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Summary 
 

The Polycomb repressive complex 2 (PRC2) is a multiprotein chromatin 

modifying complex that is essential for vertebrate development and frequently 

deregulated in cancer. In higher eukaryotes, PRC2 is responsible for all mono-, 

di- and tri-methylation of Histone H3 at Lysine 27, and is composed of core 

subunits EED, SUZ12, and EZH1/2, as well as accessory components, 

Polycomb-like 1-3 (PCL1-3), EPOP, PALI1/2, AEBP2 and JARID2. Two distinct 

subtypes of PRC2 exist, termed PRC2.1 (containing PCL1-3, EPOP and 

PALI1/2) and PRC2.2 (containing AEBP2 and JARID2), however, little is known 

about their respective overlapping and divergent functions. As critical 

components of the PRC2.1 complex, PCL1-3 represent an excellent avenue to 

further explore the roles of PRC2 in cell fate decisions during differentiation and 

development, but also holds promise for future targeted cancer therapies. This 

PhD thesis addresses the various roles of PCL proteins in both differentiated 

adult cells and pluripotent embryonic stem cells (ESCs). Firstly, I explore the 

biochemical functions of PCL1 in the maintenance of cellular quiescence through 

a novel PCL1-p53 regulatory axis. Secondly, through the analysis of all three 

PCL proteins in cycling and quiescent human cells, I have defined a novel 

catalytically inactive form of PRC2, lacking SUZ12, that exists in quiescent cells. 

Thirdly, by analysing the effects of genetic knockout of all three Pcl genes in 

ESCs I characterise roles for distinct classes of PRC2 subcomplex assemblies, 

PRC2.1 and PRC2.2. Taken together, I believe these data will contribute to a 

better mechanistic understanding of the roles of Polycomb proteins during cell 

fate decisions and in complex biological processes such as carcinogenesis and 

embryogenesis.  
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1.1 General Introduction: Cell fate transitions 
 

The ability of multi-cellular organisms to form a vast array of cell types and tissues 

with a variety of functions and specificities is a highly regulated and complex 

process. This diversity of tissues arises from a single fertilised egg, or zygote, 

with a single underlying DNA sequence, or genetic code. The full development 

of a complex organism requires a relationship between two important processes, 

an increase in cell number coupled with the ability to diversify from the initial 

zygotic cell. This phenotypic diversification of cell types is called differentiation, 

and the fidelity of this process is essential for the correct development of any 

multi-cellular organism (Moris et al., 2016). Differentiation occurs when a stem 

cell receives a stimulus to divide or to specify its function, resulting in a cell fate 

transition. Importantly, differentiated cells arising from cell fate transitions retain 

the identical genomic sequence of the cell from which it descended. Hence, cell 

fate determination can be said to be governed by a switch in the transcriptional 

programme of a certain cell type. For example, an adult muscle stem cell may 

receive a cue to differentiate into a more specified cell type. It achieves this 

through simultaneously repressing transcription of genes involved in the 

maintenance of “stemness”, while activating lineage specific genes (Bracken and 

Helin, 2009). This is a highly reproducible process borne out by the ability of 

mouse embryonic stem cells to recapitulate all tissues of an adult mouse after 

injection into a host blastocyst (Bradley et al., 1984; Keller, 2005).  

 

One of the enduring models about how a single stem cell makes these critical 

cell fate decisions, or transitions is Waddington’s “epigenetic landscape”, 

famously represented as a pebble following an existing, diverging path down a 

hill (Goldberg et al., 2007). This is a simplified depiction of a complex series of 

events and realistically, this process is not as stochastic as it may seem. In order 

for a cell fate transition to be effectively maintained, all daughter cells must inherit 

complex transcriptional programmes through many cell divisions, and the faithful 

inheritance of these programmes is governed by numerous mechanisms. 

Generally speaking, transcription is regulated through covalent modification of 
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the underlying DNA or of the histone proteins around which DNA is wrapped. 

These modifications contribute to determining whether a gene will be active or 

repressed and importantly can be inherited through cell division events (Hansen 

et al., 2008; Smith and Meissner, 2013). The heritable regulation of transcription 

in this way provides the basis for how an undefined stem cell with a single copy 

of the genetic code, can make critical, temporal cell fate decisions that contribute 

to the specification of tissues and eventual complexity of a multi-cellular 

organisms.     

 

1.2 Covalent methylation of DNA 

Although regulation of gene expression does occur in cis through the function of 

transcription factors, changes in transcription resulting in cell fate transitions are 

more generally regulated by complementary processes such as DNA 

methylation. In mammals, the methylation of DNA occurs at cytosine nucleotides 

and is generally considered to be a repressive mark associated with broad 

regions of the genome. Interestingly, the 5’-end of genes associated with 

promoters contain a frequency of cytosine/guanine dinucleotides that is 

approximately 10 times higher than the genome average (Bird, 1986). DNA 

methylation is curiously excluded from these particular potions of the genome, 

which are termed CpG islands. (Bird et al., 1985; Smith and Meissner, 2013). 

Intriguingly, the lack of CpG methylation and high CG content at these islands 

are evolutionarily coupled. The mechanism proposed to have resulted in this high 

frequency of unmethylated CpG’s at promoter regions involves the increased 

mutability of 5-methyl-cytosine (5mC) due to due to inaccurate repair of 

deaminated 5mC’s, resulting in the introduction of thymine bases following DNA 

replication (Bird, 1980). This results in increased CpG mutability which causes 

methylated regions to lose CpGs rapidly. In contrast, unmethylated CpGs sustain 

higher CpG content since they are not prone to hypermutability by 5mC 

deamination (Bird, 1986; Cohen et al., 2011).  

 

Covalent methylation of cytosine is performed by four essential conserved DNA 

methyltransferase enzymes, DNMT1, DNMT3A, DNMT3B and DNMT3C (Barau 
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et al., 2016; Smith and Meissner, 2013). During early embryogenesis, the 

developing embryo undergoes rapid DNA demethylation (Kafri et al., 1992). 

Following this event, de novo DNA methylation is deposited by DNMT3A/B/C at 

CG dense regions of the genome, but importantly not at CpG islands. 

Modification of DNA in this way is critical for establishing the methylation pattern 

of the genome that will be inherited by all daughter cells (Bird, 2002). This 

inheritance of DNA methylation states is regulated during S-phase by DNMT1, 

which has a preference for hemi-methylated DNA left behind following DNA 

replication. DNMT1 is recruited to the replication fork through an interaction with 

PCNA and reconstitutes the full methylation status of the parent strand (Smith 

and Meissner, 2013). In this way transcriptional memory can be passed from 

parent to daughter cell. 

 

1.3 Histones and Chromatin 

Aside from direct covalent modification of DNA, there is a further layer of 

complexity allowing for mitotically heritable patterns of gene expression, post-

translational modification of histone proteins. In humans, when DNA is fully 

extended, the three billion bases would stretch to over two metres. This 

represents a major challenge for a single cell, to organise this molecule into a 

space of less than 10µm (McGinty and Tan, 2015). Compaction of this scale is 

established through formation of a DNA-protein complex, called chromatin. The 

nucleosome is the fundamental unit of chromatin and is composed of an 

octameric core of highly conserved histone proteins. This histone octamer is 

made up of two copies each of histone proteins, H2A, H2B, H3 and H4, around 

which 147bp of DNA are wrapped (Luger et al., 1997). This nucleosome core 

particle is connected to adjacent DNA through a segment of linker DNA (~25bp), 

which is often associated with another histone protein, H1, and is essential for 

higher order chromatin structures (Bednar et al., 2017).  

 

A unique feature of core histones is that they possess unstructured N-terminal 

tails that protrude from the nucleosome subunit allowing for modulation of 

chromatin compaction through addition or removal of covalent modifications 
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(Figure 1.1). Post-translational modification (PTM) of specific residues within the 

histone tails can facilitate formation of open regions of chromatin conducive to 

transcription termed, euchroamtin, or condensed heterochromatin which is 

refractory to transcription. There is scope for a vast array of possible 

combinations of histone PTMs giving rise to an enormous potential for functional 

output. For example, acetylation of Lysine residues on the histone H3 tail by 

histone acetyltransferase enzymes (HATs) facilitates a more open chromatin 

structure and is often found at promoters of active genes. Of the many histone 

PTMs, acetylation of Lysine possesses the greatest ability to directly unfold 

chromatin, as it can neutralise basic charge of the residue. As well as directly 

affecting chromatin states, histone PTMs can also provide a template to recruit 

proteins with specific modular binding domains, thereby allowing for a further 

degree of complexity to the regulation of transcription (Figure 1.2) (Kouzarides, 

2007). BRD4, a member of the BET family proteins, represents an elegant 

example of this process. BET family proteins are acetyl-lysine readers, and BRD4 

through its bromo domain can specifically read acetylated Lysine 27 of histone 

H3, which in turn can recruit positive regulators of transcription such as the 

transcription elongation factor (pTEFb) and Mediator complexes to chromatin 

(Figure 1.2) (Jang et al., 2005; Jiang et al., 1998).    

 

These histone PTMs, or marks, are not always directly involved in the regulation 

of transcription at promoters or enhancers of genes. They are also important for 

delineating distinct functional regions of the genome such as centromeres. For 

example, tri-methylation of histone H3 at Lysine 9 (H3K9me3) is critical for 

marking centromeric heterochromatin (Rea et al., 2000). The H3K9me3 PTM is 

essential to maintain transcriptional repression at structural regions of the 

genome such as centromeres, as spurious activity from these regions can cause 

mitotic defects (Hill and Bloom, 1987). The diversity of histone PTMs means that 

they have the potential to influence a huge array of biological processes from 

embryonic development to becoming dysregulated in many human pathologies 

such as cancer. 
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Figure 1.1 Post-translational modifications of N-terminal histone tails.
(A) (Top) Illustration of the nucleosome, the basic subunit of chromatin. The 
nucleosome octamer contains two copies each of H2A, H2B, H3 and H4, around 
which 147bp of DNA is wrapped. N-terminal histone tails protrude from the 
octamer. (Bottom) The histone tails are subject to a wide variety of covalent 
post-translational modifications which have varying effects on chromatin and 
transcription.   
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Figure 1.2 Chromatin associated epigenetic reader domains.
(A) Recognition of N-terminal histone H3 post-translational modifications by 
reader domains, that are contained within many chromatin associated protein 
complexes. These domains allow for chromatin associated complexes to 
perceive the epigenetic landscape of a cell.



 22 

1.4 Chromatin modifying proteins 
The combinatorial nature of histone PTMs and their roles in the maintenance of 

chromatin states led to the development of a “histone code” hypothesis, whereby 

the transcriptional potential of a given gene could be predicted by the PTMs 

associated with that gene (Jenuwein and Allis, 2001). The different classes of 

proteins involved in regulating histone PTMs can be grouped into, writers, 

readers, and erasers. Writer proteins are the enzymes that catalyse the 

deposition of specific histone PTMs. For example, the histone methyltransferase 

(HMT) enzyme, SUV39H1 selectively methylates Lysine 9 of histone H3 

(H3K9me), through an evolutionarily conserved SET domain (Rea et al., 2000). 

As mentioned previously, H3K9me3 is associated with heterochromatin 

formation, and this is achieved through the action of a member of the second 

class of proteins, reader proteins. Reader proteins possess modular structural 

domains capable of interacting with specific histone PTMs (Figure 1.2). In the 

case of H3K9me3, a reader protein HP1 contains a specific class of domain, 

called a chromo domain. The HP1 chromo domain has high-affinity for H3K9me3 

and is capable of homo-dimerising with itself, thereby facilitating chromatin 

compaction and heterochromatin formation (Lachner et al., 2001). Other classes 

of reader domains with affinities for different PTMs include, Bromo domains 

(Acetyl-Lysine), Tudor domains (methyl-Lysine) and PHD domains (methyl-

Lysine) (Figure 1.2) (Musselman et al., 2012b).  

 

Interestingly, a defining feature of these histone PTMs is that they are dynamic 

in nature and their occupancy at chromatin is not necessarily permanent. 

Demethylation, deacetylation, dephosphorylation, deubiquitination and histone 

turnover all contribute to the transient nature of histone PTMs. Owing to this, 

another class of protein involved in the regulation of histone modifications are, 

eraser proteins. Examples of these are, JMJD3 and UTX, which remove 

repressive tri-methylation at Lysine 27 of H3 (H3K27me3) thereby facilitating 

gene activation during differentiation (Agger et al., 2007). 
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Chromatin accessibility can be regulated by an additional process that does not 

include direct catalysis, removal or recognition of a histone PTM. This 

mechanism involves large ATP-dependent remodelling complexes that permit 

compaction or decompaction of chromatin through eviction or sliding of 

nucleosomes (Mohrmann and Verrijzer, 2005). These complexes are usually 

involved in the promotion of transcription by opening chromatin or exposing 

transcription factor binding sites at gene promoters or enhancers (Clapier et al., 

2017). The most well studied complex is the SWI/SNF complex and is one of two-

dozen predicted chromatin remodelling complexes in mammals (Kadoch and 

Crabtree, 2015). These classes of chromatin modifying proteins and complexes 

are critical for maintaining transcriptional homeostasis in normal healthy cells. 

Their importance is demonstrated by reports that chromatin centred processes 

are tightly linked to the development of cancer. Indeed, the advent of next 

generation sequencing has established that nearly all cancers have mutations in 

genes encoding chromatin regulators. For this reason, there has been a huge 

effort to develop drugs targeting specific proteins involved in these processes 

(Brien et al., 2016; Kadoch and Crabtree, 2015).    

 

1.5 Polycomb Group Proteins 

Polycomb group proteins (PcG) are among the most studied chromatin modifying 

complexes and were first identified in Drosophila mutants that displayed improper 

body segmentation (Lewis, 1978). Initial studies proposed the Drosophila gene, 

Polycomb (Pc), as an essential negative regulator of homeotic gene (HOX) 

expression, required for correct anterior-posterior segmentation during 

embryogenesis. Subsequent studies have shown that PcG proteins are 

evolutionarily conserved from Drosophila to mammals, with their critical roles in 

development highlighted by knockout studies in mice showing that their loss 

results in early embryonic lethality (Laugesen and Helin, 2014). As well as 

embryogenesis, PcG proteins have essential roles in maintaining the correct 

identities of stem, progenitor and differentiated cells, achieving this primarily 

through the transcriptional repression of key developmental genes during 

differentiation (Bracken et al., 2006; Lee et al., 2006). In undifferentiated stem 
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cells, PcG proteins are bound at lineage specific genes, where they repress 

transcription and thereby maintain cellular identity. Once a stimulus to 

differentiate is received, PcG proteins are displaced from these lineage genes, 

and re-located to stem cell specific promoters, allowing for changes in 

transcriptional profiles during differentiation (Figure 1.3) (Bracken and Helin, 

2009; Pasini et al., 2007). To date, the mechanisms of PcG recruitment and 

displacement remain relatively poorly understood. 

 

1.6 Polycomb Repressive Complex 1 and Polycomb Repressive Complex 2 

Since their initial discovery, a huge amount of research has focused on 

understanding the exact mechanisms of action of PcG proteins. Primarily, they 

function as two large multimeric protein complexes, Polycomb Repressive 

Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2) (Figure 1.4). 

Both complexes function as writer enzymes with distinct catalytic activities. While 

PRC1 can ubiquitinate H2A at Lysine 119 (H2AK119ub), through a Ring-PCGF 

E3 ligase heterodimer, PRC2 is responsible for all mono-, di-, and tri-methylation 

of histone H3 at Lysine 27 (H3K27me1/2/3) through the methyltransferase 

activity of conserved SET domain containing enzymes, EZH1 and EZH2 (Cao et 

al., 2005; Ferrari et al., 2014; Hojfeldt et al., 2018; Muller et al., 2002). The 

H3K27me3 and H2AK119ub histone PTMs are associated with transcriptional 

repression of target genes (Figure 1.5). 

 

The mammalian PRC2 complex is composed primarily of catalytic subunit, EZH1 

or EZH2, along with essential core members, SUZ12 and EED (Margueron and 

Reinberg, 2011). All three of these proteins are critical for the stability of EZH1/2 

and methyltransferase activity, while, the histone binding proteins RBBP4/7, 

seem to be important for complex activity in vivo (Margueron and Reinberg, 

2011). While PRC2  along with its H3K27me3 mark are found at the promoters 

of developmentally repressed genes and are responsible for the maintenance of 

cellular identity, the H3K27me2 PTM is enriched on nascent histones shortly after 

DNA replication and is stably associated genome-wide with intergenic regions 

and inactive enhancers. (Alabert et al., 2015; Ferrari et al., 2014; Lee et al., 2015) 
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Figure 1.3 The function of Polycomb group proteins in cell fate transitions 
and lineage commitment. 
(A) (Left) In pluripotent stem cells, stem cell genes governing pluripotency are 
active, and as such, the chromatin structure at their promoter regions is open 
and facilitates transcription. However, lineage specific genes such as muscle 
or neural cell transcription factors are switched off, and are not actively tran-
scribed. The repression of these genes is governed by the enzymatic activities 
of the PRC1 and PRC2 complexes. (Right) In more differentiated cell types, 
stem cell genes are silenced, this repressed state is maintained by the PRC1 
and PRC2 complexes. For example, in differentiated cell type A, Lineage A 
genes are active, whereas lineage B genes are silenced by PRC1 and PRC2, 
and vice versa. Figure adapted from Conway, Healy and Bracken 2015.       
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(Figure 1.5). Intriguingly, PRC2  is not co-localised with H3K27me2 at these 

intergenic sites (Conway et al., 2015). This has been rationalised by the fact that 

H3K27me2 is relatively easier for PRC2  to generate and is thereby potentially 

mediated by a transient interaction of the complex with chromatin (Sneeringer et 

al., 2010). Furthermore, it is thought that the H3K27me2 modification is the 

default mode for H3K27 and its genome-wide occupancy represents a 

“repressive blanket” to prevent the misfiring of cell-type specific enhancers and 

promoters of alternative lineages (Conway et al., 2015). H3K27me1, on the other 

hand is associated with the gene bodies of actively transcribed genes (Figure 

1.5).  Recent studies have shown that PRC2 is responsible for all H3K27me1, 

which raises intriguing questions about the roles of PRC2 at these sites (Hojfeldt 

et al., 2018).  

 

How PRC2 and other PcG complexes are targeted to their specific genomic loci 

remains a key open question. In Drosophila, PcG complexes are recruited to 

chromatin via cis-regulatory DNA sequences called Polycomb Response 

Elements (PREs) (Schuettengruber et al., 2017; Simon et al., 1993). However, 

apart from an unmethylated CG dinucleotide enriched at CpG islands, no defined 

DNA signature has been attributed to PcG localisation in mammals, leading to a 

focus on the specific targeting abilities of RNA. RNA mediated recruitment and 

localisation of PcG proteins to their respective genomic sites has been 

extensively studied and the best example of this is during the process of X 

chromosome inactivation in female mammals during development, a process 

mediated by a cis-acting RNA called Xist (Brockdorff et al., 1992). Xist RNA can 

directly recruit PRC2 to the inactive X, which then serves to establish and 

maintain the inactive state in all subsequent cell divisions (Brockdorff et al., 1992; 

de Napoles et al., 2004; Silva et al., 2003; Zhao et al., 2008). A recent elegant 

study suggested that Polycomb recruitment to the inactive X can also be initiated 

by PCGF3/5 containing PRC1 complexes through the deposition of H2AK119ub 

following Xist expression (Almeida et al., 2017; Zhao et al., 2008). Establishment 

of H2AK119ub then acts to recruit PRC2, thereby facilitating H3K27me3 

deposition and robust X chromosome inactivation (Almeida et al., 2017). These 
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elegant observations led to the hypothesis that non-coding RNAs (ncRNAs) may 

provide specific targeting information for PcG complexes at other genomic 

regions in somatic cells. Intriguingly, PRC2 has recently been shown to 

promiscuously bind nascent RNAs at essentially all active genes, proposing a 

mechanism whereby, instead of providing targeting specificity, RNA competes 

with chromatin for binding to PRC2 and that this mutually exclusive relationship 

underpins the genome wide occupancy of PRC2 (Beltran et al., 2016). 

 

Emerging evidence suggests, it is more likely that specific PRC2 recruitment at 

the majority of its genomic sites comes from an associated PRC2 interacting 

protein (Holoch and Margueron, 2017). The core PRC2 complex is known to 

associate with a number of accessory subunits in a substoichiometric manner, 

including JARID2, AEBP2, EPOP, PALI1/2 and PCL1/2/3 (Figure 1.4) (Ballare et 

al., 2012; Beringer et al., 2016; Brien et al., 2012; Conway et al., 2018; 

Grijzenhout et al., 2016; Liefke et al., 2016; Pasini et al., 2010). These factors 

can modulate PRC2 activity in vitro and in vivo (Holoch and Margueron, 2017), 

and may also define independent mechanisms of PRC2 recruitment, in which 

PCL proteins target the complex to CpG islands as well as H3K36me2/3 marked 

chromatin, while JARID2 can bring PRC2 to genomic regions marked by 

H2AK119ub (Choi et al., 2017; Cooper et al., 2016; Li et al., 2011). Moving 

forward, it will be critically important to delineate the relative targeting 

contributions, if any, of each accessory PRC2 component. 

 

The PRC1 complex exhibits a more variable biochemical composition, however, 

all PRC1 complexes share an essential core module consisting of a Ring-PCGF 

heterodimer. This Ring-PCGF core is an E3 ligase enzyme, capable of catalysing 

the deposition of H2AK119ub (Wang et al., 2004). There are two Ring variants, 

RING1A and RING1B, which dimerise with one of six PCGF proteins (PCGF1-6) 

(Figure 1.4). The H2AK119ub PTM and components of the PRC1 complex co-

localise at the promoters of developmentally repressed genes, and are required 

for effective Polycomb mediated repression and chromatin compaction (Rose et 

al., 2016; Wang et al., 2004). The six PCGF paralogs allow for different possible 
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combinations of the PRC1 complex. While dimerization occurs through a 

conserved RING domain, other regions of the PCGF proteins are more divergent 

and provide the specificity for arrangement of the remaining PRC1 complex 

components (Junco et al., 2013). The large degree of possible PRC1 

combinations can be broadly separated into two functionally distinct complexes 

called, canonical (cPRC1) and non-canonical (ncPRC1) PRC1. Whereas, cPRC1 

functions in the physical compaction of chromatin (Isono et al., 2013; Lau et al., 

2017), the primary role of ncPRC1 is catalysis of H2AK119ub (Blackledge et al., 

2014; Endoh et al., 2017; Rose et al., 2016). In addition to the Ring-PCGF core, 

cPRC1 complexes contain Chromobox (CBX), and Polyhomeotic (PHC) 

subunits, however, the exact composition of cPRC1 composition appears to vary 

depending on cell type (Gao et al., 2012). For example, in mouse embryonic stem 

cells (ESCs), PCGF2 (MEL18) and CBX7 are predominantly expressed, yet 

when ESCs are then induced to differentiate, PCGF4 (BMI1) and CBX8 become 

expressed, while PCGF2 and CBX7 are downregulated (Kloet et al., 2016; Morey 

et al., 2012). A “hierarchical” model of Polycomb recruitment can explain the 

genome-wide localisation of cPRC1 complexes. This model dictates that PRC2-

mediated deposition of H3K27me3 is recognised or “read” by the chromo domain 

of the CBX subunit which leads to subsequent recruitment of cPRC1, and 

rationalises the co-localisation of cPRC1 complexes with PRC2 and H3K27me3 

(Bracken et al., 2006; Fischle et al., 2003; Min et al., 2003). Functionally, it is 

clear cPRC1 complexes play important roles in chromatin compaction. This has 

been elegantly illustrated by studies showing cPRC1 complexes can form dense 

regions of chromatin, known as Polycomb-bodies (Eskeland et al., 2010). The 

PHC1-3 subunits are key in Polycomb-body formation by cPRC1 complexes 

(Isono et al., 2013). They importantly contain sterile alpha motif (SAM) domains, 

with further interacting regions contained within this domain. An end helix and 

midloop helix allow for oligomerisation of adjacent PHC subunits resulting in the 

formation of a “chain” of PHC subunits. Through this elegant biochemical 

mechanism, cPRC1 complexes can form higher-order chromatin structures, 

allowing for long range, repressive interactions (Boettiger et al., 2016; Kundu et 

al., 2017; Schoenfelder et al., 2015). Polycomb body formation is thought to be 
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the primary mechanism for cPRC1 mediated transcriptional repression, and not 

H2AK119ub deposition by the complex.  

 

Non-canonical PRC1 complexes are functionally and biochemically distinct from 

cPRC1 as they lack the CBX and PHC subunits, which are essential for targeting 

and mediating polycomb body formation (Figure 1.4). Instead, ncPRC1 

complexes feature one of two paralogous proteins, RYBP or YAF2. Both RYBP 

and YAF2 compete with CBX proteins for the same binding pocket on RING1A/B, 

defining a mutually exclusive cPRC1 and ncPRC1 complexes (Wang et al., 

2010). These ncPRC1 specific subunits increase the H2AK119ub catalytic 

activity of the PRC1 complex by facilitating conformational changes in the core 

Ring-PCGF heterodimer (Rose et al., 2016). Another defining feature of ncPRC1 

complexes is that they can associate with any one of six PCGF proteins (PCGF1-

6), with each of these subunits interacting with its own unique set of binding 

partners (Figure 1.4). For example, PCGF6-ncPRC1 complexes are composed 

of several accessory transcription factors (E2F6, MAX, MGA), chromatin 

modifiers (HDAC1/2) and the chromatin reader, CBX3 (Gao et al., 2012; 

Trimarchi et al., 2001). PCGF6-ncPRC1 contains its own unique set of target 

genes that are not bound by cPRC1, and is recruited to these sites by the 

transcription factors mentioned above, Max and Mga (Endoh et al., 2017). Loss 

of PCGF6 results in a depression of these unique genes, however, it does not 

lead to a derepression of Hox genes, consistent with reports that loss of ncPRC1 

subunits during development do not lead to homeotic transformations (Gonzalez 

et al., 2008). The best characterised ncPRC1 complex is PCGF1-ncPRC1, which 

contains exclusive interactors such as, KDM2bB, BCOR, BCORL1, SKO1 and 

USP7 (Figure 1.4). Intriguingly, KDM2B can recruit PCGF1-ncPRC1 complexes 

to chromatin (Farcas et al., 2012; Wu et al., 2013). KDM2B achieves this 

targeting capacity by binding to unmethylated CpG islands via its CxxC motif, 

thereby recruiting ncPRC1 to these sites where it can catalyse H2AK119ub 

(Farcas et al., 2012; Wu et al., 2013). This leads to the possibility that ncPRC1 

complexes are recruited to chromatin independently of PRC2, adding a further 

layer of complexity to the various mechanisms of PcG recruitment in mammals 
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(Figure 1.3). Supporting this, RYBP and H2AK119ub levels at PcG targets are 

unaffected by loss of EED and H3K27me3 (Tavares et al., 2012). Furthermore, 

artificial tethering of ncPRC1 to chromatin is sufficient to recruit PRC2 core 

components and leads to the accumulation of H3K27me3 (Blackledge et al., 

2014). This ncPRC1 mediated mechanism to promote PRC2 chromatin 

occupancy and activity is a topic of debate in the Polycomb field. Recently, the 

JARID2 subunit of PRC2 was shown to be capable of reading the H2AK119ub 

mark through an N-terminal ubiquitin interaction domain (UIM) (Cooper et al., 

2016), and that H2AK119ub containing nucleosomes are a much better substrate 

for PRC2 to catalyse H3K27me3 than unmodified nucleosomes (Kalb et al., 

2014). Although this represents an elegant model for how ncPRC1 may precede 

PRC2 at PcG targets, it must be said that the mechanism of PRC2 recruitment 

to chromatin cannot be explained as simply as JARID2 “reading” pre-existing 

H2AK119ub. Supporting this, deletion of RYBP or YAF2 leads to a large 

reduction of H2AK119ub, but has little effect on H3K27me3 and no effect on 

PRC2 occupancy at these sites (Rose et al., 2016).  

 

Loss of function studies in both Drosophila and mice have established that 

depletion of cPRC1 subunits (dPh, dPsc, mPHC1-3, mBmi1) leads to early 

embryonic lethality and derepression of Hox genes, a classical polycomb 

phenotype (Adler et al., 1991; Akasaka et al., 2001; Laugesen and Helin, 2014). 

Intriguingly, although ncPRC1 seems to share many target genes with cPRC1 

and PRC2, it also has its own set of unique target genes (Endoh et al., 2017; 

Morey et al., 2013). This may explain why loss of ncPRC1 subunits such as 

RYBP also leads to early embryonic lethal phenotypes but, this phenotype is 

independent of Hox gene derepression (Gonzalez et al., 2008). This suggests 

that cPRC1 is critical for the spatio-temporal regulation of Hox genes during 

development, but ncPRC1 is not. 

 

1.7 PRC2.1 versus PRC2.2  

Similar to loss of function PRC1 studies, the knockout of core PRC2 components 

leads to early embryonic lethality (E7.5-8.5) (Laugesen and Helin, 2014). Hence, 
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the PRC2 trimeric core and its associated functions are very obviously critical for 

normal mammalian development. A unique difference between the respective 

complex architecture of PRC1 and PRC2 is that PRC2  does not exhibit as much 

diversity in its accessory subunits. However, recent studies have provided the 

first clear evidence that different combinations of PRC2  can have varying 

mechanistic and biological functions (Conway et al., 2018; Grijzenhout et al., 

2016; Holoch and Margueron, 2017). The PRC2 complex can be divided into two 

distinct complexes, PRC2.1 and PRC2.2 (Figure 1.4). JARID2 and AEBP2 have 

been shown to determine the PRC2.2 subcomplex and are found to be  mutually 

exclusive to PRC2.1 subunits, such as PCL proteins, EPOP and PALI1 

(Alekseyenko et al., 2014; Conway et al., 2018; Hauri et al., 2016; Holoch and 

Margueron, 2017). Interestingly, all these auxiliary PRC2 subunits co-occupy the 

promotors of developmentally repressed genes together with core PRC2 

members and the H3K27me3 mark. To date, no unique chromatin association 

pattern has been determined for either the PRC2.1 or PRC2.2 specific 

subcomplexes (Beringer et al., 2016; Brien et al., 2012; Grijzenhout et al., 2016). 

Numerous loss of function experiments in mouse embryonic stem cells (ESCs) 

have shown that these auxiliary subunits are essential for normal PRC2 function. 

For example, JARID2, a critical component of PRC2.2, has been shown to be 

vitally important for PRC2 function in ESCs. Loss of JARID2 leads to eviction of 

core PRC2 and depletion of H3K27me3 on chromatin, which is accompanied by 

a compromised ability for successful differentiation of ESCs (Landeira et al., 

2010; Pasini et al., 2010).  Intriguingly, it has recently been reported that another 

PRC2.2 component, AEBP2, actually antagonises PRC2 by inhibiting 

H3K27me3 catalysis, even though it can co-localise with, and occupy the same 

genomic regions as JARID2  (Grijzenhout et al., 2016). Supporting this, 

AEBP2GT/GT mice were shown to exhibit a trithorax phenotype in vivo, and to 

antagonise PRC2.1 function in ESCs (Conway et al., 2018; Grijzenhout et al., 

2016). While the mechanism whereby AEBP2 can oppose normal PRC2 function 

remains unclear, it has been reported to compete with PRC2.1 components for 

the same binding pocket on SUZ12 (Chen et al., 2018). This antagonism possibly 
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allows for the assembly of distinct classes of PRC2 complexes with independent 

activities. 

 

1.8 Polycomb-like Proteins 

Phf1, Mtf2  and Phf19 are mammalian homologues of Drosophila Polycomb-like 

(dPcl) and hence, are also referred to as PCL1, PCL2 and PCL3 respectively 

(Margueron and Reinberg, 2011). Initial studies revealed that mutations in the 

dPcl gene resulted in ectopic homeotic gene expression, phenocopying deletion 

of Polycomb (Pc) (Lonie et al., 1994). The three paralogous mammalian PCL 

genes arose through two gene duplication events during mammalian evolution 

(Makino and McLysaght, 2010). An open question surrounding the study of these 

proteins, is why three genes with apparent functional redundancy exist in 

mammals. All three mammalian PCL proteins contain a number of putative 

chromatin and DNA binding domains, including an N-terminal Tudor domain, two 

PHD domains and a C-terminal winged helix domain (WH) (Figure 1.6). It is due 

to this unique domain architecture of PCL proteins, that a great deal of research 

has focused on their potential roles in mediating the recruitment and targeting of 

PRC2 to specific genomic loci.    

 

The roles of Polycomb-like proteins have been primarily studied in ESCs, 

however, PHF1 is not typically expressed in pluripotent stem cells and hence has 

been more extensively studied in both primary and transformed human cell lines. 

In HeLa cells, PHF1 has been shown to co-sediment with PRC2  and occupy the 

same PcG target genes as EZH2 (Sarma et al., 2008). In the same study, PHF1 

was reported to stimulate PRC2 catalytic activity in vitro, as well being required 

to efficiently convert H3K27me2 to H3K27me3 in vivo (Sarma et al., 2008). 

Adding to this, an independent study recently showed that as well as H3K27me3, 

PHF1 is also capable of generating H3K27me2 in vitro (Choi et al., 2017). 

However, the effects of Polycomb-like proteins on H3K27me2 in vivo are still 

unknown. Similar to PHF1, MTF2 and PHF19 have been shown to promote 

recruitment of PRC2 (Brien et al., 2015), with their loss resulting in reduced 

chromatin enrichment of H3K27me3 (Ballare et al., 2012; Brien et al., 2012; 
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Casanova et al., 2011; Li et al., 2017). Overall, it seems as though PCL proteins 

act as transcriptional repressors by positively regulating the enzymatic activity of 

PRC2 . Divergent roles for the three Polycomb-like proteins have also been 

characterised in primary human fibroblasts. Brien et al, showed that while MTF2 

and PHF19 are E2F regulated genes highly expressed in cycling cells (similar to 

EZH2 and SUZ12), PHF1 is a p53 target gene and is predominantly expressed 

in non-dividing, quiescent cells (Brien et al., 2015). While ectopic expression of 

all three PCL proteins recruits PRC2 to repress INK4A gene (a classical PcG 

target gene in fibroblasts), only MTF2 and PHF19 confer an independent INK4A 

growth advantage. Interestingly, PHF1 was shown to have gained a PRC2- and 

chromatin-independent function to bind to and stabilise p53, negatively regulating 

cell proliferation and promoting cellular quiescence (Brien et al., 2015). This 

function of PHF1 is achieved through two unique Serine residues in the N-

terminal PHD domain, that are not present in MTF2 and PHF19. These unique 

serine residues in PHF1 were acquired during recent vertebrate evolution and 

will be discussed at length in Chapter 3.  

 

The molecular functions of MTF2 and PHF19 have primarily been studied in 

ESCs with research focusing, in particular on the mechanisms of PRC2 

recruitment to target loci and their influences on H3K27me3 patterns. As 

mentioned previously, PCL proteins exhibit a unique domain architecture with 

several embedded chromatin and DNA binding moieties. These domains, namely 

a Tudor, two PHD domains and a winged helix domain, are key to the 

mechanisms whereby PCL proteins facilitate PRC2 function, and likely interact 

with chromatin through independent mechanisms. A study reporting the MTF2 

PHD2 domain to be required for PRC2 recruitment to the inactive X-chromosome 

in undifferentiated and differentiating ESCs was the first to suggest a role for a 

PCL domain in PRC2 genomic targeting (Casanova et al., 2011).  Furthermore, 

the Tudor domain of all three PCL proteins have been shown to be critical in 

promoting PRC2 function in vivo (Ballare et al., 2012; Brien et al., 2012; 

Musselman et al., 2012a). Interestingly, this Tudor domain has been shown to 

read the H3K36me3 PTM, a mark of actively transcribed genes (Ballare et al., 
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2012; Brien et al., 2012; Musselman et al., 2012a). PHF19 was also reported to 

interact with N066, a H3K36me3 demethylase, which lead to the proposal that it 

recruits PRC2 to active regions of the genome to initiate their repression (Brien 

et al., 2012). Intriguingly, the Tudor domain of PHF1 and PHF19 has also been 

reported to recognise H3K36me2 (Brien et al., 2012; Musselman et al., 2012a). 

Relatively little is known about the roles and genome wide profiles of this 

particular histone PTM, however it has recently been reported that the 

H3K36me2 methyltansferase, NSD1, directly interacts with PRC2  (Streubel et 

al., 2018). NSD1 mediated H3K36me2 co-locates with H3K27me2 at broad 

intergenic regions of the genome, thereby facilitating demarcation of H3K27me2 

and H3K27me3 domains in ESCs. PRC2 catalyses all H3K27me2, but is not 

found to be enriched at the intergenic sites that harbour this PTM (Ferrari et al., 

2014; Hojfeldt et al., 2018). The ability of PCL proteins to recognise H3K36me2 

may speculatively point to a role in the promotion and/or maintenance of 

H3K27me2 and the demarcation of H3K27me2/3 regions genome wide, which is 

absolutely essential to support proper gene expression profiles. MTF2 and 

PHF19 both have both been reported to be important for differentiation of ESCs 

to embryoid bodies (EB bodies) as knockdown of either gene perturbed normal 

differentiation. This differentiation phenotype as well as the widespread loss of 

H3K27me3 associated with loss of PCL in ESCs are only rescued by proteins 

carrying intact, functional Tudor domains (Brien et al., 2012; Cai et al., 2013).  

 

PCL proteins also contain two other highly conserved PHD domains with putative 

chromatin binding abilities, whose functions have yet to be established. However, 

recently a highly conserved extended homologous region C-terminal to the 

second PHD domain has been reported to exhibit a winged-helix like transcription 

factor structure, and to exhibit binding affinity for DNA (Choi et al., 2017; Li et al., 

2017; Perino et al., 2018) (Figure 1.6). One particular recent study reported that 

PHF1 can prolong the residency time of PRC2 on DNA and chromatin (Choi et 

al., 2017). The DNA binding ability of PHF1 accounts for this extended PRC2 

residence as an elegantly selected combination of mutations in the winged helix 

(WH) domain abolished this binding. This increased tethering of PRC2 to DNA 
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and chromatin also makes PHF1-PRC2 a more effective methyltransferase than 

PRC2 on its own (Choi et al., 2017). This well designed study establishes that 

the interaction of PCL proteins with DNA provide the predominant tethering 

affinity for PRC2 with chromatin and suggest a mechanism for how PCL proteins 

boost the methyltransferase activity of PRC2. There have been contrasting 

reports regarding the sequence specificity of this PCL-WH-DNA interaction, with 

two studies suggesting that PCL proteins bind to a non-methlyated CpG 

sequence motif. Studies by Li et al, and Perino et al, have reported that the 

PHD2-WH of PCL proteins preferentially bind DNA sequences centred on a CpG 

dinucleotide (Li et al., 2017; Perino et al., 2018), however contrasting results have 

been published suggesting that PCL binds DNA in a sequence non-specific 

fashion (Choi et al., 2017). Indeed, Perino et al suggested that the PCL-WH 

domains have a preference for particular DNA structural and helical properties 

(Perino et al., 2018). Given that the PCL-WH-DNA interaction is relatively weak 

(kd = ~30µM), and that DNA sequence and its associated helical shape are 

difficult to disentangle, the binding is unlikely to be affected by specific DNA 

structural conformations. Furthermore, this phenomenon remains to be 

independently validated. In either case, what is clear is that this highly conserved 

WH domain increases tethering of PRC2 to chromatin allowing for a longer 

residency time and increased catalytic activity. This potentially provides a 

targeting mechanism to enhance random genomic sampling by core PRC2 

components.  

 

The roles of Polycomb-like genes during mammalian development have been 

highlighted by two independent in vivo knockout studies (Li et al., 2011; Rothberg 

et al., 2018). These independent studies report contrasting Mtf2 in vivo knockout 

phenotypes. Li et al suggest that mice carrying an Mtf2 gene trap cassette that 

abolishes all Mtf2 isoforms do not present skeletal homeotic transformations, are 

viable and produce viable offspring (Li et al., 2011). However, a separate study 

by, Rothberg et al describe an MTF2 knockout mouse that results in embryonic 

lethality at E15.5 due to severe anaemia (Rothberg et al., 2018). It is difficult to 

reconcile these contrasting studies, but perhaps they could be explained by the 
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differing knockout strategies adopted in the studies. While Li et al employ a 

genetrap strategy inserted at exon 4 to abolish all MTF2 activity in vivo (Li et al., 

2011), Rothberg et al generated MTF2 null mice using LoxP gene targeted ESCs 

(Rothberg et al., 2018). There could also be some system specific redundancy 

exhibited between Phf1 and Phf19. In either case, although these in vivo studies 

present differing results, they both highlight the need for further comprehensive 

knockout studies on all three PCL proteins and re-affirm the biological importance 

of Polycomb-like proteins in normal PcG function during development. 

 

It is well established that PCL proteins contribute to normal PRC2 biology as 

individual loss of each of these proteins by shRNA mediated knockdown or 

knockout leads to a reduction in H3K27me3 a reduction of core PRC2 

components from chromatin (Ballare et al., 2012; Brien et al., 2012; Li et al., 

2017; Perino et al., 2018). However, the question of functional redundancy 

between the three PCL proteins still remains in all of the studies performed to 

date. Even though the PCL genes are differentially expressed in various cells 

types, low level expression of the unperturbed PCL genes may partially 

compensate. Further genome-wide in vivo studies will need to be performed in 

order to establish the relevant contributions of each PCL proteins and their 

individual domains to overall PRC2 function and biology. 

 

1.9 PRC2 and H3K27 methylations in cancer 

Over the past decade, the emergence of next generation sequencing 

technologies have revealed the genomic landscapes of many forms of human 

cancers (Cancer Genome Atlas, 2015). This led to the remarkable realisation that 

a large proportion of cancers have mutations in genes encoding chromatin 

regulators (Dawson and Kouzarides, 2012). A seminal comprehensive analysis 

by Vogelstein and colleagues in 2013 examined the most common types of 

mutations and biological processes most frequently associated with cancer 

“driver” genes (Vogelstein et al., 2013). This highlighted that out of 140 cancer 

“driver” genes, 30 of these genes encode chromatin regulatory proteins. A 

prominent chromatin regulator whose functions is perturbed in cancer is the 
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SNF5 (SMARCB1) tumour suppressor gene. SNF5 is found be recurrently 

biallelically inactivated in an aggressive paediatric malignancy known as 

malignant rhabdoid tumours (MRTs). The protein product of SNF5 is a 

component of the BAF complex, a large multimeric nucleosome remodelling 

complex. The BAF complex is known to be associated with active enhancers and 

H3K27Ac, as such it opposes and has an antagonistic relationship with Polycomb 

function (Wilson et al., 2010). In addition to SNF5, several studies have reported 

frequent inactivation of other BAF complex members in other tumour types 

including breast, lung and colon carcinomas (Kadoch et al., 2013). 

 

Multiple cancer genome sequencing studies have revealed that PRC2  and 

associated H3K27 methylations are frequently disrupted in human cancers (Helin 

and Dhanak, 2013) (Table 1.1). EZH2 was reported in 2003 to be regulated by 

E2F downstream of the pRB pathway, and overexpressed in many human 

tumours (Bracken et al., 2003). Since then, recurrent heterozygous point 

mutations in the EZH2 catalytic SET domain have been reported in several types 

of human cancers, including B-cell lymphoma and follicular lymphoma (Bodor et 

al., 2013; Huether et al., 2014; McCabe et al., 2012a; Morin et al., 2010) (Table 

1.1). These specific mutations have been described as “change-of-function” 

mutations, which confer an enhanced ability of PRC2 to convert H3K27me2 to 

H3K27me3 (Sneeringer et al., 2010). As a consequence, cancers harbouring 

these mutations have aberrantly high levels of H3K27me3 and reduced 

H3K27me2. How exactly this change of EZH2 function contributes to cancer 

progression is not fully understood but it has been reported that although the 

abundancy of H3K27me3 increases, it is also widely redistributed across the 

genome resulting in a massively reorganised transcriptional and chromatin 

landscape (Souroullas et al., 2016). The discovery that EZH2, EED and SUZ12 

are deleted and contain inactivating mutations in leukaemia’s and malignant 

peripheral nerve sheath tumours (MPNST) was initially surprising, as PRC2 

function was considered to be oncogenic (Ernst et al., 2010; Lee et al., 2014; 

Nikoloski et al., 2010; Zhang et al., 2014a). Tumours with these particular “loss 



Table 1.1 Mutations of PRC2 members and histone H3 genes in cancer.
 

Mutations in PRC2 members and Histone H3 coding genes in cancer

Gene Aberration  Cancer  type  (frequency  %)  H3K27  methylation status 

EZH2 ‘change of function’ mutations
EZH2 pTyr646X Lymphoma (9–24%), parathyroid

adenoma (1%), ALL (2%),
melanoma (2%)

Elevated H3K27me3
Reduced H3K27me2

pAla677Gly Lymphoma (1–2%), Ewing sarcoma
(5%)

Elevated H3K27me3
Reduced H3K27me2

pAla687Val Lymphoma (1–2%) Elevated H3K27me3
Reduced H3K27me2

PRC2 loss of function mutations
EZH2 Homozygous

mutation
Leukemia (4%), myeloid disorders
(1–3%)

Reduced H3K27me3 

Heterozygous
mutation

Leukemia (1%), myeloid disorders
(6%)

Reduced H3K27me3 

SUZ12 Mutation  MDS/MPN  (1–3%), leukemia (2–3%)
MPNST (4–25%)

Reduced H3K27me3 

Heterozygous
deletion

MPNST (15–22%) Reduced H3K27me3 

Heterozygous
deletion and mutation

MPNST (16–26%) Reduced H3K27me3 

Homozygous
deletion

MPNST (12%) Reduced H3K27me3 

EED Heterozygous
deletion and mutation

MPNST (2–5%) Reduced H3K27me3 

Heterozygous
deletion

MPNST (3–14%) Reduced H3K27me3 

Homozygous
deletion

MPNST (10%) Reduced H3K27me3 

AEBP2 Mutation  Leukemia (1%), MPNST (7%) Reduced H3K27me3
     

 

Histone H3  mutations
H3F3A pLys27Met  mutation  High grade glioma (18–71%), low

grade glioma (1–2%), leukemia (1%)
Reduced H3K27me3
Reduced H3K27me2

HIST1H3B pLys27Met  mutation  High grade glioma (3–18%) Reduced H3K27me3
Reduced H3K27me2

Other PRC2 associated genetic lesions
EZH1

PHF1

pGln571Arg Autonomous Thyroid Adneoma (ATA)
(27%)

Increased H3K27me3
Decreased H3K27me2

Gene fusion with
JAZF1 [t(6:7)(p21;p22)]

Endometrial stromal sarcomas (ESS) Unknown

SUZ12 Gene fusion with
JAZF1 [t(7:17)(p15;q21)]

Endometrial stromal sarcomas (ESS) Decreased H3K27me3
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of function” PRC2 genetic lesions exhibit reduced levels of both H3K27me2 and 

H3K27me3 (Conway et al., 2015) (Table 1.1).  

 

Due to the prevalence of PRC2 dysregulation in cancer, several small molecule 

SAM competitive catalytic inhibitors have been developed specifically targeting 

EZH1/2 methyltransferase activity (EZH2i). EZH2i drugs have been shown to 

have efficacy in vitro reducing proliferation rates in B-cell lymphoma cancer cell 

lines with EZH2 SET domain mutations (Knutson et al., 2012; McCabe et al., 

2012b; Qi et al., 2012). These targeted inhibitors showed initial promise and as 

such are the subject of major clinical trials in lymphomas and MRTs, which have 

an increased dependency on PRC2 in the absence of SNF5 and BAF complex 

perturbation (Brien et al., 2016). Phase 1 clinical trials have yielded great initial 

promise in the treatment of diffuse large B-cell lymphoma (DLBCL), with 38% 

(8/21) of patients showing an objective response (Italiano et al., 2018). However, 

it has been in follicular lymphoma, previously thought to be “incurable”, where 

targeted EZH2i has shown the greatest efficacy (Makita and Tobinai, 2018). 

Preliminary results of a phase two clinical trial of Tazemetostat in follicular 

lymphoma have reported that 92% (12/13) of patients with EZH2 mutations had 

an objective response to treatment, compared with 26% (14/54) in those who did 

not carry an EZH2 mutation (Makita and Tobinai, 2018). These very promising 

preliminary results suggest that targeted therapies against “change-of-function” 

EZH2 mutations may have real benefit in the treatment of previously incurable 

cancers. However, a potential caveat to consider with these targeted therapies, 

is that EZH2 is deleted in T-cell leukemias (Ntziachristos et al., 2012) and so care 

will have to be taken to avoid secondary cancer formation. 

 

Another example of PRC2 dysregulation in cancer are the recurrent point 

mutations at lysine 27 of Histone H3 (to methionine – H3K27M) in pediatric 

diffuse intrinsic pontine gliomas (DIPGs) (Sturm et al., 2012; Wu et al., 2012). 

Multiple copies of the Histone H3 gene exist in humans, however, the highly 

recurrent heterozygous, dominant negative H3K27M mutations occur in only two 

of fifteen H3 genes, which is particularly remarkable considering these gliomas 
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exhibit global reductions in H3K27me2 and H3K27me3 (Lewis et al., 2013). While 

the mechanism of how these mutations affect PRC2 activity remains somewhat 

elusive, initial studies suggested that H3K27M acts as a dominant negative to 

sequester and block the activity of PRC2  (Lewis et al., 2013). This mechanism 

was backed up by structural studies which report that the H3K27M peptide 

occupies the active site of EZH2 and exhibits tighter PRC2 binding than a 

canonical H3K27 peptide (Justin et al., 2016). However, this model has recently 

been challenged by reports that H3K27M point mutations excludes PRC2 from 

chromatin (Piunti et al., 2017). While, the mechanism of exactly how these 

mutations contribute to cancer remains debatable, a recent comprehensive study 

showed that H3K27M-expressing gliomas require PRC2 for proliferation, and that 

EZH2i abolishes tumour growth through a p16INK4A dependent mechanism 

(Mohammad et al., 2017). This suggests that inhibition of PRC2 is a potential 

therapeutic strategy for treatment of pediatric DIPGs (Mohammad et al., 2017). 

 

Despite the promising preliminary results from EZH2i clinical trials, two recent 

studies have found that B-cell lymphoma cell lines with EZH2 “change-of-

function” mutations grown under the selective pressure of EZH2i develop specific 

drug resistant point mutations (Baker et al., 2015; Gibaja et al., 2016). 

Interestingly, these mutations occur on the wild-type allele and have been 

reported to alter affinity of the drug for the active site (Brooun et al., 2016). 

Therefore, as with many targeted therapies, resistance mutations similar to this 

are a major problem to be overcome in the treatment of cancers (Holohan et al., 

2013). This is elegantly illustrated by the fact that drugs targeting the activity 

BCR-ABL fusion oncogene in Chronic Myeloid Leukemia (CML), are now in their 

second and third generation of targeted therapies, due to the fact that single 

amino acid changes occur in the kinase domain of resistant cancer clones 

(Holohan et al., 2013; Shah et al., 2004). Drugs targeting the H3K27me3 binding 

function of EED have recently been developed and represent a very promising 

pathway for targeting PRC2 outside of the catalytic activity of EZH2 (He et al., 

2017; Qi et al., 2017). The mechanism of action of these allosteric inhibitors is 

not yet fully understood and will be explored in detail in Chapter 4. 
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1.10 New ways to target the PRC2 complex in cancer    

Given the reports of EZH2i resistance mutations in vitro, it is anticipated there 

will be similar consequences for patients with diffuse large B-cell lymphoma, 

follicular lymphoma and MRTs. Therefore, there is a pressing need to find 

alternative strategies to inhibit EZH2 and PRC2 in various cancer types. As 

mentioned above, PRC2 can associate with a number of different accessory 

proteins in a substoichiometric manner, such as JARID2, AEBP2, EPOP, 

PALI1/2 and PCL1-3. These proteins are known to modulate PRC2 function and 

could be exploited to find novel ways of targeting PRC2 activities. Recently it has 

been reported that specific combinations of these accessory components 

compete for binding pockets on core subunit SUZ12 (Chen et al., 2018; Youmans 

et al., 2018). Small molecules targeting these binding pockets on SUZ12 may 

represent a way of modulating PRC2 subcomplex association in cells to favour a 

less or more active PRC2 depending on the underlying genetic background of 

the cancer. I believe that Polycomb-like1-3 represent and excellent avenue to 

explore alternative PRC2 targeted therapies. Therefore, in addition to their roles 

in cell fate decisions during differentiation and development, the comprehensive 

study of Polycom-like proteins may hold promise for future targeted cancer 

therapies.  

 

1.11 Aims of thesis 

The main aims of this thesis were to further study sub-functionalisation of 

Polycomb group proteins in vertebrates using both human and mouse cell 

systems. I aimed to do this by examining the various roles of the key PRC2 

accessory components, Polycomb-like proteins, in both differentiated human 

cells and pluripotent mouse ESCs. Polycomb-like proteins are essential 

conserved regulators of PRC2 activities and represent a unique avenue to study 

how the Polycomb system has evolved and acquired additional functions from 

Drosophila to higher eukaryotes.  
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Firstly, I explore the biochemical functions of PCL1 in the maintenance of cellular 

quiescence through a novel PCL1-p53 regulatory axis. Secondly, through the 

analysis of all three Polycomb-like proteins in cycling and quiescent human cells, 

I have defined a novel catalytically inactive form of PRC2 lacking SUZ12, that 

exists exclusively in quiescent cells. Thirdly, by analysing the effects of genetic 

knockout of all three Polycomb-like genes in ESCs, I characterise the roles of 

distinct classes of PRC2 subtype assemblies, PRC2.1 and PRC2.2.  
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2.1 Cell Culture 
 

2.1.1 Culture conditions for various cell lines 
IMR90 primary fibroblasts were cultured in DMEM supplemented with 10% FBS 

(Gibco), 100 U/mL penicillin (Gibco) and 100 U/mL streptomycin (Gibco). For 

serum starvation experiments, serum was removed from fibroblasts at ~75% 

confluence for 120h. Media was changed at 24h intervals until 120h, at which 

point cells were re-stimulated to enter the cell cycle by addition of media 

containing 10% or 20% (v/v) FBS for 24h. 

 

Insect cells (Sf9 and High Five) were cultured in Hinks TNMFH (sigma) 

supplemented with 10% FBS (Gibco) and 0.5% Gentamycin (Sigma). p53-GOF 

breast cancer cell lines (BT-549 and MDA-MB-469) were cultured in DMEM 

supplemented with 10% FBS (Gibco), 100 U/mL penicillin (Gibco) and 100 U/mL 

streptomycin (Gibco) and 1:100 non-essential amino acids (Gibco).  

 

Embryonic stem cells were grown on gelatinized culture dishes in GMEM (Sigma) 

supplemented with 10% ES qualified FBS (Millipore), 100 U/mL penicillin, 100 

U/mL streptomycin (Gibco), 50 µM b-mercaptoethanol (sigma), 1:100 GlutaMax, 

1:100 non-essential amino acids (Gibco), 1mM sodium pyruvate (Gibco) and 

1:500 homemade leukemia inhibitory factor (LIF). For Embryoid body 

differentiation experiments, 2x106 ESCs were washed three times in DPBS 

(Lonza) and seeded onto non-adherent petri dishes in ESC media without LIF. 

The media wash changed every two days (-LIF). For LIF/2i growth conditions, 

ESCs were cultured in 1:1 Neurobasal:DMEM/12 media, 10% ES qualified FBS, 

100 U/mL penicillin, 100 U/mL streptomycin (Gibco), N-2 supplement 

(0.5%)(Gibco 17502-048), B27 (1%)(Gibco 17504-044) and 1:500 homemade 

leukemia inhibitory factor (LIF).  The GSK inhibitor CHIRON99021 (Millipore) and 

MEK inhibitor (PD0325901) were also added at final concentrations of 3 µM and 

1 µM respectively. Knockout of Pcl1/3 genomic loci was induced by addition of 

0.5 µM 4-OHT. After 72 hours cells were harvested and PCRs on genomic DNA 

performed to confirm ablation of targeted genomic regions.     



 43 

2.1.2 3T3 growth assays 
3T3 growth assays were conducted as follows. 1x106 cells were plated on 

150mm plates, 3 days later, the total number of cells was counted and 1x106 

cells were plated again. The cumulative increase in cell number was calculated 

according to the formula ‘Log(Nf/Ni)/Log2’ where Ni and Nf are the initial and final 

numbers of cells plated and counted after 3 days, respectively. 

 

2.1.3 RNA interference 
Cells were seeded 24h prior to transfection, and transfected at 30–50% 

confluence with 20µM siRNA–Ctrl (SIC001), siRNA–TP53#1 (custom, target 

sequence –TGTTCCGAGAGCTGAATGA), siRNA–TP53#2 (custom, target 

sequence –GTGCAGCTGTGGGTTGATT), siRNA–PCL1#1 (custom, target 

sequence –CACACACCGGCACTTTCATAC), siRNA–PCL1#2 (custom, target 

sequence – GCAACCGACAGCAGAGTTA). Cells were transfected using 

Lipofectamine RNAi MAX (Invitrogen) in accordance with the manufacturers in 

instructions. For experiments involving serum starvation, serum was removed 

from transfected cells 16h post transfection. 

 

2.2 Recombinant Proteins 
 
2.2.1 Cloning and plasmid generation 

Full length ORFs of PCL1, EZH1, EED and SUZ12, were PCR amplified (primers 

available upon request) from cDNA generated from either HMECs or HEK293T 

human cell lines. All PCR products were inserted into the pCR8/GW/TOPO 

Gateway cloning entry vector (Invitrogen). All ORFs were subsequently sub-

cloned into Gateway compatible expression vectors by recombination using LR-

Clonase enzyme (Invitrogen).  

 

2.2.2 Purification of GST-fusion proteins  
PCL1/2/3-PHD1 wild-type and mutant fragments were cloned into the pGEX6P1 

expression vector. Sequence verified clones were transformed into protease 

deficient E. coli strain BL21–DE3. Colonies were picked and grown as started 

cultures overnight at 37°C in 10mls of TP media. The next day the 10ml started 



 44 

cultures were inoculated into 500mls of pre-warmed TP media. These cultures 

were grown for 3 hours at 37°C until OD600 was between 0.4- 0.6. Protein 

expression was induced with 0.5 mM IPTG and cultures were grown overnight at 

20°C. Cell pellets were harvested and lysed in PBS containing 0.25% Triton X-

100 and protease inhibitors. Lysates were precleared by centrifugation at 

20000rpm for 45mins, and pre-cleared lysates were incubated with Glutathione-

agarose beads (Pierce) overnight at 4°C. Beads were washed extensively in 

wash buffer (PBS, 350 mM NaCl, 0.25% Triton X-100) and bound GST-fusion 

proteins were eluted using the same buffer following the addition of 20 mM 

Glutathione (Sigma).  

 

2.2.3 Baculovirus production and purification of G0-PRC2, PCL1-PRC2 and 
EED-PRC2 recombinant complexes 

Recombinant baculoviruses for Flag/His-PCL1 and Flag/His-EED (N-terminal 

tag) as well as untagged EZH1, SUZ12, and EED were generated in Spodoptera 

frugiperda, Sf9 cells. Briefly, a baculovirus transfer vector (pVL1392) containing 

either PALI1 or LCOR coding ORFs and a linearised baculovirus DNA construct 

(Allele Biotech #ABP-BVD-10001) were co-transfected into Sf9 cells. The 

supernatants were collected from transfected cells 10 days after transfection 

(passage 1 [P1]) and passaged to P3, which were used for subsequent 

recombinant protein purifications. Defined combinations of Flag/His-PCL1 or 

Flag/His-EED and untagged PRC2 components were then expressed in 

Trichoplusia ni, High Five, cells. The cells were incubated at 28°C and harvested 

44-48hr post infection, washed twice in PBS and lysed in BPL2B buffer (20mM 

Tris, 500 mM NaCl, 20% Glycerol, 4 mM MgCl2, 3 mM β-mercaptoethanol, 

0.05% NP40, 2 μg/mL Aprotonin, 1 μg/mL Leupeptin, 1 mM PMSF). Lysates 

were sonicated and cleared by centrifugation for 30min at 20,000g. The 

supernatant was loaded onto Ni-NTA His resin (Novagen #70666) and incubated 

for 3hrs rotating at 4°C. Ni-NTA His resin was then washed a number of times in 

BPL2B buffer to remove non-specific interactions. The His-tagged protein 

complexes were subsequently eluted in Elution buffer (350 mM Imidazole, 50 

mM Tris, 5 mM MgCl2, 150 mM NaCl, 0.05% NP40). Eluted fractions were 
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analysed by SDS-PAGE and were subsequently snap frozen in liquid nitrogen 

(+20% glycerol).  

 

2.3 RNA and Protein Analysis 

 
2.3.1 RNA preparation and RT-PCR analysis. 

Total RNA was extracted using the RNeasy kit (Qiagen) and cDNA was 

generated by reverse transcription PCR using the TaqMan Reverse Transcription 

kit (Applied Biosystems). Relative mRNA expression levels were determined by 

the SYBR Green I detection chemistry (Applied Biosystems) on the ABI Prism 

7500 Fast Real–Time PCR System. The levels of RPLPO was used as a 

normaliser. The data and graphs presented here a representative sample of 

three biological replicates. Error bars on graphs indicate standard deviation of 

individual triplicate qPCR data. 

 

2.3.2 mRNA expression analysis during hematopoiesis 

Gene expression analysis of PRC2 components in hematopoietic lineages was 

performed essentially as described previously. (Seita et al., 2012; Xu et al., 

2015). https://gexc.riken.jp/ 

 

2.3.3 RNA-Seq and bioinformatic analysis 
RNA-Seq libraries were prepared using the NEBNext Ultra RNA library prep kit 

for Illumina (E7770L) according to manufacturer’s instructions. Prior to starting 

library prep RNA concentrations were measured on a Qubit 3.0 and RIN scores 

calculated using an RNA ScreenTape (Agilent) (RIN >8.5). A total 1µg of high 

quality RNA was used for library preparation. Following adaptor ligation, DNA 

was PCR amplified for 8 cycles. DNA purification was then performed using 

NEBNext Sample Purification Beads (E7767S). The quality of cDNA libraries was 

analysed on a High Sensitivity D1000 Screen Tape (Agilent). The resulting 

libraries were then used for cluster generation and sequencing using an Illumina 

NextSeq 500 (ID: NB501524), with 75bp read length. Sequencing reads were 

quantified by pseudo-aligning to the mouse reference transcriptome 
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(GRCm38/mm10) using kallisto (Bray et al., 2016). Sequence reads were 

aggregated into a count for each gene using tximport (Soneson et al., 2015). 

Differentially expressed genes were identified using DESeq2 (Love et al., 2014) 

. Sequence tracks were generated by aligning reads to the mm10 reference 

genome using HISAT v2.0.5 (Pertea et al., 2016). Resulting bedGraph files were 

converted to bigwig format and scaled using hits per billion with the bamTobw.sh 

utility (Zhu et al., 2013) for visualization on the UCSC Genome Browser. AEBP2 

positive genes were determined in the same manner as for the ChIP-seq analysis 

above. To visualize the relationship between changes in ChIP enrichment of 

H3K27me3, JARID2, AEBP2 and EPOP, in ESCs, and gene expression, in EBs 

at Day 4 and 8, in PCL WT and KO cells, the log2 fold change of each ChIP was 

computed for the promoter regions (TSS ± 2.5kb) and plotted against the log2 

fold change in gene expression. All bioinformatic analyses of RNA-Seq datasets 

was performed by Dr. Darren Fitzpatrick of the Bracken Lab.  

 

2.3.4 Preparation of whole cell protein lysates and Western blotting 
Cells were scraped down to collect them, washed three times in PBS and 

resuspended in ice cold High Salt buffer (50 mM Tris-HCl, pH 7.2, 300 mM NaCl, 

0.5% (v/v) NP-40, 1 mM EDTA pH7.4, 2 μg/mL Aprotonin, 1 μg/mL Leupeptin, 1 

mM PMSF). Cells were then sonicated and incubated for 20 minutes at 4°C while 

rotating to ensure sufficient lysis. The lysates were then clarified at 14,000 RPM 

at 4°C for 25 mins. Protein lysates were then separated on SDS-PAGE gels and 

transferred to nitrocellulose membranes. Membranes were subsequently probed 

using the relevant primary (overnight at 4°C) and secondary (1 hr at room 

temperature) antibodies. Relative protein levels determined by 

chemiluminescence.  
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2.3.5 Antibodies 

 
 
2.3.6 Cellular Fractionations 

Human diploid fibroblasts or ESCs were lysed in 400  µL pre-extraction buffer 

(20 mM HEPES pH 7.2, 0.5% Triton X-100, 50mM NaCl, 3 mM MgCl2, 300 mM 

Sucrose, 2 μg/mL Aprotinin, 1 μg/mL Leupeptin, 1 mM PMSF). Incubate on ice 

Antibody Target Source Western Blot IP ChIP
PCL1 Abgent (AT3294a) 1:500 5 ug 2 ug
PCL1 ProteinTech (15663-1-AP) 1:500
PCL2 ProteinTech (16208-1AP) 1:750 5 ug 5 ug
PCL3 Brien et al., 2015 1:500 5 ug
EZH1 Merck (ABE2821) 1:1000
EZH2 BD43 (Pasini et al., 2004) 1:10
EZH2 AC22 (Bracken et al ., 2006) 5 ug 2 ug

SUZ12 Cell Siganlling (3737) 1:2000 1 ug
EED AA19 (Bracken et al ., 2003) 1:10
BMI1 DC9 (Bracken et al ., 2007) 1:20
RYBP Sigma-Aldrich (PRS2227) 1:1000

H3K27me1 Active Motif (61015) 1:2000 5 ug
H3K27me2 Cell Signalling (9728S) 1:2000 5 ug
H3K27me3 Active Motif (61017) 1:2500
H3K27me3 Cell Signalling (custom) 5 ug
H2AK119Ub Cell Signalling (8240) 1:2000 5 ug

H3K27Ac Merck (07-360) 1:1000
H3K36me2 Cell Signalling (2901) 1:5000
H3K36me3 Cell Signalling (4909) 1:1000
H3K4me3 Abcam (ab8580) 1:1000

H4K20me3 Abcam (ab9053) 1:1000
Histone H3 Abcam (ab1791) 1:50000 1ug

p53 D01 1:50
GST SantaCruz (B-14, sc-138) 1:500

CCNA2 BD Biosciences (611268) 1:1000
p16 JC8 1:8

GAPDH SantaCruz (sc-25778) 1:1000
PALI1 Merck (ABE1367) 1:500

JARID2 Cell Signalling (13594) 1:500 5 ug
AEBP2 Cell Signalling (14129) 1:500 1 ug
EPOP Beringer et al ., 2017 1:500 2ug

Mouse-IgG Millipore (12-371) 5 ug 2 ug
HA Cell Signalling (3724) 1:1000
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for 30 minutes. 200 µL of suspension was removed and labelled “Total extract”, 

200 μL of 2X SDS-PAGE sample buffer was added to the “Total extract”. The 

remaining lysate was clarified at 20,817 g in a 4°C centrifuge for 10 minutes. 

Supernatant was kept and labelled “Soluble”. 200  μL of 2X SDS-PAGE sample 

buffer was added to this “Soluble” fraction. The insoluble pellet was washed once 

in 1mL of pre-extraction buffer before resuspension in 200 μL of pre-extraction 

buffer and 200 µL of 2X SDS-PAGE sample buffer. All samples were boiled at 

99°C for 5 minutes before sonicating 3 times for 10 seconds at 60% amplitude. 

 

2.4 Immunoprecipitations 

 

2.4.1 Endogenous Co-Immunoprecipitations 
Human diploid fibroblasts or Embryonic stem cells were resuspended in Buffer C 

(20 mM HEPES pH 7.9, 0.2 mM EDTA, 1.5 mM MgCl2, 20% glycerol, 420 mM 

NaCl, 2 μg/mL Aprotonin, 1 μg/mL Leupeptin, 1 mM PMSF), sonicated 3x 15 

seconds and dounced 20 times with a tight pestle. Lysates were incubated for 20 

min rotating at 4°C and clarified by centrifugation at 20,817g at 4oC for 20 min. 

Lysates were dialysed for 5 hours at 4oC against 50 volumes of Buffer C100 (20 

mM HEPES pH 7.9, 0.2 mM EDTA, 1.5 mM MgCl2, 20% glycerol, 125 mM KCl). 

Lysates were again clarified by centrifugation at 20,817g at 4oC for 20 min. 5μg 

antibody was coupled to 20μL packed Protein A beads (Sigma) by incubation in 

1 mL PBS (0.1% Tween-20) at 4oC rotating overnight. Beads were collected by 

centrifugation at 5,440g at room temperature and washed twice in 1  mL 0.2 M 

Sodium Borate pH 9.0. Antibodies were then crosslinked to beads by incubation 

in 1 mL 0.2 M Sodium Borate pH 9.0 (containing 20mM dimethyl pimelimidate 

dihydrochloride) at room temperature rotating for 30 min. Reaction was 

quenched by washing beads once in 1mL 0.2 M Ethanolamine pH 8.0 and 

incubating for 2 hr at room temperature rotating in 1mL 0.2M Ethanolamine pH 

8.0. Beads were washed once in Buffer C100 and blocked for 60 minutes at 4oC 

rotating in Buffer C100 (0.1 mg/mL Insulin (Sigma), 0.2 mg/mL Chicken egg 

albumin (Sigma), 0.1% (v/v) fish skin gelatin (Sigma)). Antibody-crosslinked 

beads were incubated with protein lysates, in the presence of 250 U/mL 
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Benzonase nuclease, at 4oC rotating for 3 hours and washed 5 times in Buffer 

C100 (+0.02% NP-40). After the final wash beads were resuspended in 100 µL 

of SDS-PAGE sample buffer. Immunoprecipitated material was eluted by boiling 

for 5 min with shaking before centrifuging the beads at 20,817g for 5 minutes and 

keeping the resulting supernatant. 

 

2.4.2 Endogenous immunoprecipitations coupled with Mass Spec 
Endogenous EZH2 IPs were performed as described above. After final wash step 

beads were flash frozen until ready to complete mass spectrometry analysis. 

Label free quantification (LFQ) LC-MS/MS analysis was performed in 

collaboration with the Vermeulen lab, as described previously (Kloet et al., 2016). 

Mass Spectrometry analysis was performed in collaboration with the lab of 

Michiel Vermeulen (Radboud Institute for Molecular Life Sciences). 

 

2.4.3 Chromatin Immunoprecipitations (ChIP) 
Cells were washed once with PBS before crosslinking for 10 minutes with PBS 

containing 1% formaldehyde (Sigma). Crosslinking was quenched with 0.125M 

Glycine for 5 minutes before two PBS washes. The crosslinked cells were lysed 

in 6 mL of SDS-Lysis buffer (100 mM NaCl, 50 mM Tris pH8.1, 5 mM EDTA pH 

8.0, 0.02% NaN3, 0.5% SDS, 2 μg/mL Aprotonin, 1 μg/mL Leupeptin, 1 mM 

PMSF). Chromatin was pelleted by centrifugation at 1200RPM for 5 minutes at 

room temperature. The supernatant was then discarded, and the chromatin was 

resuspended in 3mL of ChIP buffer (2:1 dilution of SDS-Lysis buffer: Triton 

dilution buffer [100 mM Tris pH 8.6, 100 mM NaCl, 5 mM EDTA pH 8.0, 0.02% 

NaN3, 5% Triton X-100, 2 μg/mL Aprotonin, 1 μg/mL Leupeptin, 1 mM PMSF]). 

Chromatin was sheared to approximately 200bp-800bp fragments by successive 

30 second rounds of sonication at 5-8% amplitude. Sonicated chromatin was pre-

cleared for 30 minutes using equilibrated protein A beads (Sigma) that had been 

blocked in TE (10  mM Tris pH 8.1, 1 mM EDTA pH 8.0) containing 0.5 mg/mL 

BSA and 0.2 mg/mL Herring Sperm DNA. 10-100 µg (DNA) of chromatin was 

incubated overnight with antibody while rotating at 4°C. Following clarification, 

the chromatin was incubated for 3 hours with 50 µL of blocked protein A beads. 
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After incubation the beads were washed three times in Mixed Micelle Buffer (150 

mM NaCl, 20 mM Tris pH 8.1, 5 mM EDTA pH 8.0, 5.2% Sucrose, 0.02% NaN3, 

1% Triton X-100, 0.2% SDS), twice with Buffer 500 (0.1% Sodium Deoxycholate, 

1 mM EDTA pH 8.0, 50 mM HEPES pH 7.5, 1% Triton X-100, 0.02% NaN3), twice 

with LiCl detergent wash (0.5% Sodium Deoxycholate, 1 mM EDTA pH 8.0, 250 

mM LiCl, 0.5% NP-40, 10 mM Tris pH 8.0, 0.02% NaN3) and finally one wash 

with TE. Immunoprecipitated material was eluted from the beads with Elution 

buffer (0.1 M NaHCO3, 1% SDS) while shaking for 1 hour at 65°C. The 

supernatant was retained and incubated overnight at 65°C while shaking to 

reverse the crosslinks. The eluted complexes were then subject to RNase 

(Thermo Fisher) and Proteinase K (Sigma) treatment prior to DNA clean up by, 

Phenol Chloroform clean up and Ethanol precipitation. ChIP enrichment was 

analysed by qPCR using the SYBR Green I detection chemistry (M3003E NEB) 

on an Applied Biosystems Quant Studio 3 platform. The data and ChIP 

enrichments presented here a representative sample of three biological 

replicates. Error bars on graphs indicate standard deviation of individual triplicate 

qPCR data. 

 

2.4.4 ChIP-Rx and library preparation 

I also performed quantitative chromatin immunoprecipitation relative to a 

reference exogenous genome (ChIP-Rx) coupled with massively parallel DNA 

sequencing for the genome-wide mapping of histone modifications and PRC2 

components, as described previously (Orlando et al., 2014). For histone 

modification ChIPs, a total of 1.67% Drosophila chromatin was added to each 

lysate. Similarly, for PRC2 ChIPs, a total of 10% human chromatin (NT2) was 

added to each ESC lysate. Spike in chromatin was added at the beginning of the 

workflow and once exogenous and ESC chromatin were combined, the sample 

was treated as a single ChIP-Seq experiment until completion of DNA 

sequencing. Following the ChIP experiment, the precipitated DNA was quantified 

using the Qubit dsDNA High Sensitivity Assay Kit (ThermoFisher Q32854). A 

Total of 2-10 ng of DNA from each ChIP-Rx experiment was used for library 

preparation using the NEBNext Ultra II DNA Library Kit for Illumina (E7645) and 
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NEBNext Multiplex Oligos for Illumina (Set#1, NEB #7335). Following adaptor 

ligation, DNA was PCR amplified for 5-9 cycles, depending on amount of input 

DNA. DNA purification was then performed using NEBNext Sample Purification 

Beads (E7767S). The quality of DNA libraries was analysed on a High Senstivity 

D1000 Screen Tape (Agilent). The resulting libraries were then used for cluster 

generation and sequencing using an Illumina NextSeq 500 (ID: NB501524), with 

75bp read length. Sequencing reads were aligned to the mouse reference 

genome (mm10) using Bowtie v2.1.0 (Langmead and Salzberg, 2012). Only 

unique alignments were retained for downstream analyses. Sequencing reads 

were also aligned to the Drosophila and human genomes (dm6 and hg38) and 

normalisation factors calculated (Orlando et al., 2014). Ambiguous reads, i.e., 

reads that aligned to both reference and exogenous genomes were removed 

from all downstream analyses. Duplicate reads were removed using Picard. 

Bigwig files were generated at a resolution of 10bp using the bamCoverage utility 

from the deepTools suite (Ramirez et al., 2016) and data were subsequently 

visualised as ChIP-Rx normalised tracks using the UCSC genome browser. 

Peaks were called using MACS2 (Zhang et al., 2008) with FDR <0.05. All 

average plots were made using ngsplot (Shen et al., 2014). 
 

PRC2.1 only regions were defined as the set of PCL2 peaks that overlapped with 

EPOP and SUZ12 peaks but did not overlap with AEBP2 and JARID2 peak. 

Conversely PRC2.1 and 2.2 positive regions were defined as the intersection of 

PCL2, EPOP, JARID2, AEBP2 and SUZ12 peaks. All peak overlaps were 

computed using bedtools (Quinlan and Hall, 2010). PRC2.1 only regions were 

also filtered to include only regions that had a maximum of 50 AEBP2 or JARID2 

reads per region. To control for variability in antibody efficiency, PRC2.1 and 

PRC2.2 regions were normalised to one and those scaling factors applied to 

PRC2.1 only regions.  

 

Polycomb (PcG) targets were defined as those refSeq genes whose TSS +/- 2.5 

kb intersected with a PCL2 peak. All other genes were designated as non-targets. 

The numbers of reads mapping to PcG targets, non-targets and intergenic 
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regions were determined using featureCounts (Liao et al., 2014) and the 

distribution of these ChIP-Rx normalised read counts for PCL2, EPOP, AEBP2, 

JARID2, SUZ12 and H3K27me1/2/3 are represented as boxplots.  

 

To define narrow and broad peaks in each wild-type experiment, peaks within 

10kb of each other were merged into a single region. The distribution of the 

lengths of the resulting regions was partitioned into quartiles. Narrow and broad 

peaks were defined as those regions falling within the first and fourth quartiles, 

respectively. The number of reads mapping to narrow and broad peaks in the 

wild-type and knock-out conditions was determined using featureCounts (Liao et 

al., 2014) and the log2 fold change calculated using the spike-in normalised 

counts. The distributions of the fold change of ChIP signal in narrow and broad 

peaks was compared using a one-tailed Wilcoxon test. All bioinformatic analyses 

presented was performed by Dr. Darren Fitzpatrick of the Bracken Lab. 

 

 
 
2.5 In vitro Binding Assays 
 

2.5.1 In vitro peptide binding assays  

A custom made biotinylated p53 C-terminal domain peptide (residues 363-393, 

1 µg), was incubated with bound to streptavidin-agarose beads (Invitrogen) for 

2h at 4°C. GST-PCL1/2/3-PHD1 fragments (5 µg) were subsequently incubated 

with peptide bound beads in binding buffer (50 mM Tris-HCl, pH 7.5, 650 mM 

NaCl, 0.5% (v/v) NP-40 and 1 mM EDTA) for 30 min at 4 °C. Beads were then 

washed extensively in binding buffer, and bound protein eluted using 2× Laemlli 

dye. Eluted protein was analysed by western blotting.  

 

ChIP Antibody Broad Narrow ChIP Antibody Broad Narrow
Epop 2336 2336 Epop 2225 922

H3K27me3 1320 1319 H3K27me3 1151 435
Jarid2 1719 1722 Jarid2 1545 534
Aebp2 708 709 Aebp2 687 317
Pcl2 1609 1610 Pcl2 1569 805

Suz12 1668 1670 Suz12 1632 829

Peak numbers for Broad/Narrow Domains Gene numbers for Broad/Narrow Domains



 53 

2.5.2 Surface Plasmon Resonance (SPR)  
SPR experiments were performed at 25 °C using a series S sensor chip SA with 

a BiaCore T200 SPR instrument (GE Healthcare). All experiments were 

performed in HBS-EP running buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 

3mM EDTA, 0.05% (v/v) surfactant P20). Custom made biotinylated p53 C-

terminal peptide was diluted in running buffer to 1 µM and immobilized at a flow 

rate of 10 µl min-1 to a density of 1714 response units (RU). GST-PCL fusion-

proteins or GST control protein (at concentrations 10–160 nM) were injected onto 

the chip surface for 180 s at a flow rate of 30 µl min-1 . The dissociation phase 

was monitored for 180 s, and the chip surface was then regenerated between 

each consecutive cycle with a 120 s pulse of regeneration buffer (0.25% [w/v] 

SDS, 10 mM Glycine, pH 2). Individual sensorgrams were double-referenced 

against injection onto an empty flow cell, and GST-alone injections at equivalent 

concentrations. Data were fitted to a 1:1 Langmuir model using BIAevaluation 

analysis software (GE Healthcare). The observed results and apparent KD 

values were highly reproducible in replicate experiments. This analysis was 

conducted in collaboration with Dr. Darragh O’Donovan and Dr. David O’Connell 

of the UCD Conway Institute. 

 

2.6 Structural Modelling and Evolutionary Analysis 
 
2.6.1 Structural modelling of the PCL1 PHD1 domain  

The conformational propensity of the PCL1 PHD1 domain was studied by 

molecular dynamics (MD) simulations and clustering analysis. All these 

calculations were run with the GROMACS simulation package (Hess et al., 

2008), version 4.6.3. The PHD1 domain was built by homology modelling (HM) 

with the MODELLER software package (Eswar et al., 2006). The structure of the 

PHD domain of TRIM24 (PDBid 1O37) was used as single template due to its 

optimal structure and sequence alignment to the target. Additionally, I was 

particularly interested in the comparison to the TRIM24 PHD domain as this was 

co-crystallized with its unmodified H3(1-10)K4 peptide substrate (Tsai et al., 

2010), providing clues to the interaction between the PCL1 PHD1 domain and its 
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p53 substrate. The HM procedure produced 5 structures and the 2 structures 

with the lowest discrete optimized protein energy (DOPE) score were chosen as 

starting structures for MD. The proteins termini were capped with acetyl (ACE) 

and N-methylamide (NME) residues to avoid endcharge effects. The 

AMBER99SB-ILDN force field (Lindorff-Larsen et al., 2010) was chosen to 

represent the protein atoms and counterions in all MD simulations, while water 

molecules were represented by the TIP4P-Ew (Horn et al., 2004) potential. 

During the MD simulations the temperature was held constant at 300 K by a 

Langevin thermostat (Grest and Kremer, 1986) with coupling time constant of 0.1 

ps. The Berendsen barostat ( was used to hold the pressure constant at 1 bar, 

with a time constant of 0.5 ps. The equations of motion were integrated using a 

leap-frog stochastic dynamics integrator with a 2 fs timestep. The linear 

constraint solver (LINCS) was used to constrain all bonds with hydrogen atoms 

(Blomberg and Siegbahn, 2012). Long range electrostatics were treated with the 

Particle Mesh Ewald (PME) method (York et al., 1993; Essmann et al., 1995). 

The maximum spacing for the Fast Fourier Transform (FFT) grid was chosen as 

1 Å. In all simulations cutoff values for Coulomb were set to 12 Å and van der 

Waals interactions were switched off also at 12 Å. The protein was initially 

centred in a cubic periodic box with minimum distances between the protein and 

the box edges equal to 1.3 Å. The total charge was neutralized by the addition of 

two Na+ counterions with the genion tool available in GROMACS. The positions 

of hydrogen atoms, counterions and water molecules was optimized through 

500000 steps of steepest descent algorithm. Then the system was equilibrated 

for 500 ps in the NVT and in the NPT ensembles, respectively. During both of 

these equilibration steps only water molecules and counterions were left 

unconstrained. The protein sidechains, except for the sidechains coordinating the 

two Zn2+ atoms, were equilibrated for 5 ns and subsequently all backbone atoms 

were also equilibrated for 5 ns, except for the backbone of the residues 

coordinating the two Zn2+ atoms and the residues immediately adjacent to these. 

The position of the Zn2+ atoms have been constrained during all MD simulations 

and the coordination sphere was maintained through distance restraints, where 

the corresponding distances in the TRIM24 PHD were used as equilibrium 
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values. Structure clustering was performed with the GROMACS tool g_cluster. 

Clusters were identified by means of the GROMOS algorithm (Daura et al., 1999) 

with a RMSD cut-off value of 1.5 Å. This structural modelling of the PCL1-PHD1 

domain was conducted in collaboration with Dr. Elisa Fadda of National 

University of Ireland, Maynooth. 

 

2.6.2 Evolutionary analysis  
A maximum likelihood phylogenetic tree of PCL proteins was generated using 

MEGA6 (Tamura et al., 2013) from a Clustal Omega alignment (Sievers et al., 

2011) of Drosophila and vertebrate sequences (Cunningham et al., 2014; 

Venkatesh et al., 2014). This evolutionary analysis was conducted in 

collaboration with Dr. Alan Rice and Prof. Aoife McLysaght of the Smurfit Institute 

of Genetics, Trinity College Dublin. 

 

2.7 Primers and Oligonucleotides 
 

2.7.1 Oligonucleotides 

 

 
 

 

 

PCR Primers Forward (5'-3') Reverse (5'-3')

hPHF1_PHD1
ATGGAACTCCTCTGTTGTG
TC

CTAGGTGGCGATCGCAAAG
AC

hPHF1_BD2
ATGGCACTCACCAGCTTCC
CT

CTATGCGGTGCTGGCAGAA
GG

hPHF19_PHD1
ATGGAGCCCAAGTGCAAC
ATC

CTACACAGCCAGTGCGAAG
AT

hPHF19_BD2
ATGAAGCTGCTGCCTGACA
AA

CTATCTGGAGTCATAGGAG
AG

hPHF1_S106I
GTCCCTGGGAACCGGCTG
GTCATCTGTGAGAAGTGTC
GCCATGCT

AGCATGGCGACACTTCTCA
CAGATGACCAGCCGGTTCC
CAGGGAC

hPHF1_S95G
CTCCTCTGTTGTGTCTGTC
GCGGTGAGACTGTGGTCC
CTGGGAAC

GTTCCCAGGGACCACAGTC
TCACCGCGACAGACACAAC
AGAGGAG
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2.7.2 RT-qPCR mRNA Primers 
 

 
 

RT-qPCR Primers Forward (5'-3') Reverse (5'-3')

mRplpo  mRNA TTCATTGTGGGAGCAGAC CAGCAGTTTCTCCAGAGC

mT mRNA CTTCGTGACGGCTGACAAC 
CA

GCGCCTGAGGCTCTGGTT
T G

mGata6  mRNA CAGCAAGATGAATGGCCTC 
AGC

CAAGCCGCCGTGATGAA
G G

mGata4  mRNA GCGGAGTGGGCACGTAGA
CG

GCGGAGTGGGCACGTAG
ACG

mFgf5  mRNA ACAGCGCTTGGGCTCACG
G

GGAGTCTCCCGGGTTCCT
AGGA

mHoxA1  mRNA AACAAGTACCTTACACGAG
CGCGC

CTTCACCTGGGTCTCATT
GAGCTG

mFgf17  mRNA CGCCTGCTGCCTAACCTTA
C

GCCCTGGTCCCTCACGT
AC

mPhf1  Exon1 GGCTGAGCCGTTTGGGTGC GGAGCAGGGGAAGCTGG
ATCC

mPhf1  Exon2 GGACAGTGCTCGAGAGGT
GTGTCT

CCAGAAACTGGGAATCGT
CCTCAA

mPhf1  Exon9 TGGATGTGGCCCATCTTGT
CC

GGGAGGATCTCTCGGTCA
AAATCAA

mPhf1  Exon12 CTGGGGGAGGGGTCTCAC
GT

TCCGACCTCCATCGTTTC
CC

mPhf19  Exon1 CCAGGGACTCTGGAAGCC
TTTGG

AGGCCCCCCTTGTTAGGA
CTG

mPhf19  Exon2 CAGGTCAGCAGTCCTAAGC
AAAGC

CTTCCACAGGACCCAGTA
TTTGGA

mPhf19  Exon7 AGGTGGTACCTTCGGATGC
TACAGT

CCTCATGGAACCACTGC
CTACACC

mPhf19  Exon9 TTCACCTGGCTCTCTATAA
CTTGGGA

TCAAAGTCAAAGTACCGC
TTCTTGCT

hPHF1  mRNA CTTTGGGAGGGTCAAGATG
TG

TGGTACCCAAGTATAGCA
GCCC

hMTF2  mRNA CCAGAAAAAGAACGCGTAC
AGG   

CTTCTCCGCAAATGTGGT
ATTG

hPHF19  mRNA CAATGAGCCCATGATGTTT
GG 

CTGGTTACACACGGAGCA
GAAG

hEZH2  mRNA GCCAGACTGGGAAGAAATC
TGAGAA

AGCTGTCTCAGTCGCATG
TACTCTGA

hSUZ12  mRNA GTGAAGAAGCCGAAAAT
GGAGCAC

TCAAAGGCCTGGAGGA
AAAGCT

hEZH1  mRNA TAAATTGCACGCGTTTAGG
CTG

TCAGATACCCTCTGCCAG
TGTG

hCDKN1A (p21) 
mRNA

GACTTTGTCACCGAGACAC
CACTGG

GGTAGAGCTTGGGCAGG
CCA

hCCNA2  mRNA TGCAGAAAGTATTGGGTAA GCATCTAGTTTTGAAAGT
CCTT

hTP53  mRNA CGCTTCGAGATGTTCCGAG GGCATCCTTGAGTTCCAA
GG

hEED  mRNA GGTACAAACACTGAACGCC
CTGAT

TTCCCCAACTTTTCCTTC
CAGG

hCDKN2A (p16) 
mRNA

AGAGGATTTGAGGGACAGG
GTC

CCTCTTTCTTCCTCCGGT
GC
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2.7.3 ChIP-qPCR Primers 
 

 

ChIP-qPCR Primers Forward (5'-3') Reverse (5'-3')
hINK4A_#1 AGAGGGTCTGCAGCGG TCGAAGCGCTACCTGATTCC

hINK4A_#2 GCCAAGGAAGAGGAATGAG
GAG

CCTTCAGATCTTCTCAGCATTC
G

hINK4A_#3 CAAGCTTCCTTTCCGTCATG
C

GCCAGAGAGAACAGAATGGTC
AGAGCCA

hCCNA2_ChIP TGACGTCATTCAAGGCGA GCTCAGTTTCCTTTGGTTTAC

hCDX4prom TCCTGTGAAAGTGAAATGGC
C GGGCTTCAGGCTTTTACATAGC

hFLT3_prom TCTCTTAAGGATGCGCGTCA
C CCCCTTCCACTTTGCACCAG

hMEOX2_ChIP GTTCCAGGCAGAAGACTTCA
CG

AGTGAAAAAGTGACAGAGGGTG
G

hOLIG2_ChIP AGCCACGGCCATCTCCTAG
AC

CAGGCACAAAGTCCCCACTAT
C

hRARB_prom CATCCCAGTCCTCAAACAG
CTC GGGTCTATTCTTTGCCAAAGGG

ATF3  Promoter TGTTTTTTCTTTTGCGTTTGG
C

TCGTGGCAACCAAATCTAAACA
G

hHOXD11_Prom-187F AGGACATTTCTCTTCATGGC
GTC

ATTCATCTTGATTGATTCTGGTG
G

mGata4  tss TCTTTCCTCCCTACTCTCAG
T GGTCC

TCACCTTCTCCTCTACCAGCC 
CC

mT tss TCCGCAGAGTGACCCTTTTT
C

TACCCAACAGCCACCTTCACT 
TC

mNkx2.9  tss TAAGGATGGAAGTGCGAGG
C TTCGCTCCAGCACTCATTCA

Meis2_denovo2.2_site1 TTATCCTGCCATCTGTCTTC
AAGAGC TGGCTAGTTAGTGATCTG

Meis2_denovo2.2_site2 TGCCATTACTTGAGACAGAG
CACCAC GAGGGAACATGAGTGGTC

Gm3942_denovo2.2_site1 CCTCATTTCTTCTCTCGCTC AATACCCTAGGGCAGTTG
mHoxb13  INT TCAATGTGCTGCCTTCTTCC TTCGGCTTGTGACTTGCAAG

mPou4f3  INT ATATGCAGCTTCACTCCTCA
GG AATGAAGGCACCACACATGC

mLrg1  INT TTTGGCTGGACACTGTGTTG ACAGGATGGATTTGCTGTGC

Utp6_GeneB TCTATGGCCTTACCCACTGC TGACACGTTTCTGCTTCCAG

Yy1_GeneB GAAGACCCAACTTCGGTTCA AGCTAGGAAGGGCGAAAGAC

Fbxl11_GeneB GGTGCACATAGAAGCCCTGT TACCTCAGCCGCAAAGAACT

Ccnd2_TSS GGCAGGTCCAGAGCTGTGC
ATAC CCGCGTTGGCACTTTGGC

Prmt8_TSS CGTCCTCCGCGACAATCGA
G TGCGAAGGGATGCGAGGC

HoxA1 GAGAAGGGGCACTGGGCGA
G TGGAGATTGCCGCGTCCC

Hoxd12 CCTGAGAGCCGCCCAATTG
G GTGTTGTGGGAGCCCGCG

Gapdh TSS AGTGTGCACCAAGGACATC
CAG CCCATTTTACTCGGGAAGCAG
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Chapter 3 
 

Polycomb-like 1 specifically binds to 
p53 through a divergent N-terminal 

PHD domain 
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3.1 Introduction 
 
Polycomb group complexes PRC1 and PRC2 have well defined chromatin 

associated roles in regulating embryonic development and the cell cycle. 

However, PcG proteins also have less well characterised roles in the control of 

cellular proliferation independent of chromatin association. An early example of 

this is the Drosophila PCGF homologue, Psc, which ubiquitinates and mediates 

the proteosomal degradation of the anaphase promoting complex (APC) member 

and mitotic regulator, Cyclin-B (Mohd-Sarip et al., 2012). In addition, the 

mammalian SCML2 gene encodes two isoforms; the chromatin and PRC1-

associated SCML2A and the predominantly nucleoplasmic, SCML2B. SCML2B 

has been shown to associate with CDK/CYCLIN/p21 and p27 complexes and 

participates in the G1/S cell cycle checkpoint by stabilising p21, resulting in 

decreased kinase activity and inhibited progression through the cell cycle 

(Lecona et al., 2013). These reports suggest that PcG group proteins do play a 

role in the regulation of proliferation, beyond canonical chromatin-associated 

gene repression. 

 

The first components of PRC2 to be linked with chromatin-independent roles in 

the regulation of cellular proliferation were the Polycomb-like proteins (PCL1-3) 

(Brien et al., 2015; Yang et al., 2013). In 2015, we characterised the functional 

bifurcation of PCL1-3 in regulating proliferation. We demonstrated that while 

PCL2 and PCL3 are E2F target genes, PCL1 is a p53 target gene and is highly 

expressed in non-cycling, quiescent cells. While all three PCL proteins are 

capable of recruiting PRC2 to directly repress INK4A, only PCL2 and PCL3 

confer an INK4A dependent growth advantage. In contrast, we showed that 

PCL1 has an INK4A- and PRC2-independent role in mediating proliferative arrest 

by binding to and stabilising the p53 protein (Brien et al., 2015). 

 

Previous work reported a direct interaction between PCL1 and p53 in cancer cell 

lines, and demonstrated that an N-terminal region encompassing the first PHD 

domain (PHD1) and a C-terminal region, termed “BD2”, mediate the ability of 

PCL1 to bind p53 and block MDM2 ubiquitination (Yang et al., 2013). A 
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comparison of the amino acid sequences of all three PCL proteins indicated that 

the PHD1 and BD2 regions of PCL1 have diverged from the equivalent regions 

of PCL2 and PCL3 (Brien et al., 2015). The main aim of this research chapter 

was to fully characterise the interaction of PCL1 and p53 and to identify the 

critical amino acids that mediate this binding. To achieve this, I employed a 

combinatorial approach including; structural modelling of the PHD1 domain, in 

vitro biochemical binding assays, as well as an evolutionary analysis of PCL1-3.  

 

It is known that prevalent p53 missense mutations abrogate its tumour 

suppressive function and lead to gain-of-function (GOF) mutations that promote 

cancer progression (Zhu et al., 2015). And so, the secondary aim of this chapter 

was to investigate the roles of PCL1 in p53-GOF dependent breast cancer cell 

lines, as a potential mechanism for disrupting the oncogenic activity of p53 in 

these cancers.  
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3.2 Results 
 

3.2.1 Structural modelling of the PCL1-PHD1 domain 
 
I sought to further explore the nature of the physical interaction between PCL1 

and p53. In particular, I was interested in investigating how PCL1 can specifically 

bind to p53, while PCL2 and PCL3 lack this ability. The PCL1 protein contains 

well characterised N-terminal structural domains, whereas its C-terminal region 

is less well characterised. Analysis of PCL1 using software that predicts the 

intrinsic order of a protein sequence (IUPred) reveals that the BD2 region of 

PCL1, known to play a role in binding to p53, is likely to be largely unstructured 

(Dosztanyi et al., 2005) (Figure 3.1A). In contrast, the Tudor and two PHD 

domains, known to function as well folded structural moieties, are predicted to be 

highly ordered. For this reason, I decided to focus our analysis on the well-

structured PCL1-PHD1 domain.  

 

The PCL1-PHD1 domain shares 38% sequence homology with the PHD domain 

of TRIM24. The PHD domain of TRIM24 is known to bind to unmethylated histone 

H3 (aa1-10) and the crystal structure of this interaction has been solved (Tsai et 

al., 2010). Intriguingly, the CTD domain of p53, the minimal region required for 

the interaction with PCL1, bears sequence similarity to Histone H3 (aa1-10). In 

order to elucidate potential amino acids involved in the interaction between PCL1 

and p53, I collaborated with structural biologists who performed molecular 

dynamics simulations of a homology model of PCL1-PHD1, based on the 

TRIM24-PHD-H3 (aa1-10) complex  (Figure 3.1B). This analysis revealed 

several amino acids that could be essential for the stability of the complex and 

determining the specificity of PCL1 for p53. Among these amino acids were two 

Serine residues (S95 and S106). A multiple sequence alignment of PCL1-3 

protein sequences revealed that these two Serine residues are unique to PCL1 

and are lacking in PCL2/3 (Figure 3.1C). 
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(B) Molecular dynamics (MD) simulations of ten of the dominant conformations of 
PCL1-PHD1 (grey). The PCL1-PHD1 structure was determined by homology 
modelling based on the TRIM-24-PHD domain in complex with unmodified H3 
(1-10) peptide. Zn atoms shown in cyan. Performed in collaboration with Dr. Elisa 
Fadda of NUI, Maynooth.  
(C) Multiple sequence alignment of the PHD domains of human PCL1-3 proteins. 
The divergent serine residues at position 95 and 106 identified from the MD simu-
lation are highlighted in red.

W
H

PCL1
PCL2
PCL3

S95 S106

C C C R S
C T E E
C N K

T V V P G NR LV C K CR A Y H Q D C H V P RA P A P G
Y S E AP N E MV I C K CG QG YH Q L CH T P H I D S V
T SG P L N E I L I C K CG LG YH QQ CH I P I A G S D

E G T - S W CR QC V F A
I   S D K W CR QC V F A
Q  L L P W CR R I F AC

Q
CI
CI

V

L G

E S

G
D
E H

S
A

-
-

G

P
D E

T

E V
L
F

PCL1-3 N- terminal PHD domains
C

B

C



 62 

3.2.2 Serine95 and Serine106 of PCL-PHD1 are required to associate with 
the p53-CTD in vitro   
 

I next wished to validate the potential importance of these two Serine residues in 

the PCL1-PHD1 domain for binding to the p53-CTD. In order to do this, I purified 

recombinant glutathione-S-transferase (GST) tagged fusion protein fragments 

representing the PHD1 domain of PCL1-3. In addition to this, I also generated 

single point mutant PCL1-PHD1-GST fragments in which S95 and S106 were 

converted to their equivalent residues in PCL3, Glycine (S95G) and Isoleucine 

(S106I), respectively. I also purified a double mutant fragment in which both 

residues were mutated (S95G/S106I) (Figure 3.2A). Next, I performed in vitro 

peptide pulldown assays using a custom made biotinylated peptide representing 

all 30 thirty amino acids of the unmodified p53-CTD, and analysed the 

precipitated fragments by western blot (Figure 3.2B). This revealed that wild-type 

PCL1-PHD1 bound the unmodified p53-CTD with greater strength than the 

equivalent wild-type PHD domains of PCL2/3. The p53-CTD is extensively post-

translationally modified in vivo, and different combinations of PTMs are thought 

to refine p53 activity (Beckerman and Prives, 2010). Since our peptide binding 

assays were performed with an unmodified p53-CTD, they suggest that PCL1 

binding to p53 may not be reliant on the presence of any particular PTM within 

this region (Figure 3.2B). Importantly, the binding of mutant PCL1-PHD1 to the 

p53-CTD was impaired, directly implicating these residues as mediators of the 

PCL1-p53 interaction (Figure 3.2B).  

 

In order to, accurately quantify the in vitro binding of the recombinant GST-PHD1 

fragments to the p53-CTD, surface plasmon resonance (SPR) was performed in 

collaboration with Dr. David O’Connell and Dr. Darragh O’Donovan from the 

UCD, Conway Institute. This analysis importantly validated the peptide pull-down 

assays, confirming that both Serine residues (S95 & S106) are required for the 

in vitro interaction between GST-PCL1-PHD1 and the p53-CTD peptide, with the 

double mutant exhibiting little to no binding (Figure 3.3B & C). This data also 

revealed that the binding of GST-PCL1-PHD1 to p53 is highly reproducible with 
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 Figure 3.3 PCL1-PHD1 association with the p53 CTD is disrupted by mu-
tating critical Serine residues.
(A) Representative SPR sensograms for wild-type PCL1-3 PHD domains binding 
to biotin-p53 CTD
(B) Representative SPR sensograms for wild-type and mutant PCL1-PHD 
domains binding to biotin-p53 CTD.
(C) Table showing the binding affinities of wild-type PCL1-3 PHD1 and point 
mutant PCL1-PHD fragments. Affinity rate constants were determined from a con-
centration series of each protein binding to the biotin—p53 CTD peptide. All SPR 
analysis was performed in collaboration with Dr. Darragh O’Donovan and Dr. 
David O’Connell of the UCD Conway Institute.
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an apparent Kd of 26.4nM, as determined from independent measurements at 

four different concentrations of the protein (Figure 3.3C).  

 

3.2.3 PCL1-PHD1 contains two divergent Serine residues that arose during 

mammalian evolution  
 

In order to fully understand the evolutionary origins of the two unique PCL1 serine 

residues a multiple sequence alignment and evolutionary tree analysis of the 

three vertebrate PCL proteins was performed in collaboration with evolutionary 

biologists, Dr. Alan Rice and Prof. Aoife McLysaght from the Smurfit Institute of 

Genetics, (Figure 3.4). This confirmed that the three PCL genes are present in 

all vertebrates and linked through two whole genome duplications at the base of 

the vertebrate tree (Makino and McLysaght, 2010). I was specifically interested 

in exploring whether the ability to bind p53 is a newly evolved function of PCL1. 

In other words, is the binding a “neofunctionalised” event in which PCL1 has 

specifically gained this ability or alternatively, is it an ancestral function that was 

lost from the other two PCL proteins. The pattern of sequence divergence at sites 

corresponding to human S95 and S106 indicates that the substitutions giving rise 

to each of these residues occurred uniquely in PCL1, most likely after the whole-

genome duplication events (Figure 3.4). In contrast, the equivalent residues in 

PCL2 and PCL3 have undergone little to no divergence from the ancestral 

sequence. Importantly, these two serine residues are completely conserved 

across all mammalian PCL1 genes, and furthermore, uniquely co-occur in 

mammals. This suggests that PCL1 has undergone a neofunctionalization event 

during recent vertebrate evolution in which it has specifically selected for the 

ability to bind the p53-CTD in mammals.  

 

3.2.4 Crystal structure of human PCL1-PHD1 reflects initial molecular 

dynamics simulations  
 

My initial analysis of the PCL1-PHD1 domain used a molecular dynamics 

approach based on a homology model of the TRIM24-PHD-H3 (aa1-10) ternary 
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complex to simulate the binding of PCL1-PHD1 to the p53-CTD (Figure 3.1B). I 

took advantage of this in silico approach due to the lack of structural data for any 

of the PCL proteins. However, since publication of our results (Brien et al., 2015), 

in-depth structural and crystallographic studies focused on PHF1 and MTF2 have 

been published (Choi et al., 2017; Li et al., 2017). These studies mainly 

concentrated on the C-terminal WH domain of PCL1 and its ability to bind DNA. 

However, importantly, one of these studies crystallised a fragment containing the 

TUDOR/PHD1/PHD2/WH domains of PHF1 (Li et al., 2017). I was interested in 

analysing the structural data from this study to see test the accuracy of our 

previous in silico simulations. Therefore, I downloaded the crystallographic data 

(PDB: 5XFN, 5XFO), isolated the PHD1 domain of PCL1 and observed an 

accurate overlap with our initial molecular dynamics model (Figure 3.5B - 

orange). The positioning of S95 and S106 in the simulation is accurately reflected 

in the PHD1 crystal structure, confirming the efficacy and objectivity of our 

original approach. It is also worth noting that the residues corresponding to S96 

and S106 in the PCL2-PHD1 domain (E110/I121) (Figure 3.5B blue), are 

positioned relatively close together when the PHD domains of the two proteins 

are overlapped. This may give us an insight into the electrostatic nature of the 

PCL1-p53 interaction given the opposing polarity of these amino acids, 

particularly S106 (PCL1) and I121 (PCL2). The p53-CTD contains a high number 

of positively charged Lysine and Arginine residues and it will interesting to 

explore the specific amino acids of the p53 required for the interaction.  

 

3.2.5 Purification of the BD2 region of PCL1 
 
We and others have demonstrated that it is not only the PHD1 domain of PCL1 

that contributes to the binding with p53 (Brien et al., 2015; Yang et al., 2013). In 

addition to the PCL1-PHD1 domain, a C-terminal fragment termed, BD2, is also 

required for the interaction. The BD2 region encompasses amino acids 349-458 

of PCL1 and is highly divergent in terms of sequence homology from PCL2/3. I 

had previously attempted to purify full-length PCL1-3 from E. Coli and Sf9 insect 

cells. However, all three proteins were insoluble in both expression systems. 



E108

S95

E96

T97
S106

Loop 2

Loop 1

PCL1 N-terminal PHD domain

A B

PCL1-PHD1
PCL2-PHD1

Figure 3.5 Crystal structure of PCL1-PHD1 reflects the initial molecular 
dynamics simulation of the same domain.
(A) Molecular dynamics (MD) simulations of ten of the dominant conformations of 
PCL1-PHD1 (grey). The PCL1-PHD1 structure was determined by homology 
modelling based on the TRIM-24-PHD domain in complex with unmodified H3 
(1-10) peptide. Zn atoms shown in cyan.  
(B) Crystal structure of PCL1-PHD1 (5XFN) and PCL2-PHD1 (5XFR) with high-
lighted Ser95 and Ser106 of PCL1 (Li et al., 2017).  The equivalent residues of 
PCL2 are also indicated, Glu110 and Iso121 respectively. Overlapped images 
were created using the UCSF Chimera software for interactive analysis and visu-
alisation of molecular structures.

Ser95

Ser106



 65 

Hence, I attempted a similar strategy to the PHD1 domain of PCL1, and 

attempted to purify recombinant GST tagged fusion protein fragments 

representing only the BD2 regions of PCL1 and PCL3 (Figure 3.6), and 

investigate their capacity to bind the p53-CTD, through in vitro binding assays. 

As demonstrated previously, I was able to purify PCL1-PHD1 GST-fusion 

fragments (Figure 3.6A). However, while I could purify a small amount of the 

PCL1-BD2-, the GST eluted fragments contained a large amount of breakdown 

products (Figure 3.6B). I then attempted to isolate the fragments of interest (~38 

kDa) by running the eluted fragments through a size exclusion column with a 30 

kDa molecular weight cut off, but this did not clean up the respective sample 

preparations (Figure 3.6C). Given the fact that this region is predicted to be highly 

disordered and the relative ease with which the N-terminal domains can be 

purified, I believe the C-terminal region of PCL proteins to be the source of the 

insolubility. I am now working on purifying a larger fragment encompassing the 

PHD2, WH and BD2 regions of PCL1, with expectations that could will help with 

purification issues. However it might be the BD2 region is just too disordered to 

exist in a soluble form.  

 

3.2.6 PCL1 in gain-of-function p53 breast cancer 

 
I next wondered what could be the potential cancer relevance of the PCL1-p53 

interaction. Interestingly, while the loss of the tumour suppressive function of the 

TP53 gene is required for progression of most cancers, remarkably, this gene 

can also acquire oncogenic functions in many cancer types due to neomorphic 

(gain-of-function, GOF) mutations (Dittmer et al., 1993; Muller and Vousden, 

2014). These missense mutations occur at “hotspots” within the core domain of 

the p53 protein and include, R175H, R248Q/R248W, R249S and R273H, and 

are particularly common in triple negative breast cancers (Shah et al., 2012). 

Interestingly, the R175H mutation has been linked with the initiation of mammary 

tumorigenesis and promotion of more aggressive breast cancers (Lu et al., 2013). 

The mechanism of action of these p53-GOF mutations remains largely unknown, 

however, it is thought that they co-operate with other transcription factors to re-
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direct p53 to novel target genes, upregulating oncogenic pathways (Do et al., 

2012; Zhu et al., 2015). Importantly, since the majority of p53-GOF mutations 

occur outside the CTD region, I hypothesised that they are unlikely to affect the 

PCL1-p53 interaction. Hence, I was interested in exploring the roles of PCL1 

breast cancer cell lines harbouring p53-GOF mutations. 

 

Towards this, I decided to deplete the levels of PCL1 and p53 with previously 

validated siRNAs (Brien et al., 2015) in two p53-GOF triple negative breast 

cancer cell lines, MDA-MB-468 (R273H) and BT-549 (R249S). While the 

knockdown of both PCL1 and p53 levels was effective in each cell line, only the 

p53 knockdown resulted in decreased cellular proliferation, as illustrated by a 

reduction in the protein levels of cell cycle regulated transcription factor E2F1 

(Figure 3.7). We have previously shown that knockdown of PCL1 results in 

destabilisation of p53 in quiescent human fibroblasts (Brien et al., 2015). 

Therefore, I was interested in investigating if PCL1 acts to stabilise p53-GOF 

mutants. While I efficiently knocked down PCL1, there was no observable 

decrease in p53-GOF protein levels (Figure 3.7). Taken together, these data 

suggest that while PCL1 plays an important role in maintaining wild-type p53 

levels in primary quiescent fibroblasts, it does not seem to have the same 

function in the p53-GOF triple negative breast cancers tested here.  
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Figure 3.7 Knockdown of PCL1 in gain-of-function p53 dependent breast 
cancer cells does not phenocopy loss of p53.
(A) & (B) Western blot analyses using the indicated antibodies on whole cell 
lysates from either MDA-468 or BT-549 gain-of-function p53 dependent breast 
cancer cell lines transfected with siRNA constructs targeting PCL1 or TP53. Cell 
were harvested 72 hours after transfection with siRNA. Levels of E2F1 are used 
indicate proliferative capacity.

p53

PCL1 

GAPDH

MDA-468 BT- 549

E2F1

p53

PCL1 

GAPDH

E2F1

B



p53

CDKN1A & other 
p53 Target genes

PCL1
PCL1

MDM2

p53

p53

PCL1
EEDSUZ12

EZH2
PcG
Target
Genes

N
PHD1

C

BD2

p53-CTD

PCL1

?

PCL1
p53

p53 protein
stabilisation
Promotion of cellular 
quiescence

p53 destabilising 
signals

PCL1
p53

PCL1 CDKN1A & other 
p53 Target genes

Cell cycle Entry 
Susceptabilitiy to 

chemotoxic agents

A

-

Figure 3.8 Future perspectives – Targeting the PCL1-p53 interaction in 
cancer. 
(A) Key open questions that remain; What is the size and stoichiometry of the 
PCL1-p53 complex? How do the PHD1 and BD2 domains cooperate to facilitate 
binding to p53? How can we exploit this knowledge towards developing new ther-
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3.3 Discussion 
 

Initial observations illustrated that PCL1, but not PCL2 and PCL3, is highly 

expressed in quiescence, suggested PCL1 may have a specific role in non-

dividing cells. Pursuing this, we unravelled an essential PCL1-p53 regulatory axis 

in primary quiescent human fibroblasts (Brien et al., 2015). This was the first 

evidence of a direct link between a Polycomb group protein and the regulation of 

cellular quiescence, and raises the intriguing possibility that PCL1 may be 

required to maintain the quiescent state of tissue specific stem cells in vivo. In 

this regard, it is worth noting that loss of PRC2 core components such as EZH1 

or EED in hematopoietic stem cells (HSCs) leads to aberrant activation of 

Polycomb target genes and exhaustion of the stem cell pool (Hidalgo et al., 2012; 

Xie et al., 2014). 

 

3.3.1 PCL1 has recently acquired the ability to bind p53 
 

Here, I have provided evidence that mammalian PCL1 has recently evolved the 

ability to bind to and stabilise p53 through the acquisition of two unique Serine 

residues in its N-terminal PHD domain. These serines are not present in PCL2 

and PCL3, and are critical for the interaction between PCL1 and p53.  I have 

demonstrated that the PCL1 gene has undergone a neofunctionalization event 

to select for these amino acids and the ability to bind p53. However, while 

mammalian PCL1 has acquired this relatively new function, it importantly, retains 

its ancestral function within PRC2 . This functional divergence of PCL1 goes 

some way to explaining the selection and ultimate maintenance of PCL genes in 

vertebrate genomes. They are not redundant copies of an ancestral gene, as 

might have seemed the case but have novel functionality that has evolved along 

the ancestral one. The concept of neofunctionalization has been popular for over 

40 years, but there are relatively few examples of this where the sequence 

substitutions have been clearly described and characterised (Conant and Wolfe, 

2008; Ohno, 1970). Therefore, the PCL1 gene represents an archetypal example 

of neofunctionalization, and further studies into its functional interplay with p53 
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will likely shed new light on the evolution of the molecular mechanisms governing 

cellular quiescence.  

 

3.3.2 PCL1 and its potential roles in cancer 

 
The PCL1 gene is frequently translocated in endometrial stromal sarcomas, and 

the fusion protein products have been proposed to directly contribute to the 

pathogenesis of these cancers (Micci et al., 2006). However, the mechanisms of 

how PCL1 fusion proteins could contribute to oncogenesis are so far unexplored. 

Interestingly, while the PCL1 fusion genes retain the vast majority of the wild-

type PCL1 coding sequence, the promoter region is lost, implying that accurate 

transcriptional regulation of PCL1 is lost in these cancers. This study suggests 

that PCL1 fusion proteins would preserve the ability of wild-type PCL1 to interact 

with p53 raising interesting questions about the status of the TP53 genes in these 

cancers. 

 

I also provide evidence that PCL1 does not have any major role in stabilising 

oncogenic p53 mutants in two triple negative breast cancer cell lines (Figure 3.7). 

However, this analysis was not exhaustive and used only RNAi mediated 

knockdown of PCL1. A more thorough characterisation of the function of PCL1 

in these cancers needs to be performed, employing the use of CRISPR-Cas9 

mediated genetic manipulation. A challenge here will be the fact that a 

straightforward knockout of PCL1 will likely abolish any PRC2 associated 

function of PCL1 in these cells. Therefore, to further characterise the roles of 

PCL1 in these cancers it will be necessary to generate a conditional allele 

producing a PCL1 protein incapable of interacting with p53 but still retaining the 

ability to bind PRC2. This will require a more extensive molecular 

characterisation of the PCL1-p53 interaction (Figure 3.8). Towards this and with 

the help of collaborators, I am in the process of conducting nuclear magnetic 

resonance (NMR) analysis of the PCL1-PHD1 domain in complex with an 

unmodified p53-CTD peptide to try and elucidate the amino acids in the p53 CTD 

critical for the interaction. I am also attempting to generate high quality 
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recombinant PCL1-p53 complexes to carry-out in-depth structural analysis of the 

interaction using Cryo-Electron Microscopy (Cryo-EM).  

 

Further structural characterisation of the PCL1-p53 complex could potentially be 

exploited to interrupt this interaction for therapeutic gain in cancer (Figure 3.8). 

For example, it will be interesting to examine the relationship between PCL1 and 

wild-type p53 in quiescent, slowly proliferating quiescent cancer stem cells in 

vivo. Disrupting the PCL1-p53 interaction in this context could force these non-

dividing cancer cells into the cell cycle, potentially rendering them more sensitive 

to chemotherapies that only target proliferating cells (Figure 3.8) (Brien and 

Bracken, 2016).  
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4.1 Introduction 
 
Polycomb group proteins have been extensively linked to regulation of the cell 

cycle. For example, the EZH2 gene is regulated by E2F transcription factors and 

is consequently highly expressed in rapidly proliferating cells such as cancer 

cells. (Bracken et al., 2003). Polycomb proteins are also key upstream repressors 

of the INK4A-ARF tumour suppressor locus in mammalian cells (Bracken et al., 

2007). The INK4A gene encodes the p16 protein, a vital cyclin-dependent kinase 

(CDK) inhibitor and key regulator of cellular senescence (Gil and Peters, 2006). 

Furthermore, the Drosophila PRC1 component, Psc, has been shown to 

associate with CyclinB and the anaphase promoting complex (APC), 

independently of other PRC1 components (Mohd-Sarip et al., 2012). In addition 

to this, the PRC1 associated SCML2 gene encodes two isoforms, SCML2A and 

SCML2B, the latter of which has been shown to associate with and enhance the 

function of key cell cycle regulators including, CDK inhibitors p21 and p27 

(Lecona et al., 2013). These many links between Polycomb and proliferative 

control illustrate their potential relevance in cancer. Supporting this, EZH2 was 

initially thought to be an oncogene based on its high expression levels in 

proliferating cancer cells (Bracken et al., 2003). However, it has also been shown 

to be deleted in some myeloid malignancies and have recurrent gain of function 

mutations in many cancers including B-cell lymphomas (Kim and Roberts, 2016). 

In fact, small molecule inhibitors targeting EZH2 catalytic are now in clinical trials 

for the treatment of B-cell lymphomas and Malignant Rhabdoid tumours, and are 

showing early promise (Italiano et al., 2018; Makita and Tobinai, 2018).  

 

We previously reported that, like EZH2, the PCL2 (MTF2) and PCL3 (PHF19) 

Polycomb-like proteins are regulated by E2F transcription factors and highly 

expressed in proliferating cells (Brien et al., 2015). In contrast, PCL1 (PHF1), like 

EZH1,  is more highly expressed in non-proliferating cells. We demonstrated that 

PCL1 is both transcriptionally regulated by p53 and its protein product acts to 

stabilise p53 and promote cellular quiescence. However, we did not explore the 

potential for divergent assemblies of PRC2  between proliferating and non-

proliferating cells. Previous work established that EZH1 and EZH2 expression 
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correlated with the proliferative capacity of cells during differentiation, with EZH2 

expressed in proliferating progenitor cells, and EZH1 highly expressed in less 

proliferative and more terminally differentiated cell types (Figure 4.12) 

(Margueron et al., 2008; Xu et al., 2015). In this research chapter, I focus 

particularly on the EZH1/2 expression switch between normally cycling and 

quiescent cell populations. Quiescence (or G0), is a reversible and actively 

maintained cell state, important for many adult stem cell populations (Cheung 

and Rando, 2013). Important regulators of cellular  quiescence include members 

of the p53 tumour suppressor pathway, including p53 and p21 (CDKN1A), its 

downstream target gene (Liu et al., 2009). The loss of p53 and p21 in neural stem 

cells (NSCs) and hematopoietic stem cells (HSCs) leads to an expansion in 

progenitor cell number stem cell number. This occurs due to reduced ability of 

the stem cells to remain quiescent and their consequent entry into the cell cycle 

(Liu et al., 2009; Meletis et al., 2006). Certain post-translational modifications of 

histones have also been shown to be key determinants of the quiescent state, 

such as H4K20me2 (Liu et al., 2013) The histone methyltransferase responsible, 

Suv4-20h1, has been shown to be crucial in the maintenance of adult quiescent 

stem cells. Depletion of Suv4-20h1 leads to the exhaustion of adult muscle stem 

cells, thereby providing an excellent example of how chromatin modifiers can be 

essential in the maintenance of this particular cell state (Boonsanay et al., 2016). 

Furthermore, it has been shown in vivo that conditional knockout of Ezh1 and 

Eed, but not Ezh2 induces significant loss of adult quiescent HSCs, as well as 

impaired self-renewal capacity (Hidalgo et al., 2012; Xie et al., 2014). This again 

implicates chromatin associated proteins in the regulation of cellular quiescence. 

 

Consistent with this, the main aims of this chapter are to explore the composition 

and function of PRC2 in non-proliferating and quiescent cells. I show that EZH1 

and PCL1 are highly expressed in quiescent populations and down regulated as 

cell enter the cell cycle. I also define a G0-PRC2 complex consisting of EZH1, 

PCL1 and EED, which importantly lacks both EZH2 and SUZ12. I show that 

quiescent cells are insensitive to both catalytic and allosteric inhibition of PRC2. 

Whereas, cycling cells treated with PRC2 inhibitors undergo premature cellular 
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senescence due to the activation of INK4A, quiescent cells treated with the same 

inhibitors show no adverse effects and grow at the same rate as control treated 

cells. These results may have important implications in the treatment of cancers 

with EZH2 inhibitors. The data in this chapter suggests that quiescent cancer 

stem cells should be insensitive to EZH2 inhibition, which may lead to tumour 

recurrence following initial regression (Figure 4.13).  
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4.2 Results 
 

4.2.1 EZH1 and PCL1 form a divergent PRC2 complex in quiescent cells 
 

Firstly, I analysed the mRNA and protein levels of various core and accessory 

PRC2 subunits in quiescent and cycling cells. Primary human fibroblasts are 

induced to quiesce by removing serum for 96-120 hr and stimulated to re-enter 

the cell cycle by addition of serum for 24 hrs. Consistent with previous 

observations,  both EZH1 and PHF1 (PCL1) are significantly upregulated on both 

the mRNA and protein level in quiescent fibroblasts compared to proliferating 

(Bracken et al., 2003; Brien et al., 2015; Cheung and Rando, 2013) (Figure 4.1A 

& B). Next, I wished to determine if this divergent expression pattern leads to a 

shift in PRC2 complex composition. To test this, I performed co-

immunoprecipitations of PCL1-3 in quiescent fibroblasts, and observed that 

PCL1 specifically pulls down only EZH1 and EED, but importantly, not EZH2 or 

SUZ12.  (Figure 4.2). Next, I performed sucrose gradient fractionation 

experiments on whole cell lysates from both quiescent and cycling fibroblasts, 

and observed co-sedimentation of PCL1, EZH1 and EED in quiescent cells 

(Figure 4.3). Interestingly, PCL1 also co-sedimented with p53 at lower molecular 

weights in quiescent cells, consistent with our previous demonstration that PCL1 

also form an independent complex with p53 (Figure 4.3) (Brien et al., 2015). 

Taken together, these data suggest that the predominant PRC2 complex in 

quiescent cells consists of PCL1, EZH1 and EED, hereafter termed, G0-PRC2. 

 

4.2.2 G0-PRC2 chromatin association 
 
I next decided to determine if this switch in PRC2 complex configuration in 

quiescent cells results in a change of PRC2 component enrichment on chromatin. 

In order to do this I performed chromatin enrichment western blot analysis in 

quiescent and cycling primary human fibroblasts. As expected, EZH1 and PCL1 

are enriched in the chromatin fraction in both quiescent and cycling cells, while 

SUZ12 and EZH2 are only on chromatin in the cycling population (Figure 4.4A). 
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Furthermore, chromatin immunoprecipitation (ChIP) experiments confirmed that 

PCL1 is the only Polycomb-like protein that is enriched at Polycomb targets in 

quiescent cells, while PCL2/3 are only present at these loci in cycling cells (Figure 

4.4B). In addition, both EZH2 and SUZ12 were only bound to PcG targets in 

proliferating cells and were absent in quiescent cells (Figure 4.4B). I next 

performed ChIP followed by next generation sequencing (ChIP-Seq) of PCL1, 

PCL3, EZH1 and EZH2, and observed that PCL1/PCL3 and EZH1/EZH2 occupy 

the same genomic loci in quiescent and cycling cells respectively (Figure 4.4C). 

Importantly, the EED core PRC2 subunit remained unchanged in both its 

expression levels and chromatin occupancy in the quiescent and cycling 

contexts, suggesting that is an integral part of both G0- and typical PRC2 

complexes of cycling cells (Figure 4.2A & 4.4A & B). Intriguingly, the global and 

local levels of H3K27me3 do not change between quiescent and cycling cells 

(Figure 4.5). This is despite the observation that neither EZH2 nor SUZ12 are 

highly expressed in quiescent cells. Previously, EZH1 containing PRC2 

complexes were reported to be poor methyltransferase enzymes relative to EZH2 

containing complexes (Lee et al., 2018; Margueron et al., 2008). It might be 

expected given these findings that G0-PRC2 would have little or no 

methyltransferase activity and would lead to a reduction in H3K27me3 in 

quiescent cells. However, this is not the case, as H3K27me3 levels remain 

constant. Taken together, these results suggest a model whereby EZH1, EED 

and PCL1 define a novel “G0-PRC2” complex in quiescent cells, that exists 

uniquely in quiescent cells and intriguingly lacks EZH2 and SUZ12.  

 

4.2.3 Purification of a recombinant G0-PRC2 complex 
 
I next decided to investigate whether I could purify a recombinant G0-PRC2 

complex. The aim was to investigate whether it has any in vitro methyltransferase 

activity. To do this, I cloned constructs to express Flag/His-PCL1 and Flag/His-

EED as well as several other untagged PRC2 components. I then generated 

baculovirus and purified three separate and distinct PRC2 complexes from 

HighFive insect cells (Figure 4.6A & B). These complexes consisted of a 
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canonical core PRC2 complex containing EZH1/EED/SUZ12, a PCL1-PRC2 

complex consisting of PCL1/EZH1/EED/SUZ12, and a G0-PRC2 complex 

comprising of PCL1/EZH1/EED. The fact that recombinant PCL1 can exist 

together in a complex with EED and EZH1, without SUZ12, supports the idea 

that the variant G0-PRC2 complex might lack EPOP and PALI1, which require 

SUZ12 to incorporate into the complex (Figure 4.6B). 

 

4.2.4 Catalytic and allosteric inhibition of PRC2 in primary human 
fibroblasts 

 

Because G0-PRC2 lacks SUZ12, I was intrigued to explore the catalytic activity 

of this complex, since previous work has shown that SUZ12 is absolutely required 

for methyltransferase activity (Pasini et al., 2007). Therefore, I decided to treat 

quiescent and cycling cells with a catalytic inhibitor of EZH1/2 (GSK343) 

(McCabe et al., 2012b) and an allosteric inhibitor targeting the EED subunit 

(A395) (He et al., 2017). The efficacy of these small molecules has yet to be 

determined in primary human cells, as most of the previous experiments have 

been performed in highly proliferative cancer cell lines (Lindsay et al., 2017). 

Therefore, I first optimised the working concentrations and treatment timescale 

of both drugs in normally proliferating human diploid fibroblasts. Both GSK343 

(EZH1/2i) and A395 (EEDi) showed a strong cellular response exhibited by an 

almost complete loss of H3K27me2/3, as well as derepression of the Polycomb 

target INK4A and downregulation of the proliferative marker CCNA2 (Figure 

4.7A-D). The INK4A tumour suppressor gene is a classic PRC2 target in 

fibroblasts (Bracken et al., 2007). Derepression of INK4A through PRC2 

inhibition and subsequent onset of cellular senescence through the action of its 

protein product, p16, is thought to be one of the many mechanisms whereby 

PRC2 inhibition could work in cancer treatment (Mohammad et al., 2017).  
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Figure 4.7 Catalytic and allosteric inhibition of PRC2 in primary human 
fibroblasts.
(A) Western blot analyses using the indicated antibodies on whole cell lysates 
from quiescent or asynchronously growing fibroblasts treated with either control 
(DMSO) or EZH2i (GSK343) at increasing concentrations (1-5 μM) for 48-96hr.
(B) Quantitative RT-PCR analyses of the indicated mRNA transcripts from quies-
cent or asynchronously growing fibroblasts treated with either control (DMSO) or 
EZH2i (GSK343) at increasing concentrations (1-5 μM) for 48-96hr. Data present-
ed is a representative sample of three biological replicates and error bars indicate 
standard deviation of individual triplicate qPCR data. 
(C) Western blot analyses using the indicated antibodies on whole cell lysates 
from asynchronously growing fibroblasts treated with either control (DM-
SO/A395N) or EEDi (A395) at increasing concentrations (0.1-5 μM) for 72hr.
(D) Quantitative RT-PCR analyses of the indicated mRNA transcripts from asyn-
chronously growing fibroblasts treated with either control (DMSO/A395N) or EEDi 
(A395) at increasing concentrations (1-5 μM) for 72hr. Data presented is a repre-
sentative sample of three biological replicates and error bars indicate standard 
deviation of individual triplicate qPCR data.  
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4.2.5 GO-PRC2 is catalytically inactive and therefore refractory to PRC2 
inhibition 

 
Due to the efficacy of both catalytic (EZH1/2i) and allosteric (EEDi) inhibition of 

PRC2 in normally proliferating primary human diploid fibroblasts, I next tested 

their ability to affect G0-PRC2 activity in quiescent cells. Surprisingly, neither 

inhibitor affected the global levels of H3K27me2/3 in quiescent cells, whereas an 

almost complete loss of both marks was observed in cycling cells (Figure 4.8A). 

Consistent with this, no increase in the expression of the p16 protein, encoded 

by INK4A, was detected in quiescent cells, whereas it was significantly activated 

in treated cycling cells (Figure 4.8A & B). Furthermore, INK4A and CCNA2 mRNA 

levels were unchanged in quiescent cells treated with EZH1/2i or EEDi (Figure 

4.8B). I was next interested in testing whether there were any local changes in 

the enrichment of H3K27me3 at Polycomb target promoters. To do this, I treated 

both quiescent and cycling fibroblasts with EEDi and performed ChIP for 

H3K27me3 followed by quantitative PCR. As expected, there was no observable 

decrease in H3K27me3 at the INK4A locus in quiescent cells, whereas there was 

about a 70% decrease in cycling cells (Figure 4.8C). Taken together, these data 

suggest that G0-PRC2 is refractory to PRC2 inhibition and indeed may have no 

histone methyltransferase activity.  

 

4.2.6 PRC2i does not displace G0-PRC2 in quiescent cells 

 

I next wished to analyse the association of G0-PRC2 with chromatin and 

determine whether treatment of quiescent cells with PRC2i would displace the 

complex from chromatin. I hypothesised that EEDi, and not EZH1/2i, would 

displace PRC2 components from chromatin as it targets the aromatic cage of 

EED, responsible for binding to H3K27me3 (Margueron et al., 2009).  In order to 

do this, I treated both quiescent and cycling cells with EZH1/2i and EEDi and 

performed a subcellular fractionation followed by Western blotting of various 

PRC2 components. Both PRC2 inhibitors led to a significant global decrease in 

H3K27me2/3 levels and both SUZ12 and EED were both partially displaced from 
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chromatin upon treatment with EEDi in cycling cells. The treatment of quiescent 

cells with both PRC2 inhibitors had no effect on H3K27me2/3 levels and did not 

affect the enrichment of any G0-PRC2 components on chromatin (Figure 4.9 A 

& B). I next performed ChIPs of SUZ12 in treated and non-treated quiescent 

fibroblasts, and observed weak SUZ12 enrichment at the INK4A locus in 

quiescent cells, illustrated by the levels being slightly above background, 

whereas it is significantly enriched at these sites in cycling cells (Figure 4.9C). 

This weak amount of SUZ12 observed in both chromatin fractionation and ChIP 

experiments could be explained by a small amount of contaminating non-

quiescent cells present in the population. Nevertheless, treatment of cycling cells 

with EEDi partially displaced SUZ12 from the INK4A locus, and recapitulating the 

results from the cellular fractionation experiments (Figure 4.9B & C). This data 

again suggests that G0-PRC2 has no methyltransferase activity and might 

remain associated with repressive chromatin in the presence of PRC2i. These 

data also imply that the mechanism whereby EEDi targets PRC2 activity is mainly 

through allosteric inhibition and not by significantly affecting the complexes 

enrichment on chromatin. 

 

4.2.7 PRC2i does not affect the ability of quiescent cells to re-enter the cell 

cycle 
 

I next explored whether PRC2i, which causes senescence in cycling cells, would 

affect the ability of quiescent cells to re-enter the cell cycle. To do this, I designed 

a cell cycle re-entry assay whereby quiescent or cycling cells are treated with 

PRC2i for 72 hours and then stimulated to re-enter the cell cycle by the addition 

of serum (Figure 4.10 & 11A). Cells were harvested immediately following 72 

hour treatment, or at 3 or 6 days after serum stimulation. Interestingly, the 

treatment of quiescent cells with EEDi did not affect their ability to re-enter the 

cell cycle, as demonstrated by the nearly 10-fold increase in CCNA2 mRNA 

levels at Day 3 following serum addition (Figure 4.10B). This is in stark contrast 

to cycling cells treated with EEDi, which failed to efficiently re-enter the cycle and 

proliferate (Figure 4.10C). As expected, INK4A expression increased 2-3-fold 
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cell cycle.
(A) Schematic describing experimental work flow of treatment of cycling and quies-
cent fibroblasts with PRC2i.
(B) Growth assays performed on cells from treated (EEDi-A395) and control treated 
(A395N) quiescent fibroblasts. Assays were initiated following 72hr treatment with 
either EEDi or control and continued for 6 days. Right - Quantitative RT-PCR analy-
ses of INK4A and CCNA2 mRNA transcripts from quiescent cells at indicated time-
points.
(C) Growth assays performed on cells from treated (EEDi-A395) and control treated 
(A395N) cycling fibroblasts. Assays were initiated following 72hr treatment with 
either EEDi or control and continued for 6 days. Right - Quantitative RT-PCR analy-
ses of INK4A and CCNA2 mRNA transcripts from cycling cells at indicated time-
points.
(D) 3T3 growth assays performed on cells from treated (EEDi-A395) and control 
treated (A395N) quiescent fibroblasts. Assays were initiated following 72hr treat-
ment with either EEDi or control and continued for 40 days.  Right - Quantitative 
RT-PCR analyses of INK4A and CCNA2 mRNA transcripts from quiescent cells at 
indicated timepoints.
(E) 3T3 growth assays performed on cells from treated (EEDi-A395) and control 
treated (A395N) asynchronously growing fibroblasts. Assays were initiated following 
72hr treatment with either EEDi or control and continued for 40 days.  Right - Quanti-
tative RT-PCR analyses of INK4A and CCNA2 mRNA transcripts from cycling cells 
at indicated timepoints.
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cell cycle.
(A) Schematic describing experimental work flow of treatment of cycling and quies-
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upon EEDi, accompanied by a concomitant decrease in CCNA2 levels, indicating 

these cells  undergo cellular senescence (Figure 4.10C). An equivalent 

experiment using EZH1/2i generated similar results, suggesting neither EEDi nor 

EZH1/2i affect the ability of quiescent cells to re-enter the cell cycle. These 

results suggest that G0-PRC2, the predominant PRC2 complex in quiescent 

cells, is refractory to PRC2i and therefore catalytically inactive.   

 

4.2.8 PRC2i in quiescent cells does not affect long term proliferative 
capacity  

 

Following the observation that PRC2i in quiescent cells does not affect their 

capacity to immediately re-enter the cell cycle, I next decided to test whether the 

long term proliferative capacity of these PRC2i treated cells was impaired. To do 

this, I performed a similar assay to the cell cycle re-entry experiment described 

in Figure 4.10. However, this time, following treatment of quiescent and cycling 

cells with PRC2i, I performed 3T3 growth assays over a period of 40 days. I 

hypothesised that by culturing the cells treated in quiescence (G0) for a longer 

period of time, I would potentially begin to see growth defects. However, 

surprisingly, cells treated with PRC2i while in quiescence proliferate normally and 

at the same rate as control treated cells (Figure 4.10 & 11 D  &E). This is again 

in clear contrast with normally cycling cells treated with PRC2i. Proliferation of 

these cells is affected at the start of the assay due to the increase in INK4A 

expression. As a result, these cells grow at a much slower rate and senesce 

prematurely. Taken together, these data again suggest that inhibiting PRC2 in 

quiescent cells has no downstream cellular effect. Unfortunately, this leads to the 

possibility that quiescent cells present in any tumour or hematopoietic 

malignancy treated with PRC2i will not be targeted, and could lead to tumour 

recurrence (Figure 4.13). 
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4.2.9 Expression of PRC2 components in the Hematopoietic stem cell 
differentiation hierarchy 

 
The in vitro primary human fibroblasts cell system described so far provides 

important insights into what might occur in quiescent cells in vivo. In order to 

analyse expression patterns of PRC2 components in the hematopoietic system, 

I mined pre-existing mRNA expression datasets (Seita et al., 2012). This allowed 

a comparison of expression for the genes encoding G0-PRC2 and canonical 

PRC2 components in hematopoietic stem (quiescent), progenitor (proliferative) 

and mature lineages (terminally differentiated, non-proliferating). Consistent with 

what I observed in fibroblasts, the expression pattern of EZH1 and EZH2/SUZ12 

are inversely correlated between proliferating and non-proliferating blood cells 

within the hierarchy, as determined by Ki67 expression (Figure 4.12). Consistent 

with the fibroblasts model, EZH1 is highly expressed in quiescent hematopoietic 

stem cells as well as in terminally differentiated mature lineages. In contrast, 

EZH2 and SUZ12 are expressed highest in proliferating progenitor cells. These 

reciprocal expression patterns are also observed for PCL1 (PHF1) and PCL3 

(PHF19), with PHF1 mirroring EZH1 expression and PHF19 expression similar 

to EZH2/SUZ12. These data support a model whereby G0-PRC2 may also be 

the predominant PRC2 complex in quiescent hematopoietic stem cells and could 

play a role in the maintenance of the HSC pool in vivo.  
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expression values are from transcriptomic profiling using compiled microarray 
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4.3 Discussion  
 

The main aim of this chapter was to characterise PRC2 function in primary 

quiescent human fibroblasts. I was successful in defining a divergent form of 

PRC2 that exists exclusively in non-proliferating quiescent cells. This complex 

termed, G0-PRC2, contains EZH1, EED and PCL1, but intriguingly does not 

contain SUZ12. Importantly, previous cross-linking mass spectrometry studies 

support the idea that PCL proteins could incorporate in to PRC2 lacking SUZ12, 

via EZH1/2 (Kloet et al., 2016). Due to the fact that G0-PRC2 does not contain 

SUZ12, I predicted it might lack intrinsic methyltransferase activity. Consistent 

with this, G0-PRC2 is not sensitive to both catalytic and allosteric PRC2 

inhibition, and quiescent cells treated with these inhibitors show no adverse 

proliferative side-effects. Given the recent emergence of PRC2 as a druggable 

target in multiple cancer types, these data highlight the pressing need to explore 

further ways to target PRC2 and have broad implications for the use of EZH2 

inhibitors in cancer therapies.   

 

4.3.1 H3K27 demethylase activity in quiescent cells 

 

It was surprising to me that the neither the global nor local levels of H3K27me3 

change between quiescent and cycling cells (Figure 4.5). This is despite the fact 

that quiescent cells do not express crucial core PRC2 components, EZH2 and 

SUZ12. I hypothesised that EZH1 might perform PRC2 mediated catalytic 

activities in the absence of EZH2, however, I have clearly shown that GO-PRC2 

is refractory to PRC2 catalytic and allosteric inhibition, suggesting this complex 

lacks intrinsic methyltransferase activity. This raises the interesting question of 

how H3K27me3 is maintained in quiescent cells. The H3K27 demethylases, UTX 

and JMJD3, are known to contain highly homologous JmjC domains specifically 

capable of mediating the demethylation of H3K27me3 modified histones (Agger 

et al., 2007; Swigut and Wysocka, 2007). My data suggests that G0-PRC2 would 

remain associated with repressive chromatin at Polycomb targets in quiescent 

cells and could act to block any demethylase activity on H3K27me3. However, it 
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could also be that these specific demethylases are downregulated or even 

inactive in quiescent cells. This could potentially provide a mechanism whereby 

G0-PRC2 would be the sole guardian to maintain the repression of crucial 

Polycomb target genes during cellular quiescence. Going forward, it will be of 

critical importance to analyse the expression patterns of both UTX and JMJD3 in 

quiescent and cycling cells in order to fully understand Polycomb mediated 

repression during quiescence. 

 

4.3.2 Targeting G0-PRC2 in cancer 

 

Tissues such as the hematopoietic system continually self-renew throughout the 

life of an organism. This self-renewal capacity is fuelled by the activity of adult 

stem cells that re-populate differentiated cells within the tissue. For example, 

tissue specific stem cells of the hematopoietic system (HSCs) are maintained in 

a quiescent state until activated by a stimulus to divide and differentiate (Seita 

and Weissman, 2010). This particular biological process is also a hallmark of 

cancers, whereby tumour growth is similarly fuelled by a small number of 

dedicated stem cells hidden in cancers, known as cancer stem cells (CSCs)  

(Batlle and Clevers, 2017). This concept can help to explain the almost inevitable 

recurrence of particular tumours following initially successful chemotherapy, and 

the phenomenon tumour dormancy and metastasis. CSCs are thought to exist in 

a non-dividing quiescent state that renders them resistant to chemotherapies 

designed to target highly proliferative cancer cells. Here, I have provided a proof 

of principle that quiescent cancer stem cells would be resistant to PRC2 inhibition 

in vivo. Considering the emergence and initial promise of EZH2 inhibitors in the 

clinic, the idea that there may be a population of resistant cells that could lead to 

tumour recurrence is worrying. A potential solution would be to develop 

approaches to target G0-PRC2 in combination with traditional chemotherapies. 

This would both reduce the bulk population of cancer cells and specifically target 

the non-dividing quiescent CSCs, thereby reducing the risk of recurrence (Figure 

4.13). Furthermore, given the fact EZH2 inhibitor resistant mutations have 
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already been described (Baker et al., 2015; Gibaja et al., 2016), my data again 

highlights the need to explore further ways to target PRC2  in cancer.  

 

An intriguing emerging concept in cancer drug development is the use of protein 

degradation strategies as opposed to chemical inhibition of a target. The 

degradation of the protein of interest is achieved through linking a small molecule 

inhibitor to a phthalimide moiety that hijacks an E3 ubiquitin ligase complex 

resulting in proteosomal degradation, and has already been described for BET 

bromodomain inhibitors (Winter et al., 2015). I hypothesise that this approach 

could also be used to develop a drug to target G0-PRC2. To do this, the 

degradation moiety could be fused to the EEDi allosteric inhibitor. Given the fact 

that G0-PRC2 has no intrinsic methyltransferase activity, disrupting G0-PRC2 

function via degradation if EED would target both the proliferating and non-

proliferating cancer cells. It will be interesting to couple this approach with 

detailed in-depth structural characterisation of the G0-PRC2 complex using Cryo-

EM. These combinatorial strategies will hopefully provide novel therapeutic 

avenues that will lead to increased overall efficacy of targeting PRC2  in cancer. 

 

4.3.3 Other in vivo models of cellular quiescence  

 
I anticipate these results will also have implications in many important biological 

processes other than cancer. For example, in the adaptive immune system, naïve 

and memory T cells must be maintained in a quiescent, yet responsive state. 

Naïve helper T cells can survive for years in humans and, upon detection of an 

antigen, these cells quickly proliferate and differentiate into one of a number of 

effector lineages that tailors the immune response to different pathogens (Sprent 

and Tough, 1994). Upon resolution of infection, a proportion of these effector 

cells differentiate into long-lived quiescent memory T cells which can provide life-

long immunity (Hammarlund et al., 2003). Epigenetic changes have a key role in 

controlling the distinct transcriptional profiles of memory T cells and thus, are 

critically important for the differentiation of naïve T cells into specific effector 

lineages (Weng et al., 2012). However, the epigenetic processes required to 
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maintain naïve and memory T cells in a quiescent state are not well understood. 

Interestingly, there have been several reports suggesting that EZH2 is critical for 

the regulation of T cell identity following activation (Tumes et al., 2013; Yang et 

al., 2015; Zhang et al., 2014b). However, EZH2 is not required for the 

maintenance of quiescent naïve and memory T cells (DuPage et al., 2015). Given 

the lack of EZH2 expression, it is unclear how H3K27me3 is maintained in 

quiescent cells. Here, I have provided some new insights toward addressing this 

question. I have established EZH1 displays a reciprocal expression pattern to 

EZH2 and is highly expressed in quiescent cells. As part of a unique quiescent 

PRC2 complex (G0-PRC2), EZH1 along with PCL1 and EED maintain 

H3K27me3 in quiescent cells. However, this process intriguingly does not require 

methyltransferase activity of the complex. Consistent with a putative role for 

EZH1 (and G0-PRC2) in quiescent cells in vivo, conditional knockout of EZH1 or 

EED in HSCs leads to exhaustion of the quiescent HSC stem cell pool (Hidalgo 

et al., 2012; Xie et al., 2014). Given these observations, it will be critical to explore 

the roles of EZH1 and G0-PRC2 in the longevity of naïve T cell quiescence in 

vivo. I believe this will provide key insights into the epigenetic mechanisms that 

govern T cell quiescence and how they retain the ability to proliferate and 

differentiate rapidly upon activation. 

 

In relation to this, EZH1 is curiously among the most highly upregulated genes in 

the embryonic diapause state of the African Turquoise Killifish (Valenzano et al., 

2015) (Anne Brunet, Keystone Epigenetics and Chromatin, Unpublished, 2018). 

The turquoise killifish is found in ephemeral ponds in arid regions of Zimbabwe 

and Mozambique. These ponds are present for only 4-6 months of the year, and 

hence the killifish has developed a unique state of embryonic diapause to survive 

the dry season (Hu and Brunet, 2018). During this state, the embryos do not 

proliferate and are thought to be maintained in a quiescent like state of 

“suspended animation” (Hu and Brunet, 2018). This is another potential example 

of how epigenetic regulators  can govern unique and diverse quiescent cell 

states. It will be very interesting to understand exactly how EZH1 and G0-PRC2 
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contribute to this fascinating biological process of embryonic diapause in the 

African Turquoise Killifish.   
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5.1 Introduction 
 
An intriguing paradigm emerging in the Polycomb field is that PRC2  can be 

classified into two independent subtype assemblies (Figure 1.4). Comprehensive 

proteomic analyses have revealed that PRC2 assembles into two mutually 

exclusive subcomplexes, termed PRC2.1 and PRC2.2, which are defined by 

specific combinations of accessory proteins (Alekseyenko et al., 2014; 

Grijzenhout et al., 2016; Hauri et al., 2016). The PRC2.1 complex contains one 

of three PCL proteins, as well as EPOP or PALI1/2, while the PRC2.2 complex 

contains JARID2 and AEBP2 (Conway et al., 2018; Holoch and Margueron, 

2017). Although relatively little is known about why different forms of PRC2  exist, 

or of any potential divergent functions, all of the PRC2 accessory components 

have well established roles in the regulation of either histone methyltransferase 

activity (Cao and Zhang, 2004; Conway et al., 2018; Sarma et al., 2008; Son et 

al., 2013; Zhang et al., 2011) or facilitating interactions with chromatin or other 

transcriptional regulators.   

 

In the PRC2.1 complex, PCL proteins promote PRC2.1 association with 

chromatin via their conserved Tudor domain, which binds to H3K36me2/3 and 

H3K27me3 (Ballare et al., 2012; Brien et al., 2012; Musselman et al., 2012a; 

Sarma et al., 2008), and winged helix (WH) domain which binds to DNA (Choi et 

al., 2017; Li et al., 2017; Perino et al., 2018). However, PCL proteins are only 

one of several PRC2.1 accessory proteins. The PRC2.1 subunit, EPOP, links 

PRC2 with Elongin B/C proteins, yet, is not required for the complexes 

association with chromatin (Beringer et al., 2016; Liefke et al., 2016). Similarly, a 

conserved domain in the recently discovered PALI1/2 proteins provides a novel 

link between PRC2 and transcriptional co-repressors (Conway et al., 2018).  

 

In the PRC2.2 complex, its two specific subunits, AEBP2 and JARID2, are widely 

known to promote PRC2 in vitro methyltransferase activity (Lee et al., 2018; Li et 

al., 2010; Son et al., 2013). While, the distinct roles of these proteins for PRC2.2 

function and recruitment in vivo have yet to be fully established both have 

potential chromatin and DNA binding abilities. For example, AEBP2 has been 
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reported to bind methylated CpG DNA, however, there is a lack of in vivo 

evidence to support these claims (Kim et al., 2009; Wang et al., 2017). On the 

other hand, JARID2 has more well defined roles in chromatin binding, and has 

recently been intriguingly linked with targeting PRC2 to sites of PRC1 mediated 

H2AK119ub via its Ubiquitin interaction motif (UIM) (Cooper et al., 2016). 

Consistent with this, PRC2 in vitro activity is enhanced in the presence of 

H2AK119ub modified nucleosomes (Kalb et al., 2014). While these data all 

represent key findings, from a broader perspective many critical questions 

remain, including why there are two forms of PRC2  and if they have divergent 

or overlapping functions in regulating Polycomb activity in vivo. Towards 

unravelling these elusive mechanisms, here I decided to investigate the functions 

of PRC2.1 and PRC2.2 in ESCs and during differentiation.  

 

Recent studies focusing on ESCs lacking various PRC2 components have 

provided some clues as to potential divergent roles of PRC2.1 and PRC2.2 

subcomplexes. (Beringer et al., 2016; Grijzenhout et al., 2016). Intriguingly, while 

the loss of EPOP or AEBP2 in ESCs results in an increase of H3K27me3 at 

Polycomb target genes, the loss of PCL, PALI1/2 or JARID2 correlates with a 

depletion of H3K27me3 from chromatin (Ballare et al., 2012; Brien et al., 2012; 

Conway et al., 2018; Landeira et al., 2010; Pasini et al., 2010). These results are 

striking and inconsistent with the data suggesting recombinant AEBP2 and 

EPOP enhance in vitro PRC2 methyltransferase activity (Cao and Zhang, 2004; 

Zhang et al., 2011). These apparently contradictory findings serve to highlight 

the need for a more comprehensive in vivo characterisation of PRC2.1 and 

PRC2.2, and emphasise how little is known about their respective functions. 

 

The number of PRC2 accessory proteins and their respective functional domains 

represent a large degree of complexity in terms of how they might influence 

PRC2 recruitment and activity. The WH DNA binding domain of PCL1-3 

represents one of these PRC2.1/2.2 functional domains, and has recently been  

characterised by several noteworthy studies (Choi et al., 2017; Li et al., 2017; 

Perino et al., 2018). While, there are contrasting data about the sequence 
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specificity of this domain for DNA there is no doubt that it contributes to the 

association of PRC2 with chromatin. These studies focused mainly on MTF2 

(PCL2) in ESCs, however, we and others have previously shown that PHF19 

(PCL3) is indeed expressed and contributes to PRC2 activity in these cells 

(Ballare et al., 2012; Brien et al., 2012). Hence, the main aim of this research 

chapter is to investigate the effect of loss of all Polycomb-like genes on PRC2 

function in ESCs, with a particular focus on the respective functions of PRC2.1 

and PRC2.2, and the effects on chromatin and transcriptional landscapes in the 

regulation of cellular identity.  
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5.2 Results 
 
5.2.1 The genome-wide binding profiles of PRC2.1 and PRC2.2 in mouse 

ESCs. 
 
Given the recent emerging paradigm that PRC2 is classified into unique 

subcomplex assemblies (Figure 5.1) (Holoch and Margueron, 2017), I decided to 

determine their binding profiles in ESCs. To do this, I performed genome-wide 

quantitative ChIP-seq with exogenous Homo Sapiens reference genome spike in 

(ChIP-Rx) of PRC2.1 specific components, PCL2 (MTF2) and EPOP, as well as 

for PRC2.2 specific subunits, JARID2 and AEBP2 in wild-type ESCs. I also 

included core PRC2 protein, SUZ12, in my analysis. It was not possible to 

incorporate newly characterised PRC2.1 components, PALI1/2 in this analysis 

due to lack of ChIP grade antibodies. Nonetheless, my analysis revealed 

intriguing results as to the genomic localisation of both complexes. While, 

PRC2.1 and PRC2.2 share many genomic targets, a smaller cohort of genomic 

loci exist that are only enriched for PRC2.1 specific components (Figure 5.1B & 

C) (n=187). I did not find any convincing PRC2.2 only bound sites. The shared 

genomic targets of both subcomplexes include many classical PcG genes in 

ESCs and are highly enriched for H3K27me3. The PRC2.1 exclusive targets on 

the other hand seem to be weaker PcG targets as indicated by the relative 

enrichment of SUZ12 and H3K27me3 (Figure 5.1C). Interestingly however, the 

PRC2.1 unique genomic loci are found to overlap with CpG islands, consistent 

with the unique DNA and CpG binding ability of PCL1-3 (Choi et al., 2017; Li et 

al., 2017; Perino et al., 2018). The convergence of CpG islands and 

SUZ12/H3K27me3 enrichment at these distinct loci suggest they are indeed 

bona fide PRC2.1 targets. Perhaps these genes exist in a bivalent state allowing 

low level expression and are marked by PCL1-3 and PRC2.1 to facilitate PRC2.2 

recruitment and further enrichment of H3K27me3 during particular lineage 

transitions. Nevertheless, this is the first analyses to indicate that PRC2.1 and 

PRC2.2 exhibit unique, non-overlapping genome-wide localisation patterns and 

may point to divergent functions for both subcomplexes in ESCs. 

 



Figure 5.1 The genome-wide binding profiles of PRC2.1 and PRC2.2 in 
mouse ESCs.
(A) Schematic representing PRC2.1 and PRC2.2 composition and catalytic func-
tions.
(B) Average ChIP-Rx signal profiles for PRC2.1 and PRC2.2 components at 
PRC2.1/PRC2.2 shared regions (n=4,218) and PRC2.1 only genomic regions 
(n=187) in wild-type ESCs. No reliable PRC2.2 only regions were found in our 
analysis.
(C) Genome browser representations of ChIP-Rx normalised reads for 
H3K27me3, Pcl2, Epop, Jarid2, Aebp2 and Suz12 at representative 
PRC2.1/PRC2.2 shared and PRC2.1 only genomic sites in wild-type ESCs. 
Green box highlights region around the TSS and CpG island.
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5.2.2 Inducible knockout of Pcl1 and Pcl3 in Mtf2GT ESCs 
 
To determine the relative subunit composition of PRC2, I performed endogenous 

EZH2 immunoprecipitations coupled with mass spectrometry on nuclear lysates 

from wild-type ESCs. As expected, core PRC2 subunits were specifically pulled 

down (SUZ12, EED, EZH2 – bait), and importantly accessory components from 

both PRC2.1 and PRC2.2 were significantly enriched (Figure 5.2A). Unique 

peptides for PCL1 and PCL3 were found to be highly enriched in this analysis, 

suggesting that like PCL2, PCL1/3 also have PRC2 associated roles in wild-type 

ESCs. This analysis provided a clear rationale to knockout out all three Pcl genes 

in ESCs, to avoid any possibility of redundant activities. To further explore the 

potential divergent roles of PRC2.1 and PRC2.2, I aimed to genetically disrupt all 

three Pcl genes in ESCs. To achieve this, conditional mouse ESCs in which 

specific exons of the Pcl1 and Pcl3 genes were flanked by LoxP sites were 

generated by targeting each allele for recombination with a homologous 

transgene with additional LoxP sites, FRT sites and antibiotic resistance as 

shown (Figure 5.2B). These Pcl1/3 conditional knockout cells were developed in 

a pre-existing cell line in which Pcl2 (Mtf2) was genetically ablated through the 

insertion of a gene trap cassette at the third exon (Figure 5.2B) (Li et al., 2011). 

The addition of 4-Hydroxytamoxifen (4-OHT) to these cells induced the 

expression of an additional Cre transgene and led to recombination between 

these LoxP sites and knockout of specific Pcl1/3 genomic exons (Figure 5.2C & 

E, 5.3A), hereafter referred to as Pcl1-3tKO. The addition of DMSO to this 

conditional cell line resulted in a Pcl2/Mtf2 only knockout cell line referred to as, 

Mtf2GT (Figure 5.2C). Following conditional knockout and serial passaging of 

Pcl1-3tKO cells in either LIF/2i or serum/LIF conditions there were no observable 

changes in overall ES cell morphology (Figure 5.2D). This gene targeting was 

conducted in collaboration with Haruhiko Koseki and his research group (RIKEN 

Institute, Japan). 

 

 

 

 



A B

Figure 5.2 Inducible knockout of Pcl1/Pcl3 genomic loci in Mtf2GT ESCs.
(A) Identification of the Ezh2 interacting proteins in wild-type ESCs. LC-MS/MS analysis was 
performed using permutation-based false discovery rate (FDR)-corrected test. The label free 
quantification (LFQ) intensity of the bait (Ezh2) over IgG control is plotted against the -Log10 (p 
value).
(B) Schematic representing the Pcl1/3 genomic targeting and knockout strategies, as well as 
the genetrap targeting strategy against Pcl2 (Mtf2). Adapted from Li et al., 2011.Targeting 
vector was inserted between exon 5 and 13 of Pcl1 and exon 7 and 9 of Pcl3. Conditional 
knockout cell lines were generated by the lab of Haruhiko Koseki, RIKEN Center for Intergrative 
Sciences.
(C) Conditional knockout of Pcl1/Pcl3 was induced by adding 0.5uM 4-OHT for 72 hours, result-
ing in three separate cell lines – Pcl1-3WT, Mtf2GT and Pc1-3tKO.
(D) Representative images of Pcl1-3WT and Pcl1-3tKO ESCs cultured in both Serum/Lif and Lif/2i 
conditions.
(E) Representative agarose gel images confirming conditional knockout of targeted exons of 
both Pcl1 (Phf1) and Pcl3 (Phf19). 
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5.2.3 Loss of Pcl1-3 disrupts PRC2.1 in ESCs 
 
Previous studies established that knockout out of genes encoding core PRC2 

members leads to a destabilisation of PRC2 associated subunits (Hojfeldt et al., 

2018; Pasini et al., 2004). To explore the effects of Pcl1-3 knockout on core and 

auxiliary PRC2 subunit stability I performed western blot analysis on nuclear 

lysates from Pcl1-3WT, Mtf2GT and Pcl1-3tKO ESCs. This analysis revealed, that 

while the protein levels of PCL2 are completely disrupted there are no significant 

changes in the stability of core PRC2 subunits, EZH2, EED or SUZ12 (Figure 

5.3A). Interestingly, while there are no global changes in PRC2.2 auxiliary 

members (JARID2 & AEBP2) there is an overall decrease in the protein levels of 

PRC2.1 components, EPOP (Figure 5.3A) and PALI1(Figure 5.3C). It has been 

recently reported that PALI1 (PRC2.1) and AEBP2 (PRC2.2) have an 

antagonistic relationship and can define mutually exclusive PRC2 subtypes 

(Conway et al., 2018). To investigate changes in PRC2 complex subunit 

composition following loss of PCL1-3, I performed endogenous EZH2 co-

immunoprecipitations (Co-IP) in Pcl1-3WT, Mtf2GT and Pcl1-3tKO ESCs. Western 

blots of PRC2 components on the eluted complexes, revealed that while there 

was less EPOP (PRC2.1) associated with PRC2, there was a concomitant 

increase of AEBP2 (PRC2.2) in PRC2 following the loss of PCL1-3 (Figure 5.3B). 

This confirms that similar to loss of other PRC2.1 components the loss of PCL1-

3 leads to an imbalance in PRC2 subcomplex composition (Figure 5.3D). 

 

Next, I was interested in exploring the chromatin association of PRC2.1 and 

PRC2.2 in Pcl1-3tKO ESCs. To test this, I performed western blots for PRC2.1 

and PRC2.2 components on total, soluble and chromatin bound fractions from 

Mtf2GT, Pcl1-3tKO and matched Pcl1-3WT ESCs. Intriguingly, while PRC2.1 

components EPOP and PALI1 were almost completely lost from chromatin, the 

levels of PRC2.2 subunit, AEBP2 in the chromatin bound fraction remain 

unchanged (Figure 5.3C). A slight reduction of core PRC2 complex members, 

EZH2 and SUZ12, from chromatin was consistent with the fact that the PRC2.2 

complex remained bound. Taken together, these results suggest that PCL1-3 are 
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the defining components of the PRC2.1 subcomplex and imply that loss of these 

critical proteins results in overall loss of PRC2.1 association with chromatin. 

 

5.2.4 Loss of PRC2.1 leads to a redistribution of H3K27 methylations in 

ESCs 
 

I next wished to examine the effects of loss of PRC2.1, would have on PRC2 

mediated histone PTMs H3K27me3, H3K27me2 and H3K27me1, as well as the 

functionally related modifications H2AK119ub, H3K36me3, H3K36me2, 

H3K27Ac and H3K4me3. Surprisingly, the complete loss of Pcl1-3 only resulted 

in a relatively minor decrease in global levels of H3K27me3 (~30%), with no effect 

on H3K27me1/2 (Figure 5.4A). Similarly, there was no overall change in the other 

associated histone PTMs tested (Figure 5.4A). Previous independent studies 

have reported that shRNA mediated knockdown of Pcl2 or Pcl3 in ESCs led to 

global reductions of H3K27me3 (Ballare et al., 2012; Brien et al., 2012; Casanova 

et al., 2011) via western blot. However, that is in conflict with the histone PTM 

western blot data presented here and recently published report of a CRISPR-

Cas9 knockout of PCL2 (Li et al., 2017). It is quite striking that knockdown and 

knockout studies of the same genes yield such diverse results, and it suggests 

that in the future, RNAi knockdown experiments should be accompanied by 

CRISPR-Cas9 or Cre/LoxP mediated genetic knockouts.  

 

Two recent studies performed genome-wide ChIP-Seq for H3K27me3 in ESCs 

lacking PCL2 (MTF2), but present conflicting observations in relation to its 

localisation and relative abundance (Li et al., 2017; Perino et al., 2018). In order 

to improve upon these studies, I have performed quantitative genome-wide ChIP-

Rx (Drosophila reference genome spike in) of H3K27me1/2/3 in both Pcl1-3tKO 

and matched wild-type ESCs. This analysis revealed significant redistribution of 

all H3K27 methylations in cells lacking PCL1-3 (Figure 5.4B-D). Average plots 

profiling all H3K27me3 peaks indicate that there is ~70% reduction of 

H3K27me3, and a resulting concomitant increase in H3K27me1 and H3K27me2 

at these sites (Figure 5.4C & D). This is a stronger reduction compared to the 



Figure 5.4 Loss of PRC2.1 results in a redistribution of H3K27methylations 
in ESCs.
(A) Left – Schematic of PRC2.1 illustrating knockout of Pcl1-3. Right – Western 
blot analyses using the indicated antibodies against Polycomb-associated 
histone modifications on nuclear lysates from Mtf2GT, Pcl1-3tKO and matched 
Pcl1-3WT ESCs.
(B) Quantitative chromatin immunoprecipitation (ChIP) analyses using the indi-
cated antibodies from Pcl1-3tKO and matched Pcl1-3WT ESCs. ChIP enrichments 
are presented as the percentage of protein bound normalised to Histone H3 and 
are a representative sample of three biological replicates.  
(C) Average ChIP-Rx signal profiles of H3K27me3, H3K27me2, H3K27me1 and 
Pcl2 at all H3K27me3 peaks (+/- 20kb) (n=8526) in Pcl1-3tKO and matched 
Pcl1-3WT ESCs. 
(D) Distribution of H3K27me3, H3K27me2 and H3K27me1 ChIP-Rx normalised 
reads within PcG targets (n=5126), non-PcG targets (n=17969) (+/-2.5Kb of tran-
scription target  [TSS]) and intergenic regions (n=3893) in Pcl1-3tKO and matched 
Pcl1-3WT ESCs.
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western blot analysis presented in Figure 5.3, which shows only slight overall 

changes in the modification. This is not a new phenomenon, as it has been 

previously shown that loss of AEBP2 leads to an increase in H3K27me3 at PcG 

targets by ChIP-seq, with little to no effect on global changes of the mark by 

western blot (Grijzenhout et al., 2016). Taken together, these data suggest that 

PCL1-3 are critical for catalytic conversion of H3K27me1/2 to H3K27me3, and is 

consistent with a recent study reporting that PCL proteins enhance the 

methyltransferase efficiency of PRC2 by prolonging the residency time of the 

complex on chromatin (Choi et al., 2017). Furthermore, my data does not strongly 

suggest a role for PCL proteins in the catalysis of H3K27me1 or H3K27me2. In 

fact, in addition to increases in both PTMs at PcG target genes, I also observed 

an overall increase in H3K27me2 at intergenic regions of the genome, which may 

also be related to an overall decrease in H3K27me3 at these intergenic sites 

(Figure 5.4B-D). This average increase in H3K27me2 may be rationalised due to 

the fact that in the absence of PCL1-3, PRC2.1 lacks stable tethering to 

chromatin, and in particular at CpG islands and TSS’s of PcG target genes. PRC2 

is therefore potentially less restricted and free to catalyse H3K27me2 at 

intergenic regions (Youmans et al., 2018). The biological implications of this 

genome wide increase in H3K27me2 remains to be elucidated but it could play a 

role in more robust silencing of enhancer elements required for subsequent 

differentiation of ESCs. Taken together, these analyses suggests that Polycomb-

like proteins are primarily important for maintaining PRC2.1 activity at CpG 

islands to promote H3K27me3 and that their loss leads to genome-wide 

redistributions of H3K27 methylations in ESCs. 

 

5.2.5 PRC2.2 and H3K27me3 are retained at some PcG targets in Pcl1-3tKO 

ESCs 

 

Analysing the genome wide profiles of H3K27me1/2/3 in Pcl1-3tKO ESCs 

revealed that although H3K27me3 is globally reduced, it is not completely lost 

from all PcG target genes (Figure 5.4D). In order to explore this result further, I 

performed quantitative genome wide ChIP-Rx for PRC2.1 (PCL2/EPOP), 
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PRC2.2 (JARID2/AEBP2), and core PRC2 (SUZ12) in Pcl1-3WT and Pcl1-3tKO 

ESCs. While the PRC2.1 specific member EPOP was sensitive to the loss of 

Polycomb-like proteins, as expected, surprisingly, both the PRC2.2 specific 

components, AEBP2 and JARID2 were reduced on average across all Polycomb 

target genes, albeit to a lesser extent (Figure 5.5A & B). This implies that PRC2.2 

is at least partially dependent on PRC2.1 for binding on most Polycomb target 

genes. These data are consistent with the well-defined targeting roles of PCL1-

3 and intriguingly suggests a co-dependence of PRC2.2 on PRC2.1. However, it 

also implies that loss of PCL1-3, and by extension PRC2.1, is not sufficient to 

completely abolish all PRC2 activity, and that the remaining activities of PRC2.2 

may still be functioning in a compensatory role to maintain H3K27me3, potentially 

at critically important PcG target genes in ESCs. 

 

5.2.6 PRC2.2 and H3K27me3 are maintained at “broad” PcG domains in 

Pcl1-3tKO ESCs 
 

I was next interested in exploring the regions at which H3K27me3 and PRC2.2 

were retained in the absence of PRC2.1. When inspecting the genomic 

localisation patterns of PRC2.1 and PRC2.2 in Pcl1-3tKO cells I observed that, 

while PRC2.1, PRC2.2 and H3K27me3 were significantly reduced on narrow 

PRC2 associated peaks they were retained at broader peak regions such as the 

HoxA locus (Figure 5.6A). Importantly, I confirmed this interesting result by qPCR 

in an independent ChIP experiment (Figure 5.6B). In order to determine if this 

pattern was recapitulated on a genome wide scale, I analysed the distribution 

and relative enrichment of PRC2.1, PRC2.2 and H3K27me3 at narrow and broad 

PcG domains in PCL1-3tKO ESCs. Narrow and broad domains were defined as 

follows; for each ChIP-Rx experiment in Pcl1-3WT cells, peaks within 10kb of each 

other were merged into a single region and the length distribution of the resulting 

regions partitioned into quartiles. Narrow and broad domains were defined as 

those falling within the first and fourth quartiles, respectively. Average profiles of 

these narrow and broad regions revealed that while PRC2.1 is equally lost from 

both, PRC2.2, SUZ12 and H3K27me3 were significantly retained on broad 
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(A) Average ChIP-Rx signal profiles of Pcl2, Epop, Suz12, Aebp2 and Jarid2 at 
all H3K27me3 peaks (+/- 20kb) (n=8526) in Pcl1-3tKO and matched Pcl1-3WT 
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(B) Distribution of Pcl2, Epop, Suz12, Aebp2 and Jarid2 ChIP-Rx normalised 
reads within PcG targets (n=5126), non-PcG targets (n=17969) (+/-2.5Kb of 
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regions (Figure 5.7A & B). The high level of H3K27me3 maintained at a relatively 

small number of broad peaks might help explain the discrepancy between 

western blot analysis and ChIP-Rx average profile analysis presented earlier 

(Figure 5.4A & C). Taken together, these intriguing results suggests that 

knockout of a single PRC2 auxiliary component, even critical subunits such as 

the Polycomb-like proteins, will always leave a variant PRC2 complex intact. This 

variant complex can then play a compensatory role in order to maintain silencing 

of vital lineage specific genes contained within broad PcG repressed domains 

(e.g. Hox genes). It is therefore possible, that to completely abrogate PRC2 

activity through its accessory subunits, both PRC2.1 and PRC2.2 need to be 

disrupted simultaneously.  

 

5.2.7 Loss of PRC2.1 leads to re-targeting of PRC2.2  
 
To further explore the reason for the apparent discrepancy between western blot 

and average profiles of H3K27me3 and AEBP2, I next explored the possibility 

that PRC2.2 components might be displaced to de novo sites in the Pcl1-3tKO 

ESCs. Strikingly, I identified 185 specific genomic sites that specifically 

accumulate JARID2, but not PRC2.1 (EPOP) in the Pcl1-3tKO condition (Figure 

5.8A & B). Importantly, these de novo regions are marked by H3K27me3 in Pcl1-

3WT cells, which interestingly does not significantly change upon the loss of 

PRC2.1 (Figure 5.8A). JARID2 and AEBP2 accumulation at these regions was 

accompanied by SUZ12, suggesting the complete PRC2.2 is redistributed to 

these sites following the loss of PRC2.1 (Figure 5.8A & C). Critically, I validated 

these results by qPCR in an independent ChIP experiment to ensure that it was 

not a sequencing artefact from my ChIP-Rx dataset (Figure 5.8C).  

 

Intriguingly, one of the top scoring PRC2.2 de novo sites is located ~500kb from 

the promoter of the Meis2 gene (Figure 5.8A – right panel). Meis2 repression 

during early development is known to be highly dependent on the PRC1 

component RING1b, and the mechanisms of PcG mediated silencing of this gene 

have been elegantly studied previously (Kondo et al., 2014; Yakushiji-Kaminatsui 

et al., 2018). In this context, my identification of a PRC2.2 site ~500kb distal from 
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Figure 5.7 PRC2.2 and H3K27me3 are maintained at broad PcG domains in 
the absence of PRC2.1.
(A) Average ChIP-Rx signal profiles of H3K27me3, Pcl2, Epop, Suz12, Aebp2 and 
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H3K27me3, Aebp2, Jarid2 and Suz12 at “Narrow’ and “Broad” PcG domains in 
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signal in narrow and broad peaks was compared using a one-tailed Wilcoxon test 
(“*” = p < 0.05 “N.S” = p  >0.05). 
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H3K27me3, Pcl2, Epop, Jarid2, Aebp2, Suz12 at sites of PRC2.2 re-targeting in 
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(C) Quantitative chromatin immunoprecipitation (ChIP) analyses using the indi-
cated antibodies at sites of PRC2.2 re-targeting in Mtf2GT, Pcl1-3tKO and matched 
Pcl1-3WT ESCs (A & C were performed on independent ChIP experiments). ChIP 
enrichments are presented as the percentage of protein bound normalised to 
input and are a representative sample of three biological replicates. Location of 
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the Meis2 promoter is exciting, and it will be important to determine if this region 

loops to regulate Meis2 expression during development.   

 

5.8.9 Loss of PRC2.1 results in deregulation of Polycomb target genes 

during ESC differentiation 
 

Next, I wished to evaluate the consequences of deregulated PRC2 activities in 

Pcl1-3tKO ESCs on the expression of Polycomb target genes during induction to 

differentiate to embryoid bodies (EBs). Firstly, there was no observable 

difference in overall EB morphology at Days 2, 4 or 8 following induction of both 

Pcl1-3WT and Pcl1-3tKO ESCs to differentiate (Figure 5.9A). However, RT-qPCR 

analysis of key lineage specific germ layer genes, Gata4 (endodermal) and Fgf5 

(ectodermal), revealed significantly higher expression in the PCL1-3tKO 

compared to matched wild-type ESCs at both 4- and 8-days post induction to 

differentiate (Figure 5.9B). The expression of pluripotency genes, Klf4 and Fgf17, 

were included as a positive control for the differentiation procedure (Figure 5.9B). 

I next expanded on these results by performing an independent RNA-seq 

analysis of PCL1-3tKO and matched wild-type, before, during and after induction 

to differentiate. This revealed a cohort of genes, whose expression was 

significantly upregulated in the Pcl1-3tKO condition, at both 4- and 8-days post 

induction (Figure 5.10). Among the most highly upregulated genes were key 

developmental regulators and known PcG target genes such as, Gata4, Meis2, 

Wnt3, Fgf5, Igfbp5 and FoxA2 (Figure 5.10A & B). Analysing the top PRC2 target 

genes (defined by AEBP2 occupancy, n=2043) revealed the increase in 

expression was coincident with a loss of H3K27me3, PRC2.1 and PRC2.2 from 

the promoters of these genes in ESCs, however, there did not appear to be a 

correlation between the increase in expression and change in PRC2 occupancy 

at individual genes (Figure 5.11A & B). 74-76% of genes that lose either 

H3K27me3, EPOP, JARID2 or AEBP2 in ESCs are upregulated 8-days post 

induction to differentiate (Figure 5.11A & B). These results are consistent with a 

greater propensity of cells lacking PRC2.1 to activate PcG target genes during 
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Figure 5.9 Loss of PRC2.1 leads to early activation of certain lineage 
specific genes during ESC differentiation.
(A) Representative images of Pcl1-3WT and Pcl1-3tKO at Day 2, 4 and 8 of ESC 
differentiation to embryoid bodies.
(B)RT-qPCR analyses of Gata4 (endodermal), Fgf5 (ectodermal) as well as Klf4 
and Fgf17 (both pluripotency) mRNA transcripts from Mtf2GT, Pcl1-3tKO and 
matched Pcl1-3WT ESCs at Day 2, 4 and 8 of ESC differentiation. Data presented 
are a representative sample of three biological replicates and error bars indicate 
standard deviation of individual triplicate qPCR data.  
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Figure 5.10 Loss of PRC2.1 results in deregulation of Polycomb target 
genes during ESC differentiation.
(A) Scatterplots of differentially expressed genes in Pcl1-3tKO versus matched 
wild-type ESCs as well as embryoid bodies (EBs) at day 4 and 8 of differentiation. 
Log10 of the normalised gene count data are represented for all Ref-seq genes 
(n=19500). Genes showing significant expression changes are shown in red 
(increased) and blue (decreased).
(B) Genome browser representations of ChIP-Rx normalised reads for 
H3K27me3, Pcl2, Epop, Aebp2, Jarid2 and Suz12 in ESCs, as well as RNA-Seq 
reads at EB day 2, 4 and 8 at the Fgf5 and Igfbp5 gene loci in Pcl1-3tKO and 
matching wild-type controls. The green box highlights the region around the tran-
scription start site (TSS).
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Figure 5.11 Improper regulation of PcG target genes during ESC differen-
tiation coincides with a loss of PRC2.1, PRC2.1 and H3K27me3 from 
chromatin.
(A) & (B) The relationship between changes in Epop, H3K27me3, Aebp2 and 
Jarid2 levels in Pcl1-3tKO ESCs and gene expression in ESCs and EBs (Day 8) 
for the top PRC2 target genes defined by Aebp2 enrichment (n=2043). Genes 
showing significant expression changes are shown in red (increased) and blue 
(decreased). The percentage of all genes in each quadrant is indicated. 
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differentiation and are in agreement with a similar study targeting PRC2.1 

components, PALI1/2 (Conway et al., 2018).  

 

5.8.10 Genes associated with narrow Polycomb domains exhibit more 

variable expression patterns 
 

Having established that PRC2.2 and H3K27me3 are retained at broad PcG 

domains following the loss of PRC2.1 (Figure 5.6 & 5.7), I next wished to analyse 

the expression patterns of these genes compared to genes that fall within narrow 

PcG domains in ESCs and after induction to differentiate. An analysis of the raw 

RNA abundance of both categories of genes revealed that those within narrow 

regions exhibit a more variable expression pattern in Pcl1-3tKO ESCs (Figure 

5.12A). This more variable expression pattern of genes from narrow regions was 

also evident following induction of Pcl1-3tKO ESCs to differentiate (Figure 5.12A). 

A representative gene associated with a narrow peak, Sox17, was upregulated 

in Pcl1-3tKO at EB Day 8, while there was no detectable expression from any gene 

within the HoxA locus, located within a broad domain (Figure 5.12B). This 

variable expression pattern nicely coincides with either a loss or retention of 

H3K27me3 and SUZ12 enrichment. Taken together, I believe that while PCL 

proteins are critically important for PRC2 function and targeting, their loss does 

not confer global deregulation of the PcG system in ESCs. This data implies there 

are additional compensatory mechanisms at play, potentially involving and 

interplay between PRC2.2, ncPRC1 and H2AK119ub. These mechanisms likely 

facilitate the robust repression of crucial lineage specific genes involved in cell 

fate determination.  
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Figure 5.12 Genes associated with narrow Polycomb domains exhibit 
more variable expression patterns.
(A) Boxplot representations of the relationship between changes in H3K27me3 or 
Suz12 levels in Pcl1-3tKO ESCs and the expression of genes that fall within both 
“narrow” and “broad” PcG domains in steady state ESCs and EB Day 8. Gene 
expression is determined from raw RNA-seq read counts. See methods for 
broad/narrow gene numbers. 
(B) Genome browser representations of ChIP-Rx normalised reads for 
H3K27me3 and Suz12 in ESCs, as well as RNA-Seq reads at EB day 2, 4 and 8 
at the Sox17 and HoxA gene loci in Pcl1-3tKO and matching wild-type controls. 
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Figure 5.13 Mechanisms of PRC2 recruitment.
(A) Schematic describing two forms of PRC2 recruitment in ESCs. Pcl1-3 
target PRC2.1 and PRC2.2 to CpG DNA whereas Jarid2 can bind and recruit 
PRC2 to CpG islands marked PRC1 mediated H2AK119Ub.
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5.3 Discussion 
 
In this chapter, I uncovered new roles for two unique PRC2 subcomplex 

assemblies; PRC2.1 and PRC2.2. ChIP-Rx analysis of PRC2.1 and PRC2.2 

components in wild-type ESCs revealed that the genome wide localisation of 

these subcomplexes is largely overlapping. However, there is a cohort of PRC2.1 

specific genomic loci. I also established that PCL1-3 are the essential defining 

components of the PRC2.1 subcomplex, and by maintaining EPOP and PALI1 

on chromatin, they regulate the precise genome wide distribution of H3K27 

methylations. Loss of PRC2.1 results in a decrease of PRC2.2 and H3K27me3 

from chromatin, however, JARID2 and AEBP2 along with H3K27me3 are 

retained at broad PcG domains. Interestingly, genes that fall within these broad 

domains exhibit less variable expression compared to genes from narrow regions 

when PCL1-3tKO ESCs are induced to differentiate. Coupled to this, PRC2.2 

components are also intriguingly re-targeted in the absence of PRC2.1. Taken 

together, I have uncovered new and exciting roles for PCL1-3 in maintaining the 

balance of PRC2.1 and PRC2.2 subtype activities in ESCs and during 

differentiation.  

 

5.3.1 Polycomb-like protein function during embryonic development. 

 

While the knockout of core PRC2 subunits (EZH2, EED or SUZ12) leads to early 

embryonic lethality at E7.5-8.5 (Faust et al., 1995; O'Carroll et al., 2001; Pasini 

et al., 2004), the disruption of genes encoding auxiliary components, such as 

PCL2, JARID2 and AEBP2 results in milder developmental phenotypes. For 

example, Jarid2 and Aebp2 null mice survive until later developmental stages 

(E11.5 for Jarid2 and E10.5-18.5 for Aebp2) (Grijzenhout et al., 2016; Kim et al., 

2011; Takeuchi et al., 1995). Similarly, despite reduction of both H3K27me2/3 at 

E11.5, Pali1 knockout mice are born, but the phenotype is perinatal lethal, with 

death seeming to result from severe kidney defects (Conway et al., 2018). The 

precise phenotype of Polycomb-like knockout mice is much less clear. Two 

independent studies have reported contrasting results based on Pcl2 (Mtf2) 

knockout mice (Li et al., 2011; Rothberg et al., 2018). Li et al suggest that Pcl2 
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null mice are viable but do present homeotic skeletal transformations, while 

Rothberg et al describe an embryonic lethal phenotype at E15.5. Reconciliation 

of these contrasting phenotypes is difficult, however, it might be explained by 

compensation of PCL2 loss by PCL1/PCL3. We have previously shown that 

PCL1-3 are regulated differently at the transcriptional level (Brien et al., 2015). 

Hence, these genes are likely differentially expressed in various tissues and at 

different stages in the developing embryo. Therefore, it is very possible that Pcl1 

null mice would present a largely different phenotype to Pcl2 or Pcl3 knockouts, 

and vice versa. Taken together, I believe that to in order expand on previous in 

vivo studies and on the findings presented here, it will be necessary include all 

three Polycomb-like paralogues in any future murine knockout studies. 

 

5.3.2 PRC2.1 vs PRC2.2 biochemistry 

 

Similar to recent studies, I have shown here that the absence of a PRC2 auxiliary 

component (PCL1-3) leads to an imbalance in complex composition and PRC2 

activity at PcG target genes (Conway et al., 2018; Grijzenhout et al., 2016). This 

raises interesting questions regarding the biochemistry and assembly of PRC2.1 

and PRC2.2. It has been established previously that JARID2 and AEBP2 directly 

associate with core PRC2 via interaction with a region in SUZ12 proximal to its 

Zinc finger (Ciferri et al., 2012; Kasinath et al., 2018). More recently, direct in vitro 

biochemical competition has been proposed between components of PRC2.1 

and PRC2.2, with SUZ12 providing unique structural platforms that can define 

distinct classes of complex (Chen et al., 2018). This model of steric competition 

between PRC2.1 and PRC2.2, suggests that a region within SUZ12 could act as 

a “molecular switch” capable of defining the two classes of complex and 

regulating divergent PRC2 activities. Future experiments should be aimed at 

elucidating the exact amino acid residues in SUZ12 that are important for this 

function, using this novel information to investigate whether PRC2 subcomplex 

activities can be modulated in vivo. 
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5.3.3 Mechanisms of PRC2 recruitment 
 

Trans-acting DNA binding transcription factors such as Pho are essential for 

PRC2 recruitment to Polycomb response elements (PREs) in Drosophila 

(Bracken and Helin, 2009). However, biochemical evidence for this process is 

lacking in mammalian systems (Vella et al., 2012), with the mechanisms of how 

PRC2  is specifically recruited to chromatin remaining poorly defined. The data 

presented here, as well as in previously reports, strongly suggest that there are 

at least two mechanisms functioning to recruit PRC2 to chromatin in mammals 

(Figure 5.13). I have shown that as part of the PRC2.1 complex, PCL1-3 are 

critical in targeting PRC2 to CpG islands. However, an elegant model has 

recently emerged in which H2AK119ub modified nucleosomes, deposited by 

non-canonical PRC1 complexes can contribute to the recruitment of PRC2 to 

unmethylated CpG islands (Almeida et al., 2017; Blackledge et al., 2014; Endoh 

et al., 2017; Rose et al., 2016). The mechanism for the recruitment of PRC2 to 

H2AK119ub is proposed to involve the ubiquitin interacting motif (UIM) of JARID2 

(Cooper et al., 2016), however, the global levels of H3K27me3 remain 

unchanged upon complete loss of H2AK119ub via RING1a/b deletion 

(Chiacchiera et al., 2016; de Napoles et al., 2004). I speculate that the UIM of 

JARID2 may be functioning to maintain PRC2 occupancy at broad Polycomb 

domains in the absence of PRC2.1. It will be intriguing to investigate the relative 

enrichment of both cPRC1 and ncPRC1 complexes, as well as H2AK119Ub at 

both broad and narrow domains. Furthermore, it will be interesting to explore 

whether H2AK119Ub, along with JARID2 can maintain PRC2.2 activity at crucial 

lineage determining genes in the absence of PRC2.1. Additional mechanisms at 

play may involve the ability of AEBP2 to bind DNA (Kim et al., 2009; Wang et al., 

2017) or an as of yet unidentified role for another PRC2 auxiliary component, 

such as PALI1 or EPOP.        
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6.1 Discussion 
 
The PRC2 complex is fundamentally important to lineage specification during 

mammalian development, with its critical functions being underscored by the 

embryonic lethal phenotypes of Ezh2-/-, Eed-/- and Suz12-/- knockout mice (Faust 

et al., 1995; Margueron and Reinberg, 2011; O'Carroll et al., 2001; Pasini et al., 

2004). In addition to development, deletion of PRC2 components in 

differentiating adult tissues generally leads to defective tissue regeneration 

resulting from impaired differentiation and/or loss of adult stem cell populations 

(Ezhkova et al., 2009; Hidalgo et al., 2012; Mochizuki-Kashio et al., 2011). Owing 

to the importance of PRC2 in both developing and adult tissues, the main goal of 

the research presented in this thesis was to delineate the relative contributions 

of Polycomb-like proteins (PCL1-3), essential PRC2 associated factors, to overall 

PRC2 biology and activity in both pluripotent stem cells and differentiated cellular 

systems.  

 

Here, I uncover new mechanistic roles for PCL proteins in both pluripotent 

embryonic stem cells and differentiated human cells. PCL1 has been shown to 

be highly expressed in quiescent cells and stabilise p53 (Brien et al., 2015). I 

show that PCL1 has specifically gained this function through a unique 

evolutionary process known as, neofunctionalisation. I also show that PCL1 

defines a novel PRC2 complex, lacking SUZ12, that exists exclusively in 

quiescent cells which is both methyltransferase inactive and refractory to PRC2 

inhibition. Through a conditional knockout strategy in ESCs, I have also revealed 

that PCL1-3 define a unique PRC2 subcomplex, termed PRC2.1, and are 

critically important in the maintenance of chromatin and transcriptional 

landscapes in the regulation of cellular identity during differentiation. These 

observations suggest that PCL proteins contribute to PRC2 activity at different 

stages of the cell cycle and in different cell types during differentiation and 

development, and may potentially help to reconcile why there are three PCL 

genes in mammals as opposed to one  ancestral copy in Drosophila. 
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6.1.1 PCL proteins in adult stem and progenitor cell populations 
 
Adult tissue specific stem cells exist as long-lived undifferentiated cells that have 

the unique capacity to produce differentiating progenitor cells while maintaining 

their own identity by self-renewal (Fuchs and Chen, 2013). In doing so, they can 

maintain adult tissue homeostasis and compensate for tissue loss during the life 

of an organism. Adult tissue specific stem cells are generally maintained in a 

quiescent state for prolonged periods of time until a stimulus to differentiate and 

divide is received. This process yields one daughter cell that retains stem cell 

identify and another lineage committed progenitor cell. This process eventually 

results in terminally differentiated non-dividing populations of cells. My 

observations on the gene expression, biochemistry and chromatin enrichment 

patterns of PRC2 components in primary human cells imply that the predominant 

PRC2 complex that exists in quiescent cells consists of EZH1, EED and PCL1 

(G0-PRC2). Indeed, analysis of the transcriptional profiles of several quiescent 

stem cell populations indicate that EZH1 and PCL1 expression are significantly 

enriched in quiescent stem cells in vivo (Cheung and Rando, 2013). My analysis 

of the hematopoietic stem cell (HSC) hierarchy, also reveal that EZH1 and PCL1 

are both highly expressed in quiescent HSCs and non-dividing terminally 

differentiated cells, with EZH2, SUZ12, PCL2 and PCL3 conversely being 

expressed in proliferating progenitor cells (Figure 4.12). It will be critically 

important to confirm these findings by analysing expression and chromatin 

binding dynamics of both G0-PRC2 and canonical PRC2 complexes in purified 

stem and progenitor populations, to unravel the exact roles of these complexes 

in vivo. To date I have been unsuccessful in finding an appropriate in vivo model 

system to study G0-PRC2 function. However, analysis of quiescent naïve and 

memory T cells in constitutive EZH1 knockout mice may represent an intriguing 

system to explore the consequences of disrupting G0-PRC2 function in vivo. 

 

6.1.2 PCL proteins as essential PRC2 recruitment factors 
 
It has been proposed that multivalent cooperative engagement of adjacent 

histone modifications, within or between nucleosomes, by proteins with multiple 
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reader domains may provide an additional layer of specificity for recruitment of 

chromatin associated factors (Ruthenburg et al., 2007). In light of this and given 

their unique domain architecture with both chromatin and DNA binding abilities’, 

Polycomb-like proteins have been shown to be a key player in the targeting of 

PRC2 to specific genomic loci. The reading capabilities of the PCL-Tudor domain 

have been well established, as they bind to H3K36me2/3 and de novo recruit 

PRC2 to silence actively transcribed genes during differentiation (Ballare et al., 

2012; Brien et al., 2012). However, the recently identified winged-helix DNA 

binding domain of PCL1-3 adds yet another layer of complexity to this process. 

This domain has been proposed to bind specifically to CpG islands and even to 

unique DNA structural features within these genomic regions (Li et al., 2017; 

Perino et al., 2018). It is likely that these domains interplay with one another to 

facilitate accurate recruitment. Towards exploring this further, I have designed 

rescue experiments to perform in our PCL1-3tKO ESCs, aimed at delineating the 

relative contributions of the Tudor and winged-helix domains in PRC2 recruitment 

during differentiation.  

 

Here, I have shown PCL1-3 are key factors in the recruitment of PRC2 and the 

deposition of H3K27me3 in ESCs. However, my observation that H3K27me3 and 

PRC2.2 are maintained at some genomic loci indicates the process of specific 

PRC2 targeting is likely more complex and goes beyond PCL1-3. Indeed, roles 

for both PCL2 (MTF2) and JARID2 in the stable de novo recruitment of PRC2 

and in the creation of H3K27me3 domains have been described recently (Oksuz 

et al., 2018), suggesting that established PRC2 localisation likely requires more 

than one associated factor. Furthermore, a recently defined DNA binding domain 

in AEBP2 (Wang et al., 2017), the putative ability of PALI1/2 proteins to bind co-

repressor complexes and nuclear receptors (Conway et al., 2018), as well the 

capacity of EPOP to interact with Elongin BC proteins (Beringer et al., 2016), all 

complement the hypothesis that PRC2 targeting may not be reliant on one single 

component. Taken together, this implies that stable PRC2 recruitment is 

multivalent and requires the cooperation of both PRC2.1 and PRC2.2 

components. Going forward, it will be very important to further delineate the 
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respective functions of the several DNA and chromatin binding domains within 

PRC2.1 and PRC2.2 and their interplay with one another and with other 

chromatin regulators during lineage commitment and mammalian development.   

 

6.1.3 PCL proteins as targets for cancer therapy 
 
Since 2010, multiple genome-wide sequencing studies have revealed that PRC2 

function and H3K27 methylations are frequently deregulated in several cancers 

(Comet et al., 2016; Conway et al., 2015) (Table 1.1). This has led to the 

development of several small molecule inhibitors for EZH2 and subsequent 

initiation of clinical trials (Makita and Tobinai, 2018; McCabe et al., 2012b). Here, 

I have described various novel mechanisms that could be exploited to target 

PRC2 via Polycomb-like proteins in cancer. Firstly, defining the interaction 

between PCL1 and p53 in quiescent cells has led to the hypothesis that 

disrupting this interaction in quiescent cancer stem cells may destabilise p53 and 

force these cells into the cell-cycle. This would then render these cells more 

sensitive to traditional chemotherapies that only target proliferating cells (Figure 

3.8). Secondly, our observation that G0-PRC2 is the predominant PRC2 complex 

in quiescent cells, and that this complex is refractory to two forms of PRC2 

inhibition suggests that EZH2 drugs in clinical trials at the moment will not be 

effective against quiescent cancer stem cells. I am now in the process of 

collaborating to develop protein degrader drugs targeting PRC2 core subunit, 

EED. By degrading the EED protein, in combination with EZH2 inhibitors, this will 

hopefully disrupt both G0-PRC2 and canonical PRC2 complexes, reducing the 

overall risk of recurrence and tumour re-seeding caused by non-targeted 

quiescent cancer stem cells (Figure 4.13).     

 

It has already been well established that cancer cell lines grown under the 

selective pressure of EZH2 inhibitors develop resistant secondary mutations 

(Baker et al., 2015; Gibaja et al., 2016). This represents a worrying scenario 

regarding the treatment of lymphoma patients with these drugs in clinical trials at 

the moment. The occurrence of EZH2i resistant populations of cells in human 

malignancies is a real possibility and so there is an urgent and pressing need to 
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discover additional ways to target PRC2  in cancer. I believe that further in-depth 

studies focusing on PRC2 accessory subunits, similar to the one presented here, 

will provide new important insights into the chromatin and transcriptional 

dynamics of PRC2. My observations as well as the results of future studies, on 

the systematic functions of all PRC2 subunits, will have extremely important 

implications in the treatment of cancers and particularly in the hunt for second-

wave PRC2 inhibitors.  

 

In summary, this study adds to a growing body of evidence regarding sub-

functionalisation of the Polycomb system in higher eukaryotes. Through focusing 

on Polycomb-like proteins in pluripotent and differentiated cells I have uncovered 

new insights into how the function of Polycomb group proteins have specialised 

during evolution. I believe this work will contribute to a better mechanistic 

understanding of the roles of Polycomb proteins during cell fate decisions and in 

complex biological processes such as carcinogenesis and embryogenesis.  
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6.2 Conclusions 
 

• PCL1 interacts with p53 through two divergent Serine residues in its N-

terminal PHD1 domain, having acquired this function during recent 

mammalian evolution. 

• PCL1 defines a unique PRC2 complex, lacking SUZ12, that exists 

exclusively in non-diving quiescent cells, termed G0-PRC2. 

• G0-PRC2 in methyltransferase inactive, and is refractory to PRC2 

inhibition. 

• PCL1-3 are the defining components of PRC2.1, a unique PRC2 subtype 

assembly in ESCs. 

• Loss of PRC2.1 perturbs the delicate balance of PRC2 subtype activities 

and results in improper regulation of PcG target genes during 

differentiation.  
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