
Time-Adaptive Dynamic Software Reconfiguration for

Embedded Software

Serena Fritsch

A Thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

December 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

Serena Fritsch

Dated: December 01, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this Thesis upon

request.

Serena Fritsch

Dated: December 01, 2010

Acknowledgements

It was the best of times, it was the

worst of times, it was the age of

wisdom, it was the age of foolishness

Charles Dickens

First and foremost, I thank my supervisor Dr. Siobhán Clarke for her guidance, and

support over the years. I very much appreciate her motivation, feedback, and endless

patience during my Ph.D. studies.

I also thank the other members of Lero in the Distributed Systems Group for the

good collaboration, and the fruitful discussions, which helped to shape my research.

I express my gratitude to all those who read and reviewed my thesis and provided

valuable suggestions, especially Ivana Dusparic, Jenny Munnelly, Melanie Bouroche,

Raymond Cunningham, Andronikos Nedos, Ashley Sterritt, and Brendan Cody-Kenny.

A big thank you also to Gregor Schiele for feedback on earlier stages of this research.

To all past and present members in the Distributed Systems Group, thank you for

making it such a great and lively research environment to be in. A big thank you goes

especially to my room mates of Lloyd 008 for lively discussions (not only) about work,

and for being great collegues. I also thank the Science Foundation Ireland, for sponsoring

my research.

A very special thank you to all my friends for encouraging me, each in their own way.

Each one of you deserves a big thank you. My regards should go especially to my journey

iv

fellows: As’ad Salkham, Ashley Sterritt, Bartek Biskupski, Farrukh Mirza, Guoxiang

Yang, Ivana Dusparic, Marcin Karpinski, Melanie Bouroche, Mithileash Mohan, and

Warren Kenny. A big thank you also to Aline Senart, Ibrahim Tawfik, Liliana Abudalo,

Ilona Biskupska, Malgorzata Jaksik, Maribel Salvador, Michael Moltenbrey, Peter Otte,

Sabine Horn, and Steffen Maier, for their friendship and contact to the outside world.

There are many more names to be mentioned here, but i hope you all know who you

are.

And finally, thank you to my family for their continuous love, support, and encour-

agement.

Serena Fritsch

University of Dublin, Trinity College

December 2010

v

vi

Summary

Reactive embedded systems, such as sensor nodes, or real-time control systems, are em-

bedded into and interact with a physical environment for controlling and measuring pur-

poses. When deployed in environments with changing requirements and unpredictable

events, these systems need to adapt their software to maintain a desired level of func-

tionality. As these systems are generally long lived, they need to provide means for

allowing software adaptations such as introducing new, or improving old functionality.

There are many static software adaptation techniques, but high reliability and durability

constraints for reactive embedded systems make stopping and changing their structure

or behaviour offline undesirable. Dynamic software reconfiguration is needed to allow

such changes to happen while the system, or parts of the system, remain functional.

Dynamic software reconfiguration provides mechanisms that enable software struc-

ture and behaviour changes at system run-time. Such reconfiguration occurs in con-

junction with normal processes in a reactive, embedded system. However, this has the

potential to cause conflict between two requirements: On the one hand, even while

the software of a system is being reconfigured, it needs to react to many, typically un-

structured, events, including physical events, user commands, and messages from other

systems. As many of these systems operate in real-time, a response to these events needs

to occur within time bounds. On the other hand, a reconfiguration may be required to

react to current prevailing conditions and therefore it should complete as soon as possible

to maintain acceptable quality of service.

vii

Transactional reconfiguration approaches complete the reconfiguration without con-

sideration of the incoming events and their processing deadline. However, this might

lead to a missed event deadline with implications for the system’s overall timeliness.

Preemptive reconfiguration approaches stop any reconfiguration activity and directly

process an incoming event, which results in a timely computation of the event. However,

this might delay a reconfiguration indefinitely if many incoming events occur consecu-

tively. A reconfiguration model targeting reactive, embedded systems should fulfill two

requirements: The model should meet the processing deadline of incoming events, while

at the same time it should make progress towards a completion of the reconfiguration.

The research question that emerges is what techniques are neccessary to realise such a

reconfiguration model.

To address this question, this thesis introduces TimeAdapt, a time-adaptive recon-

figuration model. Input to the model is the current software configuration, an event’s

processing deadline, and the remaining reconfiguration activities. Based on that input,

the model determines how much of the reconfiguration can still be executed to reach a

safe configuration within the given processing deadline. The core of the model is a parti-

tioning of a reconfiguration process sequence into sub-sequences of reconfiguration tasks

that are safe to be interrupted and sub-sequences that must be executed atomically to

reach a valid safe intermediate system configuration. The reconfiguration model is de-

fined for embedded software that follows the data-flow based computational model. This

model was chosen as it is a well-defined mathematical model for concurrent computations

and is general enough to describe distributed and local software architectures.

The contributions of this thesis are two-fold. Firstly, the time-adaptive reconfigu-

ration model enables the timely reaction to incoming events, while at the same time

progress towards a reconfiguration completion is made. Secondly, a reconfiguration sys-

tem is designed and implemented, which is a real-world implementation of the time-

adaptive reconfiguration model. The system executes local reconfigurations using time-

bounded reconfiguration algorithms on components that follow the data-flow architec-

viii

ture.

The reconfiguration system is implemented for a real embedded platform, Java

SunSpots, and the reconfiguration algorithms are compared to transactional and pre-

emptive reconfiguration approaches for an example application scenario. The evaluations

show that our model has a higher percentage of met deadlines, while it leads to a faster

completion of an ongoing reconfiguration.

ix

Publications Related to this Ph.D.

[1] Shane Brennan, Serena Fritsch, Yu Liu, Ashley Sterritt, Jorge Fox, Eamon Line-

han, Cormac Driver, Rene Meier, Vinny Cahill, William Harrison, Siobhán Clarke,

“A Framework for Flexible and Dependable Service-Oriented Embedded Systems”,

to appear in the 7th Book on Architecting Dependable Systems (ADS 7), Springer,

2010

[2] Serena Fritsch, and Siobhán Clarke, “TimeAdapt: Timely Execution of Dynamic

Software Reconfigurations”. Proceedings of the 5th Middleware Doctoral Sympo-

sium (Middleware 2008), pages 13-18, December 2008, Leuven, Belgium.

[3] Serena Fritsch, Aline Senart, Douglas C. Schmidt, and Siobhán Clarke. “Time-

Bounded Dynamic Adaptation for Automotive System Software”. Proceedings of

the 30th International Conference on Software Engineering (ICSE), Experience

Track on Automotive Systems, May 2008, Leipzig, Germany.

[4] Serena Fritsch, Aline Senart, Douglas C. Schmidt, and Siobhán Clarke, “Scheduling

Time-Bounded Dynamic Software Adaptation”. Workshop on Software Engineer-

ing for Adaptive and Self-Managing Systems (SEAMS), at ICSE 2008, May 2008,

Leipzig, Germany.

x

Contents

Acknowledgements iv

Abstract vi

List of Tables xv

List of Figures xvii

Chapter 1 Introduction 1

1.1 Background . 2

1.2 Motivation . 4

1.2.1 Challenges for Dynamic Software Reconfiguration in Embedded

Software . 5

1.3 Thesis Aims and Objectives . 7

1.4 Contributions . 11

1.5 Scope . 12

1.6 Thesis Outline . 12

1.7 Summary . 12

Chapter 2 Dynamic Reconfiguration of Embedded Software 14

2.1 Dynamic Software Reconfiguration of Embedded Software 14

2.1.1 Dynamic Software Reconfiguration Rationale 15

xi

2.1.2 Reconfiguration Management . 16

2.1.3 Reconfiguration Execution . 17

2.1.4 Reconfiguration Execution Models in Hard Real-Time Systems . . 21

2.2 Features of a Time-Adaptive Reconfiguration Model for Embedded Software 22

2.2.1 System Model Characteristics . 22

2.2.2 Reconfiguration Model Characteristics 23

2.2.3 Execution Model Characteristics 24

2.2.4 Summary . 24

2.3 Review of Existing Reconfiguration Models 26

2.3.1 Runes . 26

2.3.2 Think . 28

2.3.3 DynamicCon . 30

2.3.4 DynaQoS-RDF . 32

2.3.5 Djinn . 35

2.3.6 Port-based Objects . 38

2.3.7 Adaptive Reconfiguration Models 40

2.4 Analysis . 44

2.4.1 System Model Requirements . 45

2.4.2 Reconfiguration Model Features . 46

2.4.3 Execution Model Features . 47

2.4.4 Reconfiguration Constraints . 48

2.5 Relevance to TimeAdapt . 51

2.5.1 System Model . 51

2.5.2 Reconfiguration Model . 52

2.5.3 Other Influential Concepts . 52

2.6 Summary . 53

xii

Chapter 3 TimeAdapt Design 54

3.1 Requirements for a Time-Adaptive RM 54

3.2 TimeAdapt . 56

3.2.1 TimeAdapt System Model . 57

3.2.2 Reconfiguration Model . 61

3.3 TimeAdapt Reconfiguration Model . 70

3.3.1 System Assumptions . 71

3.3.2 Definition of Elements . 72

3.4 TimeAdapt Processes and Algorithms . 73

3.4.1 Reconfiguration Design Time . 74

3.4.2 Reconfiguration Runtime . 81

3.5 Summary . 100

Chapter 4 TimeAdapt Implementation 103

4.1 Architecture Overview . 103

4.2 TimeAct Component Model . 104

4.2.1 IComponent . 106

4.2.2 IChannel . 111

4.3 TimeAdapt Reconfiguration Model . 112

4.3.1 Reconfiguration Manager . 114

4.3.2 Reconfiguration Action Graph . 116

4.3.3 Scheduling Algorithms . 116

4.3.4 Incoming Events . 116

4.3.5 Reconfiguration Actions . 117

4.4 Summary . 123

Chapter 5 Evaluation 125

5.1 Objectives . 125

5.2 Metrics . 126

xiii

5.3 Experiments . 127

5.3.1 Hardware and Software Configuration 127

5.3.2 Parameters . 129

5.3.3 Experiment 1: Uniform Reconfiguration 133

5.3.4 Experiment 2: Heterogeneous Reconfiguration 150

5.3.5 Experiment 3: Varying Safe Step Size 156

5.3.6 Experiment 4: Multiple Event Sources 161

5.3.7 Experiment 5: Reconfiguration Execution Overhead 171

5.4 Summary . 175

Chapter 6 Conclusion and Future Work 178

6.1 Achievements . 178

6.2 Future Work . 184

6.2.1 Integration with a time-predictive statistical model 185

6.2.2 Support for non-dataflow based computational models 185

6.2.3 Improvement of Timing Guarantees 186

6.2.4 Extension to TimeAdapt Design 186

6.2.5 Extension to TimeAdapt Implementation 187

6.3 Summary . 187

Appendix A TimeAct Component Model Implementation 188

Appendix B TimeAdapt Reconfiguration Model 191

Appendix C Detailed Evaluation Results 195

C.1 Reconfiguration Execution Times . 195

C.2 Percentage of Reconfiguration Actions Remaining 197

xiv

List of Tables

2.1 Properties of execution models . 20

2.2 Features of Runes reconfiguration model 28

2.3 Features of Think reconfiguration model 30

2.4 Features of DynamicCon reconfiguration model 32

2.5 Features of DynaQoS-RDF reconfiguration model 35

2.6 Features of Djinn reconfiguration model 38

2.7 Features of PBO reconfiguration model . 40

2.8 Features of Molecule reconfiguration model 42

2.9 Features of NecoMan reconfiguration model 44

2.10 Comparison of system model properties 46

2.11 Comparison of reconfiguration model properties 47

2.12 Comparison of execution model features 48

2.13 Comparison of constraint properties . 50

2.14 Comparison summary . 51

3.1 Overview of pessimistic mode parameters 85

3.2 Overview of optimistic mode parameters 93

3.3 Requirements vs. TimeAdapt features . 102

5.1 Summary of TimeAdapt evaluation experiments 132

5.2 Experiment 1: Parameter Setting . 133

xv

5.3 Percentage of deadlines met . 135

5.4 Mapping between figures and experiment settings 135

5.5 Percentage of reconfiguration actions remaining 141

5.6 Mapping between figures and experiment settings 142

5.7 Experiment 2: Parameter Setting . 150

5.8 Experiment 3: Parameter Setting . 157

5.9 Experiment 4: Parameter Setting . 162

5.10 Deadline values associated with events . 167

5.11 Experiment 5: Parameter Setting . 172

C.1 Statistical values for low event arrival time 196

C.2 Statistical values for medium event arrival time 196

C.3 Statistical values for high event arrival time 196

C.4 Statistical values for low event arrival rate 197

C.5 Statistical values for medium event arrival rate 198

C.6 Statistical values for high event arrival rate 198

xvi

List of Figures

1.1 Execution of reconfiguration actions depending on event processing dead-

line td . 9

2.1 Timing analysis of reconfiguration process (Rasche & Polze, 2003) 18

2.2 The non-blocking reconfiguration approach (Schneider, 2004) 32

2.3 Reconfiguration of a single mobile unit to different communication mech-

anisms (Mitchell et al., 1998) . 36

2.4 Communication between PBOs (Issel, 2006) 38

3.1 TimeAdapt Design . 56

3.2 Original actor configuration and the executed reconfiguration sequence . . 68

3.3 Unsafe software configuration . 69

3.4 Safe software configuration . 69

3.5 TimeAdapt reconfiguration model overview 73

3.6 Reconfiguration partitioning inputs and outputs 74

3.7 Partitioning algorithm . 76

3.8 Partitioning example: Interface-changing actions 79

3.9 Partitioning example: Non-interface changing and interface-changing ac-

tions . 80

3.10 Initialisation example . 82

3.11 Different outcomes for the pessimistic scheduling mode 86

xvii

3.12 System configuration before optimistic scheduling mode executes 88

3.13 System configuration after execution of a single reconfiguration action . . 89

3.14 Reconfiguration action phases . 90

3.15 Different outcomes for the optimistic scheduling mode 94

3.16 Timing behaviour of TimeAdapt . 97

3.17 Point in time of incoming events . 98

4.1 TimeAct System Architecture . 104

4.2 TimeAct Component Model . 106

4.3 TimeAct Component Model: User-defined classes 111

4.4 TimeAdapt Reconfiguration model implementation 113

4.5 Reconfiguration sequence generation . 119

4.6 Non-interrupted reconfiguration execution 121

4.7 Interrupted reconfiguration execution . 123

5.1 Temperature sensor scenario realised on embedded platform 128

5.2 Percentage of deadlines met for low event arrival rate and deadlines range

from 0.15 ms to 100 ms . 136

5.3 Percentage of deadlines met for medium event arrival rate and deadlines

range from 0.15 ms to 100 ms . 137

5.4 Percentage of deadlines met for high event arrival rate and deadlines range

from 0.15 ms to 100 ms . 138

5.5 Percentage of deadlines met for medium event arrival rate and deadlines

range from 0.15 ms to 20 ms . 139

5.6 Percentage of deadlines met for a very high event arrival rate and deadlines

range from 0.15 ms to 20 ms . 140

5.7 Percentage of remaining actions for low event arrival rate 143

5.8 Percentage of remaining actions for medium event arrival rate 144

5.9 Percentage of remaining actions for high event arrival rate 145

xviii

5.10 Pessimistic mode: Number of remaining actions for medium event arrival

rate and two consecutive events . 146

5.11 Optimistic mode: Number of remaining actions for medium event arrival

rate and two consecutive events . 147

5.12 Pessimistic Mode: Number of remaining actions for very high event arrival

rate and two consecutive events . 148

5.13 Optimistic Mode: Number of remaining actions for very high event arrival

rate and two consecutive events . 149

5.14 Pessimistic Mode: Percentage of deadlines met for low event arrival rate . 152

5.15 Optimistic Mode: Percentage of deadlines met for low event arrival rate . 153

5.16 Pessimistic Mode: Percentage of remaining actions for low event arrival

rate . 154

5.17 Optimistic Mode: Percentage of remaining actions for low event arrival

rate . 155

5.18 Percentage of deadlines met for low event arrival rate 159

5.19 Percentage of remaining actions for low event arrival rate 160

5.20 Pessimistic Mode: Percentage of deadlines met for medium event arrival

rate and homogeneous deadlines . 163

5.21 Optimistic Mode: Percentage of deadlines met for medium event arrival

rate and homogeneous deadlines . 164

5.22 Pessimistic Mode: Percentage of remaining actions for medium event ar-

rival rate and homogeneous deadlines . 165

5.23 Optimistic Mode: Percentage of remaining actions for medium event ar-

rival rate and homogeneous deadlines . 166

5.24 Pessimistic Mode: Percentage of deadlines met for medium event arrival

rate and heterogeneous deadlines . 167

5.25 Optimistic Mode: Percentage of deadlines met for medium event arrival

rate and heterogeneous deadlines . 168

xix

5.26 Pessimistic Mode: Percentage of remaining actions for medium event ar-

rival rate and heterogeneous deadlines . 169

5.27 Optimistic Mode: Percentage of remaining actions for medium event ar-

rival rate and heterogeneous deadlines . 170

5.28 Total execution duration for pessimistic mode 173

5.29 Total execution duration for optimistic mode 174

xx

Chapter 1

Introduction

Reactive, embedded systems, such as sensor nodes, or real-time control systems, are

deployed in and interact with a physical environment to control and measure its vari-

ables. The software that executes on such systems is often deployed in environments with

changing requirements and unpredictable events. To better cope with these changing

conditions, the software needs to be adapted. However, the high reliability and durabil-

ity constraints of a reactive embedded system make stopping and changing its structure

or behaviour offline undesirable. Dynamic software reconfiguration provides mechanisms

that enable software structure and behaviour to change at run-time, without the need

to stop and restart the system. However, the reconfiguration activity is interleaved with

normal processes. So, while the software of a reactive embedded system is being re-

configured, it needs to react to many, typically unstructured, events, which must be

processed in real-time. The timely processing of the events has the potential to conflict

with the timely completion of the reconfiguration process itself. In current approaches

to the dynamic reconfiguration of embedded software, either the reconfiguration is com-

pleted without consideration of incoming events and their processing deadlines, or the

completion of a reconfiguration is not guaranteed. This thesis proposes a new recon-

figuration model for software deployed on embedded systems, TimeAdapt. TimeAdapt

1

aims to meet the processing deadline of incoming events, while at the same time, making

progress towards completion of a reconfiguration. This introductory chapter provides

the background and motivation for this work, introduces the proposed approach to the

dynamic reconfiguration of embedded software, presents the contributions of this thesis

and outlines the remainder of this thesis.

1.1 Background

Embedded systems, such as sensors in a sensor network or real-time control systems,

are reactive (Rutten, 2008). Unlike transformational or interactive systems, reactive

systems are computer systems that continuously react to their environment at a speed

determined by the environment (Halbwachs, 1993). In contrast to general-purpose soft-

ware, embedded software interacts with the physical world rather than dealing with the

transformation of data (Lee, 2002). According to Lee (2002), the software of reactive

embedded systems has some distinctive features such as:

• Concurrency: A typical embedded application consists of several parallel activ-

ities that interact with each other and with the external environment (Cheong &

Liu, 2005). Each of these activities must react to stimuli from a variety of sensors.

• Event-driven Computations: The software is event-driven, i.e., conceptually

concurrent components are activated by incoming events.

• Timeliness of Computations: Many of these systems control critical entities

and incoming events, and actuators, must be executed within a time bound.

• Liveness Property: In embedded systems, liveness is a critical issue as programs

must not terminate or block waiting for events that may never occur (Lee, 2002).

Termination is considered a failure and should be avoided.

Embedded software runs in a particular configuration, which is defined as “a particular

arrangement and setup of data, software components, hardware resources, as well as

2

their relationships and properties that allows an embedded system to operate correctly

according to its architecture” (Perrson, 2009). Traditionally, this configuration was

statically determined at system design-time and did not change during system runtime.

However, the trend towards open embedded systems requires the dynamic change of con-

figurations (Baresi et al., 2006). These systems are exposed to changing environments

and to changes that were not envisioned at design time. The liveness requirements of

reactive embedded systems makes stopping the system and changing its software config-

uration offline undesirable (Lee, 2002). Consequently, dynamic software reconfiguration

is needed to allow such changes to occur while the software remains functional.

Dynamic software reconfiguration is defined in the literature as the evolution of a

software from its current configuration to another configuration at system runtime (Ak-

sit & Choukair, 2003). Dynamic changes of the software configuration include amongst

others structural changes that impact the topology of the software by adding or re-

moving software entities, or the modifications of interfaces or implementations of the

software entities themselves. A software entity represents the most fine-grained software

abstraction that is subject to structural and behavioural change (Janssens, 2006). Dy-

namic software reconfiguration originated in the domain of long-lived, highly available

distributed systems such as banking applications, database servers, and telecommuni-

cation switches, where the software entities are processing nodes that are part of a dis-

tributed system (Kramer & Magee, 1985). However, dynamic software reconfiguration

is also used on finer-grained software entities within a node, among them software pro-

cedures (Neamtiu & Hicks, 2009), object-oriented software structures (Welch & Stroud,

2000), components in component-oriented systems (Coulson et al., 2008; Seto et al.,

1998) or aspects in aspect-oriented systems (Popovici et al., 2002; Truyen et al., 2008).

This thesis adopts components as the building blocks of software entities in a reactive

embedded system (Vandewoude, 2007). The explicit notion and reification of software

composition in component-oriented systems makes them very suitable for dynamic soft-

ware reconfiguration (McKinley et al., 2004). More specifically, this thesis addresses

3

component-based embedded application software that runs on top of a single-processor

embedded system (Cheong, 2007). Examples for this kind of software are sensing ap-

plications on a single sensor node. For the rest of this thesis, this kind of software is

referred to as embedded software. However, the approach can also be generalised to

lower-level system software, such as operating system software (Friedrich et al., 2001),

or middleware software (Schmidt, 2002).

1.2 Motivation

Dynamic reconfiguration in embedded software occurs while the underlying system re-

acts to incoming events such as physical events, user commands, and messages from

other systems (Cheong et al., 2003). For example, while the reconfiguration is executed,

the underlying hardware raises an interrupt. However, these incoming events have the

potential to cause conflict between two requirements. Firstly, as many of these systems

operate in real-time, event processing needs to be started within the so-called processing

deadline (Lee, 2002). Secondly, a reconfiguration may be required to react to current

prevailing conditions and therefore it should complete as soon as possible to maintain

acceptable quality of service.

Current reconfiguration models for embedded software can be classified according to

their execution model into transactional or preemptive approaches, depending on how

they address the two conflicting requirements of a reconfiguration.

In transactional reconfiguration approaches, a reconfiguration is either executed

atomically or it is aborted. The main focus of these approaches is on the safe and

timely execution of a reconfiguration. This includes the timely completion of reaching

a reconfiguration safe state, where the entities are not involved in any interaction that

would change their execution state, and the timely execution of the actual reconfigu-

ration itself (Wermelinger, 1997). Some system-specific reconfiguration models, such

as Port-based Objects for real-time control systems (Stewart & Khosla, 1996), execute

4

reconfigurations within static time bounds that are either dictated by the characteris-

tics of the underlying hardware or defined by the application developer. However, all

these approaches do not react to previously unknown incoming events. As a result, the

processing deadlines of these events might be missed with implications for the system’s

overall timeliness.

In contrast to transactional approaches, preemptive reconfiguration approaches allow

the interruption of an ongoing reconfiguration (Zhao & Li, 2007b). These approaches

can directly react to an event by preempting the ongoing reconfiguration and processing

the event. A precondition for these approaches is that the reconfiguration can be directly

pre-empted. These approaches do not support the reconfiguration of stateful software

entities, as this implies reconfiguration actions that are not instantaneous. However, in

the presence of many incoming events, the completion of a reconfiguration is potentially

delayed indefinitely. As a result, these approaches do not meet the requirement for a

timely completion of the reconfiguration process.

1.2.1 Challenges for Dynamic Software Reconfiguration in Embedded

Software

Embedded software imposes additional challenges for reconfiguration models with re-

spect to the following factors that need to be considered: Reaching quiescent state,

maintaining structural dependency relationships, and scheduling reconfigurations.

• Reaching quiescent state A pre-condition for dynamic software reconfiguration

is that after the reconfiguration has completed, the software is left in an execution

state so that it can keep on functioning (Janssens, 2006). It must be ensured that

affected software entities are not involved in any computation during a reconfigura-

tion, as otherwise their execution state would change (Goudarzi & Kramer, 1996).

One approach taken by many reconfiguration approaches is to freeze the entities

to be reconfigured into a reconfiguration safe state, the so-called quiescent state.

5

Embedded software, which consists of multiple threads of execution, extends the

time it takes until a quiescent state is reached. It also affects the type of approach

suitable for reaching a quiescent state. For example, using an approach that reaches

a quiescent state by observing system execution is not feasible as execution threads

never terminate and block reconfiguration start (Wegdam, 2003).

• Maintaining structural dependency relationships Dependency relationships

between software entities constrain the structure of the software (Almeida et al.,

2001). Dynamic software reconfiguration must not break the dependencies between

collaborating software entities, as otherwise the structural integrity of the software

is not guaranteed.

It is a significant challenge for an ongoing reconfiguration to maintain dependency

relationships in the presence of incoming events. If the event is directly processed,

the reconfiguration may be only partially executed. The partial execution of a

reconfiguration might lead to a violation of dependency relationships. To illus-

trate this in the context of reactive embedded software, suppose an encryption

software module collaborates with a decryption software module, i.e., both mod-

ules are related via a dependency relationship. A reconfiguration replaces both

software modules. If the reconfiguration process is interrupted after, for example,

the encryption component is replaced, the decryption module might not be able

to decrypt data that is encrypted by the newly replaced encryption module. To

prevent dependency breakage, the two reconfiguration actions need to be executed

as one atomic action (Léger et al., 2007).

• Scheduling reconfigurations Dynamic software reconfiguration may negatively

impact an embedded system’s performance, especially when executed on single-

processor platforms. On such platforms, the reconfiguration process competes with

functional code for processor resources (Zhao & Li, 2007b) and either preemptive

or time-sliced scheduling mechanisms are applied. These scheduling mechanisms

6

directly determine the type of execution model a reconfiguration follows.

A preemptive scheduling mechanism assigns a high priority to functional code,

such as events, and a low priority to the reconfiguration process. This leads to a

preemptive reconfiguration model and to the already mentioned issues of reconfig-

uration starvation when the event arrival rate is high.

A clock-driven scheduling mechanism separates processor time into many slices.

In some slices, the reconfiguration process runs, and in other slices, the functional

code, and events, are executed (Zhao & Li, 2007b). A clock-driven scheduling

mechanism leads to a transactional reconfiguration model, as the reconfiguration is

only interrupted for statically known events. However, this mechanism is inflexible

in terms of reacting to arbitrary events.

1.3 Thesis Aims and Objectives

The previous challenges and the limitations of existing reconfiguration approaches mo-

tivate the research question addressed by this thesis, which is: what techniques and

properties are necessary from a reconfiguration model and its underlying system model,

targeting embedded software, to react to incoming events in a timely fashion, while at

the same time ensuring that a reconfiguration eventually completes. In particular, this

thesis addresses the challenge of maintaining structural dependency relationships in the

presence of partially executed reconfigurations.

To address this question, this thesis proposes TimeAdapt, a time-adaptive reconfig-

uration model for embedded software. A time-adaptive reconfiguration model allows the

dynamic adaptation of an ongoing reconfiguration sequence to dynamic time bounds, im-

posed by incoming events. TimeAdapt dynamically adapts an ongoing reconfiguration to

the processing deadline of an incoming event by determining how many of the remaining

reconfiguration actions can still be executed within this deadline. This implies that the

overall reconfiguration itself may be executed only partially to meet a given processing

7

deadline. Figure 1.1 illustrates the basic principle of the time-adaptive execution model

by means of a reconfiguration sequence comprised of three reconfiguration actions a1,

a2, a3, which are to be executed sequentially. a1 takes 2 time units to execute, whereas

a2, and a3 take 1 time unit to execute (see Figure 1.1(a)). td denotes the processing

deadline of an incoming event, i.e., the maximum time span, until when an event must

be processed. Figure 1.1(b) illustrates the case when an event occurs before any recon-

figuration action is executed, and with a processing deadline td, which is larger than the

overall reconfiguration sequence execution duration. In this case all actions can be exe-

cuted, before the event is processed. Figure 1.1(c) illustrates the case, where the event

also occurs before any reconfiguration action is executed, however, its processing dead-

line td can only fit the first reconfiguration action. Hence, the remaining reconfiguration

actions are executed only, after the event has been processed. Figure 1.1(d) illustrates

the case, where even though the event occurs before any reconfiguration action is exe-

cuted, the event processing deadline td is too small so that no reconfiguration action fits

the deadline. Hence, the event is directly processed and the reconfiguration actions are

executed after the event has been processed. Case e) illustrates the case when an event

deadline is missed and is described in more detail below.

Given an event’s timeliness requirement, TimeAdapt makes as much progress as

possible with the reconfiguration while at the same time aiming to meet the event’s pro-

cessing deadline. At the core of the model is the partitioning of a reconfiguration process

sequence into sub-sequences of reconfiguration actions that are safe to be interrupted

and sub-sequences that must be executed atomically to reach a valid safe intermediate

configuration. In all cases, the model guarantees that dependency relationships between

software entities are not destroyed and that a functioning system is maintained. There

is a clear tradeoff between processing all events within their given processing deadline

and maintaining a valid safe configuration at all times. In TimeAdapt, the processing

of events may be delayed in favour of guaranteeing an executable system that does not

block -in other words, a valid safe configuration. Figure 1.1(e) illustrates the case, when

8

(a) Planned reconfiguration se-

quence

(b) Timeline when event process-

ing deadline td ≥ t0 + 4

(c) Timeline when event process-

ing deadline t0 + 2 ≤ td < t0 + 3

(d) Timeline when event process-

ing deadline t0 + 1 ≤ td < t0 + 2

(e) Timeline when event process-

ing deadline 0 ≤ td < t0 + 1

Fig. 1.1: Execution of reconfiguration actions depending on event processing deadline

td

an incoming event occurs during an executing reconfiguration action a1. TimeAdapt ei-

ther completes or revokes this action to reach a valid configuration. However, the event

processing deadline is too small to fit either the completion or the revocation of the re-

configuration action and is missed. A missed event deadline is tolerable in software that

is deployed in a soft real-time environment. For example, consider a sensing application

deployed on a single sensor node platform. Sensing values received by other nodes in the

network could be represented as events. These events have associated processing dead-

lines as stale data should be avoided. However, even if the event’s processing deadline

9

is not met, the software is functioning and can use the data for processing.

A reconfiguration in TimeAdapt is divided into two phases: a partitioning phase and

a scheduling and execution phase. In the partitioning phase, all reconfiguration actions

are logically mapped to sub-sequences. The dependency relationship of the software enti-

ties, contained in the reconfiguration actions, determines the size of these sub-sequences.

The partitioning phase occurs at reconfiguration design time. The scheduling and execu-

tion phase takes place at reconfiguration runtime, whenever an incoming event coincides

with an ongoing reconfiguration. A scheduling algorithm then decides, based on the

available deadline and the estimated reconfiguration action times, how many of the re-

maining reconfiguration actions, now logically mapped to sub-sequences, can still be

executed before an incoming event’s processing deadline is reached.

A reconfiguration model is always defined for a specific model of the software, the so-

called reconfiguration system model, which we abbreviate as system model. TimeAdapt

is defined for embedded software that follows the Reconfigurable Dataflow System model

(RDF). This theoretical system model is an extension of the conceptual data-flow process

network, which is also known as actor model (Lee et al., 2003). There are two character-

istics of the RDF model that motivate its use as the base model for our reconfigurable

extensions. Firstly, the RDF is a mathematical approach for modelling distributed,

concurrent computation (Agha, 1986). The mathematical formulation ensures that the

model is unambiguous and verifiable. The RDF model is well-suited to describe the

kind of software this thesis targets (Cheong, 2007). Secondly, the RDF model is generic,

such that TimeAdapt is applicable to a wide range of embedded software. Over the

past decade, this model has been used widely to describe highly concurrent software

in various areas such as signal processing, linear and non-linear control systems, image

processing systems or other stream-oriented systems (Zhao & Li, 2007b).

10

1.4 Contributions

The reconfiguration model described in this thesis contributes to the state of the art in

the area of reconfiguration models for software deployed on reactive embedded systems

in the following points:

• The dynamic approach towards reconfiguration execution allows the interruption

of an ongoing reconfiguration to events that coincide with a reconfiguration. The

partial execution of a reconfiguration allows the meeting of processing deadlines,

given that the execution duration of the sub-sequence fits within the deadline.

• While supporting incoming events, the reconfiguration approach provides schedul-

ing algorithms that execute as many reconfiguration actions as are possible within

an incoming event’s deadline, leading to an eventual completion of the reconfigu-

ration.

• The reconfiguration model in this thesis supports stateless and stateful software en-

tities, and its definition for an abstract, implementation-independent system model

allows the application of the model for embedded software in various application

domains.

A reconfiguration system has been implemented that realises TimeAdapt as part of a

reconfiguration manager on a single-processor embedded platform, Java SunSpots (Sun,

2006). The evaluation of TimeAdapt on this platform validates the advantages of a

time-adaptive reconfiguration model over transactional and preemptive models, with

regards to meeting event deadlines and the number of completed reconfiguration actions.

However, as discussed, the model is only useful for embedded software and respective

systems that can deal with some events not meeting their deadlines, i.e., which have no

critical deadline associated with events.

11

1.5 Scope

The term “reconfiguration” is often used for the change and optimisation of hardware

parts such as FPGA’s (Ghiasi et al., 2005). However, the techniques and mechanisms

differ strongly from the ones used in this thesis.

This thesis focusses on the actual process of reconfiguration execution. It is assumed

that a reconfiguration sequence is given as input. The procedures for obtaining a re-

configuration sequence are beyond the scope of this work. It should also be noted that

this work assumes that reconfigurations are valid and do not harm system consistency.

Moreover, the issues of trust and security are not covered, i.e., it is assumed that recon-

figurations are always for the improvement of the software and not of malicious nature.

1.6 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 presents the state of the

art in dynamic reconfiguration approaches targeting a variety of embedded software, with

a particular emphasis on existing reconfiguration systems and their associated execution

models. Chapter 3 presents the design of TimeAdapt and its system model. Chapter 4

presents the implementation of TimeAdapt and the mapping of the system model entities

to entities of a component model implementation. Chapter 5 experimentally validates

the properties of the reconfiguration model presented in Chapter 3, for software deployed

on a real embedded system platform. Chapter 6 summarises and discusses future work.

1.7 Summary

This chapter outlined the goals and scope of work described in this thesis, specifically

the definition of a new reconfiguration model that reacts to incoming events in a timely

manner. Background information relating to embedded software and dynamic software

reconfiguration that is relevant for this thesis were presented and the challenges of dy-

12

namic software reconfiguration in embedded software discussed. The problem was de-

fined in more detail by examining the limitations of existing reconfiguration approaches.

In addition, this chapter outlined the contributions and scope of this thesis.

13

Chapter 2

Dynamic Reconfiguration of

Embedded Software

This chapter provides an overview of basic concepts found in dynamic software recon-

figuration targeting embedded software in general. Based on this discussion a set of

features for reconfiguration models in this domain are derived. This set of features is

then used as a guide to review existing reconfiguration models targeting different kinds

of embedded software.

2.1 Dynamic Software Reconfiguration of Embedded Soft-

ware

This section introduces dynamic software reconfiguration targeting embedded software

from three points of views: the rationale for dynamic reconfiguration; whether reconfig-

uration is managed by a centralised or decentralised entity; and the actual execution of

reconfigurations (Hammer, 2009).

14

2.1.1 Dynamic Software Reconfiguration Rationale

Static configuration is commonly applied to embedded software, which is executed on

platforms that allow a variety of parameters. Static configuration is defined, according

to Perrson (2009), as “the possibility to easily change the configuration of a system at

design time through tools.” For example, the features in an automotive control system

software, can be personalised according to a customer’s requirements. Static configura-

tion has been facilitated by the development of modularised software entities, so-called

components, that constitute the embedded software and which allow the modularisation

of functionality into different building blocks (Stewart & Khosla, 1996).

The growing complexity of embedded software extends the requirements for config-

uration towards reconfiguration of the software at runtime. There are two rationales for

dynamic software reconfiguration. The first one is to handle software failure. A failure

occurs when the software is either not functioning or only partially functioning. This

includes approaches to formally specify a reconfigurable system that maintains a set of

properties when software fails (Strunk & Knight, 2004), to model adaptive embedded

software behaviour that can be statically verified (Trapp et al., 2007), and to provide

frameworks that realise dynamic reconfiguration when there are faults in the system

(Seto et al., 1998).

The second rationale is to handle changing conditions in the environment or soft-

ware evolution (Soules et al., 2003), (Stewart & Arora, 1996). Reconfigurations include

the update of software entities to newer versions or the change of software structure

by adding and removing software entities and their connections. In contrast to recov-

ery reconfiguration, the software is still running. As this thesis also assumes that the

software is still running, while a reconfiguration is executed, adaptive and evolutionary

reconfigurations are the main focus for the rest of this document.

15

2.1.2 Reconfiguration Management

A reconfiguration model defines the possible reconfiguration operations for software en-

tities of a specific granularity. A prominent reconfiguration model, which has influenced

the subsequent work of many other reconfiguration models, including those targeting

embedded software, is Kramer and Magee’s (Kramer & Magee, 1985). This model exe-

cutes incremental modifications and is defined for an abstract system model, in which the

system is seen as a directed graph with nodes as components and transactions between

nodes denoting the connections. A centralised entity, the reconfiguration manager, has

a global view on the system and allows the coordination, ordering, and management of

reconfiguration actions. The centralised entity sends reconfiguration commands to the

respective system entities, which then execute the actual modifications.

In domains, such as peer-to-peer networks or autonomic distributed systems that

might involve the adaptation of a large number of software entities, centralised reconfig-

uration management might not scale well. These domains need decentralised reconfigu-

ration approaches, such as the K-Component approach (Dowling, 2004). In decentralised

reconfiguration, the distributed software entities decide, which reconfiguration actions

to execute and how to execute them, so-called self-configuration. In contrast to dynamic

reconfiguration, self-configuration needs additional algorithms and techniques, such as

monitoring, to enable the software entities to detect when and how to execute their own

changes. Self-configurable systems are a subset of reconfigurable systems, but are not

explicitly dealt with in this thesis. As this thesis deals with non-distributed embedded

systems, we adopt the view of a centralised entity that executes reconfigurations.

Embedded software is often logically or physically distributed onto many platforms.

Reconfiguration can be categorised then into whether it affects only software entities lo-

cated on a single platform, i.e., local reconfiguration, or entities distributed on multiple

platforms, i.e., distributed reconfiguration (Janssens, 2006). In distributed reconfigu-

rations, the affected platforms must agree as to which reconfiguration actions to take

16

and ensure that these reconfigurations are executed in a safe and valid manner. For

example, a multimedia conferencing application, comprised of inter-connected devices,

might adapt to a different level of network bandwidth. Data must be encoded differ-

ently when the level of available network bandwidth decreases. A reconfiguration may

involve the replacement of existing encoding filters on the source node, which hosts the

streaming application. In this scenario, all receiver devices must replace their decoding

filter components to ensure that the communication is not interrupted (Grace, 2008).

The entity responsible for the coordination depends on the type of reconfiguration man-

agement applied. When using a centralised reconfiguration manager, the coordination

is executed as part of this manager.

2.1.3 Reconfiguration Execution

Figure 2.1 illustrates the different actions a centralised reconfiguration manager takes

when a reconfiguration request is received. In this example, the reconfiguration is of an

adaptive nature and triggered when there is a change in the environment. Reconfigura-

tions triggered for evolution purposes follow a similar sequence of steps. Reconfiguration

actions such as the loading of new software entities and setting their internal state can be

done without affecting the currently active configuration. Reconfiguration actions such

as replacing stateful software entities affect the currently active configuration. These

reconfiguration actions must ensure that the affected entities are not involved in any

computation to guarantee a consistent configuration. A consistent configuration is de-

fined as a configuration that satisfies structural integrity requirements and in which all

affected entities are in mutually consistent execution states (Goudarzi & Kramer, 1996).

One approach is to rely on the underlying application to deal with inconsistencies that

occur during reconfiguration by providing rollback and recovery mechanisms (Vande-

woude, 2007). However, this approach always executes a reconfiguration and then checks,

whether this reconfiguration destroyed system consistency or other constraints (Hofmeis-

ter, 1994). As this approach does not check online, whether timing constraints are not

17

met, it is not further considered for this thesis.

Kramer and Magee introduced the concept of quiescence as a condition for consis-

tency and described mechanisms for how to achieve quiescence by explicitly freezing

affected entities (Kramer & Magee, 1990). Once the software is in a quiescent state,

reconfigurations can be safely executed, by sequentially executing the remaining recon-

figuration actions.

Fig. 2.1: Timing analysis of reconfiguration process (Rasche & Polze, 2003)

While a software entity is in a quiescent state, it cannot process any computations.

This is termed the blackout time of a reconfiguration (Schneider et al., 2004). As a high

blackout time leads to a high system disturbance, research on dynamic reconfiguration

branched into two directions (Li, 2009). One direction focusses on minimising the number

of affected entities. For example, Wermelinger extended Kramer and Magee’s approach

to block only connections between affected entities (Wermelinger, 1997). Vandewoude

relaxed Kramer and Magee’s consistency approach even further by blocking only the

affected software entities and not entities that could potentially initiate transactions on

these entities, resulting in a very small blackout time (Vandewoude, 2007).

The second direction focusses on logically removing quiescence by applying transi-

tional reconfiguration, which activates the new configuration before removing the old

18

configuration (Li, 2009). The reconfiguration model then switches, at some point in

time, directly between these two configurations, when there are no ongoing transactions

for the old configuration. This approach needs additional mechanisms such as transac-

tion versioning to determine when the old configuration does not process any requests

and can be removed safely (Zhao & Li, 2007b).

Reconfiguration Execution Models How a reconfiguration is executed depends

on the actual scheduling approach that is used in the underlying operating system.

For example, a preemptive scheduling mechanism associates incoming events with a

higher priority and leads to a preemptive execution model. The pre-condition for these

models is that the reconfiguration can be directly switched with functional code, without

destroying consistency. To achieve this, preemptive reconfiguration models often apply

transitional reconfiguration, in which the old and the new configuration are concurrently

present. A clock-driven scheduling mechanism either executes the reconfiguration or the

functional code of the software, which leads to a transactional execution model. In

this execution model a sequence of reconfiguration actions can only be interrupted by

events that are known at system design time. Reconfiguration models that follow a

transactional execution model are from now on denoted as transactional reconfiguration

models, whereas reconfiguration models that follow a preemptive execution model are

denoted as preemptive reconfiguration models.

Table 2.1 summarises the advantages and the shortcomings of both execution mod-

els with respect to the characteristics of embedded software, namely incoming events

associated with processing deadlines, and the requirement of a guaranteed reconfigura-

tion completion (see also section 1.2). A transactional execution model guarantees the

completion of a reconfiguration, but it falls short in meeting the timeliness requirements

of incoming events. A preemptive execution model addresses the timely response to an

incoming event, but a high event arrival rate leads to a potential starvation of an ongoing

reconfiguration.

19

Requirement/Exec. Model Transactional Preemptive

Guaranteed Reconf. Completion 4 8

Timely Event Response 8 4

Table 2.1: Properties of execution models

To guarantee reconfiguration completion, a preemptive execution model needs to

overcome the issue of reconfiguration starvation when there is a high event arrival rate.

Possible solutions include the interruption of a reconfiguration only to statically known

events (Stewart et al., 1997), or by placing various priorities on incoming events, e.g.,

used by the preemptive scheduling mode of Zhao & Li (2007b). In the first approach,

a reconfiguration preempts only events that are known at system design time. A re-

configuration can then be rejected directly, if the rate of these events exceeds a certain

threshold. However, reactive embedded systems are exposed to many dynamic event

sources, which emit unknown events at arbitrary times. In the second approach, incom-

ing events are prioritised according to a given scheme. The reconfiguration model then

only interrupts the ongoing reconfiguration to events of a certain priority. However, this

approach assumes a specific system model in which events can be tagged and cannot be

applied in more general scenarios.

A transactional reconfiguration model meets an incoming event’s response deadline

only if the remaining reconfiguration sequence can be completed within this deadline.

Before a reconfiguration sequence is started, all events, as well as their arrival rates

and deadlines must be statically known, to guarantee that their event deadlines are

met (Rasche & Polze, 2005). However, this is not feasible in reactive embedded systems

due to the vast occurrence of potential event sources (Regehr, 2008).

This thesis argues for a reconfiguration model that combines the advantages of trans-

actional and preemptive execution models. The reconfiguration model should follow a

preemptive execution model to allow the timely reaction to incoming events. At the

same time, it should guarantee an eventual completion of a reconfiguration, even in the

20

presence of a high event arrival rate, through an incremental execution of remaining

reconfiguration actions. We define this kind of execution model time-adaptive, as the

execution of the reconfiguration is adapted to its available time, which is constrained

by incoming events. In the next section, a minimum set of features is derived that a

reconfiguration model should provide in order to enable the timely reaction to incoming

events and to guarantee an eventual reconfiguration completion. This set of features

is then used to review to what degree existing reconfiguration models for embedded

software fulfil the characteristics of a time-adaptive reconfiguration model.

2.1.4 Reconfiguration Execution Models in Hard Real-Time Systems

For completion, we briefly discuss reconfiguration execution in hard real-time systems,

and why these models cannot be applied in the kind of embedded software that is

considered for this thesis.

Hard real-time systems have additional timing constraints besides their functional

requirements, which usually specify that a given activity must be completed within a

deadline (Kopetz, 1997). In contrast to the systems we target in this thesis, deadlines

in hard real-time systems are strict, and must not be missed. Multi-moded real-time

applications are comprised of various operating modes, which each consist of tasks that

execute a specific system functionality. For example, a fault recovery mode consists of

recovery actions and re-initialisation activities for faulty tasks.

These systems realise dynamic reconfiguration via mode-changes, when there are

changes in the environment or changes in the internal state of the application. A mode

change removes tasks that belong to the old mode and releasing tasks that belong to the

new mode. In a transitioning phase, old tasks are still active and new tasks are scheduled

into the system. To guarantee that all tasks reach their deadlines, mode-change protocols

are used that differ as to when to delete old tasks and when to schedule new tasks for

execution (Real & Crespo, 2004).

The reconfiguration in hard real-time systems assumes that all incoming events, as

21

well as their arrival rates and deadlines are known statically before system runtime. In

contrast, this thesis considers systems, in which events from unknown sources can occur

at arbitrary event arrival rates and have arbitrary associated deadlines.

2.2 Features of a Time-Adaptive Reconfiguration Model

for Embedded Software

Based on the previous discussion, this section lists the characteristics of reconfigura-

tion models targeting embedded software. These characteristics can be divided into

characteristics that deal with the underlying system model, characteristics of the recon-

figuration model itself, and characteristics of the execution model.

2.2.1 System Model Characteristics

Reconfiguration models targeting embedded software can be categorised as system-

specific, domain-specific, or generic (Zhao & Li, 2007a).

System-specific reconfiguration models target software that is strongly tied to the

design of the system it is executed on. This specificity of the underlying software enables

the model to make assumptions about the software being changed and to manage change

in a way that is optimised for a particular system (Hillman & Warren, 2004).

Domain-specific reconfiguration models are defined on system models that model

software in a specific domain. Often the software follows a particular architectural

style, such as the pipe-and-filter style (Shaw & Garlan, 1996). The specificity of the

underlying architecture allows the reconfiguration model to omit some capabilities. For

example, a reconfiguration model defined on a stateless pipe-and-filter architecture does

not need state transfer capabilities and hence can omit consistency mechanisms (Zhao

& Li, 2007a). These reconfiguration models are tied to software of a specific application

domain, and cannot be easily transferred to software of other systems in other application

domains.

22

Generic system models target software that can be applied in multiple application

domains and a wide range of systems. Examples of generic component models include

OpenCom (Coulson et al., 2008), and Think (Polakovic et al., 2006). A characteristics

of these system models is that they are defined abstractly, in terms of components and

connections between components. Different implementations then map these abstrac-

tions to actual systems. The abstract definition supports building composable software,

independent of the target system or application. The advantage of a reconfiguration

model targeting this kind of software is that it is independent of the actual embedded

system used.

2.2.2 Reconfiguration Model Characteristics

Reconfiguration model features include correctness guarantees, the point in time when

reconfigurations may be triggered, and the constraints on the number of reconfiguration

actions and reconfigurable software entities.

A reconfiguration must ensure that it transforms the software from a correct soft-

ware configuration to another correct software configuration, as otherwise the software

is not functionable. A correct software configuration is defined by Goudarzi as a con-

figuration that has the three following properties: structural integrity requirements are

fulfilled, software entities are in a mutually consistent state, and state invariants are

maintained (Goudarzi & Kramer, 1996). Structural integrity requirements define the

dependency relationships between software entities and the way they need to be config-

ured (Almeida et al., 2001). Structural integrity is achieved by updating the references

of all entities that use a reconfigured entity. Mutual consistent state means that the

execution state of a reconfigurable software entity should be the same before and af-

ter the reconfiguration takes place. Mutual consistent state can be achieved by first

bringing the entities into a reconfiguration-safe state, before the actual reconfiguration

is executed. However, this is an intrusive process that takes execution duration. An

alternative to first bringing the entities into a mutual consistent state is to apply transi-

23

tional reconfiguration that maintains the old and new system configuration in parallel,

see Section 2.1.3. Maintaining state invariants is achieved by transferring state between

the old and the new software entity.

Reconfiguration approaches differ in whether a reconfiguration is directly executed

when it is triggered, or whether it is executed in a delayed fashion, after some other

activity has finished completion. Moreover, approaches differ in whether they support an

arbitrary number of entities to be reconfigured, for example by supporting the integration

of previously unknown software entities, or whether they put constraints on the number

of entities to be reconfigured.

2.2.3 Execution Model Characteristics

A reconfiguration that is correct and fulfils a system’s constraints must reach a consistent

state by either completing all its actions eventually or by undoing some of the actions,

already executed. Depending on its associated execution model, reconfiguration models

either react to incoming events that occur arbitrarily, and process them within their

deadline, or do not consider incoming events at all.

2.2.4 Summary

This section summarises the set of characteristics of reconfiguration models targeting

embedded software, and their possible values. The values, which are most likely to

suit a time-adaptive reconfiguration model are shown in bold. Based on this, a set of

characteristics for a time-adaptive reconfiguration model is derived.

• System Model

– Entities: system-specific, domain-specific, general

• Reconfiguration Model

– Point of time when reconfiguration starts: immediately, delayed

24

– System correctness: quiescent state, transitional approach

– Possible number of entities to be reconfigured: constrained, unconstrained

• Reconfiguration Execution Model

– Guaranteed reconfiguration completion: Supported due to transactional

execution model, not supported

– React to previously unknown incoming events: Supported due to preemp-

tive execution model, only supported for known events, not supported

These characteristics lead to the following set of required features for a time-adaptive

reconfiguration model:

• System Model

F1) The reconfiguration model is defined for a system model suitable for repre-

senting embedded software.

• Reconfiguration Model

F2) A reconfiguration can be triggered at any time and there is no a-priori knowl-

edge of the possible components that are to be reconfigured in the system.

F3) The reconfiguration model does not destroy system correctness.

F4) The reconfiguration model itself does not impose constraints on the reconfig-

urable entities.

F5) There are no restrictions on the number of components to be reconfigured.

• Reconfiguration Execution Model

F6) An ongoing reconfiguration is to be completed.

F7) The reconfiguration model allows the interruption of the ongoing reconfigu-

ration by incoming events that are previously unknown to the system.

25

F8) The reconfiguration model meets an incoming event’s processing deadline.

These features are used in the next section to review existing reconfiguration models

targeting different kinds of embedded software.

2.3 Review of Existing Reconfiguration Models

This section presents detailed reviews of reconfiguration models that target different

types of embedded software, such as operating system, embedded application, and mid-

dleware software. The reviews focus on the degree to which the reconfiguration models

represent the features of a time-adaptive reconfiguration model. In all of these models,

reconfigurations are triggered for adaptation or evolution purposes and a central entity

running on a single processor platform executes the reconfiguration sequence on the un-

derlying software entities. Although the domain of addressed software is a super-set of

the kind of software addressed in this thesis, the models include a representative sample

of the techniques used to reconfigure embedded software that influenced the design of

TimeAdapt.

2.3.1 Runes

Traditional middleware approaches are unsuitable for embedded systems, as they in-

tegrate all functionality that might ever be needed, resulting in memory-consuming

monolithic black-box implementations. In contrast, dedicated middleware platforms for

embedded systems are organised as a group of collaborating components (Kon et al.,

2002). This allows the composition of very small middleware kernels that consist of only

required functionality. The Runes (Reconfigurable, Ubiquitous, Networked, Embedded

Systems) project developed such a middleware architecture that can target a variety of

networked embedded systems, such as resource-constrained sensor nodes (Costa et al.,

2007).

26

System Model The Runes middleware platform is component-based and encapsulates

its functionality behind interfaces. The overall architecture follows a two-layer approach.

The first layer comprises the basic middleware kernel that provides an API, which allows

the dynamic instantiation and registration of components. The second layer comprises

components that encapsulate the basic functionalities of applications and middleware

services, such as measurement data collection and dissemination components on sensor

nodes or publish-subscribe infrastructures on more powerful devices such as laptops.

The component model defines the general architecture of its components in an im-

plementation-independent way in terms of the OMG’s Interface Definition Language

(IDL) (Object Management Group, 1999). The abstract definition of the component

model allows the deployment of components on a variety of system platforms, for which

implementations of the system model exist.

Reconfiguration Model The dynamic reconfiguration model is a direct implementa-

tion of Kramer and Magee’s reconfiguration model with components as the underlying

software entities to be reconfigured. The representation of the current system con-

figuration as a system graph is realised by using an approach based on architectural

reflection (Cazzola et al., 1998). The component model provides an architectural topol-

ogy of currently installed and connected software components and interfaces describing

operations to inspect and change the self-representation (also known as meta-object pro-

tocol (MOP)). Different MOPs reconfigure different parts of the components and their

configuration. An architectural MOP allows the structural change of a component’s

composition at runtime and an interception MOP allows the behavioural adaptation of

a component by introducing interceptors that can add additional behaviour. The mid-

dleware kernel represents the central configuration manager that manages and executes

the reconfiguration actions on the different components.

The Runes reconfiguration model applies an approach based on quiescence to achieve

mutually consistent states. This is either achieved through simple reader-writer locks or

27

more complex algorithms that support cyclic connections between components (Rasche

& Polze, 2008). Reconfiguration actions are then incrementally executed.

The reconfiguration model itself does not put constraints on the number of reconfig-

uration actions. It also does not put any constraints on the entities to be reconfigured

or the point in time when a reconfiguration may be requested.

Execution Model The reconfiguration execution follows a transactional reconfigu-

ration model. Reconfiguration actions are executed in an uninterruptable manner and

the model does not support the interruption of an ongoing reconfiguration for incoming

events.

Summary Table 2.2 summarises the features of the Rune’s reconfiguration model.

As can be seen from the table, the Runes reconfiguration model does not allow the

immediate processing of incoming events.

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

Generic 4 4 4 4 4 8 8

Table 2.2: Features of Runes reconfiguration model

2.3.2 Think

Think is an implementation of the Fractal component model targeting component-based

operating systems (Polakovic et al., 2006). The approach tries to improve on existing

work for reconfigurable operating system software by loosening the dependence between

the reconfiguration model and the underlying platform on which the model is executed.

System Model Fractal defines a hierarchical, reflective component model. It is

implementation-independent and is used for a wide range of systems, from operating

systems to middleware platforms and to graphical user interfaces (OW2 Consortium,

28

1999). The generic system model supports the application of the reconfiguration model

to many operating system platforms. The component model distinguishes two kinds

of components. Primitive components can be seen as blackboxes, providing and re-

quiring functionality through their interfaces. Composite components are composed of

other components, either primitive or composite components. Each component logically

comprises two parts, an internal part that implements the functional interfaces of the

component and an encapsulating membrane that contains an arbitrary number of control

interfaces. Control interfaces provide reflection capabilities such as the manipulation of

a component’s interfaces.

Reconfiguration Model Like Runes, Think’s dynamic reconfiguration model is a

direct implementation of Kramer and Magee’s, with software components as the un-

derlying reconfigurable entities. Reconfiguration actions in the Think model are either

introspection operations, such as the reflective lookup of component interfaces, or inter-

cession operations, such as the actual modification of the system. Reconfigurations can

either be expressed directly at the level of reconfiguration primitives, provided by the

Fractal API, or by using a higher-level domain-specific language such as FScript (David

& Ledoux, 2006b).

The Think reconfiguration model is based on quiescence to achieve mutually consis-

tent states. This is achieved using approaches such as thread counting or using dynamic

interceptors (Polakovic et al., 2006). Reconfigurations are then sequentially executed by

the root composite component, which acts as a centralised reconfiguration manager.

Execution Model The reconfiguration execution model is transactional, which im-

plies that either a sequence of reconfiguration operations is completely executed or the

system is brought back to the state it was in before the reconfiguration took place.

Incoming events that coincide with an ongoing reconfiguration are not considered.

29

Summary Table 2.3 summarises the features of Think’s reconfiguration model. Like

Runes, the reconfiguration model does not allow the direct processing of incoming events

and does not guarantee that an event’s deadline is met.

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

Generic 4 4 4 4 4 8 8

Table 2.3: Features of Think reconfiguration model

2.3.3 DynamicCon

DynamicCon extends the OSA+ middleware to support dynamic reconfiguration (Schnei-

der, 2004). The OSA+ middleware is a middleware system for distributed, real-time em-

bedded systems with limited memory and computational resources (Brinkschulte et al.,

2000).

System Model OSA+ is a service-based middleware, with a service as the unit of

reconfiguration. A service is an active entity in the middleware and can be comprised of

multiple objects. Services have individual control flows to perform application or system

tasks and communicate with each other by exchanging jobs. The execution of services

is scheduled according to the priorities or deadlines of their corresponding jobs.

Reconfiguration Model DynamicCon has two reconfiguration action types: those

that replace an old service implementation with a new service implementation or those

that migrate a service to another platform. A reconfiguration is realised as a job and

therefore respects real-time priorities and deadlines. Jobs with higher priorities are

executed before the reconfiguration, while jobs with lower priorities are executed after

the reconfiguration. Because a reconfiguration is realised as a job, a reconfiguration

might not be executed directly, but instead has to wait until higher-priority jobs have

completed. A service requesting a reconfiguration sends a reconfiguration request to

30

the reconfiguration service, which then handles all reconfiguration related issues such as

plugging in the new service, transferring state from the old service to the new service,

and deleting the old service.

In contrast to the previously discussed reconfiguration models, DynamicCon applies

a transitional approach to guarantee correctness. The new service is loaded, while the

old service can still process requests. A switch between the old and the new service

is executed when the complete state has been transferred between the two (stateful)

services. One of the main goals of the reconfiguration model is to minimise the blackout

time in which a service that is currently reconfigured is unavailable. The model supports

different reconfiguration approaches that have different blackout time durations. In the

full blocking approach, the new service is blocked until the old service explicitly calls the

switch statement to initiate the exchange of both services. After the switch is executed,

the state is transferred. This causes the longest blackout time but at the same time

ensures consistent and identical state information on both sides. In the non-blocking

approach, the new service version starts to transfer state. During reconfiguration, if

the remaining state between the old and the new service can be transferred during

this requested blackout time, the reconfiguration is executed completely and all new

incoming jobs are processed by the new service. Otherwise, if the requested blackout

time cannot be met, the reconfiguration is interrupted and the reconfiguration service

keeps monitoring changes to the service state. Incoming jobs are then processed by the

old service. Figure 2.2 illustrates this principle.

Execution Model The reconfiguration model takes a transactional view on recon-

figuration execution. Incoming events, represented as jobs, are processed after the re-

configuration service returns. The reconfiguration model does not support the direct

preemption of a reconfiguration to an incoming event. Using the non-blocking approach,

a reconfiguration returns if the specified blackout time cannot be met, which is the min-

imum time before a job with a higher priority should be processed. If this job represents

31

Fig. 2.2: The non-blocking reconfiguration approach (Schneider, 2004)

an event, its response deadline will be met only if it is larger than the requested blackout

time.

Summary Table 2.4 summarises the features of DynamicCon’s reconfiguration model.

The constraints on the start time of a reconfiguration and the constraints on support for

incoming events makes this reconfiguration model not the ideal candidate for realising a

time-adaptive reconfiguration model.

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

System-specific 8 4 4 4 4 8 8

Table 2.4: Features of DynamicCon reconfiguration model

2.3.4 DynaQoS-RDF

The DynaQoS-RDF reconfiguration model targets dataflow-driven embedded applica-

tion software (Li, 2009). Its main aim is to minimise the effect an ongoing dynamic

reconfiguration has on system performance, such as throughput or response time. The

32

reconfiguration model has no application disruption time because instead of waiting until

a reconfiguration-safe state is reached, the model maintains the old and the new system

configuration in parallel.

System Model The reconfiguration model is defined on an abstract system model

that follows a dataflow-driven computational model, the reconfigurable dataflow system

model (RDF) (Li, 2009). It allows the modelling of a wide range of embedded software,

such as signal processing software, linear and non-linear control system software, and

image processing software. The system model extends the concept of a dataflow process

network with reconfiguration capabilities of its basic elements, such as processes, data-

stores and data-paths (Lee et al., 2003). A process is a computational entity that

consumes data through its input ports, processes them, and produces results through

its output ports. A data-store holds a specific amount of data, whereas a data-path

connects a process with a data-store. Two processes communicate indirectly with each

other via their connected data-store.

Reconfiguration Model The reconfiguration model supports the addition and re-

moval of processes and data-stores, as well as the addition and removal of data-paths.

The model follows a transitional approach to realise consistent system transformations.

A dynamic reconfiguration in this model is divided into three phases. Phase one es-

tablishes the new configuration. In this phase, software entities, which were previously

not installed, are loaded into memory. New incoming data uses this new configuration.

Phase two handles switching between the old and the new configuration. Switching

includes the completion of data processing by system entities that are part of the old

configuration, and starting the processing of new data items only by entities that are

part of the new configuration. Phase three removes all software entities that are no

longer in use.

The parallel execution of the two configurations leads to a number of issues that are

33

solved by the reconfiguration model, such as guaranteeing transactional non-interleaving

and transactional completeness. A transaction is a logical concept that refers to the

processing of a requested data-item until the corresponding result is generated. Trans-

actions comprise multiple processes and their connections via data-paths. Transactional

interleaving occurs if transactions that belong to different configurations interfere. The

reconfiguration model avoids these interleavings by applying a version control mecha-

nism that isolates data flows belonging to different configurations. Every data-item is

assigned a version tag and a process can decide to process this data-item, based on

its version number. Transactional completeness means that a transaction, once started,

should be completed. This is particularly important during the shutdown period, so that

all transactions using processes or data-stores to be removed, are completed. Transac-

tional completeness is supported by the underlying system model, in the form of syn-

chronisation mechanisms and a tracing mechanism that makes sure that a processor or

data-store/path is not currently used so that it can be removed safely.

A reconfiguration can be requested at any given time, and the model supports the

introduction of previously unknown software entities and the reconfiguration of an ar-

bitrary number of software entities. This puts constraints on the actual entities to

be reconfigured. As a pre-condition, each reconfiguration must be directly interruptible.

This means that the reconfiguration model does not support reconfiguration actions that

will last for a period of time and have an influence on the actual system configuration,

such as state transfer. Hence, only stateless software entities are supported.

Execution Model The reconfiguration execution model can be classified as preemp-

tive, as it interrupts the reconfiguration for incoming events, which are associated with

a higher priority. A reconfiguration can be interrupted at any given point in its exe-

cution. If the event arrival rate is high, a reconfiguration completion might be delayed

indefinitely.

34

Summary Table 2.5 summarises the features of the DynaQoS-RDF reconfiguration

model. The reconfiguration model has some intrinsic features of a time-adaptive recon-

figuration model, namely its execution model allows the reaction to arbitrary incoming

events. However, in the case of many incoming events, the completion of a reconfigura-

tion cannot be guaranteed. Also, the model itself imposes constraints on the reconfig-

urable entities, such as only the support of stateless software entities.

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

Generic 4 4 8 4 8 4 4

Table 2.5: Features of DynaQoS-RDF reconfiguration model

2.3.5 Djinn

Djinn is a programming framework, which supports the construction and dynamic re-

configuration of distributed multimedia applications targeting embedded systems, such

as digital television production, security, and medical systems (Mitchell et al., 1999).

System Model The Djinn system model is generic. Similar to the RDF system model,

a multimedia application comprises a set of active components, which consume, trans-

form, and produce media data streams and which are connected via ports. However, the

framework uses a split-level component architecture; components in the framework are

either model or peer components. Peer components are active objects that are poten-

tially distributed across multiple hosts and that have associated temporal constraints on

their operations. They are also the unit of reconfiguration. Model components abstract

the functionality of the peer components and emphasise the QoS characteristics of their

underlying peer components. They support the separation of the application design from

its runtime realisation.

35

Reconfiguration Model Reconfigurations can be required at any point in time, even

though it depends on the actual scheduling time as to when a reconfiguration action will

manifest itself in the system. Reconfigurations are executed at the model component

layer, with their effects made visible at the peer layer when a reconfiguration is suc-

cessfully completed. The execution of the reconfiguration on the model level allows the

system to validate the reconfigurations with regards to structural and data constraints.

A reconfiguration is expressed in terms of paths. A path encapsulates a group of ports

and active components that carry its data. Associated with each path are QoS prop-

erties such as latency, jitter and error rate. A reconfiguration will always replace an

entire path or sub-path with a new one and has actions such as creating a new active

component, deleting active components, and switching input and output ports to the

respective active component to use. Figure 2.3 illustrates a reconfiguration example, in

which a single video unit is reconfigured to use dial up GSM links instead of local WLan

links.

Fig. 2.3: Reconfiguration of a single mobile unit to different communication mecha-

nisms (Mitchell et al., 1998)

36

Reconfiguration consistency is achieved by using a transitional approach, i.e., switch-

ing between the old and the new configuration. One of the main challenges is mainte-

nance of temporal properties during reconfiguration, such as the maximum arrival rate

allowed between two data items. Meeting these properties requires reconfiguration ac-

tion scheduling. The scheduling algorithm determines when to send events that trigger

the activation of a reconfiguration action, so that temporal properties are not violated.

To avoid a startup delay for newly integrated components, the reconfiguration is di-

vided into two phases, namely a setup and an integration phase. In the setup phase,

constraints on the new configuration are checked and new peer components are created

as well as resources reserved. The integration phase completes the transition to the

final configuration by applying the computed schedule. As illustrated in Figure 2.3, this

means that the start event, received by input port P2’ of the H.263 component, needs to

be injected before the stop event, received by input port P2 of the MPEG compression

component, is sent. This schedule ensures that frames arrive simultaneously at the input

port P4 of the display component.

Execution Model The reconfiguration execution model is transactional. This implies

that if not all of the required reconfiguration actions can be scheduled successfully, then

none of the actions will be performed and the application will remain in its initial state.

The main aim of the model is to maintain application timeliness properties during recon-

figuration. The processing of incoming events during a reconfiguration is not supported

and a timely response to their deadline not ensured.

Summary Table 2.6 summarises the features of the reconfiguration model. Djinn

follows the same execution model as Runes and Think and lacks support for reacting

to incoming events and processing them within their event deadlines. Also, the model

requires a-priori knowledge of the components to be reconfigured, as it only reconfigures

components that are part of an existing path.

37

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

Generic 8 4 4 4 4 8 8

Table 2.6: Features of Djinn reconfiguration model

2.3.6 Port-based Objects

The Port-based Object (PBO) abstraction supports the design and implementation of

dynamically reconfigurable real-time control software (Stewart & Khosla, 1996), which

can be executed in single and multiprocessor environment. Unlike the previously dis-

cussed reconfiguration models, dynamic reconfiguration in this model refers not to the

structural change of the system topology but rather switching on and off software entities

as part of the current configuration.

System Model Properties A PBO is an independent concurrent process, which

communicates with other PBOs only indirectly through its input and output ports.

Figure 2.4 illustrates three PBOs A, B and C with input and output ports. The output

port j of PBO B is connected with the input port j of PBO A, the output port k of PBO

A is connected to input port k of PBO B and C. The output port l of PBO C is not

connected to any PBO. This loosely coupled infrastructure allows easy replacement of

PBOs and makes them the unit of reconfiguration.

Fig. 2.4: Communication between PBOs (Issel, 2006)

38

The framework is executed on a controlled system environment, the Chimera RTOS,

that provides well-defined communication and memory mechanisms (Stewart et al.,

1992).

Reconfiguration Model The dynamic reconfiguration model is strongly tied to the

underlying system model, making it a system-specific reconfiguration model. In contrast

to structural changes, which change the topology of the current software, and implemen-

tation changes, which change the internals of a software entity, this reconfiguration model

changes only the system state of PBOs. All PBOs that are in the ON state denote the

currently active configuration. A reconfiguration transforms the currently active config-

uration to a new active configuration. All PBOs that are part of the new configuration

and that are in the OFF state are transformed to the ON state and vice-versa.

The reconfiguration steps themselves are executed in idle times of the framework

scheduler, i.e., when no PBO is currently executing. An executing PBO is always exe-

cuted until its completion so that there is no need for a mechanism to explicitly drive

the PBOs into a reconfiguration-safe state.

The model imposes constraints on the number of entities to reconfigure, as it can

switch a maximum of n entities, with n denoting the maximum configuration. Entities

must be realised by the underlying framework that imposes constraints on those to be

reconfigured. Also, switching requires that all modules, potentially required in some con-

figuration, need to be known beforehand. This excludes the integration of new software

modules downloaded from other systems or the environment after system startup.

Execution Model The reconfiguration execution model follows the preemptive ap-

proach as the underlying scheduling mechanism is priority-based. Higher-priority PBOs

can interrupt the ongoing reconfiguration. However, the model is very limited, in that

it interrupts only for PBOs that are statically known before any reconfiguration takes

place and not to incoming events from sources, which were unknown at system design

39

time. Because PBOs are scheduled statically, worst-case execution durations for a re-

configuration can be calculated. The reconfiguration time tr is the sum of the duration

of setting the off and on methods of affected PBOS, the duration of setting up output

ports, and the duration of PBOs that interrupt the reconfiguration due to their higher

priority. Static scheduling does, however, guarantees reconfiguration completion.

Summary Table 2.7 summarises the features of the PBO reconfiguration model. Be-

cause all PBOs are scheduled statically, a reconfiguration cannot be requested at any

time, and the number of reconfigurable entities is restricted by the size of the maxi-

mum possible configuration of PBOs. PBO’s system model is specific to a platform and

imposes restrictions on the entities, as only entities that follow this model can be recon-

figured. The reconfiguration model does not react to incoming events that are unknown

at system design time. However, the static scheduling of PBOs guarantees eventual

reconfiguration completion and the meeting of timeliness requirements of other PBOs.

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

System-specific 8 4 8 8 4 8 4

Table 2.7: Features of PBO reconfiguration model

2.3.7 Adaptive Reconfiguration Models

The previously discussed reconfiguration models conform to the blackbox philosophy,

as they encapsulate a single and fixed reconfiguration process. This section discusses

reconfiguration models that apply a non-static, i.e., adaptive, reconfiguration process.

Adaptive in this context does not mean the reason for reconfiguration is adaptive, but

rather that the reconfiguration process itself can be changed. Current adaptive reconfig-

uration models enable the customisation of a reconfiguration process depending on the

underlying properties of the entities to be reconfigured. However, the adaptation occurs

before the reconfiguration process starts. Once a customised reconfiguration process

40

runs, it is executed following a transactional or preemptive execution model. In contrast

to these reconfiguration processes, a time-adaptive reconfiguration process that reacts

to incoming events needs to be flexible in terms of which reconfiguration actions still

to execute, in order to meet the event’s response deadline and to prevent reconfigura-

tion starvation. Such a reconfiguration process needs dynamic adaptation based on the

current conditions, such as time constraints, and the entities to be reconfigured.

This section describes two adaptive reconfiguration models that target embedded

software, such as operating system software and network stack software. The first is

called Molecule and it targets resource-constrained sensor operating systems and selects

an appropriate linking method of the modules (Yi et al., 2008). The second, NecoMan,

is a middleware that supports the dynamic reconfiguration of programmable network

services and customises the applied reconfiguration process according to the properties

of the current services that are reconfigured (Janssens et al., 2005).

2.3.7.1 Molecule

Molecule is an adaptive reconfiguration model that targets resource-constrained sensor

operating systems (Yi et al., 2008).

System Model In Molecule, software entities are managed as modules. Modules

are connected with each other via linking mechanisms. There are two types of linking

mechanism: direct linking and indirect linking. In direct linking, the calling address of

the function to be called is directly linked with the actual function. In indirect linking,

the address of the function is obtained by first accessing a global function table. These

linking mechanisms have different execution and reconfiguration times. For example, the

direct linking mechanism is faster in terms of execution duration, but results in higher

reconfiguration costs.

41

Reconfiguration Model Reconfiguration in Molecule targets the linking between

modules, such as relinking to a different module or linking to a new module. When a

module is reconfigured, the reconfiguration model first checks which linking method is

better suited for required services from other modules. The appropriate linking method

is based on the cost analysis of the expected timing overhead of each module when using

the different linking mechanisms. The reconfiguration also dynamically updates either

the call address of all modules that link to the reconfigured module when using direct

linking, or updates the global function table.

The system assumes a consistent software configuration, as reconfigurations are only

executed in idle times, when no module is active.

Execution Model Reconfigurations are executed in a transactional manner, without

the consideration of incoming events.

Summary Table 2.8 summarises the features of the reconfiguration model. The execu-

tion model applied is the same as for Runes and Think, and does not consider incoming

events and their associated time deadlines. The model itself has no restrictions on the

number of reconfigurable entities, or when a reconfiguration can be executed. However,

the reconfiguration is very specific to the system model used as it only addresses relinking

of modules.

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

System-specific 4 4 8 4 4 8 8

Table 2.8: Features of Molecule reconfiguration model

2.3.7.2 NecoMan

NecoMan is a middleware for programmable networks (Janssens et al., 2005). Its recon-

figuration model realises distributed reconfigurations, which includes the coordination

42

of reconfiguration actions among different nodes.

System Model The reconfiguration model is defined for a domain-specific system

model that targets reconfigurable network stack software (Michiels, 2003). The DIPS+

component model adopts the pipe-and-filter architectural style. DIPS+ components are

two-layered, with a core containing the basic functionality, and communication ports for

connecting to other components. All incoming ports share the same interface, which

allows a simplified composition without the need to check for compatibility when con-

necting components to each other.

Reconfiguration Model The middleware has been developed to improve the effec-

tiveness of the reconfiguration process applied. This process is customised based on the

network service that will be deployed and the underlying execution environment. The

reconfiguration model follows a reconfiguration process that is divided into three steps:

1. The installation of a new service by extending the programmable nodes targeted

for service deployment with new sending and receiving modules.

2. The deactivation of the old service by waiting until all processing of data has

completed. .

3. The activation of the new service by removing the old service and updating the

connections of other services to point to the new service.

The reconfiguration process can be changed by exploiting the properties of the net-

work service to be deployed and the underlying execution model. For example, when

the service is stateless, there is no need to bring the service into a reconfiguration-safe

state. In this case, a transitional approach can be applied, in which the new service

is concurrently deployed with the old service. This implies that the activation and the

finishing phases are switched (activate before finish). Other optimisations are possible

that are not relevant to this discussion (Janssens, 2006).

43

The reconfiguration model itself imposes no constraints on the time when a recon-

figuration takes place, or the number of entities that are to be reconfigured.

Execution Model The execution model of NecoMan follows that of other transac-

tional reconfiguration models, such as the Runes’ or Think model. A sequence of re-

configuration actions is either executed fully, or not at all. Incoming events are not

considered.

Summary Table 2.9 summarises the features of the reconfiguration model. Like the

Runes or Think reconfiguration models, the model does not react to incoming events

and their deadlines and cannot be classified as time-adaptive.

Feature System Model (F1) F2 F3 F4 F5 F6 F7 F8

Domain-specific 4 4 4 4 4 8 8

Table 2.9: Features of NecoMan reconfiguration model

2.4 Analysis

The previous section reviewed existing work on dynamic reconfiguration of embedded

software. The commonality of these approaches is that reconfigurations are executed

by a centralised entity on the componentised software entities, for adaptation or evolu-

tion purposes. This section provides an analysis of these reconfiguration models with

respect to the degree to which they support the requirements identified in Section 2.2.

Where appropriate, the corresponding feature number is added, in parentheses, to the

respective criterium. Features F2, F4, and F5 are grouped for this section into their own

comparison group, as they represent constraints of either the underlying software or the

reconfiguration model itself.

44

2.4.1 System Model Requirements

The first set of features considered are the unit of reconfiguration dictated by the un-

derlying system model (F1), and whether the system model is system-specific, domain-

specific, or generic (see Table 2.10).

Reconfiguration models that target real-time embedded software, such as the recon-

figuration model for Port-based Objects (PBO) or DynamicCon, are system-specific and

hence strongly tied to a specific platform on which the software runs on. As this software

is often safety-critical, the reconfiguration process itself needs to be verifiable (Trapp

et al., 2007). The system model itself can provide guarantees for the reconfiguration

model. For example, the controlled execution system in the PBO reconfiguration model

allows known worst-case execution durations (Stewart & Khosla, 1996). However, in

system-specific reconfiguration models, the tight integration of the addressed software

with the underlying embedded platform makes it hard to leverage the model on other

embedded platforms. As we target a time-adaptive reconfiguration model for various

embedded platforms and their software, this kind of system model is not suitable.

The NecoMan reconfiguration model is a domain-specific system model, as it has

been defined for the DIPS component model, a software architecture that is tailored

towards building reconfigurable protocol stacks (Michiels, 2003). Its underlying software

system is optimised for a particular domain and lacks generality, as it cannot model

general embedded software.

In contrast, Runes, Think, DynaQoS-RDF, and Djinn are defined for system models

that can model various embedded software. Generality is achieved by defining reconfig-

uration operations on an abstractly defined system model. A specific implementation

then realises the abstract defined operations and software entities for a specific embedded

software, which can be executed on multiple embedded platforms. For example, Think

is a C-based implementation of the Fractal architecture, realising component-based op-

erating system kernel software (Polakovic & Stefani, 2008).

45

Reviewed Model Unit of Reconfiguration Generic (F1)

Runes Flat Reflective Component 4

Think Hierarchical Reflective Component 4

DynamicCon Stateful& Stateless Service 8 System-specific

DynaQoS-RDF Stateless Reconfigurable Data-Flow System Entity 4

Djinn Multimedia Components 4

PBO Port-based Objects 8 System-specific

Molecule Module 8 System-specific

NecoMan Flat Reflective Component 8 Domain-specific

Table 2.10: Comparison of system model properties

2.4.2 Reconfiguration Model Features

This section considers features specific to the reconfiguration model. These include the

mechanism used to reach a consistent state (F3), and its underlying execution model

(see Table 2.11).

All of the reviewed reconfiguration models ensure system correctness. Molecule and

PBO can assume a consistent system as they execute reconfigurations only in idle times,

when no software entity is active. These reconfiguration models do not, therefore, need

to explicitly drive entities into mutually consistent states. Runes, Think, and NecoMan

provide consistency based on quiescence. They first bring the affected system entities

into a reconfiguration-safe state and then execute the sequence of reconfiguration actions.

DynamicCon, DynaQoS-RDF, and Djinn provide consistency based on transitioning

between the old and the new system configuration. These models first execute a sequence

of reconfiguration actions concerned with building up the new system configuration.

They then switch to the new system configuration, once the state has been completely

transferred and all ongoing processes that use the old configuration’s system entities

have been completed.

With the exception of DynaQoS-RDF and PBO, all of the reviewed reconfiguration

46

models have a transactional execution model. They guarantee the completion of a re-

configuration if the reconfiguration is structurally correct and transform the system into

a consistent state.

DynaQoS-RDF follows a preemptive reconfiguration execution model and can pre-

empt an ongoing reconfiguration to previously unknown incoming events that have a

higher priority. The PBO reconfiguration model only pre-empts an ongoing reconfigu-

ration to statically known, higher-priority events.

Reviewed Model Consistency Mechanism (F3) Reconf. Execution Model

Runes Quiescence Transactional

Think Quiescence Transactional

DynamicCon Transitional Transactional

DynaQoS-RDF Transitional Pre-emptive

Djinn Transitional Transactional

PBO N/A Pre-emptive

Molecule N/A Transactional

NecoMan Quiescence Transactional

Table 2.11: Comparison of reconfiguration model properties

2.4.3 Execution Model Features

This section considers the features specific to the execution model. These include

whether a reconfiguration completeness is guaranteed (F6), whether arbitrary, i.e., un-

known, incoming events are supported (F7), and whether an incoming event’s response

deadline is met (F8) (see Table 2.12).

All of the reviewed reconfiguration models, except DynaQoS-RDF, can guarantee the

completion of an ongoing reconfiguration. DynaQos-RDF cannot guarantee the comple-

tion of an ongoing reconfiguration, when there is a high event arrival rate. However, the

model directly interrupts an ongoing reconfiguration to process incoming events, and

hence meets the processing deadlines of these events. The remaining reconfiguration

47

models meet an incoming event’s deadline only, if the completion time of a reconfigura-

tion is shorter than the response deadline. For example, using a non-blocking approach,

the DynamicCon reconfiguration model returns from the reconfiguration process if the

remaining state of an entity cannot be transferred within the requested blackout time.

The deadline of a subsequent job can be met if a job’s response time is larger than this

requested blackout time and the job’s processing time. However, this approach does not

support arbitrary events but only jobs that are triggered by a communication with other

services or by the system itself.

Reviewed Model Reconfi-

guration

completion

(F6)

Reaction to

incoming

events(F7)

Meeting

Deadlines

(F8)

Runes 4 8 8

Think 4 8 8

DynamicCon 4 8 8

DynaQoS-RDF 8 4 4

Djinn 4 8 8

PBO 4 8 8

Molecule 4 8 8

NecoMan 4 8 8

Table 2.12: Comparison of execution model features

2.4.4 Reconfiguration Constraints

Table 2.13 compares the reconfiguration models in terms of their constraints, either

on the number of entities to be reconfigured (F5), the entities themselves (F4), or the

reconfiguration process (F2). Runes and Think have no constraints on the number

of entities that can be reconfigured and do not put constraints on the entities or the

reconfiguration model itself. Both models support the reconfiguration of stateless and

48

stateful components, as well as the reconfiguration of any component in the system

graph. For example, in Think a hierarchical component can contain any number of

sub-components that all can be potentially reconfigured.

DynamicCon does not put any constraints on the number of system entities to be

reconfigured. However, reconfigurations cannot be executed at arbitrary times. Since a

reconfiguration is realised as a job, maintaining job priorities and deadlines, a reconfigu-

ration might not be executed directly, but instead has to wait until higher-priority jobs

have completed. Also, the system-specific system model requires that reconfigurable

software entities are realised as services.

DynaQoS-RDF can potentially reconfigure the overall system. Its pre-condition that

a reconfiguration always must be directly pre-emptable means that the model supports

only stateless system entities and puts constraints on the entities itself. The model

supports the integration of previously unknown entities in the system.

Djinn’s reconfiguration model does not constrain the number of reconfiguration ac-

tions. However, it constrains the underlying system entities as they must adhere to the

software architecture of the DJINN programming model. Though reconfigurations can

be requested at any point in time, there might be a delay in when they are actually

applied.

The PBO reconfiguration model can reconfigure only the system entities that are

available in the system at system startup time, as a reconfiguration consists of switching

on and off PBOs. Entities must follow a domain-specific framework, namely the Port-

based object abstraction and specific communication mechanisms, such as local and

shared memory with bounded access times. There are strict scheduling requirements in

the framework and to guarantee a timely execution of all PBOs and the reconfiguration

itself, all configurations must be known statically at system startup time.

The NecoMan reconfiguration model does not impose any constraints on the number

of entities, or the underlying reconfiguration model. However, this reconfiguration model

is defined on a domain-specific system model for reconfigurable network protocol stacks

49

and cannot be transferred to other embedded system software.

The same arguments hold for the Molecule reconfiguration model. Molecule can re-

configure an optional number of modules and does not put any constraints on the mod-

ules themselves. However, it concentrates on providing efficient linking mechanisms and

does not provide structural and functional reconfiguration. To use these linking mech-

anisms, the software entities must be realised with the system-specific system model.

Reviewed Model No con-

straints on

number of

entities (F5)

No entity con-

straints (F4)

No recon-

figuration

constraints

(F2)

Runes 4 4 4

Think 4 4 4

DynamicCon 4 8 8

DynaQoS-RDF 4 8 8

Djinn 4 8 8

PBO 8 8 8

Molecule 4 8 8

NecoMan 4 8 4

Table 2.13: Comparison of constraint properties

A summary of all comparisons is shown in Table 2.14. As illustrated, none of the

reviewed systems has all the features that are required by a time-adaptive reconfiguration

model.

50

Reviewed Model F1 F2 F3 F4 F5 F6 F7 F8

Runes 4 4 4 4 4 4 8 8

Think 4 4 4 4 4 4 8 8

DynamicCon 8 8 4 8 4 4 8 8

DynaQoS-RDF 8 8 4 8 4 8 4 4

Djinn 8 8 4 8 4 4 8 8

PBO 8 8 4 8 8 4 8 8

Molecule 8 8 4 8 4 4 8 8

NecoMan 4 4 4 8 4 4 8 8

Table 2.14: Comparison summary

2.5 Relevance to TimeAdapt

This section discusses concepts from the reviewed reconfiguration models that have been

influential on the design of the time-adaptive reconfiguration model, TimeAdapt, dis-

cussed in this thesis.

2.5.1 System Model

Reconfiguration models can be defined either on a specific or an abstract system model.

Abstractly defined system models define their associated entities and the connection

between those entities in an implementation-independent way. The abstract definition

hides the complexities of an underlying system platform and focusses rather on character-

istics of the entities themselves, such as their underlying computational model. Different

implementations of the abstract definitions for different embedded system platforms, al-

lows the system model to be executed on multiple embedded platforms. TimeAdapt is

defined on such an abstract system model. A more detailed description of TimeAdapt’s

system model and the rationale of its use is given in chapter 3.2.1.

51

2.5.2 Reconfiguration Model

All the reviewed reconfiguration models ensure system correctness by either using an ap-

proach based on quiescence or a transitional approach. An approach based on quiescence

drives the system into a reconfiguration-safe state before the actual reconfiguration is

executed. A reconfiguration then incrementally transforms the existing system config-

uration. A transitional approach executes the old and the new system configuration in

parallel and switches over between the two configurations at some stage. A more detailed

discussion of the approach adopted in TimeAdapt is presented in Section 3.2.2.1.

TimeAdapt also adopts a centralised reconfiguration model architecture, similar to

the reviewed systems, in which a centralised entity (reconfiguration manager) has access

to all system entities and is responsible for their reconfiguration. As a time-adaptive

reconfiguration model needs to consider incoming events that coincide with an ongo-

ing reconfiguration, TimeAdapt reacts as fast as possible to these events. However, in

contrast to the reviewed reconfiguration models that use an underlying priority-based

scheduling mechanism, it does not directly switch to the interrupting event, but tries

to execute as much reconfiguration actions as possible before handling the event. Sec-

tion 3.2.2.2 discusses in more detail the applied scheduling mechanism.

2.5.3 Other Influential Concepts

TimeAdapt guarantees a correct system at all times, even in the presence of partially ex-

ecuted reconfigurations. Inspired by the work of Zhang et al. (2005), the model applies a

partitioning of the remaining reconfiguration actions into so-called safe steps. Safe steps

transform a safe system configuration to a new safe system configuration. Safe system

configurations are defined as system configurations in which all dependency relations

between the components taking part in the configuration are fulfilled so that the system

can operate correctly. This is discussed further in Section 3.2.2.3.

52

2.6 Summary

This chapter has presented a number of reconfiguration models targeting different kinds

of embedded software, such as operating system software, middleware software, and

application software. In all these models, reconfigurations are triggered for adaptation

and evaluation purposes and executed by a centralised entity. In particular, the models

were investigated with regards to the system model their software follows, the features

of the reconfiguration model itself, and the execution model the reconfiguration process

follows. Based on this investigation, the features that a time-adaptive reconfiguration

model should have are listed. These features were the criteria used to compare the

related models. The comparison demonstrates that none of the existing work has all

the features a time-adaptive reconfiguration model needs. Specifically, the models fall

short in guaranteeing reconfiguration completion, while reacting to incoming events with

associated processing deadlines. Finally, concepts from the reviewed existing models that

have influenced the design of TimeAdapt were discussed. The following chapters detail

the design, implementation, and evaluation of TimeAdapt.

53

Chapter 3

TimeAdapt Design

Analysis of existing reconfiguration models for embedded software shows that they are

limited in their support for a timely reaction to incoming events, while making progress

towards reconfiguration completion. This chapter first derives a set of requirements for a

time-adaptive reconfiguration model (RM) targeting embedded software. The remainder

of the chapter provides a detailed description of the design and the system elements of

TimeAdapt, a time-adaptive reconfiguration model, that satisfies these requirements.

3.1 Requirements for a Time-Adaptive RM

The previous chapter discussed the limitations of existing reconfiguration models in

terms of their applied execution model. A rationale was given for the development of

a time-adaptive reconfiguration model that supports reaction to incoming events dur-

ing an ongoing reconfiguration, while making progress with an ongoing reconfiguration.

Designing a time-adaptive reconfiguration model raises numerous issues. These issues

can be categorised into issues related to the system model used, issues related to the

correctness of a reconfiguration, issues related to the actual execution of a reconfigu-

ration in the presence of incoming events, and issues related to the restrictions of the

reconfiguration model or system model on the entities to be reconfigured.

54

The selection of a suitable system model is a critical element for the design of a

reconfiguration model, as it determines the potential types of reconfiguration actions as

well as the degree to which the reconfiguration model can be transferred to different

system platforms (Wermelinger, 1997). This observation leads to the first requirement:

R1) The unit of reconfiguration should not be system platform specific, but it should

be executable on various system platforms.

Every reconfiguration model needs to ensure that the system is in a consistent state,

before a reconfiguration and after completing a reconfiguration, as a transformation

to an incorrect system configuration leads to erroneous system behaviour (Janssens,

2006). For this, two preconditions must be preserved; transactional completeness and the

satisfaction of structural integrity requirements (Goudarzi, 1999). These are discussed

in more detail in Sections 3.2.2.1 and 3.2.2.2.

R2) The reconfiguration model should ensure system correctness during and after the

reconfiguration.

A time-adaptive execution model requires that a reaction to incoming events occurs

in a timely manner. However, the completion of an ongoing reconfiguration needs to

be guaranteed. This leads to the formulation of the following requirements for a time-

adaptive reconfiguration model.

R3) An ongoing reconfiguration, that is structurally correct and fulfills the system’s

constraints, should be guaranteed to complete.

R4) The reconfiguration model should allow the interruption of the ongoing reconfigu-

ration by incoming events that are previously unknown to the system.

R5) The reconfiguration model should try to process incoming events within their as-

sociated processing deadline.

55

Tešanović et al. (2005) proposed additional, non-functional, requirements for a re-

configuration framework that reconfigures real-time embedded systems. These non-

functional concerns address the number of components supported and the point in time

when a reconfiguration should be executed.

R6) There should be no restriction on the number of components to be reconfigured.

R7) There should be no constraints on the entities to be reconfigured.

R8) Reconfiguration may be requested at any time, and the system should have no

a-priori knowledge of the possible components that are to be reconfigured in the

system.

3.2 TimeAdapt

This section uses the requirements R1-R8 to derive the design of TimeAdapt, a time-

adaptive reconfiguration model proposed by this thesis. TimeAdapt’s design is broken

down into the design of two orthogonal, but complementary parts: the provision of a

suitable underlying system model and the design of TimeAdapt itself, which executes

the modifications on the system model (see Figure 3.1).

TimeAdapt System Model

TimeAdapt Reconfiguration
Model

Fig. 3.1: TimeAdapt Design

56

3.2.1 TimeAdapt System Model

A system model, in reconfiguration literature, defines what constitutes a software entity

and determines the granularity at which reconfigurations can be performed, the so-called

unit of reconfiguration. A unit of reconfiguration is defined by Janssens (2006) as:

”the most fine-grained software abstraction that is subject to change.”

In the review of existing reconfiguration models for embedded software in the previous

chapter, we identified three main types of system models (see Section 2.2.1). These

system models differ in the level of granularity of their software entities, and in the

extent to which they can be applied on different embedded system platforms.

1. System-specific models, e.g., (Stewart & Khosla, 1996)

2. Domain-specific models, e.g., (Mitchell et al., 1998)

3. Abstract system models, e.g., (Costa et al., 2007)

A system-specific model defines entities that are strongly tied to a specific system

platform. Examples for such software entities are software modules of a particular oper-

ating system, such as the SOS operating system for sensor nodes (Han et al., 2005). The

granularity of these software entities is well-defined. However, due to the dependency

of the entities on their respective platform, the applicability level of a reconfiguration

model defined for this kind of system model is low. Defining TimeAdapt for this system

model would imply that the reconfiguration model could only be applied on a single

specific platform, which contradicts requirement R1.

A domain-specific system model defines entities that can be applied in a variety of

application scenarios in a particular domain. Prominent examples are domain-specific

component frameworks that allow the construction of programmable network stacks,

such as Necoman (Janssens et al., 2005). The granularity of the software entities is

dependent on the specific application domain. The applicability level of a reconfiguration

57

model defined on this kind of system model is higher than in the system-specific model

case, but constrained to a single domain.

A generic system model provides well-defined but abstract software entities. Such

abstractions support a higher level of granularity for software entities than is possible to

achieve in system-specific or domain-specific models. For example, a hierarchical com-

ponent in a generic hierarchical component model can contain potentially any number

of components. Generality is achieved by providing implementations of the abstractly

defined software entities for respective system platforms and application domains. For

example, the Runes component model API is defined in terms of the OMG’s interface

definition language IDL (Object Management Group, 1999). Implementations of the API

map the abstractly defined concepts to actual platforms, such as implementations for

resource-scarce embedded systems running on the Contiki OS (Dunkels et al., 2004) or

Java-based implementations that target more resourceful platforms (Costa et al., 2007).

Reconfiguration models defined on these kinds of system models can be applied on a

variety of platforms and for a variety of application domains, fulfilling requirement R1.

The design decision in this thesis is that TimeAdapt’s system model is defined on such

a generic system model.

The abstract system models used by Runes and Think, follow a synchronous com-

putational model based on message passing between software entities, whereas the Dy-

naQoS and Djinn reconfiguration models follow an asynchronous computational model,

based on dataflow between software entities (see Chapter 2, Section 2.3). A computa-

tional model based on message passing leads to the blocking of a calling process, while

waiting for a message’s reply. This is less suitable for embedded software, in which

several activities interact with each other, and in which a blocked activity can lead to

the blocking of other activities (Lee, 2000). Therefore, TimeAdapt’s system model is

based on the asynchronous reconfigurable data flow system model, RDF. The RDF is

an extension to the conceptual actor model (Agha, 1986). There are two characteristics

of the RDF model that emphasise its usefulness for embedded software and motivate its

58

use as TimeAdapt’s system model. Firstly, the underlying mathematical abstractions

of the RDF, namely actors, are well-suited to describe embedded software and concur-

rent software, in which parallel activities interact with each other and with the external

environment, often under timing constraints (Lee, 2002). Secondly, the RDF model rep-

resents the kind of software that is targeted by the time-adaptive reconfiguration model

discussed in this thesis. For scoping reasons and to concentrate on the time-adaptive

reconfiguration model rather than on the system model itself, the software considered in

this thesis runs on a single processor embedded platform that is subject to events associ-

ated with deadlines. Examples of this kind of software are signal or sensing applications

on a single sensor node (Cheong, 2007). In contrast to the DynaQos system model,

TimeAdapt’s system model supports stateless and stateful entities, and in contrast to

the Djinn reconfiguration model,

We consider the concept of actors from Lee (2002), who defines them as concurrent

dataflow-driven components that specify behaviour in an abstract way.

Definition 1 An actor a is a computational entity that receives (data) tokens via input

ports Ia, processes data internally, and sends out (data) tokens via output ports Oa.

A port represents a connection to another actor. The set of input ports Ia and output

ports Oa of an actor a defines its interface.

Definition 2 The connection relation C contains all pairs of output ports that are con-

nected to input ports, i.e., C =
⋃

a∈A Ca.

For readability, for the rest of this thesis, c = (oa, ib) denotes a connection between

an output port of actor a and an input port of actor b. The type of a port ctype is

determined by the type of the respective data tokens that are sent between the two

ports.

A specific configuration of an embedded software is represented by the set of all

actors A and their connection relations C:

59

Definition 3 A software configuration is defined as a pair S = (A,C), where A is the

set of actors, and C is the connection relation.

A reconfiguration transforms a software configuration S = (A,C) to a new software

configuration S′ = (A′, C ′) by applying reconfiguration actions on the respective enti-

ties. Zhao & Li (2007b) supports four elementary reconfiguration actions, which are

startActor, stopActor, addConnector, and removeConnector. Composite reconfiguration

actions, such as replaceActor or upgradeActor, can be expressed via these four reconfigu-

ration actions. However, they omit state transfer. As TimeAdapt supports also stateful

actors, the decision was made to add the composite reconfiguration actions upgradeActor

and replaceActor as explicitly supported reconfiguration actions that contain an inherent

state transfer. In detail, TimeAdapt uses the following six reconfiguration actions:

• addActor(a): Creates a new actor. This reconfiguration action is similar to Li’s

startActor. In case of a stateful actor, however, the action initialises the execution

state with default values.

• removeActor(a): Removes an actor. This reconfiguration action is similar to Li’s

stopActor. In case of a stateful actor, however, the action first removes execution

state and then the respective actor is deleted.

• replaceActor(a,a′): Replaces the implementation of the old actor with a new actor

implementation. This action may lead to the requirement for an interface change.

If the actor to be replaced contains state, this action executes a state transfer from

the old actor to the new actor.

• upgradeActor(a, a′): Replaces the implementation of the old actor with a new actor

implementation. However, the interface of the old actor does not change, i.e., the

new actor implements the same input and output port sets. Like the replaceActor

reconfiguration action, the action is associated with state transfer between the old

and the new actor.

60

• connect(a, b, oa, ib): A connection is created between the output port oa of actor

a and the input port ib of actor b. The type of the connection depends on the

actual type of data being sent between the two ports.

• disconnect(a, b, oa, ib): disconnects two actors that are connected via a connection.

3.2.2 Reconfiguration Model

The requirements, identified in Section 3.1, form the basis for the design of TimeAdapt,

the time-adaptive reconfiguration model proposed in this thesis. This section focuses on

two main aspects of the reconfiguration model: the guarantee that the software is in a

consistent state at all times and the actual execution of a reconfiguration and reaction to

incoming events. A consistent state requires transactional completeness and the mainte-

nance of structural dependency relationships (Goudarzi, 1999). Transactional complete-

ness is discussed in the next section, and structural dependency relationships are ad-

dressed, together with TimeAdapt’s proposed scheduling mechanism, in Section 3.2.2.2.

3.2.2.1 Transactional Completeness

A transaction refers to the processing of a request from the time it is received by a soft-

ware entity to the generation of a corresponding result by either the same software entity

or through a chain of connected software entities (Li, 2009). Once a transaction is in-

stantiated it should complete. This is referred to as “transactional completeness” (Zhang

et al., 2005). Transactional completeness requires that an ongoing transaction is neither

stopped nor destroyed by any ongoing reconfiguration. To achieve this, a synchroni-

sation mechanism is needed to guarantee that any reconfiguration action, potentially

interrupting an ongoing transaction, is executed only after the transaction completes.

In literature this is referred to as quiescent or reconfiguration-safe state (Kramer &

Magee, 1990).

As outlined in the review in Chapter 2, existing reconfiguration models for embed-

61

ded software follow two orthogonal approaches, which were discussed in more detail in

Section 2.1.3. They either bring the affected software entities into a reconfiguration-safe

state before any modifications are executed and then execute modifications sequentially

on the mutually-consistent software entities. Or they remove the need for such a state

by applying a transitional approach in which the old and the new software configuration

are executed in parallel. The transitional approach has some disadvantages, especially in

terms of additional memory and processor costs caused by redundancy during reconfigu-

ration (Li, 2009). Therefore, TimeAdapt drives affected software entities explicitly into a

reconfiguration-safe state before sequentially executing the reconfiguration actions. This

is realised by waiting until a currently active software entity, i.e., actor, has finished its

internal computation. As the development of a synchronisation mechanism is outside

the scope of this work, this thesis assumes that the underlying system model is equipped

with suitable mechanisms, such as thread-counting (Soules et al., 2003) or reader-writer

locks on functional interfaces (Wermelinger, 1997).

3.2.2.2 Scheduling Mechanisms

This section describes the scheduling mechanisms used by existing reconfiguration mod-

els to schedule an ongoing reconfiguration for execution, as well as the maintenance of

dependency relations between software entities.

A scheduling mechanism determines how the centralised entity that executes recon-

figurations reacts to events that occur during an ongoing reconfiguration. In this context,

a reconfiguration can be seen as a task comprising n reconfiguration actions, or so-called

jobs. In this section, the terms task and reconfiguration are used interchangeably, as

well as the terms reconfiguration action and job. From the discussion of existing recon-

figuration models, it emerged that they use either scheduling mechanisms that lead to a

preemptive execution model, such as priority-based scheduling mechanisms, or mecha-

nisms that lead to a transactional execution model, such as clock-driven scheduling (Liu,

2000). For reasons of completeness, the deadline-aware scheduling mechanism, which

62

was not part of the discussed work, is added to this list of mechanisms considered for

TimeAdapt. More specifically, the following mechanisms are discussed in more detail:

1. Priority-driven direct preemptive scheduling: Scheduling decisions are made when-

ever an incoming event arrives, as in Zhao & Li (2007b) (see Section 2.3.4)

2. Priority-driven delayed preemptive scheduling: Incoming events need to wait until

an ongoing reconfiguration job is completed, as in Schneider et al. (2004) (see

Section 2.3.3)

3. Clock-driven scheduling: A priori determination of task schedule as in Stewart &

Khosla (1996) (see Section 2.3.6)

4. Deadline-Aware Scheduling: Controlled execution of current task under consider-

ation of incoming events, e.g., as in Huang et al. (2009).

Priority-driven direct preemptive scheduling: An ongoing reconfiguration is

directly pre-empted when an incoming event occurs, as the event will always have a

higher priority. This scheduling mechanism is used for example in Li’s reconfiguration

model (see Section 2.3.4). The mechanism fulfils requirements R4 and R5 (the timely

reaction to incoming events), although a number of issues arise.

Firstly, when there is a high event arrival rate, the direct pre-emptive approach

cannot guarantee the completion of a reconfiguration, as the reconfiguration is constantly

interrupted by high-priority events and because of that is subject to starvation. This

would contradict requirement R3. Secondly, the direct pre-emption of a reconfiguration

requires that reconfiguration actions themselves can be directly pre-empted (Zhao &

Li, 2007b). However, time-consuming actions, such as state transfer actions, are not

supported, contradicting requirement R7. Thirdly, a reconfiguration task can potentially

be interrupted at any point in time, and might leave the system in an intermediary

configuration with possible structural inconsistencies. Due to these issues, priority-

driven direct preemptive scheduling was discarded as a candidate for TimeAdapt.

63

Priority-driven delayed preemptive scheduling: If an event occurs, an ongo-

ing reconfiguration action is completed, before the event is processed. In this scheduling

mode the incoming event might miss its deadline if the execution duration of the cur-

rently executing reconfiguration action is larger than the given deadline. Reconfiguration

models that support the specification of a maximum-allowed reconfiguration execution

duration may check whether an event processing deadline fits within this time before the

next decision is made (Schneider, 2004). However, all events need to be known statically

at system startup time and cannot change their deadline dynamically. This contradicts

requirement R4. Also, the issue of starvation still remains if the event arrival rate is high

as events are always associated with a higher priority and are directly processed if there

is no ongoing reconfiguration action. Because of these issues, priority-driven delayed

scheduling was discarded as a candidate for TimeAdapt. Note that if an event occurs,

and there is no currently executing reconfiguration action, the priority-driven delayed

preemptive scheduling mode directly processes the event.

Clock-driven scheduling: In a clock-driven scheduling mechanism, a schedule of

all tasks is done before a system begins execution. This scheduling mechanism realises

a transactional reconfiguration model, if the reconfiguration task is scheduled in a time

slot that fits all reconfiguration actions. Typically, this type of scheduling requires that

all parameters of all tasks and the tasks themselves are fixed and known (Liu, 2000).

An ongoing reconfiguration task can be interrupted in this scheduling mechanism

only by events, such as other system tasks that are also known statically before system

startup, e.g., the PBO reconfiguration model (Stewart & Khosla, 1996). This scheduling

approach is inflexible as it requires the knowledge of all possible reconfiguration tasks

and event arrival rates at system design time and does not support the reconfiguration

of tasks that are known only at system runtime or events with varying event arrival rate

and deadlines. This contradicts requirements R4 and R8. Due to this inflexibility, the

clock-driven scheduling approach was discarded as a candidate for TimeAdapt.

Deadline-Aware Scheduling: Deadline-aware scheduling executes tasks in a con-

64

trolled manner, while at the same time abiding by time constraints (Huang et al., 2009).

The mechanism greedily schedules as many reconfiguration actions as possible, before

an interrupting event is processed. However, the mechanism also tries to abide by an

event’s processing deadline.

This mechanism offers more flexibility than the other scheduling mechanisms, as

it is dynamically applied on previously unknown reconfiguration sequences and it sup-

ports events that were unknown at system startup time (R4). The greedy scheduling

of reconfiguration actions ensures that at least the currently active reconfiguration ac-

tion is scheduled (R3), while processing incoming events in a timely manner (R5). As

this scheduling mechanism addresses the key requirements for a time-adaptive reconfig-

uration model (R3-R5), we base TimeAdapt’s scheduling mechanism on this approach.

The next section discusses, how the key requirements of a time-adaptive reconfiguration

model are met by TimeAdapt’s deadline-aware scheduling mechanism.

3.2.2.3 Deadline-Aware Scheduling in TimeAdapt

This section investigates how the properties of a deadline-aware scheduling mechanism

lead to a time-adaptive execution model, which tries to meet processing deadlines of

previously unknown incoming events (R4, R5), while proceeding with an ongoing recon-

figuration towards its completion (R3).

Meeting event deadlines: If an event occurs during an ongoing reconfiguration

task, the scheduling mechanism needs to react dynamically to this event and its associ-

ated event processing deadline. On the one hand, completing the ongoing reconfiguration

might not be feasible depending on how many actions there are still to execute and the

size of the event deadline. The event deadline may be missed. On the other hand,

a direct pre-emption of the reconfiguration may lead to problems already discussed in

Section 3.2.2.2, such as possible starvation of a reconfiguration task and potential in-

consistent configurations. Deadline-aware scheduling supports the controlled, partial

execution of a reconfiguration task. Reconfiguration actions are scheduled in a greedy

65

fashion as long as they can be executed within the event’s processing deadline. This

potentially results in an execution of only a sub-set of the remaining reconfiguration

tasks. Depending on the time available for a given reconfiguration sequence, the out-

comes of a reconfiguration might be the completion of sub-parts of the reconfiguration,

or the completion of the overall reconfiguration. If the event processing deadline is at

least as large as the time until completion of a currently executed reconfiguration action,

this deadline can be met. Processing deadlines are not met when these deadlines are

smaller than the execution duration of the currently executed reconfiguration action.

As this work does not consider critical systems that have hard real-time requirements,

a missed event deadline leads only to deterioration of system quality parameters, such

as perceived signal quality, but not to the non-functioning of the system. A discussion

of TimeAdapt’s timing behaviour and its guarantees with respect to meeting processing

deadlines is also done in Section 3.4.2.4. The next section discusses how the division

of a reconfiguration into sub-sequences addresses the issue of ensuring reconfiguration

completion.

Proceeding with an ongoing reconfiguration: Progress towards reconfiguration

completion using deadline-aware scheduling depends on the time at which an incoming

event occurs. If an incoming event occurs during an ongoing reconfiguration action,

the deadline-aware scheduling mechanism prefers the completion of this action over the

incoming event. The mechanism tries to greedily schedule as many reconfiguration

actions as possible, before the event is processed. This has several implications on an

ongoing reconfiguration. Firstly, the preference of an ongoing reconfiguration action

over incoming events leads to the progress of the reconfiguration sequence towards its

completion. Even when the processing deadline is so small that no further actions can be

scheduled, the mechanism at least completes the current action. Secondly, the scheduling

mechanism allows the potential execution of multiple reconfiguration actions, before an

event is processed. This is in contrast to delayed preemptive approaches where events

are given higher priorities and which only complete the current action before processing

66

an event. The incremental scheduling of remaining reconfiguration actions leads to an

eventual completion of the reconfiguration.

When multiple, subsequent events occur, an event is directly processed after its pre-

decessor. As the scheduling mechanism always completes a reconfiguration action, there

is no currently executing reconfiguration action, and the progress of a reconfiguration

sequence depends on the available deadline. The scheduling mechanism schedules the

next reconfiguration action for execution if its execution duration is within the processing

deadline. In this case, progress towards a completion of the reconfiguration sequence is

made. If the execution duration of the next reconfiguration action cannot be scheduled

within the processing deadline, the event is directly processed. In this case, the poten-

tial threat of reconfiguration starvation remains. Section 3.4.2.4 provides an in-depth

discussion of TimeAdapt’s guarantees for reconfiguration completion.

In both cases, the partial execution of a reconfiguration sequence leads to the chal-

lenge of satisfying structural integrity requirements. This challenge is discussed in more

detail in the next section.

Safe Software Configurations: Dependency relationships between software enti-

ties are potentially destroyed, if an ongoing reconfiguration is only partially executed.

Therefore, it needs to be ensured that these relationships are maintained during a re-

configuration (Almeida et al., 2001). According to Zhang et al. (2005), a software con-

figuration is defined as safe, if it maintains all dependency relationships. In their system

model a software entity a is dependent on a software entity b, if there is a (unidirec-

tional) communication between these components. This thesis transfers safe software

configurations to TimeAdapt’s reconfigurable dataflow system model. Software entities

in this system model are connected via channels. The entity whose input port is con-

nected via the channel is dependent on the other software entity, as data can only flow

if the outgoing software entity computes some data and outputs it on the channel. A

reconfiguration can temporarily disconnect the two software entities, however, before a

computation takes place in the entities, it must be enforced that data can flow without

67

loss through the channel. This leads to our definition of a safe software configuration:

Definition 4 A safe configuration is defined as a configuration S′ = (A′, C ′) for which

is valid: ∀i ∈ Ib, b ∈ A′ then ∃ o ∈ Oa, a ∈ A′ : c = (oa, ib), c ∈ C ′

A safe software configuration in the reconfigurable dataflow system model is a con-

figuration in which input ports are only temporarily blocked if there are no data tokens

available, but never because the associated output port was removed. Locally, this means

that each input port i in the resulting configuration S′ = (A′, C ′) is either connected

directly to a data source, generating input data, or connected to a respective output

port o.

Figure 3.2 illustrates an example, comprised of four actors and connections between

these actors. The reconfiguration to be scheduled and executed is illustrated to the right

as well as possible interruption points of the reconfiguration due to incoming events.

Figure 3.3 illustrates the resulting software configuration when the reconfiguration se-

Encryption Packaging

Unpackaging Decryption

encrypted data

data package

encrypted data

Original Transaction

plain data

plain data

begin reconf sequence
removeActor(P)
removeActor(U)

end reconf sequence
Interruption Point A
Interruption Point B

Fig. 3.2: Original actor configuration and the executed reconfiguration sequence

quence is executed until point A. In this case, the encryption actor and the decryption

actor are currently disconnected. Here, the encryption actor would not be able to release

the blocked unpackaging actor as a token can never arrive at the unpackaging actor’s

input port. Hence, the overall application is blocked and non-functioning.

Figure 3.4 illustrates the resulting software configuration, when the reconfiguration

is interrupted at point B, i.e., after the execution of a removal reconfiguration action

68

of the unpackaging actor (U). The resulting software configuration is safe, as all input

ports of the decryption actor are connected.

Encryption

Unpackaging Decryption

encrypted data

encrypted data

Original Transaction

plain data

plain data

begin reconf sequence
removeActor(P)
removeActor(U)

end reconf sequence
Interruption Point A
Interruption Point B

Fig. 3.3: Unsafe software configuration

Encryption Decryption

encrypted data plain data

New Transaction

plain data

begin reconf sequence
removeActor(P)
removeActor(U)

end reconf sequence
Interruption Point A
Interruption Point B

Fig. 3.4: Safe software configuration

Care must be taken that a reconfiguration always ends in a safe software configura-

tion, whether it is fully completed or the configuration is an intermediary one where the

reconfiguration is only partially executed. This is achieved in TimeAdapt by partition-

ing the reconfiguration into sub-sequences that transform a safe software configuration

in a new safe software configuration. In the above example, the sub-sequence removeP,

removeU denotes such a sub-sequence. These ordered sub-sequences are termed safe

steps (Zhang et al., 2005).

Definition 5 A step p = {r1, r2, . . . , rm} is an ordered set and contains m reconfigura-

tion actions, with ri ∈ R.

Definition 6 A step p is said to be safe if it transitions from a software configuration

s to a software configuration s′, and both s and s’ are safe.

69

If a reconfiguration is performed as a sequence of safe steps and each safe step denotes

a transition between two safe configurations, then during the reconfiguration the system

is either in a safe software configuration or in a transition from a safe software configu-

ration to another safe software configuration, i.e., currently executing a reconfiguration

action of a safe step. If the software is in a safe software configuration, the dependency

relationships between the software entities are maintained. As no reconfiguration action

is executed, the software is functioning and no actor is blocked. If the software is in a

transition from a safe software configuration, it is currently executing a reconfiguration

action which is part of a safe step. Safe steps start and end in safe software configu-

rations, so that no dependency relationships are destroyed, either before or after the

execution of a safe step set. As safe steps are atomically executed, we can assume there

are no intermediate configurations, and no dependency relationships destroyed.

As each reconfiguration safe step needs knowledge about the underlying software

configuration and the current dependencies, the partitioning of a reconfiguration is or-

chestrated by the reconfiguration designer in the reconfiguration design phase. The

partitioning algorithm is discussed in detail in Section 3.4.1

This section has given the rationale for the design of TimeAdapt’s key element,

its scheduling of ongoing reconfigurations based on deadline-aware scheduling. The

next section discusses TimeAdapt’s system assumptions as well as the formalisation of

TimeAdapt’s system elements. In the subsequent section the algorithms and processes

that enable the model to meet its requirements for a time-adaptive reconfiguration model

are discussed in detail.

3.3 TimeAdapt Reconfiguration Model

This section provides the set of system assumptions and notations used throughout

the rest of this thesis. It also introduces the different system elements contained in

TimeAdapt.

70

3.3.1 System Assumptions

TimeAdapt is executed on a single-processor embedded platform. The reconfiguration

model requires the embedded software to be modelled according to the RDF system

model as a set of actors A and their connection relationships. All actors have an unique

numeric identifier that is used to address them in reconfiguration actions. Each actor

provides reconfiguration capabilities to realise changes to their own input and output

ports, such as setting and unsetting connections. Each actor has associated time esti-

mation functions that are used to determine the estimated duration time of a specific

action. These estimated times must be taken into account when determining how much

time is available before an incoming event must be processed. The estimation functions

and their respective values must be provided by the actor developer.

Reconfigurations, and their contained reconfiguration actions, are assumed to be

already planned and available. It is further assumed that the reconfiguration trigger

is known and formalised in the system, for example by using rules. A central entity,

the reconfiguration manager, has access to all actors and executes modifications on the

actors, such as loading and initialising new actors as well as stopping and removing old

actors from the system. However, only a subset of actors M = {a1, a2, . . . , am} ⊆ A

are subject to reconfiguration.

The reconfiguration manager runs in a single thread of execution, which may be

interrupted by incoming events, such as events coming from the hardware. It is assumed

that there is only a negligible delay from the time an event occurs until its occurrence

is reported to the reconfiguration manager. Events are the only source of potential

preemption of a reconfiguration in the system. An event does not need to be directly

processed but can be postponed (Regehr, 2008). However, each event is associated with

a desired maximum processing deadline, denoting a maximum desired time interval from

the time the event was detected until its processing begins. The actual processing of an

event is not reentrant, as the interleaved invocation of the same event processing code

71

is disabled. However, in the time between the occurrence of an event and its actual

processing, further events from the same or different event sources might occur.

3.3.2 Definition of Elements

A set of system elements can be derived from the previously discussed system assump-

tions that constitute the TimeAdapt reconfiguration model. The system elements are:

• A software configuration, which is defined in Definitions 2 and 3.

• A set of reconfigurable actors M ⊆ A.

• A set of reconfiguration actions R = {r1, . . . , rn}, where (n > 1). Each reconfig-

uration action ri is an element from the set of supported reconfiguration actions,

defined in Section 3.2.1. Each reconfiguration action ri addresses either an existing

actor a ∈M or a new actor and transforms the current system configuration into

a new configuration. Each reconfiguration action has an associated time function

te, which returns the estimated reconfiguration duration for the respective actor.

• A set of safe steps P = {p1, . . . , pn}, where (n ≥ 1). Each pi ∈ P contains m

reconfiguration actions, with m >= 1. A reconfiguration action is always contained

in a single safe step, i.e., two safe steps do not contain the same reconfiguration

action.

• A set of event sources E ={e1, . . . , en}. Each event source ei emits events of a

specific type with an associated event arrival rate λi. Each event has an associated

event deadline td.

• A reconfiguration manager that has access to all actors of the software config-

uration. The reconfiguration manager is the entity that schedules and executes

reconfiguration actions for execution.

72

• An event queue as part of the reconfiguration manager that stores incoming events

for processing. The storing of events does not impose additional waiting time on

the current system activities. Events in the queue are ordered according to their

processing deadline.

3.4 TimeAdapt Processes and Algorithms

This section focuses on TimeAdapt’s set of algorithms. As illustrated in Figure 3.5,

TimeAdapt’s algorithms are either applied at reconfiguration design time or reconfig-

uration runtime. One algorithm partitions reconfiguration actions into safe steps, at

design time, while the remaining algorithms schedule safe steps according to event pro-

cessing deadlines at runtime.

Running System
(Target Configuration S')

Running System
(SourceConfiguration S)

Reconfiguration
Partitioning Algorithm

Source
Configuration
Information

Target
Configuration
Information

Legend:

Algorithm

corresponds to

input-output

Reconfiguration
Scheduling

Reconfiguration
Manager

Meta-Information

Design Time

Runtime

Fig. 3.5: TimeAdapt reconfiguration model overview

73

3.4.1 Reconfiguration Design Time

A reconfiguration developer specifies reconfiguration actions. Once a set of reconfigura-

tion actions is defined, they must be grouped according to the dependency relationships

of the addressed software entities. This results in a set of safe steps, each of which trans-

forms a safe software configuration to a new safe software configuration. TimeAdapt

includes a heuristic partitioning process that the reconfiguration designer can follow to

map reconfiguration actions to safe steps. As input, this partitioning process requires a

set of reconfiguration actions, as well as dependency descriptions between affected actors.

It outputs a set of safe steps, representing atomic transformations from the current, safe

source configuration to the desired target configuration (see Figure 3.6).

Fig. 3.6: Reconfiguration partitioning inputs and outputs

3.4.1.1 Reconfiguration Partitioning Heuristic

This section describes a heuristic for partitioning a set of reconfiguration actions into

safe steps. As this process requires knowledge of the existing system configuration, it

cannot be fully automated. However, a set of rules can be derived that reconfiguration

developers can follow. This set of rules requires the explicit specification of dependency

relationships between affected actors in the form of dependency descriptions.

Definition 7 A dependency description Dep contains a set of actors that are dependent

on a specific actor. An actor b is dependent on an actor a, if there is a channel between

both actors, and this channel connects the input port of actor a to the output port of

74

actor b, i.e., the relationship (oa, ib) is part of the connection relationship C of the

current software configuration.

The partitioning of reconfiguration actions into safe steps can be described as a

mapping function F , with F being defined as R × Dep→ P . R denotes the set of all

reconfiguration actions, Dep denotes the set of all dependency descriptions, with Dep =

{dep1, dep2, . . . , depn}. It is assumed that a dependency description for the current

configuration is given. P denotes the set of safe steps. F maps each reconfiguration

action ri ∈ R to a specific safe step, using the dependency description depi ∈ Dep

of the affected actor to determine which actions need to be grouped together to reach a

safe software configuration.

However, the actual partitioning also considers the type of reconfiguration actions.

The reconfiguration action upgradeActor does not change the interface of an actor. As

reconfiguration actions are either executed fully, or not at all, this reconfiguration action

can be partitioned into its own safe step, without considering dependency relationships.

Reconfiguration actions, such as replaceActor, can change the interface of an actor, as

they add or remove input and output ports from the existing set. They need to be

partitioned into the same safe step than the action that addresses the dependent actor.

The reconfiguration actions addActor and connectActor, as well as the reconfiguration

actions removeActor and disconnectActor are partitioned into the same safe step. If

there are multiple addActor or removeActor actions, with dependent actors, they are

also partitioned into the same safe step. In summary, the partitioning process obeys the

following rules:

• An upgradeActor action can be partitioned into its own safe step.

• A safe step pi that contains a replaceActor(a) action, also contains the correspond-

ing reconfiguration action replaceActor(b), where b is dependent on a.

• An actor can only be removed, after all its connections are removed: A safe step

75

pi that contains a disconnect(a, b, oa, ib) action, also contains the corresponding

reconfiguration action removeActor(b).

• An actor can only be connected with other actors, after it has been created: A

safe step set pi that contains an addActor(a) action also contains the corresponding

reconfiguration action connect(a, b, oa, ib).

Figure 3.7 illustrates the basic partitioning heuristic that reconfiguration designers

can follow. If the reconfiguration action is an upgradeActor action, it is partitioned

into its own safe step. For each other reconfiguration action, a new safe step must be

created and the dependency descriptions of the respective actors must be retrieved. All

reconfiguration actions that contain dependent actors must be grouped into the same set.

This needs to be transitively repeated for all reconfiguration actions that are grouped

into this set. The size of a safe step depends then on the dependency relationships of

the underlying software entities.

Get next
reconfiguration

action ri

partition into
own safe step

si

no

ri
upgradeActor

action?

yes

partition into
safe step si

get dependent
actors

actor in reconf
action ri+1

yes yes

Fig. 3.7: Partitioning algorithm

76

3.4.1.2 Partitioning Example

Figure 3.8 and 3.9 illustrate two examples for the partitioning of two reconfiguration

sequences on an example actor network that consists of six actors. The example was

taken from (Cheong, 2003) and illustrates the beaconless communication protocol soft-

ware. The actors InitiateRouterMessage and ProcessMessage receive input data from

either the application or an initialisation process. The actor SendMessage is connected

to these two actors via two channels. This actor would block, if there is no data available

on the channels, i.e., if the connected actors would not produce any data. Hence, the

actor is dependent on its two input actors. The same is valid for the GenericComm

actor that is dependent on the SendMessage actor.

Figure 3.8 illustrates the partitioning result for interface-changing replaceActor re-

configuration actions. In this example, the final number of reconfiguration actions in

a single safe step is three. The reconfiguration action replaceActor(ProcessMessage) is

first partitioned. The ProcessMessage actor has a single dependent actor, the SendMes-

sage actor. The partitioning process then searches in the reconfiguration actions for a

reconfiguration action that addresses this actor. Hence, the replaceActor(SendMessage)

is partitioned next. The SendMessage actor has as dependent actor the GenericComm

actor. However, there is no reconfiguration action that addresses this actor. The last

remaining reconfiguration action is the replaceActor(InitialRouterMessage), which will

be partitioned into the same safe step.

Figure 3.9 illustrates the partitioning result for the non-interface changing upgrade-

Actor(ProcessMessage), as well as for the interface-changing reconfiguration actions re-

placeActor(SendMessage) and replaceActor(GenericComm). The non-interface chang-

ing reconfiguration action upgradeActor(ProcessMessage) is partitioned into its own safe

step. In case of an interruption of the reconfiguration process, the interface of the actor

has not changed and data can still be transferred between the actors. However, the two

reconfiguration actions replaceActor(SendMessage) and replaceActor(GenericComm) are

77

partitioned into the same safe step, due to the dependency relationship of their respective

actors.

78

System Configuration

Generic
Comm
(GC)

Process
Message
(PM)

Initiate
Router
Message
(IRM)

Send
Message
(SM)

Generic
Comm

ProcessMessage->GenericComm
SendMessage->InitiateRouterMessage&ProcessMessage
GenericComm->SendMessage

from application

init

Dependency Descr.

{replaceActor(PM, PM')
replaceActor(IRM, IRM')
replaceActor(SM, SM')}

replaceActor(PM..): SendMessage
replaceActor(SM): GenericComm
replaceActor(IRM): SendMessage

p={[replaceActor(PM..), replaceActor(SM), replaceActor(IRM)]}

Safe Step

Reconf. Partitioning

Fig. 3.8: Partitioning example: Interface-changing actions

79

System Configuration

Generic
Comm
(GC)

Process
Message
(PM)

Initiate
Router
Message
(IRM)

Send
Message
(SM)

Generic
Comm

ProcessMessage->GenericComm
SendMessage->InitiateRouterMessage&ProcessMessage
GenericComm->SendMessage

init

Dependency Descr.

{upgradeActor(PM, PM')
replaceActor(IRM, IRM')
replaceActor(SM, SM')}

upgradeActor(PM..)
replaceActor(IRM): SendMessage
replaceActor(IRM): SendMessage

p={[upgradeActor(PM..)], [replaceActor(SM), replaceActor(IRM)]}

Safe Step

Reconf. Partitioning

from
application

Fig. 3.9: Partitioning example: Non-interface changing and interface-changing actions

80

3.4.2 Reconfiguration Runtime

This section describes the algorithms for the initialisation and scheduling of reconfig-

urations. Reconfiguration initialisation is executed when a reconfiguration is started,

whereas reconfiguration scheduling is executed during the actual execution of a recon-

figuration. In contrast to the algorithms in the reconfiguration design phase, these

algorithms are executed without additional user input, and are automated.

3.4.2.1 Reconfiguration Execution Initialisation

As a safe step is atomically executed, the order of the reconfiguration actions within

a safe step is of no relevance. However, for this thesis we address a single-processor

embedded platform, and at each point in time only a single reconfiguration action can

be executed. Therefore, reconfiguration actions and safe steps are assumed to be totally

ordered.

Existing work has defined partial temporal orders for related reconfiguration actions,

i.e., actions that address the same actor (Wermelinger, 1997). As two safe steps can con-

tain reconfiguration actions that address different actors, this partial temporal order <

needs to be extended to span across different safe steps. If pi < pj , with pi, pj ∈ P , then

all reconfiguration actions contained in pi are executed before reconfiguration actions

contained in pj . This temporal order must include the following relationships (Wer-

melinger, 1997):

1. A safe step pi that contains a reconfiguration action ri, must be executed before a

safe step pj containing reconfiguration action rj , if action rj executes on an actor

that is dependent on the actor addressed by reconfiguration action ri.

2. A safe step pi first executes reconfiguration action ri , and then all its dependent

reconfiguration actions rj .

These rules require the dependency descriptions Dep for each affected actor, which

are also used in the reconfiguration design phase.

81

Initialisation Example Figure 3.10 illustrates an initialisation of a reconfiguration

sequence, comprising three safe steps. Safe step pb contains the reconfiguration action rb

(upgradeActor(b)), which addresses actor b. Actor b is dependent on actor a and hence

the resulting partial ordering results in pa < pb. The same goes for safe step sets pb and

pc, resulting in the final total ordering of pa < pb < pc.

Fig. 3.10: Initialisation example

3.4.2.2 Reconfiguration Execution Scheduling

After the reconfiguration is initialised and the input safe steps are totally ordered, the

reconfiguration manager starts the actual execution of the reconfiguration actions, con-

tained in the safe steps. The reconfiguration manager has access to all actors in the

system and is responsible for executing the reconfiguration actions on the respective

82

actor. Execution of a reconfiguration action is atomic and isolated. Atomic execution

implies that once the reconfiguration action starts its execution on a respective actor,

it is either run to completion or its effects do not take place (David & Ledoux, 2006b).

Isolation implies that the action’s execution is performed without interleaving with other

operations (Zhang et al., 2005). Both properties must be supported by the underlying

system model, for example by providing synchronisation mechanisms, as discussed in

Section 3.2.2.1.

A reconfiguration execution then first brings actors to be reconfigured into a recon-

figuration safe state. Given that all these actors are in such a state, the reconfiguration

actions themselves are executed, transforming the system from the source configuration

S to the desired target configuration S′, if no event occurs during the ongoing reconfig-

uration.

If an event occurs, the reconfiguration manager is directly notified and uses the

deadline-aware scheduling algorithm with the event’s associated processing deadline as

a parameter. TimeAdapt provides two scheduling algorithms, so-called modes, that differ

in the granularity of scheduled actions. For the following discussion we assume that only

a single incoming event occurs. The generalisation to multiple events is discussed in

Section 3.4.2.3.

Pessimistic Scheduling Mode The basic scheduling algorithm is described in Algo-

rithm 1, with a set of safe steps P = {p1, p2, . . . , pn}. Note that rij denotes the i − th

reconfiguration action in safe step pj , td denotes an event’s processing deadline, te(rij)

the estimated execution duration of reconfiguration action rij , te denotes the total es-

timated execution duration of the safe step pj , tt denotes the (actual) total execution

duration of the safe step pj and all its predecessors, and tt(rij) denotes the (actual) total

execution duration of reconfiguration action rij (see Table 3.1). Due to its conservative

scheduling this algorithm is also called pessimistic mode.

The pessimistic scheduling mode differs two cases, depending on whether a safe step

83

1 tt ← 0 // On reception of incoming event do

2 if pj active then

// complete all actions in safe step

3 foreach rij ∈ pj do

4 execute rij

// update total execution duration time

5 tt ← tt + tt(rij)

6 end

7 end

// try to schedule safe steps pj+1, . . . , pn, if tt < td

8 // As long as there are reconfiguration actions

9 while P 6= ∅ and tt < td do

// get estimated total duration time of actions that are in next

safe step pr

10 foreach ri ∈ pr do

11 te ← te + te(ri)

12 end

13 if te < td then

14 foreach ri ∈ pr do

15 execute ri on respective actor atomically;

16 tt ← tt + tt(ri)

17 end

// update remaining available time

18 td ← td − tt te ← 0

19 end

20 else

// stop scheduling safe steps

21 return;

22 end

23 end

Algorithm 1: Pessimistic scheduling mode of safe steps

84

Symbol Function

pj current active safe step

rij i-th reconfiguration action in pj

td event processing deadline

te estimated total execution duration of safe step

te(rij) estimated execution duration of rij

tt actual total execution duration of safe step pj and predecessors

tt(rij) actual execution duration of rij

Table 3.1: Overview of pessimistic mode parameters

is currently executing or not, when an event occurs. A safe step is executed, if either a

reconfiguration action that is part of a safe step is currently executing, or there are still

remaining reconfiguration actions in this safe step that need to be executed. If an event

occurs while a safe step is executing, this safe step needs to complete first so that a safe

software configuration is reached (Lines 2-6). The mechanism then checks whether it

can still schedule subsequent safe steps (Line 9). If its estimated execution duration te

of the next, subsequent, safe step falls within the deadline, this safe step is atomically

executed (Line 10-19). Otherwise, the mechanism directly pre-empts a reconfiguration

sequence. If an event occurs while no safe step is executing, the pessimistic scheduling

mode executes Lines 7-19, i.e., it tries to schedule as many safe steps as possible within

the processing deadline.

Figure 3.11 illustrates the results that are possible when using the pessimistic schedul-

ing mode by means of a reconfiguration example, comprised of two safe steps p1 and p2.

p1 contains two reconfiguration actions and p2 contains three reconfiguration actions.

The end result depends on the point in time when an incoming event occurs, illustrated

by an arrow in Figure 3.11, as well as the incoming event’s processing deadline td and

the estimated time duration te of safe steps:

85

Fig. 3.11: Different outcomes for the pessimistic scheduling mode

86

a) An incoming event occurs when no safe step is currently executing and the esti-

mated duration of this safe step is larger than the given deadline. In this case, the

reconfiguration is directly terminated as the current software configuration is safe

and a direct context switch to the processing of the event can be executed. This

results in no change in the given configuration before the event is processed.

b) An incoming event occurs when no safe step is currently executing and the esti-

mated duration of this safe step is smaller than the given deadline. In this case, all

actions in the safe step are executed atomically. If there is still some time left after

the reconfiguration duration, the algorithm tries to greedily schedule the next safe

step. The result is either an intermediate or the target configuration. For example,

in Figure 3.11 b), the incoming event occurs before safe step p2 is executed. In this

example, the atomic execution of the safe step results in the target configuration.

c) An incoming event occurs during the execution of a safe step. In this case, the

currently active safe step finishes execution. Depending on the remaining time,

the next safe step set is either scheduled (see b) or a direct context switch to the

incoming event is executed (see a). In this case, the processing deadline of an event

might be missed, if the execution duration of the currently active safe step exceeds

this deadline.

The pessimistic scheduling mode ensures that the software is transformed from a safe

system configuration to a new safe system configuration, given that the estimated time

of this safe step is large enough. However, care must be taken that the estimated time

for each reconfiguration action is at least as large as its real execution duration. As the

pessimistic mode does not support the revoke of reconfiguration actions, the estimated

execution duration of a safe step needs to be its worst-case execution duration to ensure

the adherence of time constraints.

87

Optimistic Scheduling Mode Introducing the possibility to revoke reconfiguration

actions within a safe step means that a scheduling mechanism could decide during the ex-

ecution of a safe step whether to continue that step or to revoke a reconfiguration action.

Analogous to optimistic transaction concurrency control in data-base systems (Coulouris

et al., 2005), we call this algorithm optimistic. The optimistic scheduling algorithm does

not consider safe steps, but single reconfiguration actions. The implications of this are

illustrated in Figures 3.12 and 3.13. Figure 3.12 illustrates the original system configu-

ration, already introduced in Section 3.4.1.2. The reconfiguration to be scheduled and

executed is illustrated to the right. Figure 3.13 illustrates the resulting system config-

uration when the reconfiguration sequence is executed using the optimistic mode until

a certain so-called interruption point. In this example, a single replaceActor action is

executed, until control is handed to the processing of the interrupting event. However,

the replaceActor action can potentially change the interface of the actor, such as chang-

ing the data type of the output port. In this case, the resulting system configuration is

unsafe, as the connection between the ProcessMessage actor and the SendMessage actor

is interrupted.

Fig. 3.12: System configuration before optimistic scheduling mode executes

To avoid unsafe system configurations that results because of the non-atomic exe-

cution of safe steps, additional constraints and assumptions need to be introduced for

this optimistic mode. The biggest constraint and difference to the pessimistic mode is

88

Fig. 3.13: System configuration after execution of a single reconfiguration action

that interface-changing actions, such as replaceActor actions are not supported. This

constrains this mode to use reconfiguration actions, such as upgradeActor, addActor,

and removeActor. However, additional constraints on addActor and removeActor ac-

tions need to be introduced. Whereas in the pessimistic mode newly created actors are

activated directly at startup time, in the optimistic mode new actors are only activated,

when the complete reconfiguration has completed. The same is valid for the deletion of

actors. Actors are only deleted, once the overall reconfiguration has completed.

One main assumption that is introduced for the optimistic mode is that all supported

reconfiguration action types have an associated undo-action. TimeAdapt’s optimistic

scheduling mode exploits the possible division of an upgradeActor reconfiguration action

into two different phases to ease the potential revoke of this action, see Figure 3.14.

The first phase transfers the state of a stateful actor. In the second phase, connections

of dependent actors that are connected to the old actor are updated to connect to the

new actor. A revoke in the state-transfer phase results in the direct interruption of the

phase, whereas a revoke in the upgrade-connection phase results in the re-connection of

dependent actors to the old actor. AddActor and removeActor reconfiguration actions

can be seen as upgradeActor actions with an empty actor, and can therefore also be

divided into these phases. The state-transfer phase of an addActor action creates the new

actor, and the update-connection phase connects the input ports of the newly created

89

actor to existing actors in the configuration. The state-transfer phase of the removeActor

action is an empty phase, and the update-connection phase disconnects dependent actors

from this actor.

Fig. 3.14: Reconfiguration action phases

Instead of an estimation function that returns the estimated duration of the overall

reconfiguration action, the optimistic mode requires two estimation functions: one to

estimate the time to update dependent connections tuc , and one to estimate the time

it takes to revoke dependent connections tr.

We describe the optimistic scheduling algorithm in Algorithms 2 and 3. Algorithm 2

illustrates the steps taken when the current reconfiguration action is in the state transfer

phase, whereas Algorithm 3 illustrates the steps taken when the current reconfiguration

action is in the upgrade connection phase. Table 3.2 shows the parameters used for the

optimistic scheduling mode.

If an event occurs during the state transfer phase, the optimistic scheduling mode

completes this phase first and then decides whether to process the event (Lines 14-15), or

to continue the reconfiguration action by updating the connections (Lines 6-13). In the

state transfer phase the state of a stateful actor is transferred from the old actor a to the

new actor a′. If the estimated time to update connections is smaller than the processing

deadline, the update connection phase is executed. Otherwise, the reconfiguration is

interrupted and a direct context switch to the incoming event is executed. In this case,

the old actor remains active. When the reconfiguration is scheduled for execution again,

90

// As long as there are reconfiguration actions

1 while R 6= ∅ do

// On reception of incoming event do

2 cP ← current phase of reconfiguration action

// state transfer phase

3 if (cP =“state transfer”) then

4 complete state transfer phase

5 tt ← time to finish state transfer phase

// estimate time to update connections

6 if (tuc + tt < td) then

7 foreach b ∈ A do

// actors a and b are connected

8 if (oa, ib) ∈ C then

// udpate input port ib of actor b to connect to

output port o′a of new actor a′

9 update connections(a′, b)

// remove reconfiguration action from reconfiguration

sequence

10 remove ri

11 end

12 end

13 end

14 else

// process incoming event

15 return;

16 end

17 end

// see Algorithm 3

18

19 end

Algorithm 2: Optimistic scheduling mode of safe steps: State transfer phase

91

// update connection phase

20 else

// determine whether to revoke or to complete action

21 if tuc < td then

// continue update connection phase

22 foreach b ∈ A do

// actors a and b are connected

23 if (oa, ib) ∈ C then

// udpate input port ib of actor b to connect to output

port o′a of new actor a′

24 update connections(a′, b)

25 tt ← tt + time to update connection

26 end

27 end

28 remove ri

29 end

30 else

// revoke current action

31 foreach b ∈ A do

// actors a and b are connected

32 if (oa, ib) ∈ C then

// udpate input port ib of actor b to connect to output

port oa of old actor a

33 update connections(a, b)

34 tt ← tt + time to revoke connection

35 end

36 end

37 remove ri

38 end

39 end

Algorithm 3: Optimistic scheduling mode of safe steps: Update connection phase

92

Symbol Function

pi current active safe step

ri i-th reconfiguration action in p

td event processing deadline

a old actor

a′ new actor

tuc estimated update connection time

tr estimated time to revoke connections

Table 3.2: Overview of optimistic mode parameters

the state transfer phase starts with the transfer of the actor’s most current state (see

Algorithm 2).

If an incoming event occurs during the update-connection phase, two outcomes are

possible. If the estimated time to update connections tuc is smaller than the processing

deadline, the currently executing update connection phase finishes execution (Lines 20-

30). Otherwise, a revoke of the reconfiguration action is executed by reconnecting the

input ports of dependent actors, which were previously connected to the newly replaced

actor a′, back to the old actor a (Lines 31 -40).

The end result of the optimistic mode depends on the size of the event processing

deadline and the current phase of the reconfiguration action (see Figure 3.15):

a) A state transfer phase is currently executing and the estimated time to update

connections is smaller than the event processing deadline. In this case, after the

state transfer phase has been completed, the update-connection phase is executed,

see case c) or d)

b) A state transfer phase is currently executing and the estimated time to update

connections is larger than the event processing deadline. In this case, after the

93

Fig. 3.15: Different outcomes for the optimistic scheduling mode

94

state transfer phase has been completed, the ongoing reconfiguration is paused

and the incoming event is processed.

c) An update-connection phase is currently executing and the estimated time to com-

plete this action is larger than the processing deadline. In this case, actors, which

were already connected to the new actor a′, are connected back to the old actor a.

After the revoke-phase has finished execution, the event is processed. Note that in

this case the processing deadline might be exceeded if the revoke-phase also has a

larger execution duration than the processing deadline.

d) An update-connection phase is currently executing and the estimated time to

complete this action is smaller than the processing deadline. In this case, the

connection-phase is completed by updating all actors whose input ports are con-

nected to output ports of the new actor. If there are reconfiguration actions and

execution duration left, the state transfer phase of the next reconfiguration action

is executed.

Discussion Whether to use the pessimistic or optimistic mode depends on the pa-

rameter settings of the embedded software itself, such as the size of deadlines, and

reconfiguration action execution durations. There is a tradeoff between generality and

timeliness, which needs to be considered by the application developer.

The pessimistic mode can be applied on all reconfiguration action types discussed in

Section 3.2.1. However, the timeliness of processing an incoming event depends on the

size of this deadline, see Section 3.4.2.4 for a more detailed discussion on TimeAdapt’s

timeliness guarantees. The pessimistic mode is of advantage, when the processing dead-

lines are in general higher than the reconfiguration action execution durations. In this

case, the pessimistic mode can schedule additional reconfiguration actions, without miss-

ing an event’s deadline. Also, the pessimistic mode in general has a lower scheduling

overhead compared to the optimistic mode.

95

The optimistic mode does not support interface-changing replaceActor actions, and

the remaining actions are divided into a state-transfer and an update-connection phase.

This more fine-grained scheduling mechanism allows a dynamic decision as to whether

to continue or abort a currently executing reconfiguration action. This is especially

of advantage, when deadlines are much smaller than reconfiguration action execution

durations. In this case, deadlines can be met by the optimistic scheduling mode, in

contrast to the pessimistic mode.

3.4.2.3 Handling of Multiple Events

The scheduling modes were discussed with respect to a single incoming event. However,

embedded software is subject to multiple events, either from the underlying system or

from the environment. As TimeAdapt can only process a single event at each point in

time, these events may be potentially emitted at the same time and are queued by the re-

configuration manager according to their associated deadline. TimeAdapt then processes

events subsequently. If an event’s processing deadline is very small, TimeAdapt returns

directly from scheduling further reconfiguration actions and processes the event. If an

event’s processing deadline allows the additional execution of reconfiguration actions,

TimeAdapt allows the faster completion of an ongoing reconfiguration.

3.4.2.4 TimeAdapt Guarantees

This section first discusses the conditions under which TimeAdapt can guarantee the

meeting of an event’s processing deadline td, and under which conditions TimeAdapt

fails to meet an incoming event’s deadline. It then discusses when a reconfiguration

sequence is completed, and in which scenarios reconfiguration completion cannot be

guaranteed.

Meeting Event Deadline TimeAdapt meets an event’s processing deadline td in the

pessimistic mode if td is at least as large as the remaining execution duration of the

96

currently active safe step pi. TimeAdapt meets an event’s processing deadline td in the

optimistic mode if td is at least as large as the remaining execution duration of the

currently executing reconfiguration action.

Figure 3.16 illustrates the timeline of a reconfiguration execution and the various

times that are taken into account. To better compare the timing behaviour of the

pessimistic and optimistic mode, we consider a safe step to be comprised of a single

reconfiguration action. In the pessimistic mode tremaining denotes the time to finish a

safe step, whereas in the optimistic mode tremaining denotes the time to either complete

a phase or revoke a phase.

Figure 3.16(a) illustrates the case, when an incoming event’s deadline is larger than

tremaining. In this case, the deadline is met by both modes of TimeAdapt.

Figure 3.16(b) illustrates the case, when an incoming event’s deadline is smaller than

tremaining. In this case, the remaining time to complete a safe step in the pessimistic

mode, or the completion, or revoke time of a currently active reconfiguration action

phase is larger than the processing deadline td, and as a result TimeAdapt will miss this

deadline.

(a) Meeting deadlines

(b) Missing deadlines

Fig. 3.16: Timing behaviour of TimeAdapt

97

Progress towards Reconfiguration Completion TimeAdapt makes progress with

an ongoing reconfiguration, if it can execute reconfiguration actions within the processing

deadline. The progress of a reconfiguration depends on when an incoming event occurs,

and the scheduling mode used. Figure 3.17 illustrates the different possible cases by

means of a reconfiguration sequence comprised of three reconfiguration actions a1, a2,

a3. a1 takes 2 time units to execute, whereas a2, and a3 take 1 time unit to execute.

(a) Single incoming event (b) Two incoming events on dif-

ferent actions

(c) Two incoming events on same

action

Fig. 3.17: Point in time of incoming events

Figure 3.17(a) illustrates the case, when a single incoming event occurs during an

ongoing reconfiguration sequence. The pessimistic mode completes at least the currently

executing action a1, and depending on the event’s deadline can schedule additionally

the reconfiguration actions a2 and a3. In this case, the pessimistic mode always makes

progress with an ongoing reconfiguration, as it favors an executing reconfiguration action

over the direct processing of an incoming event. The optimistic mode, however, cannot

guarantee the completion of the executing reconfiguration action a1, as it depends on

the type of phase that is active, when the incoming event occurs, and the size of the

deadline. If the incoming event occurs during the state-transfer phase, the optimistic

mode only makes progress with the reconfiguration if the incoming event’s associated

deadline is large enough to complete the reconfiguration action. The same holds for the

update-connection phase, as this phase is only completed if it fits within the deadline.

Figures 3.17(b) and 3.17(c) illustrate the case where multiple, subsequent events

98

occur during an ongoing reconfiguration. Note that these events all have the same asso-

ciated deadline, and are processed in the order of their occurrence. In Figure 3.17(b) the

events occur on different reconfiguration actions. Event e1 occurs when reconfiguration

action a1 is executing, whereas event e2 occurs when reconfiguration action a2 is exe-

cuting. It is further assumed that the processing deadline td of incoming event e1 is too

small to schedule additionally reconfiguration action a2. With these assumptions, the

scenario can be mapped to the already discussed case, illustrated in Figure 3.17(a). The

pessimistic mode makes progress with an ongoing reconfiguration, independent of the

associated deadline, as it at least completes action a1 to process event e1, and action a2

to process event e2. The optimistic mode makes progress with the reconfiguration only,

if the associated deadline is at least large enough to complete the current reconfiguration

action.

Figure 3.17(c) illustrates the case, when multiple, subsequent events occur on the

same reconfiguration action. In this case, the progress of a reconfiguration action when

dealing with event e2 depends on its associated deadline. As event e2 occurs during

TimeAdapt’s scheduling for its predecessor e1, it is queued in the event queue. Depending

on its remaining deadline, the pessimistic mode can either decide to schedule the next

action, such as a2, or aborts the reconfiguration. However, in cases when the deadline is

smaller than the estimated execution duration of the next reconfiguration action, there

is no progress with an ongoing reconfiguration. The same holds for the optimistic mode,

that decides, depending on the current phase of the last executed reconfiguration action.

In conclusion, TimeAdapt’s pessimistic and optimistic mode guarantees reconfiguration

progress, if event deadlines are at least as large as the remaining reconfiguration action

execution durations.

99

3.5 Summary

In this chapter, we described the design of TimeAdapt. TimeAdapt is defined on a

suitable system model that defines the underlying system entities. The reconfiguration

model itself realises modifications on this system model. We presented the rationale for

TimeAdapt’s underlying system model and a detailed description of TimeAdapt itself.

The combination of all mechanisms and algorithms are designed to address the full set of

requirements of a time-adaptive reconfiguration model. See also Table 3.3 for a summary.

Requirements that are only partially fulfilled by TimeAdapt are denoted in parentheses.

TimeAdapt is designed for software modelled according to the reconfigurable dataflow

system model (RDF). RDF is a well-defined, abstract system model that can represent

embedded software with a dataflow-based computational model, in which entities send

data in a non-blocking manner and read data in a blocking manner. This system model

was chosen as it represents a wide range of embedded system software, from signal pro-

cessing to stream-oriented systems. Its abstract definition allows multiple implementa-

tions that can target a variety of system platforms, from single, centralised sensor nodes

to more complex embedded systems whose software is potentially distributed. Therefore,

this system model fulfils requirement R1. Also, the system model supports stateless and

stateful system entities and hence does not impose any constraints, fulfilling requirement

R7.

TimeAdapt itself uses a deadline-aware scheduling mechanism that results in a par-

tial reconfiguration execution, depending on the event processing deadline. The partial

execution of a reconfiguration means that event processing deadlines can be met, since

the overall reconfiguration does not need to be completed, fulfilling requirement R4 and

R5 partially. The scheduling mechanism used is oblivious to the size of a reconfiguration

and supports any reconfiguration sequence length (requirement R6). Requirement R8 is

partially fulfilled, as the mechanism requires time estimation functions for reconfigura-

tion actions, and requires knowledge about the system configuration to determine safe

100

steps.

Dependency relationships between actors determine sub-sequences, or so called safe

steps, that ensure their maintenance even in the presence of partial reconfigurations.

These safe steps are determined by the reconfiguration designer at reconfiguration de-

sign time and represent input for the reconfiguration manager, which executes the safe

steps at reconfiguration execution duration. Along with a pre-requisite that TimeAdapt

leverages an existing synchronisation mechanism, such as reader-writer locks, the parti-

tioning into safe steps fulfils requirement R2, namely the guarantee of a correct system

before, and after a reconfiguration.

A scheduling algorithm is executed when an incoming event occurs during an ongo-

ing reconfiguration. TimeAdapt contains two scheduling algorithms that are part of the

reconfiguration manager. Both algorithms realise the deadline-aware scheduling mech-

anism, as they schedule reconfiguration actions in a greedy fashion, while at the same

time trying to make progress with an ongoing reconfiguration. The algorithms differ in

the level of granularity applied. The incremental execution of reconfiguration actions

leads to the eventual completion of a reconfiguration, fulfilling requirement R3.

The next chapter describes TimeAdapt’s implementation on mappings of the ab-

stract system model to components of our component model. Chapter 5 describes the

evaluation of the proposed reconfiguration model on a real embedded platform and com-

pares its results to implementations of a transactional and a preemptive reconfiguration

model.

101

Req # Requirements TimeAdapt feature

R1 Abstract system model Abstract RDF system model

R2 System correctness Atomic execution of safe steps or optimistic scheduling

(R3) Guarantee of reconfiguration completion Incremental execution of reconfiguration actions

R4 Interruption to incoming events Deadline-aware scheduling

(R5) Meeting of event deadline Deadline-aware scheduling

R6 No restrictions on number of entities Deadline-aware scheduling

R7 No constraints on entities RDF system model

(R8) No a-priori knowledge of reconfiguration necessary Deadline-aware scheduling

Table 3.3: Requirements vs. TimeAdapt features

102

Chapter 4

TimeAdapt Implementation

This chapter describes a Java-based implementation of the TimeAdapt reconfiguration

model and its underlying system model. The chapter begins with a detailed overview of

the mappings from the abstract system model introduced in the previous chapter to a

component-based implementation of reconfigurable actors. The chapter then discusses

the main architectural elements of the reconfiguration model, such as the reconfiguration

manager and scheduling algorithms. The methods provided by the reconfiguration man-

ager for interacting with a reconfiguration designer as well as the interactions between

TimeAdapt itself and the system model elements are then elaborated.

4.1 Architecture Overview

The time-adaptive reconfiguration model described in this thesis was implemented as

part of the TimeAct framework. The TimeAct framework is a software framework tar-

geting embedded software and enabling the dynamic reconfiguration of time-dependent

software at run-time. It combines an automatic predictive timing model with our time-

adaptive reconfiguration model. Figure 4.1 illustrates the overall system architecture

of the TimeAct framework. The Adaptation Manager is responsible for monitoring the

application and triggers adaptations, when specific environmental variables overstep a

103

given threshold. TimePredict determines, whether the new configuration conforms to the

given timeliness specifications by using measured data and statistical prediction models.

This thesis concerns only the TimeAct component model, on which reconfigurations are

executed, and the implementation of TimeAdapt. A more detailed description of the

TimeAct component model follows in Section 4.2. A detailed description of TimeAdapt

itself follows in Section 4.3. For readability, return values and parameters of the used

methods are omitted. A detailed summary of the method signatures can be found in

Appendices A and B.

Fig. 4.1: TimeAct System Architecture

4.2 TimeAct Component Model

General-purpose component models for embedded software, such as OpenCom (Coulson

et al., 2008), Runes (Costa et al., 2007), OSGI (OSGI Alliance, 2009), or Fractal (David &

104

Ledoux, 2006a) realise a synchronous computational model, and the LooCI component

model (Hughes et al., 2009) realises an event-driven computational model. None of

these component models, however, supports embedded software that follows a dataflow-

based computational model. Because TimeAdapt is defined for a dataflow-based system

model, we implemented a new component model, TimeAct Component Model, on which

TimeAdapt was implemented.

The TimeAct component model falls into the category of object-based component

models, i.e., components are defined directly by an object-oriented language (Lau &

Wang, 2005). The model is implemented in Java, more specifically Java ME (Sun,

2009). The Java implementation enables the applicability of the system model to a wide

range of embedded system platforms, from very resource-constrained sensor nodes, to

more resourceful embedded PCs. Figure 4.2 illustrates the classes and methods that

comprise the TimeAct component model.

The TimeAct Component Model maps actors to implementation units, so-called

components. The model supports hierarchical actors, which contain multiple sub-actors.

For simplicity, however, we assume for the rest of the discussion that an actor is mapped

to exactly a single atomic implementation unit, which does not contain other actors.

See Chapter 6.2 for a discussion on the implications of relaxing this constraint on the

reconfiguration manager. For the rest of this thesis, the terms actor and component can

be used interchangeably.

A component is an active entity that reads data from its input ports, performs a

computation based on this data and writes out data on its output ports. Components are

connected via channels that connect an input port of one component to the output port

of another component. In the current implementation, all components are considered to

reside in a single address space and channels connect components with each other.

105

+push()
+read()

<<interface>>
 IChannel

+create()
+fire()
+start()
+stop()
+setOutports()
+getOutports()
+

#nameId: string
#inports: Hashtable
#outports:Hashtable

IComponent

+getInterface()
+getPort()

<<interface>>
Introspection

+handle()

<<interface>>
EventHandling

+create()
+delete()

<<interface>>
ComponentFactory

+transferState()
+upgradeConnections()
+excute()
+make_quiescent()
+getEstimatedTimeUpdateC
onnections()
+getEstimatedTimeRevoke()
+getExecutionTime()

<<interface>>
IReconfiguration

+void set ()
+void get()

<<interface>>
IStateAccess

Fig. 4.2: TimeAct Component Model

4.2.1 IComponent

The abstract class IComponent is the base class for all component implementations. This

base class contains attributes common to all components, such as the set of input and

output ports (Hashtable inports and Hashtable outports) that are realised as Java

hashtables. Additionally, this base class contains a unique numeric identifier. The pro-

vided abstract operations address the lifecycle of a component. These abstract lifecycle

operations include a fire() method, as well as a start() and a stop() method. Imple-

mentations of the fire() method in a specific component select the specific input ports

to read from, compute component-specific values and write these values to selected out-

put ports, all according to a component’s functionality. The start() method initialises

an actor by initialising its respective ports, and the stop() method stops an actor by

sending remaining calculated data values on the respective output ports.

Additionally, the abstract base class contains accessor methods to set and retrieve

connections to other components, via their setInport(), setOutport(), getInport(),

getOutport() methods.

106

4.2.1.1 Component Creation and Deletion

Component creation and deletion is part of the normal life cycle of a component and is

itself not specific to the TimeAct component model. However, components need to be

created and deleted through an external entity that assigns an unique identifier to each

component. This external entity needs to implement the ComponentFactory interface,

which provides methods to create (create()) and delete components (delete()).

Each concrete component class has a static create() method, which is called by

the create() method of the ComponentFactory interface. The delete() operation

of a component takes as parameter the unique ID of the component and deletes the

component from the system configuration.

4.2.1.2 Component Configuration and Runtime

Composition in the TimeAct Component Model takes place during the deployment

phase, and is written by the application developer in the form of a configuration

class. A configuration class is a Java class that creates and connects components to each

other and that schedules them for execution. Listing 4.1 illustrates an example configu-

ration with a single component instance and the different lifecycle operations called on

this component.

pub l i c c l a s s Conf igurat ion {

ComponentFactory c f ;

IComponent one ;

pub l i c Conf igurat ion () {

c f = new FactoryClass () ;

}

pub l i c void run () {

one = c f . c r e a t e (ONE. Type) ;

c f . r e g i s t e r (one) ;

one . s t a r t () ;

whi l e (. . .) {

107

one . f i r e () ;

}

one . stop () ;

c f . remove (one) ;

}

pub l i c s t a t i c void main (S t r ing [] a rgs) {

Conf igurat ion c = new Conf igurat ion () ;

c . s t a r t () ;

}

}

Listing 4.1: Configuration class

Note that we only consider an implementation running on a single-processor embed-

ded platform. Hence, at each point in time only a single actor thread is active. The order

in which multiple actors execute is determined manually by the application developer.

At all times it needs to be ensured that no actor blocks due to insufficient data on its

input ports.

4.2.1.3 Optional Functionality

Each component must implement the lifecycle operations as they are part of the func-

tional behaviour. Reconfiguration or introspection capabilities are optional and are

realised by specific interfaces. The advantage of this approach is that components can

be relatively lightweight, implementing only necessary functionality. The following in-

terfaces are supported and discussed in detail in the following subsections.

• Introspection interface, which obtains information about a component’s currently

implemented interfaces, as well as input and output ports;

• Reconfiguration interface, which allows the execution of behavioural changes on a

component;

108

• State Access interface, which provides methods to obtain and transfer state be-

tween stateful components;

• Event Handling interface, which provides methods to react to specific incoming

events.

Introspection: The introspection interface provides accessor methods, such as

getInterface() and getPort(). These accessor methods obtain information about a

component’s currently implemented interfaces, as well as their available input and out-

put ports. The introspection interface is needed to access the reconfiguration interface

and its associated methods dynamically at runtime.

Dynamic Reconfiguration: The reconfiguration interface supports the execution

of behavioural changes, such as component updates or replacements. Structural changes,

such as changes to the component topology, are executed by the reconfiguration manager

and are discussed in detail in Section 4.3.1.

Before a reconfiguration starts, all affected components are brought into a reconfi-

guration-safe state via the method make quiescent. Possible implementations of this

method are reader-writer locks or thread-counting (Soules et al., 2003), see Chapter 3,

Section 3.2.2.1 for a discussion on reconfiguration-safe states. In this implementation we

have chosen the reader-writer lock approach for simplicity. This method ensures that

reconfigurations are executed in an isolated way, without interleaving with other actions

that are potentially executed on the component.

The method execute() realises an actual execution of a reconfiguration action. The

implementation of this method depends on the respective reconfiguration action, see

Section 4.3.5.2 for a detailed discussion. The execution of a reconfiguration action should

be atomic, however, in the current implementation there are no explicit mechanisms

provided to guarantee that an execute() method either fully completes or is revoked.

The methods transferState() and upgradeConnections() are used by the optimistic

scheduling mode. transferState() retrieves the values of component variables and

109

transfers these values to a new component for initialisation. upgradeConnections()

redirects a given input port connection to a new output port, different from the existing

one.

The reconfiguration interface provides also the following estimation methods that are

needed for the TimeAdapt scheduling algorithms. The getExecutionTime() method re-

turns the estimated time of a complete reconfiguration action, used by the pessimistic

scheduling algorithm. The getEstimatedTimeUpdateConnections() returns an esti-

mate of the connection update time, whereas the getEstimatedRevokeTime() returns

an estimate of the time it takes to revoke connections. Both methods are used by the

optimistic scheduling algorithm.

State Access Interface The state access interface provides accessor methods, such

as set() and get() that access the state of a component. These methods are needed

to realise a direct state transfer mechanism between the old and the new component, in

which the update mechanism is responsible for extracting and setting the state variables.

Event Handling An event handling interface allows a component to react to in-

coming events. This is needed by the reconfiguration manager to start the TimeAdapt

algorithm. As the type of events is application-dependent, this thesis assumes that the

handling of events is implemented by the component designer.

For illustration purposes, Figure 4.3 summarises the use of the different classes and

interfaces of the TimeAct component model by means of two user-defined components,

BasicComponent and ReconfigurableComponent. The user-defined components are

illustrated in the figure with a diamond. Both components have two port-variables

inport and outport. An example for a connection between these ports is given in the

next section.

BasicComponent is an example of a component that just provides its own functional-

ity, but no other optional functionality, such as reconfiguration. It extends only from the

abstract base class IComponent and implements the metods of the ComponentFactory

interface.

110

In contrast, ReconfigurableComponent is an example for a component that not

only provides its own functionality, but also supports behavioural reconfiguration, i.e.,

the upgrade or replacement of its implementation. For this, the component imple-

ments additionally the methods provided by the Introspection, IReconfiguration,

and StateAccess interfaces. Also, this component implements the EventHandler inter-

face, denoting that it can react to specific incoming events.

<<interface>>
IChannel

+push()
+read()

-o:object
Channel

IComponent

-inport: IChannel
-outport: IChannel

BasicComponent

+handleEvent()
+create()

-inport:IChannel
-outport:IChannel

Reconfigurable
Component

<<interface>>
StateAccess

<<interface>>
ComponentFactory

+create()

<<interface>>
IReconfiguration

<<interface>>
EventHandler

Fig. 4.3: TimeAct Component Model: User-defined classes

4.2.2 IChannel

A component’s interface is defined by its set of input and output ports. A port is realised

as an entry in a Hashtable that is accessed via its unique name and contains either a

Channel object or null if the port is not connected to any other component. A channel

represents a FIFO-buffer and provides methods to read and write data of a specific type

from or to this channel. Each Channel object needs to implement the IChannel interface

and its respective methods, push() and read(). Created channel objects can be set and

retrieved from components by using the accessor methods for input and output ports.

Channel objects are created between two components and their respective input and

output port. For example, for the two user-defined components in Figure 4.3, a channel

between the output port of BasicComponent and input port of ReconfigurableCom-

111

ponent is created via the method call connect(). This method call is part of the

reconfiguration manager, see Section 4.3.1.

4.3 TimeAdapt Reconfiguration Model

This section describes the implementation of the TimeAdapt reconfiguration model

that reconfigures system entities realised with the TimeAct Component Model. Fig-

ure 4.4 illustrates a class diagram of the reconfiguration model entities. The core

functional system parts of TimeAdapt are the ReconfigurationManager, as well as

the ReconfigurationAlgorithm sub-classes. The ReconfigurationManager provides

the entry point for reconfigurations and acts as the mediator between the reconfig-

urable components and the core functional system parts of the reconfiguration model.

The ReconfigurationAlgorithm classes implement the deadline-aware scheduling algo-

rithms, discussed in Chapter 3, Section 3.2.2.2.

112

+createAction()
AddActor

+createAction()
RemoveActor

+createAction()
ReplaceActor

+createAction()
UpgradeActor

+getActor()
+getNewActor()
+clone()
+getEstimatedTransferTime()
+getEstimatedRevokeTime()
+getEstimatedTimeUpdateConnections()
+execute()

-componentId: string
ReconfigurationAction

IComponent

+getInstance()
+executeReconfiguration()

-componentList:Vector<IComponent>
-algo: ReconfigurationAlgorithm
-graph: ReconfigurationGraph
-interrupList: Vector<Interrupt>

ReconfigurationManager

**

*

1

+executeReconfiguration
()

Reconfiguration
Algorithm

Optimistic
TimeAdapt

Pessimistic
TimeAdapt

+partition()
+addEdge()
+getNext()
+addAction()

-safeStep: Vector<IComponent>
ReconfigurationActionGraph

1

1

+registerActor()
+connect()
+disconnect()

<<interface>>System
Configuration

+getReconfigurationGr
aph()
+generateSequence()

<<interface>>Reconfi
gurationInit

+executeReconfiguration()
+updateAllConnections()

<<interface>>Reconfigur
ationExec

<<interface>>
ComponentFactory

+getNodes()
+getNode()

<<interface>>ArchitectureR
eflection

+notifyInterrupt()

<<interface>>EventProc
essing

*

1

11

Fig. 4.4: TimeAdapt Reconfiguration model implementation

113

4.3.1 Reconfiguration Manager

A reconfiguration manager is a singleton class that is deployed in every TimeAdapt

reconfiguration model instance and is created via a static getInstance() operation.

This static operation calls the class’s constructor of the ReconfigurationManager class,

in which fields, such as the reconfiguration scheduling algorithm used are instantiated.

The current implementation provides an operation that sets the scheduling algorithm

used manually, however, it also supports setting it using property files.

The reconfiguration manager maintains a list of all components that are deployed in

its address space Vector<IComponent> componentList, as well as the currently used

scheduling algorithm ReconfigurationAlgorithm algo. Additionally, it contains a

field denoting the reconfiguration action graph Graph graph, as well as a list of all

events that have occurred and that still need to be processed Vector<Interrupt>

interruptList. It also contains a priority queue, in which incoming events are stored

in order of their processing deadline EventQueue queue.

The reconfiguration manager implements the ComponentFactory interface and is

responsible for the creation and deletion of components in its address space. Addition-

ally, the reconfiguration manager provides the following interfaces to components and

connections:

System Configuration Interface

This interface provides operations to change the current system configuration and to exe-

cute structural reconfiguration operations. These include the registerActor() method

to register a newly created component and methods to connect (connect()) and discon-

nect (disconnect()) components to and from the current system configuration.

114

Architectural Reflective Extension Interface

The architectural reflective extension interface provides operations that return the topol-

ogy of the current set of components installed in a single address space. This extension

provides the getNodes() method that retrieves all components that are part of the cur-

rent system configuration. It also provides the getNode() method that retrieves a single

component identified by its unique name.

Reconfiguration Initialisation Interface

This interface provides operations that deal with the management of newly created

reconfiguration actions into a reconfiguration action graph. The current reconfigu-

ration graph is accessed via the method getReconfgurationGraph(). The method

generateSequence() takes as input a sequence of reconfiguration actions and returns

the generated reconfiguration graph. Section 4.3.2 provides a more detailed discussion

of the reconfiguration action graph.

Reconfiguration Execution Interface

This interface provides operations that deal with the actual execution of a reconfig-

uration sequence. The method executeReconfiguration() executes all the recon-

figuration actions currently contained inside the reconfiguration graph. The method

updateAllConnections() retrieves all dependent components, i.e., components that

are connected to the replaced component via an input port, and updates their input

ports accordingly. It is called, for example, when a reconfiguration action needs to be

revoked.

Event Processing Interface

This interface provides the notifyInterrupt() method that deals with the processing of

incoming events. This method is called by any component in the system configuration

115

when it receives an incoming event. This then starts the deadline-aware scheduling

algorithm referenced by the field algo, which is of type ReconfigurationAlgorithm.

4.3.2 Reconfiguration Action Graph

The reconfiguration action graph is an internal data structure and is part of the reconfig-

uration manager. It contains all reconfiguration actions as a partially ordered set, and

is responsible for storing reconfiguration actions in safe steps. Safe steps are realised

as container objects that hold a set of reconfiguration actions (Vector<IComponent>[]

safeStepSet). For this thesis it is assumed that the safe steps are created and initialised

by the reconfiguration manager at design time.

The class provides a method to build up temporal dependencies between safe steps

(addEdge()), as discussed in Section 3.4.2, and to get the next safe step for execution

(getNext()).

4.3.3 Scheduling Algorithms

The class ReconfigurationAlgorithm serves as the abstract base class for the optimistic

and pessimistic scheduling algorithms. This class has an abstract executeReconfiguration()

method, which needs to be overridden by concrete scheduling algorithm implementations.

TimeAdapt contains two algorithm implementations: OptimisticTimeAdapt that

realises the optimistic scheduling mode and PessimisticTimeAdapt that realises the

pessimistic scheduling mode. The implementations of both classes follow the algorithms

presented in the previous chapter.

4.3.4 Incoming Events

Incoming events are either received by a system model entity or the reconfiguration

manager itself by implementing event listener interfaces. The class Interrupt realises

incoming events with their deadlines and types and is defined as follows, see Listing 4.2:

116

c l a s s In t e r rup t {

p r i v a t e s t r i n g type ;

p r i v a t e double p roce s s ingDead l ine ;

pub l i c In t e r rup t (s t r i n g t , double d) { . . . }

}

Listing 4.2: Interrupt class

4.3.5 Reconfiguration Actions

All reconfiguration actions extend from the abstract base class ReconfigurationAction.

This class contains the unique identifier of the component on which the reconfiguration

action is executed. Additionally, the class contains a boolean field that denotes whether

the action is an interface-changing or non-interface changing action. This information

is needed by the heuristic partitioning algorithm to determine whether the action is

partitioned into its own safe step or needs to be partitioned with other actions.

The abstract base class provides methods that deal with the estimation of the

overall reconfiguration action, getEstimatedTime(), or the estimation of the upgrade-

connection phase, getEstimatedTimeUpdateConnection(), or revoke time, respectively

getEstimatedRevokeTime(). In all three cases, the methods forward respective calls to

the estimation functions of the component addressed.

Methods that need to be implemented by the concrete sub-classes include accessor

methods to retrieve the affected component, such as getActor() or methods to retrieve

the new component getNextActor(). The method getCurrentPhase() is used by the

optimistic scheduling algorithm to determine the current phase of the reconfiguration

action. Also, a concrete sub-class must implement the abstract method execute(),

which contains the actual implementation of the respective action. A more detailed

description of how the execute() method is realised for the different actions is presented

in subsection 4.3.5.2.

117

Listing 4.3 summarises the concrete reconfiguration action classes, which represent

the available reconfiguration actions identified in Chapter 3, Section 3.2.1. Note that

the reconfiguration action classes Connect and Disconnect are only indirectly realised

as actions, since they are part of the reconfiguration manager, or more specifically, part

of the reconfiguration manager’s system configuration interface.

c l a s s AddActor ()

c l a s s RemoveActor ()

c l a s s ReplaceActor ()

c l a s s UpgradeActor ()

Listing 4.3: Implemented reconfiguration action classes

4.3.5.1 Reconfiguration Action Creation

Figure 4.5 illustrates the steps that are executed by a reconfiguration designer at recon-

figuration design time, via the Configuration class. Note that the following methods

are not automated by a tool, but are called by the reconfiguration designer at design

time of a reconfiguration.

The reconfiguration designer composes a reconfiguration sequence by firstly creat-

ing a set of reconfiguration actions. Each reconfiguration action class implements a

static method createAction() that returns an instance of the specific reconfigura-

tion action type. This method requires different parameters, depending on the type

of the reconfiguration action. A RemoveActor action is created by calling the static

createAction(String nameId) method, which accepts the unique identifier nameId

of the component to be removed as parameter. This method assumes that the iden-

tified component is part of the current system configuration, otherwise an exception

is thrown. An AddActor action is created by calling the static createAction(TypeId

typeId) method, which accepts the type typeId of the component to be created as

parameter. This then calls the respective create() method of the component it-

118

[for all x in Vector]
loop

Configuration
Reconfiguration

Action
Reconfiguration

Manager
Reconfiguration
ActionGraph

createAction()

createAction()
action

action

generateSequence(Vector) setActions
(Reconfiguration
Action

reconfigurationActionGraph

partition(DependencyList)

Fig. 4.5: Reconfiguration sequence generation

self. ReplaceActor and UpgradeActor actions are created by calling the static method

createAction(String nameId, TypeId newActorId), with the unique identifier nameId

of the component to be replaced and the typeId of the newly replaced component as

parameters.

After all reconfiguration actions are created, the reconfiguration graph structure is

initialised with these actions by calling the generateSequence() method. The subse-

119

quent reconfiguration action partitioning is realised by calling the partition() method,

provided by the ReconfigurationActionGraph object. This method implements the

reconfiguration partitioning heuristic, explained in Chapter 3, Section 3.4.1. As a pa-

rameter, the method requires the dependency description of the actors that are part of

the system configuration. DependencyList contains, for each actor, an instance of the

Dependency class, where class Dependency is defined as:

c l a s s Dependency {

IComponent ac to r ;

Hashtable<IComponent> dependentActors ;

}

Listing 4.4: Dependency class

The result of the partitioning is a total ordered set of the involved reconfiguration actions

in safe steps.

4.3.5.2 Reconfiguration Action Runtime

The actual execution of reconfigurations is realised by the reconfiguration execution in-

terface of the reconfiguration manager and the IReconfiguration interface provided by

reconfigurable components. Figure 4.6 illustrates the interactions between the reconfigu-

ration manager and other entities when no incoming event occurs during reconfiguration.

A reconfiguration is triggered by calling the executeReconfiguration() method

of the reconfiguration manager. Reconfigurations can be either triggered explicitly by a

reconfiguration designer or can be triggered by changes in the operating conditions of the

system. However, the reconfiguration manager is oblivious to the cause of the trigger.

The executeReconfiguration() method gets as parameter the list of reconfiguration

actions to execute. The reconfiguration manager then retrieves the next safe step to

execute by calling the getNext() method of the ReconfigurationActionGraph class.

120

[for all x in Vector do]
loop

Configuration Reconfiguration
Manager

Reconfiguration
ActionGraph

Reconfiguration
Action

execute
Reconfigration()

getNext()

Vector<ReconfActions>

execute()

Fig. 4.6: Non-interrupted reconfiguration execution

This method returns all the actions that need to be executed atomically to reach a safe

system configuration. The reconfiguration manager then loops sequentially over the list

of actions in the safe step and calls their respective execute() method. This method is

realised differently in the respective reconfiguration action sub-classes.

The AddActor reconfiguration action class realises the execute() method by calling

the static createActor method of the reconfiguration manager, with the type identifier

of the component to be added as parameter. The RemoveActor action class contains the

unique identifier of the actor to be removed. The implementation of execute() results in

a call to the removeActor() method of the reconfiguration manager, that then executes

121

the actual object removal. Replace and Upgrade reconfiguration actions contain the

identifier of the actor to be replaced and the type identifier of the replacement actor. In

both cases, the execute() method first creates the component, which replaces the old

component, by calling the static createActor() method of the reconfiguration manager.

If the component to be replaced was stateful, a state transfer is executed by calling the

transferState() method on the component to be replaced. Afterwards, the method

upgradeConnections from the reconfiguration manager is called, which upgrades all

components that have connected input ports to point to the newly replaced component.

The reconfiguration actions Connect and Disconnect are realised by the reconfiguration

manager. Connect is realised by calling the connect() method of the manager, which

takes as parameters the two components to be connected and their input and output

ports. Likewise, the disconnect() method of the manager takes as parameters the

components to be disconnected and their ports.

Figure 4.7 illustrates the interactions between the reconfiguration manager and the

entities involved when an incoming event is received, for example by the EventHandler

interface of a component, and there is no other event currently processed by TimeAdapt.

In this case, the operation notifyInterrupt() of the reconfiguration manager is called,

with the event processing deadline as parameter. The reconfiguration manager then calls

the executeReconfiguration() method of the chosen scheduling algorithm, with the

event processing deadline and the remaining reconfiguration action graph as parameters.

Depending on the scheduling algorithm, the current safe step is retrieved (pessimistic

mode), or the phase of the currently executing reconfiguration action is retrieved (opti-

mistic mode). Based on the given deadline, the algorithm then decides how to proceed.

If an incoming event is received, and TimeAdapt is already processing another event,

the event is queued in the event queue, according to its associated processing deadline.

122

[for all actions in graph do]
loop

Configuration Reconfiguration
Manager

Reconfiguration
Algorithm

Reconfiguration
ActionGraph

handle
Event()

Reconfiguration
Action

notifyInterrupt()

execute
(Graph, deadline)

getNext()

Vector
<IComponent>

execute()

Fig. 4.7: Interrupted reconfiguration execution

4.4 Summary

This chapter described the Java-based implementation of the system model and the

reconfiguration model as defined by their design presented in Chapter 3. First the

TimeAct Component Model was presented, which is a direct mapping of the abstract

dataflow based system model to a Java-based implementation of reconfigurable actors.

The component model was implemented for this work because there are no component

models that target the dataflow based computational model. The TimeAct component

model realises a layered approach, in which interfaces realise different functional and

non-functional concerns of a component, such as reconfiguration. The system elements

of the TimeAdapt reconfiguration model implementation were then presented. The cen-

123

tral part of this implementation is the reconfiguration manager, which has access to all

components and executes reconfigurations on these components. The manager imple-

ments a series of interfaces that deal with the generation of reconfiguration actions as

well as the actual execution of structural reconfigurations on the current system configu-

ration. Finally, the usage of the reconfiguration model by a reconfiguration designer, and

the interaction between TimeAdapt itself and its involved entities during reconfiguration

execution were outlined.

124

Chapter 5

Evaluation

This chapter presents an evaluation of TimeAdapt as a realisation of a time-adaptive

reconfiguration model. First it presents the evaluation objectives, and the metrics used

to measure the performance of TimeAdapt. The main focus of this chapter is on the

experiments used for the evaluation, as well as their analysis and outcomes.

5.1 Objectives

Chapter 2 outlined the issue with existing reconfiguration models for embedded software.

A transactional reconfiguration model only processes incoming events when a reconfigu-

ration is completed, whereas a pre-emptive reconfiguration model cannot guarantee the

progress towards reconfiguration completion, especially in the case of a high incoming

event rate. The previous chapters 3 and 4 described the design and implementation of

TimeAdapt, a reconfiguration model designed to react to incoming events in a timely

fashion, while at the same time, making progress towards a reconfiguration completion.

TimeAdapt’s evaluation assesses to which degree requirements are met when the model

is applied on a realistic embedded system platform.

The following performance objectives are used:

O1) TimeAdapt meets more event deadlines than a transactional reconfiguration model

125

under varying environmental conditions, such as event arrival rate, event processing

deadlines, action execution durations, and number of event sources.

O2) TimeAdapt has at most the same number of remaining reconfiguration actions as

a preemptive reconfiguration model when an event is processed. This holds for

varying event arrival rates, event processing deadlines, action execution durations,

and number of event sources.

O3) Due to its more complex scheduling mechanism, the time-adaptive reconfiguration

model has an inherent execution time overhead.

The next section presents the metrics used to assess the performance of TimeAdapt

against these objectives.

5.2 Metrics

The rationale for the metrics used comes from two domains, namely component-based

software reconfiguration approaches and scheduling algorithms. As performance goal O1

is to measure timeliness of the reconfiguration model, we measure the percentage of event

processing deadlines that are met, similarly to the domain of scheduling algorithms (Liu,

2000). The percentage of remaining reconfiguration actions is a metric that indicates

the progress a reconfiguration model makes towards reconfiguration completion, i.e.,

how much of a given reconfiguration sequence has been executed. In addition, the total

reconfiguration time is a widely used metric when measuring the performance overhead

of reconfiguration (Rasche & Polze, 2003), (Dowling, 2004).

• Percentage of event processing deadlines met. This metric is calculated by mea-

suring the time elapsed between the occurrence of an interrupting event and the

time at which processing of this interrupted event is started and comparing this

time against the event’s processing deadline. The percentage of event processing

deadlines met is an indicator of how timely a model reacts to incoming events.

126

A lower percentage rate of processing deadlines met means a poorer timeliness

performance with regards to incoming events.

• Percentage of remaining reconfiguration actions. The percentage of remaining

reconfiguration actions is calculated from the average number of remaining recon-

figuration actions in all experiment runs and the reconfiguration sequence length.

A lower percentage of remaining reconfiguration actions indicates a faster recon-

figuration completion.

• Overall reconfiguration duration. This metric measures the time elapsed between

reconfiguration start and reconfiguration completion.

5.3 Experiments

A set of actors has been implemented with the TimeAct component model. This set of

actors realises an embedded sensing scenario, as described in Figure 5.1. The scenario

was chosen as it represents the type of applications that would benefit from a time-

adaptive reconfiguration model, see Chapter 3.2.1. In this scenario, a temperature sensor

actor calculates the current temperature based on the sensor data it receives from its

temperature sensor. A control actor activates an alert actor if the temperature is over

a specified threshold. The alert actor then sends the respective temperature data to an

output actor that then either forwards the temperature data to an external entity or

outputs it on a central monitor. Events in this application are represented by interrupts

from the underlying hardware.

5.3.1 Hardware and Software Configuration

The following configuration of hardware and software was used: The experiments were

performed on an embedded device platform, Java SunSpots, which are small, wireless

sensing devices (Sun, 2006). Even though Java SunSpots are more powerful in terms of

127

Fig. 5.1: Temperature sensor scenario realised on embedded platform

resources than many other embedded platforms, such as Motes (Crossbow Technology

Inc., 2004), the rationale for using them is twofold: Firstly, there are many examples of

software that would benefit from a time-adaptive reconfiguration model running on this

platform. Examples include sensing and monitoring applications (Hughes et al., 2010).

Secondly, in contrast to other platforms, existing solutions for this platform provide

comparative values for typical reconfiguration action times. We base the execution

durations for reconfiguration action types on values obtained by the LooCi component

model that was evaluated on the same platform (Hughes et al., 2009).

All time measurements were taken using the AT91 Timer Counter integrated time

capture functions, which are part of the embedded processor board (Goldman, 2009).

The time capture function supports the execution of periodic tasks, such as the raising

of interrupts.

The software is realised with the TimeAct component model, our implementation of

128

a dataflow-driven system model. The implementation conforms to the Java ME Con-

nected Limited Device Configuration (CLDC) 1.1 standard (Sun, 2009). TimeAdapt

itself implements the pessimistic and optimistic scheduling algorithms as described in

Section 3.4.2. For comparison purposes, we implemented the experiments using a trans-

actional reconfiguration model, realised for the dataflow-based system model. This is

a modified version of the abstract Kramer and Magee reconfiguration model (Kramer

& Magee, 1985). The original abstract model was previously realised for processes in

distributed systems (Kramer & Magee, 1990), a realisation we adapted to handle more

fine-grained software entities based on the dataflow system model. The implementation

processes incoming events only after all reconfiguration actions are completed. Again

for comparison purposes, we implemented a modified version of DynaQoS-RDF’s pre-

emptive reconfiguration model, defined on TimeAct software components (Zhao & Li,

2007b). In contrast to DynaQoS-RDF’s reconfiguration model, our implementation sup-

ports stateful actors. The implementation processes incoming events directly.

5.3.2 Parameters

A number of parameters affect the performance of the individual experiments. The

parameters’ value range used resembles real embedded software, executed on the specific

embedded platform. Values from existing work that evaluates software on the SunSpot

platform were used, as well as values taken from the platform itself. The parameters

are:

• Reconfiguration sequence length l. This parameter determines the number of re-

configuration actions in a reconfiguration sequence. Values for reconfiguration

sequence length are specific to the experiment used and are discussed for each

experiment individually.

• Reconfiguration action type a. This parameter determines the type of actions that

are part of a reconfiguration sequence. Actions vary in their overall execution

129

duration, and are taken from the LooCI component model (Hughes et al., 2009).

The execution durations of specific actions are discussed in more detail in each

experiment’s section.

• Event arrival rate λ [ms]. This parameter denotes the time rate at which events are

generated. We decided to use hardware interrupts, generated from the SunSpot

platform, as a source of incoming events for the application. The SunSpot platform

provides the AT91 Timer Counter class, which allows the periodic triggering of

clock interrupts according to different rates (Goldman, 2009). The rate at which

the timer counts is determined by the type of clock used. The available clock

speeds are:

– Low clock speed, i.e., duration of 2000 ms until interrupt event is raised.

– Medium clock speed, i.e., duration of 35 ms until interrupt event is raised.

– High clock speed, i.e., duration of 8 ms until interrupt event is raised.

– Very high clock speed, i.e., 2 ms until interrupt event is raised.

• Event processing deadline td [ms]. This parameter denotes the deadline associated

with events, and indicates the duration within which the event should be processed.

Similar to the reconfiguration length parameter, values for event processing dead-

lines are specific to the experiment used and are discussed for each experiment

individually. In general, we abbreviate event processing deadlines as deadlines.

Before each experiment run, events are uniformly generated over a given time interval.

The time interval is chosen to be at least the same length as a reconfiguration sequence

to ensure that events coincide with reconfiguration actions. The pre-creation of events

has the advantage that different reconfiguration models can be executed on the same

sequence, enabling easier comparison. A single experiment run returns the execution

duration of the applied reconfiguration model, averaged over all occurring events, and

the percentage of remaining reconfiguration actions. Each experiment run is repeated

130

100 times. The timeliness of an experiment is calculated using the average execution

duration of ten experiment runs as a resulting execution duration value. This ensures

that the results are not influenced by extreme operational conditions.

Table 5.1 summarises the five experiments conducted, including a short description

of each experiment. The performance objectives addressed are given in parentheses. In

the next sections, the results of these experiments are analysed to assess the extent to

which the performance objectives, identified in Section 5.1, are addressed.

131

No. Name Description

1 Uniform Reconfiguration A single reconfiguration action type

with one event source.

Four event arrival rates: Low,

medium, high, very high, each with

varying deadlines (O1, O2).

2 Heterogeneous Reconfiguration Different types of reconfiguration

actions with varying execution du-

rations.

Single event source, nne low event

arrival rate, with varying deadlines

(O1, O2).

3 Varying Safe Step Size Different types of reconfiguration

actions with varying number of ac-

tions in a safe step.

Single event source, one low event

arrival rate, with varying deadlines

(O1, O2).

4 Multiple Event Sources A single reconfiguration action type

with two event sources.

Medium event arrival rate, homoge-

neous and heterogeneous deadlines

on the events from both sources

(O1, O2).

5 Overhead Execution duration comparison of

reconfiguration sequence comprised

of single reconfiguration action type,

but different event arrival rates.

Three event arrival rates: Low,

Medium, High, each with the same

deadline (O3).

Table 5.1: Summary of TimeAdapt evaluation experiments

132

5.3.3 Experiment 1: Uniform Reconfiguration

This experiment evaluates TimeAdapt’s performance in comparison to a transactional

and a preemptive reconfiguration model (RM) under varying event arrival rates and

event processing deadlines. Table 5.2 lists the parameter settings used. The reconfigu-

Parameter Name Value

Reconfiguration sequence length l 5

Reconfiguration action type a upgradeActor

Event arrival rate [ms] λ 2, 8, 35, 2000

Event processing deadline [ms] td 0.15. . .100

Table 5.2: Experiment 1: Parameter Setting

ration sequence used is comprised of homogeneous upgradeActor reconfiguration actions

that have all approximately the same execution duration, and which upgrade all the

components in the scenario. In detail, the reconfiguration actions are:

• upgradeActor(tempSensor)

• upgradeActor(Control)

• upgradeActor(Filter)

• upgradeActor(Alert)

• upgradeActor(Output)

The execution duration of a single upgradeActor reconfiguration action is randomly

chosen between 15 ms and 25 ms 1, as used in the LooCi component model evalua-

tion (Hughes et al., 2009). As upgrade actions are non-interface changing, each action

denotes its own safe step.

1using the Java Random API

133

The experiment uses a single event source and event arrival rates are generated

by the AT91 Timer Counter. For this experiment, we use all four event arrival rates:

low (2000 ms), medium (35 ms), high (8 ms), very high (2 ms). The actual duration for

event processing is ignored, i.e., it is assumed that events can be processed in a negligible

execution duration. The experiment is executed for an increasing event deadline from

0.15 ms to 100 ms in steps of 10 ms. The deadline boundaries were chosen as they

represent extreme operational settings: 0.15 ms is the minimum time span needed to

react to an internal event (Simon et al., 2006), whereas a deadline of 100 ms fits almost

the entire reconfiguration sequence.

5.3.3.1 Reconfiguration Timeliness

In this part of the experiment, the percentage of deadlines met for both optimistic and

pessimistic modes of TimeAdapt are compared with the implementation of a transac-

tional reconfiguration model. We do not consider the percentage of deadlines met for

the preemptive reconfiguration model, as it directly processes incoming events and will

always meet an event’s deadline. It is expected that TimeAdapt will meet a higher per-

centage of deadlines compared to the transactional reconfiguration model, as it reacts

faster to incoming events. In TimeAdapt, an event’s processing deadline is missed when

an event is raised and the execution duration of the currently executing safe step or

reconfiguration action exceeds the deadline. In all other cases, TimeAdapt should meet

the deadline.

Table 5.3 summarises the percentage of deadlines met for three event arrival rates

(low, medium, and high), a deadline of 20 ms (low), 50 ms (medium), and 100 ms (high),

for both pessimistic and optimistic modes, and the transactional reconfiguration model.

Table 5.4 lists the figures that provide more detail of these numbers. The detailed results

can be found in Appendix C. Figures 5.2, 5.3, and 5.4 illustrate the results for the three

event arrival rates, respectively, with deadlines in the range from 0.15 ms to 100 ms.

Figure 5.5 illustrates a zoomed-in view on the results for deadlines ranging between 0.15

134

ms and 20 ms and a medium event arrival rate. Figure 5.6 illustrates a zoomed-in view

on the results for deadlines between 0.15 ms and 20 ms, and a very high event arrival

rate. The zoomed-in views are included to illustrate extreme parameter settings (i.e.,

very small event processing deadlines, and very high event arrival rates) that give an

indication of the boundaries of TimeAdapt’s benefits.

Low Arrival Rate Medium Arrival Rate High Arrival Rate

Deadline [ms] 20 50 100 20 50 100 20 50 100

Pessimistic TA 81% 99% 99% 81% 99% 99% 80% 99% 99%

Optimistic TA 99% 99% 99% 99% 93% 82% 67% 71% 48%

Transactional 8% 29% 67% 1% 11% 50% 0% 0% 9%

Table 5.3: Percentage of deadlines met

Scenario Figure

Low arrival rate; td between 0.15 and 100 ms Fig. 5.2

Medium arrival rate; td between 0.15 and 100 ms Fig. 5.3

High arrival rare; td between 0.15 and 100 ms Fig. 5.4

Zoomed-in medium arrival rate; td between 0.15 and 20 ms Fig. 5.5

Zoomed-in very high arrival rate; td between 0.15 and 20 ms Fig. 5.6

Table 5.4: Mapping between figures and experiment settings

In general, both of TimeAdapt’s modes meet a higher percentage of deadlines than

the transactional reconfiguration model. When the event arrival rate is low, the trans-

actional model meets an increasing percentage of deadlines when the deadline itself

increases. The outliers at 30 ms and 90 ms can be explained by variations in the ex-

periment runs, especially the point in time when an event occurs. An incoming event’s

deadline is only met if the event occurs towards the completion of the reconfiguration

sequence, and the execution duration of the remaining reconfiguration sequence falls

within this deadline (see Figure 5.2). With an increasing event arrival rate, more events

potentially occur at earlier stages of the reconfiguration sequence and their processing

135

0.15 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 R

ea
ch

ed
 [%

]

Pessimistic TA
Optimistic TA
Transactional RM

Fig. 5.2: Percentage of deadlines met for low event arrival rate and deadlines range

from 0.15 ms to 100 ms

needs to wait for previous events to be completed. In this case, the transactional model

meets a lower percentage of deadlines than the two modes of TimeAdapt (see Figures 5.3

and 5.4).

Similarly, in the pessimistic mode, an event’s deadline is met if the execution duration

of the currently executing safe step falls within the given deadline. Higher deadlines

increase the likelihood that an event’s deadline is within the execution duration of a safe

step. Therefore, the percentage of deadlines met increases with an increasing deadline

size for all three event arrival rates.

An increasing event arrival rate leads to a higher likelihood that events occur at the

same time. As only one event can be processed by TimeAdapt at a given time, a higher

number of events are queued. A queued event meets its deadline if its waiting time, i.e.,

the time period between its occurrence and its actual processing time, is smaller than

the deadline. A smaller event arrival rate implies a smaller number of queued events

and a smaller waiting time for each queued event. Therefore, for a given deadline, the

136

0.15 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 R

ea
ch

ed
 [%

]

Pessimistic TA
Optimistic TA
Transactional RM

Fig. 5.3: Percentage of deadlines met for medium event arrival rate and deadlines range

from 0.15 ms to 100 ms

percentage of deadlines met is higher for lower event arrival rates (see Figure 5.2 vs.

Figure 5.3, and Figure 5.3 vs. Figure 5.4).

In TimeAdapt’s optimistic mode, a deadline is reached if the completion or undo

time of the currently executing reconfiguration action, i.e., either its state-transfer or

update-connection phase, is completed within the given deadline. The optimistic mode

outperforms the pessimistic mode if the completion or undo time of the currently exe-

cuting phase is short and falls within the given deadline, even though the completion of

the overall reconfiguration action exceeds the deadline.

For the given action execution duration, this is the case if deadlines are smaller or

equal to 20 ms (see Figures 5.2, 5.3, and 5.4). With an increasing deadline and a higher

event arrival rate, the optimistic mode meets a smaller percentage of deadlines. This is

a result of its more complex scheduling. The fine-granular scheduling of the optimistic

mode based on reconfiguration action phases increases also the waiting time of queued

events. This waiting time increases further with a higher event arrival rate. Therefore,

137

0.15 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 R

ea
ch

ed
 [%

]

Pessimistic TA
Optimistic TA
Transactional RM

Fig. 5.4: Percentage of deadlines met for high event arrival rate and deadlines range

from 0.15 ms to 100 ms

the percentage of deadlines met when using the optimistic mode is smaller for higher

event arrival rates (see Figures 5.2 vs 5.3 and 5.3 vs. 5.4).

Figures 5.5 and 5.6 illustrate, in more detail, the difference between the pessimistic

and optimistic modes and the transactional reconfiguration model, for a deadline range

from 0.15 ms to 20 ms. In this range, the processing deadline is smaller than the

execution duration of a single reconfiguration action. Figure 5.5 shows the results for

the medium event arrival rate, and Figure 5.6 shows the results for a very high event

arrival rate.

For both event arrival rates, the transactional reconfiguration model does not meet

any deadline. This is because deadlines are smaller than the execution duration of a

single reconfiguration action.

The pessimistic mode always has to complete at least the currently executing safe

step, which in this experiment takes the execution duration of a single reconfiguration

action. As a result, this mode is more likely to act like a transactional reconfiguration

138

0.15 1 5 7.5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 M

et
 [%

]

Pessimistic TA
Optimistic TA
Transactional RM

Fig. 5.5: Percentage of deadlines met for medium event arrival rate and deadlines range

from 0.15 ms to 20 ms

model, with respect to the percentage of deadlines met, when the deadlines are small.

For both event arrival rates, the optimistic mode meets a higher percentage of dead-

lines than the pessimistic mode. As already pointed out, this is because reconfiguration

action scheduling is more fine-grained than in the pessimistic mode. In the case of a

high event arrival rate and a small deadline, the optimistic mode meets almost the same

percentage of deadlines than a preemptive reconfiguration model, i.e., all events meet

their deadlines (see Figure 5.6). The preemptive behaviour of the optimistic mode is

caused by small deadlines, which do not allow completion of any phase. The optimistic

mode directly aborts the currently executing phase, and processes queued events more

quickly. Note that this assumes a negligible processing execution duration of the event

itself.

In summary, the performance of TimeAdapt’s scheduling modes with respect to

139

0.15 1 5 7.5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 R

ea
ch

ed
 [%

]

Pessimistic TA
Optimistic TA
Transactional RM

Fig. 5.6: Percentage of deadlines met for a very high event arrival rate and deadlines

range from 0.15 ms to 20 ms

meeting deadlines under varying event arrival rates depends on the deadlines allowed

by a system. When there are high event arrival rates and small deadlines, i.e., smaller

than the actual reconfiguration action execution duration, the optimistic mode shows

better performance than the pessimistic mode. In this case, the pessimistic mode always

oversteps the deadline, as it needs to complete the currently executing reconfiguration

action. When there are medium and low event arrival rates and high deadlines, the pes-

simistic mode outperforms the optimistic mode. In this case, the pessimistic mode has a

smaller scheduling time and as a result a smaller waiting time for queued events. See also

Chapter 3.4.2.4 for a detailed discussion of the timeliness behaviour of both modes. In

overall, TimeAdapt shows a better overall performance with respect to meeting deadlines

than the transactional model, fulfilling objective O1. However, TimeAdapt cannot meet

all incoming event’s deadlines because an ongoing reconfiguration is prioritised over an

incoming event. As a result, embedded software that needs strong guarantees on events,

such as hard-real time software, should apply a preemptive reconfiguration model.

140

5.3.3.2 Reconfiguration Progress

This part of the experiment compares the percentage of reconfiguration actions remaining

after an event is processed, for both modes of TimeAdapt and the preemptive reconfig-

uration model, described in Section 5.3.1. As the transactional reconfiguration model

always completes an ongoing reconfiguration before processing any event, we do not

consider this model in this section. It is expected that TimeAdapt will have a lower per-

centage of reconfiguration actions remaining than the preemptive reconfiguration model,

indicating an overall faster progress towards reconfiguration completion.

Table 5.5 summarises the percentage of reconfiguration actions remaining for three

event arrival rates (low, medium, and high), for a given deadline of 20 ms (low), 50

ms (medium), and 100 ms (high), when using TimeAdapt’s pessimistic and optimistic

modes, as well as the preemptive reconfiguration model. Table 5.6 lists the figures

that show a graphical representation of the results for various experiment parameters.

Figures 5.7, 5.8, and 5.9 illustrate the results for low, medium, and high event arrival

rates and deadlines in the range from 0.15 ms to 100 ms. Figures 5.10 and 5.11 illustrate

more detailed results on the number of reconfiguration actions remaining in the case of

two consecutive events, for both modes of TimeAdapt and a medium event arrival rate.

Figures 5.12 and 5.13 illustrate the number of reconfiguration actions remaining, when

there are two consecutive events, for both modes of TimeAdapt and a very high event

arrival rate.

Low Arrival Rate Medium Arrival Rate High Arrival Rate

Deadline [ms] 20 50 100 20 50 100 20 50 100

Pessimistic TA 42.38% 28.22% 5.06% 43% 25.1% 6.06% 40.70% 26.49% 3.09%

Optimistic TA 52.10% 37.96% 4.62% 49% 34.20% 6.2% 50.71% 39% 14.42%

Preemptive RM 65.36% 60% 60.66% 63% 59% 62% 60% 60% 59%

Table 5.5: Percentage of reconfiguration actions remaining

The preemptive reconfiguration model shows a varying percentage of remaining re-

141

Scenario Figure

Low arrival rate; td between 0.15 and 100 ms Fig. 5.7

Medium arrival rate; td between 0.15 and 100 ms Fig. 5.8

High arrival rate; td between 0.15 and 100 ms Fig. 5.9

More detailed view on medium arrival rate; td between 0.15 and 100 ms Fig. 5.10, Fig. 5.11

More detailed view on very high arrival rate; td between 0.15 and 100 ms Fig. 5.12, Fig. 5.13

Table 5.6: Mapping between figures and experiment settings

configuration actions for all three event arrival rates. However, for all three event arrival

times, the percentage of reconfiguration actions remaining remains roughly constant

throughout all deadlines (see Figure 5.7, 5.8, and 5.9). This is because in a preemptive

reconfiguration model, an ongoing reconfiguration is interrupted to process an incoming

event. In the experiment, events are uniformly distributed over the reconfiguration se-

quence, with half of the incoming events occurring at the beginning of a reconfiguration

sequence, i.e., either in the first or second reconfiguration action. When an event is

processed, approximately 60% of the reconfiguration actions are remaining.

TimeAdapt’s pessimistic mode has an increasing percentage of reconfiguration ac-

tions remaining for deadlines smaller than 20 ms, which decreases for deadlines equal to

or larger than 20 ms when the event arrival rate is low (see Figure 5.7). The increase

is because for a very small deadline, the pessimistic mode has to at least complete the

currently executing action. However, for higher deadlines, depending on when an in-

coming event occurs, the mode can abort a further scheduling of actions. For medium

and high event arrival rates, TimeAdapt’s pessimistic mode has a constant percentage

of reconfiguration actions remaining for deadlines smaller than 20 ms and a decreasing

percentage for deadlines equal to or larger than 20 ms (see Figures 5.8 and 5.9). The

increase or maintenance of the percentage of remaining actions, for deadlines smaller

than 20 ms, is because the scheduler does not schedule any further reconfiguration ac-

tions, as the deadline is smaller than the execution duration of any safe step. When the

142

 0

 10

 20

 30

 40

 50

 60

 70

0.15 10 20 30 40 50 60 70 80 90 100

R
e

m
a

in
in

g
 A

c
ti
o

n
s
 [

%
]

Deadlines [ms]

Pessimistic TA
Optimistic TA

Preemptive RM

Fig. 5.7: Percentage of remaining actions for low event arrival rate

deadline increases, additional reconfiguration actions can be scheduled, explaining the

higher throughput of reconfiguration actions.

TimeAdapt’s optimistic mode shows similar behaviour to the pessimistic mode. For

all three event arrival rates, TimeAdapt’s optimistic mode has a decreasing percentage

of reconfiguration actions remaining when the deadline increases (see Figure 5.7, 5.8,

and 5.9) Like in the pessimistic mode, the higher percentage of reconfiguration actions

remaining for lower deadlines, such as 0.15 or 10 ms, is caused by fact that the mode

does not allow the scheduling of additional reconfiguration actions. With an increasing

deadline, more reconfiguration actions can be scheduled for execution, leading to a higher

throughput of reconfiguration actions.

In general, the optimistic mode has approximately 10-15% more remaining reconfig-

uration actions than the pessimistic mode in all three event arrival rates. This is because

of the different scheduling in the two modes, as the pessimistic mode always schedules

143

 0

 10

 20

 30

 40

 50

 60

 70

0.15 10 20 30 40 50 60 70 80 90 100

R
e

m
a

in
in

g
 A

c
ti
o

n
s
 [

%
]

Deadlines [ms]

Pessimistic TA
Optimistic TA

Preemptive RM

Fig. 5.8: Percentage of remaining actions for medium event arrival rate

complete reconfiguration actions, even if the overall event deadline is missed, whereas

the optimistic mode aborts reconfiguration actions in earlier phases. This leads to a

higher throughput of reconfiguration actions for the pessimistic mode.

To illustrate the results on a more detailed level, Figures 5.10 and 5.11 illustrate

the average number of remaining reconfiguration actions when there are two consecutive

events for the pessimistic and optimistic mode, respectively, with a medium event arrival

rate. Figures 5.12 and 5.13 show the average number of remaining reconfiguration actions

for a very high event arrival rate.

144

 0

 10

 20

 30

 40

 50

 60

 70

0.15 10 20 30 40 50 60 70 80 90 100

R
e

m
a

in
in

g
 A

c
ti
o

n
s
 [

%
]

Deadlines [ms]

Pessimistic TA
Optimistic TA

Preemptive RM

Fig. 5.9: Percentage of remaining actions for high event arrival rate

145

 0

 1

 2

 3

 4

 5

1009080706050403020100.15

R

em
ai

ni
ng

 R
ec

on
fig

ur
at

io
n

A
ct

io
ns

Deadlines [ms]

After Event 1
After Event 2

Fig. 5.10: Pessimistic mode: Number of remaining actions for medium event arrival

rate and two consecutive events

146

 0

 1

 2

 3

 4

 5

1009080706050403020100.15

R

em
ai

ni
ng

 R
ec

on
fig

ur
at

io
n

A
ct

io
ns

Deadlines [ms]

After Event 1
After Event 2

Fig. 5.11: Optimistic mode: Number of remaining actions for medium event arrival

rate and two consecutive events

147

 0

 1

 2

 3

 4

 5

1009080706050403020100.15

R

em
ai

ni
ng

 R
ec

on
fig

ur
at

io
n

A
ct

io
ns

Deadlines [ms]

After Event 1
After Event 2

Fig. 5.12: Pessimistic Mode: Number of remaining actions for very high event arrival

rate and two consecutive events

In both modes, when the event arrival rate is at a medium rate, the average number

of remaining reconfiguration actions varies for two consecutive events (see Figures 5.10,

and 5.11). This indicates that some actions have completed. The varying number of

remaining reconfiguration actions per event in each mode is caused by the scheduling

modes that either execute a complete reconfiguration action (pessimistic mode) or com-

plete or undo the currently executing phase of an active reconfiguration action.

Contrary to the case of medium event arrival rates, the number of remaining recon-

figuration actions are the same for two consecutive events in both modes when a high

event arrival rate is applied, and deadlines are smaller than 50 ms (see Figures 5.12

and 5.13). The higher number of remaining reconfiguration actions is because, when the

event arrival rate is high, there is a higher probability that two consecutive events occur

148

 0

 1

 2

 3

 4

 5

1009080706050403020100.15

R

em
ai

ni
ng

 R
ec

on
fig

ur
at

io
n

A
ct

io
ns

Deadlines [ms]

After Event 1
After Event 2

Fig. 5.13: Optimistic Mode: Number of remaining actions for very high event arrival

rate and two consecutive events

at the same reconfiguration action. If the processing deadline is smaller than the re-

configuration action execution duration, no additional actions can be scheduled between

processing event 1 and processing event 2. This results in the same number of remaining

reconfiguration actions for both events and a decreased throughput of reconfiguration

actions. For deadlines higher than 50 ms, the pessimistic mode can schedule additional

reconfiguration actions when processing event 1 and as a result, the number of remaining

reconfiguration actions decreases when processing event 2. In the optimistic mode, the

waiting time of event 2 increases with an increasing deadline, as additional reconfigura-

tion actions can be scheduled. However, the increased waiting time leads to a decreased

remaining scheduling time until event 2 must be processed. Therefore, event 1 and event

2 have also the same number of remaining reconfiguration actions for higher deadlines.

149

In summary, both modes schedule more reconfiguration actions than a preemptive

reconfiguration model. The higher throughput of reconfiguration actions for various

deadlines and event arrival rates fulfils objective O2. However, when the event arrival

rate is very high and there are many incoming events during an ongoing reconfiguration,

TimeAdapt cannot guarantee a timely completion of the reconfiguration sequence, as

it has to wait until the high load has reduced. Embedded software that needs timely

completion of a reconfiguration and does not need to react to incoming events, should

use a transactional reconfiguration model.

5.3.4 Experiment 2: Heterogeneous Reconfiguration

This experiment evaluates the impact of varying reconfiguration action execution dura-

tions on the performance of TimeAdapt with respect to meeting event deadlines and the

percentage of remaining reconfiguration actions. Table 5.7 lists the parameter settings

of this experiment.

Parameter Name Value

Reconfiguration sequence length l 4,5

Reconfiguration action type a upgradeActor, addActor

Event arrival rate [ms] λ 2000

Event processing deadline [ms] td 0.15. . .100

Table 5.7: Experiment 2: Parameter Setting

For this experiment a low event arrival rate of 2000 ms is used. This event arrival

rate raises a single event over the given reconfiguration sequences and allows the in-depth

study of TimeAdapt without additional overhead, such as event queuing times. The two

different types of reconfiguration actions used are addActor actions and upgradeActor

actions. AddActor actions add temperature filter components to the scenario, whereas

upgradeActor actions upgrade the existing SensorActor, ControlActor, and AlertActor

150

components. Note that the connectActor actions are implicitly contained within the

addActor reconfiguration actions. In detail, the reconfiguration actions are:

• upgradeActor(TemperatureSensorActor)

• addActor(TemperatureFilterActor)

• addActor(TemperatureFilterActor)

• upgradeActor(ControlActor)

• upgradeActor(AlertActor)

The execution duration of a single addActor reconfiguration action is randomly cho-

sen between 60 ms and 70 ms, which is in the range of the values found by Hughes et al.

(2009). The execution duration of an upgradeActor reconfiguration action is the same as

in experiment 1. The reconfiguration sequences used differ in their execution durations:

• A reconfiguration sequence comprised of five upgradeActor actions, having the

shortest overall execution duration (“Upgrade“) (see Experiment 1).

• A reconfiguration sequence comprised of two upgradeActor actions, upgrading the

ControlActor and AlertActor components, as well as two addActor actions, adding

two TemperatureFilterActors. This sequence has an overall medium execution

duration(“Heterogeneous“).

• A reconfiguration sequence comprised of four addActor actions, in which all four

TemperatureFilterActors are added to the basic configuration. This sequence has

the longest overall execution duration (“Add“).

The first reconfiguration sequence is composed of non-interface changing reconfiguration

actions. The second and third reconfiguration sequences are composed of reconfiguration

actions on independent actors. In all three reconfiguration sequences, there is one action

151

in each safe step. The varying execution durations of these sequences result in different

target configurations, depending on the size of the processing deadline.

It is expected that TimeAdapt will meet a higher percentage of deadlines for the re-

configuration sequence comprised of short execution duration actions, compared to the

reconfiguration sequences comprised of medium and long execution durations, specif-

ically when deadlines are comparatively small. We also expect a lower percentage of

reconfiguration actions remaining for the reconfiguration sequence comprised of short

execution duration actions, compared to the reconfiguration sequences comprised of

medium and long execution durations. Figures 5.14, and 5.15 illustrate the percentage

of deadlines met for the pessimistic and optimistic modes and the three reconfiguration

sequences applied. Figures 5.16 and 5.17 show the percentage of reconfiguration actions

remaining, for both modes.

0 .15 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 M

et
 [%

]

Upgrade
Heterogeneous
Add

Fig. 5.14: Pessimistic Mode: Percentage of deadlines met for low event arrival rate

In the pessimistic mode, the upgrade reconfiguration sequence meets the highest

percentage of deadlines when deadlines are smaller or equal than 60 ms. The smallest

percentage of deadlines met is reached by the add reconfiguration sequence, when dead-

lines are smaller or equal than 60 ms (see Figure 5.14). These results concur with the

152

0.15 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 M

et
 [%

]

Upgrade
Heterogeneous
Add

Fig. 5.15: Optimistic Mode: Percentage of deadlines met for low event arrival rate

expectations that shorter reconfiguration sequences will lead to more deadlines met. An

upgradeActor action takes approximately 25 ms to execute. Incoming events with dead-

lines greater than 25 ms can be processed within the deadline. Therefore, for deadlines

larger than 25 ms, the upgrade reconfiguration sequence meets incoming event deadlines.

An addActor action takes approximately 60 ms and hence only deadlines greater than

60 ms can be met. This is confirmed by the results, as for deadlines higher than 60 ms,

all three reconfiguration sequences show the same behaviour.

The optimistic mode shows similar results. For deadlines smaller than 50 ms, the

upgrade reconfiguration sequence meets the highest percentage of deadlines, whereas the

add reconfiguration sequence meets the lowest percentage of deadlines (see Figure 5.15).

For deadlines equal to or higher than 50 ms, all three reconfiguration sequences show the

same behaviour. In general, for deadlines smaller than 50 ms, the optimistic mode meets

a higher percentage of deadlines than the pessimistic mode, for all three sequences. The

higher percentage can be explained by the finer granularity of reconfiguration scheduling

in the optimistic mode, which allows more control as to when to abort a reconfiguration

153

sequence.

0.15 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

Deadlines [ms]

R
em

ai
ni

ng
 A

ct
io

ns
 [%

]

Upgrade
Heterogeneous
Add

Fig. 5.16: Pessimistic Mode: Percentage of remaining actions for low event arrival rate

Regarding the percentage of reconfiguration actions remaining, the pessimistic mode

shows different behaviour for each of the three applied reconfiguration sequences. When

using the upgrade reconfiguration sequence, the mode has an increasing percentage of

actions remaining for deadlines smaller than 30 ms, and a decreasing percentage of

actions remaining for deadlines equal to or larger than 30 ms (see Figure 5.16). The

slight increase for deadlines smaller than 30 ms is because for deadlines that are smaller

than the action’s execution duration, the pessimistic mode does not schedule further

actions. As a single upgradeActor action takes 25 ms, with an increasing deadline more

reconfiguration actions can be scheduled, leading to the decrease in the percentage of

remaining actions. In contrast, the heterogeneous reconfiguration sequence and the add

reconfiguration sequence show an almost constant percentage of remaining actions for

deadlines smaller than 80 ms. For deadlines equal to or higher than 80 ms, both sequences

show a decrease in their percentage of remaining reconfiguration actions (see Figure 5.16).

The constant number of remaining reconfiguration actions for deadlines smaller than

154

0.15 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

R
em

ai
ni

ng
 A

ct
io

ns
 [%

]

Upgrade
Heterogeneous
Add

Fig. 5.17: Optimistic Mode: Percentage of remaining actions for low event arrival rate

80 ms can be explained by the larger execution durations of single actions. When

the deadline is smaller than the actual reconfiguration action execution duration, the

pessimistic mode aborts the scheduling of actions after completion of the current action.

When deadlines are higher, more reconfiguration actions can be scheduled within this

deadline, leading to a higher throughput of reconfiguration actions.

The optimistic mode shows the same behaviour as the pessimistic mode for the up-

grade reconfiguration sequence. There is a slight increase in the percentage of remaining

reconfiguration actions for deadlines smaller than 30 ms, and for deadlines equal to or

larger than 30 ms a decreasing percentage of remaining reconfiguration actions (see Fig-

ure 5.17). Like in the pessimistic mode, the slight increase can be explained by the fact

that for deadlines that are smaller than an upgradeActor action, the optimistic mode

does not schedule further actions. With an increasing deadline, more reconfiguration ac-

tions can be scheduled, resulting in a higher throughput. In contrast to the pessimistic

mode, in the optimistic mode, the percentage of remaining reconfiguration sequences

for the heterogeneous and add reconfiguration sequence decreases when the deadline in-

creases (see Figure 5.17). The decrease is due to the more fine-grained scheduling mode.

155

However, this leads to a scheduling overhead, which results in approximately 10% more

remaining reconfiguration actions per sequence for the optimistic mode compared to the

pessimistic mode.

It can be concluded from this experiment that the percentage of deadlines met and the

percentage of remaining reconfiguration actions is dependent on the execution durations

of the reconfiguration actions in a reconfiguration sequence. A reconfiguration sequence

composed of reconfiguration actions that have a higher execution duration needs a higher

deadline to guarantee that events can be processed within time. In this experiment, the

homogeneous reconfiguration sequence comprised of addActor reconfiguration actions

has the longest overall execution duration, and as a result meets less deadlines than

the heterogeneous reconfiguration sequence or the reconfiguration sequence comprised

of upgradeActor actions. This sequence also has the highest percentage of remaining

reconfiguration actions, as because of its long execution duration, not all actions can

be executed within a given deadline. TimeAdapt’s optimistic mode has a higher per-

centage of remaining reconfiguration actions than the pessimistic mode, independent of

an action’s execution duration, as it has a higher scheduling time and reaches faster an

event’s deadline. However, the percentage of deadlines met and remaining reconfigura-

tion actions in this experiment are comparable to the results of experiment 1. Hence,

performance objective O1 and O2 are fulfilled.

5.3.5 Experiment 3: Varying Safe Step Size

This experiment evaluates the impact of safe step execution durations on the percent-

age of deadlines met and the percentage of reconfiguration actions remaining. In this

experiment, only the pessimistic mode is considered, as the optimistic mode does not

consider safe steps, but rather single reconfiguration actions. Table 5.8 lists the param-

eter settings of this experiment.

For this experiment we used three reconfiguration sequences with varying number of

reconfiguration actions and a resulting varying execution duration:

156

Parameter Name Value

Reconfiguration sequence length l 4,5

Reconfiguration action type a upgradeActor, addActor, replaceActor

Event arrival rate [ms] λ 2000

Event processing deadline [ms] td 0.15. . .100

Table 5.8: Experiment 3: Parameter Setting

• Sequence 1: A reconfiguration sequence comprised of five upgradeActor actions,

each of which upgrades a component in the scenario. In detail, the reconfiguration

actions are:

– upgradeActor(tempSensor)

– upgradeActor(Control)

– upgradeActor(Filter)

– upgradeActor(Alert)

– upgradeActor(Output)

As upgradeActor actions are non-interface changing, each actions is partitioned

into its ows safe step. For this experiment setup, single action safe steps have the

shortest execution duration.

• Sequence 2: A reconfiguration sequence comprised of two addActor and two con-

nectActor reconfiguration actions. Note that the addActor reconfiguration actions

implicitly contain connectActor actions. In detail, the reconfiguration actions are:

– addActor(TemperatureFilterActor1)

– connectActor(TemperatureSensorActor,TemperatureFilterActor)

– addActor(TemperatureFilterActor2)

– connectActor(TemperatureFilterActor1,TemperatureFilterActor2)

157

This results in two safe steps, containing each an addActor action and a connectAc-

tor action. For this experiment setup, these safe steps have a medium execution

duration.

• Sequence 3: A reconfiguration sequence comprised of four replaceActor actions,

each of which replaces a component in the scenario with a new component with

changed input and output sets. In detail, the reconfiguration actions are:

– replaceActor(Control)

– replaceActor(Filter)

– replaceActor(Alert)

– replaceActor(Output)

As all of these actions are interface-changing, and address dependent actors, they

are grouped together in a single safe step. In this experiment setup, this safe step

has the longest execution duration.

As in experiment 2, a low event arrival rate is used to investigate TimeAdapt’s behaviour

in more detail.

As shown in Figure 5.18, for deadlines greater than 20 ms, the reconfiguration se-

quence with the shortest overall execution duration of its safe steps meets the highest

percentage of deadlines (Sequence1). A safe configuration is reached after the execution

of a single reconfiguration action. As this reconfiguration sequence is comprised of single

upgradeActor reconfiguration actions, each with an execution duration of 25 ms, this is

the case for deadlines larger than 25 ms. The worst behaviour with respect to meeting

deadlines is shown by the reconfiguration sequence comprised of safe steps with four

actions (Sequence 3). In this case, a safe configuration is reached only when all actions

are executed. The percentage of deadlines met depends on the time the event occurs and

its associated deadline. Larger deadlines have a greater probability of fitting the remain-

ing reconfiguration sequence’s execution duration. A reconfiguration sequence with safe

158

−20 0.15 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
e

a
d

lin
e

s
 R

e
a

c
h

e
d

 [
%

]

Sequence 1

Sequence 2

Sequence 3

Fig. 5.18: Percentage of deadlines met for low event arrival rate

steps containing two actions (Sequence 2) meets a higher percentage of deadlines than

a reconfiguration sequence with safe steps containing four actions, as only two reconfig-

uration actions need to be executed to reach a safe system configuration. Nevertheless,

this sequence meets a smaller percentage of deadlines than the sequence comprised of

single safe steps.

Figure 5.19 illustrates the percentage of remaining reconfiguration actions for the

three different safe step sizes. When the safe step has four reconfiguration actions (Se-

quence 3), the percentage for each deadline is always zero, i.e., there are no remaining

reconfiguration actions. This is because all actions in the reconfiguration sequence are

in this safe step and the pessimistic mode therefore behaves like a transactional recon-

figuration model in this case.

For deadlines smaller than 60 ms, the percentage of remaining reconfiguration ac-

tions is lower for the reconfiguration sequence comprised of two actions per safe step

159

0.15 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Deadlines [ms]

R
e
m

a
in

in
g
 A

c
ti
o
n
s
 [
%

]

Sequence 1

Sequence 2

Sequence 3

Fig. 5.19: Percentage of remaining actions for low event arrival rate

(Sequence2), see Figure 5.19. The larger percentage of remaining reconfiguration ac-

tions for single-action safe steps (Sequence1) is a result of the varying execution dura-

tion of the reconfiguration actions. The single-action safe step comprises upgradeActor

actions with an execution duration of 25 ms, whereas the sequence containing larger safe

steps contains addActor actions with an execution duration of 60 ms. The scheduling

mode always completes a currently executing safe step before an incoming event can

be processed, independently of the deadline. The reconfiguration sequence comprised of

single-action safe steps, can be paused much earlier to process an incoming event than

for the reconfiguration sequence comprised of multiple actions in the safe step, as it has

a smaller execution duration. As an effect, the percentage of remaining reconfiguration

actions is higher for single-action safe steps. As the deadline increases, additional recon-

160

figuration actions can be scheduled for the single-action safe steps. In this experiment

for deadlines larger than 60 ms, the percentage of remaining reconfiguration actions is

less for single-action safe steps than for safe steps comprised of multiple reconfiguration

actions. However, the parameter settings were chosen in such a way, that single-action

safe steps have a smaller execution duration than safe steps that consists of multiple

actions.

We can conclude from these results that the execution durations of safe steps has an

impact on TimeAdapt’s timeliness as well as its throughput. The higher the execution

duration of a safe step, the higher the deadline needs to be so that it can be met. The

actual size of a safe step has an impact on the percentage of remaining reconfiguration

actions. The more reconfiguration actions need to be executed atomically, the higher the

given throughput of reconfiguration actions. In one case, the complete reconfiguration

sequence is contained in a single safe step, which leads to a transactional behaviour with

respect to remaining reconfiguration actions and percentage of deadlines met. Overall,

the percentage of deadlines met is still higher for safe steps with a smaller execution

duration compared to a transactional reconfiguration model. Also, the percentage of re-

maining reconfiguration actions is lower when compared to a preemptive reconfiguration

model. Hence, this experiment confirms performance objectives O1 and O2.

5.3.6 Experiment 4: Multiple Event Sources

This experiment evaluates the percentage of deadlines met and the percentage of re-

configuration actions remaining, when multiple event sources emit events. Table 5.9

summarises the parameter values used.

Events are emitted using a medium event arrival rate. This event arrival rate ensures

that there are queued events. Event deadlines are the same as used in experiment 1.

The same reconfiguration sequence as in Experiment 1 is used:

• upgradeActor(tempSensor)

161

Parameter Name Value

Reconfiguration sequence length l 5

Reconfiguration action type a upgradeActor

Event arrival rate [ms] λ 35.0

Event processing deadline [ms] td 0.15. . .100

Table 5.9: Experiment 4: Parameter Setting

• upgradeActor(Control)

• upgradeActor(Filter)

• upgradeActor(Alert)

• upgradeActor(Output)

This implies that there are five safe steps, each containing a single upgradeActor

action. The experiment itself is divided into two parts: In the first part, events of both

sources have the same associated deadline in each experiment run. In the second part,

events of both sources have different deadlines.

5.3.6.1 Homogeneous Event Deadlines

Figures 5.20 and 5.21 illustrate the percentage of deadlines met for TimeAdapt’s pes-

simistic and optimistic modes when events are generated by two event sources and have

the same associated deadlines.

In the pessimistic mode, the deadline of events generated by event source 1 is met

in approximately 3% more cases than the deadline of events generated by event source

2 for deadlines smaller than 30 ms (see Figure 5.20). For deadlines smaller than 10 ms

this gap is even wider, with 12% of deadlines met for events generated by event source

1 and 0% of deadlines met for events generated by event source 2. The difference is

because events from both sources occur at the same time on the same reconfiguration

162

0.15 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 M

et
 [%

]

Event Source 1
Event Source 2

Fig. 5.20: Pessimistic Mode: Percentage of deadlines met for medium event arrival rate

and homogeneous deadlines

action. At each point in time, TimeAdapt processes only a single event. Events that

occur simultaneously are queued and will be processed after a delay. Queueing the event,

however, leads to a higher waiting time and so, under the same deadline, it is more likely

that at least one of the event deadlines will be missed. When the deadline is large enough

(i.e., over 30 ms), both event sources have the same percentage of their deadlines met.

These findings are consistent with the findings for a single event source and a medium

event arrival rate (see Figure 5.3).

The optimistic mode shows a similar difference in the percentage of deadlines met for

events generated by event source 1 and event source 2 (see Figure 5.21). Two differences

to the pessimistic mode can be found for very small deadlines, i.e., 0.15 ms, and very

large deadlines, such as 100 ms. When the deadline is very small, the percentage of

deadlines met is the same for both event sources, namely 46%. This higher percentage

163

0.15 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 M

et
 [%

]

Event Source 1
Event Source 2

Fig. 5.21: Optimistic Mode: Percentage of deadlines met for medium event arrival rate

and homogeneous deadlines

is because of the more fine-grained scheduling that allows higher control over when a

reconfiguration sequence can be aborted. In the case of large deadlines, such as 100 ms,

the optimistic mode meets a smaller percentage of deadlines for events emitted by event

source 2, compared to smaller deadlines. The decreased percentage is because of the

more complex scheduling by the optimistic mode, which leads to an increased waiting

time for queued events. This is true when events are either from the same or from a

different event source. Note that due to the additional overhead of queued events, the

percentage of deadlines met is approximately 10-15% lower as the results when a single

event source and medium event arrival rate is applied (see Figure 5.3).

We can conclude from these results that the number of event sources has only a

little impact on the percentage of deadlines met in both modes when event sources have

homogeneous deadlines.

Figures 5.22 (pessimistic mode) and 5.23 (optimistic mode) show the percentage of

remaining reconfiguration actions, when events are emitted from two event sources. In

both modes, and for both event sources, the percentage of remaining reconfiguration

164

actions decreases with an increasing deadline.

0.15 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45

Deadlines [ms]

R
em

ai
ni

ng
 A

ct
io

ns
 [%

]

Event Source 1
Event Source 2

Fig. 5.22: Pessimistic Mode: Percentage of remaining actions for medium event arrival

rate and homogeneous deadlines

In the pessimistic mode, either events generated by event source 1 or events generated

by event source 2 have a higher percentage of remaining reconfiguration actions (see

Figure 5.22). This is because only one event can be processed at each point in time and

as a result at least a single reconfiguration action was completed. It is non-deterministic

as to which event is scheduled, which accounts for the variance.

The same effect with respect to variations in the percentage of remaining actions for

events generated by event source 1 and event source 2 can be found in the optimistic

mode (see Figure 5.23). Like in the pessimistic mode, the variation is because events

from both event sources occur at the same time, but need to be processed sequentially.

When there are multiple event sources, all with the same arrival rate, the number of

events queued is higher than when a single event source is applied. The waiting time of

these queued events needs to be deducted from the deadline. Hence, the throughput of

actions is less when multiple event sources are applied than when a single event source is

applied, under the same given deadline. Note that the percentage of remaining actions

165

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

Deadlines [ms]

R
em

ai
ni

ng
 A

ct
io

ns
 [%

]

Event Source 1
Event Source 2

Fig. 5.23: Optimistic Mode: Percentage of remaining actions for medium event arrival

rate and homogeneous deadlines

for multiple event sources is roughly the same for both modes of TimeAdapt as for

single event sources under a higher event arrival rate, such as 8 ms, which confirms that

a higher number of queued events impacts reconfiguration action throughput rate (see

Figures 5.12 and 5.13).

5.3.6.2 Heterogeneous Event Deadlines

This experiment compares the percentage of deadlines met and the percentage of remain-

ing reconfiguration actions, when using multiple event sources with varying associated

deadlines for their generated events. For this experiment, deadlines for events from event

source 2 always are twice as large as deadlines associated with events from event source

1. The shorter deadline of events from event source 1 results in queued events from this

source to be processed before queued events from event source 2. Table 5.10 summarises

the deadline values used:

Figures 5.24 and 5.25 show the percentage of deadlines met for TimeAdapt’s pes-

simistic mode and optimistic mode, respectively.

166

Event Source 1 [ms] Event Source 2 [ms]

1 2

2.5 5

5 10

10 20

20 40

40 80

50 100

Table 5.10: Deadline values associated with events

1 2.5 5 10 20 40 50
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 M

et
 [%

]

Event Source 1
Event Source 2

Fig. 5.24: Pessimistic Mode: Percentage of deadlines met for medium event arrival rate

and heterogeneous deadlines

In the pessimistic mode, events generated by event source 2 have, in all cases, a

higher percentage of their deadlines met than events generated by event source 1 (see

Figure 5.24). This can be explained by the fact that even if these events are queued and

have an associated waiting time, the higher deadline leads to a higher chance that their

associated deadline will be met. An interesting observation in this experiment is that

167

1 2.5 5 10 20 40 50
0

10

20

30

40

50

60

70

80

90

100

Deadlines [ms]

D
ea

dl
in

es
 M

et
 [%

]

Event Source 1
Event Source 2

Fig. 5.25: Optimistic Mode: Percentage of deadlines met for medium event arrival rate

and heterogeneous deadlines

events that are generated by event source 1 have, in general, a lower percentage of their

deadlines met compared to their respective counterparts, where both event sources have

the same associated deadline (see Figure 5.20). If an event from event source 2 happens

to occur before an event from event source 1, the pessimistic mode can schedule more

reconfiguration actions for execution because of their higher deadline. This increases

the waiting time for events in the queue. The higher waiting time leads to a higher

likelihood of missing the associated deadline.

Figure 5.25 shows the percentage of deadlines met for the optimistic mode. Like in

the pessimistic mode, events generated by event source 2 have, in all cases, a higher

percentage of their deadlines met than events generated by event source 1. Again, this is

the result of higher associated deadlines for events generated by event source 2. Likewise,

events generated by event source 1 have a lower percentage of their deadlines met than

their respective counterparts, where both event sources have the same associated deadline

(see Figure 5.25). Similar to the pessimistic mode, this is because of the higher deadline

associated with events from event source 2 and the resulting higher waiting time for

168

events generated by event source 1.

Figures 5.26 and 5.27 show the percentage of remaining reconfiguration actions for

the pessimistic and optimistic mode, respectively.

1 2.5 5 10 20 40 50
0

5

10

15

20

25

30

35

40

45

50

Deadlines [ms]

R
em

ai
ni

ng
 A

ct
io

ns
 [%

]

Event Source 1
Event Source 2

Fig. 5.26: Pessimistic Mode: Percentage of remaining actions for medium event arrival

rate and heterogeneous deadlines

In the pessimistic mode, the percentage of remaining actions depends on whether

the currently processed event is from event source 1 or event source 2. In general,

for all deadlines, events from event source 2 have a smaller percentage of remaining

reconfiguration actions than events from event source 1. If an event from event source 1

can be directly processed, the small deadline leads only to the completion of the current

reconfiguration action. If an event from event source 1 occurs, while an event from event

source 2 is being processed by TimeAdapt, this event is queued. However, the higher

associated deadlines of events from event source 2 lead to a higher queuing time, and as

a result TimeAdapt might not schedule further actions when processing an event from

169

1 2.5 5 10 20 40 50
0

10

20

30

40

50

60

70

Deadlines [ms]

R
em

ai
ni

ng
 A

ct
io

ns
 [%

]

Event Source 1
Event Source 2

Fig. 5.27: Optimistic Mode: Percentage of remaining actions for medium event arrival

rate and heterogeneous deadlines

event source 1. For deadlines smaller than 20 ms, the percentage of remaining actions

slightly increases for events generated by event source 1 (see Figure 5.26). The slight

increase is because of the increased waiting time for events generated by event source 1.

With a higher associated deadline, the percentage of remaining reconfiguration actions

decreases. For deadlines smaller than 20 ms, the percentage of remaining actions remains

approximately constant at 38% for events generated by event source 2. This is because

the reconfiguration action times are between 15 and 25 ms. A deadline of 20 ms allows

only the scheduling of a single reconfiguration action. With an increased deadline size,

the percentage of remaining actions also decreases, as more actions can be executed.

The effect of heterogeneous deadlines is confirmed by the results for the optimistic

mode (see Figure 5.27). Like in the pessimistic mode, an increasing deadline leads to

a decrease in the number of remaining reconfiguration actions, as more reconfiguration

actions can be executed.

We can conclude from all the obtained results that the impact of multiple event

sources on the timeliness and throughput behaviour of TimeAdapt depends on the num-

170

ber of event sources and whether events of different event sources have the same or

different associated deadlines. A higher number of event sources results in a higher num-

ber of potentially queued events with an increased waiting time. The effect of queued

events on timeliness and throughput depends on whether the events have homogeneous

or heterogeneous deadlines. Homogeneous deadlines affect the throughput of a reconfig-

uration, especially when the associated deadline of the queued event is high enough to

fit the waiting time but too small to schedule the next reconfiguration action. In this

case, the deadline of the queued event is met, however, no progress with an ongoing

reconfiguration can be made. Heterogeneous deadlines affect the timeliness of a recon-

figuration, especially when the queued event has an associated small deadline, as then

the deadline is more likely to be missed. In general, both modes of TimeAdapt have

a higher number of deadlines met than a transactional reconfiguration model and have

lower number of remaining reconfiguration actions than a preemptive reconfiguration

model. These results are comparable to results of experiment 1, fulfilling objectives O1

and O2. However, as already discussed in Section 5.2, embedded software that needs

strict guarantees on event deadlines, should use a preemptive reconfiguration model,

whereas embedded software that needs a timely completion of a reconfiguration should

apply a transactional reconfiguration model.

5.3.7 Experiment 5: Reconfiguration Execution Overhead

This experiment evaluates TimeAdapt’s inherent overhead in terms of reconfiguration

execution duration by measuring the time elapsed from the start of a reconfiguration

until a reconfiguration is completed. Table 5.11 summarises the parameter values used.

The same settings with respect to the length and the type of reconfiguration action were

used as in experiment 1, 3, and 4, i.e., a reconfiguration sequence is comprised of five

upgradeActor reconfiguration actions. In detail, the reconfiguration actions are:

• upgradeActor(tempSensor)

171

Parameter Name Value

Reconfiguration sequence length l 5

Reconfiguration action type a upgradeActor

Event arrival rate [ms] λ 35.0, 8.0

Event processing deadline [ms] td 0.15. . .100

Table 5.11: Experiment 5: Parameter Setting

• upgradeActor(Control)

• upgradeActor(Filter)

• upgradeActor(Alert)

• upgradeActor(Output)

The experiment is executed in three different scenarios, which differ in the event arrival

rate used and the deadline associated.

1. Scenario 1: There are no incoming events. This scenario illustrates the baseline

for reconfiguration execution duration overhead as TimeAdapt is not being used.

2. Scenario 2: This scenario uses a medium event arrival rate and a deadline that is

smaller than the execution time of a single reconfiguration action, (10 ms). Under

these conditions, there is no further scheduling of reconfiguration actions.

3. Scenario 3: This scenario uses a high event arrival rate and the same deadline

as in Scenario 2. Due to the high event arrival rate, events are queued and the

additional TimeAdapt overhead is added to each reconfiguration action execution

duration.

Figure 5.28 shows the results for the pessimistic mode, and Figure 5.29 shows the

results for the optimistic mode.

172

 0

 20

 40

 60

 80

 100

None Medium High

R
e
c
o
n
fi
g
u
ra

ti
o
n
 E

x
e
c
u
ti
o
n
 D

u
ra

ti
o
n
 [
m

s
]

Event Arrival Rate

Scenario 1
Scenario 2
Scenario 3

Fig. 5.28: Total execution duration for pessimistic mode

The execution duration overhead for the pessimistic mode is approximately 2% for

scenario 2, which comprises a medium event arrival rate and a small deadline, compared

to the baseline, i.e., scenario 1. This increase in execution duration is because of the

additional scheduling phase that happens when an event occurs. Scenario 3 has an

increased overhead of 5%, compared to Scenario 1, and of 2% compared to Scenario 2.

The additional overhead is because of a higher number of queued events that need to be

scheduled. However, as the deadline is too small to schedule any reconfiguration action

for execution, events are directly processed, resulting only in a small overhead compared

to the execution durations of Scenario 1 and Scenario 2.

A different result is obtained for the optimistic mode. In this mode, the lowest exe-

cution duration is also achieved by scenario 1, i.e., the reconfiguration sequence in which

no event occurs (see Figure 5.29). In contrast to the pessimistic mode, scenario 3 has an

execution duration overhead of approximately 2%, compared to scenario 1. This over-

head can be explained by the higher scheduling costs, compared to the pessimistic mode.

The highest execution duration is shown by scenario 2, which has an approximately 30%

higher execution duration than the other two scenarios. The high execution duration is

the result of the more complex scheduling mode performed by the optimistic approach.

173

Note that this scenario has a higher execution duration than scenario 3, where the event

arrival rate is higher. This is because queued events are not scheduled as their waiting

time exceeds their deadline.

 0

 20

 40

 60

 80

 100

None Medium High

R
e
c
o
n
fi
g
u
ra

ti
o
n
 E

x
e
c
u
ti
o
n
 D

u
ra

ti
o
n
 [
m

s
]

Event Arrival Rate

Scenario 1
Scenario 2
Scenario 3

Fig. 5.29: Total execution duration for optimistic mode

In summary, in both modes, the execution duration increases with an increased event

arrival rate. The occurrence of events imposes execution duration overhead compared to

when no events occur. A lower event arrival rate has a lower execution duration compared

to a higher event arrival rate, as queued events impose additional overhead. For the

given scenarios, the worst-case overhead for the pessimistic mode was 6%, fulfilling

objective O3. As the optimistic mode applies a more complex scheduling scheme, the

reconfiguration execution duration overhead can be over 30%, which is significantly

higher than when no events are considered. A trade-off must be made between a fast

execution of a given reconfiguration, achieved by the pessimistic mode, versus a timely

reaction to incoming events, achieved by the optimistic mode.

174

5.4 Summary

This chapter outlines a set of experiments that assess the underlying tradeoff within

TimeAdapt between meeting more deadlines of incoming events than a transactional re-

configuration model (Objective O1), and making more progress towards reconfiguration

completion than a preemptive reconfiguration model (Objective O2). TimeAdapt out-

performs a baseline implementation of a transactional reconfiguration model with respect

to the percentage of deadlines met. The improvement ranges from 31% to 90% for the

pessimistic mode, and from 1% to 82% for the optimistic mode, depending on the dead-

line and the event arrival rate. TimeAdapt also outperforms a baseline implementation

of a preemptive reconfiguration model with respect to the throughput of reconfiguration

actions, i.e., the percentage of actions remaining. The improvement ranges from 20% to

60% for the pessimistic mode, and from 4% to 53% for the optimistic mode, depending

on the deadline and the event arrival rate. This fulfills objectives O1 and O2. However,

there is a tradeoff between meeting each event deadline and making progress with a re-

configuration. As discussed in Chapter 3, Section 3.4.2.4, TimeAdapt cannot guarantee

the meeting of each event’s deadline. Embedded software that needs strong guarantees

on the meeting of its event deadlines should use a preemptive reconfiguration model.

Similarly, in cases when there are many incoming events during an ongoing reconfigu-

ration, TimeAdapt cannot guarantee the progress towards reconfiguration completion.

Embedded software that needs a timely reconfiguration completion, and which does not

need to react to incoming events, should use a transactional reconfiguration model.

The experiments also illustrate the impact of a reconfiguration action’s execution

duration on TimeAdapt’s percentage of deadlines met and reconfiguration actions re-

maining. A reconfiguration sequence comprised of actions with a short execution du-

ration, such as upgradeActor actions meets a higher percentage of deadlines, compared

to sequences that are comprised of reconfiguration actions with a high execution dura-

tion, such as addActor actions. This improvement is in the range of 1% to 53% for the

175

pessimistic mode, and 1% to 50% for the optimistic mode, depending on the associated

deadline. Also, a reconfiguration sequence comprised of actions with a short execution

duration can execute more actions within a deadline than a sequence comprised of ac-

tions with a high execution duration. The improvement with respect to reconfiguration

actions remaining is in the range of 18% to 52% for the pessimistic mode, and 20% to

41% for the optimistic mode, depending on the associated deadline.

The execution duration of reconfiguration actions particularly influences TimeAdapt’s

pessimistic mode with respect to the overall execution duration of a safe step. As

TimeAdapt’s optimistic mode considers only single reconfiguration actions, it is not

considered in this experiment. A reconfiguration sequence comprised of safe steps with

an overall small execution duration meets a higher percentage of deadlines than a re-

configuration sequence comprised of safe steps with a high execution duration. In the

experiment, this resulted in 1% to 55% higher percentage of deadlines met, depending

on the size of a deadline. This is because safe steps need to be executed atomically

and only after all actions, contained in a safe step, are executed, an incoming event can

be processed. The percentage of reconfiguration actions remaining is influenced by the

actual size, i.e., number of reconfiguration actions of a safe step. As safe steps are always

executed atomically, the more reconfiguration actions are contained in a single safe step,

the less reconfiguration actions are remaining, when an incoming event is processed.

Multiple event sources also impact the behaviour of TimeAdapt. This is because

the number of queued events is higher when multiple event sources are applied, and the

waiting time of the queued events needs to be deducted from the available deadline.

The extent of this effect depends on whether the deadlines of the emitted events are

homogeneous or heterogeneous. When deadlines are homogeneous, the percentage of

met deadlines is approximately 10-15% lower as for the findings when a single event

source is applied. The percentage of reconfiguration actions remaining is 0.1-5% higher

compared to when a single event source is applied. When deadlines are heterogeneous,

the deadlines of queued events is easier missed, especially when the queued event has

176

an associated small deadline. However, when the currently processed event has a large

enough deadline, more reconfiguration actions can be scheduled, leading to a higher

throughput, compared to homogeneous deadlines.

Finally, both modes of TimeAdapt have an overhead on the overall execution duration

of a reconfiguration sequence. This overhead is, in the worst case, approximately 30%

compared to the execution duration of a sequence with no incoming event. However,

the biggest overhead occurs only when extreme operational settings are applied, such

as very small deadlines and a high event arrival rate. With a decreasing event arrival

rate, the execution duration overhead reduces to 2%, fulfilling the objective of a small

overhead (Objective O3).

From this discussion, we conclude that TimeAdapt is a suitable representation of a

time-adaptive reconfiguration model for embedded software that needs to react to in-

coming events during its reconfiguration, but that can also deal with potential event

losses. Examples for such software are signal processing applications or sensing applica-

tions in sensor nodes. As the evaluation was performed for platform-specific values for

event deadlines and event arrival rates, it needs to be verified that results are similar for

other embedded platforms and their respective parameter values.

177

Chapter 6

Conclusion and Future Work

This thesis describes the design and implementation of TimeAdapt, a novel reconfig-

uration model for embedded software. TimeAdapt realises a time-adaptive execution

model by providing mechanisms that support the timely reaction to incoming events

during an ongoing reconfiguration, while progress towards reconfiguration completion is

made. This chapter summarises the achievements of this thesis and its contributions,

and concludes with a discussion of potential areas of future work.

6.1 Achievements

Embedded software that is executed on a reactive embedded system often requires

changes to its software structure when, for example, there is new functionality available

or environmental conditions change. As reactive embedded systems have high reliabil-

ity and durability constraints, these changes need to be executed, while the software is

running, without stopping the system. However, embedded systems impose additional

challenges on any processes that dynamically change their software, because these sys-

tems need to react to incoming events within their associated processing deadlines. At

the same time, reconfigurations should be completed in a manner as timely as possi-

ble. An analysis of state of the art reconfiguration models that target various kinds

178

of embedded software, such as embedded operating software, or adaptive middleware

software, highlighted the two main limitations that motivated the work presented in this

thesis. Firstly, transactional reconfiguration models apply a reconfiguration execution

that does not take incoming events into consideration, regardless of their timeliness con-

straints. In these reconfiguration models, the processing deadlines of events are met only

if the time to complete a reconfiguration falls within this deadline. Secondly, preemp-

tive reconfiguration models apply a reconfiguration execution that directly interrupts an

ongoing reconfiguration to process the incoming event. These models always meet an

event’s deadline, however, if there is a high event arrival rate, a reconfiguration com-

pletion might be delayed indefinitely. To adequately address these limitations, a new

reconfiguration execution model is needed.

A time-adaptive reconfiguration model should support the dynamic adaptation of an

ongoing reconfiguration process itself, as demanded by dynamic time bounds imposed by

incoming events, while making progress towards reconfiguration completion. A primary

challenge of this work is to maintain the dependency relationships between software en-

tities in the presence of partially executed reconfigurations. Chapter 3 described the

design of TimeAdapt, which follows a time-adaptive execution for its reconfigurations.

TimeAdapt is designed for embedded software modelled according to the reconfigurable

dataflow system model (RDF). In this model, entities, so-called actors, send data in

a non-blocking manner and read data in a blocking manner. The definition of the re-

configuration model on this kind of software stems from two rationales: Firstly, the

RDF system model has a strong theoretical background and its abstract definition al-

lows the potential implementation of TimeAdapt for a variety of embedded platforms.

Secondly, the RDF represents software that is deployed on a single processor platform.

This choice is for scoping reasons, and to simplify the system model in this version of

TimeAdapt. The focus of the work was on the complexity of the time-adaptive reconfig-

uration model. TimeAdapt itself leverages existing synchronisation mechanisms, such as

bringing all affected software entities into a reconfiguration-safe state, and sequentially

179

executing reconfiguration actions to guarantee a functioning system before and after the

reconfiguration. The main contribution of the approach is the use of a deadline-aware

scheduling mechanism that decides whether to execute the next reconfiguration action

or to process an incoming event. The partial execution of a reconfiguration means that

most event processing deadlines can be met, since the overall reconfiguration does not

need to be completed. However, the model does not directly preempt an ongoing recon-

figuration action, but completes at least the currently executing reconfiguration action.

The incremental execution of reconfiguration actions leads to an eventual completion

of a reconfiguration. However, because TimeAdapt favours an ongoing reconfiguration

over a direct processing of an incoming event, it cannot guarantee the meeting of event

deadlines, especially when deadlines are smaller than reconfiguration action execution

durations. As a result, the model cannot be used for embedded software that has strict

deadlines on its incoming events. TimeAdapt implements two scheduling algorithms

that realise the deadline-aware scheduling mechanism and that differ in the granularity

of the reconfiguration actions scheduled. The pessimistic scheduling algorithm considers

safe steps as atomic units and schedules them only, if the overall execution duration is

within the processing deadline. The optimistic scheduling algorithm considers individual

reconfiguration actions, with the possibility of a revoke of this action, if the execution

duration seems to exceed the processing deadline. TimeAdapt maintains dependency

relationships between software entities by partitioning the remaining reconfiguration

sequence into sub-sequences that need to be executed atomically, so-called safe steps.

These safe steps are determined by the reconfiguration designer at reconfiguration design

time and are input to the reconfiguration manager, which then executes the safe steps

at reconfiguration execution duration.

The implementation of TimeAdapt was described in Chapter 4. The set of tech-

niques and algorithms of the reconfiguration model were implemented in a manner that

facilitates extensibility, such as the introduction of new reconfiguration action types. As

the implementation is Java-based, it can be mapped to various embedded platforms.

180

The entities of the abstract dataflow system model are mapped to a Java-based compo-

nent model, TimeAct. The TimeAct component model was implemented for this thesis

because there are no component models targeting embedded software that realise the

dataflow computational model. This component model realises a layered approach, in

which interfaces realise different functional and non-functional concerns of a component,

such as reconfiguration. TimeAdapt is implemented for TimeAct components. The

central part of TimeAdapt’s implementation is the reconfiguration manager, which has

access to all components and executes reconfigurations on these components.

The evaluation of TimeAdapt on a real embedded platform, Java SunSpots, was

described in Chapter 5. A sensing application was implemented, using the TimeAct

component model and five experiments were conducted against the implementations of

TimeAdapt’s two scheduling algorithms, as well as implementations of a transactional

and a preemptive reconfiguration model. The experiments differ in the values of parame-

ters used, such as reconfiguration action execution durations, event processing deadlines,

and event arrival rates. Values for these parameters are taken either directly from the un-

derlying platform, or from existing work that evaluates software on the specific platform.

The results highlight that TimeAdapt outperforms the implementation of a transactional

reconfiguration model in terms of percentage of event processing deadlines met. This

holds for an increase in the reconfiguration deadlines and varying event arrival rates.

However, the experiment also illustrated that TimeAdapt cannot guarantee the meeting

of all its deadlines and is only suitable for embedded software in which an occasionally

missed event is tolerable. TimeAdapt also outperforms the implementation of a preemp-

tive reconfiguration model with respect to the percentage of remaining reconfiguration

actions, indicating that it makes more progress with an ongoing reconfiguration. The

experiment showed that in settings where the event arrival rate is very high, and the as-

sociated event deadlines are smaller than the reconfiguration action execution durations,

TimeAdapt encounters the same issue with reconfiguration starvation than a preemptive

reconfiguration model. The results also illustrate that due to its fine-grained scheduling,

181

TimeAdapt’s optimistic algorithm has a higher percentage of remaining reconfiguration

actions than the pessimistic mode.

As one would expect, the execution duration of a reconfiguration action has an im-

pact on the percentage of deadlines met and the percentage of remaining reconfiguration

actions. A reconfiguration sequence comprised of actions with a short execution dura-

tion meets a higher percentage of deadlines (1% to 50%), compared to sequences that

are comprised of reconfiguration actions with a high execution duration. This is because

actions need to be executed atomically, and TimeAdapt can return faster from a short

reconfiguration action to process an event compared to when reconfiguration actions

have high execution durations. Similarly, the execution duration of a safe step influ-

ences TimeAdapt’s pessimistic mode and its meeting of event deadlines. The higher the

execution duration of a safe step, the higher the deadline needs to be so that it can be

met, as safe steps need to be executed atomically. The number of reconfiguration actions

within a safe step has an influence on the percentage of remaining reconfiguration ac-

tions. The more actions are in a safe step and need to be executed atomically, the higher

the given throughput of reconfiguration actions. An increasing number of event sources

also impacts TimeAdapt’s performance, as the higher the number of event sources, the

higher the number of occurring events, resulting in a higher number of queued events

that need to be processed. Queued events have an increased waiting time until they

can be processed and hence a lower percentage of deadlines met and a lower percent-

age of remaining reconfiguration actions for the same given deadline than when a single

event source is applied. The evaluation also investigated the reconfiguration overhead of

TimeAdapt on the overall execution duration of a reconfiguration sequence. The worst

case overhead is 30%, however, the most frequently observed overhead is in the range of

2%.

In summary, the research presented in this thesis focussed on providing a reconfig-

uration model that allows the timely reaction to incoming events during an ongoing

reconfiguration, while at the same time progress towards reconfiguration completion is

182

made. At all times, the dependency relationships of software entities are maintained.

The main contributions of this thesis are summarised as:

• An overview of existing reconfiguration models, targeting different kinds of em-

bedded software, such as control system software, embedded operating system

software, and middleware software. The models are evaluated with a particular

focus on their execution model, and whether they guarantee the completion of a

reconfiguration, and the processing of incoming events within associated deadlines.

Selected concepts from these reconfiguration models, such as the definition on top

of an abstract system model, as well as the adoption of a centralised reconfiguration

manager that has access to all system entities, were influential for TimeAdapt’s

design.

• A dynamic approach to reconfiguration execution based on a deadline-aware schedul-

ing mechanism. This mechanism supports the interruption of an ongoing reconfig-

uration when an event occurs and tries to meet the event’s associated processing.

Two realisations of the deadline-aware scheduling mechanism, which differ in the

granularity of what constitutes an atomic sequence, show that this mechanism

meets a higher percentage of deadlines than reconfiguration models that follow a

transactional execution model. Additionally, the greedy, deadline-aware scheduling

of reconfiguration actions ensures that reconfigurations are eventually completed.

• The maintenance of dependency relationships between software entities in the pres-

ence of partial reconfigurations. This is ensured by partitioning the reconfiguration

sequence into so-called safe steps. Safe steps denote sets of reconfiguration actions

that, when executed atomically, lead from a functioning configuration to a new,

functioning configuration. Safe steps are specified by the reconfiguration designer

at reconfiguration design time.

• The implementation and evaluation of TimeAdapt for a software scenario on a

real embedded system platform. This evaluation shows that the proposed mecha-

183

nisms are beneficial for a class of embedded software that has soft time constraints

associated with its events. The model is compared to implementations of reconfig-

uration models that follow a transactional and a preemptive execution model. The

evaluation confirms that a higher percentage of deadlines are met by TimeAdapt

than by a transactional reconfiguration model. At the same time, TimeAdapt has

a lower percentage of remaining reconfiguration actions, compared to a preemptive

reconfiguration model.

The main limitations are:

• TimeAdapt’s preference of an ongoing reconfiguration action over an incoming

event leads to the potential miss of the event’s deadline, particularly if its associated

deadline is smaller than the reconfiguration action execution durations. As a result,

the reconfiguration model is not suitable for embedded software that has hard

deadlines associated with its events.

• TimeAdapt cannot guarantee the progress towards reconfiguration completion if

the event arrival rate is very high, and event deadlines are smaller than reconfigu-

ration action execution durations. In this case, the likelihood is high that an event

occurs while another event is still being processed by TimeAdapt. If the dead-

line is smaller than a reconfiguration action, no reconfiguration actions, or phases,

can be scheduled by TimeAdapt and the reconfiguration is aborted to process the

incoming event.

• For scoping reasons, TimeAdapt targets a simplified embedded software model, in

which the software itself is deployed on a single processor embedded platform.

6.2 Future Work

This section outlines the key areas identified for future work. We distinguish the future

work into whether it applies to the theoretical reconfiguration model or to the TimeAdapt

184

implementation, and list it as follows: Integration with a time-predictive statistical

model; Support for non-dataflowbased computational models; Improvement of timing

guarantees; Extension to TimeAdapt design and implementation.

6.2.1 Integration with a time-predictive statistical model

The current model assumes that each reconfiguration action has associated estimation

methods that return the estimated execution durations of either the action itself, or its

state transfer and update connection phases. However, as these estimated execution du-

rations are statically defined, they do not take current operating conditions into account,

which might affect the actual execution duration. Approaches that combine statistical

models and runtime measurements to predict execution durations offer an interesting

alternative. These approaches combine off-line measurements obtained by the system’s

previous execution duration history with run-time generated timings based on statistical

models (Brennan et al., 2009).

6.2.2 Support for non-dataflow based computational models

TimeAdapt is defined for software entities that follow a dataflow-based computational

model. The definition of when system configurations are safe and the maintenance of

dependency relationships between software entities are based on the loose coupling of

these entities. Future developments of TimeAdapt should investigate changes to the

reconfiguration model that would be required to support it working on software entities

that follow different computational models. For example, the publish-subscribe com-

putational model also dictates a loose and asynchronous coupling between its software

entities, and is used to describe a range of embedded software. Investigations into porting

TimeAdapt for this computational model need to include how dependency relationships

between software entities are defined in this computational model and how they can be

maintained.

185

6.2.3 Improvement of Timing Guarantees

The current reconfiguration model does not differentiate whether an incoming event

affects a software entity that is currently being reconfigured, or a software entity that

is not subject to reconfiguration. However, the percentage of deadlines met can be

improved if the underlying deadline-aware scheduling mechanism is extended to support

scoping. Events that occur at a software entity that is currently not the subject of

reconfiguration, and whose processing does not affect any entities being reconfigured,

can be directly processed by pausing the currently active reconfiguration action.

6.2.4 Extension to TimeAdapt Design

TimeAdapt’s underlying RDF system model has two intrinsic characteristics that allow

it to model both local, and distributed software entities. Firstly, the local and remote

bindings between software entities are semantically identical, as in both cases the entities

are connected via a data-store. Secondly, the RDF model allows for multiple bindings

between different nodes. However, the current TimeAdapt reconfiguration model as-

sumes that all software entities reside on an embedded system with a single processor.

This requires a centralised reconfiguration manager that has global access to all entities.

A potential area for future work is to extend TimeAdapt for execution on distributed

software entities. This requires new mechanisms to handle TimeAdapt for multiple,

distributed reconfiguration managers. As part of this work, the synchronisation of re-

configuration actions between different reconfiguration managers and the effect of partial

reconfigurations on the synchronisation process needs to be investigated.

Additionally, future work could investigate the combination of the pessimistic and

optimistic mode, and in which experimental settings this combination outperforms the

basic modes. The combination of the two modes needs additional information on the

current load, such as monitoring the current event arrival rate, to determine, whether

to switch the mode.

186

6.2.5 Extension to TimeAdapt Implementation

In TimeAct, future work includes the extension of the component base class to support

different computational models, such as the publish-subscribe computational model. In

addition, the component model should be extended to support hierarchical components.

The introduction of hierarchical components requires that a reconfiguration designer

has knowledge about the underlying component topology, as a reconfiguration sequence

needs to refer explicitly to sub-components.

In terms of the reconfiguration model, a C-based implementation of the model and

the TimeAct system model would allow the evaluation of the model on more resource-

constrained platforms.

6.3 Summary

This chapter summarised the motivation for the research undertaken and the most sig-

nificant achievements of the work presented in this thesis. It outlined how this work

contributed to the state of the art in reconfiguration models targeting embedded soft-

ware by providing a time-adaptive execution model. The timely processing of events

is realised by the provision of mechanisms that allow the partitioning of a reconfigu-

ration sequence into sub-sequences. A progress towards reconfiguration completion is

realised by algorithms that ensure the maintenance of dependency relationships between

software entities. Experiments conducted on a real embedded platform show that these

techniques lead to a higher percentage of met deadlines and a faster reconfiguration com-

pletion than existing applied execution models. The chapter concluded with suggestions

for future work arising from the research undertaken in relation to this thesis.

187

Appendix A

TimeAct Component Model

Implementation

pub l i c ab s t r a c t c l a s s IComponent {

/∗ F i e l d s ∗/

protec ted St r ing nameId ;

pro tec ted Hashtable i n p o r t s ;

p ro tec ted Hashtable outport s ;

/∗ Methods ∗/

pub l i c ab s t r a c t void f i r e () ;

pub l i c ab s t r a c t void s t a r t () ;

pub l i c ab s t r a c t void stop () ;

pub l i c void setOutport (S t r ing s , IChannel c) ;

pub l i c Hashtable getOutports () ;

}

Listing A.1: IComponent class

188

pub l i c i n t e r f a c e IComponentFactory {

pub l i c IComponent c r e a t e (S t r ing typeId) ;

pub l i c void d e l e t e (S t r ing nameId) ;

}

Listing A.2: IComponentFactory interface

pub l i c i n t e r f a c e I n t r o s p e c t i o n {

pub l i c Object g e t I n t e r f a c e (S t r ing name) ;

pub l i c Object getPort (S t r ing name) ;

}

Listing A.3: Introspection interface

pub l i c i n t e r f a c e IRecon f i gu ra t i on {

/∗ Behavioura l Recon f i gura t i on Methods ∗/

pub l i c void t r a n s f e r S t a t e (IComponent actor , IComponent newActor) ;

pub l i c void upgradeConnections (IComponent actor , IComponent newActor) ;

pub l i c void execute (Action a) ;

pub l i c void make quiescent () ;

/∗ Time Est imation Methods ∗/

pub l i c double getEstimatedTimeUpdateConnections () ;

pub l i c double getEstimatedRevokeTime () ;

pub l i c double getExecutionTime (Action a) ;

}

Listing A.4: Reconfiguration interface

pub l i c i n t e r f a c e ISta teAcce s s {

pub l i c void s e t (S t r ing name , Object o) ;

pub l i c Object get (S t r ing name) ;

189

}

Listing A.5: StateAccess interface

pub l i c i n t e r f a c e IChannel {

pub l i c void push (Object o) ;

pub l i c Object read () ;

}

Listing A.6: IChannel interface

190

Appendix B

TimeAdapt Reconfiguration

Model

pub l i c c l a s s Reconf igurationManager implements ISystemConf igurat ion ,

I A r c h i t e c t u r a l R e f l e c t i v e E x t e n s i o n ,

I R e c o n f i g u r a t i o n I n i t a l i s a t i o n , IReconf igurat ionExecut ion ,

IEventProcess ing , IComponentFactory {

/∗ F i e l d s ∗/

p r i v a t e Vector<IComponent> componentList ;

p r i v a t e Reconf igurat ionAlgor i thm algo ;

p r i v a t e Graph graph ;

p r i v a t e Vector<Inte r rupt> i n t e r r u p t L i s t ;

p r i v a t e Reconf igurat ionManager i n s t anc e ;

p r i v a t e EventQueue queue ;

/∗ Methods : ∗/

pub l i c s t a t i c Reconf igurat ionManager ge t In s tance () { . . . }

/∗R e a l i s a t i o n o f ISystemConf igurat ion ∗/

191

/∗R e a l i s a t i o n o f I A r c h i t e c t u r a l R e f l e c t i v e E x t e n s i o n ∗/

/∗R e a l i s a t i o n o f I R e c o n f i g u r a t i o n I n i t a l i s a t i o n ∗/

/∗R e a l i s a t i o n o f IRecon f i gurat i onExecut ion ∗/

/∗R e a l i s a t i o n o f IEventProcess ing ∗/

/∗R e a l i s a t i o n o f IComponentFactory∗/

}

Listing B.1: ReconfigurationManager class

pub l i c i n t e r f a c e ISystemConf igurat ion {

pub l i c S t r ing r e g i s t e r A c t o r (Icomponent c) ;

pub l i c void connect (Icomponent a , IComponent b) ;

pub l i c void d i s connec t (IComponent a , IComponent b) ;

}

Listing B.2: System configuration interface

pub l i c i n t e r f a c e I A r c h i t e c t u r a l R e f l e c t i v e E x t e n s i o n {

pub l i c Vector getNodes () ;

pub l i c IComponent getNode (St r ing s) ;

}

Listing B.3: Architectural reflective extension interface

pub l i c i n t e r f a c e I R e c o n f i g u r a t i o n I n i t a l i s a t i o n {

pub l i c Graph getReconf igurat ionGraph () ;

pub l i c Graph generateSequence (Vector<Reconf igurat ionAct ion> s) ;

}

Listing B.4: Reconfiguration initalisation interface

pub l i c i n t e r f a c e IRecon f i gurat ionExecut ion {

pub l i c void executeRecon f i gura t i on () ;

192

pub l i c void updateAl lConnect ions (IComponent oldC , IComponent newC) ;

}

Listing B.5: Reconfiguration execution interface

pub l i c i n t e r f a c e IEventProcess ing {

pub l i c void n o t i f y I n t e r r u p t (double dead l ine) ;

}

Listing B.6: Event processing interface

pub l i c ab s t r a c t c l a s s Reconf igurat ionAlgor i thm {

/∗ F i e l d s ∗/

Reconf igurat ionManager rm ;

/∗ Methods ∗/

pub l i c ab s t r a c t Graph executeRecon f i gura t i on (Graph g , double dead l ine) ;

}

Listing B.7: ReconfigurationAlgorithm class

pub l i c c l a s s In t e r rup t {

/∗ F i e l d s ∗/

p r i v a t e St r ing type ;

p r i v a t e double responseDead l ine ;

/∗ Methods ∗/

pub l i c In t e r rup t (S t r ing t , double d) { . . . }

}

Listing B.8: Interrupt class

193

pub l i c ab s t r a c t c l a s s Recon f igurat ionAct ion {

/∗ F i e l d s ∗/

IComponent ac to r ;

/∗ Methods ∗/

pub l i c IComponent getActor () { re turn acto r ;}

pub l i c ab s t r a c t IComponent getNextActor () ;

pub l i c ab s t r a c t Action c lone () ;

pub l i c ab s t r a c t double getEstimatedTimeUpdateConnections () ;

pub l i c ab s t r a c t double getEstimatedRevokeTime () ;

pub l i c ab s t r a c t double getExecutionTime () ;

pub l i c ab s t r a c t void execute () ;

}

Listing B.9: Reconfiguration action class

pub l i c c l a s s Graph {

/∗ F i e l d s ∗/

Vector<IComponent> [] s a f e S t e p s ;

/∗ Methods ∗/

pub l i c Vector<Reconf igurat ioonAct ions>

p a r t i t i o n (Vector<Reconf igurat ionAct ions> a) ;

pub l i c Edge addEdge (SafeStep p1 , SafeStep p2) ;

pub l i c Vector getNext () ;

pub l i c void addAction (Action a) ;

}

Listing B.10: Reconfiguration action graph class

194

Appendix C

Detailed Evaluation Results

C.1 Reconfiguration Execution Times

The following tables summarise the reconfiguration execution times that were used in

experiment 1 to calculate the percentage of deadlines met. All tables are of the form:

Deadlines [ms]

Pessimistic TA Mean Execution Time [ms]

Optimistic TA Mean Execution Time [ms]

Transactional RM Mean Execution Time [ms]

Pairwise T-Value (Pessimistic vs. Transactional)

Pairwise T-Value (Optimistic vs. Transactional)

195

0.15 10 20 30 40 50 60 70 80 90 100

12.42 12.31 12.38 16.79 25.26 41.11 48.95 47.81 54.69 61.40 62.73

8.36 8.44 8.88 18.78 26.05 40.77 48.22 50.02 52.70 58.38 56.89

69.35 69.28 72.55 72.35 68.72 74.76 73.44 72.30 74.16 75.42 70.09

-20.13 -20.71 -22.50 -19.42 -16.10 -14.47 -12.32 -12.02 -11.12 -9.97 -7.84

-21.65 -22.11 -23.90 -19.39 -16.47 -16.86 -15.10 -15.50 -15.81 -17.79 -22.85

Table C.1: Statistical values for low event arrival time

0.15 10 20 30 40 50 60 70 80 90 100

12.35 12.61 12.61 16.50 24.26 30.93 37.48 43.44 49.66 55.32 60.41

7.47 8.47 10.07 19.71 28.13 39.14 46.87 57.51 65.09 76.26 83.43

94.08 93.23 95.58 93.05 94.41 95.28 94.53 95.25 94.53 95.24 94.17

-74.13 -66.20 -80.24 -64.73 -66.96 -58.01 -56.41 -56.65 -49.79 -50.33 -55.70

-78.75 -69.99 -83.18 -65.44 -67.05 -51.84 -55.60 -45.89 -35.00 -13.06 -5.68

Table C.2: Statistical values for medium event arrival time

0.15 10 20 30 40 50 60 70 80 90 100

12.358 12.528 12.465 18.441 28.628 34.936 46.644 53.528 60.136 66.316 70.168

2.960 6.883 17.593 24.835 31.349 43.607 53.202 68.427 84.367 105.724 128.88

110.033 110.201 109.987 110.655 110.357 110.161 109.715 110.685 110.209 110.660 110.676

-369.7 -380.2 -398.3 -295.6 -271.4 -304 -154.9 -193.7 -152 -106.6 -117.9

-394.3 -383.1 -344.5 -354.6 -254.2 -178.9 -109.2 -68.3 -40.9 -6.2 -16.4

Table C.3: Statistical values for high event arrival time

196

C.2 Percentage of Reconfiguration Actions Remaining

The following tables summarise the detailed results for reconfiguration actions remaining

obtained in experiment 1. All tables in this chapter are of the form:

Deadlines [ms]

Pessimistic TA Mean Percentage of Actions Remaining [%]

Optimistic TA Mean Percentage of Actions Remaining [%]

Preemptive RM Mean Percentage of Actions Remaining [%]

Pairwise T-Value (Pessimistic vs. Transactional)

Pairwise T-Value (Optimistic vs. Transactional)

0.15 10 20 30 40 50 60 70 80 90 100

41.48 45.46 42.38 44 33.24 28.22 20.5 16.74 13.36 6.54 5.06

60.06 57.22 52.10 45.92 41.58 37.96 30.6 27.22 15.32 8.9 4.62

63.56 64.06 65.36 60.66 59.76 60.6 63.12 65.92 64.86 65.16 60.66

-5.81 -5.5 -7.27 -4.19 -6.54 -11.19 -13.38 -17.95 -16.88 -21.16 -21.36

-0.95 -2.03 -3.58 -4.75 -5.46 -8.13 -11.99 -14.72 -19.58 -22.80 -21.96

Table C.4: Statistical values for low event arrival rate

197

0.15 10 20 30 40 50 60 70 80 90 100

40.58 41.42 43.0 38.8 31.78 25.1 21.92 16.92 14.13 10.27 6.06

57.79 56.59 49.58 46.35 40.76 34.20 29.9 24.49 17.78 15.15 6.2

60.34 61.85 62.59 60.14 62.34 59.36 60.52 60.84 61.52 61.1 61.54

-13.54 -15.43 -13.87 -16.06 -22.91 -26.86 -30.82 -41.35 -41.41 -49.97 -54.65

-1.87 -4.13 -9.79 -9.19 -14.2 -18.34 -23.20 -29.59 -34.30 -51.66 -50.02

Table C.5: Statistical values for medium event arrival rate

0.15 10 20 30 40 50 60 70 80 90 100

41.06 40.33 40.70 36.97 31.81 26.49 21.60 18.67 12.55 6.75 3.09

59.9 56.97 50.71 50.06 43.55 39.0 30.42 27.37 25.17 19.94 14.02

60.2 60.4 60.0 60.0 59.85 60.24 60.19 61.23 60.07 59.9 59.9

-45.76 -40.79 -41.56 -45.37 -61.14 -91.94 -97.98 -118.4 -102.5 -128.8 -156.4

-0.84 -8.24 -19.52 -22.04 -27.51 -47.76 -52.99 -64.17 -68.49 -83.71 -94.1

Table C.6: Statistical values for high event arrival rate

198

Bibliography

Agha, G. (1986). Actors: a model of concurrent computation in distributed systems.

Cambridge, MA, USA: MIT Press.

Aksit, M., & Choukair, Z. (2003). Dynamic, adaptive and reconfigurable systems

overview and prospective vision. In ICDCSW ’03: Proceedings of the 23rd Interna-

tional Conference on Distributed Computing Systems Workshops. Providence, Rhode

Island, USA.

Almeida, a. P. A., Jo Van Sinderen, M., & Nieuwenhuis, L. (2001). Transparent dynamic

reconfiguration for CORBA. In DOA ’01: Proceedings of the Third International

Symposium on Distributed Objects and Applications. Rome, Italy.

Baresi, L., Di Nitto, E., & Ghezzi, C. (2006). Toward open-world software: Issue and

challenges. Computer , 39 (10), 36–43.

Brennan, S., Cahill, V., & Clarke, S. (2009). Applying non-constant volatility analysis

methods to software timeliness. In 12th Euromicro Conference on Real-Time Systems,

Work-in-progress Session. Dublin, Ireland.

Brinkschulte, U., Krakowski, C., Riemschneider, J., Kreuzinger, J., Pfeffer, M., & Un-

gerer, T. (2000). A microkernel architecture for a highly scalable real-time middleware.

In RTAS 2000, 6th IEEE Real-time Technology and Application Symposium, Work in

Progress session. Washington, DC, USA.

199

Cazzola, W., Savigni, A., Sosio, A., & Tisato, F. (1998). Architectural reflection: Bridg-

ing the gap between a running system and its architectural specification. In In pro-

ceedings of 6th Reengineering Forum (REF’98 , (pp. 8–11). IEEE.

Cheong, E. (2003). Design and implementation of tinyGALS: A programming model

for event-driven embedded systems. Tech. rep., Department of Electrical Engineering

and Computer Sciences, Iniversity of California at Berkeley, USA.

Cheong, E. (2007). Actor-Oriented Programming for Wireless Sensor Networks. Ph.D.

thesis, Electical Engineering and Computer Sciences, University of California at Berke-

ley, Berkeley, USA.

Cheong, E., Liebman, J., Liu, J., & Zhao, F. (2003). TinyGALS: A programming

model for event-driven embedded systems. In SAC ’03: Proceedings of the 2003 ACM

symposium on Applied computing . Melbourne, Florida, USA.

Cheong, E., & Liu, J. (2005). galsC: A language for event-driven embedded systems. In

DATE ’05: Proceedings of the Conference on Design, Automation and Test in Europe.

Munich, Germany.

Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola, L., Picco, G. P.,

Sivaharan, T., Weerasinghe, N., & Zachariadis, S. (2007). The runes middleware for

networked embedded systems and its application in a disaster management scenario. In

PERCOM ’07: Proceedings of the Fifth IEEE International Conference on Pervasive

Computing and Communications. White Plains, NY, USA.

Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts

and design. Pearson Education.

Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., & Siva-

haran, T. (2008). A generic component model for building systems software. ACM

Transactions on Computing Systems, 26 , 1–42.

200

Crossbow Technology Inc. (2004). Mica Motes. Website.

URL http://www.xbow.com/

David, P.-C., & Ledoux, T. (2006a). An aspect-oriented approach for developing self-

adaptive fractal components. In International Conference on Software Composition.

Vienna, Austria.

David, P.-C., & Ledoux, T. (2006b). Safe dynamic reconfigurations of Fractal architec-

tures with FScript. In Proceedings of the CBSE Workshop, ECOOP . Nantes, France.

Dowling, J. (2004). The Decentralised Coordination of Self-Adaptive Components for Au-

tonomic Distributed Systems. Ph.D. thesis, Department of Computer Science, Trinity

College Dublin, Dublin, Ireland.

Dunkels, A., Grnvall, B., & Voigt, T. (2004). Contiki - a lightweight and flexible oper-

ating system for tiny networked sensors. In Proceedings of the First IEEE Workshop

on Embedded Networked Sensors (Emnets-I). Tampa, Florida, USA.

Friedrich, L. F., Stankovic, J., Humphrey, M., Marley, M., & Haskins, J. (2001). A survey

of configurable, component-based operating systems for embedded applications. IEEE

Micro, 21 (3), 54–68.

Ghiasi, S., Nahapetian, A., Moon, H. J., & Sarrafzadeh, M. (2005). Reconfiguration in

network of embedded systems: Challenges and adaptive tracking case study. Journal

of Embedded Computing , Volume 1, Number 1/2005 , 147–166.

Goldman, R. (2009). Using the at91 timer/counter. Website.

URL http://www.sunspotworld.com/docs/AppNotes/TimerCounterAppNote.pdf

Goudarzi, K. M. (1999). Consistency preserving dynamic reconfiguration of distributed

systems. Ph.D. thesis, Imperial College, London, UK.

201

http://www.xbow.com/
http://www.sunspotworld.com/docs/AppNotes/TimerCounterAppNote.pdf

Goudarzi, K. M., & Kramer, J. (1996). Maintaining node consistency in the face of

dynamic change. In ICCDS ’96: Proceedings of the 3rd International Conference on

Configurable Distributed Systems. Annapolis, Maryland, USA.

Grace, P. (2008). Dynamic Adaptation in Middleware for Network Eccentric and Mobile

Applications, chap. 13, (pp. 285–302). Springer.

Halbwachs, N. (1993). Synchronous Programming of Reactive Systems. Kluwer Academic

Publishers.

Hammer, M. (2009). How to Touch a Running System - Reconfiguration of Stateful

Components. Ph.D. thesis, Ludwig-Maximilian-Universitaet, Munich, Germany.

Han, C.-C., Kumar, R., Shea, R., Kohler, E., & Srivastava, M. (2005). A dynamic

operating system for sensor nodes. In MobiSys ’05: Proceedings of the 3rd international

conference on Mobile systems, applications, and services. Seattle, WA, USA.

Hillman, J., & Warren, I. (2004). Quantitative analysis of dynamic reconfiguration

algorithms. In International Conference on Design, Analysis, and Simulation of Dis-

tributed Systems (DASD). Virginia, USA.

Hofmeister, C. (1994). Dynamic Reconfiguration of Distributed Applications. Ph.D.

thesis, University of Maryland, College Park, USA.

Huang, K., Santinelli, L., Chen, J.-J., Thiele, L., & Buttazzo, G. C. (2009). Adaptive

dynamic power management for hard real-time systems. In RTSS ’09: Proceedings of

the 2009 30th IEEE Real-Time Systems Symposium. Washington, D.C., USA.

Hughes, D., Thoelen, K., Horré, W., Matthys, N., del Cid Garcia, P. J., Michiels, S.,

Huygens, C., & Joosen, W. (2009). LooCi: A loosely-coupled component infrastructure

for networked embedded systems. In Proceedings of the 7th International Conference

on Advances in Mobile Computing & Multimedia,. Colmar, France: ACM.

202

Hughes, D., Thoelen, K., Horré, W., Matthys, N., Michiels, S., Huygens, C., Joosen, W.,

& Ueyama, J. (2010). Building wireless sensor network applications with LooCi. The

International Journal of Mobile Computing and Multimedia Communications (IJM-

CMC).

Issel, H. (2006). Dynamische Rekonfiguration in eingebetteten Regelungssystemen. Mas-

ter’s thesis, Hasso-Plattner-Institut fuer Softwaresystemtechnik, Universitaet Pots-

dam, Germany.

Janssens, N. (2006). Dynamic Software Reconfiguration in Programmable Networks.

Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

Janssens, N., Joosen, W., & Verbaeten, P. (2005). Necoman: Middleware for safe

distributed-service adaptation in programmable networks. IEEE Distributed Systems

Online, 6 (7).

Kon, F., Costa, F., Blair, G., & Campbell, R. H. (2002). The case for reflective middle-

ware. Communications of the ACM , 45 (6), 33–38.

Kopetz, H. (1997). Real-Time Systems Design Principles for Distributed Embedded Sys-

tems. Kluwer Academic Publishers.

Kramer, J., & Magee, J. (1985). Dynamic configuration for distributed systems. IEEE

Transactions on Software Engineering , 11 (4), 424–436.

Kramer, J., & Magee, J. (1990). The evolving philosophers problem: Dynamic change

management. IEEE Transactions on Software Engineering , 16 (11), 1293–1306.

Lau, K.-K., & Wang, Z. (2005). A taxonomy of software component models. In EU-

ROMICRO ’05: Proceedings of the 31st EUROMICRO Conference on Software Engi-

neering and Advanced Applications. Porto, Portugal.

Lee, E. A. (2000). What’s ahead for embedded software? Computer , 9 (33), 18–26.

203

Lee, E. A. (2002). Embedded software. In Advances in Computers, Vol 56 , (p. 2002).

Academic Press.

Lee, E. A., Neuendorffer, S., & Wirthlin, M. J. (2003). Actor-oriented design of embed-

ded hardware and software systems. Journal of Circuits, Systems, and Computers,

12 , 231–260.

Léger, M., Ledoux, T., & Coupaye, T. (2007). Reliable dynamic reconfigurations in the

fractal component model. In ARM ’07: Proceedings of the 6th international workshop

on Adaptive and reflective middleware. Newport Beach, California, USA.

Li, W. (2009). Dynaqos-rdf: a best effort for qos-assurance of dynamic reconfiguration

of dataflow systems. Journal of Software Maintenance and Evolution, 21 (1), 19–48.

Liu, J. W. S. (2000). Real-Time System. Prentice Hall.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., & Cheng, B. H. C. (2004). Composing

adaptive software. Computer , 37 (7), 56–64.

Michiels, S. (2003). Component Framework Technology for Adaptable and Manageable

Protocol Stacks. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

Mitchell, S., Naguib, H., Coulouris, G., & Kindberg, T. (1998). Dynamically reconfig-

uring multimedia components: A model-based approach. In Proceedings of the 8th

ACM SIGOPS European Workshop, Sintra, Portugal . Sintra, Portugal.

Mitchell, S., Naguib, H., Coulouris, G., & Kindberg, T. (1999). A QoS support frame-

work for dynamically reconfigurable multimedia applications. In Proceedings of the

IFIP WG 6.1 International Working Conference on Distributed Applications and In-

teroperable Systems II , (pp. 17–30). Deventer, The Netherlands.

Neamtiu, I., & Hicks, M. (2009). Safe and timely updates to multi-threaded programs.

ACM SIGPLAN Notices, 44 (6), 13–24.

204

Object Management Group (1999). OMG IDL specificiation. Website.

URL http://www.omg.org/gettingstarted

OSGI Alliance (2009). OSGI. Website.

URL http://www.osgi.org/Main/HomePage

OW2 Consortium (1999). Fractal Component Model. Website.

URL http://fractal.ow2.org/

Perrson, M. (2009). Adaptive Middleware for Self-Configurable Embedded Real-time Soft-

ware. Ph.D. thesis, KTH Stockholm, Stockholm, Sweden.

Polakovic, J., Ozcan, A., & Stefani, J.-B. (2006). Building reconfigurable component-

based os with think. In EUROMICRO ’06: Proceedings of the 32nd EUROMICRO

Conference on Software Engineering and Advanced Applications, (pp. 178–185). Cav-

tat/Dubrovnik, Croatia.

Polakovic, J., & Stefani, J.-B. (2008). Architecting reconfigurable component-based

operating systems. Journal of System Architecture, 54 (6), 562–575.

Popovici, A., Gross, T., & Alonso, G. (2002). Dynamic weaving for aspect-oriented

programming. In AOSD ’02: Proceedings of the 1st international conference on Aspect-

oriented software development . Enschede, The Netherlands.

Rasche, A., & Polze, A. (2003). Configuration and dynamic reconfiguration of

component-based applications with microsoft .net. In ISORC ’03: Proceedings of

the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing . Hakodate, Hokkaido, Japan.

Rasche, A., & Polze, A. (2005). Dynamic reconfiguration of component-based real-time

software. In WORDS ’05: Proceedings of the 10th IEEE International Workshop on

Object-Oriented Real-Time Dependable Systems. Sedona, Arizona, USA.

205

http://www.omg.org/gettingstarted
http://www.osgi.org/Main/HomePage
http://fractal.ow2.org/

Rasche, A., & Polze, A. (2008). Redac dynamic reconfiguration of distributed

component-based applications with cyclic dependencies. In ISORC ’08: Proceedings

of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed Com-

puting , (pp. 322–330). Orlando, Florida, USA.

Real, J., & Crespo, A. (2004). Mode change protocols for real-time systems: A survey

and new proposal. Real-time Systems, 26 , 161–197.

Regehr, J. (2008). Safe and Structured Use of Interrupts in Real-Time and Embedded

Software, chap. 16. Chapman and Hall.

Rutten, E. (2008). Reactive control of adaptive embedded systems: a position paper.

In ARM ’08: Proceedings of the 7th workshop on Reflective and adaptive middleware.

Leuven, Belgium.

Schmidt, D. C. (2002). Middleware for real-time and embedded systems. Communication

of the ACM , 45 (6), 43–48.

Schneider, E. (2004). A Middleware Approach For Real-Time Software Reconfiguration

on Distributed Embedded Systems. Ph.D. thesis, Universite Louis Pasteur Strasbourg,

Strasbourg, France.

Schneider, E., Picioroagǎ, F., & Brinkschulte, U. (2004). Dynamic reconfiguration

through osa+, a real-time middleware. In DSM ’04: Proceedings of the 1st inter-

national doctoral symposium on Middleware. Toronto, Canada.

Seto, D., Krogh, B., Sha, L., & Chutinan, A. (1998). The simplex architecture for safe

online control system upgrades. In Proceedings of the American Control Conference,

vol. 6, (pp. 3504–3508). Philadelphia, PA, USA.

Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging

discipline. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

206

Simon, D., Cifuentes, C., Cleal, D., Daniels, J., & White, D. (2006). Java on the

bare metal of wireless sensor devices: the squawk java virtual machine. In VEE ’06:

Proceedings of the 2nd international conference on Virtual execution environments.

Ottawa, Canada.

Soules, C. A. N., Appavoo, J., Hui, K., Wisniewski, R. W., Silva, D. D., Ganger, G. R.,

Krieger, O., Stumm, M., Auslander, M., Ostrowski, M., Rosenburg, B., & Xenidis,

J. (2003). System support for online reconfiguration. In Proceedings of the Usenix

Technical Conference. San Antonio, TX, USA.

Stewart, D., & Khosla, P. (1996). The chimera methodology: Designing dynamically

reconfigurable and reusable real-time software using port-based objects. International

Journal of Software Engineering and Knowledge Engineering , 6 , 249–277.

Stewart, D., Volpe, R., & Khosla, P. (1997). Design of dynamically reconfigurable real-

time software using port-based objects. IEEE Transactions on Software Engineering ,

23 (12), 759–776.

Stewart, D. B., & Arora, G. (1996). Dynamically reconfigurable embedded software

- does it make sense? In ICECCS ’96: Proceedings of the 2nd IEEE International

Conference on Engineering of Complex Computer Systems. Montreal, Canada.

Stewart, D. B., Schmitz, D. E., & Khosla, P. K. (1992). The chimera ii real-time

operating system for advanced sensor-based robotic applications. IEEE Transactions

on Systems, Man, and Cybernetics, (pp. 1282–1295).

Strunk, E. A., & Knight, J. C. (2004). Assured reconfiguration of embedded real-time

software. In DSN ’04: Proceedings of the 2004 International Conference on Dependable

Systems and Networks (DSN’04). Florence, Italy.

Sun (2006). Sun small programmable object technology (sun SPOT) owner’s manual.

207

Website.

URL http://www.sunspotworld.com/docs/Green/SunSPOT-OwnersManual.pdf

Sun (2009). Java ME API. Website.

URL http://java.sun.com/javame/reference/apis.jsp

Tešanović, A., Amirijoo, M., Nilsson, D., Norin, H., & Hansson, J. (2005). Ensuring

real-time performance guarantees in dynamically reconfigurable embedded systems. In

EUC 2005: Proceedings of the International Conference for Embedded and Ubiquitous

Computing , (pp. 131–141). Nagasaki, Japan.

Trapp, M., Adler, R., Förster, M., & Junger, J. (2007). Runtime adaptation in safety-

critical automotive systems. In SE’07: Proceedings of the 25th conference on IASTED

International Multi-Conference. Innsbruck, Austria.

Truyen, E., Janssens, N., Sanen, F., & Joosen, W. (2008). Support for distributed

adaptations in aspect-oriented middleware. In AOSD ’08: Proceedings of the 7th

international conference on Aspect-oriented software development . Brussels, Belgium.

Vandewoude, Y. (2007). Dynamically updating component-oriented systems. Ph.D. the-

sis, Katholieke Universiteit Leuven, Leuven, Belgium.

Wegdam, M. (2003). Dynamic Reconfiguration and Load Distribution in Component

Middleware. Ph.D. thesis, University of Twente, Twente, The Netherlands.

Welch, I., & Stroud, R. J. (2000). Kava - a reflective java based on bytecode rewriting.

In Proceedings of the 1st OOPSLA Workshop on Reflection and Software Engineering ,

(pp. 155–167). London, UK.

Wermelinger, M. (1997). A hierarchic architecture model for dynamic reconfiguration.

In PDSE ’97: Proceedings of the 2nd International Workshop on Software Engineering

for Parallel and Distributed Systems. Boston, MA, ,USA.

208

http://www.sunspotworld.com/docs/Green/SunSPOT-OwnersManual.pdf
http://java.sun.com/javame/reference/apis.jsp

Yi, S., Min, H., Cho, Y., & Hong, J. (2008). Molecule: An adaptive dynamic recon-

figuration scheme for sensor operating systems. Computer Communications, 31 (4),

699–707.

Zhang, J., Chen, B., Yang, Z., & McKinley, P. (2005). Enabling safe dynamic component-

based software adaptation. In Architecting Dependable Systems Vol 3, Springer Lecture

Notes for Computer Science, (pp. 194–211).

Zhao, Z., & Li, W. (2007a). Dynamic reconfiguration of distributed data flow systems.

In COMPSAC ’07: Proceedings of the 31st Annual International Computer Software

and Applications Conference. Bejing, China.

Zhao, Z., & Li, W. (2007b). Influence control for dynamic reconfiguration. In

ASWEC’07: Proceedings of the 2007 Australian Software Engineering Conference.

Melbourne, Australia.

209

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Background
	Motivation
	Challenges for Dynamic Software Reconfiguration in Embedded Software

	Thesis Aims and Objectives
	Contributions
	Scope
	Thesis Outline
	Summary

	Chapter Dynamic Reconfiguration of Embedded Software
	Dynamic Software Reconfiguration of Embedded Software
	Dynamic Software Reconfiguration Rationale
	Reconfiguration Management
	Reconfiguration Execution
	Reconfiguration Execution Models in Hard Real-Time Systems

	Features of a Time-Adaptive Reconfiguration Model for Embedded Software
	System Model Characteristics
	Reconfiguration Model Characteristics
	Execution Model Characteristics
	Summary

	Review of Existing Reconfiguration Models
	Runes
	Think
	DynamicCon
	DynaQoS-RDF
	Djinn
	Port-based Objects
	Adaptive Reconfiguration Models

	Analysis
	System Model Requirements
	Reconfiguration Model Features
	Execution Model Features
	Reconfiguration Constraints

	Relevance to TimeAdapt
	System Model
	Reconfiguration Model
	Other Influential Concepts

	Summary

	Chapter TimeAdapt Design
	Requirements for a Time-Adaptive RM
	TimeAdapt
	TimeAdapt System Model
	Reconfiguration Model

	TimeAdapt Reconfiguration Model
	System Assumptions
	Definition of Elements

	TimeAdapt Processes and Algorithms
	Reconfiguration Design Time
	Reconfiguration Runtime

	Summary

	Chapter TimeAdapt Implementation
	Architecture Overview
	TimeAct Component Model
	IComponent
	IChannel

	TimeAdapt Reconfiguration Model
	Reconfiguration Manager
	Reconfiguration Action Graph
	Scheduling Algorithms
	Incoming Events
	Reconfiguration Actions

	Summary

	Chapter Evaluation
	Objectives
	Metrics
	Experiments
	Hardware and Software Configuration
	Parameters
	Experiment 1: Uniform Reconfiguration
	Experiment 2: Heterogeneous Reconfiguration
	Experiment 3: Varying Safe Step Size
	Experiment 4: Multiple Event Sources
	Experiment 5: Reconfiguration Execution Overhead

	Summary

	Chapter Conclusion and Future Work
	Achievements
	Future Work
	Integration with a time-predictive statistical model
	Support for non-dataflow based computational models
	Improvement of Timing Guarantees
	Extension to TimeAdapt Design
	Extension to TimeAdapt Implementation

	Summary

	Appendix TimeAct Component Model Implementation
	Appendix TimeAdapt Reconfiguration Model
	Appendix Detailed Evaluation Results
	Reconfiguration Execution Times
	Percentage of Reconfiguration Actions Remaining

