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Abstract: This paper performed the optimization of grid fins shape of a launch vehicle based on Sequential Approximation 

Optimization (SAO) and Computational Fluid Dynamics (CFD) simulation coupling. An efficient and reliable method is proposed 

for determining the width of Gaussian functions based on a logical relationship between the width and local density. The 

performance of the proposed method is evaluated using five classical test functions. The proposed method for width determination 

generates almost no excessive calculation costs, and improves the accuracy, reliability, and stability of the Radial Basis Function 

(RBF) surrogate model notably. Based on the improved RBF surrogate model, a framework and detailed procedure for the SAO 

algorithm is presented, and the performance of the proposed SAO algorithm is tested, with obtained results showing that the 

proposed SAO algorithm reduces the calling times of the original model and improves the optimization efficiency remarkably. The 

objective function is strictly deduced and reflects the momentum loss caused by aerodynamic drag directly. Three constraints are 

imposed to ensure the static stability and controllability of the launch vehicle. Finally, grid fins shape optimization problem of the 

launch vehicle is solved, with the objective function and constraints calculation tasks accomplished automatically by batch mode 

CFD simulations. The global optimal solution is obtained after 54 calling times of the original model, and 92 hours (3.84 days) of 

computation on a 96-core cluster. Once the baseline shape is replaced with the optimized shape, it is detected that (1) taking the 

minimum fuel as an objective function, the take-off mass is 2.07% lighter than the take-off mass of the baseline shape, (2) taking the 

maximum payload mass as an objective function, the payload mass is 14.3% heavier than the payload mass of the baseline shape. 

Keywords: Grid fins; Launch vehicle; Sequential approximation optimization; Radial basis function model; width of Gaussian 

functions; Shape optimization 

1 Introduction 

Grid fins (also known as lattice fins) are non-conventional aerodynamic lifting and control surfaces which consists of outer frames 

and intersecting grids. The main advantages of grid fins includes; (1) favorable lift characteristics, (2) very high stall angle of attack, 

(3) low hinge moment due to low chord length, hence small size of needed control actuator, (4) can be easily folded for efficient 

packaging, storage, and transport, (5) high strength to mass ratio (Theerthamalai, 2007; Peng, 2015). Due to its advantages, grid fins 

have attracted much attention in recent years and have been utilized for a wide variety of missiles and intelligent munition systems 

successfully, examples which include; the OTR-21 Tochka tactical ballistic missile of the Former Soviet Union, R-77 air-to-air 

missile of Russia, GBU-43/B Massive Ordnance Air Blast (MOAB) of the USA, Falcon 9 rocket, Falcon heavy rocket, etc. Due to its 

favorable characteristics, grid fins can also be used as stabilizing and control surfaces of launch vehicles appropriately, an example of 

which the Chinese Kuaizhou 1 and Kuaizhou 11 launch vehicle possess four grid fins installed on the base of the first stage. However, 

the main disadvantages of grid fins are (1) Its complex shape and structure, (2) higher drag when compared with conventional fins.  

Aerodynamic shape design of grid fins are highly essential and presents the major consideration during grid fin designs. A more 

careful and detailed aerodynamic shape design could further develop and improve the advantages of grid fins, and in so doing, 
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potentially reduce the impacts of its associated disadvantages. Existing studies mainly focused on; grid fins basic aerodynamic 

characteristics (Dikbas and Baran et al., 2018; Kless and Aftosmis, 2011; Hughson and Blades et al., 2007; Simpson and Sadler, 

1998), effects of geometric variables on grid fins aerodynamic characteristics (Washington and Miller, 1998), special configurations 

such as curved grid fins (Washington and Booth et al., 1993), and local swept back grid fins (Guyot and Schulein, 2007), etc. 

Meanwhile, studies on grid fins aerodynamic shape design based on modern numerical optimization methods was seldomly found, 

except for studies by; Yang and Zhang (2013), where they optimized three section shape parameters of grid fins base on 

Computational Fluid Dynamics (CFD) method, and Ledlow and Burkhalter et al. (2015), whom optimized a ten grid fin geometrical 

parameters based on  method in order to maximize the target strike area of 

a missile using grid fins as control devices. 

CFD methods proffer a high-fidelity method for computing the aerodynamic parameters of flight vehicles, which could potentially 

yield more accurate results than computing aerodynamic 

parameters of grid fins. Design methods based on coupling modern numerical optimization algorithms and CFD simulations are 

favorable methods for grid fins shape design and could potentially lead to improved performance of grid fins design. 

Within this paper, grid fins shape is optimized for a launch vehicle based on the coupling of numerical optimization algorithms and 

CFD simulations. The computational cost of CFD methods could be potentially high. The key point in accomplishing a successful 

grid fin shape optimization is to increase the efficiency of the optimization methods while reducing the calling times of CFD 

simulations to as minimal as possible during the optimization procedure. Sequential approximation optimization (SAO) methods are 

known for their lower computational costs, generality, robustness, and accuracy (Wang and Wu et al., 2014). SAO algorithms require 

much lesser times for evaluation of original models in order to locate global optimum when compared to evolutionary algorithms 

(EAs) such as the genetic algorithm (Goldberg, 1989), simulated annealing (Kirkpatrick and Gelatt et al., 1983), particle swarm 

optimization (PSO) algorithm (Kennedy and Eberhart, 1995), immune algorithm (Yildiz, 2009), and artificial bee colony algorithm 

(Karaboga and Basturk, 2003), etc. Objectively, SAO algorithms are particularly fit for grid fins shape optimization based on 

coupling with CFD simulations. Within SAO, the surrogate models are constructed repeatedly by addition of new sampling points, 

until the terminal criterion is satisfied (Kitayama and Arakawa et al., 2011). Surrogate models construction stage is the most 

important part of SAO algorithms, and this has been widely studied (Deng and Lam et al., 2002; Kitayama and Arakawa et al., 2011; 

Kitayama and Yamazaki, 2011; Luo and Zhang et al., 2011). The Radial Basis Function (RBF) model, was originally proposed by 

Hardy (1971) to fit irregular topographic contours of geographical data. The RBF model has shown to be reliable in terms of 

accuracy and robustness (Jin and Chen et al., 2001), and is extensively used in SAO algorithms. Determination of the width of an 

RBF model has decisive impacts on the accuracy of the RBF model (Chen and Hong et al., 2011; Xu and Jayawardena et al., 2013; 

Yeh and Chen et al., 2012; Wu et al., 2016; Wu et al., 2017; Bonte and Fourment et al., 2010). Nakayama and Arakawa et al. (2002) 

proposed a determination method of the width for uniform samples. Kitayama and Arakawa et al. (2011) proposed a method for 

non-uniform and sufficient samples. Wang and Wu et al. (2014) proposed a method based on local densities of sampling points, with 

the total influence volume as the key parameter for the method, which was obtained by cross validation in a cumbersome approach. 

Due to the intense non-uniform distribution of samples and progressively increasing samples in an SAO procedure, establishing a 

reliable RBF width determination method for non-uniform samples with uncertain scale is significantly beneficial for improving the 

accuracy of surrogate models and the efficiency of SAO algorithms in general. 

Multipoint optimization is widely applied in fight vehicles shape optimization (Gallard and Meaux et al., 2013; Lee and Min et al., 

2006; Sunago and Sasaki et al., 2009), which means the status of several flights are considered within the optimization procedure. 

Therefore, within this paper, a multipoint optimization method is employed for grid fins shape optimization for a launch vehicle 

based on the SAO algorithm and CFD simulations coupling. A new approach for determination of the width of the RBF model is 

proposed to enhance the RBF surrogate model during the SAO algorithm, and the performance of the proposed method is evaluated. 

Based on the improved surrogate model, the framework and detailed procedure of the SAO algorithm are presented, and the 

performance of the proposed SAO algorithm is tested. Weighted average drag coefficients at several selected trajectory points are 

used as the objective function, and the weighting factors are determined based on strict deducing. The emphasis of obtaining a 

reasonable objective function is to determine the design trajectory points and the corresponding weighting factors. Constraints are 

imposed to ensure static stability and controllability for the launch vehicle. Grid fins shape optimization problem of a launch vehicle 
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is solved using the proposed SAO algorithm, and the optimization results are analyzed and discussed. 

2 Radial Basis Function surrogate model and its improvement 

In this section, the RBF model is applied to construct the surrogate model. Determination of the width of the basis function is a key 

factor for establishing an accurate RBF model. Small values of the width leads to a non-smooth regression, while an overly large 

width value may lead to a Runge’s phenomenon in the regression (Wang and Wu et al., 2014). Accurate regression can be obtained 

with suitable width values. Therefore, based on the local densities of sampling points, an efficient and reliable method to determine 

the width of basis function is proposed to improve the RBF model for the SAO algorithm.  

To deduce the proposed method, an m-dimensional design variable is scaled into an m-dimensional unit hypercube by: 

 { 

EMBED Equation.DSMT4

 } (1) 

Where { 
EMBED Equation.DSMT4

 } and { 
EMBED Equation.DSMT4

 } are the upper and lower bounds of the { EMBED 

Equation.DSMT4 } design variable, respectively. 

2.1 Standard Radial Basis Function 

Given { EMBED Equation.DSMT4 } sampling points { 
EMBED Equation.DSMT4

 }, where { 
EMBED Equation.DSMT4

 } 

is m-dimensional vector and { 
EMBED Equation.DSMT4

 } is its corresponding real response value, the standard RBF model has 

the general form of: 

 { 

EMBED Equation.DSMT4

 } (2) 

Where { EMBED Equation.DSMT4 } is the vector of design variables, { 
EMBED Equation.DSMT4

 } is a vector value of the { 

EMBED Equation.DSMT4 } sampling point, is the Euclidean norm, { 
EMBED Equation.DSMT4

 

} is the coefficient for the { EMBED Equation.DSMT4 } basis function, and { 
EMBED Equation.DSMT4

 } is a basis function. 

The following Gaussian kernel is employed as the basis function in this paper: 

 { 

EMBED Equation.DSMT4

 } (3) 

Where {  
EMBED Equation.DSMT4

 }  is the width of the {  
EMBED Equation.DSMT4

 }  basis function, and {  
EMBED 

Equation.DSMT4
 } should be determined before the calculation of { 

EMBED Equation.DSMT4
 }. 

The response { 
EMBED Equation.DSMT4

 } is calculated using Eq. (2) at sampling point { 
EMBED Equation.DSMT4

 }. The 

calculation of { 
EMBED Equation.DSMT4

 } is performed by solving the following equation: 

 { 
EMBED Equation.DSMT4

 } (4) 

Eq. (4) can be re-written as: 

 { 
EMBED Equation.DSMT4

 } (5) 

Where,  

 { 

EMBED Equation.DSMT4

 } (6) 

And { 
EMBED Equation.DSMT4

 }, { 
EMBED Equation.DSMT4

 }. 

Nakayama proposed a simple manner to determine the width of the basis functions as follows (Nakayama and Arakawa et al., 

2002): 

 { 

EMBED Equation.DSMT4

 } (7) 

Where { 
EMBED Equation.DSMT4

 } represents the maximum distance between the sampling points. In an m-dimensional unit 

hyper-cube, the upper bound of {  
EMBED Equation.DSMT4

 }  is clearly {  EMBED Equation.DSMT4 } . {  
EMBED 

Equation.DSMT4
 } in Eq. (7) is replaced with { EMBED Equation.DSMT4 }, therefore, we can get: 

 { 

EMBED Equation.DSMT4

 } (8) 



  

 

{PAGE   \* MERGEFORMAT} 

Eq. (7) leads to a constant width value for every basis function. If the training data are non-uniformly distributed as most practical 

problems show, it is expected that this kind of method may not work well. Kitayama and Arakawa et al. (2011) proposed the 

following simple determination which attempts to deal with the non-uniform distribution of sampling points. 

 { 

EMBED Equation.DSMT4

 } (9) 

Where { 
EMBED Equation.DSMT4

 } denotes the width of the { 
EMBED Equation.DSMT4

 } Gaussian kernel and { 
EMBED 

Equation.DSMT4
 } denotes the maximum distance between the { 

EMBED Equation.DSMT4
 } sampling point and other sampling 

points. 

2.2 Determination of the width of the RBF model 

2.2.1 Determination method 

Intuitively, widths of the basis functions should be closely related with sampling points distribution density. The denser, the 

smaller the width. Kernel density estimation function (KDE) is a wildly used method for sample densities estimation (Parzen, 1962). 

According to KDE, the density function is defined as follows while applying Gaussian kernel; 

 { 

EMBED Equation.DSMT4

 } (10) 

The density function of one-dimensional random sample with respect to { EMBED Equation.DSMT4 } is illustrated in Fig. 1. An 

appropriate value of { EMBED Equation.DSMT4 } is needed to reveal the distribution densities accurately, while a small { 

EMBED Equation.DSMT4 } value leads to impulse function, and an overly large { EMBED Equation.DSMT4 } value leads to a 

density function reflecting no local distribution features. 

In this paper, { EMBED Equation.DSMT4 } in Eq. (10) takes the form of Eq. (8). The local density of the sampling point { 

EMBED Equation.DSMT4
 } is defined as follows: 

 { 

EMBED Equation.DSMT4

 } (11) 

In Fig. 1., there are 23 sampling points, as shown in Fig. 2. Setting { 
EMBED Equation.DSMT4

 } leads to reasonable local 

density values for sampling points. 

  
Fig. 1. Density function of one-dimension random sample with 

respect to { EMBED Equation.DSMT4 } Fig. 2. Local densities of one-dimension sampling points 

The relationship between the width of the { EMBED Equation.DSMT4 } basis function { 
EMBED Equation.DSMT4

 } in Eq. 

(3), { 
EMBED Equation.DSMT4

 } and design space dimension { EMBED Equation.DSMT4 } can be expressed as: 

 { 

EMBED Equation.DSMT4

 } (12) 

Eq. (12) contains { EMBED Equation.DSMT4 } mutual independent equations, and the number of unknown width { 
EMBED 
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Equation.DSMT4
 } needed to solve is { EMBED Equation.DSMT4 }. All { 

EMBED Equation.DSMT4
 } could be obtained if 

whichever { 
EMBED Equation.DSMT4

 } is determined reasonably. 

The sparsest sample point { 
EMBED Equation.DSMT4

 } is taken as a breakthrough for { 
EMBED Equation.DSMT4

 } 

determination. To ensure smooth regression, basis function { 
EMBED Equation.DSMT4

 }’s influence should reach its nearest 

sample point, that is; basis function value of { 
EMBED Equation.DSMT4

 } at its nearest sample point should be great enough. 

 { 

EMBED Equation.DSMT4

 } (13) 

Where { 
EMBED Equation.DSMT4

 } denotes the minimum distance between the  sampling point and other sampling 

points, { 
EMBED Equation.DSMT4

 } denotes the the  sampling point. The numerical relationship between { 

EMBED Equation.DSMT4
 } and { 

EMBED Equation.DSMT4
 } is illustrated in Fig. 3. { 

EMBED Equation.DSMT4
 } is less 

than 0.1 while { 
EMBED Equation.DSMT4

 } is less than 0.6592, and { 
EMBED Equation.DSMT4

 } is greater than 0.3769 while 

{ 
EMBED Equation.DSMT4

 } is greater than 1.0. Setting { 
EMBED Equation.DSMT4

 } should be sensible to ensure 

 

 { 
EMBED Equation.DSMT4

 } (14) 


s
/d

s,min


(d

s
,m

in
)

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[1, 0.3769]

[0.6592, 0.1]

 

Fig. 3. The numerical relationship between { 
EMBED Equation.DSMT4

 } and { 
EMBED Equation.DSMT4

 } 

According to Eq. (12) and Eq. (14),  

 { 
EMBED Equation.DSMT4

 } (15) 

2.2.2 Method Evaluation 

The approximation accuracy of the proposed method and the methods given by Nakayama & Arakawa et al. (2002) and Kitayama 

& Arakawa et al. (2011) are further assessed by the index of R-squared ({ EMBED Equation.DSMT4 }), depicted as follows;  

 { 

EMBED Equation.DSMT4

 } (16) 

  is the observed value, 

{ 
EMBED Equation.DSMT4

 } is the  is the average of all observed values. 
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To evaluate the efficacy and efficiency of the proposed width determination method more thoroughly, a special validation 

procedure presented by Wang and Hu et al. (2014) is applied. In the procedure, 10 random points are sampled each time for function 

1, 50 random points for function 2 and function 3, 200 random points for function 4 and function 5 are all sampled randomly each 

time. The RBF surrogate models  to the three test width determination methods are obtained. 1000 points are selected 

to calculate { EMBED Equation.DSMT4 } between the surrogate models and the true function. The whole process repeats 

independently for 20 times, and the mean { EMBED Equation.DSMT4 } ({ EMBED Equation.DSMT4 }) is calculated. 

Tab. 1. Test functions for  

Function Function expression
 

Notes 

Function 1 { 
EMBED Equation.DSMT4

 } One-dimension 

function 

Function 2 { 
EMBED Equation.DSMT4

 } Low dimension and 

low order function 

Function 3 { 
EMBED Equation.DSMT4

 } Low dimension and 

high order function 

Function 4 
{ 

EMBED Equation.DSMT4

 } High dimension and 

low order function 

Function 5 
{ 

EMBED Equation.DSMT4

 } High dimension and 

high order function 

 

 
Fig. 4. Comparison of the approximation performance with 

respect to 8 non-uniform sampling points 

 
Fig. 5. Comparison of the approximation performance with 

respect to 8 uniform sampling points 

 

The approximation accuracy corresponding to the three test width determination methods are illustrated in Fig. 6. The proposed 

method shows the best performance for all five test functions, Nakayama’s method takes the second place. With regards to the higher 

dimension functions (function 4 and function 5), the proposed method demonstrates much superior performance when compared to 

the Nakayama and Kitayama methods. 

The fluctuations of { EMBED Equation.DSMT4 } for each function when using the three width determination methods are 

further illustrated in Fig. 7. The { EMBED Equation.DSMT4 } values of the proposed method are constantly greater than 0.9 in 

most random validation cases even for the high dimension and high order function (function 5). The { EMBED Equation.DSMT4 } 

values of the proposed method are greater than Nakayama’s and Kitayama’s method in almost all cases. Also, its { EMBED 

Equation.DSMT4 }  are much steadier than the other two methods.  

In particular, the main calculation cost of this proposed width determination method is calculating { 
EMBED Equation.DSMT4

 } 
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in Eq. (11), and fortunately, { 
EMBED Equation.DSMT4

 } is also needed while solving  proposed method 

for width determination generates almost no excessive calculation costs. Generally, this proposed determination method of width for 

the RBF model has an accurate, reliable and stable performance. 

 
Fig. 6. Comparison of approximation accuracy corresponding three width determination methods by the index of { EMBED 

Equation.DSMT4 } 

 

 
(a) Function 1 

 
(b) Function 2 
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(c) Function 3 

 
(d) Function 4 

 
(e) Function 5 

Fig. 7. The fluctuations of { EMBED Equation.DSMT4 } in the validation procedure 

3 SAO algorithm based on the improved RBF surrogate model 

3.1 Algorithm 

For convenience of discussion, expression of the ordinary optimization problem is given as follows: 

 { 

EMBED Equation.DSMT4

 } (17) 

Where { 
EMBED Equation.DSMT4

 }, { 
EMBED Equation.DSMT4

 }, { 
EMBED Equation.DSMT4

 } are the objective function, 

inequality constraints, and equality constraint respectively. 

The framework of the SAO algorithm utilized in this paper is presented in Fig. 8. The detailed procedure of the SAO algorithm 

utilized is broadly divided into the initial stage, approximation stage, and sampling stage, which are elaborated as follows: 

(1) Initial stage 

In this stage, the m-dimensional design variable is first scaled into an m-dimensional unit hypercube, then the Optimal Latin 

Hypercube Design (OLHD) method is used to sample the unit hypercube. The objective function and constraints of the sampling 
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points are then evaluated using the original model. The sampling points and the corresponding responses constitute the initial sample 

set. 

(2) Approximation stage 

Based on the sample set, surrogate models of the objective function and the constraints are constructed using the improved RBF 

model. The local densities of sampling points are calculated, then width of the basis function of the sparsest sample point is 

calculated, after which the widths of basis functions of other sample points are determined. Finally, accuracy of the RBF surrogate 

models are constructed based on the efficiently and reliably determined widths of basis functions. 

(3) Sampling stage 

Since the advent and introduction of the SAO algorithm, a number of sampling strategies have been studied and applied (Hastie 

and Tibshirani et al., 2001; Jones, 2001; Xiong and Chen et al., 2007). These strategies can be divided into three categories: the 

exploitation technique, the exploration technique, and the balanced exploitation/exploration technique. An adaptive sampling strategy 

of solving the following optimization problem with a penalty method is used in this paper in order to balance the exploitation and 

exploration (Wang and Wu et al., 2014). 

 { 

EMBED Equation.DSMT4

 } (18) 

Where { 
EMBED Equation.DSMT4

 }, { 
EMBED Equation.DSMT4

 }, { 
EMBED Equation.DSMT4

 } are the surrogate models 

of objective function, inequality constraints, and equality constraint respectively, { 
EMBED Equation.DSMT4

 } is the minimum 

Euler distance between the new sampling point and the former sampling points, { 
EMBED Equation.DSMT4

 } is the minimum 

distance between the existing sampling points, and { 
EMBED Equation.DSMT4

 } will decrease gradually in the SAO iteration 

procedure. 

In the sampling stage, the minimum distance { 
EMBED Equation.DSMT4

 } between the sampling points in the sample set is 

initially calculated, and then, based on the surrogate models constructed in the approximation stage, the adaptive sampling is 

implemented by solving the optimization problem (18) using the PSO algorithm with a penalty method. Finally, the optimal solution, 

together with its objective function and constraints of the original model, are added to the sample set to update the surrogate models 

in the next iteration. 
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Calculating the width of basis function of the sparsest sample point

Calculating the density function at each sampling point

Termination Criterion Satisfied?

Determining the width of basis function of other sample points

Constructing the RBF surrogate models of objective and constraints

Calculating the minimum distance δ between sampling points

Solving the optimization problem (18) using PSO algorithm

End

Approximation Stage

Sampling Stage

Evaluating objective function and constraints for  the solution of problem (18)  based on original model

No

Yes

Scaling the m-dimensional design variable into an m-dimensional unit hypercube

Initial sampling using Optimal Latin Hypercube Design method 

Evaluating objective function and constraints of the initial sampling points  based on original model

Initial Stage

 
Fig. 8. The framework of the SAO algorithm. 

3.2 Algorithm test 

The Golinski’s speed reducer problem is a classical and widely used optimization algorithm testing problem, which is also 

included in the MDO test suite at NASA Langley Research Center (Padula and Alexandrov et al., 1996). The mathematical 

expression of the Golinski’s speed reducer problem is as follows: 

 { 

EMBED Equation.DSMT4

 } (19) 

Where, 

 { 

EMBED Equation.DSMT4

 } 

 { 

EMBED Equation.DSMT4

 } 

The respective maximum and minimum bounds of design variables for the Golinski’s speed reducer problem is: 

 { 

EMBED Equation.DSMT4

 } (20) 

Where { 
EMBED Equation.DSMT4

 } is an integer. 

20 initial sampling points are generated using OLHD method. As shown in Fig. 9., the global optimal solution is obtained after 35 

iterations, while the original model is called 65 times. The optimal solution is: 



  

 

{PAGE   \* MERGEFORMAT} 

 { 
EMBED Equation.DSMT4

 } (21) 

 
Fig. 9. The objective function history of the optimization process for Golinski’s speed reducer problem 

The parallel simulated annealing algorithm using simplex method (PSASM) proposed by Luo and Tang (2004) is an 

acknowledged excellent optimization algorithm. The optimal solution for Golinski’s speed reducer problem is obtained after calling 

the original model about 1000 times using PSASM. In contrast, the proposed SAO algorithm can reduce the calling times of the 

original model and improve the optimization efficiency notably. Therefore, grid fins shape optimization of a launch vehicle based on 

CFD simulations could be achieved efficiently using the proposed SAO algorithm. 

4 Grid fins shape design optimization of a launch vehicle 

4.1 Conceptual design of the launch vehicle 

The launch vehicle is a three-stage solid rocket, the mass of load-to-orbit (including mass of payload, payload adapter and 

burnt-out last stag) is 250 kilograms, and payload mass is 50 kilograms. Orbit altitude of satellite is 300 kilometers. Four grid fins are 

installed in the shape of a cross as aerodynamic stabilizing surface and aerodynamic control rudder of the first stage. The baseline 

shape of the launch vehicle is shown in Fig. 10. Chord length of grid fins is 120 millimeters, distance between neighboring internal 

webs is 158.4 millimeters, height of the fin support base is 100 millimeters, distance between the grid fins and rocket bottom is 150 

millimeters, number of cells are 3 in both span-wise direction and the perpendicular direction of span-wise direction, outer web 

thickness is 8 millimeters, internal web thickness is 5 millimeters, and the internal webs of grid fins are orthogonal. 

 
Fig. 10. Baseline configuration of a launch vehicle 

The minimum fuel trajectory is obtained using the method of Hu and Yang et al. (2010). Fig. 11. shows the altitude, Mach number 

and velocity vs. time curves of the minimum fuel trajectory. Mach numbers up to 100 km have no physical meaning, which are not 

illustrated in Fig. 11. Fig. 12. shows the slope angle and dynamic pressure vs time curves of the minimum fuel trajectory. The 

take-off mass corresponding the minimum fuel trajectory is 14.58 tons.  
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Fig. 11. Altitude, Mach number and velocity vs. time curves of 

the minimum fuel trajectory 
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Fig. 12. Local slope angle and dynamic pressure vs. time 

curves of the minimum fuel trajectory 

4.2 Design variables of grid fins for the launch vehicle 

The four parameters selected as design variables for the grid fins shape optimization are: (1) Chord length of the grid fins ({ 

EMBED Equation.DSMT4 }), (2) Distance between neighboring internal webs ({ 
EMBED Equation.DSMT4

 }), (3) Height of the 

grid fins support base ({ 
EMBED Equation.DSMT4

 }), (4) Number of cells in span-wise direction and the perpendicular direction of 

span-wise direction ({ 
EMBED Equation.DSMT4

 }). The first three parameters can be seen in Fig. 13. The design variables can be 

represented as follows: 

 { 
EMBED Equation.DSMT4

 } (22) 

{ EMBED Visio.Drawing.15 } 

Fig. 13. Design variables of grid fins for the launch vehicle 

The maximum and minimum bounds of design variables for grid fins are determined according to experiences in this study, and 

the range is chosen large enough to ensure the global optimal solution within limits. The respective maximum and minimum bounds 

are shown in Tab. 2. 

Tab. 2. The respective maximum and minimum bounds of design variables for grid fins 

Parameters Minimum Limit Maximum Limit 

{ EMBED 

Equation.

DSMT4 

}/mm 

80 200 

{ 
EMBED 

Equation.

DSMT4
 

}/mm 

90 180 

{ 
EMBED 

Equation.

DSMT4
 

}/mm 

50 200 

{ 
EMBED 

Equation.

DSMT4
 } 

2 5 
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4.3 Objective function and constraints 

As aerodynamic stabilizing surface and aerodynamic control rudder of the first stage within launch vehicles, the grid fins should 

satisfy requirements of static stability and controllability, and also cause least aerodynamic drag. 

4.3.1 Objective function 

Weighted average drag coefficients at several selected trajectory points are used as the objective function by many researchers 

(Kenway and Martins, 2016;  and  et al., 2006; CHAI and YU et al., 2018). The emphasis of obtaining a reasonable 

objective function is to determine the design trajectory points and the corresponding weighting factors. This paper proposes a method 

for obtaining a reasonable objective function, which is deduced as follows; 

The direct purpose of decreasing the aerodynamic drag in grid fins shape optimization process is to reduce the momentum loss 

caused by drag, which is expressed by the following formulation: 

 { 
EMBED Equation.DSMT4

 } (23) 

Where { 
EMBED Equation.DSMT4

 } is the separation moment between the first stage and the second stage, {  EMBED 

Equation.DSMT4 } is the aerodynamic drag, { 
EMBED Equation.DSMT4

 } is drag coefficient, { 
EMBED Equation.DSMT4

 } 

is dynamic pressure, { 
EMBED Equation.DSMT4

 } is the reference area of { 
EMBED Equation.DSMT4

 }, the value { 
EMBED 

Equation.DSMT4
 } is set to make { 

EMBED Equation.DSMT4
 }, so as to ignore the almost zero dynamic pressure flight process 

after { 
EMBED Equation.DSMT4

 }. 

Dividing the time interval { 
EMBED Equation.DSMT4

 } to { EMBED Equation.DSMT4 } parts uniformly, Eq. (23) could be 

transformed as: 

 { 

EMBED Equation.DSMT4

 } (24) 

Where { 
EMBED Equation.DSMT4

 } is the drag coefficient at the { 
EMBED Equation.DSMT4

 } moment. Dividing by { 

EMBED Equation.DSMT4
 }, Eq. (24) could be transformed as: 

 

 { 

EMBED Equation.DSMT4

 } (25) 

Where: 

 { 
EMBED Equation.DSMT4

 } (26) 

The value of { 
EMBED Equation.DSMT4

 } wouldn’t change obviously after the grid fins shape optimized, because the variation 

of aerodynamic drag between optimized grid fins and baseline configuration has slight influence on dynamic pressure vs. time. 

 

Based on the above derivation, this paper proposes the following objective function for grid fins shape optimization. 

 { 
EMBED Equation.DSMT4

 } (27) 

The objective function expressed by Eq. (27) reflects the momentum loss caused by drag directly, and is beneficial for satisfactory 

grid fin shape optimizations.  

The value of { EMBED Equation.DSMT4 }  in Eq. (27) is set as 3, which results to the design trajectory points and 

corresponding weighting factors shown in Tab. 3. for the objective function. In Tab. 3., The angle of attack {  
EMBED 

Equation.DSMT4
 } and grid fins deflection angles is set to 10° and 0° for calculation of { 

EMBED Equation.DSMT4
 }, { 

EMBED Equation.DSMT4
 } is the distance between the center of mass and the nose vertex, { 

EMBED Equation.DSMT4
 } is the 

total length of the launch vehicle. 

Tab. 3. Design trajectory points and the corresponding weighting factors for the objective function 

{ 
EMBED 

Equation.DS

10.30 30.91 51.51 
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MT4
 }/s 

{ 
EMBED 

Equation.DS

MT4
 }/km 

0.55 4.92 12.83 

{ 
EMBED 

Equation.DS

MT4
 }/kPa 

6.99 58.77 82.75 

{ EMBED 

Equation.DS

MT4 } 

0.32 1.24 2.64 

{ 
EMBED 

Equation.DS

MT4
 } 

0.07 0.39 0.55 

{ 
EMBED 

Equation.DS

MT4
 } 

0.57 0.5 0.45 

4.3.2 Constraints 

The following constraints are imposed to ensure static stability and controllability for the launch vehicle. 

(1) The static margin at the design trajectory points in Tab. 3. should be greater than 0.03, to meet the requirement of static 

stability; 

 { 
EMBED Equation.DSMT4

 } (28) 

Where { 
EMBED Equation.DSMT4

 } is the distance between the aerodynamic center and the nose vertex at the three selected 

design trajectory points. 

(2) The absolute value of desired deflection angles { 
EMBED Equation.DSMT4

 } needed to trim the launch vehicle at the design 

trajectory points in Tab. 3. should be smaller than 15°, while the angle of attack { 
EMBED Equation.DSMT4

 } is set as 10 degrees, 

so as to meet the controllability requirement. 

 { 
EMBED Equation.DSMT4

 } (29) 

Where { EMBED Equation.DSMT4 } is calculated as follows: 

 { 

EMBED Equation.DSMT4

 } (30) 

Where { EMBED Equation.DSMT4 } is pitching moment, and { EMBED Equation.DSMT4 } is the deflection angle of grid fins. 

(3) Setting angle of attack and grid fins deflection angles to zero and 20°, the absolute value of hinge moment at the design 

trajectory points in Tab. 3. should be smaller than 250 { EMBED Equation.DSMT4 }, so as to lower the output torque requirements 

of the actuator. 

 { 
EMBED Equation.DSMT4

 } (31) 

In summary, six independent numerical simulations at { 

EMBED Equation.DSMT4

 } and { 

EMBED Equation.DSMT4

 } for 

three design trajectory points are needed to calculate the objective function and constraints. 
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4.4 Results and Discussion 

Based on the proposed SAO algorithm of Section 3, the objective function and constraints calculation tasks are accomplished in 

batch mode automatically by taking three steps as follows: 

Step 1: The rocket shape is modeled according to the values of design variables using SolidWorks macro tool automatically.  

Step 2: Structured-unstructured hybrid meshes for external flow-field simulations are made using ANSYS ICEM CFD 16.1 script 

tool automatically. As the external flow-field is symmetrically distributed, half of the outer flow-field is needed for mesh 

generation, and the meshes on symmetry and grid fin are as shown in Fig. 14. The total mesh cells of the flow domain are 

about 3.2 million. It is worth mentioning that only the unstructured meshes around the grid fins are required to be made 

during the optimization process, while the region of structured meshes remains unchanged during optimization, thereby 

saving time. 

Step 3: Numerical simulation of outer flow-fields of the rocket at every attack angle, deflection angle and design trajectory point are 

completed using ANSYS Fluent 16.1 running in batch mode, with the Spalart-Allmaras (S-A) turbulence model adopted. The 

objective function and constraints are solved by post-processing the rockets outer flow-field numerical simulation results. 

 

 

(a) Meshes of symmetry plane (b) Local magnifying meshes of symmetry plane around a grid fin 

 
(c) Surface meshes of a grid fin 

Fig. 14. The computational meshes of the rocket with grid fins 
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The accuracy of the CFD method performed in this paper is tested using wind tunnel test data (Theerthamalai and Nagarathinam et 

al., 2006) of a rocket model with grid fins shown in Fig. 15. The Mach number of the wind tunnel test is 2.5, and the Reynolds 

number is 1.2×106 based on the diameter of the rocket model, the angle of attack is 0 to 24 degrees. The coefficient of drag, lift 

coefficient, and pitch moment coefficient calculated using ANSYS ICEM CFD 16.1 and Fluent 16.1 are compared with the wind 

tunnel test results. The aerodynamic coefficients reference length is the length of the rocket model, the reference area is the 

maximum sectional area of the rocket body, and the nose vertex is taken as the aerodynamic moment reference point. It can be seen 

from Fig. 16. that the calculated results of aerodynamic coefficients are in good agreement with the test results, with the error 

between calculated and test results of drag coefficient { 
EMBED Equation.DSMT4

 }, lift coefficient { 
EMBED Equation.DSMT4

 

} and pitching moment { 
EMBED Equation.DSMT4

 } all less than 6.5%, 4.9%, and 4.7% respectively. 

FIN1

FIN2
FIN2

FIN3

 

Fig. 15. Rocket model with grid fins 

 

 

Fig. 16. The comparison of calculated and test results of aerodynamic characteristics of rocket model with grid fins 

 

15 initial sampling points are generated using OLHD method for the grid fins shape optimization. The objective function history of 

the grid fins optimization process is shown in Fig. 17. The objective function becomes stable after 39 iterations, thereby producing 

the global optimal solution after 39 iterations; while the original model is called 54 (15 plus 39) times.  

Computational time of 83 minutes is taken to compute the objective function and constraints of a specified configuration in our 

computing cluster possessing 96 cores. 92 hours (3.84 days) is taken altogether to obtain the optimal grid fins shape for the rocket 

using the proposed SAO algorithm. Assuming evolutionary algorithms are used to solve the optimization problem of grid fins 

performed in this paper, the original model will be called thousands of times, and much more expensive consumption times would be 

required, which is often difficult to accept in most engineering projects.  

 



  

 

{PAGE   \* MERGEFORMAT} 

 
Fig. 17. The objective function history of the optimization process for grid fins 

Optimized Grid Fins Geometry Parameters are as shown in Tab. 4. Shape of the launch vehicle with optimized grid fins is as 

shown in Fig. 18. 

Tab. 4. Optimized grid fins geometry parameters 

Parameters 

{ 

EMBE

D 

Equati

on.DS

MT4 

}/mm 

{ 

EMBE

D 

Equatio

n.DSM

T4
 

}/mm 

{ 

EMBED 

Equatio

n.DSMT

4
 }/mm 

{ 

EM

BE

D 

Equ

atio

n.D

SM

T4
 

} 

Optimized Value 97.26 129.52 75.48 3 

 

 

Fig. 18. Shape of launch vehicle with optimized grid fins 

 

Flow parameters contour (taking the free stream of Mach 2.64, angle of attack and grid fins deflection angles is equal to 10° and 0°, 

for example) of the rocket with grid fins optimized are shown in Fig. 19. Strong local oblique shock waves pass through the fin cells, 
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and the flow remains supersonic within the cells, which means there are no existence of flow choking. 

 

 

 

(a) Mach number contours around the windward grid fin on the 

symmetry 
(b) Pressure coefficient contours of the horizontal grid fin 

Fig. 19. Flow parameters contours at free stream of Mach 2.64, angle of attack and grid fins deflection angles is equal to 10° and 0° 

 

The objective functions and constraints of the baseline shape and the optimized shape are as shown in Tab. 5. The optimal solution 

satisfies all constraint conditions initially presented in section 4.3.2, and the weighted average drag coefficient as the objective 

function achieved in this paper is 11.07% less than the value of the baseline shape, which is beneficial for improving launch 

performance of launch vehicles. 

 

Tab. 5. Objective functions and constraints of the baseline shape and the optimized shape 

Launch vehicle shape 

{ 
EMBE

D 

Equati

on.DS

MT4
 } 

{ 
EMBE

D 

Equatio

n.DSM

T4
 } 

{ 
EMBE

D 

Equatio

n.DSM

T4
 } 

{ 
EMBE

D 

Equatio

n.DSM

T4
 } 

The baseline shape 0.6956 0.035 -5.7 -26.5 

The optimized shape 0.6186 0.00091 -4.54 -45.6 

 

Adopting the analysis approach given by Hu and Yang et al. (2010), by replacing the baseline shape with the optimized shape, it is 

observed that; (1) taking the minimum fuel as an objective function for optimization, the take-off mass will be 14.274 tons, which is 

301.71 kilograms and 2.07% lighter than the take-off mass of the baseline shape, (2) taking the maximum payload mass as an 

objective function for optimizing, the payload mass will be 57.1 kilograms, which is 7.1 kilograms and 14.2% heavier than the 

payload mass of the baseline shape. 

5 Conclusion 

Grid fins shape is optimized for a launch vehicle based on the SAO algorithm and CFD simulations. The main work and 

conclusion of this study are as follows: 

(1) An efficient and reliable method is proposed to determine the width of Gaussian functions. Based on the local densities of 

sampling points, the basis function width of the sparsest sample point is calculated reasonably, and then the basis function widths of 

other sample points are determined according to the logical relationship between the width and local density. The performance of this 

proposed method is evaluated using five classical test functions. The proposed method for width determination generates almost no 
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excessive calculation costs, and improves the accuracy, reliability, and stability of the RBF surrogate models notably.  

(2) Based on the improved surrogate model, the framework and detailed procedure of the SAO algorithm are presented. The 

performance of the proposed SAO algorithm is tested using the Golinski’s speed reducer problem. The test shows that the proposed 

SAO algorithm reduces the calling times of the original model and improves the optimization efficiency remarkably.  

(3) The objective function is strictly deduced and reflects the momentum loss caused by aerodynamic drag directly. The design 

trajectory points and corresponding weighting factors for the objective function are obtained reasonably. Constraints including; static 

margin, trim deflection angles, and hinge moment are imposed to ensure the static stability and controllability for the launch vehicle. 

(4) Grid fins shape optimization problem of a launch vehicle is solved using the proposed SAO algorithm and CFD simulation. 

The objective function and constraints calculation tasks are accomplished automatically in batch mode using SolidWorks, ICEM 

CFD, and Fluent software’s. The accuracy of the CFD method performed in this paper is tested using wind tunnel test data, and the 

calculated results of aerodynamic coefficients are in good agreement with the test results. The global optimal solution is obtained 

after 54 calling times of the original model, and 92 hours (3.84 days) computation time, which is highly favorable when compared to 

other evolutionary algorithms. 

(5) The rockets shape possessing optimized grid fins satisfies all constraint conditions, and the weighted average drag coefficient 

as the objective function achieved is 11.07% less than the value of the baseline shape. By replacing the baseline shape with the 

optimized shape, it is observed that (a) taking the minimum fuel as an objective function, the take-off mass will be 2.07% lighter than 

the take-off mass of the baseline shape, (b) taking the maximum payload mass as an objective function, the payload mass will be 

14.2% heavier than the payload mass of the baseline shape. 
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