh is converging or diverging around a ‘current’

point. An established approach is to factor the mesh size by 2 for a successful poll and

by 0.5 for an unsuccessful poll.
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6.2.3 Transformation to Unconstrained NLP Problem

There are a number of numerical methods available for dealing with nonlinear con-

straints in genetic optimisation problems, such as the Augmented Lagrangian Algorithm

put forward by Conn et al. [1991]. A simplification can be made in terms of handling

non-linear constraints to improve the computational effort required. These nonlinear

constraints are instead incorporated by transforming the constrained problem to an un-

constrained problem using additional penalty terms in the description of the objective

function. The transformed unconstrained optimisation problem is written below and

includes the objective to be optimised plus constraint penalty terms.

Minimise F (x,R) = f(x) +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|
)
,

Where

x ∈ X

Pj(x) =


gj(x)

Limj(x) , if gj(x) ≤ 0

0, otherwise

Pk(x) =


hk(x)

Limk(x) , if hk(x) 6= 0

0, otherwise

(6.2)

In Eq. 6.2, R is a large penalty number assigned to each constraint and P (x) is a measure

of violation of a constraint from its allowable value, for example stress or displacement.

Limj refers to a location on the boundary of the feasible space in the domain, beyond

which the solution is infeasible. Gen and Cheng [1996] refers to this form of penalty

inclusion as a dynamic penalty in that it allows for a measure of violation to be factored

into the scale of the penalty imposed. The penalty quantity reverts to a zero value when

there is no violation of a particular constraint at the point {x} under consideration. Deb

[2012] describes this in his text on the subject of optimisation as an exterior penalty
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

Objective f(x)

Maximise Frequency ω1(x)
Minimise Displacement uN,X(x)

Minimise Stress Utilisation Ratios
∑4

i=1wi
σh,i

σh,adm

Minimise Levelised Cost of Energy LCoE(x)
Minimise Climate Change Potential CCP(x)
Minimise Tower Mass MTower(x)

Table 6.1: Structural & Non-Structural Objective Functions, f(x)

method as it is only infeasible points which are penalised.

6.2.4 Definition of Objective Functions

The objective functions which have been targeted for optimisation throughout this

chapter are given in Table 6.1. A seminal piece of work by Negm and Maalawi [2000]

optimised a wind turbine tower of varying cross section and numbers of vertical segments

using five different objective functions. The authors found that minimisation of the

weighted sum of the system natural frequencies gave a balanced design where exact

frequency placement is possible, leading to a balance between limiting vibrations and

mass. A similar outcome is targeted here by minimising the weighted sum of stress

utilisation ratios.

Minimisation of mass and cost is well documented in the literature. Works such as those

by Taylor and Agbayani and Yang and Zhu [2015] are examples of minimisation of mass

of steel towers. Minimisation of cost can be achieved at a structural level, wind farm

level and also when expressed as the cost of energy. Ashuri et al. [2014] presented work

describing the minimisation of the cost of energy in off-shore applications. Both the

Annual Energy Production (AEP) and cost will increase with larger turbine assemblies

so an optimum ‘levelised’ cost is desirable.
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6.3 Definition of Constraints

6.3.1 Geometrical Constraints

Geometrical constraints will be imposed on the tower geometry initially in terms of

assigning lower and upper limits for each variable and next by enforcing decreasing

diameter and thickness values with increasing tower height. These constraints are given

in Eq. 6.3.

g1(x) = x1 − x2 ≥ 0

g2(x) = x2 − x3 ≥ 0

g3(x) = x4 − x5 ≥ 0

g4(x) = x6 − x7 ≥ 0

(6.3)

With reference to practical construction limitations, the upper limit on the steel shaft

diameter has been taken to be 4.5m. In addition, a maximum steel plate thickness of

60mm has been chosen. Producing plates of higher thickness is possible but will attract

a premium in terms of cost. A lower limit of 200mm has been chosen for the shell

thickness. This is so as to ensure sufficient cover can be provided for both reinforcement

and prestressing tendons where these are to be encased. These bounds are listed in Eq.

6.4.

x ∈ X

xLB = {2, 1.75, 1.5, 0.2, 0.2, 0.01, 0.01, 20H}

xUB = {6, 2.25, 2, 0.6, 0.4, 0.06, 0.03, 80H}

(6.4)
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

6.3.2 Global Structural Constraints

The fundamental frequency of the tower structure is critical to the overall wind turbine

design. Traditionally, wind turbine towers have been designed to be stiff-stiff, which

is where their frequency is in excess of the highest frequency load application (3P ).

However, this is not normal practice for turbines of the height considered here (Lavassas

et al. [2003]). In this case, a soft-stiff design is considered appropriate, which is where

the towers frequency lies between both reference frequencies. Here the constraints used

will be the 1P and 3P frequencies, with a safety margin of 10% included.

The maximum displacement of the tower in the fore-aft direction, uN,X , is to be limited

to a value of 1% of the tower height. This limit has been used in the literature (Ma

and Meng [2014]) as a reasonable limit in order to avoid excessive displacement of the

tower which would negatively impact the tower and overall turbine assembly.

A maximum allowable tower top rotation in the pitching direction , θN,Y , of 5 degrees is

imposed on the tower. This is imposed to avoid interference between the turbine blades

and the tower. These response constraints are given in Eq. 6.5.

g5(x) = fn −
(
1.1× 1P

)
≥ 0

g6(x) =
(
0.9× 3P

)
− fn ≥ 0

g7(x) =
H

100
− uN,X ≥ 0

g8(x) = 5o − θN,Y ≥ 0

(6.5)

6.3.3 Local Structural Constraints

In terms of the concrete segments, stress limitations are required to ensure that the

maximum compression resulting from the summation of bending, dead weight and pre-

stressing forces does not exceed the design compression capacity of the concrete in any

given segment. In tension, in order to avoid any cracking in the concrete under service
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loading, a condition of zero net tension is imposed. Limitations on compression stress

are based on Eurocode 2 (British Standards Institution [2004]). Any prestressed ten-

dons included in the optimisation routine will be deemed to be acting at their limiting

design yield stress. As the number of tendons is not explicitly included within the vec-

tor of design variables, {x}, the optimisation routine will vary the number of tendons

required in order to offset any tension developed in the concrete through bending of the

tower. The designed number of tendons will be the minimum required to offset induced

tension. An upper limit of 15MPa was chosen for concrete prestress.

With regards to the stress within the steel segments at the top of the tower, there is a

need to limit stress here both to avoid yielding of the material but also to avoid local

shell buckling. A constant height between stiffeners was taken as 7.5m as a reasonable

height. Constraints in terms of material stress are outlined in Eqs. 6.6 and 6.7.

g9(x) = σadm,c − σho,c − σpt,c ≥ 0

g10(x) = σadm,c − σhint,c − σpt,c ≥ 0

g11(x) = σadm,s − σhint,s ≥ 0

g12(x) = σadm,s − σH,s − σpt,c ≥ 0

(6.6)

Where

σadm,c = 0.6fck

σadm,s = min
(
fy, fbuckle

)
σpt,c = 15MPa

(6.7)

A limit is to be placed on the fatigue life of both the steel and concrete portions of the

tower of a minimum 20 years. The fatigue life of the concrete must be assessed under

the special condition of the concrete being under a permanent state of compression.

Recent work in the literature (Lantsoght et al. [2016]) has given a good description of

different methods available. Methods are available from Eurocode 2 (British Standards
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Institution [2004]) and fib Model Code 2010 (fib International [2013]). The authors sug-

gest the model proposed in fib Model Code is more accurate in the case of high strength

concrete as used here. Therefore this code was adopted and fatigue life checked using

Rainflow counting of stress time histories and the application of a ‘Palmgren-Miner’

damage hypothesis. Fatigue life calculation of the steel plated part of the tower has

been calculated using the procedure set out in Eurocode 3, Part1-9, British Standards

Institution [1993].

g13(x) = 1−
N∑
i=1

nho,c,i
Nc,i

= 1−Dho,c ≥ 0

g14(x) = 1−
N∑
i=1

nhint,c,i
Nc,i

= 1−Dhint,c ≥ 0

g15(x) = 1−
N∑
i=1

nhint,s,i
Ns,i

= 1−Dhint,s ≥ 0

g16(x) = 1−
N∑
i=1

nH,s,i
Ns,i

= 1−DH,s ≥ 0

(6.8)

Where fatigue damage accumulated over the lifetime of the turbine for either segment,

as found using Palgren-Miner hypothesis,
∑N

i=1

nHh,i
Ni

, must be less than unity in order

for fatigue life constraint to be satisfied. Fatigue life constraints are listed in Eq. 6.8.

6.4 Methodology for the Optimisation of Hybrid Tower

The methodology proposed incorporates the 11 DOF LSFE model and incorporates both

local and global structural responses and constraints. In-built Artificial Neural Network

meta-models are trained using selected design inputs such that dynamic responses of

towers can be assessed through the numerical optimisation routine. The use of this non-

linear generalisation technique is distinct from the use of a computationally expensive

dynamic MDOF model embedded within the optimisation routine, without the loss

of dynamic response data and data accuracy. A flowchart of how the methodology is

constructed is given in fig 6.1.
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A two-part optimisation algorithm (GA followed by PS) is used such that the benefits of

each algorithm can be exploited, thus ensuring improved optima. There are examples in

the literature where this approach has been taken, with authors defining the approach

as ’cascading’ algorithms and either using existing algotihms in series or modifying

algorithms prior to combining (Garg [2016], Zhang et al. [2005]).

6.4.1 Generalisation of Free and Forced Vibration Properties

6.4.1.1 Discrete Sampling of Design Variable Domain

In order to find a suitable sample size in terms of the sampling rate of the overall eight-

dimensional domain of the geometrical design variables, an assessment was carried out

by taking various sample sizes and comparing respective results in a formal manner.

The fundamental fore-aft frequency, fn, of the at-rest turbine was selected as an indi-

cator for the purposes of comparing sample sizes. The principle of the Central Limit

Theorem (CLT) was applied in order to compare spreads of fundamental frequency out-

puts for any given sample size. The workings of this principle is widely provided in texts

on the subject of the use of statistics (Walpole et al. [1993]). For each sample size, 100

independent and equally spread samples were taken from the domain and the funda-

mental frequency was found for each of the points within each sample. The statistical

point sampling method known as the Latin Hypercube algorithm was used to ensure an

even spread of data points across the eight-dimensions of the vector domain. According

to the CLT, by taking the mean of each sample and then assessing the dispersion of

means of all samples, an assessment can be made as to how representative the sample

size is of the entire domain. The distribution of means of independent and equally dis-

persed samples within any function will tend to be normal, regardless of the probability

distribution of the underlying function itself. This property will be used here in order

to assess samples of size 5n, 10n, 20n and 30n (40, 80, 160 and 240 respectively) for

x ∈ Rn.
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Figure 6.1: Optimisation Methodology Flowchart - From Definition of Objective, through Generalisa-
tion of Responses to Compiling Optimisation Algorithm
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(a) Sample Results Histogram, Various Sample
Sizes (b) Sample Results PDF, Various Sample Sizes

Figure 6.2: Generalisation of Response Properties - Comparison of Domain Sample Sizes using Central
Limit Theorem

The mean fundamental frequency for each set of sample sizes was found to be 0.384

Hz. With increasing sample size, the spread of mean values decreased and the density

function converged about the mean. Histogram and Probability Density Functions

(PDF) are provided in fig 6.2 for the 5n and 30n sample sizes to illustrate this fact. The

PDF plots show that for a sample size of 30n, there is a greater than 95% probability

that the frequency mean will be within 1% of the actual mean. Based on this assessment

of the domain representation found by taking 30n sample points (30 × 8 = 240), this

sample size was adopted in fitting models for the remainder of this chapter.

6.4.1.2 Integration of 11 DOF LSFE Model

The 11 DOF LSFE model is used in this methodology as it is capable of providing free

and forced response characteristics for any given tower configuration (based on design

variable quantities).
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DO Optimisation v (m/s) I (%) LC H(m)
1 12 14 4 100
2 16 14 5 100
3 20 14 6 100
4 16 14 5 100
5 16 14 5 125
6 16 14 5 150

Table 6.2: Design Optimisation Load Cases 1-6

6.4.1.3 Meta Modelling – Artificial Neural Networks

Feed-forward Artificial Neural Networks (ANNs) will be used as a means of predicting

the response of the MDOF model.

Mini and Sowmya [2012] presented a paper on the subject of neural network use to

predict the fatigue strength of fibre-reinforced composite materials. The authors noted

that the neural networks employed had a distinct advantage over curve for surface

equation fitting techniques in generalizing results based on inputs owing to their ability

to capture highly non-linear patterns and where a large number of input variables are

to be considered. This is important in the case of generalizing the behaviour of the

wind turbine towers proposed here.

Rafiq et al. [2001] wrote on the subject of neural network design for engineering appli-

cations. A practical example of a reinforced concrete slab is presented. The authors

provide useful guidance on how to design the configuration of the network and also

how to pre-process data to be used in the training phase. Their work showed how

ANNs can be trained to provide a design result to a high level of accuracy, once prop-

erly designed and trained, in place of time consuming and computationally expensive

traditional techniques.
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6.4.2 Design of Experiment

A series of experiments were designed to vary input parameters in finding simulation free

and forced vibration responses. The exposure condition of mean hub height wind speed,

v̄ was varied by way of using different load cases, as defined in Table 6.2. In addition,

the hub height of the tower was varied. The input vector to the ANNs, {x̄}T ∈ R11 is

given as {x̄}T = [xT , v̄, I,H].

Sample values for the design variables were chosen using the statistical point sampling

method known as the Latin Hypercube algorithm, using a sample size 240 to sample

the domain.

6.4.3 ANN Output, Configuration Training

The target quantities to be predicted by the ANNs can be grouped in four broad cat-

egories, including - the peak displacement and rotation responses for each of the tower

top degrees of freedom, Zu, the frequencies associated with each of the turbine degrees

of freedom, Zω the peak shell stresses, Zσ and the fatigue damage expectancy of the

concrete and steel, ZD. Therefore, it was decided to configure and train four seperate

ANNs for each to predict these responses. The contents of each output layer, Z, are

identified in Eq. 6.9. Table 6.3 identifies the configuration of each ANN required to

predict each output layer. The notation A−B − C refers to the number of neurons in

the input, hidden and output layers respectively.

{Zω}T = [ω1, ω2, · · · , ω11]

{Zu}T = [uN,X , uN,Y , uN,Z , · · · , θN,Z ]

{Zσ}T = [σho,c, σhint,c, σhint,s, σH,s]

{ZD}T = [Dho,c, Dhint,c, Dhint,s, DH,s]

(6.9)
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

DO Zω Zu Zσ ZD
1
2 11-66-11 11-66-5 11-66-4 11-66-4
3
4
5 11-66-11 11-66-5 11-66-4 11-66-4
6

Table 6.3: Feed-Forward Artificial Neural Network Layer Architecture/Configuration

Baum [1988] proposed a theorem for the minimum number of neurons required in the

first hidden layer of a multi-layered feed-forward network. This stated that the minimum

number of neurons in this layer is equal to the number of training data sets divided by

the number of input neurons. The output layer is a function of previous layers, which

are assigned a weighting and bias function on the basis of the network training process.

Figure 6.3 outlines the construction of each feed-forward ANN in terms of the applica-

tion of weights and bias quantities. Through iteratively testing different combinations

of weights and bias quantities and comparing the input-output relationship as the per-

formance of the ANN, values of Wij , Vjk, bwj and bvk can be optimised to give the final

ANN.

Yj =
I∑
i=1

WijXi + bwj

Zk =
J∑
j=1

VjkYj + bvk =
J∑
j=1

Vjk
( I∑
i=1

WijXi + bwj
)

+ bvk

(6.10)

Figure 6.4 includes training performance and regression information for a selection of

ANNs trained. In all cases, a high correlation of determination (R2) regression value

was obtained.
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Figure 6.3: Typical Feed-Forward Artificial Neural Network Architecture/Configuration Graphic

6.4.4 Hybrid Genetic Algorithm-Pattern Search Optimisation Algo-

rithm

A flowchart of the GA/PS algorithm is given in fig 6.5. The broad extents of the

Genetic Algorithm, Pattern Search Algorithm and Artificial Neural Network functions

are evident from the flowchart. The ANNs can be accessed by both the GA and PS

phases of the optimisation. Once convergence has been reached by the GA phase, this

point is taken as the initial ‘current’ point in the PS phase.

6.5 Hybrid Tower Optimisation

Objective functions are initially formulated as single objective problems. These are

separated into structural and non-structural objective functions. The algorithm settings

used in the optimisations carried out in this chapter are given in Table 6.4.
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Training Performance, Zu (b) Regression, Zu

(c) Training Performance, Zω (d) Regression, Zω

Figure 6.4: Typical Feed-Forward Artificial Neural Network Training and Regression Plots

Algorithm settings Genetic Algorithm Pattern Search
population 200 -
crossover 0.8 -
migration 0.2 -
elite retention 0.05 -
generations 100 -
polling order - consecutive
mesh expansion factor - 2
mesh contraction factor - 0.5
mesh tolerance - 1.00E-06
generations - 100

Table 6.4: GA/PS Algorithm Initialisation Parameters
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Figure 6.5: Flowhart of Genetic Algorithm/Pattern Search (GA/PS) Optimisation Algorithm, including
Artifical Neural Networks
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Population Optimum (b) Variable Utilisation within Bounds

Figure 6.6: max(f(x)), Natural Frequency Objective Optimisation

6.5.1 Structural Objective Functions

Structural objective functions were optimised using a single load case, LC 5, with a

view to understanding the effects of the input design variables on the optimum value of

the objective. All of the explicit and implicit geometrical and structural constraints are

imposed on the optimisation algorithm, with the exception of constraining the objective

function itself.

6.5.1.1 Natural Frequency

Fundamental frequency was to be maximised using the hybrid GA-PS optimisation

algorithm.

Algorithm iterations and final results are given in fig 6.6. The transformed uncon-

strained optimisation problem is defined in Eq, 6.11.

Maximise F (x,R) = | − ω1 −R
( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|
)
| (6.11)

An optimum, maximum frequency was found of 0.734 Hz. This optimum value was
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- LB ω1 uN,X
∑4

i=1wi
σh,i

σh,adm
UB

LC - 5 5 5 -
v̄(m/s) - 16 16 16 -
I(%) - 14 14 14 -
H(m) - 100 100 100 -
x1(m) 2.000 6.000 5.802 5.021 6.000
x2(m) 1.750 2.250 2.250 2.091 2.250
x3(m) 1.500 1.929 1.699 2.000 2.000
x4(m) 0.200 0.600 0.600 0.377 0.600
x5(m) 0.200 0.369 0.400 0.377 0.400
x6(m) 0.010 0.058 0.060 0.060 0.060
x7(m) 0.010 0.010 0.029 0.030 0.030
x8(m) 20.000 80.000 77.226 80.000 80.000
σho,c(MPa) 0 20.509 21.138 25.116 0.6fck
σhint,c(MPa) 0 24.709 28.599 23.690 0.6fck
σhint,s(MPa) 0 84.311 124.923 84.607 min(fy, fbuckle)
σH,s(MPa) 0 277.009 169.358 119.251 min(fy, fbuckle)
Dho,c 0 0.000 0.000 0.000 1
Dhint,s 0 0.000 0.000 0.000 1
ω1(Hz) 0.232 0.734 0.691 0.570 0.570
uN,X(m) 0 0.243 0.064 0.195 H/100

Table 6.5: Optimum Design Variables (x), Structural Objectives

found after 251 iterations of the algorithm. The ‘best’ function values are provided for

the optimisation. A coloured marker is given to show where the algorithm switches

from GA to PS. Table 6.5 provides the design variable solution and the fitness of this

point within the search domain in terms of explicit and implicit constraints.

The optimum solution was found where the concrete interface height was at its highest

possible value of 80%. All other design variables were close to their respective upper

bounds with the exception of the hybrid interface diameter and the steel shell thickness.

6.5.1.2 Fore-Aft Displacement

Fore-aft displacement was set as an objective to be minimised. Algorithm iterations

and final results are given in Figure 6.7. The transformed unconstrained problem is
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Population Optimum (b) Variable Utilisation within Bounds

Figure 6.7: min(uN,X(x)), Displacement Objective Optimisation

defined in Eq, 6.12.

Minimise F (x,R) = uN,X +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|
)

(6.12)

In this case, an optimum value was found of 0.064m after 259 iterations of the algorithm.

There were some similarities here between the locations of the optimum solution com-

pared to the optimum in the case of the natural frequency. In this case, the optimum

occurred close to the upper bound in terms of variable x8, hybrid interface level.

6.5.1.3 Stress Utilisation Ratio

Stress utilisation is to be minimised. This is carried out as a means of over-designing

the tower by designing cross sections which will be well within stress limits but where

other responses will be allowed to be close to their constraint boundaries. Weighting

factors were set to be equal for each segment considered and such that their sum was

equal to 1.

Algorithm iterations and final results are given in fig 6.8. The transformed uncon-
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(a) Population Optimum (b) Variable Utilisation within Bounds

Figure 6.8: min(
∑4
i=1 wi

σh,i(x)

σh,adm
), Stress Utilisation Objective Optimisation

strained optimisation problem is defined in Eq, 6.13.

Min;F (x,R) =

4∑
i=1

wi
σh,i
σh,adm

+R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|
)

h ∈ (ho, hint, H)

i ∈ (c, s)

(6.13)

An optimum solution was found in this case after 253 iterations of the algorithm, at a

value of 0.51. From review of Table 6.5, the effects of trying to balance and minimise

stress levels for each segment of tower can be seen. Stress utilisation in particular in

the case of the steel sections are lower than those where other structural objectives

were optimised. One common feature between all of the structural objectives was the

tendancy for the algorithm to move towards the region in the domain where the hybrid

interface level was close to its upper bound. The same could be said of the base diameter

variable (x1).
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

Cc,i, Cco2,i i ∈ (c, s, or, pr) Cc,i(euro/tonne) Cco2,i(kgCO2eq/m
3)

Concrete 400 439
Prestressed Reinforcement 7000 20017.5
Ordinary Reinforcement 1050 20017.5
Mild Steel 2400 20017.5

Table 6.6: Design Optimisation Material Cost & Embodied Energy Co-efficients

6.5.2 Non-Structural Objective Functions

Non-structural objective functions to be optimised include the Levelised Cost of Energy

(LCoE), Climate Change Potential and Mass. Co-efficients used in the formulations are

given in Table 6.6. Monetary cost per unit is based on current market rates in Ireland

for the supply and construction of each component. Embodied energy cost co-efficients

have been taken from the ecoinvent database (Frischknecht and Rebitzer [2005]).

6.5.2.1 Levelised Cost of Energy

Levelised Cost of Energy (LCoE) is typically measured as a function of the total cost of

energy production (including capital and fixed operational and maintenance costs) and

the energy yield, and is expressed in units of €/kW. On the basis that fixed operational

and maintenance costs will be constant for all towers studied, LCoE is expressed here as

a ratio of the Tower Capital Cost (TCC), divided by Annual Energy Production (AEP)

of the turbine at the location and elevation under consideration. Expressions for LCoE,

AEP and TCC are given in Eq. 6.14. The term Pt(v) refers to the power available at

a particular wind speed, v, which can be taken directly from the power curve of the

NREL baseline turbine. The total number of hours in the year when the turbine is

expected to be in operation is given as hyear and this has been given as 4000 hours.

The probability of occurrence of a particular wind speed f(v), is found using a Weibull

distribution curve, taken at a sample site in the midlands within Ireland (Weibull scale

and shape values, c = 9 − 9.8, k = 2.4 − 2.5). The LCoE was optimised initially for a

100m high hybrid tower exposed to Load Case LC 2. The transformed unconstrained
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objective function is given in Eq. 6.15

LCoE(x) =
TCC(x)

AEP

AEP = hyear

∫ ∞
0

Pt(v)f(v)dv

TCC(x) = Cc,cV olcγc+

Cc,sV olsγs + Cc,orV olorγor + Cc,prV olprγpr

(6.14)

The subscripts ’c’,’s’,’or’ and ’pr’ refer to concrete, steel, ordinary reinforcement and

prestressed reinforcement respectively. The terms Cc,i, i ∈ (c, s, or, pr) are provided in

Table 6.6 and relate to cost per unit mass.

Min;F (x,R) = LCoE(x) +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|
)

(6.15)

The algorithm used was the combined GA+PS algorithm, with settings used as provided

in Table 6.4. The result of this optimisation was for an optimised objective of LCoE of

€402/kW and a Total Capital Cost (TCC) of €808,305 for the tower. This optimum

value was found after 175 iterations of the algorithm. Figure 6.9 provides plots of the

objective function vs the iteration value. Table 6.7 provides the design variable solution

and the fitness of this point within the search domain in terms of explicit and implicit

constraints.

Figure 6.9 also contains plots of the breakdown of the LCoE in terms of the contri-

butions of the constituent parts of the tower including reinforced concrete, prestressed

reinforcement, ordinary reinforcement and mild steel. This breakdown indicates that

the most significant contributions are made by the concrete and prestressed reinforce-

ment. Mild steel and ordinary reinforcement also contribute to the total LCoE but to

a far less significant extent. Finally, fig 6.9 provides a bar plot of the design variable

entries, x1 to x8. The vertical axis of this plot is a normalised scale intended to show

the range of available search space in the dimension of each variable, with a value of
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Population Mean and Optimum (b) Population Optimum

(c) Variable Utilisation within Bounds (d) LCoE Breakdown/Component

Figure 6.9: min(LCoE(x)), Levelised Cost of Energy Objective Optimisation

zero indicating the lower bound and a value of unity indicating the upper bound. Based

on this plot, the hybrid interface variable is closest to its upper bound, at 85%. Tower

base and top diameters are at 60% and 50% respectively. Shell thickness values are in

the range of 15% to 32% of the range.

In order to consider the implications of a varying mean wind speed, v̄, two further

optimisations were carried out on a tower of 100m in height. These are given in Table

6.7 as DO 1 and DO 3 and include mean hub height wind speeds of 12m/s and 20m/s

to be compared to the initial optimisation at v̄ = 16m/s.
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In the case of a varying mean wind speed, an LCoE of €384/kW for the hybrid tower was

found in the case of DO 1 after a total of 164 iterations of the algorithm. The highest

LCoE value was found in the case of DO 3 at €409/kW. The implications of varying

the wind speed can be seen in terms of the utilisation of the available search space for

each design variable. Increasing the wind speed has led to a modest increase in some of

the design variables including the hybrid interface level and the shell thickness of the

concrete and steel at the interface level. However, there is a significant increase in the

diameter of the tower top and the shell thickness at the base of the tower. The increase

in values of design variables is as a result of the increase in wind speed and was brought

about by the algorithm to ensure that constraints such as tower top displacement and

material stress levels were satisfied at all times.

In order to consider the implications of a varying tower height, a further two optimisa-

tions were carried out on towers of 125m and 150m. These are also given in Table 6.7 as

DO 5 and DO 6. Loadcase LC 5 was again used for these tower heights which consists

of a mean hub height wind speeds of 16m/s and turbulence intensity of I = 14%.

LCoE values were found to be €402/kW, €569/kW and €856/kW for towers of heights

100m, 125m and 150m respectively. Increasing the tower height has had significant

implications for the utilisation of each of the design variables. All variables from x1

to x7 have seen increases, whereas variable x8 has decreased. An LCoE breakdown

is provided for each tower height in fig 6.10. The contribution of mild steel increases

significantly on increasing the height. This is due to the fact that the interface level

is decreasing as a percentage of the tower height, such that tubular steel provides a

greater proportion of the tower.

6.5.2.2 Climate Change Potential

Although not traditionally considered as an objective function in the design and opti-

misation of a structural member, Total Embodied Energy (TEE) or Climate Change

Potential (CCP), measured in gCO2 eq. or gCO2eq./kW , has been given significant
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

- DO1 DO2 DO3 DO5 DO6
LC 4 5 6 5 5
v̄ (m/s) 12 16 20 16 16
I(%) 14 14 14 14 14
H(m) 100 100 100 125 150
x1(m) 4.283 4.415 4.741 4.692 4.926
x2(m) 1.750 1.755 1.994 1.798 1.990
x3(m) 1.669 1.752 1.978 1.798 1.990
x4(m) 0.252 0.264 0.254 0.314 0.395
x5(m) 0.250 0.251 0.245 0.303 0.395
x6(m) 0.023 0.026 0.025 0.040 0.044
x7(m) 0.011 0.011 0.010 0.012 0.025
x8(m) 70.000 70.783 65.974 75.222 82.518
ω1(Hz) 0.390 0.403 0.427 0.285 0.235
uN,X(m) 0.690 0.639 0.559 0.664 0.539
σho,c(MPa) 30.000 28.676 27.859 30.000 30.000
σhint,c(MPa) 30.000 29.183 28.727 30.000 30.000
σhint,s(MPa) 262.120 234.847 229.597 262.878 297.858
σH,s(MPa) 271.928 255.726 243.831 302.920 217.214
Dho,c 0.000 0.000 0.000 0.000 0.000
Dhint,s 0.000 0.000 0.000 0.000 0.000
TCC (€) 772324.169 808,305 823,753 1,236,888 1,985,531
AEP (kW) 2,010 2,010 2,010 2,173 2,317
LCoE (€/kW) 384 402 410 569 857

Table 6.7: Optimised Design Variables (x), Structural Response Values & Levelised Cost of Energy
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(a) Varying v̄, Iteration vs Optimium (b) Varying H, Iteration vs Optimium

(c) Varying v̄, Utilisation within Bounds (d) Varying H, Utilisation within Bounds

(e) Varying v̄, LCoE Breakdown (f) Varying H, LCoE Breakdown

Figure 6.10: min(LCoE(x)), Levelised Cost of Energy Objective Optimisation - Variable Wind Speed
(a), (c) & (e) & Tower Height (b), (d) & (f)
,
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

attention in the research recently.

Embodied energy has been considered in various guises in the literature. It has been

studied to compare one renewable energy technology to another, to select appropriate

components for overall assemblies and as an objective function which is to be minimised

in the design of technologies.

Rashedi et al. [2012] optimised materials for various parts of a turbine assembly using

the embodied energy as an objective. Life cycle costs of wind turbines were considered

by Gallagher et al. [2017] where the Circular Economy was the central focus. Gallagher

et al. [2017] carried out a Life-Cycle Assessment (LCA) of solar photovoltaic, hydro and

wind systems with a view to comparing their relative performance. Circular Economy

objectives were applied to each technology to compare their performance over a 100 year

lifespan. The authors demonstrated that wind turbines had a particularly high demand

for iron and steel, particularly the towers, and as a result scored poorly compared to

other technologies in terms of indicators such as Climate Change Potential (CCP) and

Abiotic Resource Depletion Potential (ARDP). The use of hybrid concrete-steel towers

is given as an example of a measure which could be used to reduce ARDP.

In this case, Climate Change Potential (CPP) of hybrid towers, measured in kgCO2eq./kW

is set as an objective which is to be minimised. The CCP is measured as the Total Em-

bodied Energy divided by the AEP. The transformed, unconstrained problem is given

in Eq. 6.16. Expressions for CCP and TEE are given in Eq. 6.17.

Min;F (x,R) = CCP (x) +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|
)

CCP (x) =
TEE(x)

AEP

(6.16)

TEE(x) = Cco2,cV olc+

Cco2,sV ols + Cco2,orV olor + Cco2,prV olpr

(6.17)
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(a) Population Mean and Optimum (b) Population Optimum

(c) Variable Utilisation within Bounds (d) CCP Breakdown/Component

Figure 6.11: min(CCP (x)) Climate Change Potential Objective Optimisation

The terms Cco2,i, i ∈ (c, s, or, pr) are provided in Table 6.6 and relate to embodied

energy per unit volume.

Climate Change Potential was optimised initially for a 100m high hybrid tower exposed

to Load Case LC 5. The algorithm and settings used are the same as those used for

LCoE optimisation. The result of this optimisation was for an optimised objective of

CCP of 264 kgCO2eq./kW and a Total Embodied Energy of 499,394 kgCO2eq. An

optimum value was found after 165 iterations of the algorithm. Figure 6.11 provides

plots of the objective function vs the iteration value.
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

Figure 6.11 also contains plots of the breakdown of the CCP in terms of the contributions

of the constituent parts of the tower – reinforced concrete, prestressed reinforcement,

ordinary reinforcement and mild steel. This breakdown indicates that the most signifi-

cant contribution to embodied energy is made by the concrete. Mild steel makes a lower

contribution in terms of the composition of this tower at approximately half that of con-

crete, despite the fact that the optimal interface height is found to be 78m. Finally, fig

6.11 provides a bar plot of the design variable entries, x1 to x8. The vertical axis of this

plot is a normalised scale intended to show the range of available search space in the

dimension of each variable, with a value of zero indicating the lower bound and a value

of unity indicating the upper bound. Based on this plot, the hybrid interface variable

is closest to its upper bound, at 82%. Tower base and top diameters are at 45% and

38% respectively. Shell thickness values are typically in the range of 28% to 35% of the

range, with an exception being the top of the steel shell which is at only 3%.

In order to consider the implications of a varying mean wind speed, v̄, two further

optimisations were carried out on a tower of 100m in height in line with the exercise

carried out in the case of LCoE. The results of these three optimisation runs are given

in Table 6.8 as well as fig 6.12. In the case of a varying mean wind speed, a CCP of 248

kgCO2eq./kW for the hybrid tower was found in the case of DO 1 after a total of 160

iterations of the algorithm. The highest CCP value was found in the case of DO 3 at

286 kgCO2eq./kW . The implications of varying the wind speed can be seen in terms

of the utilisation of the available search space for each design variable.

The implications of a varying tower height are also considered in terms of CCP. The

results of these three optimisation runs are given in Table 6.8 as well as fig 6.12. CCP

values were found to be 264, 389 and 596 kgCO2eq./kW for towers of heights 100m,

125m and 150m respectively. Increasing the tower height has had significant implications

for the utilisation of each of the design variables. All variables from x1 to x7 have

seen increases, whereas variable x8 has decreased. A CCP breakdown is provided for

each tower height in fig 6.12. The contribution of mild steel increases significantly on
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- DO1 DO2 DO3 DO5 DO6
LC 4 5 6 5 5
v̄ (m/s) 12 16 20 16 16
I(%) 14 14 14 14 14
H(m) 100 100 100 125 150
x1(m) 3.803 4.149 3.848 4.475 5.041
x2(m) 1.750 1.750 1.750 1.768 1.983
x3(m) 1.694 1.624 1.729 1.694 1.981
x4(m) 0.306 0.296 0.358 0.337 0.384
x5(m) 0.269 0.279 0.300 0.304 0.384
x6(m) 0.023 0.025 0.027 0.032 0.044
x7(m) 0.011 0.012 0.011 0.019 0.025
x8(m) 70.000 70.000 70.000 85.892 85.086
ω1(Hz) 0.377 0.396 0.402 0.307 0.240
uN,X(m) 0.709 0.687 0.747 0.544 0.518
σho,c(MPa) 30.000 30.000 30.000 30.000 30.000
σhint,c(MPa) 30.000 30.000 30.000 30.000 30.000
σhint,s(MPa) 260.600 275.096 270.858 292.320 294.437
σH,s(MPa) 272.087 277.547 282.849 253.495 215.312
Dho,c 0.000 0.000 0.000 0.000 0.000
Dhint,s 0.000 0.000 0.000 0.000 0.000
TEE(kgCO2eq.) 499394.404 531,804 574,384 814,730 1,346,234
AEP (kW ) 2,010 2,010 2,010 2,173 2,317
CCP (kgCO2eq./kW ) 248 265 286 375 581

Table 6.8: Optimised Design Variables (x), Structural Response Values & Climate Change Potential
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Varying v̄, Iteration vs Optimium (b) Varying H, Iteration vs Optimium

(c) Varying v̄, Utilisation within Bounds (d) Varying H, Utilisation within Bounds

(e) Varying v̄, CCP Breakdown (f) Varying H, CCP Breakdown

Figure 6.12: min(CCP (x)), Climate Change Potential Objective Optimisation - Variable Wind Speed
(a), (c) & (e) & Tower Height (b), (d) & (f)
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increasing the height. This is due to the fact that the interface level is decreasing as a

percentage of the tower height, such that tubular steel provides a greater proportion of

the tower.

6.5.2.3 Tower Mass

The total mass of a structure has traditionally been set as the objective function when

seeking to optimise cost. This is primarily due to the fact that a single material would

be present and so minimising mass is a direct means of minimising cost. Although this

is not the case in terms of hybrid towers, minimising the mass is a useful exercise as

mass may be a limiting factor in terms of transport, cranage or foundation design.

Mass was optimised initially for a 100m high hybrid tower exposed to Load Case LC 5.

The transformed unconstrained optimisation problem is given in Eq. 6.18

Minimise F (x,R) = MTower +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|
)

(6.18)

The result of this optimisation was for an optimised objective of mass of 809,892 kg.

An optimum value was found after 138 iterations of the algorithm. Figure 6.13 provides

plots of the objective function vs the iteration value. Table 6.9 provides the design

variable solution and the fitness of this point.

Figure 6.13 also contains plots of the breakdown of the mass in terms of the contributions

of the constituent parts of the tower – reinforced concrete, prestressed reinforcement, or-

dinary reinforcement and mild steel. This breakdown indicates that the most significant

contribution to mass is made by the concrete. Mild steel makes a lower contribution

in terms of the composition of this tower at approximately half that of concrete, whilst

ordinary and prestressed reinforcement account for very little of the mass. Finally, fig

6.13 provides a bar plot of the design variable entries, x1 to x8. The vertical axis of this

plot is a normalised scale intended to show the range of available search space in the
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Population Mean and Optimum (b) Population Optimum

(c) Variable Utilisation within Bounds (d) Mass Breakdown/Component

Figure 6.13: min(MTower(x)), Tower Mass Objective Optimisation
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dimension of each variable, with a value of zero indicating the lower bound and a value

of unity indicating the upper bound. Unlike the case of LCoE and CCP, in this case

the hybrid interface level was close to its lower bound, showing the preference for steel

as opposed to the heavier concrete. The design variables of steel top diameter and steel

shell thicknesses are close to their upper bound positions which is expected given the

low interface level and the need for relatively large diameters and thicknesses to give an

overall compliant tower.

In order to consider the implications of a varying mean wind speed, v̄, two further

optimisations were carried out on a tower of 100m in height in line with the exercise

carried out in the case of LCoE. The results of these three optimisation runs are given

in Table 6.9 as well as fig 6.14. In the case of a varying mean wind speed, a total mass

of 740,022 kg for the hybrid tower was found in the case of DO 1 after a total of 145

iterations of the algorithm. The highest mass value was found in the case of DO 3 at

878,917 kg. The implications of varying the wind speed can be seen in terms of the

utilisation of the available search space for each design variable.

The implications of a varying tower height are also considered in terms of total mass.

The results of these three optimisation runs are given in Table 6.9 as well as fig 6.14.

Mass values were found to be 809,812 kg, 1,345,914 kg and 1,966,568 kg for towers

of heights 100m, 125m and 150m respectively. Increasing the tower height has had

significant implications for the utilisation of each of the design variables. By increasing

the tower height, the interface height required to ensure feasible solutions rose, such that

in the case of a 150m high tower, the interface was at the mid-point between the upper

and lower bound. The breakdown in mass per component highlights the contributions

of the concrete and mild steel as compared to the rebar.

6.5.3 Multi-Objective Optimisation

There are a number of established methods available in terms of finding Pareto Optimal

solutions where carrying out multi-objective optimisations, with two of the more popular
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Varying v̄, Iteration vs Optimium (b) Varying H, Iteration vs Optimium

(c) Varying v̄, Utilisation within Bounds (d) Varying H, Utilisation within Bounds

(e) Varying v̄, Mass Breakdown (f) Varying H, Mass Breakdown

Figure 6.14: min(MTower(x)), Tower Mass Objective Optimisation - Variable Wind Speed (a), (c) &
(e) & Tower Height (b), (d) & (f)
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- DO1 DO2 DO3 DO5 DO6
LC 4 5 6 5 5
v̄ (m/s) 12 16 20 16 16
I(%) 14 14 14 14 14
H(m) 100 100 100 125 150
x1(m) 4.295 4.801 4.156 5.773 5.773
x2(m) 2.167 2.250 2.227 2.093 2.093
x3(m) 1.979 1.999 1.998 1.987 1.987
x4(m) 0.362 0.363 0.396 0.410 0.410
x5(m) 0.359 0.362 0.388 0.400 0.400
x6(m) 0.047 0.044 0.048 0.060 0.060
x7(m) 0.012 0.011 0.029 0.025 0.025
x8(m) 26.373 28.191 27.908 36.244 36.244
ω1(Hz) 0.295 0.303 0.324 0.295 0.295
uN,X(m) 1.000 1.000 1.000 0.805 0.805
σho,c(MPa) 25.818 25.070 27.245 24.850 24.850
σhint,c(MPa) 29.850 29.858 30.000 29.421 29.421
σhint,s(MPa) 196.646 219.074 217.259 205.192 205.192
σH,s(MPa) 191.972 229.357 98.006 157.445 157.445
Dho,c 0.000 0.000 0.000 0.000 0.000
Dhint,s 0.000 0.000 0.000 0.000 0.000
Mass (kg) 740,022 809,892 878,917 1,345,914 1,345,914

Table 6.9: Optimised Design Variables (x), Structural Response Values & Tower Mass
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

being the weighted method and the ε-constraint method. The weighted method is an

intuitive means of weighting several objectives before combining each into one overall

objective which is to be optimised.

The ε-constraint method incorporates multiple objective functions by retaining a single

objective to be optimised and restricting all other objectives to some defined constraint,

ε, along the Pareto front, {ε}T = [ε1, ε2, · · · , εM ]. The formulation for this method is

given in Eq. 6.19, where there are M objectives.

Minimise F (x) = fo(x) subject to

[f1(x), · · · , fo−1(x), fo+1(x), · · · , fM (x)] ≤ εm

gj(x) ≥ 0, and j = 1, 2, · · · , J

hk(x) = 0, and k = 1, 2, · · · ,K

xLBi ≤ xi ≤ xUBi , and i = 1, 2, · · · , N

(6.19)

The ε-constrained method is used in this work as it provides some advantages over the

weighted method. Advantages include the ability to ensure uniformly spread points

along the Pareto front and the ability to find Pareto optimal points along even convex

fronts, which is not true of the weighted sum method. Mavrotas [2009] noted that

in the weighting method the scaling of the objective functions has a significant effect

on results in terms of Pareto front results. Therefore, we need to scale the objective

functions to a common scale before forming the weighted sum. This is not the case

in the ε-constraint method. Where considering two objectives, one objective is simply

formulated as a constraint on the other objective and included as thus within a single

objective.

In order to implement the exterior point method described in Section 6.2.3 above, the

constrained multi-objective formulation must first be transformed to an unconstrained
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problem. This is carried out as follows in Eq. 6.20.

Minimise F (x,R) = fo(x) +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|+
M∑
m=1

|Pm(x)|
)
,

Where

x ∈ X

Pm(x) =



fm(x)
εm

, if fm(x) ≥ εm

0, if m = o

0, otherwise

(6.20)

In Eq. 6.20, Pj(x) and Pk(x) are as defined in Eq. 6.2. The penalty term Pm(x) has

been introduced to account for points within the search space where the value of one of

the constrained objective functions exceeds its assigned constraint, εm.

6.5.3.1 Multi-Objective Optimisation using Analytical Tower Model

Chapter 3 describes how the natural frequency can be found using an analytical defini-

tion of the hybrid tower. Transcendental equations are solved, with the roots of these

equations being the unknown β quantity from Eq. 3.12. This equation is re-arranged

to give the nth natural frequency, ωn as given in Eq. 6.21.

ωn =

(
β4
nEcIc
ρcAc

)0.5

(6.21)

This model will now be used within a multi-objective optimisation exercise, where the

fundamental frequency, w1 is set as an objective.

Five variables can be used with the analytical model, including the hybrid interface

height, hint the diameters of the lower and upper sections (Dc, Ds) and the shell thick-

nesses of the upper and lower sections (tc, ts). All other values such as material prop-
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Description Value Unit
Nacelle Mass, (Mnacelle) 240000 kg
Hub Mass, (Mhub) 56780 kg
Tower Height, (H) 100 m
Concrete Density, (ρc) 2450 kg/m3

Steel Density, (ρs) 8500 kg/m3

Steel Youngs Modulus, (Es) 2.05E+13 N/m2

Concrete Youngs Modulus, (Ec) 3.50E+10 N/m2

Table 6.10: Multi-Objective Optimisation - Analytical Model Material Properties

erties and densities are pre-defined and given in Table 6.10

Upper and lower limits were chosen for these five variables as defined in Eq. 6.22.

x ∈ X

xLB = {2, 1.5, 0.2, 0.01, 20}

xUB = {6, 3.0, 0.6, 0.06, 80}

(6.22)

A multi-objective optimisation will be carried out by maximising the fundamental fre-

quency, whilst constraining two of the design variables using the ε-constraint method.

This exercise will allow for examination of the relationships between any two variables

and the optimum frequency. Owing to the nature of the tower model, implicit struc-

tural constraints are not evaluated. Constraints are imposed in terms of ε-constraints

on design variables only.

The transformed, unconstrained multi-objective formulation is thus given as per Eq.

6.23.

Minimise F (x,R) = ω1(x) +R

( 2∑
m=1

|Pm(x)|
)
,

Pm(x) =


xm
εm
, if xm ≥ εm

0, otherwise

(6.23)
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The results of these simulations are given below in fig 6.15. Visually, these are useful

images as they provide an insight into the relative significance of variables when seeking

the maximum possible natural frequency. Results are given as normalised frequency

values.

In comparing the relative influence of these variables on the optimum natural frequency,

the following observations are made – 1. Maximum frequency occurs at or close to the

maximum of each of the two variables set as objectives and 2. Some of the relation-

ships are approximately linear when comparing two variables however others are highly

non-linear, for example the relationship between the concrete diameter and the hybrid

interface height.

6.5.3.2 LCoE vs Natural Frequency

The objectives of LCoE and fundamental fore-aft frequency were considered in a multi-

objective optimisation, using the ε-constraint method. In this case, the objective of

frequency was set as a constraint and the objective of LCoE was to be optimised in a

single objective problem, with the formulation given in Eq. 6.25.

Minimise F (x,R) = LCoE(x) +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|+ |Pm(x)|
)
,

Where

x ∈ X

Pm(x) =


ω1(x)
ε1

, if ω1(x) ≥ ε1

0, otherwise

(6.24)

A range of equally spaced natural frequency values were selected in the range 0.2Hz

to 0.9Hz and an optimum minimum LCoE was then found for each natural frequency

value. Figure 6.16 identifies the optimum fitness found for the selected objectives, in

the case of optimisation cases DO1 to DO3, where wind speeds vary.
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

(a) Concrete Dia vs Steel Dia (b) Concrete Dia vs Concrete Thickness

(c) Concrete Dia vs Hybrid Interface (d) Steel Dia vs Steel Thickness

(e) Steel Dia vs Hybrid Interface (f) Thickness Conc vs Thickness Steel

Figure 6.15: max(ω1(x)), Optimised Natural Frequency with Selected Constrained Objectives

208



The results indicate a generally increasing LCoE with increasing natural frequency.

However, the minimum LCoE was found for each wind speed at 0.3Hz as opposed to

the lower value of 0.2Hz. This occurred as at 0.2Hz, other constraints such as tower

top displacement forced the solution to a higher LCoE value than that found at 0.3Hz.

At 0.9Hz, the LCoE is approximately ten times greater than the LCoE at 0.3Hz for all

wind speeds. This demonstrates the trade-off between cost and stiffness, indicating a

significant premium associated with increasing the stiffness of the tower in this range.

6.5.3.3 LCoE vs Hybrid Concrete-Steel Interface Level

The objectives of LCoE and hybrid interface level were considered in a multi-objective

optimisation, using the ε-constraint method. In this case, the objective of hybrid in-

terface height was set as a constraint and the objective of LCoE was to be optimised

in a single objective problem. A range of equally spaced hybrid interface values were

selected in the range 20m to 80m and an optimum minimum LCoE was then found for

each interface value.

Minimise F (x,R) = LCoE(x) +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|+ |Pm(x)|
)
,

Where

x ∈ X

Pm(x) =


hint
ε1
, if hint ≥ ε1

0, otherwise

(6.25)

Figure 6.16 identifies the optimum fitness found for the selected objectives, in the case

of optimisation cases DO1 to DO3, where wind speeds vary.

The results indicate a generally decreasing LCoE with increasing hybrid interface height.

An overall optimum LCoE was found in the case of each wind speed at a hybrid interface

level of between 70m and 80m.

209
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6.5.3.4 Embodied Energy vs Hybrid Concrete-Steel Interface Level

The objectives of CCP and hybrid interface level were considered in a multi-objective

optimisation, using the ε-constraint method. In this case, the objective of hybrid in-

terface height was set as a constraint and the objective of CCP was to be optimised in

a single objective problem. The formulation for this problem is given in Eq. 6.26. A

range of equally spaced hybrid interface values were selected in the range 20m to 80m

and an optimum minimum CCP was then found for each interface value.

Minimise F (x,R) = CCP (x) +R

( J∑
j=1

|Pj(x)|+
K∑
k=1

|Pk(x)|+ |Pm(x)|
)
,

Where

x ∈ X

Pm(x) =


hint
ε1
, if hint ≥ ε1

0, otherwise

(6.26)

Figure 6.16 identifies the optimum fitness found for the selected objectives, in the case

of optimisation cases DO1 to DO3, where wind speeds vary.

The results indicate a generally decreasing CCP with increasing hybrid interface height.

An overall optimum CCP was found in the case of each wind speed at a hybrid interface

level of between 70m and 80m.

6.6 Conclusions

This chapter has outlined a methodology for the optimisation of hybrid concrete-steel

wind turbine towers, incorporating the generalisation of free and forced vibration results

of such towers using a configuration of Artificial Neural Networks, which are embedded

within an optimisation algorithm which itself is a hybrid of a Genetic Algorithm and a

Pattern Search Algorithm.
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(a) Multi-objective Optimisation, LCoE vs Natural Frequency

(b) Multi-objective Optimisation, LCoE vs Interface Height

(c) Multi-objective Optimisation, CCP vs Interface Height

Figure 6.16: Multi-objective Optimisation, Selected Constrained Objectives
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6. OPTIMISATION OF HYBRID CONCRETE-STEEL TOWERS

Structural objective functions were optimised using the 11 DOF LSFE turbine model

proposed in Chapter 4, including natural frequency, displacement and stress utilisation.

Levelised Cost of Energy (LCoE) was set as an objective and was minimised for a series

of load cases and hub heights. The Climate Change Potential (CPP) was also set as

an objective to be minimised and followed similar patterns to the LCoE in terms of

sensitivity to change in wind speed and height. The total mass of the tower was set

as an objective function to be minimised. Multi-objective optimisation was carried

out using the ε-constraint method and using the 11 DOF LSFE Model as well as the

analytical tower model developed in Chapter 3.

The methodology outlined allowed for optimisation of the dynamically sensitive tower

structure in a computationally efficient manner by embedding a data-driven model

within the optimisation routine. Conclusions were drawn in terms of the optimum

hybrid towers under varying design scenarios. These conclusions are described in more

detail in Chapter 8.
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Chapter 7

Applications in Condition

Monitoring and Large Scale Spatial

Analysis

7.1 Introduction

This chapter will examine two distinct areas of application of the structural models

developed in the previous chapters. The first application is in the area of Structural

Health Monitoring (SHM). Given the capacity of the Local Shell FE (LSFE) tower

model in terms of adopting and detecting local changes in shell properties, the model

will be used to detect localised damage at various locations and under various load

conditions. A Discrete Wavelet Transform (DWT) signal processing technique will be

used to process response spatial signals to this end.

The second application will be the use of the 11 DOF models in a more holistic sense

by coupling it to a Geographical Information Systems (GIS) software application to

represent structural and response characteristics spatially.

213



7. APPLICATIONS IN CONDITION MONITORING AND LARGE
SCALE SPATIAL ANALYSIS

7.2 Damage Detection using Wavelet Transformation

One established principle in detecting damage to structures is to monitor global response

(and vibration) signals to detect a change in the signal characteristics. However, in the

case of wind turbines, and as a consequence of the varying load and operating conditions,

changes in the vibration characteristics of components are not necessarily indicative of

a fault occurrence or structural damage. As such, local damage detection can prove to

be more successful than a global detection approach.

Wavelet transformation can be seen as being an extension of the Fourier transform,

being a modern means of decomposing a temporal or spatial signal. Chang and Chen

[2004] presented a paper proposing the use of a spatial based wavelet approach in order

to detect the location of a crack in a rotating blade. They found that the distributions

of wavelet coefficients can identify the crack location by showing a peak at the position

of the cracking. Law et al. [2006] studied the use of wavelets from the point of view of

assessing the sensitivity of the wavelet coefficient from structural responses with respect

to system parameters.

In this work, strain and acceleration signals will be extracted from each node of the

finite element mesh, creating a spatially varying set of signals. These spatial signals are

then to be transformed using the Discrete Wavelet Transform (DWT) signal processing

technique. Decomposed co-efficients will then be found for low and high frequency

components. The high frequency components of these signals will be used to identify

the change in slope from one finite element to the next.

In terms of the background to wavelet transformation, continuous functions are typically

transformed, with a continuous wavelet transform of a function f(x) defined as per Eq.

7.1.

Wf (a, b) =
1√
|a|
ψ∗
(
x− b
a

)
dx (7.1)
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Where b is a translation parameter, a is a scale parameter, f(x) is the input signal

expressed spatially and which is to be transformed, ψ∗ is the complex conjugate of the

basis wavelet function ψ. Finally, Wf is the wavelet transform which is to be found.

A discrete version of this transformation is to be employed in this proposal, given the

discretised finite element results and thus signal. The signal can now be decomposed

into a series as per Eq. 7.2, where the scale and translation parameters are discretized

in a binary format.

djo,k =

∫
f(x)ψjo,k(x)dx, dj,k =

∫
f(x)ψj,k(x)dx

a = 2j

b = 2jjk

j ≥ jo, j, k ∈ Z

(7.2)

Where djo,k & dj,k are the approximate and detailed wavelet co-efficients and Z denotes

a set of defined positive integers. In this work, the Daubechies wavelet of order 10 and

Level 1 is used to decompose the strain and acceleration signals.

7.2.1 Static Strain Signals

7.2.1.1 Tower Numerical Model

In this application, the tower will be modelled using the Local Shell Finite Element

(LSFE) model. In this case, the full stiffness matrices where each of the N nodal DOF

(6 DOF per node) are represented, [Kl,T ] ∈ R6N×6N , will be used in terms of the

application of static load.

Loading will be applied to the tower top and global, nodal responses are extracted using
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Wind Speed, v̄ (m/s) Thrust (kN)
7 370.927
8 450.605
9 534.139
10 617.821
11 699.506
12 771.966
13 833.871

Table 7.1: BEM Thrust vs Wind Speed, v̄

the relationship previously given in Chapter 4, Section 6.

{Dl} = [Kl,T ]−1{R}

{Dl}, {R} ∈ R6N×1
(7.3)

Local finite element strain signals, {ε}T = [εx, εy, γxy] may be generated using local

shell responses. The proposed wind turbine flexible model has been instantiated using

the specifications of the NREL 5-MW baseline reference wind turbine blades described

by Jonkman et al..

7.2.1.2 Load Definition

Strain signals are to be extracted from the model initially where loading is applied

statically. The load to be applied to the tower will be a lateral tower top load which

will simulate the loading applied by the rotor. The Blade Element Momentum (BEM)

method is used to determine a suitable load for this thrust, whereby the aerodynamic

properties of an airfoil (rotor blade) are utilised in tandem with the prevailing wind

speeds and blade rotational speed to generate nodal drag and lift loadings acting on

elements of the blades. A description of the BEM is given in Chapter 4 of this thesis.

The algorithm was run a number of times to assess the variation of load at different

normal operating wind speeds. The results are provided in Table 7.1.
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7.2.1.3 Damage Detection

A wind turbine tower is subjected here to a lateral load of 500kN as noted above. The

geometry of this tower is approximately based upon a conceptual hybrid tower put

forward by the Concrete Centre (Tricklebank et al. [2007]) for a 100m hub height. The

hybrid tower has a base and top diameter of 12m and 3m respectively. The concrete-

steel interface height is taken as 70m above ground level. The shell thickness taken for

the lower concrete segment is 350mm and 24mm for the upper steel shell. The concrete

compressive strength is given as 50MPa. Although not provided in the literature, a

density of 2450 kg/m3 and a Poisson’s ratio of 0.15 is assumed for the concrete. A

density of 7850 kg/m3 and a Poisson’s ratio of 0.30 is assumed for the steel segment.

After having applied the lateral load of 500kN, a series of loads increasing from 370kN

to 833kN (representing prevalent wind speeds, v̄ of 7m/s to 13m/s) were applied to

the tower top. This was carried out to investigate any change in the strain pattern

as a result of the increase in load for the undamaged tower. It was found that after

normalising the strain at each load level that there was no change in pattern and so this

pattern is independent of the load intensity. Fig 7.2 shows the undeflected and deflected

shape of the overall tower, before and after having imposed the tower top lateral load.

Damaged circumferential locations were next simulated by reducing a given finite shell

element’s planar stiffness. This was carried out at three locations. On each occasion, the

vertical strain signal, εy, was extracted from all nodes around the interface circumference

and this was processed with a discrete wavelet transformation as discussed above. Fig

7.1 shows the strain signals of the undamaged circumference overlaid with the damaged

circumference appropriate for each damaging event. It can be seen that the change in

strain profile is marginal but nonetheless is present in the region around the damaged

finite element.

It was found that after transforming the strain signal of the damaged towers that this led

to a visible change in the pattern of the detail component of the wavelet transform. In
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(a) Damaged Location 1

(b) Damaged Location 2

(c) Damaged Location 3

Figure 7.1: Circumferential Strain Profile εn,y(X,Y, Z), Static Tower Top Loading, Locations 1-3
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Figure 7.2: Tower Displaced Shape DT (X,Y, Z), Static Tower Top Loading, LSFE Tower Model

order to highlight where a change in the peaks has occurred, the component quantities

for the damaged and undamaged states were combined. The results are presented in fig

7.3. Here the damaged locations are clearly evident by the new peaks which represent

the arithmetic difference between the damaged and undamaged coefficients.

7.2.2 Dynamic Strain & Acceleration Signals

7.2.2.1 Tower Numerical Model

In the case of dynamic simulations, a combination of a reduced order numerical model

derived from the LSFE tower model and the NREL aeroelastic code FAST will be used.

The tower will initially be modelled using the LSFE model but will then be reduced

to 5 DOF to simulate translational and rotational degrees of freedom at the top of the

tower.

Prior to applying the loads, the tower FE model, with N nodes, is reduced from 6N

DOF to 5 DOF through the use of three dimensional shape functions. These shape
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(a) Damaged Location 1

(b) Damaged Location 2

(c) Damaged Location 3

Figure 7.3: DWT Detail Component Differences ddam − dundam, Static Tower Top Loading, Locations
1-3
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functions have previously been introduced in Chapter 4. Fig 7.4 identifies the 5 DOF

directions to be used. A shape function matrix, [S] ∈ R6N×5, is written as follows and

includes five distinct shape function vectors, as per Eq. 7.4.

S =


...

...
...

...
...

sfa stilt sss sroll stor
...

...
...

...
...

 (7.4)

Where, in Eq. 7.4, shape functions for fore-aft, tilting, side-side, rolling and torsional

motion are included, sfa, stilt, sss, sroll, stor ∈ R6N .

This model is essentially equivalent to the tower portion of the 11 DOF LSFE turbine

model EOM matrices, without the interaction from blade elements. The dynamic equa-

tions of motion and unknown responses, q(t), q̇(t), q̈(t) can be written as per Eq. 7.5 to

Eq. 7.7.

(
[S]T [Ml,T ][S]

)
q̈(t) +

(
[S]T [Cl,T ][S]

)
q̇(t) +

(
[S]T [Kl,T ][S]

)
q(t) = Q(t) (7.5)

[MTR]q̈(t) + [CTR]q̇(t) + [KTR]q(t) = Q(t) (7.6)

qT (t) =
[
qfa qtilt qss qroll qtor

]
(7.7)

Where reduced order matrices for stiffness [KTR] ∈ R5×5, mass [MTR] ∈ R5×5, and

damping [CTR] ∈ R5×5 replace the original stiffness, mass and damping matrices of size

[Kl,T ], [Ml,T ], [Cl,T ] ∈ R6N×6N .

Local finite element nodal responses may be gathered through the principle of superpo-

sition and through the relationships defined in Chapter 4, Section 6.
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Figure 7.4: DWT Tower DOF (Reduced from 6N to 5) qj , j ∈ [fa, ss, tilt, roll, tor], Dynamic Tower
Loading
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Earthquake Year Location Magnitude (Mw) PGA (g)
Northridge 1994 California 6.7 0.18

Table 7.2: Sample Seismic Ground Motions, Northridge California, 1994

Loadcase LC v̄ (m/s) I (%) Ωr(rpm) Earthquake
11 12 10 12.1 t = 250
12 12 10 0 t = 0

Table 7.3: Forced Simulation Loadcases LC 11 & LC 12

7.2.2.2 Load Definition

In this study the combined effects of turbulent aerodynamic loads and seismic loads

on multi-megawatt onshore wind turbines has been studied. One earthquake record

has been downloaded from the United States Geological Survey (USGS) archive for the

purposes of this study. Pertinent data from the earthquake is summarised in Table 7.2.

The full field wind field, characterised by a mean wind speed at hub height of 12m/s,

takes account of specially correlated turbulence, and the vertical wind shear. The nu-

merical simulations are carried out considering a 10% turbulence intensity. To estimate

the aerodynamic loads, the horizontal (downwind) wind speeds are utilized from the

three dimensional wind speeds offered by TurbSim.

Two load cases were considered, which are termed LC11 and LC 12. One consists of

an operational turbine, with an earthquake introduced at a time instant of t = 250s.

The second consists of a parked turbine with an earthquake present from the beginning

of the simulation. Pertinent information about both load cases is given below in Table

7.3.

Forcing functions in terms of the Fx, tower top fore-aft force are given in fig 7.5 for LC11.

The position of the earthquake initiation can be observed. Simulations are carried out

using the NREL baseline turbine and the aero-elastic code FAST with the above seismic

and aerodynamic loading as input. These loads are then applied to the finite element

model of the tower using the input, Q(t) in the equations of motion.

223



7. APPLICATIONS IN CONDITION MONITORING AND LARGE
SCALE SPATIAL ANALYSIS

Figure 7.5: Tower Fore-Aft Load Fx(t), LC11

QT (t) =
[
Fx My Fy Mx 0

]
(7.8)

7.2.2.3 Dynamic Loading & Detection - Strain

Damaged circumferential locations were simulated by reducing a given finite shell el-

ement’s planar stiffness. This was carried out at a location at the base of the tower.

Initially, damage was considered for the simulation associated with LC11 at 20% and

50% in terms of loss of stiffness. Fig 7.6 identifies the time varying strain component

for the damaged finite element.

Next, strain profiles were considered in one dimension (around damaged circumference)

and two dimensions (review of both circumferential and vertical profiles). These plots

are provided in fig 7.7 for a time instant before and after the earthquake initiation.

Finally, the circumferential strain profiles were processed using the DWT technique and

the decomposed signals compared in terms of damaged and undamaged models. From

these profiles, damage can be clearly detected. Plots of the overlaid decomposed signals

are given in fig 7.7.
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Figure 7.6: Vertical Strain ε1,y, Dynamic Tower Loading, Damaged & Undamaged Time Histories

7.2.2.4 Dynamic Loading & Detection - Acceleration

In practical terms, detection of damage through the use of acceleration signals is de-

sirable as tri-axial accelerometers may be affixed to the structure at one point only,

without the need for fixing some reference or base-point, which would be the case in

terms of strain or displacement. Accelerometers will also offer a higher level of accuracy

compared to strain gauges adding to why they may be favoured.

Acceleration signals were considered at the physical nodes of the damaged finite element.

In this case, LC11 was applied to the model and damage was considered to extents of

5%, 10%, 20% and 50% at time instants 116s and 280s, before and after the initiation of

the seismic loading. Results are presented in fig 7.8 which show the acceleration signals

of damaged towers (50% loss in stiffness) at the above time instants, in the vertical (Z)

direction at all nodes of the tower. A change in the acceleration pattern over the surface

of the tower can be detected on close observation in both cases.

After processing acceleration signals using the DWT technique, the decomposed detail

components of damaged and undamaged signals are overlaid and presented in fig 7.8

in terms of the varying magnitude around the damaged circumference. Damage can be

clearly observed, where the magnitude of peaks are pronounced at the damaged finite
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(a) LC 11, Undamaged εy (surface) (b) LC 11, 50% Damaged εy (surface)

(c) LC 11, εy (circumference), t = 116.8 (d) LC 11, εy (circumference), t = 280

(e) LC 11, DWT (circumference), t = 116.8 (f) LC 11, DWT (circumference), t = 280

Figure 7.7: Vertical Strain over Tower Surface εy (Damaged & Undamaged), Vertical Strain around
Tower Circumference εy (Damaged & Undamaged), and DWT of Vertical Strain around Tower Cir-
cumference (Damaged & Undamaged)
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(a) d2u
dz2

(surface), t = 116.8s (b) d2u
dz2

(surface), t = 280s

(c) LC 11, DWT (circumference), t = 116.8s (d) LC 11, DWT (circumference), t = 280s

Figure 7.8: Vertical Acceleration over Tower Surface d2uY
dz2

(Damaged, t = 116.8s, t = 280s) and DWT
Detailed Components of Vertical Acceleration over Tower Surface
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element location.

7.3 Applications in Geographical Information System (GIS)

Environment

7.3.1 Introduction

The performance of the baseline 5MW NREL wind turbine (Jonkman et al.) is to

be represented spatially under key structural performance criteria such as tower top

displacement, tower shell stress and tower fatigue life. Each of the criteria listed can

be evaluated directly by the 11 DOF model responses or by taking the responses and

carrying out some post-processing.

7.3.2 GIS Current Practise

ArcGIS software is to be used in this work to cater for the GIS requirements of the work.

This software is widely used in areas such as spatial planning and the management of

infrastructure and assets around the world.

In the area of wind energy, GIS software is well established in studying acceptable

locations for wind farms when assessed against various criteria, the most popular being

energy production. An example of this is where Grassi et al. [2014] presented a paper

where they calculated energy production whilst including the wake effect experienced

by turbines which are clustered. Siyal et al. [2015] used GIS to conduct a ‘Wind Energy

Assessment’ in Sweden, whilst considering geographic and environmental restrictions.

The authors then went on to quantify available energy from suitable sites and draw

conclusions on the implications for Sweden’s wind energy potential. Latinopoulos and

Kechagia [2015] put forward a GIS based framework for the evaluation of site suitability

to wind farm development based both on siting criteria (environmental, social etc. . . )

and the idea of measuring this site suitability using a ‘Suitability Index’ which is to be

presented spatially.
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In terms of other engineering applications, Pilla and Broderick [2015] presented a GIS

model on the subject of ‘personal exposure to particulate matter’ experienced by Dublin

commuters. She and Sarshar [1999] presented a paper outlining a bridge management

system proposal based on a GIS platform. Information and business modelling is used

to support the development of this GIS based bridge management tool.

.

7.3.3 Spatial Input Parameters in GIS Environment

In order to meet the goal of representing performance in a spatial sense, turbine loading

parameters must be represented spatially and in terms of working in a GIS environment,

inputs are made available as raster image files. As such, it was decided to examine data

made available by the SEAI within its wind atlas mapping project (Standen et al.).

Data available includes various statistical information relating to wind speeds, v̄(m/s).

Mean wind speed as well as Weibull co-efficients of wind speed distribution are available

to view and download as raster files. Fig 7.9 shows the spatial representation of the

mean wind speed, v̄, across the Republic of Ireland, at an elevation of 100m above

ground level. A portion of this image has been overlain by the extent of Co. Galway as

this area will be reviewed in some detail.

In order to generate a stochastic, turbulent time history for assessing the performance

of the turbine, the mean hub-height wind speed is required and this is available through

the raster images provided by the SEAI, used in conjunction with the Power Law as

given in Eq. 7.9. Mean wind speed as a function of height, v̄(h) can be found using the

Power Law, which states

v̄(h) = v̄(href)(
h

href
)α (7.9)

Where v̄ref is the mean wind speed at a reference height and α is the shear exponent
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Figure 7.9: Mean wind speed v̄(t) across Republic of Ireland, 100m Elevation
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value. At the time of writing, raster images were available from the SEAI as files of the

prevailing wind speeds at heights of 20m, 30m, 40m, 50m, 75m, 100m, 125m and 150m.

By re-arranging the expression given in Eq. 7.9 to read as per Eq. 7.10, values for α

can be found. The reference height is taken to be 20m.

α =

(
ln

v̄(h)

v̄(href)

)
×
(

h

href

)−1

(7.10)

This expression can be utilised with the ‘Map Algebra’ geoprocessing tool within Ar-

cGIS, along with the rasters for mean wind speeds at relevant elevations, to produce a

raster image of the shear exponent values. This is presented in fig 7.10. Raster images

of hub height wind speed and shear exponent are included.

In terms of making observations on these spatial images, hub-height wind speeds tend

to be highest at coastal areas and at areas of high altitude (north-western areas). Low

wind speeds are noted in sheltered areas adjacent to higher altitude sites. The converse

can be said of the shear exponent spatial imagery, where low shear is evident in coastal

areas and at high altitude. This is intuitive and suggests low wind speeds in areas close

to ground level in these areas as compared to the higher level wind speeds.

7.3.3.1 11 DOF LSFE Model Simulations & Results

Wind speed time histories are required for the purposes of running forced simulations

with the 11 DOF model. The Kaimal Power Spectrum Density (PSD) put forward in

IEC 61400 (International Electrotechnical Commission [2005]) is to be used. The PSD

description is given in Eq. 7.11

PSD(f) =
4σ2

wLw/v(hhub)

(1 + 6fLw/v(hhub))
5
3

(7.11)

Where f represents the frequency in Hz, Lw is an integral scale length (m) defined in
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(a) Mean Wind Speed, v̄ (b) Shear Exponent, α

(c) Turbulence Intensity, I(%) (d) Surface Roughness, zo(m)

Figure 7.10: Hub Height Exposure Conditions v̄, α, I(%) and zo(m), Co. Galway
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(a) Time Histories (b) PDFs

Figure 7.11: Example of Varying Turbulent Wind Speeds (v̄t) with Shear Exponent (α)

IEC 61400 and σ2
w is the variance in wind speed. The variance will be based on the

location-specific shear exponent and is found as follows in Eq. 7.12

σw = v(hhub)× 1

log
(
href
zo

)
zo =

h× href

e
1
α 2

(7.12)

Where zo is the roughness length. Images for roughness length and turbulence intensity

(I) are included in fig 7.10. In these equations, 100m and 20m are used as heights from

which the shear exponent was calculated. The fluctuating or turbulent component is

derived by finding the inverse fourier transform (IFT) of the wind speed PSD defined

above. The turbulent wind component is assumed to be constant over the swept path

of the rotor and is calculated at the hub height, H.

A plot is provided in fig 7.11 of generated turbulent wind speeds (v̄t) found by taking

the IFT of the wind speed PSD. Plots are given for the turbulence based on varying

shear exponents, showing how higher levels of surface shear experienced by wind leads

to higher turbulence in the time history. The probability distribution functions of these

time histories are also given in fig 7.11.
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Once simulations were carried out according to a predefined ‘Design of Experiment’

range of input parameters, key output quantities were collected. These include the

peak tower top loading quantities as well as response quantities including the peak fore-

aft displacement, tower stress and strain quantities. Contour plots of some of the peak

tower top load and peak tower responses are given in fig 7.12.

Mean wind speeds were varied from 5 to 15 m/s and shear exponent was varied from

0.01 to 0.25. A total of 99 simulations were carried out across the two equally divided

dimensions.

7.3.3.2 Multivariate Regression

Multivariate linear regression analyses can be used to generalise an input-output rela-

tionship where a set of known outputs are available with a corresponding set of input

parameters, subject to achieving an appropriate level of model fit. In this case, it is

carried out in order to generalise both the loading quantities and the response quantities.

Multi-variable linear regression analyses have been widely used in the literature. For

example, Harte and Basu [2012] used linear regression to predict stiffness matrix co-

efficients associated with the foundation of a wind turbine structure. A series of input

parameters, some of which were, horizontal force, bending moment, soil stiffness and

foundation diameter, were used to generate such stiffness co-efficients.

Qi(v̄, α, zo, I) = cQi,0 + cQi,v̄v̄ + cQi,αα+ cQi,zozo + cQi,II (7.13)

The general expression for the mean generalised tower top loading is given in Eq. 7.13

as a function of the defined variables. The input variables are the wind speed, shear

exponent, turbulence intensity and surface roughness. This expression can be re-written

in matrix form, identifying each simulation combination of input variables as per Eq.

7.14 and a linear regression analysis carried out on these equations to determine the
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(a) Thrust, q7 (kN) (b) Rolling Moment q10 (kNm)

(c) Fore-aft displacement, uN,X (m) (d) Side-side displacement, uN,Y (m)

(e) Vertical strain, εy (f) Vertical stress, σy(N/mm2)

Figure 7.12: Multivariate Regression Simulations Tower Loadings (q7, q10) & Responses
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unknown cQi co-efficient values. This formulation may be made for each of the loading

quantities Qi ∈
[
Q7, Q8, Q9, Q10, Q11

]
. The linear regression analysis exercise was car-

ried out using the software MS EXCEL for each formulation. A total of 5 regression

analyses were carried out for the loading quantities.



Qi,11

Qi,12

Qi,13

Qi,14

...

Qi,98

Qi,99



=



1 v̄11 α11 zo,11 I11

1 v̄12 α12 zo,12 I12

1 v̄13 α13 zo,13 I13

1 v̄14 α14 zo,14 I14

...
...

...
...

...

1 v̄98 α98 zo,98 I98

1 v̄99 α99 zo,99 I99





cQi,o

cQi,v̄

cQi,α

cQi,zo

cQi,I


(7.14)

Next, a similar set of regression analyses were completed for three identified responses

of fore-aft displacement, vertical strain and vertical stress, di ∈
[
uN,X , εy, σy

]
. Eq. 7.13

can be re-written in terms of these response quantities as per Eq. 7.15.

di(v̄, α, zo, I) = cdi,0 + cdi,v̄v̄ + cdi,αα+ cdi,zozo + cdi,II (7.15)

Similarly, Eq. 7.14 can also be re-written as per Eq. 7.16.



di,11

di,12

di,13

di,14

...

di,98

di,99



=



1 v̄11 α11 zo,11 I11

1 v̄12 α12 zo,12 I12

1 v̄13 α13 zo,13 I13

1 v̄14 α14 zo,14 I14

...
...

...
...

...

1 v̄98 α98 zo,98 I98

1 v̄99 α99 zo,99 I99





cdi,o

cdi,v̄

cdi,α

cdi,zo

cdi,I


(7.16)

Fig 7.13 provides a regression plots of the target quantities of peak tower top displace-
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- Q7(kN) Q8(kNm) Q9(kN) Q10(kNm)
cQi,0 264,649 -933,161 -9,768 -1,611,379
cQi,v̄ 47,842 93,569 926 710,437
cQi,α 219,756 -791,653 60,407 3,670,356
cQi,zo -1,672 -245,550 -262 -73,021
cQi,I 754,540 14,415,930 2,099 9,375,322
R2 0.933 0.872 0.913 0.923

Table 7.4: Loading Linear Regression Co-efficients & Performance

- uN,X(m) εy σy(N/mm
2)

cdi,0 0.115 0.000149 31.759
cdi,v̄ 0.147 0.000005 1.107
cdi,α 0.029 0.000019 4.075
cdi,zo -0.206 0.000542 115.081
cdi,I 0.004 0.000009 2.004
R2 0.927 0.842 0.842

Table 7.5: Response Linear Regression Co-efficients & Performance

ment set against the output quantities of the multi-variable linear regression models.

7.3.4 Loading and Responses in GIS Environment

By taking the multivariate regression models and the rasters representing exposure

conditions, it is possible to create raster images of both the tower top generalised load

and the model responses to this load. This is possible using the ‘Map Algebra’ tool

within the ArcGIS software package and the resulting GIS raster images are presented

in fig 7.14.

Using the same tool, it is possible to present images of the response characteristics listed

above including the fore aft displacement, base vertical strain and base vertical stress.

These images are presented in fig 7.15. Fig 7.15 also contains a plot of the maximum

available power (MW) resource available, when considering the mean wind speed across

this area. This is calculated according to Eq. 7.17, neglecting turbine specific power
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Figure 7.13: Multivariate Linear Regression Plot, uN,x

co-efficients (Cp).

Power(wind) =
1

2
Arρav̄

3 (7.17)

7.3.5 Multi-Criteria Decision Making in GIS Environment

GIS software has been successfully used to carry out multi-criteria analyses for assess-

ing suitable locations for wind farm development in the literature (Latinopoulos and

Kechagia [2015]). Authors have assessed suitability based on a range of criteria includ-

ing technical issues such as wind speed and power output and social and environmental

issues such as proximity to wildlife habitats and proximity to urban centres. Using GIS

software, areas seen as infeasible or exhibiting some level of performance outside of a

predetermined selection threshold level can be excluded. An example of this practice

is given here in terms of selection within thresholds under criteria such as turbulence
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(a) Fore-aft Thrust, Q7 (kN) (b) Pitching Moment, Q8 (kNm)

(c) Side-side Force, Q9 (kN) (d) Rolling Moment, Q10 (kNm)

Figure 7.14: Example of Tower Loading Presented Spatially in GIS Environment
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(a) Fore-aft displacement, uN,X (m) (b) Vertical strain, εy

(c) Vertical stress, σy(N/mm2) (d) Power (MW)

Figure 7.15: Example of Tower Responses & Power Presented Spatially in GIS Environment
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Criteria Lower Threshold Upper Threshold
Turbulence Intensity (%) 0 20
Power Availability (MW) 2 ∞

Table 7.6: MCDM Criteria Threshold

(a) Limited Turbulence Intensity, I (b) Limited Power Yield

Figure 7.16: Limiting Criteria (Infeasible Zones Identified) Presented Spatially in GIS Environment for
Turbulence Intensity & Power

level and wind resource.

The upper limit of 20% placed on turbulence intensity may be adopted where designers

are seeking to limit the extent of vibrations the turbine would be exposed to. The effect

of this exclusion can be seen in the raster image presented in fig 7.16. Infeasible areas

are detected on the western side of the county and to a lesser extent to the south. A

lower threshold of 2MW was imposed on the power resource. Wind farm developers

may set some lower threshold on sites suitable for development. Selecting 2MW has the

effect of excluding a large portion of the lands in question in the centre and south of

the county.

The Weighted Linear Combination (WLC) method is widely used in GIS applications

(Malczewski [2000]) in assessing site suitability where multiple criteria are fed into the

decision making process. In this case, an exercise is carried out where two structural

performance criteria which were observed to be conflicting in a geographical sense, are to

be considered jointly using the WLC method. These criteria include the mean tower top
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displacement in the fore-aft direction and the standard deviation of this displacement.

The total score given to each location within the domain is calculated using the expres-

sion given in Eq. 7.18.

SPI = BSPI ×
I∑
i=1

wixi (7.18)

Where wi is a normalized weight for each performance criteria, such that
∑
wi = 1 and

where xi is the normalised score given to each criteria. Normalised scores for xi in the

range 0 to 1 are found using the relationship from Eq. 7.19.

xi =
di − di,min

di,max − di,min
(7.19)

In Eq. 7.18, BSPI refers to a Boolean value of either 1 or 0 and will be used to determine

if the site is within acceptable limitations. In a general sense, if the site is infeasible for

any of the structural criteria given, this value for BSPI will default to 0. In this case,

upper or lower limits were not chosen for either of the chosen performance criteria and

as such, BSPI will be set to a value of 1.

Assigning weightings to each of the criteria is dependent on the perceived value of a

criteria relative to the others. Various methods have been used in GIS applications in the

literature, including Saaty Matrices, Pairwise Comparison and SwingWeights Technique

as described by Malczewski [2000]. Caterino et al. [2009] presented an overview of

some MCDM methods in a paper comparing such methods for suitability to upgrade of

buildings sensitive to seismic damage. Here the Swing Weights Technique is used given

its simplicity and intuitive basis. Table 7.7 shows the relative importance assigned to

each of the criteria to be considered. These values are all subjective and at the discretion

of any given designer. In order to assess how altering the preference of one criteria over

the other affects the spatial result, four cases were examined.
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- case 1 case 2 case 3 case 4
- ūN,X σuN,X ūN,X σuN,X ūN,X σuN,X ūN,X σuN,X
Relative Importance (%) 100 0 100 50 50 100 0 100
Weightings, wi 1 0 0.66 0.33 0.33 0.66 0 1

Table 7.7: MCDM Weightings, Case 1 Focusing on Mean Displacement, Case 2 Focusing on Standard
Deviation of Displacement

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 7.17: Results of MCDM Presented Spatially in GIS Environment, Cases 1 - 4, 1 = Optimal
Areas
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The results of the four cases of the MCDM analyses are presented in fig 7.17, with

regions where results are close to unity offering optimal conditions. The two extremes

of these cases (case 1 and case 4) are clearly very different in that optimal regions with

scores approaching unity are in different locations. High mean wind speeds are evident

in local regions in the northwest of the region and as such, these regions are preferred in

case 1. Moving to case 2, these regions are favoured, but the overall extent of optimal

or high scoring regions have increased to take in areas to the south and east. In case 3,

optimal areas are now appearing in areas separate to those seen in cases 1 and 2, where

the deviation in displacement is becoming more favoured over the mean displacement.

7.4 Conclusions

A method was proposed to utilise spatial strain and acceleration signals as a means of

damage detection around the shell of the finite element model of wind turbine tower,

with response signals processed with the Discrete Wavelet Transform (DWT) signal

processing technique. This method was shown to be robust under various conditions.

GIS spatial images were presented to represent aerodynamic loading and tower responses

generated using BEM and the 11 DOF structural models described earlier in the thesis.

By generalising the loading and response quantities as a function of spatially distributed

environmental exposure conditions, it is possible to plot these loading and response

quantities spatially.
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Chapter 8

Conclusions

8.1 Development of Numerical & MDOF Models

A number of numerical models were developed to describe the structure of a hybrid

concrete-steel wind turbine tower with nacelle and hub mass at its top. An exact,

analytical model was developed using classical beam bending theory with boundary and

compatibility conditions imposed to generate a system of homogeneous linear equations

with non-trivial solutions.

An approximate, finite element model of the tower was constructed using modified

Euler-Bernoulli beam elements to describe out-of-plane translation and rotation of each

beam node. This was given the name Global Beam Finite Element model (GBFE) as re-

sponses generated are in terms of global nodal responses. Following this, a high-fidelity

shell model of the tower was developed using Reissner-Mindlin shell finite elements.

This was given the name Local Shell Finite Element model (LSFE) as responses are

available in terms of local elemental strain response. These elements were four-noded bi-

linear elements, taking their name from the polynomial degree of elemental interpolation

functions. Each element node consisted of two in-plane (membrane) degrees of freedom

and three out-of-plane (plate) degrees of freedom. Once elements are transformed to a

global tower co-ordinate system and transposed to the global system stiffness and mass
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matrices, each node offers 6 DOF. This model is extended to incorporate geometric and

material non-linearity to account for initial-stress conditions imposed by a pre-tension

within the concrete portion of the tower.

Chapter 4 introduces the concept and procedure of formulating reduced order dynamic

MDOF models for the wind turbine which include Finite Element and Euler-Lagrangian

principles. The FE structural models developed for the towers are incorporated into

the MDOF model by reducing each tower model to 5 DOF using global interpolation

functions. Tower finite element displacement vectors are expressed as functions of the

reduced order tower DOFs’ and the global interpolation functions. Total Potential and

Kinetic Energy formulations are described for the model. Absolute velocity expressions

for the blades, accounting for the influence of the tower motion, are then included in

the Kinetic Energy expressions. Differentiation of Lagrange’s equation is carried out

with respect to each model DOF, with the result that system equations of motion are

determined.

The concept of generalised loading is to be applied to various degrees of freedom of the

MDOF structural models previously proposed. The generalised loading was found for

each DOF through the use of the principle of Virtual Work, in the case of the aerody-

namic loading to be applied to the blade DOFs’ and the tower DOFs’. The physical

loading generated by the rotor, through the rotating blades has been numerically deter-

mined using the BEM method. Drag and lift forces are calculated for the blade aerfoil

in an iterative manner and on the basis of a number of assumptions in terms of the

behaviour of the wind field and its interaction with the rotor blades. Loading acting on

the tower is calculated using the drag co-efficient of the cylindrical shape of the tower.

In both cases, the assumed shapes of vibration are used in the Virtual Work formulation

to find generalised loading time-histories which can be applied to the structural models.

Forcing function comparison in terms of the primary direction of tower top thrust,

showed an increase in mean applied load with an increase in mean wind speed, v̄.

Although there was no increase in the mean applied thrust with increase in turbulence
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intensity, I, there was a significant increase in the amplitude of applied load. When

comparing the parked and operating conditions, although the rotor is inactive in the

parked condition, this condition resulted in similar generalised fore-aft load, Q7(t) to

the operating condition.

8.2 Global and Local Responses

Global tower top responses were examined and compared to each other for operating

and parked conditions. Responses are compared in both the temporal and frequency

domains. Local strain signals in each principal direction were reviewed using the 11

DOF LSFE model for an element at the base of the tower. For the element considered,

the local vertical direction, ε1,y, exhibits the highest magnitude of strain. Strain signals

showed similarities to global tower top deformation signals however differences were

found, particularly in the frequency content. This is attributed to the fact that the

strain at any point in time is a combination of the effects of the global displacements in

each global DOF direction at that point in time. This is significant as it is an example

of the complex relationship between local strain and global deformation and how local

strain signals cannot be extracted or extrapolated from global response signals only.

An initial sensitivity analysis was carried out using key design variables used in the

design of a hybrid tower including hybrid interface height, concrete diameter and shell

thickness, steel diameter and shell thickness and the tower top mass.

The exact analytical model was used to assess free vibration and the 11 DOF GBFE

model was used in assessing forced vibration. The nacelle mass had the most significant

impact on the first natural frequency of the tower. The hybrid interface height was also

strongly correlated to the first natural frequency. The mean global displacement was

not impacted by the tower top mass, however the acceleration was strongly impacted.

Hybrid interface height was strongly correlated with the displacement but to a lesser

extent on the velocity and acceleration response.

The forced vibration response was reviewed in more detail in the time and frequency
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domains to assess the impact of the changing interface height and tower top mass.

Increasing the hybrid interface level for the tower configurations led to a significant

decrease in the mean tower top displacement, peak displacement and first fore-aft fre-

quency. At a local finite element level, the increase in interface height impacted the

strain responses. The influence of tower top mass was shown in the time and frequency

domain. Increasing the tower top mass to tower mass ratio had a significant effect

on the amplitude of acceleration of the tower top. The change in this factor had no

impact on the mean displacement and only a slight impact on the peak displacement.

At a local level, there were changes in the mean vertical and circumferential strain as

a result of changes in tower top mass. This is as a result of the increased vertical load

imposed on the tower. There was is a small but distinguished difference between the

displacement and acceleration time histories between towers where structural damping

properties were varied, in terms of the amplitude of response. These changes in response

signals were evident at a global and local level. The compressive strength of the con-

crete portion of a tower configuration was varied. The result was an increase in overall

tower stiffness, leading to a decrease in mean tower top displacement but an increase in

the amplitude of displacement about the mean, as well as an increase in amplitude of

acceleration about the mean acceleration.

The 11 DOF LSFE model with incorporation of prestressed tendons was used to assess

the implications of prestress. The first and second natural frequency of the tower was

slightly reduced when introducing and increasing a prestress in the tendons. This net

reduction in frequency is as a result of ‘softening’ of the concrete shell despite the

beneficial ‘stiffening’ of the vertical tendons. The global forced vibration response of

the tower showed insignificant change as a result of the introduction of prestress. There

was very evident change in the strain response profiles with increase in prestress. This

is as a result of the imposed strain due to the prestressing operation.
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8.3 Tower Optimisation

A methodology has been proposed for the optimisation of hybrid concrete-steel wind

turbine towers. This methodology incorporates the generalisation of free and forced

vibration results of such towers using a configuration of Artificial Neural Networks,

which are embedded within an optimisation algorithm which itself is a hybrid of a

Genetic Algorithm and a Pattern Search Algorithm.

Structural objective functions were optimised using the 11 DOF LSFE turbine model

proposed in Chapter 4. Fundamental fore-aft frequency was maximised, peak tower

displacement was minimised, as was a weighted sum of concrete and steel stress utili-

sation ratios. Optimum solutions in terms of each selected objective were found when

the design variable describing concrete-steel interface level was close to its upper limit.

Nonetheless, other design variables differed between objectives, suggesting the objec-

tives are not exactly correlated.

Levelised Cost of Energy (LCoE) was set as an objective and was minimised for a

series of load cases and hub heights. Varying the mean wind speed from 12m/s to

20m/s resulted in a moderate increase in LCoE. Increasing the hub height from 100m to

150m resulted in a significant increase in LCoE. Concrete and prestressed reinforcement

contributed most significantly to the breakdown of LCoE.

The Climate Change Potential (CCP) was also set as an objective to be minimised

and followed similar patterns to the LCoE in terms of sensitivity to change in wind

speed and height. The height of concrete in the optimum 100m tower at 16m/s was

70m. Contributions to the overall CCP are much more equally spread than was the

case in LCoE, with each contributing similar amounts. The total mass of the tower

was set as an objective function to be minimised. In this case, the variable describing

concrete-steel interface was forced close to its lower-bound. In terms of breakdown of

contributions by material type, concrete contributes significantly more than steel to

total mass, despite the concrete height being only 28.19m.
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Multi-objective optimisation was carried out using the ε-constraint method. The LCoE

and fundamental natural frequency were set as objectives to be optimised. The re-

sults indicate a generally increasing LCoE with increasing natural frequency. Finally,

the exact analytical tower model was incorporated into the optimisation methodology

proposed and the exact natural frequency was optimised as part of a multi-objective

optimisation exercise. Contour plots were generated to represent the optimised fre-

quency as a function of the two other objectives. In all cases, maximum stiffness was

found at or close to the upper limit of the other two objectives. Some relationships

showed approximately linear change in stiffness by varying either parameter, whereas

other relationships were highly non-linear.

8.4 Applications in Local and Global Spatial Analyses

A method was proposed to utilise spatial strain and acceleration signals as a means of

damage detection around the shell of the finite element model of wind turbine tower.

The method proposed includes sampling both strain and acceleration signals around

each node of the finite element mesh to create spatial signals which can then be pro-

cessed. Processing involved passing the signals through the Discrete Wavelet Transform

(DWT) signal processing technique. The spatial signals were all transformed and co-

efficients were found for low and high frequency components.

Simulations were carried out to assess the robustness of the method under varying load-

ing conditions including aerodynamic and seismic load and including operational and

parked conditions. Under all scenarios of strain and acceleration signals, by combining

the coefficients for the high frequency component in terms of taking the undamaged and

relevant damaged co-efficients, it can be seen that the region of damage can be clearly

identified. This proved to be the case for both strain signals and acceleration signals.

GIS spatial images were presented to represent aerodynamic loading and tower responses

generated using BEM and the 11 DOF structural models described earlier in the thesis.

By generalising the loading and response quantities as a function of spatially distributed
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environmental exposure conditions, it is possible to plot these loading and response

quantities spatially. It was also shown that Multi-Criteria Decision Making applications

can be carried out using spatial images and by combining both traditional objectives

such as power output with structural criteria such as displacement.

8.5 Future Research Potential

There is potential now to extend the numerical models presented in this thesis as well

as extend their application. There is potential to expand the description of the wind

turbine to include relatively highly discretised finite element models of the blades and

hub. These elemental models may then be reduced in order in a similar way as the

tower model for inclusion in a MDOF model. In this way, local strain signals may be

extracted for the blades and hub in the same manner.

The reduced order models developed could be extended to include descriptions of soil-

structure interaction at the turbine foundations. This would allow for review of the

implications of various soil types on the local strain response signals. In the same way,

there is an opportunity to also incorporate control devices such as passive or active

tuned mass dampers to review their implications on the structural response at a local

level.

In terms of structural health monitoring, the method proposed of using Spatial DWT of

the strain or acceleration signal could be a powerful means of locating damage around

any location on the shell of the wind turbine tower. Similarly, the method could be

expanded to include blades. This work can be extended to include experimental works

where physical strain acceleration signals may be extracted.

Experimental works may be carried out as a direct extension of the numerical modelling

completed here. Scale models of tubular towers could be exposed to excitation and

the local response compared to the responses collected from the reduced order models

prepared in this work.
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8. CONCLUSIONS

This thesis has considered hybrid towers where the concrete and steel portions of the

tower are connected only at an interface location. Future work might consider hybrid

cross sections, which have been developed for other applications in structural engi-

neering. For example, steel tubes which are lined with concrete to form a composite

cross section may be studied. Hybrid tubular and lattice towers have been constructed

and could be reviewed in detail. Models developed here could be used directly where

possible, or alternate models developed where required.

Various objective functions have been optimised using the framework proposed, in-

cluding the non-structural objectives of Levelised Cost of Energy (LCoE) and Climate

Change Potential (CCP). Given the fact that cost and embodied energy factors are

entirely dependent on site specific conditions and market conditions (embodied en-

ergy/cost of fabrication, transport, erection etc...), there is merit in extending the stud-

ies carried out to look at the influence location plays on optimum hybrid towers in terms

of LCoE and CCP.
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Appendix A

A.1 Numerical Integration - Gauss Quadrature

In order to generate the co-efficients of stiffness matrices, ki,j in the case of planar

elements, it is necessary to integrate the shape functions over the area of the element.

Whilst this can be achieved easily in the case of rectangular elements, where elements

are of irregular shape and have been transformed to another co-ordinate system, a

numerical method known as Quadrature, or more specifically, Gauss quadrature can

be employed. As outlined in Cook et al. [2007], an integral having limits x = x1 and

x = x2 can be transformed to an integral having limits ζ = −1 and ζ = 1 such that

I =

∫ x2

x1

fdx =

∫ 1

−1
φdζ (A.1)

Where the function f = f(x), has been transformed to φ = φ(ζ). The method then

assigns weightings to function values at specific sampling locations with the intention

of minimising the numerical integration error and allowing for the integrand value to

be found as

I =

∫ φ

−1
dζ ≈W1φ1 +W2φ2 + · · ·+Wnφn (A.2)
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Table A.1: Gauss - Quadrature Sampling Point Locations

Order n Sampling point locations ζi Weight factors Wi

1 0 2
2 ±1√

3
1

3 ±
√

0.6 5
9

Figure A.1: Gauss - Quadrature Sampling Point Locations

Where in this case, n refers to the order of the rule. In the case of the 2 dimensional

element at hand, where [N ] = [N ](ζ, η), the method locates sampling points in two

dimensions and assigns weights so as to allow for numerical summation. A generalisation

of the procedure in two dimensions for the shape function [N ]i reads

I =

∫ 1

−1

∫ 1

−1
[N ]i(ζ, η)dζdη ≈

∑
j

∑
k

WjWk[N ]i(ζj , ηk) (A.3)

The number of sampling points in the case of the 2D element was chosen here to be four,

such that the order is said to be 2. Table A.1 provides the sampling point locations

and weighting factors relevant to other orders of Gauss quadrature integration. The

sampling point locations chosen for the quadrilateral element are shown in Figure A.1.
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A.2 Jacobian Matrix

As a consequence of transforming the co-ordinate system of a finite element from a

Cartesian c-ordinate system to some local system whose axis need not be parallel to

the Cartesian axis, it is necessary to review any derivatives present in the elementary

stiffness matrix integral for that element.

[k] = t

∫
[B]T [E][B]dxdy (A.4)

In the case of a planar element such as a membrane or plate element, derivatives in

Cartesian co-ordinates are present to represent the area of the element. From review of

Eq. A.4, some method is required to transform from dx to dζ and dy to dη. In vector

calculus, a matrix known as the Jacobian matrix exists and can be used here to achieve

the required transformation. In the case of a function φ = φ(ζ, η), the transformation

can be achieved through the following representations.

∂φ

∂ζ
=
∂φ

∂x

∂x

∂ζ
+
∂φ

∂y

∂y

∂ζ

∂φ

∂η
=
∂φ

∂x

∂x

∂η
+
∂φ

∂y

∂y

∂η

(A.5)

or


∂φ
∂ζ

∂φ
∂η

 = [J ]


∂φ
∂x

∂φ
∂y


(A.6)

where [J ] is known as the Jacobian matrix.
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A.3 Strain-Displacement Matrix Derivation

The strain-displacement matrix is an essential component in the numerical assembly of

an element stiffness matrix. A stiffness matrix expression in a general sense reads

[k] =

∫
[B]T [E][B]dV (A.7)

The determination of the make-up of this matrix is entirely dependent on the complexity

of the element at hand, however it will consistently be used as a means of relating the

element displacements to strain through a number of simple expressions.

{ε} = [∂]{u} = [B]{d} (A.8)

{u} = [N ]{d} (A.9)

Hence

[B] = [∂][N ] (A.10)

Deriving the strain-displacement matrix can be carried out for bar, beam and mem-

brane/plate elements. Cook et al. [2007] describes this matrix as being a product of

three rectangular matrices, which originate in the conversion of displacements and their
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derivatives to the element strains.

{ε} =


εx

εy

γxy

 =


∂u
∂x

∂v
∂y

∂u
∂y + ∂v

∂x

 =


1 0 0 0

0 0 0 1

1 0 0 0

0 1 1 0





∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


(A.11)



∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


=

[J ]−1

[J ]−1




∂u
∂ζ

∂u
∂η

∂v
∂ζ

∂v
∂η


(A.12)



∂u
∂ζ

∂u
∂η

∂v
∂ζ

∂v
∂η


=



∂N1
∂ζ 0 ∂N2

∂ζ 0 ∂N3
∂ζ 0 ∂N4

∂ζ 0

∂N1
∂η 0 ∂N2

∂η 0 ∂N3
∂η 0 ∂N4

∂η 0

0 ∂N1
∂ζ 0 ∂N2

∂ζ 0 ∂N3
∂ζ 0 ∂N4

∂ζ

0 ∂N1
∂η 0 ∂N2

∂η 0 ∂N3
∂η 0 ∂N4

∂η

 {d} (A.13)

The three rectangular matrices in the above three expressions are thus multiplied to

find the [B] matrix for a membrane element with three strain quantities. In the case of

the membrane portion of the stiffness matrix, with 8DOF, this will be an 8 x 3 matrix,

which in turn will be pre and post multiplied by the 3 x 3 material constitutive matrix

from Eq. A.7.
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Figure A.2: Global and Local Shell Element Axes Orientation

A.4 Transformation Matrix

Where local elemental axes are not aligned with the global structure axis, prior to

assembling the global matrices each local finite element matrix must be transformed

to the global system by way of a geometric transformation which accounts for the

differences in angle between the local element axis and the global structure axis.

The global and local axis orientation can be seen in Figure A.2. The transformation of

an elemental stiffness matrix, [k] to the global structure axes system (XY Z) is achieved

by using an axes transformation matrix [Γ].

In establishing this matrix, consideration is given to the difference between the angles

of each axes system as discussed in the following manner. Vector quantities can be

defined initially for each of the local axis directions, named here as X, Y and Z, by

taking account of the Cartesian co-ordinates of each element. Vector quantities of the

global axes named here as X,Y and Z can be found in a similar way by taking global

node locations along these axes. Vector algebra is used to construct a transformation
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matrix for each shell element.

[Γ]24x24 =



[TT ]3x3

[TT ]3x3

[TT ]3x3

[TT ]3x3

[TT ]3x3

[TT ]3x3

[TT ]3x3

[TT ]3x3


(A.14)

[TT ]3∗3 =


XX XY XZ

YX Y Y Y Z

ZX ZY ZZ

 (A.15)

Each entry to the [TT ], 3 x 3 matrix is found using the following expression

ij =
i · j
‖i‖‖j‖

(A.16)

273



A.

274



Appendix B

B.1 FEM Free Vibration Analyses

In order to evaluate the damping co-efficients a0 and a1, it is necessary to define the

damping ratios relevant to the frequency range of interest - ζ1 and ζ2, and this makes

Eq. 3.59 frequency dependent.

2ζn =
a0

ωn
+ a1ωn (B.1)

 1
ω1

ω1

1
ω2

ω2

a0

a1

 =

2ζ1

2ζ2

 (B.2)

The construction of the damping matrix for any forced vibration analysis is thus depen-

dent on knowledge of the modes of free vibration of the structure. As the term ’free’

vibration suggests, this is a theoretical state of the structure whereby zero damping

exists and there is no energy dissipated through a response cycle. In addition, there are

no external forces applied on the structure in this condition, such that the expression for

the equation of motion (EOM) of a structure can be simplified by omitting any damping

or external force. The EOM for the Global Beam FE (GBFE) model constructed in
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Chapter 3, Section 3 is used here as an example.

[Mg,T ]{ü}+ [Kg,T ]{u} = 0 (B.3)

A text on the subject by Chopra [1995] outlines how this equation can be re-written in

terms of the vibration frequencies and mode shapes which thus allow for solutions to

these quantities. The displacement and acceleration vectors can be re-written as

{u} = {φ}nsinωt (B.4)

{ü} = −ω2{φ}nsinωt (B.5)

Substituting Eq. B.4 and B.5 back into Eq. B.3 thus yields the eigenproblem

(
[Kg,T ]− ω2[Mg,T ]

)
{φ} = 0 (B.6)

In order for a non-trivial solution to exist whereby the mode shapes, which are rep-

resented by φ are non-zero quantities, the determinant of the per-multiplied matrix

must equate to zero and thus yield the natural frequencies of the system. A number

of mathematical methods are available to solve the eigenproblem given here. In terms

of engineering applications however, there is a need to focus on methods which can

provide the eigenpairs of both frequency and mode shape, which is a demanding prob-

lem computationally. Some well-established methods in achieving this purpose include

Transformation methods, Determinant Search methods, and Subspace Iteration.

The solution to the eigenproblem presented here for a GBFE model for example in
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terms of ω and φ, where the structure has 5N DOF provides solutions in the form of

φ =


φ1,1 φ1,2 · · · φ1,5N

φ2,1 φ2,2 · · · φ2,5N

...
...

. . .
...

φ5N,1 φ5N,2 · · · φ5N,5N

 (B.7)

ω2 =


ω2

1

ω2
2

. . .

ω2
5N

 (B.8)
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Appendix C

C.1 Global Matrix Assembly - GBFE & LSFE Models

The book-keeping and transformation steps carried out to establish the global model

matrices for the LSFE model, broadly include the following -

1. Define the basic geometric and material properties of the tower such as its diameter

at critical points (base, hybrid interface and top), its shell thickness and its height.

2. Define the nodal locations around the circumference of the tower and vertically

along its height. This is a function of the required FE mesh density,

3. Define a matrix containing the global nodal geometric locations around the tower

shell, for example a matrix of size N × 3, where each row describes the X,Y, Z

cartesian co-ordinates of node n, (1 ≤ n ≤ N). The total number of nodes will

be equal to the number of vertical tower divisions multiplied by a factor of the

circumferential divisions, N = vertical divisions× (seg +1) = Nels +seg. Fig C.1

gives an indication of these properties of the shell discretisation.

4. Define a matrix containing the global nodes associated with each local finite ele-

ment, for example a matrix of size Nels × 4, where each row describes the global

node numbers associated with a given element i, (1 ≤ i ≤ Nels)
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5. Create local shell element stiffness and mass matrices using membrane and plate

co-efficients in the case of both.

[k] ∈ R20×20 = [km]⊕ [kp] =

[km] [0]

[0] [kp]

 (C.1)

[m] ∈ R20×20 = [mm]⊕ [mp] =

[mm] [0]

[0] [mp]

 (C.2)

6. Re-arrange local element stiffness [k] and mass [m] matrices such that nodal

degrees of freedom are grouped together, with 6 DOF per node. This step

introduces zero terms to elemental matrices associated with a ’drilling’ DOF

θi,z, i ∈ [1, 2, 3, 4]. The result is for a displacement vector as follows

{d}T = [u1,x, u1,y, u1,z, θ1,x, θ1,y, θ1,z, u2,x, · · · , u4,z, θ4,x, θ4,y, θ4,z] (C.3)

7. Transform each local element stiffness and mass matrix to its global structure

equivalent by way of transformation matrices [Γ]. Local nodal geometry from

step 3 is used to define transformation matrices.

[K] ∈ R24×24 = [Γ]T [k][Γ] (C.4)

8. Assemble the global matrices by taking local matrix quantities for each global

DOF and using assigning co-efficients to their global nodal locations.

[Kl,T ] ∈ R6N×6N =

Nels∑
i=1

[K] (C.5)

[Ml,T ] ∈ R6N×6N =

Nels∑
i=1

[M ] (C.6)
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Figure C.1: LSFE Model Tower 3D Elemental and Nodal Discretisation Properties

These steps are detailed to suit the LSFE model, however are also applicable in the case

of the GBFE model.

Steps 1-4 above are elementary but require careful book-keeping practice. The three

dimensional Cartesian co-ordinates of the nodes from step 3 are used in defining the

local axes vectors which are then used in defining transformation matrices. The matrix

of global node numbers are then used to define location matrix non-zero locations, which

are in turn used in populating the global matrices.

Step 5 includes creating the local elemental matrices using various interpolation func-

tions and numerical integration as per chapter three. Step 6 involves re-arranging the

local matrices. This is carried out for two reasons. First, in order to transform the local

matrices to the structure global axes, degrees of freedom associated with each node are

to be grouped for ease of constructing the transformation matrix. Second, a zero term is

to be entered for the in-plane rotation degree of freedom, θi,z. This is commonly known

as a ’drilling’ degree of freedom. This would lead to a singular stiffness matrix were it

281



C.

not for the fact that a transformation is to be carried out. Including a zero term allows

for transformation to take place and for a stiffness to be allocated for rotation about

the global Z axis. A re-arranged local element matrix, [k] ∈ R24×24 takes the following

form.

[k] ∈ R24×24 =



[km]1,1 [km]1,2 0 0 0 0 [km]1,3 [km]1,4 · · · 0

[km]2,1 [km]2,2 0 0 0 0 [km]2,3 [km]2,4 · · · 0

0 0 [kp]1,1 [kp]1,2 [kp]1,3 0 0 0 · · · 0

0 0 [kp]2,1 [kp]2,2 [kp]2,3 0 0 0 · · · 0

0 0 [kp]3,1 [kp]3,2 [kp]3,3 0 0 0 · · · 0

0 0 0 0 0 0 0 0 · · · 0

[km]3,1 [km]3,2 0 0 0 0 [km]3,3 [km]3,4 · · · 0

[km]4,1 [km]4,2 0 0 0 0 [km]4,3 [km]4,4 · · · 0
...

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 0 0 · · · 0


(C.7)

The translation and rotation degrees of freedom for each node are now grouped together

within the matrix.

In the case of the beam model, the local element axes were co-incidental with the global

tower axes and as such, no reference was made to axes properties nor required during

model formulation. However, the nature of local element axes is a factor in all finite

element models and requires consideration where there are elements presented which

are orientated in physical space differently to one another.

The methodology of establishing an approximate set of algebraic equations to replace

exact differential equations of any structure is based upon establishing nodal degrees

of freedom which are related to some structure-wide or global axis system. As such,

on solving the algebraic equations, all unknown displacements and rotations will be

orientated about this global axis system regardless of the orientation of the local finite
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element nodes which they are associated with. This allows for overall structural defor-

mation to be established. Therefore, prior to assembling the global matrices, each local

finite element matrix must be transformed to the global system by way of a geometric

transformation, as described in Appendix A.

Step 8 of the steps listed involves taking each local element stiffness matrix and appor-

tioning the correct parts of these local matrices to the global matrix. Eq. C.5 and Eq.

C.6 can be used to this end.
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Appendix D

D.1 MDOF Model System Matrices

[Mb] =

∫ Rb0 mb(z)φ
2
b,x(z)dz 0

0
∫ Rb

0 mb(z)φ
2
b,y(z)dz

 (D.1)

[Mbt(ψi)] =

∫ Rb0 mb(z)φb,x(z)dz 0 0 0 0

0 0
∫ Rb

0 mb(z)φb,y(z)cos(ψi)dz 0 0

 (D.2)

[Mtb(ψi)] = [Mbt(ψi)]
T (D.3)

[MTB] =


[MTB,X ] 0 0

0 [MTB,Y ] 0

0 0 1
2Jnac,tor{s11}θN,Z

 (D.4)

[MTB,X ] =

1
2Mnac{s7}uN,X +m1

b 0

0 1
2Jnac,tilt{s8}θN,Y

 (D.5)

[MTB,Y ] =

1
2Mnac{s9}uN,Y +m1

b

0 1
2Jnac,roll{s10}θN,X

 (D.6)
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m1
b = 3

∫ Rb

0
mb(z)dz (D.7)

[Kb] =

Kb,x + Uc,x + Ug,x 0

0 Kb,y − Ω2
b

∫ Rb
0 mb(z)φ

2
b,y(z)dz + Uc,y + Ug,y

 (D.8)

Kb,x =

∫ Rb

0
EIb,x(z)(

δ2φb,x(z)

δz2
)2dz (D.9)

Kb,y =

∫ Rb

0
EIb,y(z)(

δ2φb,y(z)

δz2
)2dz (D.10)

Ug,x = −1

2
gcos(ψi)

∫ Rb

0

(
(
δφb,x
dz

)2

)∫ Rb

ζ
mb(z)dz (D.11)

Uc,x =
1

2
Ω2

∫ Rb

0

(
(
δφb,x(z)

dz
)2

)∫ Rb

ζ
mb(z)zdz (D.12)

Ug,y = −1

2
gcos(ψi)

∫ Rb

0

(
(
δφb,y
dz

)2

)∫ Rb

ζ
mb(z)dz (D.13)

Uc,y =
1

2
Ω2

∫ Rb

0

(
(
δφb,y(z)

dz
)2

)∫ Rb

ζ
mb(z)zdz (D.14)

[Kt,b(ψi)] =


0 0

0 −Ω2
b

∫ Rb
0 mb(z)φb,x(z)cos(ψi)dz

0 0

0 0

 (D.15)
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[Cb] =

2(ζs,b+ζAD,b)
ωb,x

Kb,x 0

0
2ζs,b
ωb,y

Kb,y

 (D.16)

[Ctb(ψi)] =


0 0

0 −2Ωb

∫ Rb
0 mb(z)φb,y(z)sin(ψi)dz

0 0

0 0

 (D.17)
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Appendix E

E.1 Analytical Model, Uniform Tower Properties Mode

Shapes

In classical beam bending theory, boundary conditions are typically defined based on

the shape (or derivatives of the shape) of vibration at beam supports. In the case of a

cantilever beam, for its first mode of vibration, there are known boundary conditions of

zero displacement and zero rotation at the fixed support, and zero bending and shear

force at the free end of the beam. These are commonly written in the following form.

φ(0) = 0 (E.1)

dφ(0)

dz
= 0 (E.2)

−EI d
2φ(L)

dz2
= 0 (E.3)

− d

dz
EI

d2φ(L)

dz2
= 0 (E.4)
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By applying these conditions to the fourth-order Euler-Bernoulli expression for the

motion of a cantilever beam, it is possible to show that non-trivial solutions exist only

if

cosh(βnL)cos(βnL) + 1 = 0 (E.5)

This transcendental equation can then be solved numerically to give the roots β1L =

1.875, β2L = 4.694.... From this, circular frequencies are found from

ωn = β2
n

√
EI

ρA
(E.6)

The circular frequencies and mode shapes found for the cantilever beam can also be

found for simply supported beams or fully-encastre beams simply by applying the cor-

responding boundary conditions to each support in terms of relevant displacement,

rotation, bending moment or shear force.
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Appendix F

F.1 Stress-Stiffening Phenomenon

Stress stiffening is a phenomenon which relates the influence of membrane forces on the

lateral deflection associated with bending in an element. In terms of studying the soften-

ing behaviour of members under compression, there are a number of ways to approach it

from a modelling point of view. In the case of straight elements or plates, such elements

are often assumed to sustain compression with only small levels of lateral displacement

up to the point of elastic buckling. No large lateral displacements occur during the soft-

ening of the member. Buckling will occur where a member converts membrane strain

energy into bending strain energy without the increase of any externally applied load.

In the study of frames or elements with initial curvatures or expected imperfections, an

appropriate approach would be to use large-displacement theory. This involves the use

of coupling terms in the stiffness matrices of the elements involved between bending and

membrane actions as they will interact through non-linear displacements of the struc-

ture. In terms of this Thesis, as the shell elements are used to portray towers which are

slender, single member structures and which can be said to be initially straight, it can

be said that there is no requirement to use a large-displacement analogy. Softening of

the elements will be assumed under the effect of small displacements occurring under

any compression condition which the tower or structure can safely withstand.
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In terms of the energy in a system with initial stress, the total energy includes strain

energy and potential energy of applied loads (W ), to do work as explained previously.

The strain energy can be divided into components for in-plane and out of plane strains

or membrane, Um and bending strains, Ub.

Π = Um + Ub +W (F.1)

When the change in total potential energy with respect to the system degrees of freedom

is at zero, the system has reached equilibrium. Thus the static equilibrium condition is

described as

[Ke]{D}+ [Kgeo]{D}˘{R} = {0} (F.2)

In Eq. F.2, [Kgeo] refers to a global geometric stiffness matrix. It is therefore seen that

the global stiffness is simply the direct sum of the global elastic stiffness and geometric

stiffness matrices.

[K] = [Ke] + [Kgeo] (F.3)
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Appendix G

G.1 NREL 5MW Baseline Turbine

The global structural properties of the NREL rotor and tower are given below in Table

G.1

The blade considered is the LM61.5 P2 (manufactured by LM Wind Power), which is

61.5m long and has a total mass of 17,740kg. The radius of the hub is 1.5m such that

the total rotor radius is 63m. The shapes of vibration for the blade used within the

models (φb,i,x, φb,i,y) are the shapes associated with the first mode of vibration of the

blade in the flapwise and edgewise directions. An eigenanalysis of a blade was carried

out using the NREL finite element based code BModes (Bir [2005]), with the resulting

mode shapes then described using continuous sixth-order polynomial shape functions.

The shape functions are given in Figure G.1.
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Properties Units Values
Max. rated power MW 5
Rotor orientation, configuration - Upwind, 3 blades
Rotor diameter m 126
Cut-in, rated, cut-out wind speed m/s 3m/s, 11.4m/s, 25m/s
Cut-in, rated rotor speed rpm 6.9rpm, 12.1 rpm
Blade length m 61.5
Overall blade (integrated) mass kg 17,740
Blade mass moment of inertia kg m2 11,776
1st in-plane blade natural frequency Hz 1.0606
1st out-of-plane blade natural frequency Hz 0.6767
Blade structural-damping ratio(all modes) % 0.48%
Hub diameter m 3
Hub mass kg 56,780
Nacelle mass kg 240,000
Tower Height m 87.6
Tower Overall (integrated) mass kg 347,460
Tower 1st Fore-Aft mode natural frequency Hz 0.324
Tower 1st Side-to-Side mode natural frequency Hz 0.312
Tower structural-damping ratio(all modes) % 1

Table G.1: NREL 5MW Baseline Turbine - Basic Properties

Figure G.1: NREL Baseline Turbine - Blade Mode Shapes
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