
Integrated Intra-HAN and Inter-HAN
Service Interoperability

A thesis submitted to the

University of Dublin, Trinity College,

in fulfilment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Zohar Etzioni

Knowledge and Data Engineering,

Department of Computer Science,

Trinity College, University of Dublin.

September 2011

 2

Declaration
I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

Zohar Etzioni

September 2011

 3

Permission to Lend and/or Copy
I agree to deposit this thesis in the University’s open access institutional repository or allow

the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College

Library conditions of use and acknowledgement.

Zohar Etzioni

September 2011

 4

Acknowledgments
Firstly, I would like to thank my supervisor, Dr. Dave Lewis, whose vast knowledge and

experience, patience and encouragement has made this work possible. Special thanks are

also reserved for Dr. John Keeney, my co-supervisor, whose insightful input was invaluable.

I would also like to extend my gratitude to the members of the Knowledge and Data

Engineering Group (KDEG) in Trinity College Dublin. Their friendship and insightful

contributions have had a significant impact on this research.

I would like to express my gratitude to the Science Foundation Ireland, for funding the

research detailed in this thesis.

As importantly, I would like to thank my family. My parents, for their priceless

encouragement, belief and guidance throughout my life, and my wife, Drorit, for her

patience and unconditional love and support.

Special thanks to Alex K. for the inspiration, guidance, and support which made this

research possible, and for teaching me the true meaning of insanity.

Most of all to my children, Nimrod, Noa, and Nadav for their patience, I promise I’ll play

with you now!

 5

Abstract
In recent years the Home Area Network (HAN) has been going through a revolution. From

enabling multiple desktops in the household to share an Internet connection, it evolved as a

service-oriented platform, enabling devices to communicate with each other. The HAN

hosts devices from multiple applications domains including entertainment, home

automation, security and healthcare. A plethora of different technologies have been

suggested for addressing the challenges of the HAN, have been widely deployed. These

protocols and standards enable devices and services to be discovered and to interact with

each other, however they lack native support for service composition, are incompatible with

each other, and are limited by design to a single HAN. While service interoperability efforts

have focused traditionally on a single household, the growing interest and user demand for

content sharing has promoted efforts into supporting interoperability of the existing HAN

service between HANs. While a number of systems in literature address the intra-HAN and

inter-HAN service interoperability separately, the problem of integrated service

interoperability across both remains unsolved.

This thesis therefore addresses the need for an integrated system to support both intra-HAN

service interoperability enabling services from multiple service protocols to interact and be

composed, and inter-HAN service interoperability, enabling services from multiple service

protocols to be securely shared with remote HANs. This thesis synthesises the requirements

for an integrated service interoperability system and introduces the integrated Krox system

architecture and design that satisfy these requirements through a pluggable architecture with

plug-ins per service protocol and an extensible event model that specifies the interaction

between plug-in components in remote HANs. The Krox architecture supports inter-HAN

service interoperability through service virtualisation. It supports intra-HAN service

interoperability through representation of local and remote services as web services in the

 6

local HAN enabling their composition using standard web service orchestration techniques.

The Krox system architecture builds on the Instant Messaging & Presence (IM&P) user

metaphor, to share devices and composite services between HANs in a secure and scalable

manner. This thesis demonstrates the feasibility of the architecture and its generality across

service technologies through the implementation of plug-in instances for UPnP and Jini.

The thesis presents an evaluation of the key Krox system performance parameters that affect

intra-HAN and inter-HAN service interoperability. Finally the thesis includes a

comprehensive security analysis of potential relevant attacks on a HAN and how they can

use the system to spread to remote HANs.

 7

Contents
Integrated	
 Intra-­‐HAN	
 and	
 Inter-­‐HAN	
 Service	
 Interoperability	
 	
 1	

Declaration	
 ...	
 2	

Permission	
 to	
 Lend	
 and/or	
 Copy	
 ..	
 3	

Acknowledgments	
 ..	
 4	

Abstract	
 ..	
 5	

Contents	
 ...	
 7	

List	
 of	
 Figures	
 ...	
 14	

List	
 of	
 Tables	
 ..	
 17	

Chapter	
 1	
 INTRODUCTION	
 ...	
 18	

1.1.	
 Motivation	
 ..	
 20	

1.2.	
 Research	
 question	
 ...	
 21	

1.3.	
 Research	
 objectives	
 ...	
 22	

1.4.	
 Research	
 methodology	
 ...	
 23	

1.5.	
 Contributions	
 of	
 the	
 research	
 ..	
 24	

1.6.	
 Publications	
 ...	
 25	

1.7.	
 Thesis	
 outline	
 ..	
 27	

Chapter	
 2	
 BACKGROUND	
 ..	
 29	

2.1.	
 Home	
 area	
 networking	
 ..	
 30	

2.1.1.	
 Physical	
 medium	
 connectivity	
 for	
 HAN	
 ..	
 32	

2.1.2.	
 Summary	
 ..	
 33	

2.2.	
 Service-­‐oriented	
 computing	
 ...	
 34	

2.2.1.	
 Web	
 services	
 ...	
 35	

 8

2.2.2.	
 Service	
 composition	
 ..	
 36	

2.3.	
 HAN	
 service	
 standards	
 and	
 protocols	
 ...	
 38	

2.3.1.	
 Universal	
 Plug	
 and	
 Play	
 ..	
 41	

2.3.2.	
 Device	
 Profile	
 for	
 Web	
 Services	
 ..	
 44	

2.3.3.	
 Jini	
 ..	
 46	

2.3.4.	
 Service	
 Location	
 Protocol	
 ..	
 47	

2.3.5.	
 ZeroConf	
 ...	
 49	

2.3.6.	
 Open	
 Service	
 Gateway	
 initiative	
 ...	
 51	

2.3.7.	
 Home	
 Audio-­‐Video	
 interoperability	
 ...	
 53	

2.3.8.	
 Summary	
 ..	
 54	

2.3.8.1.	
 Scope	
 and	
 market	
 uptake	
 ...	
 54	

2.3.8.2.	
 Service	
 orientation	
 ..	
 55	

2.3.8.3.	
 Generality	
 ..	
 56	

2.3.8.4.	
 Non	
 functional	
 aspects	
 ..	
 56	

2.3.8.5.	
 Extensibility	
 ...	
 57	

2.4.	
 Service	
 oriented	
 HAN	
 ..	
 58	

2.5.	
 Summary	
 ...	
 59	

Chapter	
 3	
 STATE	
 OF	
 THE	
 ART	
 ...	
 60	

3.1.	
 HAN	
 service	
 interoperability	
 ...	
 61	

3.2.	
 Intra-­‐HAN	
 service	
 interoperability	
 ..	
 62	

3.2.1.	
 Bridge-­‐based	
 interoperability	
 ...	
 62	

3.2.2.	
 Middleware-­‐based	
 interoperability	
 ..	
 64	

3.2.3.	
 Home	
 service	
 composition	
 ...	
 66	

3.2.4.	
 Analysis	
 ...	
 68	

3.2.4.1.	
 Analysis	
 of	
 bridge-­‐based	
 approaches	
 ...	
 69	

3.2.4.2.	
 Analysis	
 of	
 middleware-­‐based	
 approaches	
 ..	
 69	

3.2.4.3.	
 Analysis	
 of	
 service	
 composition	
 ..	
 70	

3.3.	
 Inter-­‐HAN	
 service	
 interoperability	
 ..	
 71	

3.3.1.	
 IP	
 addressing	
 in	
 a	
 HAN	
 ...	
 73	

3.3.2.	
 Web-­‐based	
 content	
 sharing	
 ..	
 74	

3.3.2.1.	
 Analysis	
 ..	
 76	

3.3.3.	
 Peer-­‐to-­‐peer	
 sharing	
 ...	
 76	

3.3.3.1.	
 Analysis	
 ..	
 79	

3.3.4.	
 Distributed	
 OSGi-­‐based	
 sharing	
 ...	
 80	

3.3.4.1.	
 Analysis	
 ..	
 81	

 9

3.3.5.	
 SIP-­‐based	
 sharing	
 ...	
 81	

3.3.5.1.	
 Analysis	
 ..	
 84	

3.3.6.	
 VPN-­‐based	
 sharing	
 ...	
 84	

3.3.6.1.	
 Analysis	
 ..	
 87	

3.3.7.	
 Proprietary	
 protocols	
 for	
 sharing	
 ..	
 87	

3.3.7.1.	
 Analysis	
 ..	
 90	

3.3.8.	
 Conclusions	
 ..	
 91	

3.4.	
 System	
 Requirements	
 ...	
 95	

3.4.1.	
 Intra-­‐HAN	
 service	
 interoperability	
 requirements	
 ...	
 95	

3.4.2.	
 Inter-­‐HAN	
 service	
 interoperability	
 requirements	
 ...	
 96	

3.4.2.1.	
 Seamless	
 integration	
 ...	
 96	

3.4.2.2.	
 Private	
 networks	
 and	
 firewalls	
 ...	
 97	

3.4.2.3.	
 Security	
 ..	
 97	

3.4.2.4.	
 Performance	
 ..	
 98	

3.4.2.5.	
 Extensibility	
 ...	
 99	

3.4.2.6.	
 Manageability	
 ...	
 99	

3.5.	
 Summary	
 ...	
 99	

Chapter	
 4	
 ARCHITECTURE	
 AND	
 DESIGN	
 ...	
 100	

4.1.	
 Architectural	
 concepts	
 ..	
 101	

4.1.1.	
 Plug-­‐in	
 architecture	
 ..	
 103	

4.1.2.	
 Instant	
 Messaging	
 &	
 Presence	
 ...	
 105	

4.1.2.1.	
 History	
 of	
 Instant	
 Messaging	
 &	
 Presence	
 ..	
 105	

4.1.2.2.	
 IM&P	
 as	
 a	
 user	
 metaphor	
 ...	
 106	

4.1.2.3.	
 IM&P	
 as	
 a	
 communication	
 substrate	
 ...	
 107	

4.1.3.	
 Automatic	
 resource	
 virtualisation	
 ..	
 108	

4.2.	
 High-­‐level	
 architecture	
 ...	
 109	

4.2.1.	
 Communication	
 subsystem	
 ...	
 110	

4.2.2.	
 Plug-­‐in	
 framework	
 ..	
 113	

4.2.2.1.	
 Plug-­‐in	
 Manager	
 ...	
 115	

4.2.2.2.	
 Local	
 Network	
 Controller	
 ...	
 116	

4.2.2.3.	
 Virtual	
 Resource	
 Manager	
 ...	
 118	

4.2.2.4.	
 Summary	
 ...	
 120	

4.2.3.	
 Capability	
 sharing	
 management	
 subsystem	
 ..	
 120	

4.2.4.	
 Service	
 composition	
 subsystem	
 ..	
 121	

4.2.4.1.	
 HAN	
 service	
 orchestration	
 ..	
 122	

 10

4.2.5.	
 System	
 administration	
 application	
 ..	
 123	

4.2.6.	
 Deployment	
 considerations	
 ..	
 123	

4.3.	
 System	
 design	
 ...	
 124	

4.3.1.	
 Communication	
 subsystem	
 ...	
 125	

4.3.1.1.	
 eXtensible	
 Messaging	
 and	
 Presence	
 Protocol	
 ...	
 126	

4.3.1.2.	
 XMPP	
 in	
 Krox	
 communication	
 subsystem	
 ...	
 127	

4.3.2.	
 Capability	
 sharing	
 manager	
 ..	
 129	

4.3.3.	
 UPnP	
 ..	
 130	

4.3.3.1.	
 UPnP	
 Architecture	
 ...	
 130	

4.3.3.2.	
 UPnP	
 service	
 protocol	
 plug-­‐in	
 ..	
 135	

4.3.3.3.	
 Summary	
 ...	
 148	

4.3.4.	
 Jini	
 ...	
 149	

4.3.4.1.	
 Jini	
 architecture	
 ..	
 149	

4.3.4.2.	
 Jini	
 service	
 protocol	
 plug-­‐in	
 ..	
 151	

4.3.4.3.	
 Summary	
 ...	
 157	

4.3.5.	
 Service	
 composition	
 subsystem	
 ..	
 159	

4.3.5.1.	
 UPnP	
 to	
 web	
 service	
 mapping	
 ...	
 161	

4.3.5.2.	
 Jini	
 to	
 web	
 service	
 mapping	
 ..	
 161	

4.3.5.3.	
 Composing	
 home	
 services	
 ...	
 162	

4.3.5.4.	
 Composite	
 services	
 as	
 UPnP	
 services	
 ...	
 163	

4.3.5.5.	
 Summary	
 ...	
 164	

4.3.6.	
 Security	
 considerations	
 ...	
 165	

4.3.6.1.	
 Authentication	
 ..	
 165	

4.3.6.2.	
 Confidentiality	
 ...	
 165	

4.3.6.3.	
 Authorisation	
 ...	
 165	

4.3.6.4.	
 Rate	
 limiting	
 ...	
 166	

4.3.6.5.	
 Miscellaneous	
 ..	
 166	

4.4.	
 Conclusions	
 ...	
 166	

4.4.1.	
 Requirements	
 ..	
 167	

4.4.1.1.	
 Intra-­‐HAN	
 service	
 interoperability	
 ..	
 167	

4.4.1.2.	
 Inter-­‐HAN	
 service	
 interoperability	
 ..	
 168	

4.4.2.	
 Summary	
 ...	
 172	

Chapter	
 5	
 IMPLEMENTATION	
 ..	
 174	

5.1.	
 Prototype	
 system	
 ..	
 175	

5.1.1.	
 Technology	
 selection	
 ..	
 175	

5.1.2.	
 Implementation	
 components	
 ...	
 176	

 11

5.2.	
 Communication	
 subsystem	
 ...	
 177	

5.2.1.	
 Messaging	
 and	
 presence	
 ...	
 179	

5.3.	
 Capability	
 sharing	
 manager	
 ..	
 180	

5.4.	
 Service	
 protocol	
 plug-­‐in	
 framework	
 ..	
 182	

5.5.	
 UPnP	
 service	
 protocol	
 plug-­‐in	
 ..	
 184	

5.5.1.	
 Discovery	
 ...	
 185	

5.5.2.	
 Description	
 ...	
 187	

5.5.3.	
 Control	
 and	
 post	
 processing	
 ...	
 189	

5.5.4.	
 Eventing	
 ...	
 190	

5.5.5.	
 Testing	
 ..	
 192	

5.5.6.	
 Summary	
 ...	
 193	

5.6.	
 Jini	
 service	
 protocol	
 plug-­‐in	
 ..	
 194	

5.6.1.	
 Service	
 discovery	
 ...	
 196	

5.6.1.1.	
 Jini	
 service	
 implementation	
 dynamic	
 generation	
 ..	
 197	

5.6.1.2.	
 Jini	
 service	
 proxy	
 dynamic	
 generation	
 ...	
 199	

5.6.2.	
 Service	
 invocation	
 ...	
 199	

5.6.3.	
 Testing	
 ..	
 200	

5.6.4.	
 Summary	
 ...	
 201	

5.7.	
 System	
 administration	
 ..	
 202	

5.8.	
 Client	
 application	
 prototype	
 ...	
 203	

5.9.	
 Home	
 service	
 composition	
 with	
 BPEL	
 ...	
 205	

5.9.1.	
 WS-­‐BPEL	
 ..	
 206	

5.9.2.	
 UPnP	
 to	
 web	
 service	
 mapping	
 extension	
 ..	
 206	

5.9.3.	
 Jini	
 to	
 web	
 service	
 mapping	
 extension	
 ...	
 209	

5.9.4.	
 Composing	
 home	
 services	
 ..	
 210	

5.9.5.	
 Representing	
 BPEL	
 services	
 as	
 UPnP	
 devices	
 ...	
 212	

5.10.	
 Summary	
 ...	
 213	

Chapter	
 6	
 EVALUATION	
 ..	
 216	

6.1.	
 Evaluation	
 goals	
 ..	
 216	

6.1.1.	
 Performance	
 ...	
 217	

6.1.2.	
 Security	
 ..	
 217	

6.2.	
 Inter-­‐HAN	
 service	
 interoperability	
 performance	
 evaluation	
 	
 218	

6.2.1.	
 UPnP	
 ..	
 218	

6.2.1.1.	
 Evaluation	
 parameters	
 ..	
 219	

 12

6.2.1.2.	
 UPnP	
 emulated	
 network	
 design	
 ..	
 221	

6.2.1.3.	
 Experimental	
 setup	
 ...	
 225	

6.2.1.4.	
 Experimental	
 results	
 ..	
 229	

6.2.2.	
 Jini	
 ...	
 240	

6.2.3.	
 Summary	
 ...	
 241	

6.2.3.1.	
 Scale-­‐up	
 (intra-­‐HAN)	
 –	
 REQ	
 #16	
 ..	
 241	

6.2.3.2.	
 Scale-­‐up	
 (inter-­‐HAN)	
 –	
 REQ	
 #17	
 ..	
 242	

6.2.3.3.	
 Scale-­‐down	
 –	
 REQ	
 #18	
 ..	
 243	

6.2.3.4.	
 Concurrent	
 access	
 –	
 REQ	
 #19	
 ..	
 243	

6.2.3.5.	
 Conclusions	
 ..	
 243	

6.3.	
 Intra-­‐HAN	
 service	
 interoperability	
 performance	
 evaluation	
 	
 244	

6.3.1.	
 Experiment	
 Environment	
 ...	
 244	

6.3.2.	
 Web	
 services	
 ..	
 244	

6.3.3.	
 Summary	
 ...	
 245	

6.4.	
 Security	
 analysis	
 ..	
 246	

6.4.1.	
 Communication	
 subsystem	
 ...	
 247	

6.4.1.1.	
 Messages	
 flood	
 ..	
 248	

6.4.1.2.	
 Man	
 in	
 the	
 middle	
 ..	
 250	

6.4.1.3.	
 Unwanted	
 communication	
 ..	
 251	

6.4.1.4.	
 Stolen	
 password	
 ...	
 252	

6.4.2.	
 UPnP	
 service	
 protocol	
 plug-­‐in	
 ..	
 252	

6.4.2.1.	
 Denial	
 of	
 Service	
 ...	
 253	

6.4.2.2.	
 Malicious	
 management	
 actions	
 ...	
 260	

6.4.2.3.	
 Eavesdropping	
 ..	
 263	

6.4.3.	
 Jini	
 service	
 protocol	
 plug-­‐in	
 ..	
 263	

6.4.3.1.	
 Denial	
 of	
 Service	
 ...	
 263	

6.4.3.2.	
 Eavesdropping	
 ..	
 266	

6.5.	
 Conclusions	
 ...	
 266	

6.5.1.	
 Performance	
 ...	
 267	

6.5.2.	
 Security	
 ..	
 268	

6.5.3.	
 Achieving	
 of	
 evaluation	
 and	
 security	
 requirements	
 ...	
 269	

Chapter	
 7	
 CONCLUSIONS	
 AND	
 FUTURE	
 WORK	
 ...	
 272	

7.1.	
 Overview	
 of	
 this	
 thesis	
 ..	
 272	

7.2.	
 Contributions	
 of	
 this	
 thesis	
 ...	
 275	

7.3.	
 Further	
 work	
 ..	
 277	

7.3.1.	
 Additional	
 Krox	
 plug-­‐ins	
 ...	
 278	

 13

7.3.2.	
 Capability	
 Sharing	
 Management	
 ...	
 278	

7.3.3.	
 Lightweight	
 service	
 composition	
 for	
 HAN	
 ..	
 279	

7.3.4.	
 Service	
 composition	
 tools	
 for	
 HAN	
 ..	
 279	

7.3.5.	
 Rate	
 limiting	
 for	
 communication	
 subsystem	
 ...	
 280	

References	
 ...	
 281	

 14

List of Figures
	

Figure 1 High-level Plug-in Architecture .. 103	

Figure 2 Krox System High Level Architecture .. 109	

Figure 3 Krox Communication Subsystem ... 112	

Figure 4 Krox Plug-in Event Model .. 116	

Figure 5 Krox System Design ... 125	

Figure 6 UPnP Architecture Stack .. 131	

Figure 7 UPnP Device Announcement Example .. 131	

Figure 8 UPnP Device Description Example .. 133	

Figure 9 Multi-HAN UPnP Discovery Protocol Interaction ... 137	

Figure 10 Live Device Announcement (left) and the Corresponding Virtual Device

Announcement (right) ... 139	

Figure 11 Multi-HAN UPnP Description Protocol Interaction ... 142	

Figure 12 Multi-HAN UPnP Control Protocol Interaction ... 143	

Figure 13 Multi-HAN UPnP Eventing Protocol Interaction ... 146	

Figure 14 Jini Architecture .. 149	

Figure 15 Multi-HAN Jini Service Discovery .. 153	

Figure 16 Jini Service Plug-in Example .. 154	

Figure 17 Multi-HAN Jini Service Invocation .. 156	

Figure 18 Generating a UPnP Device Proxy for a BPEL Service 164	

 15

Figure 19 Krox System Prototype UML Class Diagram ... 177	

Figure 20 Communication Subsystem Implementation .. 178	

Figure 21 Krox Communication Subsystem Interaction ... 179	

Figure 22 Capability Sharing Manager UML Class Diagram ... 181	

Figure 23 Plug-in Framework Implementation ... 182	

Figure 24 (a) LNC Interface (b) VRM Interfaces ... 183	

Figure 25 UPnP Plug-in Implementation .. 185	

Figure 26 UPnP Plug-in Discovery Protocol Implementation .. 186	

Figure 27 UPnP Plug-in Description Protocol Implementation .. 188	

Figure 28 UPnP Control and Post Processing Protocol Implementation 189	

Figure 29 UPnP Plug-in Eventing Protocol Implementation .. 191	

Figure 30 Jini Plug-in Prototype Implementation UML Class Diagram 195	

Figure 31 Jini Plug-in Service Discovery Prototype Implementation 196	

Figure 32 Dynamic Proxy Implementation for a Jini Service Interface 198	

Figure 33 Jini Plug-in Service Invocation Prototype Implementation 199	

Figure 34 Krox System Configuration File ... 203	

Figure 35 Krox Client Application Prototype ... 204	

Figure 36 UPnP AVTransport Service Description (right) and Corresponding Web Service

(left) .. 207	

Figure 37 AVTransport Web Service Generated Code ... 208	

Figure 38 Jini Service Interface (top) and Corresponding Web Service (bottom) 209	

Figure 39 HAN Service Orchestration with BPEL ... 211	

Figure 40 UPnP Device Description Corresponding to a BPEL Composite Service 213	

Figure 41 Emulated Device Architecture .. 223	

Figure 42 Experimental Setup ... 228	

Figure 43 Krox System CPU Utilisation with polling ... 230	

Figure 44 Krox System Heap Memory Utilisation .. 231	

 16

Figure 45 Krox System Search Processing Time .. 232	

Figure 46 Krox System Remote Discovery Processing Time ... 233	

Figure 47 Krox System Remote Description Processing Time ... 234	

Figure 48 Krox System Remote Invocation Processing Time .. 236	

Figure 49 Krox System Event Notification Processing Time ... 237	

Figure 50 Krox System Bandwidth Utilisation ... 238	

Figure 51 Communication Subsystem Attack Tree .. 248	

Figure 52 Denial of Service Attack Tree for UPnP ... 253	

Figure 53 Malicious Management Actions Attack Tree ... 260	

Figure 54 Denial of Service Attack Tree for Jini .. 263	

 17

List of Tables
Table 1 Service Protocols and Standards Comparison .. 57	

Table 2 Home Service Composition Approaches ... 71	

Table 3 Inter-HAN Service Interoperability Architectures Comparison 91	

Table 4 UPnP Plug-in Event Model .. 194	

Table 5 Jini Plug-in Event Model .. 202	

Table 6 KROX System Prototype Requirements Addressing .. 214	

Table 7 Performance Overhead of UPnP Web Service Proxy .. 245	

Table 8 Performance Evaluation Results Summary .. 268	

 18

Chapter 1
INTRODUCTION

Recent years have radically changed the concept of a Home Area Network (HAN) beyond

enabling multiple desktops and laptops at home to share an Internet connection and

exchange documents and files. Led by the increasing availability of high-speed Internet

connectivity and the reduction in cost of high performance networked devices, the HAN

now hosts many network-enabled devices in various application domains including digital

entertainment, home automation, intelligent appliances, home security, and healthcare. With

network-enabled devices including TV, media centres, Network-Attached Storage (NAS),

tablets, cameras, printers, game consoles, picture frames, and others, gaining in popularity,

it is predicted that the number of connected devices on HANs will keep rising to over 7

billion devices by 2015 [56]. In parallel, the number of HANs has grown from 100 million

in 2007 to an expected 200 million households with a HAN in 2011 [44]. Home networking

has the potential therefore to cut across the traditional boundaries between application

domains and industries. Legacy home automation systems (e.g. for the control of lighting,

heating and cooling) have the potential to be fused with state of the art entertainment

systems, home security systems, and health monitoring systems amongst many others to

yield new integrated applications. However, the persistence of this application-centred

industry fragmentation means that no single domain-independent standard for exposing and

invoking services in the HAN has emerged. With the assumption that no single technology

for device internetworking is likely to become a de facto standard across these multiple

application domains, interoperability between protocols becomes of paramount importance.

Service Oriented Computing (SOC) [96] is a promising paradigm that can enable

interoperability between different service protocols, potentially from different device

vendors. While already used in several HAN service protocols in a different way, applying

SOC concepts and principles more consistently in the HAN can open new opportunities for

 19

both consumers and service providers to create new applications and new reusable services

from existing HAN device services through service composition. In this way, service

composition can motivate more application-driven intra-HAN service interoperability.

In addition, content sharing via the Internet has become popular in recent years. Peer-to-peer

file sharing systems that broker sharing activities beyond immediate social cycle of family

and friends, have often conflicted with the interests of copyright holders. However, in the

recent years the commercial success of many Web 2.0 based enterprises such as Facebook1,

and Flickr2, was strongly based on harnessing the compulsion for sharing within social

networks. Users wish to share their media with family and friends, however, they may be

wary of doing so while giving up their usage and administration rights to a third party [113].

There are several reasons for users concern, such as the potential exposure of their

information to 3rd parties, or unintentional exposure beyond the expected audience. In the

context of the HAN, sharing resources is not limited to just content, as other networked

services available at home can also be usefully shared with trusted remote HANs. Home

users can benefit from consuming various services in other networks, e.g. remote security or

health monitoring, printing on a remote printer, using available space in a remote Digital

Video Recorder (DVR), consuming remote content such as photos, streaming user generated

content from remote HANs. Sharing of HAN services with remote HANs can enable

seamless collaboration between devices across multiple HANs, which here is termed inter-

HAN service interoperability. This, coupled with service composition, opens new

application opportunities for both consumers and service providers.

In the following sections, the scope, goals, and objectives of this research is presented,

addressing how the HAN can be extended for integrated service interoperability both inside

the HAN and across multiple HANs, overcoming the barriers to integration that exist.

1 www.facebook.com

2 www.flickr.com

 20

1.1. Motivation

The Service Oriented Computing (SOC) paradigm has emerged in the last few years as a

key approach to building loosely coupled, low cost, interoperable, evolvable software

systems [95]. The core of service oriented computing is the concept of a service. A service

is a program or a piece of software that is autonomous, capable of completing a task, can be

published, discovered, invoked, and composed [96]. Singh et al. argue that while there can

be some value in accessing a single service, the greater value is achieved through enabling

the composition of services, which leads to creation of new services from existing ones

[120]. Typically in HANs, devices offer services to other devices or to end-users. For

example, logically connecting a media server with a media renderer and speakers enables

streaming multimedia directly from the source without having to physically move the media

source (e.g. a DVD disc) to the media player. Connecting via a mobile phone for controlling

home lighting or air-conditioning system can provide fine-grained one click home control

from your bed. HAN networked devices should be able to use SOC to seamlessly integrate

themselves into the network and be able to discover and communicate with each other. This

must be done without manual administration and control, which is typically impractical for

home users.

Several service protocols for addressing the HAN challenges have been widely deployed,

including Universal Plug and Play (UPnP) [82, 130], ZeroConf [29], Jini [7], Zigbee [147],

Device Profiles for Web Services (DPWS) [28], Service Location Protocol (SLP) [47],

Bluetooth [15], Home Audio-Video Interoperability (HAVi) [75] and Open Service

Gateway initiative (OSGi) [124]. Driven by the requirement for minimal to zero

configuration, these protocols and standards define how devices and services connect to the

network, and how they discover and interact with each other. Attempts have been made to

promote interoperability amongst devices in the home network however they were limited to

specific application domains, such as multimedia or home automation. For example, the

Digital Living Network Alliance (DLNA) [34] is an industry consortium formed to promote

interoperability of Internet, mobile and broadcast services through simple integration of

consumer devices with home networks, and to operate by certifying compliant devices.

However interoperability is promoted by DLNA by selecting “best of breed technologies”

and certifying devices that support them, rather than defining interoperability interfaces

between multiple service protocols, which co-exist in the HAN. To address interoperability

 21

between service protocols, this thesis proposes a fuller application of SOC principles in the

HAN. It uses service composition to support integration of services implemented using

different protocols and for the generation of new, composite, services that in turn can be

discovered and invoked via different service protocols.

HAN service interoperability efforts have focused on the single household, however the

increased value placed by users in the content and services held by devices and their

interplay, rather than the value of the device itself, makes the sharing of content and services

an increasingly attractive option. At the same time, the widespread adoption of SOC for

service discovery and invocation within the home provides a readily extensible architecture

for sharing services between homes. Such sharing must, however, address the HAN users’

wish to remain in control over what they share and with whom, as opposed to unrestricted

P2P sharing. Privacy is also a major issue, so resources may need to be shared with multiple

HANs with different access rights. Sharing must be easy to perform, easy to configure and

must be performant to allow users to share and consume remote resources as easily as they

do local ones. Allowing users to share HAN devices, services, and content with their friends

and family in a controlled way could increase the potential value of the HAN for both

consumers and service providers. Consumers would benefit from having more services

available in their local HAN. Service providers could offer more innovative composite

services leverage services already deployed in the local HAN.

While the intra-HAN and inter-HAN service interoperability have been addressed separately

in literature, an integrated approach is still missing. Such integration between intra-HAN

and inter-HAN service interoperability may enable services from multiple HANs to be

seamlessly discovered, invoked and composed across multiple HANs. Being able to

compose local and remote services seamlessly can enable a new platform for 3rd party

vendors to offer new applications from existing services and thereby help HAN users to

realise more of the network potential of their HAN devices.

1.2. Research question

Creating a system that integrates intra-HAN and inter-HAN service interoperability presents

several challenges:

 22

1. Extending HAN service protocols to multiple HANs: Most of the common HAN service

protocols are not natively extensible to multiple HANs by design. The main challenge is

how to extend a HAN service protocols beyond the scope of a single household while

allowing local HAN client applications to seamlessly integrate with remote services.

2. Enabling services from multiple service protocols to be composed together: Service

protocols for HANs (e.g. UPnP, Jini, DPWS) are not interoperable with each other,

which hinders the ability to compose them for creating complex applications from

existing services.

3. Performance: As a system that runs in the HAN, solutions must not have a notable

impact on the HAN resources, such as CPU processing power, memory consumption,

and bandwidth. Such a system must scale to simultaneously support sharing with a

number of households that is representative of a typical domestic social network

including a number of close family and friends.

4. Security: With the assumption that HAN devices work behind a home gateway firewall,

vendors of HAN devices and service protocol designers often relax security

requirements in favour of ease of use. However when sharing the same resources with

remote HANs over an unsecured network such as the Internet another balance must be

found between simplicity of configuration and the need to protect against unauthorised

access or malicious attacks. From a user’s point of view, sharing resources with remote

HANs should be done with minimal additional potential vulnerability for the HAN.

Therefore the research question addressed by this thesis is: how to enable integrated sharing

and composition of devices, services and content within the HAN and between multiple

HANs in a secure and performant manner?

1.3. Research objectives

To address this research question the following research objectives are pursued:

1) A review of the state of the art in intra-HAN and inter-HAN service interoperability

to establish the requirements for an integrated approach.

2) The design of an architecture that extends current intra-HAN systems with support

for service composition that uses multiple service protocols, and inter-HAN sharing

 23

of services scalable to a number of HANs consistent with sharing with a

household’s personal circle of family and friends.

3) Validate the architecture through implementation with two established HAN service

protocols.

4) Evaluate the performance and security of the system implementation.

1.4. Research methodology

In his classification of research methodologies [67], Jarvinen distinguishes between

approaches studying reality and mathematical approaches. The study of reality is further

classified as “what is reality” and “utility of artefacts”, also referred to as design science

[49]. This research adopted the design science research methodology as a problem solving

paradigm that leads to innovations that have utility in the problem domain. Design science

requires research to produce an artefact in the form of a construct, a model, or a method.

The objective of design science research is to develop a technology-based solution to a

relevant business problem [57]. The business problem addressed by this thesis is how

services from the HAN could be shared with remote HANs and composed with both local

and remote HAN services to enable the introduction of complex composite services from

existing services. Design science requires the design utility, quality and efficacy to be

demonstrated via well-executed evaluation, which must be constructed and applied

rigorously.

The design artefact of this thesis is the Krox3 architecture and system design, which

addresses the unsolved problem of integrated intra-HAN and inter-HAN service

interoperability. Krox architecture defines a method for sharing devices and services from

multiple service protocols, enabling their service composition in local and remote HANs.

The architecture defines an extensible event model for the plug-ins for supporting inter-

HAN service interoperability through automatic representation of remote devices and

services as virtual devices and services in the local HAN. This facilitates the seamless

integration with client applications in the local HAN and their interoperability and

composability with other services in the local HAN. Intra-HAN service interoperability and

3 http://starwars.wikia.com/wiki/Krox

 24

service composition are integrated with the Krox system architecture through the use of a

common service model to enable service interoperability and service composability of

services from multiple service protocols, from local and remote HANs.

The utility of the design artefact is demonstrated with two service protocols (UPnP and

Jini). The contributions of design science must be clear and verifiable in the area of the

design artefact so a clear description of the design is given in chapter 4, and the

corresponding implementation is described in detail in chapter 5. Two evaluation methods

were used to assess the quality and efficacy of the design artefact, experimental evaluation

and analytical evaluation. The performance evaluation used emulated devices designed for

the purpose of evaluating the system in a controlled experimental environment (section 6.2,

6.3). The security analysis uses attack trees as a formal framework to identify potential

attacks on the system and on HAN service protocols (section 6.4).

1.5. Contributions of the research

While a number of systems were suggested in literature for sharing services from HANs

[10, 12, 31, 51, 55, 65, 76, 77, 84, 97, 119, 121, 137, 139], none of them aims to define a

generic method for sharing services via multiple service protocols, that combines use of a

standard application layer communication mechanism, simple configuration, and support for

seamless integration of remote services with existing applications in the local HAN. In

addition, they do not address the challenges of intra-HAN service interoperability and

service composition. Similarly, while the subject of intra-HAN service interoperability has

been addressed by a number of systems in literature [16, 17, 18, 52, 106, 126], those

systems lack the support for inter-HAN service interoperability.

The key contribution of this thesis is therefore, the design, prototype implementation, and

evaluation of the Krox architecture and system design for integrated intra-HAN and inter-

HAN service interoperability. The approach is based on standard secure communication

protocols enabling HAN services from remote HANs to be discovered in the local HAN and

to seamlessly interact and be composed with local HAN services and client applications.

The generality of the approach is demonstrated with implementations for two important

service-oriented HAN protocols: UPnP and Jini.

 25

While security is a major challenge and a clear requirement to systems for inter-HAN

service sharing, very little attention has been given in the literature to the security aspect of

resource sharing systems. A minor contribution of this thesis therefore, is the security

analysis for sharing of HAN resources, specifically for UPnP and Jini networks, in the form

of attack trees, which could be used for future HAN sharing research.

Very little information exists in the literature regarding the performance of systems for

sharing services between remote HANs. A minor contribution of this thesis, therefore, is a

comprehensive performance evaluation of inter-HAN interoperability, identifying the key

parameters that affect inter-HAN service sharing and providing a baseline for future

benchmarks with other systems.

1.6. Publications

The contributions of this thesis were published in the following peer reviewed papers:

I. David Lewis, Stephen Curran, Kevin Feeney, Zohar Etzioni, John Keeney, Andy Way,

and Reinhard Schäler 2009. Web service integration for next generation localisation. In

Proceedings of the Workshop on Software Engineering, Testing, and Quality Assurance

for Natural Language Processing (SETQA-NLP '09). Association for Computational

Linguistics, Stroudsburg, PA, USA, 47-55.

II. Rob Brennan, Dave Lewis, John Keeney, Zohar Etzioni, Kevin Feeney, Declan

O'Sullivan, Jose A. Lozano, Brendan Jennings, Policy-based Integration of Multi-

Provider Digital Home Services, IEEE Network Magazine, special issue on Digital

Home Services, 23, (6), 2009, p50 - 55

III. Zohar Etzioni, John Keeney, Rob Brennan, David Lewis, Supporting Composite Smart

Home Services with Semantic Fault Management, The 5th International Symposium on

Smart Home (SH 2010) at FutureTech 2010,21-23 May 2010 in Busan, Korea, 21-23

May 2010, 2010

 26

IV. Zohar Etzioni, Kevin Feeney, John Keeney, Declan O’Sullivan, Federated homes:

Secure sharing of home services, IEEE Consumer Communications and Networking

Conference (CCNC 2011), Las Vegas, USA, 9th-12th January, IEEE, 2011

V. Rob Brennan, Zohar Etzioni, Kevin Feeney, John Keeney, Declan O’Sullivan, William

Fitzgerald, Simon Foley, Federated Autonomic Management of HAN Services, to

appear in IFIP IEEE International Symposium on Integrated Network Management,

IM2011 Technical Sessions, Dublin, Ireland, 23rd-27th May, 2011

The contribution of [I] to this thesis is mainly in the foundation of the concept for service

composition with BPEL. My main contribution to this paper was the technique of

composing linguistic services from multiple providers with BPEL service orchestration.

While this work is not directly related to this thesis it helped in establishing the idea of using

web services as a canonical service description and leverage the composition capabilities of

BPEL for web services.

The contribution of [II] to this thesis is in setting the scene with the motivating scenario and

home area network technologies. The paper looks at the problem of end-to-end service

management for federating multi-provider services. My contribution to this paper was

focused in service composition for home networks. At this point the idea of mapping UPnP

services to web services and their composition with BPEL was developed.

The contribution of [III] was in the development of a prototype for plug-in based

architecture that enabled cross service protocol service orchestration. The prototype

demonstrated the architecture with UPnP and was extended to support composite service

fault management based on semantic annotations and fault ontology. Though this semantic

management approach was not pursued further in the thesis, the paper introduced the

motivation for interoperability between HAN service protocols for service orchestration and

the plug-in based approach for automatic mapping from a service protocol (demonstrated

with UPnP) to web services.

The contribution of [IV] was the presentation of the design for the sharing system based on

XMPP as a communication channel and the extension of UPnP for multiple home networks.

Additionally, this paper presented the application of model-based capability sharing

management and its application to management of resource sharing between HANs.

 27

Finally, the contribution of [V] was in the presentation of partial evaluation of the sharing

system with an earlier prototype of Krox system architecture and design.

1.7. Thesis outline

The rest of this dissertation is structured as follows: This chapter has briefly introduced the

motivation for sharing and composition of HAN services, the main challenges associated

with it and presents the goals and objectives for the rest of the work.

• Chapter 2 sets the scene of home area networking and the infrastructure, concepts and

technologies involved in home networks and service architectures. The concept of

service oriented computing is introduced and the various service protocols for HANs are

assessed with regard to their service orientation.

• Chapter 3 describes the interoperability problem in the HAN and between multiple

HANs and surveys existing approaches for solving this problem. The main focus of the

chapter is a review of the research directions for sharing home devices, services and

content between home networks that have been published in literature. Finally the

requirements for a service-oriented architecture for sharing and composition of multiple

HAN services are presented.

• Chapter 4 introduces the Krox service-oriented architecture for inter-HAN and intra-

HAN service interoperability. The second part of the chapter describes the details of the

design of plug-ins for UPnP and Jini service protocols, and illustrates the realisation of

the Krox system architecture with these service protocols.

• Chapter 5 presents a prototype implementation for Krox architecture and design with

plug-in implementations for UPnP and Jini service protocols, supporting service sharing

between HANs and service composition. The prototype demonstrates the feasibility of

Krox system architecture and system design.

• Chapter 6 presents an evaluation of the Krox system design and implementation. The

evaluation focuses on two significant aspects of the system behaviour: performance, and

security. The performance evaluation examines the system’s behaviour under stress

conditions. The security analysis discusses the potential security weaknesses of the

system and ways to protect against them. Finally the chapter concludes how the

objectives of the thesis were met and how contributions were achieved.

 28

• The final chapter presents the conclusions of the work presented in this dissertation and

summarises the contribution. Finally, areas for potential future work are identified.

 29

Chapter 2
BACKGROUND

The widespread availability of network enabled electronic devices for a variety of different

application domains are finally fulfilling the vision of Mark Weiser from 1991 [140] for

ubiquitous computing environment where computing devices are gracefully integrating with

human users. In recent years home networking has been going through a revolution, from a

few desktops sharing Internet connections to a network of digital appliances, devices with

embedded computing and networking that are capable to support IP level protocols. The

home area network can host diverse devices from multiple application domains including

entertainment (e.g. home theatre systems, gaming consoles), security (e.g. surveillance

cameras), communication (IP telephony), and comfort (e.g. heating and cooling, lighting,

health care). In reality, the availability of devices from multiple application domains did not

result in full-networked collaboration between devices but only in “functionality islands”

that are not interoperable with each other [19]. Moreover, even within an application

domain, multiple competing protocols and standards were suggested. The combination of

the diversity of devices protocols and their lack of interoperability with each other creates a

real challenge for creating applications that connect devices from multiple protocols [18].

Mixing services from multiple service protocols and application domains can enable

creation of richer value-add services for the home environment.

Nowadays, along with the social networking trend as well as the emergence of user

generated content, users are interested in sharing their home resources and content with their

family and friends as well as being able to consume content and services remotely. An ABI

market research [1] argues that the next generation in the evolution of the HAN is centred

on sharing media between connected devices from the HAN. However users wish to share

 30

their services and content while remaining in control over what they are sharing, with whom

and when without compromising their privacy [113].

The purpose of this chapter is to analyse the HAN from a service oriented computing point

of view: i.e. assess the service orientation of the HAN device and service protocols and

standards based on a criteria that is established in this chapter. Since this thesis is focused on

extending the service oriented HAN beyond the scope of a single household for integrated

intra-HAN and inter-HAN service interoperability, the analysis is necessary for

understanding capabilities and gaps of existing service protocols used with HAN with

regard to the objectives of this thesis to present an integrated system for composition and

sharing of home services.

The next sections define the scope of the home area network, and specify the criteria for

comparison between the home network technologies in relation to common service oriented

concepts. The rest of the chapter describes and compares the relevant service protocols and

standards according to the defined criteria.

2.1. Home area networking

With the widespread availability of always-on high speed broadband to an ever-growing

percentage of households, the usage scenarios of home networking have evolved from web

browsing and printer sharing to complex peer to peer communication and interaction

between devices.

A Home Area Network (HAN) is defined by Oh et al. [93] as interconnecting electronic

products and systems, enabling remote access to and control of those products and systems,

and any available content such as music, video or data. Rose identified a number of

requirements from this definition [110]: (i) devices need to be able to connect with each

other; (ii) devices need to facilitate access to content that can come from the home network

device or from external service providers; (iii) devices need to enable their control from

either within the home or remotely. Another point of paramount importance in home area

networking is the ease-of-use as users expect technology to be simple, transparent and

working. Survey of key factors impeding home networking uptake [74] name complexity of

installation and configuration as a key factor. In contrast with enterprise networks, the home

 31

network lacks the function of the expert system administrator. Typical home users can be

considered non-technical, therefore most HAN device features must be supported “out of

the box” and not require additional user configuration, which is not appropriate for non-

technical home users.

The HAN is connected to the Internet over cable, telephone, or electricity network through a

residential gateway (also referred to as home gateway or HG) [26]. In addition to connecting

the home network to the external network, the HG can provide additional services such as

quality of service (for both upstream and downstream), firewall [41], Network Address

Translation (NAT) [38], Dynamic Host Configuration Protocol (DHCP) [36] and Virtual

Private Network (VPN) [72]. Network interfaces typically offered to the HAN by HG

include Ethernet [81], IEEE802.11 [62], HomePNA (phone line) [58], power line [100],

IEEE1394 [63], Bluetooth [15], and Universal Serial Bus (USB) [135]. Home gateways run

three layers of software: the firmware layers which runs diagnostics, boot loader, and

additional required support for the operating system. The second layer is the operating

system, an embedded operating system (such as Embedded Linux, VxWorks4, and

Nucleous5) equipped with drivers for all the home gateway’s physical interfaces. On top of

the operating system runs the application layer of the home gateway, which supports the

communication protocol stacks for routing, bridging, DNS, NAT, DHCP, VPN, Firewalls,

and system management. Other application layer support often includes Voice over IP,

OSGi support, and support for audio/video streaming protocols such as Real-time Transport

Protocol (RTP) [116], Real-time Streaming Protocol (RTSP) [117], and Real-Time

Transport Control Protocol (RTCP) [116]. HG components are based on open standards

such as IEEE specifications, IETF RFCs, and other industry standards such as UPnP Forum,

OSGi Alliance, and DSL Forum.

A home area network establishes connectivity between multiple devices at home and

enables their access and control using one or more of several network interfaces.

Additionally some device and service technologies leverage the physical connectivity for

providing application level protocols that are used for inter device communication. The next

section presents the existing technologies for physical medium connectivity for home area

4 http://www.windriver.com/products/vxworks/

5 http://www.mentor.com/embedded-software/nucleus/

 32

networks.

2.1.1. Physical medium connectivity for HAN

The physical connectivity of the HAN defines the physical aspect of how devices

communicate with each other. The purpose of physical connectivity technologies is to

provide network level interoperability and enable higher-level service protocols to be

established in the HAN. A common classification for HAN physical connectivity

technologies refers to wired technologies and “no new wires” technologies [143].

The most common wired technology is Ethernet [81], which offers mature technology from

years of use in enterprise networks, high-speed communication and no complex

configuration. Its simplicity and low cost make it one of the major alternatives for the HAN.

One drawback of Ethernet for home networks is that it does not have inherent support for

QoS for isochronous streams, which is needed for multimedia scenarios [143]. IEEE1394

[63] offers another wired connectivity alternative with a digital interface that integrates

entertainment, communication and computing into a single consumer multimedia network.

IEEE1394 supports peer-to-peer high-speed communication and both asynchronous and

isochronous data transfer. As IEEE1394 was designed mainly for consumer applications it is

a very common choice for entertainment networks. Universal Serial Bus (USB) [135] is

typically used to connect peripheral devices such as mass-storage devices directly to other

devices.

The other approach for home networking is “no new wires” which indicates that

connectivity should be provided either by using technologies that already exist at the home

such as power distribution network, or based on the telephone line, or by using radio

technologies. PowerLine [100] is based on connecting devices to the network through the

mains power supply. PowerLine is considered an attractive wired connectivity alternative

for the connected home due to its simplicity and since it does not require any “rewiring”. A

disadvantage of PowerLine is the lack of standardisation. Home Phone-line Network

Alliance (HomePNA) [58] offers high-speed communication over coax and phone lines.

Phone line networking has a number of challenges, such as the signal noise on phone lines

from home appliances, and the signal attenuation in delivering data, voice and video

throughout the HAN caused by the random topology of telephone wiring. IEEE802.11 [62]

 33

became very popular for wireless LAN (WLAN) in recent years enabling wireless

connectivity to the local HAN with the reduction of implementation costs. The IEEE802.11

addresses both the physical layer and the Media Access Control (MAC) layer. Ethernet is

often used as wired Local Area Network (LAN) with IEEE802.11 interacting with Ethernet

through a wireless access point (Wi-Fi), another option is Wi-Fi integrated in the home

gateway. Bluetooth [15] is another industry standard for wireless communication based on

short-ranged, low-cost radio. Bluetooth was designed to replace infrared and cabling

technologies for communication between portable devices such as laptops, PDA and mobile

phones. Bluetooth relies on IEEE802.15.1 [64] as its physical layer and supports a Service

Discovery Protocol (SDP) [15]. Bluetooth is mainly used to connect between mobile

devices and laptops, printers, tablets, keyboards, and gaming devices for replacing

cumbersome wiring. ZigBee [147] is a specification for high level communication protocols

for low power radios aimed to support low-cost, low power networks – mainly but not only

sensor networks. Most of the applications for Zigbee are in the home network are related to

home automation, such as energy management, including heating, lighting, and air-

conditioning.

2.1.2. Summary

The home area network enables devices to be distributed around the household. Moreover,

while some networked devices in the HAN are stationary, others are mobile and can be

located in different places at different times, and can join and leave the network frequently.

The distribution of devices in the HAN and the mobility of devices lead to required

dynamism of the network configuration. The HAN hosts devices from multiple application

domains such as home automation, entertainment, security, and healthcare. The

heterogeneity of applications lead to heterogeneity of technologies and standards - each

industry has its own hardware standards, software and protocol evolution. Interoperability at

an industry level – such as between multimedia devices and home automation device, and at

a vendor level – such as between multimedia devices from multiple vendors, is a great

challenge.

With the heterogeneity of devices added to the dynamism of configuration, the result is

increased management complexity. Typical management tasks involve configuration of

network resources, assurance of quality of service, provision of dynamic network changes

 34

and resources, and implementation of security measures and access rights. Ibrahim et al.

[61] argue that these tasks and repeating them per network resource can be time consuming

as well as complex and error prone. However this contradicts with the ease of use that is

desired for the HAN where users are typically non-technical. This implies that systems and

applications running in the HAN must not require deep technical understanding and must

automate as much of its operations as possible. In addition, while a market exists for various

price levels, the vast majority of consumers look for cheap solutions, devices, and

applications, however they require these to have acceptable performance and security levels.

Home users see the HAN as a private space. Users expect their home network to be secure

against malicious attacks, against eavesdropping, unauthorised access, phishing, privacy

violations, and others. However the management complexity resulting from the dynamism

and device heterogeneity makes security a challenge.

This section presented the home network environment with the physical connectivity

infrastructure, and its potential applications and challenges. The physical infrastructure by

itself is not enough for devices to successfully interact. Higher-level protocols are needed to

enable devices and services to be discovered, described, invoked, and reused by other

devices or applications in the HAN. The SOC paradigm, presented in the following section,

defines concepts that can be used for home networking applications to face the challenges

presented above in this section.

2.2. Service-oriented computing

Service oriented computing (SOC) is a paradigm that defines principles and concepts that

support the development of rapid, low cost, and easy composition of distributed applications

through the concept of services. A service, in SOC, is merely a networked software with a

fine-grained goal that can act as an autonomous unit with respect to other service-oriented

programs, and can be described, published, discovered, invoked and assembled [96].

Papazoglou defined 3 principles for services in SOC [95]: (i) loose-coupling between

service providers and service consumer - such that interaction with the service does not

require knowledge of the internals of the service at the client or service side; (ii) technology-

neutral - a service must be independent of a programming language or operating system;

(iii) location transparency - such that services should have their definition in a repository

 35

that is accessible by clients that can in turn find a service and invoke it, irrespective of the

service location.

Service oriented computing defines distinct roles for service providers, services consumers,

service brokers and a loose coupling between them. The service provider describes the

service, implements it, and publishes it in a service registry, or elsewhere where service

consumers can find it. The service broker operates the service registry, enabling service

providers to register services and service consumers to find them. The service consumer

searches for a service, finds it, binds to it, and then invokes it.

The concept of a service as an atomic unit of functionality promotes reusability; the loose

coupling between service consumer and service provider, the technology abstraction, and

the location transparency, enable to create composite services by assembling existing

services, potentially from different service providers for achieving some goal.

2.2.1. Web services

Web services present a promising realisation of the service-oriented computing [138]. They

offer loosely coupled networked autonomous units of functionality. Web services are

published, discovered, composed, and are designed for ease of integration via a set of

standard commonly used protocols across platforms, programming languages and

enterprises. Web services can be dynamically discovered and invoked over the web. Web

services are offered in two flavours: web service based on Simple Object Access Protocol

(SOAP) [20]; and web services based on the Representational State Transfer (REST)

approach [39].

Web services based on SOAP, are described in Web Service Description Language (WSDL)

[32]. WSDL is a machine-readable specification using XML [22] syntax to describe and

specify the functional capabilities of the web service. The WSDL specification includes

information required for a consumer to interact with this service. SOAP is used as a message

passing protocol that defines how messages are sent over the wire for interacting with the

service. SOAP web services are invoked via SOAP messages typically but not exclusively

over HTTP.

 36

RESTful web services are based on Representational State Transfer (REST), an architecture

style that was first referenced by Fielding [39] in the context of the massive scalability of

HTTP. RESTful web services expose a set of resources through URI and are accessed using

a small set of remote operations that describe the action to be applied on the resource. The

services are stateless and use only universal operations: PUT, GET, POST, and DELETE.

RESTful web services do not use SOAP, WSDL, or any other web service specifications.

Instead they only leverage HTTP as an application protocol.

Semantic Web Services (SWS) [79] suggest a semantic based approach for interoperability.

The semantic web [14] transforms the web into a repository of a machine-readable data, and

web services provide the means for consuming this data. Semantic web services extend the

definition of web services to support not only service syntax but also service semantics, to

enable semantic service interoperability. SWS describe a service not only syntactically but

also provide a semantic description of the service, thereby enabling the automation of

dynamic discovery, selection, and composition of services.

2.2.2. Service composition

SOC defines two types of services: a simple service, and a composite service [95]. Simple

services are the smallest unit of reuse in SOC that accomplishes some task without using

additional services in its implementation. Composite services involve assembly of existing

services potentially from multiple sources for accomplishing some task. Singh et al. define

service composition as a form of putting services together to achieve some desired

functionality [120].

There are several categories for service composition approaches. Static and dynamic service

composition, are strategies that differ in the time concrete services are composed. Static

service composition refers to a non-adaptive composition, where services are hard-wired to

each other at composition design time. With dynamic service composition, only control flow

is hard-wired, while services can be dynamically selected when the composition is executed.

Service orchestration [5] refers to an explicit description of the interactions through message

 37

exchange between multiple web services along with control and execution flow that is

controlled by a single party. Service orchestration describes the composite service from the

point of view of a single participant in a hub/spoke model. Business Process Execution

Language (WS-BPEL or BPEL in short) [5, 69] is a standard language for describing SOAP

web services orchestrations. In addition to being able to compose services, in BPEL the

service composition is also rendered as a SOAP web service described with WSDL. The

language enables definition of both abstract and concrete processes. BPEL terminology

includes a process concept, which is the service composition itself; partners, which define

the services that are taking part in the composition; and activities, which correspond to an

exchange of messages with a partner or some transformation on the messages. The business

process logic is manifested in the process description as a set of interactions between

constituent web services and structured activities facilitating sequential and parallel

execution of process flows. BPEL defines several control flow structures that facilitate the

interaction between web services. As it is targeted for running long-lived business

processes, it supports transactions, fault handlers and compensation handlers. Working with

BPEL typically involves using a tool for the design of a service orchestration, which would

create the service orchestration template. This template then needs to be deployed into a

BPEL engine to enable its execution and calls to constituent services. Typically the BPEL

engine would provide some administration for deployed BPEL service compositions, such

as suspend, resume, get state, and reconfigure, but no standard has been agreed.

Service choreography [101] is another alternative for service composition that relies on

collaboration between services. Service choreography does not require nor depend on a

central controller. Instead it is based on multi-party peer-to-peer collaboration. In

choreography, the message exchange is not defined from the point of view of a single

participant, but from the perspective of all parties.

Another loose form of composition is referred to as mash-up, where for mash-ups content

from unrelated data sources (e.g. Google maps, Flickr, news sources, shopping sites) is

composed in an innovative way to create useful new content made for human (rather than

machine) consumption [144]. A mashup can be created using traditional web application

server-side dynamic content generation technologies, such as PHP or using client-side

scripting with JavaScript. Mashups can use both technologies (client and server) for

implementing their business logic.

 38

2.3. HAN service standards and protocols

The previous section presented the concepts of service orientated computing in general. In

this section various service standards and protocols for enabling client applications to

control devices and device-to-device communication are presented. The main purpose of

HAN service protocols is to enable applications to discover and control devices and allow

interoperability between devices supporting similar protocols in the HAN, for improved user

experience or enabling new applications and services to be constructed from existing ones.

While a large variety of service standards and protocols were suggested for the HAN, the

focus of this survey is IP level service protocols and standards. The review includes the

following service protocols: UPnP [82], DPWS [28], Jini [7], SLP [47], ZeroConf [29],

OSGi [124], and HAVi [75]. Additional service protocols that do not work at IP layer were

excluded from this survey: Bluetooth [15], Zigbee [147], LonWorks [85], X.10 [125],

HomeRF [89].

Before the service protocols are described it is important to define the criteria for their

comparison. Zhu et al. [146] suggest a classification of service protocols for pervasive

environments based on several distinguishing attributes. To highlight the differences the

attributes can be divided into several groups:

(i) How services are discovered - Search mechanism, communication method,

support for query, support for advertise, scope of discovery

(ii) How services are used (how services are selected from the result of a search,

how service interaction is facilitated, how can the service status be inquired)

(iii) Supported security mechanism – Authentication, authorisation, confidentiality,

integrity, and privacy.

This classification is extended here to form a more comprehensive comparison criteria as

the following:

• Scope and market uptake

o Application domain – Services in the home network come from multiple

different application domain and industries: entertainment devices (e.g. media

 39

servers, speakers, TV), computing products (e.g. pc, laptop), telecommunication

devices (e.g. IP phone), home automation (e.g. lighting, Heating Ventilating and

Air Conditioning - HVAC, security systems), mobile devices (e.g.

smartphones), and home appliances (e.g. white goods, brown goods). While

some service technologies are generic, others specialise in specific application

domain, such as entertainment multimedia systems, and home automation. The

purpose of this criterion is to evaluate the generality of the protocol. While the

scope of this thesis is not limited to a specific set of devices or application

domains, the set of supported devices will be derived from the set of devices

supporting the relevant service protocols. However, from the application

domain it can be concluded how pervasive the service technology is, and the

more generic its use is, the better it is as a case study for this thesis.

o Market acceptance – It is important to understand the market uptake of a

service protocol or standard. The relevance to the thesis is in order to avoid

selecting service protocols with low market acceptance as case studies for the

sharing and composition system.

o Standardisation body – It is interesting to compare the various standardisation

bodies and the segmentation of their support for the different standards and

protocols.

• Generality

o Physical layer dependency – While some service technologies are physical

layer agnostic, some other depend on a specific physical layer.

o Programming language dependency – Some protocols and standards are

programming language agnostic while others depend on a specific programming

language for facilitating the interaction with the service.

• Service orientation

o Service discovery – The most basic aspect of service-oriented computing is the

ability for services to be discovered. There are several approaches to service

discovery, such as advertisement of services by their host when they become

available in the network, responding to search requests for a specific service

type, or using a lookup service as a broker between the service providers and

service consumers. Service discovery will play an important role in the system

design for service sharing and composition, therefore it is important to study the

various approaches used by the different protocols and standards and consider

their extensibility.

 40

o Service description – A service description provides information about the

actions supported by the service. The importance of this factor is in the ability

to extract information about the service from its description. The more

information about the service and its supported actions can assist in its

composition with others. Services that cannot be described cannot be composed

with other services in a generic fashion.

o Service invocation – Compares the level of support for service invocation.

There are three levels of support for service invocation that can be provided by

a service protocol [146]:

(i) Service location – A network address representing an endpoint

where the service can be communicated

(ii) Communication mechanism – In addition to service location, a

mechanism for invocation of service methods, e.g. Java RMI,

SOAP.

(iii) Application Programming Interface (API) – Domain specific

application domain operation definition.

o Service composition – To what extent does the service protocol includes native

support for composition of services.

• Extensibility

o Multi-home readiness – To what extent is the service protocol supporting

discovery and access to services from outside the HAN.

• Non functional aspects

o Security – There are many aspects for security such as authentication,

authorisation, confidentiality, privacy, and data integrity. The purpose of this

parameter is to understand the extent of support for security that is embedded in

the protocol.

o Performance – Are there any known performance issues with the service

protocol?

The following sections present a number of service protocols and standards for home area

networks that can be considered service oriented protocols. Finally section 2.3.8 presents a

comparison of the protocol and conclusions from the comparison.

 41

2.3.1. Universal Plug and Play

Universal Plug and Play (UPnP) [82, 130] is a standard and an architecture initiated by the

UPnP Forum, which was formed in 1999. The UPnP Forum [130] currently has members

from 929 leading companies from various industries: consumer electronics, printing,

networking, home appliances, automation, security, and mobile products. The UPnP

architecture is a plug and play service oriented architecture for enabling seamless home

networking. UPnP relies heavily on standard protocols such as IP, UDP, HTTP and XML.

UPnP does not dictate any physical layer, which enables it to work with various physical

layer architectures. UPnP Device Architecture (UDA) [133] specifies several protocols that

allow devices to connect to the network, be discovered, describe their capabilities, invoke

their capabilities and send events to interested parties. A UPnP network contains service

providers (termed devices) and service clients (termed control points). Devices are typically

hardware-based, however they can be either software or hardware, physical or logical. A

device is merely a container for services and further embedded devices. A UPnP service

defines an operational aspect of the device that is controlled through the service interface

and can be invoked over the home network. Services define actions, state variables, and

associated events. A common example of a device is a media server (either hardware or

software) that offers services for browsing and searching for digital media. UPnP devices do

not communicate directly with other devices but only through control points. Control points

are controllers that are responsible for facilitating interaction with devices on behalf of the

users. In some cases a physical device can serve as both a UPnP device and a UPnP control

point in order to engage in peer to peer networking.

The Simple Service Discovery Protocol (SSDP) [133] is used by UPnP to enable devices to

advertise their presence and enable clients (control points) to search for devices that support

a certain service type. SSDP uses multicast over UDP to send search requests to the network

and for devices to announce their presence. Device and service capabilities are described via

an XML document with a standard schema – which conforms to the device and service

profile defined by the UPnP forum. The device and service description document can be

accessed over HTTP within the local HAN. The device description contains information

about the device such as manufacturer, version, embedded devices and supported services.

The service description contains information about supported actions and their parameters.

SOAP [20] is used as a control protocol, allowing clients to invoke actions on the UPnP

devices over an HTTP connection. UPnP does not dictate an operating system or

programming language, which enables implementers to choose their preferred environment

 42

as well as clients to interact with the device from their programming environment of choice.

In addition to the specification of UPnP communication protocols, the UPnP specification

standardises a set of device profiles, which define a standard schema for common devices

such as Internet Gateway Device (IGD)6, media devices7, and others. A device profile

defines a device category and specifies the services expected to be supported by this type of

device. Some of the services may be required while others may be optional within the

device profile specification. Vendors can also extend the specification with their specific

extensions such as additional services, actions and arguments. The purpose of the profile

specification is to facilitate device standardisation. The UPnP organisation forms working

groups that define these standards for an increasing number of device types however at the

moment its application domain coverage is not very wide. Most effort is spent standardizing

the entertainment application domain (A/V architecture) and home Internet gateway.

Security is not an integral part of UPnP and is only supported as an add-on. With the huge

popularity of UPnP over the years, security has become the primary flaw hindering its

proliferation. The rationale behind not implementing security (authentication, access

control) in the protocol is to avoid complex administration and to support easy plug and

play. However this advantage requires compromising security demands and has resulted

over the years in several exploits of UPnP vulnerabilities.

Digital Living Network Alliance (DLNA) [34] is an industry organisation of consumer

electronics, computers, and mobile communication manufacturers whose mission is to

promote interoperability between products for home networks. While UPnP provides some

level of interoperability, it is incomplete in some ways. For example, UPnP does not define

formats of media that need to be supported by media players or digital rights management.

The scope of DLNA is therefore broader than specifying how devices communicate in the

home network. In order to tackle the interoperability problem, DLNA defines a set of

standard recommendations to be used by device vendors, including connectivity standards,

IP networking, discovery and control, media management, media transport, media formats,

and link protection. UPnP is the DLNA recommendation for discovery and control, and for

media management. DLNA defines a set of standard device classes such as Digital Media

6 http://upnp.org/specs/gw/igd2

7 http://upnp.org/specs/av/av3/

 43

Player (DMP), Digital Media Server (DMS), and others to which device manufacturers can

conform to and certify their devices to be in compliance with the DLNA guidelines. At the

moment DLNA is focused at scenarios within a single network and does not address multi-

home sharing scenarios.

Evaluation:

• Scope and market uptake

o Application domain – UPnP is generic and is not specific to an application

domain. However first standardised device profiles and popular

implementations were focused on multimedia devices and networking devices.

Nowadays, the standard includes profiles for additional application domains

including printing, and home automation.

o Market acceptance – UPnP is very popular in current home networks. UPnP is

promoted by the Digital Living Network Alliance (DLNA) [34] as a

recommendation for service protocol for home networking, which contributed

to its popularity.

o Standardisation body – UPnP is standardised by the UPnP Forum.

• Service orientation

o Service discovery – Enabling service discovery through search request as well

as device and service announcement. Search is restricted to service type. Service

announcement includes the device/service type, the duration for which the

device/service is expected to be available in the HAN, and a URL from which

the device description can be retrieved.

o Service description – XML document that conforms to a standardised schema.

The device description specifies the services supported by the device and

general information about the device, such as friendly name, and version.

Service description includes information about the actions supported by the

service and the state variables related to those actions.

o Service invocation – Supports communication mechanism for service

invocation with SOAP over HTTP.

o Service composition – UPnP specification does not define how services can be

composed.

• Generality

o Physical layer dependency – UPnP is physical layer agnostic.

o Programming language dependency – UPnP is programming language

 44

agnostic.

• Non functional aspects

o Security – UPnP lacks embedded security mechanism, which results in several

serious security vulnerabilities (see section 4.3.3.1.7 and section 6.4.2)

o Performance – UPnP requires a small memory footprint on the device,

however XML and SOAP require significant amount of memory and processing

power for parsing as opposed to less verbose protocols such as Java Remote

Method Invocation [123] for example. Another problem of UPnP is the

vulnerability of its discovery protocol. UPnP service discovery does not embed

mechanisms for automatic shutdown or control, therefore in some conditions

the network may be overwhelmed with discovery messages. For example, a

control point that sends many frequent search requests can cause the devices in

the network to crash because devices must respond to search requests if they

support the service type in the request.

• Extensibility

o Multi-home readiness – UPnP is limited by design to a single household due to

its reliance on local multicast for discovery. Another problem is that devices are

assigned private addresses that are not accessible remotely; therefore HTTP

access, which is required for description, control, and eventing protocols of

UPnP is problematic.

2.3.2. Device Profile for Web Services

Device Profile for Web Services (DPWS) [28], submitted for standardisation to

Organisation for the Advancement of Structured Information Standards (OASIS) in 2008, is

proposed as a lightweight service oriented architecture targeted at home network devices.

The proliferation of web services in enterprise markets and their success in promoting

interoperability encouraged their adoption to devices and home networking. Device profiles

constrain the web service standards to guarantee that implementations remain interoperable

by defining a set of specifications that are mandatory for implementations described below.

DPWS shares goals with UPnP, however by using web services it inherits native

interoperability with enterprise web services, which can be used for its composition with

other services, including external web services. The DPWS architecture specifies how

DPWS-enabled devices can be discovered in the local HAN, how messages can be

exchanged with a DPWS service, how services are described, how the service is invoked,

 45

and how to subscribe for event notifications from a service. The DPWS terminology defines

a hosting service, which corresponds to a device, and hosted services, which are services

hosted on a device. All messaging in DPWS is based on SOAP and WS-Addressing. WS-

Discovery [8] is used for discovering available devices. WS-Discovery is agnostic to the

transport layer and can work over UDP, HTTP or other protocols. Services are described via

Web Service Description Language (WSDL) [32] and service description and metadata is

retrieved using WS-Transfer [3]. SOAP is used to invoke actions on devices and WS-

Eventing [21] is used for managing subscriptions for device events. DPWS defines a

recommendation for security, which is optional for device implementation. A baseline is

defined such that if a device supports components of security (such as integrity,

confidentiality, authentication), it is assumed to conform to the baseline specification.

Evaluation:

• Scope and market uptake

o Application domain – DPWS is generic and is not specific to an application

domain.

o Market acceptance – Little market acceptance at the time of writing of this

thesis, however the recent appearance of commercial automation products such

as ConnectedLife.Home8 equipped with DPWS interface indicates that this

might change in the near future.

o Standardisation body - OASIS

• Service orientation

o Service discovery – Supported through WS-Discovery, enables to search a

service by its type. Devices must support presence announcement when they

join and leave the HAN.

o Service description – Service description provides information about the

available actions represented as WSDL 1.1.

o Service invocation – Supports communication mechanism for service

invocation with SOAP over HTTP.

o Service composition – DPWS services can be composed using standard web

service composition techniques.

• Generality

8 ConnectedLife.Home - http://www.bestbuybusiness.com/bbfb/en/US/adirect/bestbuy?cmd=catProductDetail&showAddButton=true&productID=BB10722723

 46

o Physical layer dependency – DPWS is physical layer agnostic.

o Programming language dependency – DPWS, through its reliance on web

services is programming language agnostic.

• Non functional aspects

o Security – DPWS has built-in mechanisms for security including

authentication, encryption and integrity however they are not mandatory.

o Performance – Small memory footprint

• Extensibility

o Multi-home readiness – DPWS is designed for a single HAN. It suffers from

similar limitations to UPnP, including the multicast based discovery and the

HTTP based invocation.

2.3.3. Jini

Jini [7] is a Java based service-oriented architecture. Jini can be seen as a successor of

earlier distributed architectures such as CORBA [92], Microsoft Distributed Component

Object Model (DCOM) [25], and Java Remote Method Invocation (RMI) [123]. These

technologies share the common goal of facilitating networked distributed applications. Jini

proposed a new approach for reducing the burden of administration by making “plug and

play” networked services and abstracting the networking and communication aspects from

its users. Jini relies on mobile code for facilitating the interaction between clients and

services. Service discovery is supported through the use of look up services that can provide

clients with catalogues of available services. Jini services register a service proxy with one

or more lookup services. A lookup service is a meta Jini service that acts as a broker that

connects clients with services and either has a well-known IP address or listens to a well

know multicast address. TCP/IP is used for communication between clients, lookup services

and services. Clients discover services through searching in lookup services. Once they find

a service, they download the service proxy and can invoke methods on it. The service proxy

communicates with the service implementation and returns the result to the calling client.

The protocol for communication between the service proxy and service implementation is

not defined by Jini and is left for the implementation.

Evaluation:

• Scope and market uptake

 47

o Application domain – Jini is generic and is not targeted for a specific

application domain.

o Market acceptance – At the time of writing, Java, (and therefore Jini) is not

very common yet in the embedded hardware industry.

o Standardisation body – There is no general standardisation body for defining

Jini service, however some conform to Application Programming Interfaces

(API) defined in Java (by Sun/Oracle), such as Java Printing API.

• Service orientation

o Service discovery – Service discovery is facilitated through a look up service,

which enabled the registration and discovery of services. Service clients can

search services by the service interface and additional characteristics that were

registered with the service in the lookup service.

o Service description – Services are described via Java interfaces.

o Service invocation – Jini supports communication mechanism for service

invocation using Java RMI

o Service composition – Jini does not define a specific mechanism for

composition of Jini services. A composite Jini service can be written (with Java

programming language) to use other Jini services with some business logic, and

then registered with a lookup service as an ordinary Jini service.

• Generality

o Physical layer dependency – Jini is physical layer agnostic.

o Programming language dependency – Jini is a Java based protocol.

• Extensibility

o Multi-home readiness – Jini discovery depends on broadcast and multicast and

does not natively support discovery beyond the scope of a single home.

• Non functional aspects

o Security – Java based security mechanisms for authentication, authorisation,

confidentiality, and integrity.

o Performance – There are no known inherent performance issues with Jini. In

general the use of Java Remote Method Invocation is considered more efficient

than SOAP because of the verbose nature of SOAP.

2.3.4. Service Location Protocol

Service Location Protocol (SLP) version 2 [47] is an Internet Engineering Task Force

 48

(IETF) protocol for service discovery and advertisement (RFC 2608). Unlike other

protocols, which aim to abstract the transport layer from the service discovery protocol, SLP

is restricted to allowing applications to discover the existence of networked resources and

provide a service location where the service can be interacted. Services can represent

physical or logical devices. SLP enables clients to find services according to their type and

associated attributes rather than their host name. SLP defines 3 types of entities: service

agents, user agents, and directory agents. Service agents advertise one or more services

enabling user agents to discover them. Directory agents cache service information and

enable look up. Directory agents are optional, however they can improve performance by

reducing the number of searches that user agents initiate to the network. Directory agents

and user agents listen to periodic device multicast presence messages. For active discovery,

service agents and user agents can send multicast messages and locate directory agents.

Once they find a directory agent, they can register a service/look up services respectively.

SLP has limited support for security. In fact only authentication is supported while access

control, and the security of the communication channel is not defined.

Evaluation:

• Scope and market uptake

o Application domain – SLP is generic and is not targeted for a specific

application domain.

o Market acceptance – SLP is used in printers and earlier versions of Mac OS

X.

o Standardisation body – Internet Engineering Task Force (IETF)

• Service orientation

o Service discovery – SLP supports discovery through user agents that can search

for services in directory agents, where services register information about them,

and through service agents’ announcements.

o Service description – SLP does not support service description.

o Service invocation – SLP service invocation support is limited to defining the

URL where the service is located.

o Service composition – SLP services support invocation by service location

only, therefore their composition requires tight coupling between the consumer

and the provider of the service. The inputs, outputs and operations on the

service are not expressed explicitly in a service interface, which can be used for

service composition.

 49

• Generality

o Physical layer dependency – SLP is physical layer agnostic.

o Programming language dependency – SLP is programming language

agnostic.

• Non functional aspects

o Security – SLP supports only authentication

o Performance – SLP is considered a scalable protocol, and since it does not

dictate a specific interface other than the network characteristics of the service

and the way information is sent or received from the service is left for the

specific service implementation, enables efficient implementation.

• Extensibility

o Multi-home readiness – SLP relies on multicast for service discovery,

therefore it is not natively extensible beyond the scope of a single network.

2.3.5. ZeroConf

ZeroConf [29] is a technology for zero-configuration networking aimed for HANs.

ZeroConf has multiple implementations including Apple Rendezvous (formerly Bonjour),

Avahi for Linux and Link Local Multicast Name Resolution (LLMNR) by Microsoft for

Windows CE. ZeroConf involves 3 main protocols: address auto-configuration, name-to-

address translation, and service discovery. Devices obtain their IP address from a DHCP if

such is available or use IPv4 link local addressing if DHCP is not available. The name-to-

address protocol enables mapping from host name to host address in the absence of a DNS

server. This is done using Link-local multicast DNS (mDNS). The multicast DNS protocol

allows client applications to resolve a name or an IP address by sending the request to a

well-known multicast address. The host whose name matches the one in the request must

respond if it has a match to the request. ZeroConf supports two types of service discovery

protocols: Service Location Protocol (SLP) version 2 [47], and Domain Name System

Resource Record (DNS RR) [46]. SLP v2 uses an administrative-scope multicast address as

opposed to other protocols of ZeroConf, which are based on link local multicast. DNS RR

enables a client to lookup a service by the transport protocol, and the domain name, and type

of service. A comprehensive list of supported services types can be found in [35, 59].

ZeroConf has another protocol for allocating multicast address for applications. The

ZeroConf multicast address allocation protocol (ZMAAP) is required to allow applications

obtain and maintain unique multicast addresses. The scope of ZeroConf is limited to service

 50

discovery and does not dictate an application layer protocol for invocation. The last step of

ZeroConf is a binding of a host and a port number to a specific service and protocol type

(e.g. UDP, TCP), however the interaction with the service remains as a contract between the

client and the service.

Evaluation:

• Scope and market uptake

o Application domain – ZeroConf is generic and is not targeted for a specific

application domain. It is targeted for IP networks and was implemented for

various services in the HAN.

o Market acceptance – ZeroConf is very common as a service discovery

protocol with several implementations from Apple, Microsoft and Linux.

o Standardisation body – Internet Engineering Task Force (IETF)

• Service orientation

o Service discovery – Search is supported through multicast DNS.

Devices/services can announce their presence in the network.

o Service description – ZeroConf does not support service description.

o Service invocation – ZeroConf service invocation support is limited to defining

the URL where the service is located.

o Service composition – ZeroConf does not support service composition, and

since service invocation is limited to service location, it is inherently limited in

its potential for service composition.

• Generality

o Physical layer dependency – ZeroConf is physical layer agnostic.

o Programming language dependency – ZeroConf is programming language

agnostic.

• Non functional aspects

o Security – ZeroConf supports only authentication.

o Performance – ZeroConf employs a number of optimisations for the service

discovery such as exponential reduction mechanism, and same query

suppression.

• Extensibility

o Multi-home readiness – ZeroConf has limited support for multi-home

networks with its use of DNS. Through modifying a DNS server, services can

become available over the Internet (i.e. can be discovered remotely). This

 51

requires both admin rights to the DNS server, and technical know-how for

modifying the DNS server allowing services to be discovered by remote

ZeroConf clients.

2.3.6. Open Service Gateway initiative

Open Service Gateway initiative (OSGi) [124] defines a component model and service

oriented architecture for Java, initially targeted at limited resource devices such as home

gateways, but now more generally used in both desktop applications and enterprise

application servers. Key features of the framework are that it manages the life cycle of Java-

based software components and supports loose coupling of these components through a

common service model. OSGi has a dynamic module system, which can load and unload

modules dynamically during runtime, which makes it efficient to install, start, stop, update,

and uninstall modules on an as-needed basis. OSGi is restricted to a single Java process,

therefore does not support distributed computing between multiple devices. In recent years

some work has enabled distributed OSGi with OSGi version 4.29 and remote access to OSGi

services with R-OSGi [107] so enables the use of OSGi beyond the scope of a single

system. While the Distributed OSGi intends to extend the OSGi platform for distributed

computing, R-OSGi is an OSGi bundle that can run on any OSGi platform and enables

remote access to services.

OSGi has wide penetration in the embedded systems marketplace with large deployments

worldwide; thus OSGi is a mature technology with many attractive features for HAN

equipment vendors, especially software life cycle management.

An OSGi service is an implementation of a Java interface and a bundle is the deployment

packaging mechanism that can contain service implementations. During the deployment of a

bundle, its services are registered with the service registry, thereby allowing it to be found

by clients. Once a service has been found, a Java interface is returned to the client and the

client can then interact with it directly. Due to the various facets of OSGi, it can be found in

different contexts in the home network including as a device management interface, home

interoperability environment [19, 136], and service composition for home devices [106,

126].

9 http://www.osgi.org/download/r4v42/r4.cmpn.pdf

 52

Evaluation:

• Scope and market uptake

o Application domain – OSGi is generic and is not targeted at a specific

application domain, however in the HAN it is common in set top box and home

gateway devices.

o Market acceptance – OSGi is common for device management for specific

devices such as set top box, but it is not common for device-to-device

interoperability.

o Standardisation body – OSGi alliance

• Service orientation

o Service discovery – Services are registered and can be found in a service

registry.

o Service description – Services are described in a service interface.

o Service invocation – OSGi supports service invocation on service objects.

o Service composition – With OSGi services can be composed with

programming language code and registered as an OSGi service with the OSGi

framework.

• Generality

o Physical layer dependency – OSGi is physical layer agnostic.

o Programming language dependency – OSGi is Java based.

• Non functional aspects

o Security – As a Java based framework OSGi supports Java security.

o Performance – OSGi has a significant overhead and its minimum requirements

are for at least 8MB of RAM and a CPU of 50MHz. According to performance

measurements, R-OSGi outperformed both UPnP and Java RMI service

invocation by two orders of magnitude when evaluated with the

Javaparty/KaRMI performance benchmark as shown in [108]. The benchmark

tested the same services implemented as a UPnP service, Java service invoked

with RMI, and R-OSGi service.

• Extensibility

o Multi-home readiness – OSGi can support multi-home networking through the

use of R-OSGi, however it does not have a multi-home service discovery

protocol as its main use case is as a centralised system. R-OSGi is relatively

 53

new and at the moment is targeted for distributed application rather than for

HAN.

2.3.7. Home Audio-Video interoperability

Home Audio–Video Interoperability (HAVi) [75] first introduced in 1998, aims to allow

consumer electronics and networked appliances such as television, speakers, and cameras to

communicate with each other through a set of API, services and on wire protocols. HAVi

builds on IEEE1394 as a communication medium. As with UPnP, HAVi has support for

plug and play, enabling devices to join the network, configure themselves, and find other

devices in the local HAN in a peer-to-peer fashion without requiring user intervention. The

HAVi architecture defines controlled devices and controllers. A controlled device is a

device that provides some functionality, e.g. a DVD, or a set top box. A controller enables

control of a controlled device and can be either part of the device or an external entity.

Devices are controlled through Device Control Modules (DCM) – a set of compiled Java

objects that can be downloaded from the controller. A DCM contains a set of Function

Control Module (FCM) such that each FCM corresponds to a single service supported by a

device. HAVi devices can be divided into several categories: Full AV Devices (FAV),

Intermediate AV Devices (IAV), Base AV Devices (BAV), and Legacy AV Devices. The

FAV and IAV are controlling devices while the latter are controlled devices in the HAVi

network. FAV has the richest HAVi capabilities enabling it to control other devices. Typical

HAVi Full AV devices are set top boxes, and residential gateways. IAV have more limited

control capabilities, such devices are typically amplifiers or DVD players. BAV are devices

that can be controlled but have no ability to control other devices, for example camcorders,

and portable audio players. Legacy devices do not directly support HAVi however they can

be connected to a HAVi network through an FAV or IAV acting as a gateway. Discovery in

HAVi is facilitated through registries. Applications can query the registry with the set of

required attributes. Once a service is found in the registry, applications can then download

required device or function control module from the registry.

Evaluation:

• Scope and market uptake

o Application domain – HAVi is targeted to multimedia devices in the HAN.

o Market acceptance – HAVi is not widely used

o Standardisation body – HAVi consortium.

 54

• Service orientation

o Service discovery – Service discovery is made via a service registry.

o Service description – Services are described with a java interface.

o Service invocation – HAVi supports invocation on Java objects.

o Service composition – HAVi does not support service composition.

• Generality

o Physical layer dependency – HAVi depends on IEEE1394, typically wired

connections.

o Programming language dependency – HAVi is Java based.

• Non functional aspects

o Security – The HAVi service discovery protocol is vulnerable to internal and

external attacks, e.g. due to a faulty device. For example a single device update

contains a virus and it uploads it to all other devices in the network.

o Performance – HAVi is not designed for use in large networks due to its

reliance on IEEE1394, which is limited to 63 devices in the same network,

however since it is designed for consumer electronics and multimedia networks,

this limit is reasonable.

• Extensibility

o Multi-home readiness – HAVi is not designed for multiple HANs.

2.3.8. Summary

The above sections reviewed a number of service-oriented architectures for home area

networking. The protocols and standards were compared according to the criteria defined in

section 2.3 and the results are summarised in table 1. The following section summarise the

comparison with respect to the criteria defined in section 2.3.

2.3.8.1. Scope and market uptake

From market acceptance point of view, UPnP and ZeroConf are the most dominant

protocols in the HAN. Many standardisation bodies are involved in HAN service protocol

standardisation efforts: UPnP Forum, OASIS, IETF, HAVi consortium, OSGi, and Sun.

 55

2.3.8.2. Service orientation

From a service oriented standpoint the protocols and standards can be divided into two main

groups: those supporting full service orientation including service discovery, service

description, and service invocation with a communication mechanism for service

invocation; and those supporting partial service orientation with service discovery and URL

for service location as service invocation mechanism.

A closer examination of discovery strategies reveals two main patterns for finding services:

(i) multicast based; (ii) via lookup service; Multicast based service discovery indicates that a

search request is sent to a multicast address that devices listen on and they must respond (via

unicast) to the initiator of the search in case they support the service type indicated in the

search request. The lookup service based discovery implies that services register themselves

with a lookup service and client applications use the lookup service to search for services of

interest. Another aspect of service discovery is the availability of service announcements

when a device or service becomes available/unavailable in the HAN. Announcements are an

important complementary mechanism to discovery that enables a reduction on the number

of search requests by letting applications learn about the existence of new devices and

services through their presence announcements.

With regard to service invocation, the reviewed protocols can be divided between those

supporting service location only (SLP, and ZeroConf), and the rest of the protocols (UPnP,

DPWS, Jini, HAVi, and OSGi) that describe a communication mechanism to invoke service

methods. While the API is not part of the protocol itself for those protocols supporting a

communication mechanism for invocation, it is part of the standardisation effort and profiles

or device interfaces are defined and used by these protocols. The protocols supporting a

communication mechanism for service invocation can be further divided between Java

based protocols, SOAP based protocols. Java based protocols are more limited in their

ability to integrate with other non-java services, however they benefit of a potentially more

optimal on-wire data representation than SOAP XML which is relatively verbose.

Service composition is not the focus of any of the reviewed service protocols. UPnP

specification does not define how services can be composed. DPWS do not define how

services are composed however, since DPWS services are compatible with web services

 56

they can be composed with web service composition techniques. Jini does not define how

services are composed. SLP and ZeroConf are limited in their invocation support therefore

they are limited in their ability to be composed. HAVi specification does not define how

HAVi services can be composed. OSGi does not define how services are composed.

2.3.8.3. Generality

Several of the reviewed protocols and standards are programming language agnostic (UPnP,

DPWS, SLP, and ZeroConf) while the rest depend on Java (Jini, HAVi, OSGi). The

dependency on Java is more restricting in that it requires client applications to be written in

Java. It also requires the service provider and the service client to agree on a Java interface –

which implies a Java service is the product of the device or service standardisation, while in

language agnostic protocols the standardisation can be defined as an XML document. This

observation applies only to those protocols that support a communication mechanism for

service invocation.

All of the reviewed protocols except HAVi, which relies on IEEE1394, are physical layer

independent.

2.3.8.4. Non functional aspects

Most of the reviewed protocols support some level of built in security except for UPnP,

which has security as an add-on. For others the level of security varies between

authentication only (SLP) and full support for authentication, authorisation, integrity, and

encryption (Jini, DPWS, and HAVi). The relevance of the levels of security supported by

the protocol is for evaluating the impact of sharing on the level of security.

 57

With regard to performance, UPnP and DPWS have small memory footprint on the device.

The use of SOAP for remote invocation in these service protocols is considered less

efficient than Java RMI because of its verbosity as opposed to a binary representation, as

used by Jini, OSGi and HAVi. SLP and ZeroConf are considered scalable because of their

abstraction of invocation mechanism. In addition ZeroConf has optimised discovery

mechanisms for reducing the traffic needed for discovery.

2.3.8.5. Extensibility

With regard to multi-home readiness it can be seen in the table that ZeroConf is the only

protocol with some support for multi-home networking. It should be noted though, that this

support is not native and requires manual administration and configuration of a DNS server,

which is not appropriate for typical home users. To some extent OSGi can also support

multi-home setting with distributed OSGi and R-OSGi, however this is not common and

requires administration. The rest of the protocols and standards (UPnP, DPWS, Jini, SLP,

Table 1 Service Protocols and Standards Comparison

Property/Protocol UPnP DPWS Jini SLP ZeroConf OSGi HAVi

Scope and

Market

Uptake

Application

Domain

Generic,

currently focused

in consumer

electronics

Generic Generic Broad TCP/IP

services

Broad TCP/IP

services

Generic,

common for set

top box

Consumer

electronics

Standardization

Body

UPnP Forum OASIS Sun (Oracle) IETF IETF OSGi Alliance HAVi consortium

Market

Acceptance

Very common,

promoted by

DLNA

Not yet common

in HAN

Not common in

HAN

Used as part of

ZeroConf

Very common Not common for

inter-device

interoperability

Not widely used

Service

Orientation

Service Adverts Multicast Multicast Via lookup

service

Multicast Multicast Via service

registry

Via lookup

service

Service

Discovery

Multicast Multicast Via lookup

service

Multicast Multicast Via service

registry

Via lookup

service

Service Registry Not supported Not supported Supported Supported Supported Supported Supported

Service

Description

XML WSDL Java API Not supported Not supported Java API Java API

Service

Invocation

Communication

mechanism

(SOAP)

Communication

mechanism

(SOAP)

Communication

mechanism (Java

RMI)

Service location Service location Communication

mechanism

(Java API)

Communication

mechanism (Java

RMI)

Service

Composition

Not supported Compatible with

web service

composition

Not supported Not supported

Not supported

Not Supported Not supported

Generality

Programming

Language

Any Any Java Any Any Java Java

Physical Layer Any Any Any Any Any Any IEEE1394

Non

Functional

Aspects

Security Available as an

add-on

Authentication,

integrity,

encryption

Authentication,

authorization,

integrity,

encryption

Authentication Authentication,

integrity

Java based

security

Authentication,

authorization,

integrity

Performance Small memory

footprint

Small memory

footprint

RMI is

considered to

have better

performance than

SOAP

Considered

scalable because

of the

abstraction of

invocation

protocol

Optimised

discovery

protocol with

shutdown

mechanisms.

Considered

scalable.

No specific

issues

Designed for

small networks

Extensibility

Multi-home

Readiness

None None None None Via DNS-SD R-OSGi/

Distributed

OSGi

None

 58

and HAVi), do not support natively service discovery or access to services beyond the scope

of a single network.

2.4. Service oriented HAN

As demonstrated in the previous section, service oriented computing has been adopted by

multiple standards and service protocols for the HAN. Bottaro et al. claim that SOC is a

promising paradigm for addressing the challenges of pervasive computing within the HAN

for enabling seamless integration between heterogeneous devices and services [18]. A

“home service”, hosted by a home device, in this terminology can define an action or

operation that can be invoked over the network by clients in the HAN. For example, a clock

service may have a get time operation, which returns the current time, a media server may

have a search action, enabling client to search for media. Devices may have additional

embedded devices, for example a mobile phone device may have a digital camera embedded

in it.

While multiple service-oriented protocols have been suggested and deployed in the HAN,

the incompatibility between these service protocols, as demonstrated in the previous section,

resulted in formation of islands of interoperability [88]. Redondo et al. [106] argue that the

availability of different devices forms a pool of resources that is committed to various

activities in the HAN and can be leveraged by combining and reusing existing resources

through service composition. Devices can shift from providing content only over the

network, to providing services, such that innovative composite services can reuse these

services for building custom applications for the HAN. However, while service composition

is a key premise for SOC for enabling creation of reusable complex services from multiple

simple ones, it is limited by the lack of interoperability between multiple service protocols.

Applications can still compose services in the traditional style, by writing code in a

programming language that interacts with multiple services. For example a UPnP control

point can interact with multiple UPnP services, and can even include code to interact with a

service that in DPWS. However this overlooks the SOC advantages of loose coupling and

technology neutrality, and does not result in reusable services. Support for nested

composition of atomic services means that service providers can expand their service

offerings by re-using their own atomic resources and services as parts of composite or

 59

specialised services that they then offer directly to consumers. Finally the ability to compose

local services with other service providers facilitates the building and maintenance of

strategic partnerships with other service providers in order to maximise the value (and hence

demand) for the atomic services.

2.5. Summary

This chapter introduced the main HAN challenges, applications, and technologies. The main

focus of this chapter was a review and assessment of the various service-oriented protocols

and standards that leverage the home physical connectivity for enabling services to be

discovered and invoked locally by other devices, services, or applications. The outcome of

this assessment is a comparison of the protocols and standards based on the criteria defined

in section 2.3. The purpose of the review was to assess their support for service orientation

in terms of service discovery, description, invocation, and composition, and in addition to

assess their suitability for extension beyond the scope of a single HAN.

While significant efforts were made in enabling device-to-device interoperability resulting

in the diversity of service protocols reviewed above, the plethora of service protocols and

standards that were suggested for the HAN presents new challenges from a service-oriented

point of view. HAN service protocols and standards enable, to a greater or lesser extent,

interconnectivity between heterogeneous devices and services. While they generally provide

useful abstractions for interaction with a particular device, these protocols and standards are

not interoperable with each other. This leaves vendors and consumers locked into spot

solutions and ultimately not delivering on the promise of pervasive HAN device and service

integration. As indicated in this chapter, service composition is not an inherent part of the

reviewed service protocols, except for DPWS services, which are compatible with web

services and can be composed with web service composition techniques. Finally, only

ZeroConf and distributed OSGi and R-OSGi support access of HAN resources from outside

the HAN.

The next chapter presents a review and analysis of the state of the art in the area of service

oriented architectures for home area networks with emphasis on intra-HAN service

interoperability and service composition, and on inter-HAN service interoperability.

 60

Chapter 3
STATE OF THE ART

The previous chapter discussed the service oriented HAN, presenting the various service

protocols and standards for home networking, and assessing their service orientation. The

previous chapter also presented the fundamental concepts of service orientation and

emphasised the role of service composition and its potential value for HANs both for

consumers as well as service providers. Being able to compose services available in the

HAN can realise the full potential of the HAN through enabling the innovative creation of

new complex services from those already existing in the home network. Moreover, service

oriented computing can also benefit from the availability of services from multiple HANs.

With increasing broadband availability, consumers can leverage remote resources shared

with them, thereby extending the scope of the service-oriented HAN. However this

extension of scope must be made carefully with regard to security, privacy and performance.

This chapter presents the state of the art in these two aspects of interoperability related to

SOC in the HAN: Intra-HAN service interoperability, which allows services from different

service protocols to discover and interact with each and to be composed in the scope of a

single network; and inter-HAN service interoperability, which allows services in different

HANs to discover and interact with each other.

The purpose of this chapter is to identify the shortcomings of existing approaches for both

intra-HAN with respect to service composition (section 3.2) and inter-HAN service

interoperability (section 3.3) and derive the requirements for an integrated service oriented

system that supports both intra-HAN and inter-HAN service interoperability (section 3.4).

 61

3.1. HAN service interoperability

The previous chapter showed the diversity of devices, services, and the service protocols

and standards used for their interconnection. These service protocols and standards are

incompatible with each other and therefore are not interoperable in their syntax, and the

semantics of the interfaces they expose. It is unlikely in the near term to expect that a single

technology will dominate the home network. There are several reasons for the coexistence

of multiple service technologies at the home network. Due to the wide spectrum of devices

from low-cost, resource-constrained appliances to powerful desktops, a single service

protocol may not be suitable for all devices. Additionally, the traditional segmentation of

industries has led to the development of multiple service protocols and standards, each with

its own application domain. Moreover, this segmentation has shown little sign of

convergence, which could promote interoperability in recent year. While on more powerful

devices multiple protocols could be supported, on low-cost devices, it is unrealistic to

expect to find more than one service protocol implemented on a single low cost device.

HAN service interoperability is defined as the ability of devices and services to discover,

configure and control other devices and services in the network [83]. There are various

levels of interoperability from the lower network level interoperability, which specifies how

messages can be exchanged between systems, through syntactic interoperability, which

defines the structure of messages that can be sent between heterogeneous systems in the

home networks. Finally there is semantic interoperability, which is required to understand

the format and content of the actual data that is exchanged between systems.

Since the HAN service protocols and standards differ in their network, syntax, and semantic

layers, they are not designed for discovering, and interacting with services supporting other

service protocols. In addition, these protocols are designed to run within the scope of a

single HAN and are not able to interoperate with other services in remote HANs (i.e.

discover, interact). Interoperability between the different service protocols is also a building

block in enabling HAN service composition. Service interoperability, both inter-HAN and

intra-HAN has various advantages to several players including consumers, service providers

and service developers. Service interoperability can enable service consumers to enjoy a

 62

richer choice and experience from being able to connect multiple services, in multiple

HANs, augment the functionality of a single device or service with available extensions.

Service providers can profit from the potential of their devices and services being used in

ways that were not necessarily intended through combination and collaboration with other

services. Interoperability enables rapid service development and makes it easier to introduce

new applications from existing devices and services.

The lack of service interoperability indicates that devices supporting one protocol cannot

discover and interact with devices supporting other protocols and with devices supporting

the same service protocol in other networks. This poses a challenge to the home service

oriented environment and impedes the realisation of its potential, which can be achieved

through connecting and composing services from multiple protocols and networks.

The following sections therefore present the state of the art in intra-HAN and inter-HAN

service interoperability. The importance of intra-HAN service interoperability for this thesis

is in that HAN service composition requires broader intra-HAN service interoperability.

3.2. Intra-HAN service interoperability

The objective of intra-HAN service interoperability is to enable devices supporting different

service protocols and standards to discover and interact with each other. The approaches

proposed in the literature can be classified into two main groups: bridge-based service

interoperability, and middleware-based interoperability. The bridge-based interoperability

attempt to connect two specific service protocols and enable their unidirectional or

bidirectional discovery and interaction. The middleware-based approach to intra-HAN

service interoperability takes a platform centric standpoint in positioning a middleware as a

hub between multiple spoke service protocols.

3.2.1. Bridge-based interoperability

A number of bridge-based solutions were suggested for enabling the unidirectional or

bidirectional bridge between service protocols, enabling clients of one protocol to access

 63

services of the bridged service protocol. In [91] Newmarch presents a lightweight approach

for a unidirectional bridge connecting Jini clients with UPnP services. Jini’s abstraction of

the way a service proxy communicates with a service implementation is leveraged to create

Jini service proxies for UPnP devices such that SOAP is used to facilitate the interaction.

This requires the UPnP device side to register the proxy with the lookup such that the proxy

should implement all the methods defined in the service description of the UPnP service.

This requires an extension of the UPnP device stack to make the proxy classes available to

be registered with the lookup service.

Allard et al. present an approach for a bidirectional bridge between Jini and UPnP service

discovery architectures [4]. This approach is external to the devices and enables

bidirectional communication. While it does not require clients to be rewritten, it does

require new code to be added for each additional service introduced for bidirectional

mapping between UPnP and Jini to be deployed as part of the system. The design suggests

creating a virtual proxy for each UPnP service that would register with a Jini look up service

and bridge Jini client calls to the UPnP device, and similarly for a Jini service, a UPnP

virtual proxy would advertise the service using SSDP and bridge SOAP calls to the Jini

implementation. The architecture is meant to minimise the amount of code needed and to

facilitate rapid development of bridged services. While the bridge presents a solution to the

syntactic interoperability problem, the semantic interoperability remains a problem, e.g. a

Jini printer service may differ from a UPnP printer in the functionality offered, therefore

mapping between them is imperfect. Another problem refers to the argument types in Jini

services that tend not to be restricted to primitive types and Strings, which is more

problematic to map to UPnP. Another problem for bridging service discovery is that while

UPnP search is limited to the service type, in Jini lookup, several attributes can be used for

locating a required service (in addition to the service interface), including manufacturer and

version. These attributes if available in UPnP are part of the service description, which is

not available before the service is located.

Guttman et al. [48] present another bridge between Jini and Service Location Protocol (SLP)

service discovery. Their work is targeted for devices that support SLP discovery however

they do not host a Java Virtual Machine (JVM) and do not have a Jini interface. In order to

allow Jini clients to use SLP devices, the Jini-SLP bridge acts as an SLP User Agent (SA)

and discovers Jini-enabled SLP services in the network. While these devices are expected

 64

not to have a JVM, they are required to have a Jar file that contains a driver factory class

that can be used to register the service with a Jini lookup service. When a client wants to

invoke the Jini service, it downloads the driver factory object from the lookup service and

the driver factory can then interact with the SLP service agent. The advantage of this

approach over direct interaction with the SLP service agent is that it abstracts the

networking code from the client and enables thinner, simpler, and more flexible clients.

3.2.2. Middleware-based interoperability

A more generic approach for establishing service interoperability between home service

protocols is the platform centric approach where interoperability is achieved through central

middleware software. Such a middleware can abstract service discovery and service

interaction differences between different protocols and technologies and allows uniform

access to services for clients.

Several service oriented middleware systems for home networks were suggested in

literature. These middleware systems can be classified into 3 groups:

1) OSGi middleware - OSGi provides useful flexibility in its module system for

service middleware systems. The service technology can be mapped to an OSGi

service interface, then loaded into the platform runtime, and then discovered and

invoked by other bundles [136].

2) Web services middleware – SOAP or RESTful web services can provide syntactic

interoperability between services in addition to the network interoperability and

basic connectivity provided by lower layers (e.g. IP, UDP, wireless, Ethernet) [102].

Web services are used as the service representation, such that the web service serves

as the proxy between various service protocols. The benefit of using web services

for home networking interoperability is their reuse of open standards, proven

scalability in enterprise applications given their loose coupling, and their

independence of platforms, programming languages, and operating systems [2].

3) Proprietary canonical service representation – proprietary frameworks that define or

reuse a service format to which service protocols are transformed, in addition to

discovery mechanisms and invocation protocol. Universal Service Description

Language (USDL) [88] for example is an XML language used by uMiddle to

describe semantics of devices. The main drawback of this approach is that it is

 65

incompatible with any existing software in the home network. It also requires

application developers to be trained with new API rather than well known industry

standards.

• Middleware systems using OSGi service representation:

o Home SOA [19] is an attempt to tackle the home interoperability problem via

open pluggable component architecture. Based on an OSGi platform, Home

SOA offers a service oriented device control framework. The main concept in

this architecture is the use of several types of drivers in conjunction with an

OSGi platform to provide a rich service oriented interoperable environment.

Base drivers are used for handling a specific technology and hiding its protocol

details through device reification on the platform. Refined drivers react to the

discovery of a base driver and perform mapping between multiple technologies.

Service composition is supported through chaining syntactic functions via

reactive adapters.

• Middleware systems using web service representation:

o FedNet [70] is an intermediary based solution for transparent integration of

applications with diverse smart objects by wrapping the interaction with the

smart object and placing the FedNet intermediary between the applications and

the smart devices. Smart devices are described via proprietary description

documents. The interaction between the application and the smart device

representation is made through a RESTful interface.

o Perumal et al. [102] tackle the problem of interoperability and heterogeneity in

smart homes, and discuss the different layers of interoperability and for each

layer suggest their preferred solution. For connectivity interoperability they

suggest an Ethernet cloud; for network interoperability – TCP; and for syntactic

interoperability - XML/SOAP web services.

• Middleware systems using proprietary service representation:

o uMiddle [88] is a universal and extensible middleware for interoperability in

pervasive environments. uMiddle uses a proprietary XML universal description

language (USDL) as a canonical service description thereby enabling

developers to write applications that interact with devices with a technology-

neutral interface.

 66

3.2.3. Home service composition

As mentioned earlier in this chapter an important aspect of a service-oriented architecture is

service composition – the ability to construct complex services from atomic simple ones

available in the network. This section reviews several middleware-based solution for intra-

HAN interoperability that focus on service composition.

Several service composition platforms for home services are focused on a specific

technology while others aim at a more holistic mediation solution for multiple service

technologies. Bobek et al. [16] suggest a framework for enabling workflows in UPnP

networks. The architecture supports two different modes: workflow as a UPnP device, and

workflow as a UPnP control point. By adding a UPnP interface to a workflow engine, it can

theoretically interact in a seamless manner with other UPnP devices in the network.

Workflows are modelled as embedded devices in the workflow engine device enabling

control points to discover and invoke them via UPnP protocols. Taking the role of a control

point allows the workflow engine to interact directly with UPnP devices. The combination

of both capabilities enables workflows modelled as UPnP devices to be further composable

for creating composite workflows, which are again modelled as UPnP devices for further

composition. Wrapping the workflow management system as a UPnP device enables

uniform workflow management via a UPnP service. This approach has the advantage of

enabling control point applications in the home network to discover and invoke composite

services. For service composition, the disadvantage of [16] is that it only supports UPnP

services.

In [126] Timm et al. present MORE, a middleware system, which supports dynamic service

orchestration on DPWS-compliant embedded devices. Their main application domain is for

hierarchical sensor networks. The middleware runs DPWS on an OSGi platform. WS-BPEL

is too heavy for a sensor network deployment – for example, the open source Apache ODE

BPEL engine requires Java runtime as well as a Tomcat servlet container, which requires

10-15 megabytes of RAM. The static nature of BPEL is not flexible enough for the

application domain – this is because the sensor network is dynamic, sensors are added,

network conditions change in such way that the workflow has to be modified dynamically

throughout its lifetime. Instead MORE suggests a simplified workflow technique called

service chaining, which is merely a description of the order of execution of a set of web

 67

services such that the WSDL for the service chaining is generated on the fly. Through the

web service interface for the service chaining, the system achieves seamless integration with

BPEL, which may be applicable at higher layers of the sensor network. While the simplistic

approach of dynamically generated service chains may suffice for sensor networks, however

for home service composition it lacks concurrency (in service chaining services are executed

sequentially), and structural activities such as conditional branching, and sophisticated event

handling.

An OSGi based service composition for smart services with BPEL is presented in [106]. In

this architecture a composite service is expressed as a BPEL process that orchestrates a set

of OSGi services. The composite service is deployed in the OSGi platform as a virtual

bundle and then can be accessed by other services as an ordinary OSGi service. When a

composite service is located and invoked, the implementation bundle calls the BPEL engine,

which interprets the process specification and executes the process and can call back OSGi

services. Smart home services are discovered and registered with the OSGi platform as

services via technology related bundles (e.g. a UPnP bundle) and thereby can be invoked

from composite services running on the OSGi platform. An important aspect of the

proposed approach is an improvement of the OSGi service registry to support semantic

description of services and thereby enable the automatic semantic OSGi service

composition, which is based on an understanding of what the service does rather than what

is the syntax of the service. This allows replacement or load balancing of equivalent

services. The main drawback of this approach is the lock-in to Java indicated by the use of

OSGi. In addition, OSGi is typically centralised and while it allows clients to discover and

invoke services, these clients must run in the same process as the OSGi platform. In this

sense, seamless integration is achieved only through embedding of client applications into

the OSGi process space, which is not likely for the dynamic environment of the home

network. The main advantage of this approach is that the modularity of OSGi enables

support for multiple service protocols through the OSGi service interface by registering a

service protocol bundle with the OSGi framework.

The authors of [17] suggest an extension of BPEL for dynamic device and service

discovery. The purpose of this framework is to adjust BPEL to the more dynamic

environment of mobile devices. The discovery extension supports DPWS enabled devices.

The benefit of this approach is in its flexibility such that the services invoked during the

 68

execution of the process do not need to be known at design time. Another contribution is a

code generator that generates Java code from BPEL service description. The advantage of

this approach is that the generated byte code can be executed on a Java virtual machine

without requiring a heavy BPEL engine, therefore it may be appropriate for running on

devices.

Sliver [52] is an extension for BPEL targeted for mobile devices. While the disk space and

memory size required for running BPEL engine are reasonable for modern computers, they

are inappropriate for most mobile devices. Another problem is that most mobile devices are

not equipped with full Java runtime but with a more limited version (JavaME10). Mobile

devices that do not support 3G typically lack support for TCP/IP sockets and UDP/IP

datagrams, while typically BPEL relies on HTTP for communication with hosts. Through

the abstraction of communication with partner links, use of dedicated lightweight parsers

and small set of Java API available on mobile device Java environment the goals described

above are met.

In [18] Bottaro et al. suggest an OSGi service-oriented middleware supporting ontology-

based home service composition, specifically in the audio/video domain. By using OSGi,

the system can support multiple different service protocols, for dynamic service composition

based on semantic technology. Service composition is accomplished by matching required

services with provided services. They define device and capability ontology, which are used

to assist with service composition to enable determining which device can perform which

semantic task.

3.2.4. Analysis

The sections above presented a number of bridge-based and middleware-based approaches

for enabling intra-HAN service interoperability. Bridge-based solutions provide a direct

mapping between two service protocols, enabling services of one (or both) protocols to be

discovered by the other service protocol’s clients. Middleware approaches take a platform

centric approach and suggest mapping each service protocol to a canonical service protocol

10 http://www.oracle.com/technetwork/java/javame/overview/index.html

 69

and service format. For home service composition, BPEL is commonly used for static

service composition, where dynamic service composition is supported through either

extension of BPEL or extension of OSGi. As was shown no service-oriented middleware for

intra-HAN service interoperability supports inter-HAN service interoperability. The

following sections analyse the bridge-based, middleware-based and service composition

existing solutions for intra-HAN service interoperability.

3.2.4.1. Analysis of bridge-based approaches

The main problem with bridge-based solutions to intra-HAN service interoperability is that

they are not extensible to additional protocols. Supporting another protocol requires a bridge

between the new protocol and all existing protocols. With regard to service composition,

bridge-based solutions to intra-HAN service interoperability do not support or enable

service composition. They focus on making more services available to application clients –

by enabling one protocol’s client to interact with another protocol’s services - however they

do not address the problem of being able to compose services, either from a similar or

different service protocol in a reusable manner.

3.2.4.2. Analysis of middleware-based approaches

Middleware systems aim to hide the heterogeneity of networks behind a middleware by

mapping between service protocols and some other service protocol selected as a canonical

form. The main advantage of the middleware approach over the bridge-based approach is its

extensibility for supporting new protocols and service formats – where all service protocols

are mapped to a single canonical protocol and service format. Therefore, mapping a new

protocol requires only mapping to the canonical for, rather than mapping to all of the other

protocols as in the bridge approach. A major drawback of the middleware approach is that

due to mapping to a canonical protocol, client applications supporting a specific protocol

cannot benefit from the service interoperability unless they are modified to use the canonical

protocol. With bridge-based approaches, e.g. UPnP to Jini bridge, UPnP control points can

discover Jini services, and Jini client applications can seamlessly discover UPnP devices

and services through the bridge. Similarly to protocol bridges, a problem of middleware

approaches is that while they solve the syntactic interoperability between protocols, the

semantic interoperability problem remains. If a printer service in UPnP has different

operations than a printer service in Jini, their representations in the middleware will differ.

Through the abstraction of protocol syntax, a middleware approach enables applications to

 70

be written in a protocol agnostic manner, however the mismatches and data format

differences between the service interfaces of semantically equivalent services limit this

ability.

Several service representations were suggested above: OSGi service format, web services,

and proprietary service format. The advantage of OSGi services and web services over

proprietary service formats is that a proprietary middleware supporting a non standard

service format is required to re-implement a complete service oriented environment for this

service format, i.e. service discovery, service selection, service invocation, and service

composition, while all of the above are already supported for web services and OSGi

services through standard and commonly known protocols. One strong disadvantage of

OSGi based solutions is that it is centralised and requires client applications to run as

bundles on the OSGi platform. Another drawback of OSGi is that it is Java specific and

requires Java-based interaction, on the other hand web service based middleware enables

programming language agnostic interaction. A common drawback to all middleware

solutions is that they are incompatible with existing client applications supporting the

service protocol and require new applications to be developed to interact with the

middleware-based services.

3.2.4.3. Analysis of service composition

Table 2 summarises the approaches presented above for home service composition. As can

be seen home service composition is supported mainly with BPEL or OSGi service

composition. BPEL is considered a common solution for service composition for enterprise

applications. The advantage of applying the same solution to home service composition is in

the simplicity that it offers and the readiness of development tools. There are two main

drawbacks for using BPEL for home service composition. BPEL is not lightweight and

requires significant amounts of RAM. While it is still reasonable for deployment on more

powerful home computers, it may not be appropriate for smaller devices such as mobile

phones. A potential solution to this problem is proposed in [17] with the mapping of a BPEL

composite service to Java such that the executable composite service is compiled into Java.

Another drawback of BPEL is its lack of support for dynamic composition. In a BPEL

composite service, the service bindings are hard wired at composition design time. In

dynamic environments this may be insufficient, as services are added and removed from the

 71

network and better options may exist for the selection of a constituent service within a

composite service.

Dynamic service composition allows service selection to be done during runtime rather than

design time as in static service composition. While it makes dynamic service composition

more flexible, it comes at the cost of complexity. Mechanisms are needed to extend service

definitions with semantic information, and to support just-in-time selection. Additionally,

semantic information needs to be available for services to provide the service composition

contextual information.

Finally, it is interesting to note that none of these systems discussed above supports inter-

HAN service interoperability.

3.3. Inter-HAN service interoperability

This thesis argues that the service oriented HAN could benefit from the availability of

remote services. By extending the boundaries of the HAN and making more services from

remote HANs available, home users could realise even more of the potential of their own

devices. More services available in the local HAN (through sharing from remote HANs) can

lead to more potential for service compositions that could leverage these devices and

services and provide more added value complex services to the home user. In addition, with

the emergence of social networks such as Facebook, YouTube11, Flickr and others, along

11 www.youtube.com

Table 2 Home Service Composition Approaches

Middleware type Service
composition
technique

Service
composition
level

Adaptability Supported
service
protocol

Inter-network
interoperability

Bobek et al. [16] Proprietary Workflow Syntactic Static UPnP Not supported

Timm et al. [126] OSGi Service chaining Syntactic Dynamic DPWS Not supported

Redondo et al. [106] OSGi BPEL Syntactic/
semantic

Dynamic Generic Not supported

Bohn et al. [17] BPEL extension BPEL/Java Syntactic Static DPWS Not supported

Hackmann et al. [52] BPEL extension BPEL Syntactic Static SOAP Not supported

Botaro et al. [18] OSGi OSGi Semantic Dynamic Generic Not supported

 72

with the growing popularity of high speed broadband at households, and the growing, yet

limited standardisation of home devices interoperability with DLNA, users are ready to

share their HAN resources and content in a controlled and managed manner with their

friends and family as shown in an ABI market research survey [1]. The focus of this thesis is

on integrated inter-HAN and intra-HAN service interoperability and composition. Inter-

HAN service interoperability refers to the ability to share services between multiple HANs.

Remote access to HAN resources is a closely related scenario to sharing, however it has a

number of subtle but important differences. In the remote-access scenario, the sharing is

performed with the identity of a person. In HAN-to-HAN scenario, the sharing is performed

with the identity of the network. Hence if a service is shared in the latter scenario, it is

shared (and will be discoverable) in the target network, while in the prior scenario, a shared

service will not be discoverable in the target network but only by the user identity. The

differences in the scenarios imply differences in the set of problems that need to be handled

by potential solutions, therefore given the scope of this thesis is restricted to home-to-home

scenario, this section focuses on architectures that support inter-HAN service

interoperability.

In order to be able to identify shortcomings and advantages of the various approaches and

compare between them, a common comparison criteria has to be defined first. The following

parameters are defined as the assessment criteria for inter-HAN service interoperability

systems:

• Seamless integration – A major challenge for inter-HAN service interoperability is to

enable the seamless integration of remote resources into local HANs without requiring

the extension of the device, the service or network protocols, or of client applications.

Another aspect to this is the ability to make local services available to multiple remote

HANs simultaneously.

• Private networks – The introduction of Network Address Translation (NAT) and

private networks solves the problem of the explosion in IP addresses, however it poses a

serious challenge for enabling sharing of resources and content between remote HANs.

With NAT, the private IP addresses assigned to devices in the local HAN are

meaningless outside this scope. The same IP address can be used in two HANs.

Moreover, the private IP address of a device is not addressable from the outside world.

 73

There are two different challenges with private IP addresses in the context of sharing

services and content outside private networks:

o Service discovery – How to announce a service with a private IP address in

remote HANs?

o Communication – How to enable point-to-point communication between private

IP addresses in remote HANs?

• Security – Interconnecting remote HANs for service interoperability presents several

security related challenges:

o Authentication – Needs to guarantee that communication is made only between

authenticated parties.

o Access control – The main challenge is to enable maximal flexibility for the

home users to control what they wish to share, with whom, and when. More

fine-grained sharing specification, leads to higher level of flexibility.

o Encryption – Prevents eavesdropping and revealing of private data while being

transferred between remote HANs.

• Extensibility – With the coexistence of many service protocols in the HAN supporting

multiple service protocols for service sharing.

• Manageability – Each system is deployed in the HAN and interacts with non-technical

home users. It is important to assess what is required from the home user in order to be

able to configure the system, e.g. add friends to share services with, control which

resources are shared.

• Intra-HAN service interoperability – The extent of support for intra-HAN service

interoperability, i.e. enable services from multiple service protocols to interact.

• Support for service composition – The extent of support offered by the architecture for

service composition, in the same HAN or across multiple HANs.

In the following sections the various approaches and implementations are assessed with

regard to the above criteria.

3.3.1. IP addressing in a HAN

The most basic approach for enabling remote access to a service or content within the home

network is based on configuration of the home gateway [13]. Typically home networks are

configured as private networks behind a NAT such that the home network has a single

 74

external IP address and devices in the home network are assigned private addresses. To

enable remote traffic to a specific device the NAT router needs to be configured to forward

such traffic to the specific private address IP/port. Given the correct NAT configuration,

devices within the home network could be accessed from outside the home. The same

configuration needs to be applied for each service or device that the user wishes to share.

The configuration is made on IP level and means that incoming traffic to the external IP

with a given port will be internally redirected to the home device or service. For example, to

enable remote access to a media server that is locally advertised with the address:

192.168.1.3:56000, the home gateway needs to be configured to map incoming traffic to the

external IP address of the HAN: 89.100.49.96:56000 to the internal address of the device. It

only means that a device can be seen as having an external address, and therefore a remote

host can interact with it. It does not mean that a remote host can see device announcements

made to the local HAN. Therefore it does not support seamless integration and remote

services cannot be discovered. A remote user needs to know the IP address of the home

network sharing a device and the service details in order to communicate with it. Additional

security settings are required to the firewall to make sure access can only be made from a

specific source IP addresses. The main drawback of this approach is the requirement for

complex manual configuration to home gateway and firewall system, which is not

appropriate for most non-technical users. Misconfiguration or lack of security configuration

can put the network at risk of unrestricted access to the local HAN. Finally it requires

remote users to be aware of the IP address of the home network, which again may not be

reasonable to ask of home users.

3.3.2. Web-based content sharing

It is envisaged that for inter-HAN interoperability sharing content is one of the main drivers,

e.g. for sharing multimedia content with friends, it is relevant to refer to it in order to better

understand the motivation behind sharing of resources, its evolution, and its limitations.

Early approaches for web based sharing were based on emailing media from one user to

another [11]. These approaches however had a few problems. Due to the nature of email,

size was a problem. High definition movies, high-resolution pictures require large size files,

which are not appropriate for email. Another problem with email is that once the media is

shared, it cannot be un-shared as it is always available to the recipient of the email. The next

 75

generation of web based sharing of content came with the introduction of 3rd party services

such as YouTube, Flickr, and Facebook. These services enable users to share content they

generate with other users. As part of the social networking proliferation, these web-based

services have become widely used. Content is uploaded to 3rd party hosting sites and is

managed beyond the scope and out of control of the home network. Most of these services

also provide the users with some mechanism of access control allowing them to control

what they share with whom. While these services provide very convenient access for users

they have an inherent drawback in the way users give up full control over administration of

their content to a 3rd party. This could also lead to invasion to user’s privacy by data mining

of the content the user uploads. In [113] Rosenblum discuss the implicit loss of control that

takes place when users upload pictures and movies to such a 3rd party service, which can

have severe consequences, such as unauthorised use by a 3rd party, or having the content

exposed to broader than expected audience. Another drawback of web based sharing is the

need to conform to some format required by the hosting services, e.g. flash or mp4. Another

aspect is that due to the hosting service being public (and typically free) it puts some

limitations on the content’s quality, length, and space, therefore high quality media can only

be stored if it is short enough according to the provider’s guidelines. Another aspect of web

based sharing is that at the moment the integration between TV and Internet content is

limited. In order to watch shared content stored on the web on a TV, users need to connect

the TV to the computer, however with the migration of traditional services over IP (IPTV)

[66] this may be changing.

TiVo [127] is a popular Digital Video Recorder enabling consumers to record television

programs onto an internal storage for watching it at their preferred time. In addition, TiVo

enables users to share their movies and photos with friends by creating a personalised

channel. Movies are uploaded to a server and friends with whom the channel is shared can

access them through a TiVo device. Friends can access all content placed on the channel as

soon as they are given the channel key. They can either watch the content or download it to

their TiVo device similarly to a regular TV channel. The main purpose of this channels are

for photos and short video clips.

Spotify [73] is a peer-to-peer streaming service that enables users to search and stream

music on demand. Spotify uses a proprietary client and network protocol. Spotify has two

 76

modes – stream from dedicated servers and peer-to-peer streaming. The Spotify client has

local access to music files and enables other peers to discover them.

3.3.2.1. Analysis

Web based sharing is easy-to-use, and the skills required are easily accessible to home users,

however it has a number of significant limitations and drawbacks.

• Size limitations – When uploading files to a 3rd party hosting service there are

typically restrictions on the maximum file size, preventing sharing of large files, e.g.

high definition videos.

• Loss of control – When files are uploaded to a 3rd party hosting site, users have no

longer full control over the content.

• Privacy – When users upload files to a 3rd party hosting service they surrender their

administration rights and in some cases their copyright over the shared files.

• Limited to file sharing – The approach is only applicable to file sharing, rather than

resources or services in general therefore insufficient to address the full range of

inter-HAN service interoperability.

The main advantage of this approach is its simplicity and familiarity of home users with it,

however as mentioned earlier, web based sharing enables content sharing, it does not

support services and seamless integration as only content sharing available through the web

browser. Authentication and authorisation depend on the level of security and privacy

supported by the service provider. No manual configuration is required and web-based

sharing does not support intra-service or service composition. Private networks do not

present a challenge to web based sharing since sharing not made directly from the HAN.

Extensibility is not applicable to web based sharing because sharing is supported only for

content and only by uploading the content to a hosting web site, therefore it does not support

a specific service protocol, but the content that is hosted by the devices that use the service

protocol.

3.3.3. Peer-to-peer sharing

Peer-to-peer (P2P) networking is a distributed computing paradigm in which there is no

 77

hierarchy between the peers. Unlike conventional client-server architectures where client

and server are well defined and have different functional roles, in P2P peers can act as both

clients and servers at the same time. Peers expose to other peers’ shared services, resources

or content, which can then be accessed without the orchestration of a server.

Communication between the nodes is based on hop-by-hop messaging from each peer to its

neighbour until the message is delivered to the destination. In addition to file sharing, P2P

has been very popular infrastructure for Internet telephony applications like Skype12, and

IPTV broadcasting applications like Joost13.

JXTA [68] is an attempt to standardise P2P architectures and API. JXTA creates a virtual

network on top of the physical network hiding the complexities of the physical network

from interacting peers. JXTA enables peers to exchange messages with other peers

regardless of their network location including firewalls, NAT and non-IP devices. In [97]

Park et al. present a JXTA based P2P collaboration platform for connecting multiple home

networks. The platform supports a number of use case scenarios: remote control of devices

and services, P2P content sharing, home-to-home multimedia content sharing, P2P

multicasting. The architecture connects personal computers and diverse devices including

legacy devices, non-IP devices and various service protocols to a P2P network through P2P

middleware. For each of these service protocols a proxy is defined that acts as a gateway

between the service protocols and the P2P protocols. Special peers called relay peers are

responsible for relaying messages to peers with NAT thereby supporting private networks.

Only authenticated devices can join the P2P network, however no access control is defined

which means all services are available to all authenticated users. The communication

between the nodes is made over P2P pipes that define virtual communication channel that

enables remote devices to exchange messages. The architecture does not support seamless

services integration in the sense that service protocol clients for services running in the

home network are not able to discover remote services, as they are not advertised locally.

Sharing is not made with a specific user but with the P2P network, this enables applications

to search for services in the P2P “cloud” and use them, however it requires them to use the

P2P middleware. The system does not require manual configuration, however it does require

installing a P2P proxy for each “legacy” device in the network to relay the discovery and

12 http://www.skype.com/

13 http://www.joost.com/

 78

interaction with the P2P middleware. The architecture is extensible and can support multiple

service protocols, however it does not address specifically intra-HAN service

interoperability and service composition.

Loeser et al. [77] suggest architecture based on integrating JXTA with OSGi for creating

Virtual Home Environment (VHE) enabling users to remotely control their home devices.

The concept behind the virtual environment was to provide users with unified access to all

of their resources regardless of their location. The architecture supports two modes: in-home

and inter-home. The in-home mode supports intra-HAN service interoperability by making

services from multiple protocols available to each other over the P2P network following the

middleware approach described in 3.2.2, however it does not support service composition.

The inter-home mode supports connecting multiple home networks over the P2P network

such that the communication with the local devices is facilitated through a centralised OSGi

server running the local HAN, which then communicates with other peer OSGi servers

running in remote HANs. Several aspects of security are supported: authentication,

encryption, and message fingerprints for data integrity, however access control is not

supported. The architecture does not support seamless integration with existing service

protocol client applications. Interaction with local and remote devices requires a P2P client

application that connects to the P2P network. Interaction with the local devices is made

from the OSGi platform via device drivers that are loaded as bundled to the OSGi platform,

which makes the approach extensible. There is no information in literature regarding how

this approach handles NAT and private IP addresses assigned to devices.

In [137] Venkitaraman proposed an approach for secure sharing and control of DLNA home

resources based on P2P middleware. The middleware is responsible for the creation and

maintenance of groups, which form a logical union of devices based on some criteria. For

example a group of devices can correspond to the set of devices in a certain home network,

or a group of mobile devices can represent a set of friends. Groups could also be based on

context information such as location or interests. Groups are implemented and maintained as

an overlay network that is not dependent on an underlying particular protocol or service

logic. In order to enable extension of DLNA to multiple home networks [137] suggested

xUPnP as a UPnP extension that runs over the P2P middleware. xUPnP understands the

UPnP discovery protocol and maps it to messages that can be sent between the device node

and friends with which it is shared by sending the messages to the members of the groups –

 79

where the group can be defined as all the friends of the home network sharing the device. In

the remote HAN messages are advertised, thereby achieving seamless integration with client

applications. Once advertised in the remote HAN, direct communication can be made

between local control points and remote devices and services. The P2P overlay is

responsible for providing the local xUPnP application with presence information about

group members joining or leaving the network, which can trigger local updates, e.g.

removing remote devices originating in the leaving peer, or sending joining peer

information about local services. Private networks are supported in a limited way through

tunnels as long as there are no colliding IP addresses i.e. devices with identical addresses in

different NAT-ed domains. While this approach may be applicable for connecting mobile

devices connected to a public network to a home network, it is not reasonable to expect no

IP collision between two home networks. The IP addresses assigned by home gateways are

typically in the same range therefore collisions are highly likely. The system is designed for

UPnP/DLNA services and is not extensible to support other service protocols. The home

user is required to configure and administer the membership of the groups, which

determines the groups to which discovery messages are advertised. Communication is

allowed between authenticated peers and is encrypted. The system does not include support

for intra-HAN service interoperability.

3.3.3.1. Analysis

Peer to peer is a well established distributed computing paradigm. Using P2P for sharing

home resources relies on connecting the home network, through a P2P middleware to a P2P

network; thereby allowing searching and downloading content, or discovering services from

participating networks. A peer that runs the middleware and sends the information to remote

peers collects the information about the local HAN. P2P is an established mechanism for

searching and downloading content. P2P file sharing applications have been shown to scale

to millions of nodes. A major drawback of such systems with regard to controlled inter-

HAN service interoperability is the lack of mechanisms for access control. The typical

notion of sharing in P2P is that a resource, e.g. a file, is either shared with all, or not shared

at all. Another drawback is that access to services is typically made through a P2P client

[97, 77] rather than through a service protocol client, thereby implying the need for service-

P2P bridging solution. None of the reviewed protocols support service composition. Loeser

et al. [77] support intra HAN service interoperability by bridging between multiple service

protocols and the P2P network. Park et al. [97] support only UPnP devices. While Park et al.

 80

use relay nodes to circumvent NAT, it is unknown if and how private IP address are handled

by [77].

3.3.4. Distributed OSGi-based sharing

OSGi platform (introduced in section 2.3.6) is a mature technology with many attractive

features for HAN equipment vendors, especially software life cycle management. However

it is typically used as a central server rather than a node in a distributed architecture.

Wegner presented an architecture for interconnecting UPnP networks using OSGi

technology [139]. The architecture presented is based on 4 main concepts: (i) OSGi

platform, (ii) proxying remote devices in the local HAN, (iii) communication through a

single secure channel, and (iv) device/service filtering. OSGi provides the basic

infrastructure for a proxy that is split between the local HAN and remote HAN. In each

network a proxy runs and collects information about the local HAN UPnP services and

reports to the remote proxy about shared services. When the local proxy learns about remote

devices it generates a local device proxy in the local HAN to represent the remote device,

thereby supporting seamless integration with existing UPnP applications. The

communication between the remote HANs is based on R-OSGi [107] which also allows for

a secure connection to be established, e.g. with SSL/TLS encryption. Moreover R-OSGi

does not dictate a transport layer; therefore various secure communication channels could be

used including TCP, HTTP, and HTTPS. An important aspect of the architecture is the

ability to control and modify invocation requests before they are sent to the remote HAN.

Filtering is supported through configuration of which users a device or a service should be

shared with using LDAP syntax. The actual streaming of content is performed through the

same communication channel. The system does not support intra-HAN service

interoperability. This system provides a benchmark that demonstrates the invocation delay

for remote invocation with an increased argument size for a SOAP request. The benchmark

was made on Intel Core 2 Duo @ 2 GHz and showed that with small argument size (<8

killobytes) the delay is roughly 100 milliseconds, and when the argument size grows to 65

killobytes, the delay grows to 1400 milliseconds. The system was evaluated with one device

and did not include support for UPnP eventing.

One drawback of this architecture is that the administration of the relationships with friend’s

 81

networks requires configuration of R-OSGi systems, which require knowledge of IP

addresses or some other pre-shared key. In addition, it is not clear how the dynamics of

adding and removing remote HANs with which the local HAN is agreeing to share devices

is handled. While R-OSGi may be very efficient in supporting remote invocation as shown

in [108], however it is not clear if it is suitable as a system that connects HANs with

dynamic relations between them. Finally, the architecture is designed specifically for UPnP

services and does not claim extensibility to other service technologies.

3.3.4.1. Analysis

OSGi architecture provides a flexible infrastructure for intra-HAN service interoperability

as well as to inter-HAN service interoperability through its module management system.

OSGi has many advantages for home networks, especially its flexible and resilient module

system with existing support for mapping UPnP services to the OSGi platform. Additionally

OSGi is positioned as a solution for intra-HAN service interoperability as well as device

management, e.g. for set top box. However, as a distributed architecture, especially in the

context of home network, OSGi is not mature yet. The home user is not an enterprise

architect and the assembly and configuration of OSGi servers for establishing relationship

between remote HANs is beyond the scope of a non-technical user. While the low-level

mechanisms for enabling secure remote communication exist in R-OSGi, high-level and

standard mechanisms for identifying users and therefore establishing trusted communication

with remote HANs is missing. R-OSGi could potentially enable composition of services

from multiple HANs, however this is not part of the architecture described in [107]. NAT is

handled by using local addresses that are mapped to remote addresses. When a proxy

advertises a remote device locally, it assigned it a local address. When a result from a UPnP

action on a remote device contains URLs, they are replaced with local URLs that would be

forwarded to the remote ones over the tunnel between the HANs.

3.3.5. SIP-based sharing

The Session Initiation Protocol (SIP) [112] was first introduced in 1996 as an application

layer control protocol to establish, modify and terminate networking sessions. The protocol

supports point to point, and point to multi-point sessions. Typical applications of SIP

include instant messaging, presence, file transfer, video conferencing, phone/voice, and

streaming of media [118]. In SIP terminology a SIP client is an end point identified by a SIP

 82

URL that wishes to participate in a communication session. A client can initiate a SIP

request, which is answered by a SIP server (User Agent Server). The SIP request is passed

between SIP servers until it arrives to the destination. Connecting multiple networks with

SIP requires additional support for NAT traversal because SIP uses UDP for both signalling

and media. There are several solutions to this problem, such as SIP-aware NAT, STUN or

TURN [78]. Another technique is Interactive Connectivity Establishment (ICE) [111],

which enables a public rendezvous point for devices with private addresses.

In [51], a Service Virtualizer based on the SIP Service Discovery Gateway [50], facilitates

service discovery through a presence extension of SIP. Communication between the

networks is made over a SIP session between the users which both have a SIP identity. The

local Service Virtualizer learns about remote services by subscribing to a remote service

discovery gateway or an intermediary presence server. Once the local Service Virtualizer

learns about a remote service it creates a local instance of it with proxies that handle control

requests and event notifications. The HAN user has no control over which services are

shared, remote HAN users can select which services they wish to virtualise in their HANs

from all the services that are shared with them. Users control the virtualisation configuration

either on demand when a new device is discovered or by defining a managed list of devices

that should be virtualised. However this only defines which remote devices are shown

locally, it does not define access control (i.e. which local devices are shared with remote

HANs), which is not handled in this architecture. Once the device has been announced in

the local HAN, control applications can interact with it directly, thereby supporting the

desired seamless integration. Control requests and event subscription requests require

establishing a remote service usage session with the remote service discovery gateway. As a

result, the remote service discovery gateway configures the firewall to grant remote access

to the requester. Authors of [51] claim that the service virtualisation is generic and can be

applied to additional service protocols, however they only described a design and

implementation for UPnP services. The architecture does not address intra-HAN service

interoperability. In order to handle private networks and possible collisions between

identical private addresses used by multiple networks, Home DNS [9] is used. Home DNS

has a number of advantages, the most important of which is seamless addressing, such that

the device can be accessed from within the HAN and from remote HANs with the same

address. However one significant drawback is that it requires users to configure the address

of a dynamic DNS provider, which is a service provided over the Internet. This is a one-time

 83

configuration, however non-technical users are not typically familiar with this kind of

configuration. In addition, some dynamic DNS providers charge for this service

W-DLNA [84] describes a SIP based architecture for connecting remote media devices with

DLNA based home network. The main concept of this architecture is the virtualisation of

Digital Media Player (DMP)/Digital Media Server (DMS) devices. The virtual devices are

installed in the home gateway and communicate through a SIP server with remote

counterparts. The SIP server is installed in some public domain, which is accessible over the

Internet. W-DLNA supports various remote access scenarios for DLNA content including

home-to-home, and remote mobile access to local home content. In each participating

network, a gateway running the W-DLNA system is running. In a mobile device, the

gateway is installed locally in the mobile device, in a home network it can be installed on

the home gateway device. The SIP server is used for interconnecting the various gateways.

Interaction with remote devices is made through dedicated proxies tailored for media access,

which are generated in the gateway. In a network hosting a media server, a virtual media

player will be created, and similarly in a network hosting a media player, a virtual media

server will be created and hosted in the gateway. The architecture supports seamless

integration between remote devices and client applications in the local HAN only partially -

remote devices are not announced in the local HAN; instead their content is available

through the local proxy that facilitates the access from the local player to a remote media

server. This approach is therefore specific to media and does not extend to UPnP services or

other service protocols in general. The virtual devices are also responsible for IP mapping

between internal and external addresses. This is done by mapping the internal IP address

and port of the local device to a port on the external IP address. When the local device sends

a packet to a remote address, the virtual device (which is part of the home gateway) replaces

the headers with a source IP address that corresponds to the external IP address of the HAN

and a port that is mapped to the local device. The same procedure is repeated in reverse in

the remote HAN when a message is received. This approach however relies on dynamic

configuration for opening ports in the firewall and allowing only source based access.

Authentication and access control are both supported. Access control is specified per

content per user and is enforced by the virtual device. The implementation does not include

support for intra-HAN service interoperability. The specific technique used by this

architecture for NAT traversal for SIP is not described in the literature.

 84

3.3.5.1. Analysis

SIP based solutions use SIP sessions to communicate between remote homes. Each home

networks (or mobile device) additionally runs a server that collects information about the

local HAN and interchanges this information with the server in peer remote HANs over the

authenticated SIP session. The concept of service virtualisation was introduced, such that

virtual services represent remote services in the local HAN. Discovery information is

relayed over the SIP connection. SIP is problematic with regard to NAT traversal, however

there are several solutions such as STUN, TURN, and ICE to work around these problems.

There are several drawbacks to these approaches. TURN, which is an IETF standard has

scalability issues and assumes clients have trust relations with the TURN server. In addition,

TURN complicates the configuration of the SIP user agent. STUN is limited and is not

appropriate for all NAT configurations, and finally ICE is complex to configure. None of

the reviewed SIP based systems support intra-HAN service interoperability, and specifically

none supports service composition. They are focused on a single HAN service protocol

(UPnP) and do not address extensibility to additional service protocols.

3.3.6. VPN-based sharing

Virtual private networks (VPNs) have emerged as an economic alternative to leased lines

for building private networks [72]. The private network is said to be virtual as it is

constructed over another network (typically a public carrier network such as the Internet). A

VPN enables users to tunnel their traffic securely through public networks as if they are

connected to the same private network. A tunnel employs cryptographic techniques to

prevent access to VPN packets for non-VPN members while sent on the public network.

There are many variations of VPN tunnels, some are based on layer 2 tunnelling such as

Layer 2 Tunnelling Protocol (L2TP) [128], while others are based on layer 3 (IP) tunnelling

such as IPSec [71]. VPN was mainly targeted for enterprises aiming at reducing costs while

providing security and scalability. While in enterprises, this could be established and

maintained by system administrators and security experts, applying the same approach for

home users requires special consideration to aspects such as the simplicity of setup, which

may require more technical skills, the performance overhead and the bandwidth limitations.

Some home gateways provide VPN functionality, allowing clients to establish end-to-end

secure tunnels to the home network.

 85

A VPN based solution for communication between home networks is presented in [10] with

a special solution for discovery based on the ATOM [90] web syndication protocol. The

architecture involves an IP tunnelling mechanism such as a VPN, which is used as a

communication channel for all traffic except for discovery between the remote home

networks. A UPnP aggregator in the local HAN collects information on local UPnP devices

and publishes this information through an ATOM feed on a local HTTP server. An

extension of a control point application can access remote HTTP servers and request the

feed containing information about available devices and services. The aggregator can also

accept HTTP POST message updates from remote HANs with information about remote

devices. It is suggested that a future architecture of UPnP devices and control points will

have the embedded support for out-of-band discovery mechanisms such as ATOM feeds.

One weakness of this solution is that it rules out many of existing control applications using

standard UPnP in their implementation because standard UPnP clients need to be enhanced

with an ATOM reader to receive discovery notifications. Another drawback of this approach

is the lack of a uniform approach to service discovery (of local and remote devices), which

can lead to additional complexity of control points. Since the approach suggested builds on

ATOM for discovery and IP tunnelling for the rest, a direct connection to the remote service

endpoint is still required such that an IP packet can be routed to the remote IP address. With

private networks in place such that IP addresses collision are very likely, this approach is

not applicable for connecting two networks. The system architecture does not address access

control for HAN resources. In addition user management (being able to add and remove

networks with which services are shared) is not supported. Finally, the system architecture

does not address intra-HAN service interoperability.

DLNA Agents for SNS (DAS) [121] is an architecture based on using social network

services (SNS) and VPN connections for interconnecting remote HANs. The DAS

architecture is composed of an SNS server, DLNA agent and DLNA devices. The user has

an account on the SNS server and at configuration time the SNS authentication details are

entered. When two users wish to connect with each other, the local DAS instance will

collect information from the available media servers in the local HAN and upload it to the

host user’s SNS page. In addition the local VPN server in the user’s DAS instance will

upload connection details to the user’s SNS page enabling the VPN client of the remote user

to connect to it. The SNS server enables the configuration of what should be shared with

which friend via editing of a sharing management configuration page. Once content has

 86

been shared, a page is be created for the remote user (in their SNS account) with the list of

shared content from which the remote user will be able to choose what they wish to access,

and the VPN server details are downloaded to the remote DAS instance. A virtual media

server is established in the remote HAN, which advertises itself as having the content list

that was downloaded over the VPN connection, thereby enabling seamless integration.

Finally a reverse proxy is used to transfer traffic between DAS instances. The reverse proxy

is used to transfer traffic that is sent to the local address of the virtual DMS to the VPN IP of

the remote the DAS in the remote HAN, where it is forwarded to the local device. Private IP

addresses are not published beyond the local HAN, instead the local DAS instance

maintains a mapping between content and the device, which owns it. The advantage of DAS

is that it uses common social networking practice to hide the details of secure

communication setup from the users. intra-HAN service interoperability is not addressed by

this architecture.

The Dial-to-Connect (D2C) VPN System [55] was designed as a simplified version of an

on-demand VPN that works over a SIP network to enable sharing of DLNA devices and

services. Phone numbers are used for user identification. In order to establish a connection

between users, they need to enter the phone number of the other user via a SIP client. Once

the remote user accepts the request, the two-way VPN connection can be established. In

order to meet the quality of service required for media streaming, D2C uses the QoS service

provided by the SIP network. D2C uses an IPSec [71] tunnel in order to establish secure

communication between the remote HANs. IPSec packets are encapsulated in UDP packets

for NAT traversal. In addition, in order to handle duplicate private IP addresses (assigned by

the NAT in the two networks) bi-directional NAT [122] is used, such that both the source

and destination addresses are modified consistently to identify the devices in the local and

remote HAN. Since DLNA discovery is based on UDP multicast, which cannot be sent over

the VPN, an additional mechanism is required to relay messages from the local to the

remote HAN. Once the VPN is established, local multicast discovery announcements are

translated into unicast messages and are relayed over the VPN connection to the remote

HAN, enabling seamless integration with local DLNA clients. The interaction is ad hoc and

does not support multiple remote HANs simultaneously. Authentication is supported

through SIP authentication but access control is not supported. The architecture is designed

for DLNA devices and does not support extensions to additional service protocols. The

system is deployed in the home gateway and is interacted with through a SIP client. No user

 87

configuration is required, however the system requires interaction between human users,

such that once a remote HAN requests a connection with the local HAN, the local HAN’s

user needs to accept or decline the request.

3.3.6.1. Analysis

VPN based approaches are drawn from experience from multi-site enterprise secure

communication and its application to connecting home networks. Several approaches have

been presented for setting up the communication and for using it for inter-HAN service

interoperability as presented above. The main advantage of these approaches is that it

provides higher security and can enable higher-level protocols to work as if they run within

a single network. However this is not desired when access control is needed. None of the

reviewed protocols support service composition or intra HAN service interoperability. NAT

traversal support ranges from limited support in [10], local redirection in [121] and

bidirectional NAT in [55]. Support for seamless integration is also limited, [10] does not

support seamless integration, [121] partially supports it through aggregation to a virtual

media server, and [55] supports seamless integration. Access control is only supported by

[121] while all of the reviewed systems support authentication.

3.3.7. Proprietary protocols for sharing

P. Belimpasakis et al. propose an architecture based on a Home Media Atomizer (HMA)

which is a component that can be either added to the home media server or run as a

standalone component [12]. This element acts as a mediation layer between UPnP media

servers content in the local HAN and HTTP based web feed protocols such as ATOM [90].

The HMA acts as a UPnP control point and loads data about local HAN’s media content to

the HTTP server that can handle requests from remote users about locally available media

content. The HMA enforces access control so that remote users can only access services and

content that is shared with them. This approach is very similar to that proposed in [10]

(remote access to UPnP with ATOM based service discovery) however instead of using a

VPN for the connection between remote HANs it is based on reconfiguration of the home

gateway for allowing remote access to local HAN.

Siekkinen et al. present hBox in [119]. hBox is similar to [51] in its virtualisation approach

 88

to remote resources. In this architecture a UPnP embedded device is introduced to all

networks that wish to be interconnected. This device is capable of establishing and

maintaining secure tunnels between local and remote HANs. This device is controlled via a

mobile phone, which is used to establish trust with the remote HAN by sending SMS

authentication messages. Selecting a remote user from a mobile phone address book makes

the initial connection establishment. A request is sent as a text message to the target phone,

which is required to accept the request for connection. The response includes the IP address

to connect to and some shared security key. The mobile phone application is used to select

services to be shared from those discovered in the local HAN. Once a device is shared with

a remote HAN, hBox starts forwarding its presence announcement to the remote HAN’s

hBox, which announces it locally. Remote devices are represented in local HANs as

embedded devices within the hBox UPnP device, thereby facilitating seamless integration

with existing UPnP applications. Requests made by local control points to the hBox

embedded devices are relayed to the remote hBox, which forwards them to the devices and

returns back the result. Private networks are handled through STUN/TURN or ICE. hBox

requires the introduction of an additional appliance to the home network. In addition, it uses

non-standard communication, authentication, and user management protocols. Another

disadvantage is the cost related to sending text messages for initiating the connection. The

authors of [119] argue that the approach can be potentially extended to other types of

service protocols however they have only implemented UPnP services. Finally, the

architecture does not address intra-HAN service interoperability.

The SHARE architecture [76] extends the home gateway to manage the connections with

peer networks and to exchange information about streaming services (UPnP AV servers) in

local and remote HANs. In essence this home gateway extension relays SSDP messages to

remote home networks by establishing a TCP connection, which eliminates the need to

retransmit packets more than once. An additional component of the SHARE architecture is a

virtual media server that contains an expanded control point and an expanded media server.

The expanded control point discovers remote media servers and collects information about

the media they contain. The expanded media server consolidates the media content received

from multiple remote media servers. Media streaming is enabled using another component

(Media Distributer) in this architecture that acts as a proxy for remote streams. The Media

Distributer supports distributed streaming, and proxies streaming protocol data between

multiple remote sources and the local UPnP media renderer. The system is focused on

 89

enabling inter-home communication however it is not described in literature how it

addresses NAT traversal. In addition the architecture does not address fine-grained access

control over what content is shared. The system is designed specifically for UPnP A/V

architecture and is not extensible to other service protocols and it does not support any intra-

HAN service interoperability.

Intel’s Device Relay software [65] enables connection between two UPnP networks by

mirroring of UPnP devices across these networks. The connection between local and remote

device relays requires the user to provide the local relay with the IP address of the remote

relay. Then the device relay can mirror devices from local to remote HAN by relaying

discovery messages to the remote HAN where they are virtualised by the local device relay

instance, thereby enabling seamless integration with local control points. There is no

indication in literature with regard to how Device Relay handles private HANs behind NAT

or how the communication between Device Relay instances is performed. The Device Relay

approach has a few limitations, such as only being able to connect to a single remote HAN

simultaneously as opposed to several as supported by most other solutions presented here.

Another drawback is that all devices are mirrored; there is no control over what is being

shared. Finally the Device Relay requires open ports in both local and remote HANs and

corresponding firewall configuration. The Device Relay is specifically designed for UPnP

and does not support additional service protocols or intra-HAN service interoperability.

In [31] Chowdhury et al. describe a system for connecting multiple UPnP networks via an

extension of the home gateway. A proprietary protocol is suggested for establishing a secure

channel between local and remote HANs based on a pre-shared key that has to be available

to all networks that wish to share devices and services with each other. This key is used for

encryption of messages exchanged between the home networks. In addition, in order to

establish connection with a remote HAN, its IP address needs to be available to the home

user initiating the request. This requirement is problematic both because it is not realistic to

require non technical users to be aware of other home network’s IP addresses, but also

because IP addresses may be changed dynamically (with DHCP). Once connected, the local

and remote home gateways exchange information about devices in their network and access

level for each device (permit/deny). Similar to the approach presented in [119], remote

devices are added as embedded devices within the home gateway with necessary

modification to URLs in the device location and control URLs so that they will be served

 90

locally, facilitating seamless integration with local UPnP applications. The configuration of

communication between the remote HANs is made through the modification of the home

gateway and firewall when a connection request is accepted, and is updated whenever a

device or service is shared with another network. The architecture relies on the home

gateway to map from public IP address to services’ private IP addresses when request from

remote HANs are received to local HAN. The system is designed specifically for UPnP

services and is not natively extensible for other service protocol and does not support intra-

HAN service interoperability. 	

3.3.7.1. Analysis

Various specialised solutions have been suggested for enabling home-to-home sharing of

services and content. The approaches presented in this section differ in the problem they

focus on, as well as in the methodology towards the general sharing problem. The different

approaches suggest mechanisms for establishing trust between remote HANs (e.g. hBox

[119], Chowdhury [31]) or mechanisms for propagation of discovery messages (e.g. HMA

with ATOM web syndication protocol [12]). None of the reviewed systems support service

interoperability or service composition. Access control is not supported by [65, 76], and

supported by [12, 31, 119]. Authentication is supported by all of the reviewed systems. All

of them except for Home Media Atomizer [12] support seamless integration. With regard to

NAT support there are different approaches: hBox [119] uses SIP TURN/STUN or ICE,

Home Media Atomizer [12] relies on modifying the HG, and Chowdary et al. use local

redirection. For [65, 76] there is no information in literature about how and if they support

NAT traversal.

 91

3.3.8. Conclusions

The various approaches for inter-HAN service interoperability reviewed in the previous

sections. Table 3 presents a summary of the comparison between them with regard to the

comparison criteria defined in section 3.3

The first column in table 3 defines the scope of the reviewed architecture. Some

architectures support sharing of services in general [10, 51, 77, 97], however most of the

systems reviewed focus on a single service protocol – UPnP or even a subset of it support

by DLNA, especially multimedia devices such as media player and media server. Some of

those supporting UPnP services argue for broader generality (e.g. [119]) however they have

only presented a design and implementation for UPnP services.

The second column in table 3 refers to the computing platform, which is used for the

suggested architecture. The term computing platform refers to the hardware or software on

which the system executes. A number of architectures suggest deploying the inter-HAN

Table 3 Inter-HAN Service Interoperability Architectures Comparison

Architecture/
Criteria

Scope Platform Communication Seamless
integration

NAT
traversal

Remote
Service

discovery

Remote service
in local
network

Security System
configuration

Intra-
network
support

Service
composition

IP
configuration

Services Home
gateway

N/A X HG
manipulation

X X Requires
manual config

Manual HG
configuration

X X

Web-based
sharing

Content Web N/A N/A N/A N/A X Authentication,
authorization

N/A N/A X

Park et al. [97] Services
, content

JXTA P2P

X Relay peers X X Authentication N/A X X

Loeser et al.
[77]

Services
, content

OSGi +
JXTA

P2P X Unknown X X Authentication,
encryption

N/A √

X

Venkitaraman
[137]

DLNA
services

Proprietary
P2P

P2P √ Limited
support

Relay Direct access

Authentication,
encryption

Creation of
sharing
groups

X X

Wegner [139] UPnP
services

OSGi R-OSGi

√ Local
redirection

Relay Virtual service Authentication,
authorization

R-OSGi
relationships

X X

W-DLNA [84] DLNA
services

Proprietary SIP X Unknown Relay Content
aggregator

virtual service

Authentication,
authorization

SIP users X X

Haber et al.
[51]

Services Proprietary SIP √ Home DNS Relay Virtual service

Authentication SIP users,
Home DNS

X X

Belimpasakis et
al. [10]

Services Proprietary VPN X Limited
support

ATOM Direct access

Authentication,
encryption

N/A X X

DAS [121]

DLNA
services

Proprietary VPN + reverse
proxy

√ Local
redirection

SNS Direct access

Authentication,
authorization

N/A X X

Dial-to-
Connect [55]

DLNA
services

Home
gateway

SIP+VPN √ VPN,
bidirectional

NAT

Relay Direct access Authentication N/A X X

Home Media
Atomizer [12]

DLNA
services

Proprietary IP X HG
manipulation

ATOM Direct access Authentication,
authorization

N/A X X

hBox [119]

UPnP
services

Proprietary Proprietary √ TURN/
STUN/ICE

Relay Virtual service Authentication,
authorization,

encryption

N/A X X

SHARE [76]

UPnP
services

Home
gateway

IP √

Unknown Relay Direct access Authentication N/A X X

Intel Media
Relay [65]

UPnP
services

Proprietary Unknown √ Unknown Relay Virtual service Authentication IP addresses X X

Chowdhury et
al. [31]

UPnP
services

Home
gateway

Proprietary √

Local
redirection

Relay Virtual service

Authentication,
authorization,

encryption

IP addresses X X

 92

service interoperability system as part of the home gateway. The advantage of this approach

is its always-connected nature – being installed as part of a device that is always connected

to the Internet, rather than on a desktop or an appliance that may be shutdown periodically.

A potential drawback could be the lock-in to a single vendor, and the CPU and RAM

limitations that may apply when provided as a home gateway extension. JXTA is a common

platform used by P2P based approaches for establishing a P2P overlay. OSGi offers

attractive platform due to its flexible module management system, however most OSGi

experience is with centralised systems and it is not clear that R-OSGi is appropriate for use

in the home-to-home setting due to the possibly complex configuration of relation between

remote OSGi instances. Other solutions are based on proprietary architectures and platforms

and are therefore poorly positioned to support service protocol interoperability and

extensibility.

The communication column in table 3 defines the channel that is used between remote

HANs to exchange information. Table 3 shows that there are several standard approaches

for establishing communication channel between remote HANs. P2P approaches [77, 97,

137] rely on sending messages over the P2P network; such that each network must run at

least one instance or more of a P2P middleware system that connects to the P2P overlay

network. Distributed OSGi architectures using R-OSGi [139] rely on a communication

channel that is established between remote instances of the platform. R-OSGi does not

dictate a transport layer; therefore various secure communication channels could be used.

SIP based approaches [51, 84] establish sessions between remote HANs and use these

sessions to exchange information about services existing in these networks. VPN based

architecture establish a VPN connection between the remote HANs enabling IP

connectivity. Other communication channels rely on establishing secure IP channels

between networks.

Seamless integration of remote devices with local HAN is an important feature required

from an inter-HAN service interoperability system for allowing existing applications to

interact with remote services similarly to the way they do with local services. Surprisingly

not all of the architectures support seamless integration in this sense as can be seen in table

3. Another aspect of seamless integration as defined in section 3.3 is the ability to connect to

multiple networks simultaneously. Most reviewed architectures support this behaviour with

several exceptions: Dial-to-Connect [55] is on-demand and allows a network to be

 93

connected to only a single remote HAN at a time. Intel Device Relay supports only one

target network for mirroring at a time.

NAT Traversal is one of the most challenging problems for service inter-HAN service

interoperability. The main challenge with private networks is that devices are assigned

private IP addresses that are not reachable from outside the home network. In UPnP

discovery, devices announce an address where they can be contacted. This address will

typically be a private address. Therefore when shared with a remote HAN, by default this IP

address is not reachable. Moreover, the remote HAN may have a device with identical

private IP address locally. As can be seen in table 3, several techniques are used in the

reviewed architectures. The local redirection approach indicates that private addresses are

not reported to remote HANs, therefore there is no need to handle duplicate IP addresses,

however there is no direct access from a remote HAN to the device, and traffic to, and from

the device is proxied. Another technique is home gateway manipulation to allow remote

access. This approach requires publication of the external IP address of the home gateway

instead of the device private IP address, and configuration of the home gateway to redirect

traffic on the device port on the public IP address to the device. One problem with this

approach is that it does not allow fine-grained access control, when a device is shared with a

remote HAN; all services are available for the remote HAN to use. STUN, TURN, and ICE

are common techniques for NAT traversal. The problem with these approaches for NAT

traversal is that they are not suitable to all scenarios and NAT configurations, and in

addition there are specific issues related to each of these techniques as discussed in 3.3.5.1.

Remote service discovery (column 6) and remote service in local HAN (column 7)

summarise how remote services are advertised in the local HAN and how they are accessed.

The most common approach for announcing remote services in local HAN is through relay

of discovery announcements received from the remote HAN. The announcement is not

necessarily repeated in the local HAN, in some cases the announcement message is

processed and is not repeated in the local HAN, e.g. W-DLNA [84]. Two other techniques

for transmitting discovery information were suggested: ATOM web syndication protocol

[10, 12] and social networking services in DAS [121]. Using ATOM for discovery relies on

mapping between UPnP announcements and ATOM protocol and therefore does not

integrate seamlessly with local client applications. Access to remote services can be divided

into two groups: direct access, and virtual service. Direct access assumes IP connectivity

 94

between the remote HANs, therefore relies on a VPN or on manipulation of the home

gateway. The virtual service approach implies that the communication with remote services

is proxied in the local HAN by a virtual service that interacts with the local HAN

applications and encapsulates the interaction with the “live” device in the remote HAN.

As indicated in table 3, while security is an important aspect of inter-HAN service

interoperability, not all of its aspects are fully supported. While authentication is supported

by all reviewed architectures, access control is only supported in a few of them [12, 31, 84,

119, 121, 139]. P2P based architectures [77, 97, 137] do not support access control as it is

assumed that once a service is shared, it is shared with the P2P network rather than with a

specific user. In VPN based architectures, which use relay-and-repeat technique for

discovery messages, there is no access control and all messages are delivered to all

participants. While it is important to ensure the privacy and confidentiality of the traffic

between the networks, only a number of architectures support encrypted communication

channels [10, 31, 77, 119, 137].

The system configuration column in table 3 refers to the interaction of the system with the

home user and how high level actions are translated into this interaction. For example

adding a friend’s network and initiating communication with them may require the IP

address of the remote HAN [31, 65]. In SIP based architectures, system administration is

performed by adding the SIP address of the remote friend’s network. The distributed OSGi

based architecture [139] requires configuration of the OSGi server instances such that they

are able to communicate. In [137] the user is required to create and administer groups such

that other users can join pending his approval. The IP configuration approach for sharing

resources requires manipulation of the home gateway and potentially the firewall system.

The above manual configurations required from the home user do not seem realistic for a

non-technical home user.

The intra-HAN interoperability column in table 3 indicates that only [77] has some level of

support for intra-HAN service interoperability and as mentioned earlier this is limited to

being able to locate services from multiple service protocols locally. However none of the

reviewed systems includes support for service composition.

 95

The purpose of the review was to identify the gaps in existing approaches, however also to

identify the requirements for an inter-HAN service interoperability system, that together

with the requirements for intra-HAN interoperability system, define the requirements for an

integrated service oriented architecture for HANs. As can be seen from table 3, no single

system supports all of the reviewed aspects. The next section specifies the requirements for

this architecture.

3.4. System Requirements

From the state of the art presented in previous sections we can draw the requirements for an

integrated intra-HAN and inter-HAN service oriented system. It can be seen from table 2

and table 3 that no single system offers an integrated approach for both intra-HAN and

inter-HAN service interoperability. This section presents a consolidated set of requirements

for the proposed system. The overarching objective of the architecture is to enable services

from multiple technologies to be shared across multiple HANs in a controlled manner and

facilitate their interoperability and composition in local HANs with other services of

multiple service protocols.

3.4.1. Intra-HAN service interoperability requirements

• (#1) Cross service protocol service composition – The reality of home networks

indicates that no single service protocol dominates. In order to achieve richer user

experience for home users, service composition must not be limited to composition of

services from the same service protocol. The full potential of services in the home can

be realised through connecting services from multiple application domains, and multiple

manufacturers, which may support different service technologies. The system must

support composition of services from both similar and different service protocols.

Composite services must also be composable to allow further composition with other

services.

• (#2) Shared composite services – There may be cases when users would like to share

composite services rather than exposing the constituent low level resources. As

composite services may offer some functions that may be usefully shared, the system is

required to enable sharing of composite services in an analogous way to the sharing of

atomic services.

 96

• (#3) Cross HAN service composition – The system must support composition with both

local as well as remote services (services from another home network) in a seamless

fashion, hence composite services may include either local, remote or even external

services (public domain services).

3.4.2. Inter-HAN service interoperability requirements

The requirements for inter-HAN service interoperability can be divided into a number of

main categories: (i) seamless integration; (ii) private networks and firewalls; (iii) security;

(iv) performance; (v) extensibility; and (vi) manageability.

3.4.2.1. Seamless integration

In order to integrate with existing technologies in the home network while providing the

user with the new capability for sharing devices, services, and content with remote users, the

following is required:

• (#4) The system must enable users to share devices from a local HAN with remote

HANs.

• (#5) It must be possible for service protocol clients in the local HAN to automatically

discover devices and services shared from remote HANs.

• (#6) There must be no restriction that prevents sharing the same devices and resources

with multiple remote HANs.

• (#7) The interaction of applications in the local HAN with devices and services from

remote HANs must be identical to the interaction with local devices. This is required so

that existing service applications in the local HAN can interact with remote devices

indistinguishably to the way they currently do with local devices.

• (#8) The system must be plug and play such that it is installed in the local HAN and can

immediately interact with local devices and services without requiring any

modifications to standardised device or service protocols.

• (#9) Networking – The system must be able to work regardless of the network

technology supporting access connectivity (e.g. xDSL, cable).

 97

3.4.2.2. Private networks and firewalls

Modern networks use NAT to assign private IP addresses to internal devices in the home

network. Firewalls protect the home networks from unprivileged access and malicious

attacks. The sharing system must be able to operate in such an environment.

• (#10) With the increasing popularity of private networks, the system must be able to

discover and share devices with networks that are using NAT, supporting devices with

identical IP addresses across multiple HANs.

• (#11) The system must able to communicate with remote HANs protected by firewalls

without requiring any manual reconfiguration.

3.4.2.3. Security

Security is an important aspect of the system. This is to ensure that the home network does

not become exposed to new threats, illegal access of resources or any other type of known

threat. Security has a number of aspects:

• (#12) Authentication – All communication with remote HANs must be made by

authenticated users only. Unauthenticated access must not be allowed.

• (#13) Access control – Sharing must not be automatic. Users must be able to control

explicitly which resources are shared with which other remote HAN. The sharing

control must not only allow a user to define per resource whether it is shared or not but

also with which other remote HANs it is shared.

• (#14) Confidentiality – Access to private data must be restricted to privileged users,

therefore all communication must be secure. In order to protect the privacy of

transmitted data from malicious code sniffing the network traffic, all communication

between the local and remote HANs must be encrypted.

• (#15) Vulnerability – Some service protocols for the HANs contain security

vulnerabilities, however as they are not designed to work over unsecure networks such

as the Internet, these vulnerabilities are relatively low risk when restricted to a single

HAN. The multi HAN sharing system must not increase security vulnerability of the

home network by introducing new threats or by extending or exposing existing

vulnerabilities.

 98

3.4.2.4. Performance

System scalability has several dimensions: the number of HANs with which sharing is

enabled, the number of services in the local HAN, and the number of overall services shared

with the local HAN. For the purpose of defining the performance requirements for the

sharing system we anticipate that the number of HANs with which a HAN user will share

devices, services and content will be in the range of 5-15 friends which represents a social

circle of family and close friends. Parks Associates market research report from 2010

estimated the number of connected devices in the HAN globally to be over a billion. An

IDC market research from 2007 predicted that the number of HANs would exceed 200

million households by 2011 [44]. A customer survey from 2008 by a HAN equipment

retailer specialising in the technical hobbyist market recorded that an average of 7 connected

devices in their customers’ HANs [24]. Assuming not all devices can be shared (e.g. home

gateway), we expect the number of shared devices will not exceed 5 devices per HAN.

When considering UPnP devices, each device has typically no more than 3 services. Using

the UPnP device to service ratio as a reference, the number of services shared from the

HAN is estimated between 10-20 services which when shared from 5-15 remote HANs

sums to up to 300 remote services with which the system is expected to operate with.

• (#16) Scale up (intra HAN) – the system must be able to represent up to 300 remote

services with no significant latency. More services can be supported with reduced

performance.

• (#17) Scale up (inter HAN) – the system must be able to scale to a small number of

remote HANs corresponding to number of close family and friends. The number of

remote HANs must not exceed 15 remote HANs.

• (#18) Scale down – the system should be deployable on various operating environment

including Linux, Windows, OSX. The system’s deployment requirements should be

appropriate for home networks – it must be possible to deploy the system on low-end

machines, where RAM does not exceed 1GB and CPU does not exceed 2GHz.

• (#19) Concurrent access – It must be possible for multiple remote HANs to interact with

the same local HAN resource simultaneously.

 99

3.4.2.5. Extensibility

• (#20) Given the heterogeneity of the HAN service protocols and its fast evolution it is

desired that the system architecture will support extensions for additional service

oriented protocols dynamically when such support for them is available.

3.4.2.6. Manageability

• (#21) While some relations between networks may be permanent, others may be ad hoc.

Therefore the system must support dynamic addition and removal of remote HANs, i.e.

change the set of remote HANs with which sharing is enabled during the lifetime of the

system.

• (#22) The local HAN must be able to temporarily pause all sharing without removing

the relationship with remote HANs. This could be required in cases of maintenance to

local HAN or in case the user wants to use all of his or her bandwidth for another

purpose.

• (#23) The system should not require manual configuration of home devices or of home

gateway. Administration of the system should be appropriate for non-technical home

users.

3.5. Summary

This chapter presented several aspects of the challenges in current home area networking.

The intra-HAN and inter-HAN service interoperability challenges were explained and

several approaches towards its solution were presented and assessed. Finally the

requirements for an integrated service oriented architecture for home network addressing

intra-HAN service interoperability with focus on service composition, and inter-HAN

service interoperability were presented. Table 2 and table 3 indicate that no existing system

in the literature meets all of these requirements. Based on the requirements presented at the

end of this chapter, the next chapter present the Krox architecture for a service sharing and

composition system and a design that realises the architecture.

 100

Chapter 4
ARCHITECTURE AND DESIGN

The previous chapter presented the state of the art in intra-HAN service interoperability with

emphasis on service composition and inter-HAN service interoperability. The relevant gaps

were identified and presented, deriving the requirements for an integrated service-oriented

architecture for HAN that supports both service composition and service sharing across

multiple HANs. The key objective of this thesis is to design and implement an integrated

service oriented architecture for HAN that supports secure and performant composition and

sharing of HAN resources that can plug into existing HANs without requiring changes to

network or device technologies. This chapter presents the Krox architecture and design

based on the requirements presented in the end of the previous chapter.

This chapter has two parts: the first part introduces the Krox high level architecture for

service sharing and composition; in the second part a design is presented for the realisation

of the architecture with multiple service protocols: UPnP and Jini. While the Krox

architecture is independent from any specific implementation, the realisation of Krox

architecture with plug-ins for UPnP and Jini service protocol shows how a mapping between

the architecture onto different service protocols is feasible. As discussed in chapter 2 UPnP

and Jini are service-oriented protocols that support service discovery, service description,

and service invocation. While UPnP is programming language agnostic, Jini relies on Java

programming language. From market uptake point of view, UPnP devices are very common

in HAN, while devices with Jini services are less common at the time of writing but have

the potential to become more common with its support for Java. UPnP and Jini both support

a communication mechanism for service invocation, however while UPnP supports SOAP

 101

over HTTP, Jini supports Java RMI. Both UPnP and Jini support a parsable service interface

that can be used for service composition and for sharing the service with multiple HANs.

The next section describes the high level concepts underlying the Krox architecture.

4.1. Architectural concepts

This section presents the main architectural concepts and patterns underlying the

architecture and design proposed in this thesis in response to the requirements presented in

section 3.4. The architecture is based on the following high-level concepts:

i) Plug-in architecture – In order to meet the extensibility requirements, an open

architecture with plug-in modules for each supported service protocol is

suggested for handling the diversity of service protocols which has been shown

in chapter 2. The concept of plug-in architectures, more specifically OSGi based

architecture was suggested in literature [77, 139] for enabling sharing of HAN

resources with remote HANs. While OSGi provides adequate module

management and support for dynamic loading, unloading, and management of

plug-ins, it is mainly useful as a centralised service oriented architecture and it

lacks the features required for use in a distributed environment as the HAN-to-

HAN requires. Plug-in architectures require an infrastructure that can manage

plug-ins lifecycle. A plug-in in the Krox architecture is a module that

implements the interfaces required by the Krox architecture and supports the

required extensible event model. A plug-in encapsulates the details of protocol

specific discovery, automatic service virtualisation of services from remote

HANs, and mapping from the service interface to web services. Each service

protocol is supported through a separate service protocol plug-in.

ii) Resource virtualisation – Resource virtualisation has been shown in the

literature to be useful for achieving seamless integration, as shown in the

previous chapter. The Krox architecture is based on representing resources from

remote HANs (devices and services) in the local HAN using “virtual

resources”. “Virtual resources” proxy the communication with the remote HAN

and provide an interface to the local HAN that is identical to the interface

provided by local devices or services of the same technology. For example a

 102

remote UPnP media server would be represented in the local HAN using a

virtual UPnP device. The virtual device would facilitate all the interaction with

control point applications in the local HAN by tunnelling the communication

over a secure IM&P connection to the remote HAN hosting the “live” device.

There, the tunnelled messages are received by the Krox system and forwarded

to the “live” device. The response messages are tunnelled back to the virtual

device. The resource virtualisation is based on the service-oriented nature of

HAN service protocols, where devices and services are represented by

interfaces, which are abstracted from the implementation, such that the service

interface lends itself to virtualisation.

iii) Automatic virtual resource generation – The Krox architecture automatically

generates local virtual resources for devices from remote HANs that are shared

with the local HAN. The automation is enabled due to the availability of service

interfaces in a parsable format, e.g. Java (for Jini and HAVi services), WSDL

(for DPWS) or XML (for UPnP services).

iv) Instant Messaging and Presence (IM&P) user metaphor – IM&P defines a user

model which when adapted for the multi-HAN settings can greatly simplify

required administration. When applying the IM&P user metaphor, remote

HANs can be represented as IM&P users, such that if an IM&P user is in the

“buddy list” it indicates that the local HAN is sharing devices with the remote

HAN represented by this IM&P user. This approach abstracts lower level

configuration from the home user such as remote HAN IP addresses or phone

numbers, and configuration of sharing with a remote HAN, is reduced to adding

the username of the remote HAN to a “buddy list”.

v) Instant Messaging and Presence (IM&P) based communication – In order to

establish secure communication and be able to exchange messages between

remote HANs behind NAT and firewall systems, the Krox architecture builds

on leveraging instant messaging and presence system for secure communication

and messaging between remote HANs. Tables 3 in section 3.3.8 reviewed the

communication mechanisms used by inter-HAN architectures. The main

approaches reviewed were SIP-based communication, VPN based

communication, and other proprietary mechanisms. The advantage of the IM&P

based communication is its embedded security (authentication, encryption) with

its simple setup and established scalability. In addition IM&P provides

embedded presence features which can be used to trigger communication

 103

initiation or termination between remote HANs. A disadvantage of IM&P is

that it typically requires a server for communication between peers.

vi) Service orchestration – Through representation of HAN services as web

services, enable the creation of reusable composite services from atomic ones.

The following sections describe the above architectural concepts and how they are used in

Krox system architecture.

4.1.1. Plug-in architecture

The fast pace of service protocol and standards evolution implies that changes and

introduction of new HAN service protocols are highly probable. The Krox architecture is

limited in its scope to supporting HAN service protocols that define a parsable service

interface (such that can lend itself to virtualisation), however it does not limit the underlying

mechanisms defined by the service protocol for service discovery, parsable service

description, control, eventing, and any additional protocol. The plug-in approach avoids

trying to abstract all service protocols and instead suggests separation through bundling the

support for a specific service protocol, such that the support for a service protocol is bundled

in a plug-in that contains all the needed support for the specific protocol. Through the

bundling of a HAN service protocol support as a plug-in, the system remains service

protocol agnostic.

Figure 1 High-level Plug-in Architecture

UPnP Service
Protocol Plug-in

Jini Service
Protocol Plug-in

Additional
Service Protocol

Plug-in Platform
Services

Plugin
Manager

Messaging
& Presence

Sharing
Manager

 104

A plug-in architecture, also referred to as a pluggable architecture [43, 141] is an

architectural pattern that is desired when the full function set of the system is unknown

during the system design. There are many recent examples to the usability of plug-in

architecture such as OSGi plug-in framework, Eclipse plug-in framework14, Firefox plug-

ins15 and others. The main advantage of a plug-in component architecture is that it enables

dynamic assembly of the system from its components. To illustrate this approach, the

support for a certain HAN service protocol such as UPnP can be packaged as a plug-in, and

a given instance of Krox system can load a set of plug-ins. When a new service protocol is

introduced and its corresponding plug-in has been developed (potentially by a 3rd party), it

can be loaded into the system extending its support to the new service protocol without

requiring modifications to the Krox system itself thereby providing the required

extensibility.

Figure 1 illustrates the concept of an extensible plug-ins in Krox architecture. The support

for a service protocol is packaged as a plug-in and is loaded into the system by a plug-in

manager. The plug-in manager is responsible for management of the life cycle of plug-ins,

i.e. loading, starting, stopping, and unloading of plug-ins. The plug-in architecture needs to

be complemented by a set of framework services that a plug-in can interact with. It is worth

defining more clearly what defines a plug-in and therefore what should be inside a plug-in

and what is a framework service. A plug-in encapsulates the support for a HAN service

protocol for enabling seamless sharing and interoperability with remote HANs. The plug-in

must respond to a set of predefined events representing the core event model, which

correspond to status changes of the local and remote HANs and discovery related events. A

plug-in can support additional events as required for implementing the support for the

service protocol. The plug-in framework defines how plug-ins interact with the rest of the

Krox architecture the set of events that they are required to respond to. The plug-in

framework is described in detail in section 4.2.2. As opposed to plug-ins, a framework

service may not contain service protocol specific logic and must have a clear and single

function. The messaging & presence service encapsulates the communication subsystem and

is described in section 4.2.1. The plug-in manager is described as part of the plug-in

framework in section 4.2.2. Finally the sharing manager is described in section 4.2.3.

14 http://www.eclipse.org/articles/Article-Plug-in-architecture/plug-in_architecture.html

15 https://developer.mozilla.org/en/Plug-ins

 105

4.1.2. Instant Messaging & Presence

Instant Messaging and Presence (IM&P) is selected for the communication subsystem of

Krox architecture and as a user metaphor for representing remote HANs. The following

sections provide background for IM&P and motivation for this design decision.

4.1.2.1. History of Instant Messaging & Presence

Instant messaging is a well know communication pattern, where the basic idea is the ability

to send and receive messages in real-time. Presence messages indicate the availability of the

users, e.g. available, offline, busy. While Instant Messaging and Presence (IM&P) gained its

immense popularity with the advent of instant messaging chat applications, first

implementations of such systems were already introduced in the early days of UNIX

operating system. For example UNIX enabled users to get limited presence information and

to send and receive instant messages using UNIX commands, FINGER for presence, TALK

for sending messages [54]. These protocols were suitable to the early days of the Internet,

however they suffered from security and privacy issues. Next in the evolution of instant

messaging was Internet Relay Chat (IRC). Introduced in the late 80s, IRC provided real-

time conversation between users over a public network. Users could dynamically join and

leave the chat room at anytime. In the 90s ICQ16, America Online, and later Microsoft MSN

Messenger17 presented an Internet scale chat application, which eliminated the need for a

chat room. Users could finally communicate directly with each other over a public network.

These applications grew rapidly to millions of users, however they were not natively

interoperable with each other and were built on proprietary protocols. Subsequently, this

started the standardisation efforts. Jabber18 is an open source project started in 1998 as a

client and server that could communicate with several instant-messaging systems. As part of

the standardisation efforts, two working groups were formed by the Internet Engineering

Task Force (IETF) at different points in time, SIP for Instant Messaging and Presence

Leveraging Extensions (SIMPLE)19 – based on Session Initiation Protocol (SIP), and

eXtensible Messaging and Presence Protocol (XMPP) [114] – based on XML streaming

16 http://www.icq.com/

17 http://explore.live.com/windows-live-messenger

18 http://www.cisco.com/web/about/ac49/ac0/ac1/ac258/JabberInc.html

19 http://datatracker.ietf.org/wg/simple/charter/

 106

which was originally Jabber’s underlying protocol. Instant messaging and presence

communication pattern is not limited to plain text messaging and has been extended to

audio, video, IP telephony and many other types of innovative services.

The concept of IM&P has a number of characteristics that make it suitable for this

architecture:

1. Ease of use – IM&P based applications are easy to use and well adapted by non-

technical home users.

2. Established massive scalability – IM&P systems have user bases of hundreds of

million users and have been show to perform well.

3. Communication overlay – IM&P provides the overlay abstraction for the low-level

communication mechanisms between remote HANs. Users of IM&P do not need to

worry about low-level networking protocol for establishing connectivity between

remote hosts.

4. Captures the concept of “buddies” – The IM&P terminology of users, and friends

can be useful for defining relationships between the local HAN (i.e. the “user”) and

remote HANs (“buddies”).

5. Support for point-to-point connections – Enabling messages to be exchanged

between remote HANs, e.g. for transmitting service discovery messages.

6. Built-in presence alerting – can be used for being notified when a remote HAN

comes online or goes offline.

7. Easy to secure – The experience gained in instant messaging and other applications

described above provided well-established security models between clients and

servers and between IM&P servers.

4.1.2.2. IM&P as a user metaphor

In order to adopt the IM&P user metaphor for defining the relationships between remote

HANs we need to establish a vocabulary that will be used throughout this chapter defining

consistently the terms user, buddy, and buddy list:

• User – In instant messaging system the user is identified using a username, and defines

a human user signed into the overlay network formed by the IM&P system.

• Buddy – In instant messaging terminology, a “buddy” identifies a remote user with

whom relationship has been agreed to enable users to exchange instant messages.

 107

• Buddy list or buddy roster – In instant messaging, the buddy list identifies the set of

buddies to which a user is connected.

In the Krox system architecture the IM&P user metaphor is adapted such that each HAN

corresponds to a user in the IM&P system. To be accurate, if there is more than one network

within the household, each could run a separate instance of the Krox system. In order for

two Krox system instances to be able to share devices and services with each other, a buddy

relation between the HANs must be established first in the IM&P network. Therefore a

remote HAN is referred to as a buddy of the local HAN if the two HANs agreed to share

devices. This does not indicate anything about the level of sharing that is derived from their

sharing policies, but only that the messaging required for informing each other about shared

resources is allowed. Similarly the buddy roster of a Krox system instance indicates all the

remote HANs with which devices can be shared.

4.1.2.3. IM&P as a communication substrate

In the Krox system architecture, IM&P is used as the communication substrate for control

messaging between the HANs. Each HAN has an IM&P identifier and is connected to a

single IM&P server. If there are multiple network segments within the same household,

each network segment will need to run its own instance of the Krox system with its own

identifier for the IM&P server. As discussed in the previous section, HANs establish trusted

communication channel by adding the remote HAN’s Krox system identifier as a buddy.

Once the buddy relationship has been agreed between the home users, a communication

channel is established between the HANs, and they can start exchanging messages. An

advantage of IM&P for the communication subsystem is the ability to use presence features

indications for initiating or terminating communication with remote HANs. The presence

feature of IM&P system provides a just-in-time notification of changes in the availability of

remote users in the buddy list, without requiring any additional protocol; therefore it is

appropriate for this purpose.

In the Krox system architecture, each HAN endpoints connects to a remote IM&P server

that can be operated by a service provider, or deployed in one of the HANs, as long as it is

accessible from all participating HANs. The IM&P server can be a standard public domain

IM&P server and does not require any modifications. Having each HAN endpoint

 108

implement an IM&P client fulfils three separate but complementary functions in this

architecture:

1) Enable remote Krox system instances to exchange messages – The instant

messaging capabilities are used for delivering messages between local and remote

HANs that are configured as buddies.

2) Enable the local system to be notified on changes in the availability of remote

HANs from its buddy list – Presence indications are used for detecting remote

HANs’ status and controlling local HAN’s sharing status (e.g. by going offline, or

busy).

3) Enable home users to administer their buddy lists in a familiar manner and control

their sharing status – Buddy relations in IM&P are used to establish trusted

communication channels between remote home networks.

4.1.3. Automatic resource virtualisation

The vision of pervasive home sharing of devices/service requires that services from remote

HANs can be seamlessly made available in the local HAN without requiring any

modification in network, device or service protocols. The ultimate goal is to enable seamless

integration between existing applications and remote services that are made available in the

local HAN. In order to support this behaviour it is suggested to use the concept of automatic

resource virtualisation. As discussed in the previous chapter, several variations of this

concept have been suggested in [51, 76, 119, 139]. Automatic device or service

virtualisation means that remote devices or services can be automatically represented in the

local HAN as virtual resources (devices or services) presenting a virtual interface in the

remote HAN, i.e. be seamlessly discovered and interacted with by clients of the same

service protocol running in the same HAN. The virtual resource can communicate with the

“live” device through a communication infrastructure. The automation aspect indicates that

once a resource is discovered, a virtual resource instance is automatically generated in

remote HANs with which it is shared, that can represent the shared resource in these remote

HANs without requiring additional configuration or coding. The virtual resource is made

available only to networks with which the service or device is explicitly shared. The

importance of virtualisation is in enabling virtual resources to be discovered and used in

HANs in a manner identical to physical devices and services. With this approach existing

clients can use local and remote services seamlessly without being aware of the location of

 109

the service they are consuming, therefore they do not require modifications to be able to

interact with remote service.

4.2. High-level architecture

The high-level system architecture depicted in figure 2 defines the proposed integrated

architecture. The architecture contains several components:

• Communication subsystem - Provides the required secured communication

channel and the presence and messaging infrastructure. The communication

subsystem is described in section 4.2.1.

• Plug-in framework – Service protocol specific plug-ins encapsulate the extensions

for a service protocol for multi-HAN and for service orchestration. The plug-in

framework defines the requirements from a plug-in, an extensible event model, and

Figure 2 Krox System High Level Architecture

Service Protocol Plug-in

Plugin Manager Local Network Controller

Virtual Resource Manager

Service Protocol Plug-in

Internet

HAN 2

HAN 1

Secure
IM&P
Server

System
administration

application

IM&P Client

System
administration

application

IM&P Client

Krox System

Capability Sharing
Manager

Orchestration Engine

IM&P Client

Plugin Manager Local Network Controller

Virtual Resource Manager

Krox System

Capability Sharing
Manager

Orchestration Engine

IM&P Client

Communication subsystem

Plug-in framework

Capability Sharing Manager

Service composition subsystem

System administration application

 110

the infrastructure required to support and manage service protocol plug-ins. The

plug-in framework is described in section 4.2.2.

• Capability Sharing Manager (CSM) – Responsible for controlling resource

sharing. A capability defines a resource that can be shared. It can be a device, a

service, content, or some grouping of such. The CSM is described in section 4.2.3.

• Service composition subsystem – Composing functionality that is made available

by services in the local HAN – these could be either local services or remote

services represented by local virtual resources. Service composition subsystem is

described in section 4.2.4.

• System administration application – Used by the home user to administer the

buddy list and sharing status and other aspects of system configuration. System

administration is described in 4.2.5.

4.2.1. Communication subsystem

The role of the communication subsystem is twofold:

(i) To enable the Krox system instances in remote HANs to establish a trusted

communication channel, such that they can securely exchange messages, and

receive notifications on status changes of each other.

(ii) To enable components of a service protocol plug-in on a single HAN to

exchange messages with components of a similar service protocol plug-in in

remote HANs with which a trusted communication channel has been

established, for example, the UPnP plug-in in HAN A, can send messages to the

UPnP plug-in HAN B, if HAN A and HAN B agreed to share devices.

The communication subsystem architecture leverages concepts from IM&P for

communication between multiple HANs and is based on an application layer protocol

providing a scalable and secure overlay network connecting heterogeneous network

infrastructure.

Using an IM&P based communication paradigm for interaction between instances of the

system in multiple networks can benefit from various aspects of IM&P communication:

 111

1. User abstraction – Simplicity is an important aspect for any system that is installed

in the HAN. IM&P provides a useful abstraction of remote HANs as IM&P

“users”. This eliminates the need for home users to know about IP addresses or to

exchange trusted keys. Additionally, many home users are experienced with using

IM systems and are familiar with the concepts of buddy rosters, which can simplify

the administration of the system.

2. Integration with presence – IM&P has a inbuilt support for presence notification

about end points. The plug-in framework can use this presence mechanism for

receiving notifications of remote HAN presence status changes that can trigger the

initiation or termination of the communication with that HAN. In the context of

Krox system in the HAN, presence indicates the willing of the home user to

participate in sharing with remote HANs with which sharing has been agreed. Once

signed in, the system is always on, unless intentionally changed. This means

presences represents the sharing status of remote HAN rather than physical presence

of the home user.

3. Standard communication interfaces – At minimum, IM&P systems enable end

points to exchange messages. In Krox system architecture, this feature can be used

for exchanging messages between instances of the Krox system deployed in remote

HANs.

4. Embedded security – IM&P systems typically support at least authentication and

encryption, which are important requirements for the Krox system architecture.

5. NAT traversal – IM&P systems typically provide standard mechanisms for NAT

traversal, which is required for Krox system architecture.

 112

6. Support for unicast and multicast messaging models – IM&P servers can support

both unicast and multicast messaging that can be useful for different communication

paradigms.

IM&P systems also have a number of disadvantages that need to be considered:

1. Text based messaging – There are different types of communication interfaces

supported by IM&P systems. The drawback of text based messaging for the

communication in Krox system architecture is both its verbosity, and the limitation

to message payload that can be expressed with textual representation. However,

modern IM&P systems support other means of communication such as byte streams

that can support any type of data being transferred.

2. Requires a server – IM&P architecture typically requires a server for

communication between end points. While server-less architecture exist, they are

less common than server based architectures.

As shown in figure 3, the communication subsystem contains an IM&P client that connects

to a single IM&P server. There are no restrictions about where the IM&P server is deployed

as long as connectivity exists between the server and all its clients in both directions. A

service provider typically hosts the IM&P server, however it can be hosted inside the HAN

Figure 3 Krox Communication Subsystem

IM&P Server

IM&P Client

Presence

Client

Messaging

Client

1. Authenticate

2. Send/receive

presence updates

3. Send/receive

messages

Encrypt

/

Decrypt

HAN1

IM&P Client

Presence

Client

Messaging

Client

Encrypt

/

Decrypt

HAN2

 113

as long as it is accessible to other HANs using it. However, the IM&P network is not

necessarily limited to a single server and can refer to a set of interconnected servers. The

IM&P client is a software module that manages the connectivity with the server and enables

its users to exchange messages with each other and be notified on presence status changes of

other IM&P users from the buddy roster. Once the IM&P client connects to the IM&P

server, it starts sending presence messages to the server such that the server can notify

“buddies” of that HAN (i.e. Krox system instances in remote HANs with which sharing has

been agreed) that the local HAN is ready to start sharing. When remote Krox system

instances send messages to each other the messages go to the IM&P server and through the

IM&P server network to the target client. The communication subsystem needs to support

authentication to verify that only authenticated users can send or receive messages.

Therefore the first step during the bootstrap of the Krox system is an authentication of the

IM&P client with the IM&P server. Another aspect of security is encryption. The

communication between the client and the server should support encryption of the sent

messages such that anyone sniffing the traffic between the remote HANs, or between IM&P

servers cannot intercept and use the information sent in a malicious manner. Typically

IM&P systems support encryption at the network level, however even if not, then the

communication subsystem needs to implement encryption and decryption before using the

IM&P for sending messages, and after receiving a message.

4.2.2. Plug-in framework

Plug-ins encapsulate the support for a specific service protocol for service sharing and

service composition. The plug-in framework defines the roles of plug-ins, their abstract

interface, their interaction with the rest of Krox system architecture, and how they are

managed. This section describes how the plug-in framework is used to achieve seamless

integration between services from remote HANs and client applications in the local HAN.

The service composition aspects of service protocol plug-ins are discussed in section 4.2.4.

The plug-in requires a parsable service interface that can lend itself to virtualisation, and can

enable automatic generation of corresponding virtual resources. Therefore it is suitable only

to those HAN service protocols with such a service interface – i.e. UPnP, DPWS, Jini,

HAVi, and OSGi, and not suitable to ZeroConf, and SLP.

 114

In order to achieve plug and play behaviour and seamless integration it is necessary that

remote devices be represented in the local HAN in an identical way to local devices of the

same service protocol. This can enable existing applications running in the local HAN to

interact with remote devices and services in an identical fashion to the way they interact

with local devices and services, thereby achieving the desired seamless integration. To

support this with multiple service protocols, the open plug-in based architecture is used.

Each service protocol plug-in provides service protocol specific resource virtualisation

functions for achieving seamless integration and inter-HAN service interoperability. Each

service protocol plug-in has two roles for resource virtualisation:

(i) Interact with local HAN resources (devices and services) that support the service

protocol

(ii) Represent remote resource (devices and services) in the local HAN

The service protocol plug-in is responsible for discovering resources of the relevant service

protocol in the local HAN and reporting them to all remote HANs with which this resource

is shared. The communication subsystem provides the plug-in with a secure and efficient

messaging infrastructure, and presence notifications indicating status changes from Krox

systems in remote HANs. The Capability Sharing Manager provides an interface to the

plug-in for checking sharing configuration of HAN resources with specific remote HANs,

and enable plug-in components to listen to changes in the sharing policies. The resource

virtualisation architecture does not define a concrete interface for service protocol plug-ins

because their diversity implies that this can be over-restrictive. The plug-in framework

defines an extensible event model to which the plug-in is required to respond and provides a

mechanism for plug-ins to exchange additional messages – see 4.2.2.2 and 4.2.2.3 for a

specification of the core event model.

Resource virtualisation results in a distributed system with “live” devices/services and

virtual resources interacting through the framework via an IM&P communication system. A

service protocol plug-in is comprised of two modules that represent the way a service

protocol is supported through the virtualisation framework: a Local Network Controller

(LNC) and a Virtual Resource Manager (VRM). The plug-in framework is limited to

defining the conceptual roles of the LNC and VRM and a minimal event model that must be

supported by them, however the service protocol specific plug-in is required to extend this

event model for its support for resource virtualisation.

 115

The LNC is responsible for all interaction with the devices and services that support a

specific service protocol in the local HAN. Typically this support includes discovery and

invocation of actions, but can also include support for event subscription, retrieval of service

description and others. The VRM is responsible for representing devices and services of a

specific service protocol from remote HAN at the local HAN. When prompted by a remote

HAN, the service protocol plug-in automatically generates a virtual instance of the remote

resource that can be interacted with in the local HAN without requiring any additional steps.

The following sections describe the components of the plug-in framework, and their

interaction.

4.2.2.1. Plug-in Manager

The Plug-in Manager is responsible for management of the life cycle of service protocol

plug-ins, including their load, start, stop, and unload. When the Krox system is started, the

Plug-in Manager loads and initialises the available plug-ins, and if any service protocol

plug-ins are deployed during the runtime of the system, the Plug-in Manager is responsible

for their loading and initialisation.

In order to support different plug-ins loaded in different HANs, when a remote HAN from

the buddy list comes online, the local Krox system should send the list of plug-ins it

supports to that Krox system instance in that remote HAN. The remote HAN should respond

with the list of plug-ins it supports. This information should be used such that a remote

HAN from the buddy list will be notified only on service protocols it supports. When a

plug-in is added to the remote HAN it notifies all of its buddies. When a notification on

added plug-in is received to the Krox system in the local HAN, if the same plug-in is loaded

locally, the message is treated as an indication of the Krox system in the remote HAN

coming online for this specific service protocol and the local plug-in is notified so that

interaction can be initiated.

 116

4.2.2.2. Local Network Controller

The Local Network Controller (LNC) for each service protocol plug-in is responsible for all

interaction with resources of the specific service protocol supported by the plug-in in the

local HAN. The LNC can notify remote HANs, with which sharing has been agreed, about

resources added or removed from the local HAN that are shared with these HANs via the

communication subsystem. The LNC receives status change notifications from the

communication subsystem when a Krox system in a remote HAN with which sharing has

been agreed, comes online. This information is used by the LNC to initiate the

communication with the remote HAN, e.g. by sending discovery information about existing

resources in the local HAN that are shared with the remote HAN. The Capability Sharing

Manager is consulted before the LNC notifies a remote HAN about an added or removed

resource.

The plugin framework defines a core event model with events (described below) that must

be supported by an LNC for a service protocol. In addition, a service protocol plug-in may

extend the core model with additional events. Figure 4 illustrates the event interaction

between the different components of the Krox system. For clarity, in each HAN only one

plug-in component is shown to illustrate that the interaction is made between the local LNC

and the remote VRM. In general the core model contains two types of events, discovery

Figure 4 Krox Plug-in Event Model

Krox

LNC

Plug-in
Manager

Communication
subsystem

Krox

VRM

Communication
subsystem

Discovery

Remote HAN
available/
unavailable

Plug-in
specific
events

Plug-in specific
event model
extensions

Remote HAN unavailable

Resource added/
removed

Discovery events

Remote HAN availability events

Plug-in specific events

HAN1 HAN2

Internet

CSM

Sharing
configuration
changed

Sharing
configuration
changed

Sharing configuration change event

 117

events and remote HAN state change events. In addition, the protocol specific local LNC

and remote VRM can extend the event model for their interaction.

LNC core event model

• Discovery - The heart of the LNC is the discovery of local HAN resources. When a

plug-in is loaded, the Plug-in Manager triggers the LNC discovery event. The

discovery event is only triggered once in the plug-in life cycle when the Krox

system is started, however the plug-in may invoke it internally in order to keep in

sync with the local HAN. To remain as generic as possible, the plug-in framework

does not define the type or content of messages that need to be exchanged for

reporting added or removed resources between networks. This message exchange is

unique to the specifics of the service protocol supported by the plug-in.

• Remote HAN available - When a remote HAN with which sharing has been agreed

(i.e. is a member of the buddy roster of the local HAN’s Krox system) comes online,

the LNC in the local HAN is called by the communication subsystem and is notified

of the change. The availability of the remote HAN is detected by the

communication subsystem presence mechanism of its underlying IM&P system,

however this is transparent for the plug-in. The LNC in the local HAN is required to

retrieve information about all its local HAN devices and services of the service

protocol it supports that are shared with that HAN, and send this information using

the communication subsystem to the remote HAN. The information describing each

resource should be concise however sufficient to enable the remote HAN’s VRM to

advertise an instance of the virtual resource to its local HAN (as required by the

specific service protocol). It is not mandated that each LNC maintains a cache of

local devices and service, however it is highly recommended for achieving better

performance.

• Remote HAN unavailable – When a remote HAN with which sharing has been

agreed (i.e. is a member of the buddy roster of the local HAN’s Krox system) goes

offline, as indicated by the communication subsystem, the local LNC is notified by

the communication subsystem. The event should be used for clean-up of local

resources related to the remote HAN, such as remote subscriptions, and local

mappings.

• Sharing configuration changed (add/remove) – The LNC must respond to

dynamic changes in the configuration of sharing. The LNC must provide a listener

 118

that is registered by the plugin manager with the Capability Sharing Manager during

the plug-in bootstrap in order to be notified on changes in the sharing configuration

of local resources. When sharing is permitted, additional resources may need to be

sent to remote HANs. When permission to share is revoked, the LNC needs to

notify remote HANs that the resource is no longer available and possibly clean local

subscriptions made on behalf of remote HANs to those resources.

LNC event model extensions

The core event model can be extended by a service protocol plug-in for specifying the

interaction between the plug-in components. The interaction between plug-in components of

the service protocol plug-in in remote HANs (i.e. LNC and VRM) is made through

messages. The LNC for a certain service protocol supports a set of message types that are

agreed between the LNC and the VRM at design time of this plug-in. For example, the

VRM can send a message for getting the service description. The LNC needs to understand

the message body and be able to respond accordingly. The LNC needs to register the set of

supported message types with the framework when it is loaded, so that the framework will

know to forward these messages to the LNC. This is done by the LNC declaring the

supported message types during the bootstrap process, whereby these message types are

registered with the communication subsystem, such that received messages having this type

are delegated to the LNC. To remain generic enough the plug-in framework does not define

the other events that need to be supported by the LNC, therefore extensions of the event

model are left for the service protocol plug-in design.

4.2.2.3. Virtual Resource Manager

The Virtual Resource Manager (VRM) represents remote resources (e.g. devices, services)

in the local HAN. Given information from a remote HAN on a resource that is shared with

the local HAN, the VRM creates a virtual instance of a device or service in the local HAN

to represent the remote physical resource. From the point of view of applications in the local

HAN, the virtual resource appears as an ordinary local device or service. The VRM uses the

communication subsystem to relay messages and requests it receives from local applications

to the remote HAN hosting the “live” device where the interaction with the device is

facilitated by the corresponding remote LNC. When the VRM is capable of responding

 119

immediately without communicating with the remote device it is encouraged to do so. This

can be done for example by caching information – e.g. device descriptions.

The plugin framework defines a core event model with events (described below) that must

be supported by a VRM for a service protocol. In addition, a service protocol plug-in may

extend the core model with additional events.

VRM core event model

• Remote resource added/removed - The VRM must respond to resource discovery

events when resources are added or removed in remote HAN that are shared with

the local HAN. As part of the communication between the VRM and the LNC, the

LNC of a remote HAN sends a message to the VRM of all of the remote HANs with

which the resource is shared indicating the added or removed resource. When a

notification is received from a remote HAN indicating an added remote device, the

local HAN’s VRM is responsible for using this information to announce a

corresponding virtual resource in the local HAN to represent the remote resource.

The virtualised resource instance must be able to respond to the relevant service

protocol requests. The extent of the service protocol support is left to the design of

the service specific plug-in. When a notification is received from a remote HAN’s

LNC indicating a removed resource, the VRM should respond by terminating the

corresponding virtual resource’s instance in the local HAN.

• Remote HAN unavailable - The VRM must respond to the event of a remote HAN

changing its status to unavailable as indicated by the communication subsystem.

When a remote HAN with which sharing has been agreed (i.e. is a member of the

buddy roster of the local HAN’s Krox system) changes its status to unavailable the

virtual resource instances representing resources originating in that unavailable

HAN must be terminated. All other local mappings in the VRM related to the

unavailable remote HAN must be cleaned.

• Sharing configuration changed (add/remove) – The VRM must respond to the

event of a change in the sharing configuration of a remote HAN that shares

resources with its local HAN. This enables the VRM to clean relevant caches if

needed.

 120

VRM event model extensions

The VRM can use the communication subsystem to exchange additional types of messages

with remote LNC, hosting “live” devices. The types of the messages that the VRM may

accept must be registered with the communication subsystem, such that the communication

subsystem can dispatch messages to the correct plug-in component. Similarly to the LNC,

the VRM must declare the message types it supports. As part of the loading of the plug-in,

the Plug-in Manager queries these message types and registers them with the

communication subsystem, which then knows to forward received messages with this type

to the VRM.

4.2.2.4. Summary

The plug-in framework supports remote representation of local devices through message

exchange between remote HANs using the communication subsystem. The plug-in modules

respond to changes in the status of remote HANs such that when a remote HAN comes

online, the LNC component responds with plug-in specific messages to the corresponding

remote HAN with discovery information for all the resources shared with this HAN. When a

remote HAN changes its status to unavailable the VRM responds by terminating and

removing all of the local virtual resources that correspond to resources from this remote

HAN. Plug-in specific messages are exchanged between the LNC and VRM in different

HANs for exchanging service protocol specific information related to discovery, invocation,

eventing for supporting sharing of resources of the service protocol.

4.2.3. Capability sharing management subsystem

HAN service sharing requires fine-grained access control that allows the home user to

grant/delegate access to certain devices/services/actions/content to a subset of its peer

HANs. Access right management must be dynamic in order to accommodate the dynamic

HAN environment, where remote HANs can be added and removed, and resources can join

and leave the network frequently. Sharing management addresses identity management and

access control. Supporting fine-grained access control requires modelling of the

device/service capabilities. Such models could include descriptions of the capabilities and

who may have access to them. In the Krox architecture, identity management is facilitated

by the logical identities provided by the IM&P framework (i.e. unique IM&P usernames for

each HAN).

 121

In Krox system architecture the Capability Sharing Manager (CSM) is populated with

information about the local HAN resources and the remote HANs with which sharing has

been agreed. The CSM provides plug-ins with an interface through which they can query if

a resource should be shared with a specific remote HAN or with which remote HANs a

resource is shared. In addition, before a resource is used the CSM is queried to verify that

the remote HAN trying to access the resource is authorised to do so. Finally the CSM

provides notifications to registered listeners when the sharing policies are changed, so that

the plug-in components can respond. As mentioned above (section 4.2.2.2), the LNC must

provide a listener that is registered by the plug-in manager with the CSM for receiving

update notifications when sharing policies change. The CSM design is described in section

4.3.2.

4.2.4. Service composition subsystem

The service composition subsystem is based on using web services as an interoperable and

composable interface, and using an orchestration engine for their composition. Mapping

between the service protocol and web services should be handled by the service protocol

plug-in. Using web services as an interoperable service interface has a number of

advantages and disadvantages. Web services are based on a service oriented architecture

realisation based on open standards and their interoperability. The main advantage of using

web service for representing HAN resources is their interoperability. The main drawback is

that they may incur performance overhead in both memory as well as in CPU processing.

An additional drawback to using web services is the potential loss of information during the

mapping process due to the generality of the interface as opposed to the service protocol

specific capability description model. Web services require a web server for hosting, which

can also require significant amount of memory.

Aiello [2] argued that web services would have an important role in the future of the HAN

as the key enabler for total interoperability between devices and services. While for the

more powerful devices it suggests that the web services stack would be offered as part of the

device, less powerful devices could connect to a controller implementing the web service

stack for them. This approach is complementary to the Krox system architecture such that if

devices offered web services, there would be no need for a transformation between the

 122

service protocol and web services. Perumal et al. argue that SOAP and web services

maximise the interoperability of heterogeneous resources and systems with satisfactory

performance for smart home environment [102].

When designing the architecture for home service composition it is necessary to consider

the relevant challenges of home networking: dynamicity (devices can dynamically join and

leave the network), heterogeneity (variety of hardware, software and protocols) and

distribution (devices can be located anywhere in the home). Heterogeneity is handled by

using web services as a common interoperable interface. The discovery module of the LNC

and VRM handles dynamicity and distribution. With the plug-in based architecture

described in previous sections, the transformation from a service protocol to the

representation as a web service is required as part of the service protocol plug-in

implementation. The transformation takes place in both the LNC as well as the VRM. The

LNC discovers devices and services in the local HAN, once a device/service is discovered it

is required to generate a local web service for it. Similarly the VRM is responsible for

generating web services for the corresponding resources in the remote HANs that it

represents. The Krox system architecture does not define how the generation of web service

for the specific service protocol should be made, however, given the service protocol has a

self describing parsable service interface, as required by Krox system architecture, it should

be possible to generate an automatic mapping from the protocol specific service interface to

the web service interface. Once the web service corresponding a local live or virtual

device/service has been generated it is deployed to a local web server. Similarly when it is

no longer available in the local HAN (as a physical or virtual device/service) it is

undeployed from the local web server.

4.2.4.1. HAN service orchestration

With HAN services mapped into web services, the Krox system architecture suggests

service orchestration as an approach for constructing complex HAN services from existing

simple services either live or virtual. A number of approaches for home service composition

were described in section 3.2.3 and are summarised in table 2. The Krox system architecture

extends the state of the art for service orchestration in supporting the orchestration of

services from both the local HAN and remote HAN seamlessly. Through the automatic

mapping of service protocols to web services by the corresponding plug-in components

(LNC for local HAN services, VRM for remote HAN services), local web service proxies

 123

(corresponding to either physical local or virtual remote services) are available in the local

HAN for orchestration.

The Krox system architecture does not define the process of service orchestration for HAN

services, but only provides a mechanism for making services available for service

orchestration and a mechanism for executing service composition.

4.2.5. System administration application

As part of the Krox system architecture, an administration client application is required for

controlling the various aspects of system management and monitoring:

• User management – Is required for adding and removing remote HANs for sharing,

suspending and resuming relationship with remote buddies. This is done using an

IM&P client, where nodes correspond to remote HANs. Changing the status of the

Krox system enables pausing or resuming sharing with remote HANs.

• Sharing management – Is required to enable the configuration of sharing policy that

defines which resources are shared with which remote HAN. For each remote HAN,

identified by its Krox system identifier (i.e. its IM&P identifier) the home user can

select which resources to share.

• Plug-in management – Is required to enable the user to control which plug-ins are

currently installed and running, and to start and stop installed plug-ins.

4.2.6. Deployment considerations

The system could benefit from being deployed as part of the home gateway, however this is

not mandated. The gateway has a number of advantages as a platform for running the Krox

system: firstly it is available in most HANs and therefore it does not require an additional

device to be introduced to the HAN. Additionally the home gateway is always connected,

which is useful for the Krox communication subsystem. The drawback of deployment on the

home gateway is the relatively resource constrained nature of home gateway platforms.

Another potential drawback with deploying Krox system as part of the home gateway is the

security risk – if Krox system is compromised, an attacker may gain access to configuration

of the home gateway which is undesired. An alternative deployment option is as an

application on the home user’s desktop. The advantage of this approach is the much greater

 124

computing power of the desktop computer compared to the home gateway. Modern multi-

CPU and multi-core desktop PCs can provide much improved performance. The

disadvantage of deployment on a desktop is that such an application is less likely to be

always-connected. Another device that can host the Krox system is a Network-Attached

Storage (NAS) device. Similarly to the home gateway, a NAS device would typically be

always connected, however such devices are not as pervasive as home gateway devices.

Finally the Krox system could be offered as an appliance for the HAN. The advantage of

such an approach is that the appliance could be equipped with processing power that

matches its requirements. The drawback is that it requires an additional appliance, which

also implies additional cost for the home user. From an architecture point of view, none of

these options should be excluded.

4.3. System design

The previous section presented the high level architecture for Krox system and its support

for inter-HAN and intra-HAN service interoperability. In order to demonstrate the utility

and applicability of this high-level architecture, in this section a corresponding system

design is presented. The Krox system design (depicted in figure 5) makes two design

decisions with regard to the high level architecture:

1) XMPP [114] as an IM&P system – XMPP provides a standard (RFC3920) secure,

decentralised, and extensible implementation for IM&P. XMPP has many

advantages, which make it an adequate choice for the communication subsystem of

Krox system architecture as discussed in section 4.3.1.

2) Business Process Execution Language (BPEL) [5, 69] for HAN service

orchestration – As discussed in section 2.2.2, BPEL is a standard language for

expressing web service orchestrations. BPEL has several advantages for using in

HAN and a few disadvantages. BPEL service orchestration can enable composition

of HAN services, both local and remote (through their web service proxies), and

additionally composition with external web services. In addition, BPEL renders the

service orchestration as a web service itself, which enables its reusability for further

composition. The main disadvantage of BPEL for the purpose of HAN service

composition is that it may be too heavyweight in terms of its memory and CPU

prerequisites. Another potential disadvantage of BPEL is that it supports only static

service composition, where service binding is done at design time rather than in

 125

runtime, which may be more appropriate for the HAN. These advantages and

disadvantages are discussed in section 4.3.5.

To demonstrate the utility of the plug-in framework, which is part of the key contribution of

this thesis, two service protocol plug-ins were designed for supporting sharing and

composing of UPnP and Jini service protocols.

The following sections describe the details of the Krox system design including the design

for the system components as they were described in the previous section and the UPnP and

Jini service protocol plug-ins.

4.3.1. Communication subsystem

The high level architecture presented in the previous sections outlined the use of IM&P as a

communication mechanism between remote HANs. In the system design, eXtensible

Messaging and Presence Protocol (XMPP) [114] is suggested as the IM&P architecture. The

following section describes XMPP and its applicability for the communication subsystem of

Krox system architecture.

Figure 5 Krox System Design

KROX System

XMPP
Client

Capability Sharing
Manager

BPEL Engine Web
Server

System
admin

Service Protocol
Plug-ins

Plug-in
Manager

UPnP Plug-in

Jini Plug-in

Other Plug-in

UPnP LNC

UPnP VRM

UPnP Plug-in

Other LNC

Other VRM

Other Plug-in

Jini LNC

Jini VRM

Jini Plug-in

 126

4.3.1.1. eXtensible Messaging and Presence Protocol

XMPP was initially designed as the underlying protocol for the popular instance messaging

Jabber20. Jabber suggested an extensible protocol built on XML that allowed development of

applications not only for its original purpose for IM but also for general purpose transport

layer for distributed applications. The Internet Engineering Task Force (IETF) standardised

the core protocol of XMPP to RFC3920 [114]. RFC3920 specifies how XML streaming

protocol enables entities to exchange XML elements over the network. XMPP supports

authentication and encryption in the streaming layer through Simple Authentication and

Security Layer (SASL) [80] and Transport Layer Security (TLS) [109]. In the classical

XMPP architecture clients communicate with each other through a server. Servers can also

communicate with each other allowing connections of multiple cooperating domains. Each

entity in XMPP has a unique address called JID in the following format: <node

>@<domain>/<resource>. This approach enables the user to have multiple connections for

the same user with the resource denoting a specific resource or location – e.g. laptop,

desktop, home, work. Communication between XMPP clients is made through XML

streams, which are envelopes containing XML stanzas (atomic unit of information). The

core of XMPP is defined using 3 XML stanza types: message, presence, and info/query.

• Message XML stanzas enable an entity to send information asynchronously to

another entity. Typically delivery is made in real time but there is also support for

store-and-deliver later.

• Presence XML stanza is used for representing the availability status of the entity,

e.g. online, busy, away. Presence stanzas are exchanged in a publish-subscribe

manner such that entities can subscribe and be notified about changes in the

presence status of another entity.

• Info/Query (IQ) stanza can be used by entities to make requests and receive

responses from each other. IQ supports 4 types of request/responses: get, result, set,

error. The different request and response are identified using an identifier per

operation

The key element provided by the core stanza types is the near-real-time delivery semantics

for communications, which is beneficial for the Krox communication subsystem to deliver

messages between remote HANs with minimal latency. The content of a stanza is pure

20 http://www.cisco.com/web/about/ac49/ac0/ac1/ac258/JabberInc.html

 127

XML structured data rather than a specific type, thus XMPP enables the exchange of any

type of data that can be represented in XML. As stated earlier, XMPP provides a server-

based model but where the servers may be decentralised. This means that there is no central

authoritative server. From the point of view of users, they still connect to a single server

with which they authenticate and connect to the XMPP network. Numerous public domain

XMPP servers exist, primarily in support of instant messaging applications but these servers

can also be used for other purposes such as for Krox system communication. Public XMPP

servers are available for everyone, but any user may run their own XMPP server on their

own domain. Although peer-to-peer implementations of XMPP exist, the typical

architecture of XMPP is a pure client-server model, whereby clients connect to a server and

servers connect to other servers for inter-domain communications. Besides instant

messaging applications XMPP has been used as communication substrate for various

purposes including enabling complex communication between applications in the cloud

(project Vertebra21), gaming (e.g. Chesspark22) and VOIP (e.g. GoogleTalk via the Jingle

XMPP extension).

The following section describes how XMPP is used in the Krox system design and the

advantages of selecting XMPP over other IM&P systems.

4.3.1.2. XMPP in Krox communication subsystem

In the Krox system design, following the Krox system architecture, each Krox HAN

controller connects to an XMPP network. HANs are identified using an IM&P identifier

(JID in XMPP architecture) and agreement to share with a remote HAN is indicated in

adding the identifier of the remote HAN to the buddy roster of the local HAN. Buddy roster

management and administration is a typical and familiar operation in instant messaging and

therefore it can be considered simple enough for non-technical home users.

XMPP presence alerts indicate when XMPP users come online. In the Krox system design, a

presence change corresponds to a change in the sharing status of the corresponding Krox

system instance – a Krox system instance whose status is “available” indicates that the

21 http://www.engineyard.com/

22 http://www.chesspark.com

 128

system is ready to accept notifications about devices and services shared with it. An

“unavailable” presence status indicates that the corresponding Krox system instance is in

non-sharing mode, and all devices and services that were shared from it are no longer

available. The home user, as an administrative operation, can trigger the changes in the

presence state of a Krox system instance, to start/stop/pause sharing of local devices with

remote HANs. In addition, when the system is not connected, its presence status is

“unavailable”. Once the status of a remote HAN (with which sharing is authorised) changes

to “available”, the local HAN’s Krox system initiates the interaction with it for sending it

information about all the devices and services that are shared with that remote HAN. When

the remote HAN changes its presence status to unavailable, all of the virtual resources in the

local HAN that were shared from the remote HAN need to be destructed.

The communication subsystem uses XMPP message stanzas to wrap control messaging

between Krox system instances in remote HANs, e.g. service discovery announcements,

description requests, invocations, and results.

Several attributes of XMPP mentioned above make it an adequate for using as an IM&P

system underlying the Krox communication subsystem design:

1. Scalability – XMPP has shown to exhibit scalability in instant messaging with

world scale deployments and with large numbers of users and high volumes of

traffic (REQ #16, REQ #17)

2. Security – With TLS and SASL, XMPP provides secure messaging infrastructure

including authentication and encryption (REQ #12, REQ #14)

3. Extensibility – XMPP is open for extensions, which can be utilised for using a

protocol extension instead of instant messaging for the message exchange between

the LNC and the VRM

4. Presence – XMPP presence information can be used to trigger communication

between remote HANs and enable prompt response to the event of HANs coming

online or going offline (REQ #22)

5. Ease of administration for users – With XMPP all home users need is the identifier

of the remote HAN they want to add as a sharing buddy. From user management

point of view, XMPP provides a familiar and easy to use model that has been

extensively adopted by users for instant messaging. (REQ #21, REQ #23)

6. NAT – Communication between an XMPP client and XMPP server is TCP-based

 129

rather than UDP-based and is always initiated by the client, which indicates that the

communication subsystem has no problem with NAT (REQ #10).

7. Multiple Point of Presence (MPOP) – XMPP allows a user to be connected with the

same address in multiple locations, which are differentiated using a resource

identifier. The benefit of this approach is that it can enable the Krox server as well

as the administration application to connect to the XMPP server using different

resources without any conflicts.

4.3.2. Capability sharing manager

The role of the Capability Sharing Manager (CSM) component is to enforce home users

sharing policies for HAN services. During the system runtime the CSM is populated with

resource sharing/capability models for remote HANs and with local resources. Remote

HANs are identified using their IM&P identifier. Whenever sharing with a remote HAN is

agreed, the CSM in both HANs need to be updated, such that sharing policies can be

applied. Whenever resources are discovered in the local HAN the CSM resource model is

updated with information about the resource, including the resource identifier, resource

type, and any protocol specific information that can be used by home users in defining

sharing policies, e.g. device vendor, device family (e.g. media device). When a service

protocol plug-in discovers a resource it needs to query the CSM and check with which other

HANs this resource needs to be shared based on the home user’s sharing policy. The CSM

responds with the set of identifiers of remote HANs. When a remote HAN with which

sharing has been agreed changes its status to “available”, service protocol plug-ins query the

CSM for all local HAN resources that need to be shared with this remote HAN. Service

protocol plug-ins are also required to check access permission before they perform an action

on a local device/service on behalf of a remote HAN. The CSM only contains local

information, i.e. information about devices and services in the local HAN (not including

virtual services), and identification of remote HANs with which sharing has been agreed.

Finally, the CSM needs to provide notifications to affected components when sharing

configuration changes. However since access permission is checked before an action is

executed on behalf of remote HAN on a local resource, if access permission was revoked,

the action will be denied.

In order to give users enough flexibility, CSM should support fine-grained sharing

specification that would allow users to share some services with some users and other

 130

services with other users even for services from the same device. Similarly for content

hosted in a media server, users can define sharing policies based on the name of a container

or based on tagging. During runtime, the CSM is queried whether specific

device/service/action/content should be shared with a given user and replies with positive or

negative authorisation based on its internal sharing models. When the sharing policies are

changed, the plug-in components are notified on the changes and can respond accordingly.

The actual specification of sharing policies is not part of Krox system architecture. In order

to be able to specify sharing policies, integration with a policy based capability management

system is planned as part of a research project (FAME23) but is explored in further work –

see section 7.3.2.

4.3.3. UPnP
This section gives a description of the UPnP layered architecture (section 4.3.3.1) followed

by a presentation of the corresponding UPnP service protocol plug-in for Krox system

architecture (section 4.3.3.2).

4.3.3.1. UPnP Architecture

UPnP Device Architecture (UDA) [133] shown in figure 6 defines the layers of plug-and-

play communication protocol: addressing, discovery, description, control, eventing, and

presentation. These layers are described in the following sections.

4.3.3.1.1. UPnP addressing

Obtaining an IP address is the first step in UPnP communication, before a device can be

discovered and interact with control points. UPnP addressing protocol enables devices to

automatically obtain an IP address upon joining the local HAN without user administration.

The IP address is obtained using Dynamic Host Configuration Protocol (DHCP) [36] if

possible. If DHCP is not found then automatic IP addressing (Auto-IP) [30] is used. Auto IP

allows the device to select an IP address from the 169.254/16 range and then it uses Address

23 Federated Autonomic Management of End to End Communication Systems – SFI Strategic Research Cluster (“FAME”): 08/SRC/I1403 (www.fame.ie)

 131

Resolution Protocol (ARP) [103] to check if the address is available. Once a device has an

IP address it can take part in the UPnP discovery protocol.

4.3.3.1.2. UPnP discovery

A control point must know about the existence of a UPnP device in the local HAN before it

can start interacting with it, therefore a discovery protocol is needed. UPnP discovery is

based on Simple Service Discovery Protocol [133]. SSDP supports two complementary

modes of operation: advertisement and search. When a device is added to the network it

announces its presence, and similarly when a control point is added to the network it should

be able to find devices. Search mode enables control points to initiate discovery in the

network with a certain service type such that all the devices that support the requested

service type must respond with a short message indicating its identification. This mode of

operation is useful for applications that join the network and want to find certain type of

services already existing in the network or for ad hoc searches, e.g. for showing the list of

printers in a certain network. Search requests are HTTP packets sent over UDP to a local

multicast address (239.255.255.250 port 1900) in the local HAN. The search request needs

Figure 6 UPnP Architecture Stack

Figure 7 UPnP Device Announcement Example

IP Addressing

HTTP
Unicast

Description
(HTTP)

Control
(SOAP)

UDP TCP

HTTP
Multicast Presentation

SSDP GENA SSDP GENA GENA Event

 132

to describe the type of service of interest, such as root devices, or specific device type such

as media server. All UPnP devices on that network must listen on the same multicast port

and respond if they support the service described by the discovery request message. The

response is made via a unicast HTTP POST over UDP packet directly to the requesting

control point. When a new device joins the network it must announce its presence by

sending an HTTP packet over UDP to the same multicast address, thereby enabling control

points in the local HAN to learn about its existence. Control points interested in new devices

can listen to the multicast address and thereby learn about new devices joining the local

HAN. Devices must also announce when they leave the network. An example of a device

announcement as defined in [133] is given in figure 7. The announcement contains basic

details about the device such as its service type (blender in the example), its unique

identifier (someunique:idscheme3), a URL to its description and expiration time which

indicate for how long the information is valid for enabling applications to cache the device

information. When a device leaves the network it only needs to send its service type and

identifier. The purpose of presence announcements is to optimise the interaction with UPnP

devices and to minimise the need for repeated searches that result in more control traffic and

enable control points to learn about existing devices in the network as soon as possible.

4.3.3.1.3. UPnP description

UPnP devices and services are described via XML documents. A device description

document contains information about the physical device such as its friendly name,

manufacturer information, version, icons, and additional information about embedded

devices and supported services. The device description (figure 8) document is organised

according to a predefined schema that corresponds to the device profile. Once the device has

been discovered by a control point, the control point can query the device description by

sending an HTTP GET request to the URL specified in the discovery packet location

header. The device responds by posting the description XML document in an HTTP

response to the requesting control point. The control point needs to parse the XML

document and extract more details about the supported services and how to interact with

them. The device description may contain additional URLs for services, which can be

further queried by control point applications to obtain more information about a specific

service. The service description includes information about the actions supported by the

service, their parameters and the state variables related to the service. State variables

 133

provide information about the state of the service, for example, a status state variable in a

media player can indicate if the media player is playing/stopped/paused.

4.3.3.1.4. UPnP control

The UPnP control protocol specifies a methodology for remote procedure calls, enabling

control point applications to invoke actions on UPnP devices in a platform and

programming language neutral manner. Invocation is made by sending a SOAP request over

HTTP to the relevant service’s control URL as obtained from the service description. Once

Figure 8 UPnP Device Description Example

 134

the execution completes, a result or an error is sent back from the device to the requesting

control point. Operations can either query some state or modify the state of the device.

4.3.3.1.5. UPnP eventing

The UPnP eventing protocol enables control points to subscribe for events indicating

changes in state variables. UPnP supports two styles of event subscription: unicast

subscription, which allows interested control points to subscribe for event updates, and

multicast subscription, which enables all listening control points to listen to event updates

which are sent to the multicast address in local HAN. Interaction with the device involves

subscription for events, renewal of subscriptions, and un-subscription. The interaction is

made through HTTP requests and events notifications are based on Generic Event

Notification Architecture (GENA) [133] and delivered over HTTP.

4.3.3.1.6. UPnP presentation

The UPnP presentation layer enables control points to retrieve a web page from the

presentation URL and present it in a web browser. Where the device supports presentation, a

URL is provided in the description XML document to a web page hosted in the device’s

embedded web server. The web page can support dynamic updates to the device state and

can potentially enable client to invoke actions on the device. UPnP presentation layer is

optional and the extent of support may vary between device implementations.

4.3.3.1.7. UPnP security

While UPnP does not have an inherent security mechanism, it does offer some form of

authentication and authorisation via the DeviceSecurity [131] and SecurityConsole [132]

profiles. The UPnP specification suggests that the DeviceSecurity device enforces

authentication and access control such that the access control policy is in fact stored in the

SecurityConsole which is a single point in the home network that facilitates authorisation.

The DeviceSecurity profile attempts to secure only the UPnP control protocol. If an action is

defined to be access controlled, then a control point must be authorised to perform this

action on the device before the device will accept the execution request. An authorised

control point must digitally sign SOAP messages in order to provide integrity protection.

The authorisation is made through a control point application that has a device interface as

 135

well (SecurityConsole) that enables the user to configure security settings for devices on the

network. DeviceSecurity supports confidentiality by enabling SOAP action messages to be

encrypted. If authorised, the device decrypts and executes the request and then encrypts the

result when it is sent back to the caller. DeviceSecurity also considers replay prevention by a

sequence number for actions that are executed within the context of a secure session. For

other actions in a non-session context a state variable value is used to generate a non-

repeating value for replay prevention.

4.3.3.2. UPnP service protocol plug-in

This section gives an in-depth description of the design for multi-HAN extension for UPnP

through device and service virtualisation, packaged as a service protocol plug-in, which

contains two software modules: a Local Network Controller and a Virtual Resource

Manager as required by the plug-in framework (see 4.2.2). UPnP discovery relies on UDP

multicast – devices announcement are sent to a local multicast address and similarly control

point search messages are sent to the same multicast address when such applications intend

to find devices in the local HAN. UDP multicast is limited in its scope to a single HAN. In

order to be able to deliver discovery notifications to remote HANs with which devices are

shared, the communication subsystem is used. However a secure communication channel is

not sufficient for extending UPnP across multiple HANs. The reason is UPnP discovery

announcements include a device location, which represents a URL where more information

about the devices could be retrieved. This location would represent a private IP address that

is not reachable from remote HANs therefore repeating the original device announcement in

the remote HAN is insufficient for achieving seamless integration with client control point

applications.

The UPnP LNC collects information about the local HAN UPnP resources. The UPnP VRM

aggregates information about devices and services from remote HANs and automatically

generates corresponding virtual UPnP devices and service in its local HAN. It is a design

choice to have a single instance of VRM managing all the local representations of UPnP

devices from remote HANs, rather than having many VRM instances. The rationale behind

this decision is to optimise communication and shared resources, such that there will be only

a single listener to local search requests on behalf of remote devices. With a single VRM

instance encapsulating all remote UPnP devices in the local HAN, when a search request is

received, the VRM is required to respond on behalf of all of the devices and services that

 136

correspond to service type indicated in the search request. When a request is directed to a

single UPnP service or device (e.g. service description request), the VRM processes the

request in the context of that device. From an external point of view (e.g. a control point),

there is no central VRM entity but as many devices as and services as shared with the local

HAN. The VRM entity is inaccessible, instead, the VRM masquerades as multiple UPnP

devices.

Section 4.3.3.1 described the details of the various layers of UPnP protocol. The following

sections describe how the UPnP layered protocol is mapped to the interactions between

LNC and VRM for supporting multi-HAN UPnP networks.

4.3.3.2.1. UPnP Discovery

In order to extend the UPnP discovery protocol across multiple HANs, the multicast

limitation to a single HAN needs to be circumvented. In this design the communication

subsystem messages are used by the UPnP plug-in as envelopes to SSDP notifications

between Krox system instances in multiple HANs. It must be noted that only HANs with

which devices are shared are notified.

The UPnP Local Network Controller (LNC) listens to local SSDP announcements made by

local UPnP devices. The LNC uses these announcements to keep an up-to-date repository of

all announcements representing current devices/services in the local HAN. Periodic searches

are used as a complementary mechanism in order to keep the repository in sync with the

network and overcome cases of missed announcements due to network congestion or the

unreliable nature of UDP communication (see steps 1-3 in figure 9), however the frequency

of such searches is left for the implementation. While such complementary search is

essential for guaranteeing that no announcement is missed for a too long time, it must be

balanced against the overhead it places on the network devices in the local HAN.

The device and service announcements update the CSM and are cached for the duration

indicated in their discovery announcement. When the duration expires they are removed

from the local repository and update the CSM of their expiration. The purpose of caching

local discovery announcements is to be able to report to a remote HAN about available

 137

shared devices and services in the local HAN efficiently. When a remote HAN comes online

as indicated by the communication subsystem (step 4-5 in figure 9), the UPnP LNC uses the

communication subsystem to send an SSDP announcement to the “available” remote HAN

for each UPnP device/service that is shared with that remote HAN and whose duration has

not expired yet (steps 6-9 in figure 9). This behaviour emulates a search request being sent

from the remote HAN to the local HAN. Similarly when a local device or service

announcement is received at the LNC, it is sent to all remote HANs with which it is shared.

Checking for sharing configuration is made by querying the capability-sharing manager,

before any message is sent to the remote HAN.

When an SSDP announcement is received to Krox system from a remote HAN (from its

UPnP LNC), it is delivered to the local UPnP VRM (step 10 in figure 9). The VRM needs to

announce the SSDP device or service announcement in its local HAN. The SSDP

announcement that was received from the HAN hosting the “live” device does not contain

any location, which is not sent with the announcement for security and conciseness

considerations. The reason is that the original location (as can be seen in figure 7) is not

Figure 9 Multi-HAN UPnP Discovery Protocol Interaction

Communication
Subsystem

Communication
Subsystem

UPnP Virtual
Resource Manager

13. SSDP Search

2. SSDP Search
Response

5. HAN2
available

6. Check sharing for
HAN2

Capability Sharing
Manager

7. Sharing
configuration for
HAN2

8. Send notify
announcement for
each device/service
shared with HAN2

9. Send
message 10. Remote notify

announcement received
from HAN1

11. Assign local location

12. Update cache and announce
virtual device/service to local HAN

Media Server
(192.168.1.2)

UPnP Local
Network Controller

4. HAN2
presence
status
Changed
to available

3. SSDP presence
announcement

HAN1 HAN2

14. Send SSDP Search Response
for each remote device/service that
corresponds the search type

1. SSDP Search

 138

accessible from the remote HAN. Therefore before the received SSDP announcement can be

repeated in the receiving network, its location must be set to a locally meaningful one, i.e. a

location that can be accessed later when a control point tries to retrieve the device

description or subscribe for events (step 11 in figure 9). The UPnP VRM needs to assign the

device/service a meaningful unique local address where control points can interact with it.

The addressing scheme for device location is described in the next section. Finally, once the

local location has been set, the VRM updates its local announcements cache and announces

the device/service locally (step 12 in figure 9). The VRM maintains this cache so that it

would be able to respond promptly to search requests made by applications in its local HAN

on behalf of the remote devices and services it represents (steps 13-14 in figure 9). This

caching eliminates the need to ever delegate search requests between multiple HANs and

therefore reduces the control traffic on the expense of additional memory.

When a byebye announcement is received from a remote HAN for a device or service that is

shared with the local HAN, the corresponding SSDP announcement is removed from the

VRM local repository and the byebye announcement is repeated in the VRM’s local HAN.

Similarly when the duration of an alive device or service announcement received from a

remote HAN to the VRM expires, the SSDP announcement is also removed from the

VRM’s repository.

When the UPnP LNC sharing configuration change listener receives a notification from the

CSM on a change in the sharing configuration of a resource with relation to a set of remote

HANs, the LNC must respond by sending the corresponding announcements to the relevant

HANs. If sharing is added, then the device announcement should be sent, if sharing is

removed, a byebye announcement should be sent to the relevant HANs. In addition a

message should be sent to the remote HANs indicating the change in the sharing

configuration, enabling them to clean related caches.

It is mentioned above that the LNC listens to discovery messages in the local HAN. A subtle

point is that the LNC must ignore and discard announcements that represent virtual devices

originated in the local VRM. Therefore when an SSDP announcement is received by the

LNC it must verify first that it does not represent a remote device before it attempts to

forward it to remote HANs. A remote announcement can be detected by examining the

 139

location field. A remote announcement will conform to the remote addressing scheme

therefore is easy to differentiate from a local announcement.

4.3.3.2.2. Device addressing scheme

A number of alternatives addressing scheme to be used by the VRM were considered: from

assigning each UPnP device from a remote HAN a local port in the local HAN, through

assigning a single port to each remote HAN and representing remote devices in local HAN

using relative addresses. Another option, which was the design choice, was to listen on a

single port for all remote devices from all HANs and use a consistent addressing scheme in

the VRM. The first two options require listening on multiple ports and are more complex to

manage and less bandwidth efficient. The third approach, which is the one selected for the

UPnP plug-in design, allows listening on a single port however requires the location

identifying a remote device to include more information identifying the HAN and the

remote device.

In order to make the device location unique across the VRM’s local HAN, and be able to

extract the id of the devices along with the remote HAN hosting it from prospective calls,

the device is announced the VRM’s local HAN with a location that is comprised of the

communication subsystem identifier for the HAN hosting the “live” device and the device

unique identifier. The resulting URL is an address in the local HAN that represents the

remote device.

Figure 10 illustrates how the original announcement (as shown in figure 7) sent from a

blender in Bob’s HAN will look like when shared with Alice and announced by the VRM in

Figure 10 Live Device Announcement (left) and the Corresponding Virtual Device Announcement (right)

NOTIFY * HTTP/1.1

Host: 239.255.255.250:1900

NT: blenderassociation:blender

NTS: ssdp:alive

USN: someunique:idscheme3

LOCATION:
http://192.168.1.2:4004/u1@server.com/uuid:ab
cdefgh-7dec-11d0-a765-00a0c91e6bf6

Cache-Control: max-age = 7393

NOTIFY * HTTP/1.1

Host: 239.255.255.250:1900

NT: blenderassociation:blender

NTS: ssdp:alive

USN: someunique:idscheme3

LOCATION: http://192.168.1.3/foo/bar

Cache-Control: max-age = 7393

 140

Alice’s HAN. The announcement is directed to the multicast address

(239:255:255:250:1900) and contains the location of the blender device. In Bob’s HAN, the

blender has the location http://192.168.1.3/foo/bar. When announced in Alice’s network it

will have the location as can be seen on the right hand side of figure 10:

http://192.168.1.2:4004/u1@server.com/uuid:abcdefgh-7dec-11d0-a765-00a0c91e6bf6. The

location in the VRM’s local HAN (Alice’s HAN) is made of three parts: host:port – the host

corresponds to the private IP address of the machine running the VRM and the port

identifies the HTTP port on which the VRM listens for communication with remote devices

represented in the local HAN. The second part of the address identifies the remote HAN

hosting the “live” device by using its communication subsystem identifier. This identifier

uniquely identifies the remote HAN and can be used with the communication subsystem for

sending messages to the Krox system in that HAN. The third part of the location identifies

the device in the remote HAN using its Universally Unique Identifier (UUID). It is

important to note that from the discovery point of view there is no significance or

complexity with the fact that both HANs in the example (Bob and Alice) are behind NAT

and the original location of the blender in Bob’s HAN may be used in Alice’s HAN for a

completely different device.

4.3.3.2.3. UPnP description

Once a control point has learned about the existence of a remote device (represented locally

as a virtual device) it can start interacting with it. It is important to note that the control

point is not aware if the device with which it interacts is remote. The control point follows

its regular interaction protocol with the UPnP device it sees, so no change is required to the

control point. This device is the virtual device represented by the VRM, which relays

messages to the remote HAN hosting the “live” device. The interaction depicted in figure 11

begins after the remote UPnP device has already been announced by the VRM in the local

HAN with a location that corresponds to a URL served locally by the VRM. A control point

that has already received the device presence announcement, or search response, is

interested in getting more information about the device through its description document.

This is done by issuing an HTTP GET request by the control point and sending it to the

location URL as it was defined in the device announcement (step 1 in figure 11). The HTTP

GET is received by the VRM, which is expected to respond by posting the XML device

description document. In order to accomplish that, the VRM in the local HAN (HAN1)

needs to relay the request to the remote HAN hosting the “live” device corresponding to the

 141

request (HAN2). The request that is sent to the remote HAN using the communication

subsystem containing an identifier for the request, the UUID of the device whose

description is requested, and the relative path to the description. The relative path is

extracted from the URI given in the HTTP request. As explained in the previous section, the

location that the request was directed to in the local HAN contains the communication

subsystem identifier of the HAN hosting the “live” device, therefore this identifier can be

extracted from the location and the request for description can be redirected to the correct

remote HAN over the communication subsystem (step 2-3 in figure 11). In the remote HAN

(HAN2) the description request is delegated to the UPnP LNC (steps 4-6 in figure 11). The

LNC in HAN2 parses the XML description of the device or service and consults with the

capability-sharing manager for checking which services or actions are shared with the

requesting HAN (HAN1). Devices, services, or actions that are not shared with the

requesting HAN are filtered from the returned device description document. For a device

description, services may be filtered, and from a service description, actions may be filtered.

Filtering is made possible by the conformance of device and service description to the

device and service schema defined as part of the UPnP Device Architecture document [133].

The filtered XML document is then sent using the communication subsystem to the

requesting HAN (steps 7-10 in figure 11). The VRM in HAN1 receives the returned

description and before it can be posted to the requesting control point, URLs contained in it

must be “localised”. Modifications are required for all URLs that are to be accessed locally,

such as the SCPDURL (service location), control (address for SOAP requests),

eventSubURL (address for event subscription). These URLs must be prefixed similarly to

the way the device location is constructed with the communication subsystem identifier of

the originating HAN hosting the device, and the device UUID. Once URLs have been

modified, the VRM in HAN1 posts the description to the requesting control point (steps 11-

12 in figure 11).

In order to reduce the communication between remote HANs, several optimisations can be

applied. The typical behaviour of a control point is to respond with a description request for

every device/service it discovers. Therefore when the VRM announces a device or a service,

it is highly likely that many control points in the local HAN that are interested in the service

type will request the same description. To reduce the inter-HAN communication overhead

and the load on the “live” device, device and service description can be cached in the VRM.

The cache remains valid for the duration of the device announcement and enables the virtual

 142

device to serve control points requesting the device description of remote devices very

quickly. It also reduces potential contention on the actual device. While caching boosts

performance it also incurs memory overhead, therefore it has to be balanced. It would be

part of the evaluation to determine the benefit of caching in performance vs. its associated

memory overhead. In case there is a change in the sharing permissions in remote HAN, the

remote HAN can request peer HANs to invalidate their VRM cache due to a change that

may impact the description of devices and services shared with them. However even if the

remote HAN would see a description that is broader than what it might be able to access, the

access control will be enforced when unauthorised access is attempted.

4.3.3.2.4. UPnP control and post processing

If the UPnP VRM receives an HTTP SOAP request for execution, it extracts the

communication subsystem identifier of the HAN hosting the live device (HAN2) and the

UUID of the remote live device from the URI header (steps 1-2 in figure 12). The SOAP

execution request, along with an invocation identifier is forwarded to the corresponding

hosting HAN using the communication subsystem where it is routed to the UPnP LNC (step

3 in figure 12). After verifying that the HAN (HAN1 in figure 12) attempting to execute the

action has sufficient permissions to do so, the UPnP LNC in HAN2 posts a SOAP request to

Figure 11 Multi-HAN UPnP Description Protocol Interaction

Communication

Subsystem

Capability

Sharing

Manager

UPnP Local Network

Controller

1. Get device/

service description

3. Send message

Communication

Subsystem

10. Send message

Control Point

Application

UPnP Virtual

Resource Manager
Media Server

(192.168.1.2)

2. Dereference URL and

send request to the remote

HAN hosting the “live”

device

4. Get description

5. Get description

6. Post XML

description

document

7. Check sharing

configuration for HAN1

8. Sharing configuration

for HAN1

9. Send shared

description to HAN1

12. Modify URLs

and post description

HAN 1 HAN2

11. Description

message received

 143

the corresponding “live” device (steps 4-7 in figure 12). In case of an error, either an error

received from the device, a network error, or a timeout, it is immediately forwarded back to

the HAN requesting the invocation (HAN1 in figure 12). If the execution is successful,

further filtering may be required in case the sharing configuration policy was defined for

content sharing (step 8-9 in figure 12).

The UPnP VRM automatically generates a local proxy for a remote resource regardless of

the device or service type. The UPnP VRM runtime entity is minimal and for all interaction

it only serves as a generic proxy for the “live” device. However there may be a need for

device or service specific extensions to the execution of the virtual resource. For example

the result from a media server browse or search actions may contain content directories or

URLs which the home user may or may not wish to share with a specific remote HAN.

Therefore special handling needs to parse the result of such a query in its context and filter it

based on sharing configuration as defined in the capability sharing manager. Another

scenario is when the result of a query or action contains URLs, such as the printer queue

URL in a printing service, or a URL for media in a media server. These URLs will not be

accessible in remote HANs therefore additional processing needs to be performed either in

Figure 12 Multi-HAN UPnP Control Protocol Interaction

Communication
Subsystem

Capability
Sharing
Manager

UPnP Local Network
Controller

1. HTTP POST
SOAP request

3. Send message

Communication
Subsystem

10. Send message

Control Point
Application

UPnP Virtual
Resource Manager

Media Server
(192.168.1.2)

2. Dereference URL and
send request to the remote
HAN hosting the “live”
device

4. Invoke SOAP
action

7. HTTP POST SOAP
request to the device

5. Check permission for
HAN1 to invoke the
requested action

6. HAN1 permitted to
invoke the requested
action

9. Post process and
send SOAP response

12. Post-process
response if needed
and HTTP POST
SOAP response

HAN 1 HAN2

11. SOAP response message
received

8. HTTP POST SOAP
response

 144

originating network or in remote HAN in order to enable control point applications in the

remote HAN to use these URLs to print or access media streams. In order to allow greater

flexibility, the Krox system architecture enables a service protocol plug-in to include

extensions that can be invoked at predefined join points. Such a join point defines an event,

which allows pre or post processing code to be inserted [33].

In order to support pre/post processing, a service protocol plug-in can provide pre or post

processors that can be attached to a set of join points specified by the plug-in. Join points are

mapped to the event model of the plug-in, either the core event model or plug-in specific

extension of the model. The device/service specific processors can be attached at various

levels such as for all devices of the service protocol, for a specific device type, for a specific

service type and for a specific action in a service. This granularity, in addition to the

available extension points, provides flexible and extensible behaviour complementing the

generic functionality provided by the UPnP virtual device. The difference between a joint

point and logic that is part of the regular execution flow (e.g. handling control request), is

that an extension point may depend on the device type, and may have various strategies that

can be separately composed in each deployment, while the regular execution flow is generic

and independent of the device type. The configuration for pre/post processors is defined in

the plug-in configuration and is registered when the plug-in manager loads the plug-in.

4.3.3.2.5. Out of band access to UPnP resources

As discussed above, the result received from a UPnP service can contain URLs which are

meaningful and accessible only in the local HAN. These URLs must be replaced with URLs

that can be accessed from the remote HAN that expects the result of the UPnP action. While

the data access (e.g. media streaming) is out of band from UPnP point of view and is not

standardised by the protocol, for the completeness of the solution the following approach is

presented: the LNC replaces the URLs before sending them with a URL that has a unique

identifier that the LNC maps to the original URL. http://192.168.1.3:53262/exportItem?id=5

it will be replaced with the URL: http://ExportItem?id=5 where the private IP address of the

“live” device is removed. When the VRM receives the result containing URLs it adds as

prefix to the URLs the identifier of the Krox system in the remote HAN hosting the device

and the device unique identifier in addition to the host name and port for the UPnP VRM.

The VRM would return the above URL to a client in the local HAN as:

 145

http://192.168.1.1:4004/uuid:111233445555/resource/ExportItem?id=5. When the VRM

receives a request that corresponds to a resource (as indicated by the structure of the URL),

it extracts the identifier of the Krox system in the remote HAN, and forwards the request to

that remote HAN with the device identifier. In the remote HAN, the LNC resolves the

device from the device unique identifier and checks with the CSM that the remote HAN is

allowed to access the resource and if so, it forwards the request to the device. The response

from the device is tunnelled using the communication subsystem. In order to separate

control traffic (for UPnP traffic) and data traffic (out of band communication between

devices and control points) a separate channel in the communication system is used for

transferring data. While the bandwidth is still limited, the separation of channels can enable

assigning different priorities to the different communication channels. The advantage of this

approach is that it avoids opening additional ports in the firewall of the HAN and does not

require any manual configuration.

4.3.3.2.6. UPnP eventing

Control points that are interested in receiving event notifications from a UPnP service can

subscribe by sending an HTTP subscription request to the virtual device’s event subscription

address as published by the VRM in the device description XML document. (step 1 in figure

13). The VRM extracts from the subscription URL the communication subsystem identifier

of the HAN hosting the “live” device, and the device UUID similarly to the way this is

handled for SOAP requests (Step 2 in figure 13). A subscription request is then sent to the

remote HAN hosting the “live” device (HAN2 in figure 13) where it is received by the LNC

(steps 3-4 in figure 13). The LNC checks with the CSM if the remote HAN (HAN1) is

allowed to subscribe for events for the given device, and if so, it sends a subscription request

to the device giving a local callback interface for subscription, which means the LNC would

be the notification target for this subscription (steps 5-7 in figure 13). The device responds

with a subscription identifier, which is cached by the LNC and mapped against the

communication subsystem identifier of the HAN requesting the subscription, and then sends

the subscription identifier to the requesting HAN using the communication subsystem (steps

8-10 in figure 13). The subscription identifier is received at the VRM in HAN1, which

updates its local mappings with a subscription identifier and the callback interface that was

given by the control point application in the original subscription request. The VRM then

posts the subscription response with the subscription identifier to the requesting control

point (steps 11-12 in figure 13). When the device sends a notification related to this

 146

subscription, it is received by the LNC (in HAN2). The LNC extracts the subscription

identifier from the notification and resolves the communication subsystem identifier of the

subscribing HAN from its local mapping. The LNC then forwards the notification using the

communication subsystem to that HAN (steps 13-15 in figure 13). When the appropriate

VRM receives the notification, it resolves the callback interface given by the control point

corresponding to the subscription identifier and posts the notification to this callback URL

(steps 16-17 in figure 13).

When a control point unsubscribes, the VRM in HAN1 removes the mapping between the

callback interface and the given subscription identifier, and forwards the unsubscribe

request using the communication subsystem to the remote HAN (HAN2). Similarly, the

LNC in HAN2 updates its local mapping and sends an unsubscribe request to the device.

If the sharing configuration was changed such that a subscribed remote HAN is no longer

allowed to subscribe for events for the relevant service, the LNC should respond by

removing the event subscription corresponding the remote HAN.

Figure 13 Multi-HAN UPnP Eventing Protocol Interaction

Communication
Subsystem

Capability
Sharing
Manager

UPnP Local Network
Controller

1. HTTP POST
subscription request

3. Send message

Communication
Subsystem

10. Send message

Control Point
Application

UPnP Virtual
Resource Manager

Media Server
(192.168.1.2)

4. Event subscription
received

12. Update mapping from
callback to subscription
identifier and HTTP POST
subscription id

HAN 1 HAN2

11. Subscription id received

2. Dereference URL and
send subscription request to
the remote HAN hosting the
“live” device

5. Check service
permission for HAN1

6. Permission granted
for HAN1

7. HTTP POST
subscription request

8. HTTP POST
subscription id

9. Update local event
subscription mapping
(subscription id to
HAN1) and send
subscription identifier

13. HTTP POST notify
message 14. Resolve remote

HAN from subscription
id and send notification

15. Send message
16. Notification received for
subscription id 17. Resolve subscription

callback from subscription id
and HTTP POST notification

 147

4.3.3.2.7. UPnP service protocol plug-in security guidelines

UPnP can be subject to many different types of attacks (see section 6.4.2). The UPnP

service protocol plug-in design should be able to defend against common types of attacks

from spreading beyond the scope of a single HAN. This section define a set of defence

techniques:

1) Discovery – The VRM handles search requests in the local HAN for the remote

devices it represents. In order to defend against misbehaving control points, the

VRM should restrict the frequency of search requests to which it responds. Once the

threshold is crossed, additional requests should be ignored. The LNC must verify

that the location for the device specified in the device announcement is in the local

HAN. If the URL is not local then the device announcement should be ignored.

2) Description – The LNC parses the service description before it sends it back to the

requesting remote HAN. The device description should only be sent if parsing

succeeds. In addition, if the size of the description document is suspiciously long –

over a predefined threshold, it should be discarded and an error should be sent

instead to the requester.

3) Control – The VRM should parse the SOAP request and verify that it is valid. It

should identify suspiciously long SOAP requests based on a configuration of the

maximum acceptable SOAP request. The LNC should parse the SOAP response and

identify suspiciously long SOAP responses that are longer than a predefined

threshold. If such response is identified, it should be discarded and an error should

be returned.

4) Eventing – The VRM should verify that the callback URL is in the local HAN. The

LNC should not subscribe for events more than once per each service irrespective of

the number of remote HANs requesting subscription. Additional subscription

request should be notified based on the existing subscription with the device. When

the last remote HAN subscription is removed, then the LNC should unsubscribe

from the device. If an event notification attack is identified (e.g. when the number

of event notifications per time window crosses a threshold) in the local HAN event

notifications from this device should be discarded. Similarly, the VRM can have a

maximum of one subscription per remote service sent to the remote LNC, and map

all additional subscriptions to this single subscription.

 148

5) Due to the potential high risk of sharing the Internet Gateway Device, it is

recommended that the IGD is not shared with any remote HANs. The UPnP plug-in

implementation can either prohibit sharing of IGD or give a warning to the home

user indicating the risk.

4.3.3.3. Summary

The above sections described the details of a design for a service protocol plug-in that can

be used with the Krox system architecture for an extension of the UPnP protocol to multi-

HAN through service virtualisation using the Krox communication subsystem. This plug-in

design supports seamless integration through resource virtualisation, such that network

protocols do not need to be modified, and the UPnP protocol extension is designed in a way

that is transparent to existing applications. The design for the UPnP plug-in gracefully

handles private networks by using the Krox communication subsystem and an addressing

scheme that translates between private network addresses and published addresses. Since all

UPnP protocol traffic is carried over the Krox communication subsystem, the plug-in does

not require additional ports to be open and therefore firewalls do not present an additional

challenge for this design. The secure communication subsystem guarantees that only

authenticated Krox system instances can interact with each other and all UPnP traffic

between HANs is encrypted. Authorisation is achieved by using the capability-sharing

manager. While performance needs to be evaluated, it can be observed that the control

traffic carried on the wire does not add significant overhead to the UPnP payload to/from

the control point or device, since only an additional device UUID and a request identifier is

added to the constant overhead of each message. The design for out-of-band communication

enables control points in the local HAN to send and receive data from devices in remote

HANs securely using a separate secure communication subsystem channel. The UPnP plug-

in does not include support for UPnP presentation layer because it is not very common in

HAN devices, however the presentation layer is optional in the UPnP protocol stack.

Section 5.5 in the next chapter presents the details of a prototype implementation of the

UPnP service protocol plug-in for Krox system architecture.

 149

4.3.4. Jini

In order to demonstrate the generality of the Krox system architecture and its applicability

for HAN service protocol plug-ins, this section presents the design for Jini service protocol

plug-in. As described in chapter 2 (section 2.3.3) Jini is a Java based service oriented

distributed architecture. Through the definition of protocols for look up and discovery, Jini

enables clients to find and invoke services in the local HAN. Jini takes a service-centric

approach whereby services can be software or hardware, and can communicate with each

other and facilitate the composition of complex applications from several atomic services.

This section gives a description of the Jini architecture (section 4.3.4.1) followed by a

presentation of the corresponding Jini service protocol plug-in for Krox system architecture

(section 4.3.4.2).

4.3.4.1. Jini architecture

Jini architecture, presented in figure 14 includes Jini services and Jini clients. The

architecture is based on service interfaces, service implementations and service proxies. A

service interface defines the contract that the service supports. A service implementation

implements this interface. A service proxy is a stub that can be downloaded to the client

from the lookup service for interaction with the service. The advantage of this approach is

the loose coupling between the client and the server, and that the client does not depend on

the implementation of the service. Jini is Java based and requires devices to include a Java

Virtual Machine (JVM).

Figure 14 Jini Architecture

Lookup Service

Service 1 Proxy

Service 2 Proxy

Jini Device 1

Service 1 Proxy

Service 1

Implementation
Service 1 Interface

1. Register

Jini Client

Service 2 Proxy

Service 2 Interface 2. Search for services

of type service 2

3. Get a proxy for

service 2

Jini Device 2

Service 2 Proxy

Service 2

Implementation
Service 2 Interface

 150

4.3.4.1.1. Service discovery

The first step in Jini service discovery is finding a lookup service. A lookup service enables

devices to register their services, and clients to locate services. As shown in figure 14 (step

1), once a lookup service has been found, the service provider can use it to register the

service, and a client can use it to search for services of interest by the service interface and

additional characteristics, such as manufacturer, and a friendly name (step 2). At the time a

service is registered, it can attach a set of attributes that can be used by the lookup service

for matching against client queries. These attributes can be modified at a later time. The

service interface is defined in terms of Java interfaces and there is no standardisation to date

for classes of devices or services, therefore a device, e.g. printers from different vendor may

have very similar yet different Jini service interfaces. When the service registers itself with

the lookup service it can do so with a “lease”, indicating the time it is available for. The

service can then renew or cancel the lease. The lookup service “leases” a proxy object to the

client for a period of time, such that when it expires the client needs to renew the lease.

Similarly when the device leaves the network the lease is automatically expired. For high

availability, multiple lookup services may exists in the HAN, and the devices can register

their services in more than one lookup service, to ensure their availability even if one lookup

service becomes unavailable.

4.3.4.1.2. Service invocation

Once the client obtained a service proxy for a Jini device/service, it can invoke methods on

this proxy. The proxy implementation communicates with the remote service

implementation via a network protocol, which is abstracted from the service client. Jini does

not dictate the specific protocol for interaction between the service proxy on the client side

and service object on the server side. However, typically this involves Java Remote Method

Invocation (RMI). The service developer can choose between a “thin” proxy that only

communicates with the remote object or a “fat” proxy that implements some or even the

whole business logic on behalf of the remote object.

4.3.4.1.3. Jini security

Security is an important aspect of Jini due to its extensive use of mobile code, which is

downloaded from lookup services and potentially HTTP servers. Early versions of Jini

supported various security mechanisms through Java security for controlling access to

 151

resources. Using Jini (both in client and service) requires using the Java Security manager.

The Java security manager uses a policy file that controls permission that enable the client

or server to protect them in a hostile environment. The permission file is additive, therefore

a client or server cannot exclude permission, but rather it needs to specify permission

explicitly. Java security policy can restrict access to activities, such as connection to sockets.

In addition, activities can be allowed based on the host from where the code is downloaded,

and finally, access to activities can be associated with digital signatures.

Jini 2.1 introduced a number of mechanisms for integrity, confidentiality, and

authentication, in addition to the standard mechanisms described above. Integrity ensures

that classes and instances were not modified on their way between the server and the client.

Confidentiality ensures that unauthorised access to the data was not allowed. Authentication

ensures that the data comes from whom you expect. These mechanisms are supported

through the definition of constraints. Jini security defines a set of constrains that can be

applied on the server or the client, and can be defined on a method level. This could be used

such that when the client receives a notification from the lookup service on a new service

discovered, it can use a custom proxy preparer such that enables using the service only if the

client constraints are met. A client can require the proxy to support integrity by defining the

integrity constraint. Another risk when using Jini is that code may be downloaded from an

HTTP server. When a client discovered a service and downloaded the proxy from the

lookup service, it in fact received a URL from where class files can be downloaded. In order

to verify that the downloaded class actually corresponds to the version on the server, MD5

hashing technique is used such that the client can verify that the jar file that was downloaded

has the same hash signature as was given in the URL. In addition the client can require the

proxy to be verified by a local trust verifier. For confidentiality the client can constrain the

invocation to require encryption.

4.3.4.2. Jini service protocol plug-in

Jini fits very well into the design approach for extending services beyond the scope of a

single HAN described in this thesis. In the Jini programming model the actual way a proxy

service object interacts with the service instance implementation is abstracted from the

client of the service (either human or machine). Therefore the client of the service is not

aware of which underlying network protocol is used to interact with the actual service.

 152

Following the Krox system architecture described earlier, the approach proposed by this

thesis is to represent shared resources from remote HANs as virtual resources in the local

HAN. A virtual resource that represents a remote Jini service interface must support all

actions on this interface. For each Jini service that is shared with a remote HAN, a virtual

service is automatically generated in the corresponding remote HAN. This virtual service

can be discovered in its hosting HAN in an identical way to other Jini services with no

further configuration or administration. Once discovered, actions can be invoked on it, such

that each call is delegated to the “live” service in its hosting HAN. The Jini LNC is

responsible for all interaction with local HAN’s Jini services including the discovery and

invocation. The Jini VRM is responsible for representing services shared from remote

HANs in the local HAN. The Krox communication subsystem is used for securely

exchanging messages between the Jini LNC and Jini VRM.

The Jini VRM is designed as an aggregator for all remote HANs’ Jini services. The Jini

VRM caches information about remote services shared from other HANs and dynamically

generates an implementation and a proxy (conforming to the Jini architecture) that

correspond to the interfaces of the shared services. The generated proxy communicates

locally with the instance implementation and relays the invocations request and response.

The Jini VRM caches the service implementation and registers the proxy with the local

HAN’s lookup services.

The full details of the design for Jini service protocol plug-in for Krox system architecture

are given in following sections.

4.3.4.2.1. Service discovery

The Jini LNC is responsible for discovering Jini services in the local HAN. This is done by

first locating lookup services via a multicast message to a well-known multicast address.

Once the Jini LNC finds lookup services, it subscribes for service updates (step 1 in figure

15). In order to enumerate all types of services in the local HAN, the LNC does not specify

a certain service type but instead listens to all types of services in the local HAN. When a

local Jini service is added, the LNC is notified by the lookup service, which in turn updates

its local repository with the added service proxy (steps 2-3 in figure 15). When a remote

HAN changes its status to “available”, the LNC checks with the Capability Sharing

 153

Manager which services should be shared with it, and in turn and sends a notification about

these services to that HAN using the communication subsystem (steps 4-9 in figure 15).

Similarly when a Jini service is added to the local HAN, the LNC checks with the

Capability Sharing Manager with which remote HANs it should be shared, and

consequently sends an announcement about the added service to each of these HANs. The

service announcement contains only the service interface name and a service identifier.

Unlike UPnP where the service description could be modified to reflect partial sharing of

actions from a service, in Jini this is not possible. The Jini service “client” and the Jini

service “server” must pre-share the Jini service Java interface - therefore it cannot be

modified to reflect sharing of parts of the interface, at least not in the interface level. This

does not mean however that home users must share all the methods of a Jini interface. It

only means that all the methods of a Jini service interface are visible to a remote HAN with

which is it shared. If an action is not shared with a remote HAN, when the remote HAN will

attempt to execute the method, the execution will fail in the LNC due to insufficient

privileges.

Figure 15 Multi-HAN Jini Service Discovery

Lookup
Service

Jini Local
Network Controller

Capability
Sharing Manager

Communication
subsystem

1. Register

2. Service added

5. HAN2 available

6. Check sharing
configuration with
HAN2

Jini Virtual Resource
Manager

Jini Virtual
Service Proxy

Jini Virtual Service
Implementation

9. Send message

4. HAN2 presence
status changed to
available

3. Update local
repository

8. Send an
announcement for
each Jini service
shared with HAN2

HAN1 HAN2

Communication
subsystem

7. Sharing
configuration with
HAN2

10. Remote
service added
from HAN1

Lookup
Service

11. Generate
dynamic service
implementation

12. Export service
proxy

13. Register the
service proxy with
the local lookup
services

 154

Once the Jini VRM is notified of an added Jini service, it is responsible for virtualizing the

remote service by creating a local instance of the Jini service that forwards requests to the

network hosting the “live” Jini service. In order to create a local service that will act as

described above, the Jini VRM needs to register a proxy for the service implementation with

the local lookup service. As explained above, a Jini service is a trio of service interface,

service implementation, and a service proxy (steps 10-13 in figure 15).

When a local Jini service becomes unavailable, the Jini LNC notifies the remote HANs with

which the service is shared, and the corresponding VRM in these HANs cancels the lease

for the virtual service that was registered with the lookup service in those HANs.

When the sharing configuration is changed the Jini LNC is notified by the CSM and sends a

corresponding update to the affected remote HANs where the Jini VRM needs to create or

destruct relevant Jini service implementations and service proxies.

Figure 16 Jini Service Plug-in Example

Register

Discover

Notify

Register

Lookup Service

Service 2 Proxy

Jini Device 1

Service 1 Proxy

Service 1
Implementation

Service 1
Interface

Register Register

Krox System

Jini VRM

Jini virtual Service 1

Virtual Service 1 Proxy

Virtual Service 1 Implementation

Service 1 Interface

Discover

HAN 1 HAN 2

Krox System

Jini VRM

Jini Device 2

Service 2 Proxy

Service 2
Implementation

Service 2
Interface

Service 1 Proxy

Jini Device 1

Service 1 Proxy

Service 1
Implementation

Service 1
Interface

Communication
subsystem

Capability
Sharing
Manager

Jini LNC

Service 1
Proxy

Communication
subsystem

Capability
Sharing
Manager

Jini LNC

Service 1
Proxy

Service 2
Proxy

Lookup Service

Service 1 Proxy

Virtual Service 1
Proxy

 155

Figure 16 illustrates the discovery process of Jini across multiple HANs. HAN1 has two

“live” Jini enabled devices, each with one service. Each service is a trio of a service

interface, a service implementation (hosted by the device) and a service proxy. The service

registers itself with a lookup service, which results in a service proxy being stored in the

lookup service. HAN1’s Jini LNC locates the lookup service and then retrieves information

about Jini services in the HAN and updates its repository with the service proxies for the 2

services. HAN1 shares one service (service1) with HAN2. HAN2 runs one “live” Jini

enabled device with one service. Similarly to HAN1 the service has a service interface, a

service implementation and a service proxy. The service registers with the lookup service in

HAN2 and as a result the lookup service repository is updated with the service proxy. When

HAN2 comes online, the Jini LNC in HAN1 sends information about the HAN1’s shared

service (service1). The information is received in the HAN2 VRM and results in the

automatic dynamic generation of a virtual service implementation and a virtual service

proxy in HAN2. Once the virtual service has been generated, the service implementation is

kept in the VRM repository in HAN2, and the virtual proxy is registered with the local

(HAN2) lookup service. At this point, HAN1 has 2 Jini services, all of them are local, and

HAN2 has 2 services, one of them is local, and the other one is virtual, shared from HAN1.

4.3.4.2.2. Service invocation

Once the Jini VRM has registered a local virtual service proxy for the remote Jini service,

client applications searching for services having the particular service interface will be able

to find the virtual service in the lookup service in the same way as local services. Figure 17

illustrates the interaction that takes place between the client application and the other parts

of the system. Once an application in the local HAN discovers the virtual service, it

downloads the service proxy and invokes methods from the service interface (steps 1-3 in

figure 17). When a method is invoked, the virtual service proxy relays the request to the

virtual service implementation that is hosted in the Jini VRM. The virtual service delegates

the call using the communication subsystem to the network hosting the “live” Jini service

(steps 4-6 in figure 17). When the Jini LNC in the remote HAN receives an invocation

request, it resolves the local service proxy. Before the service is invoked the Jini LNC must

verify that the remote HAN has sufficient permissions to execute this method by checking

with the capability-sharing manager. If the requesting HAN (HAN1 in figure 17) is not

allowed to call this method then an error is sent back. Otherwise the LNC invokes the

 156

required method on the local “live” service proxy (steps 7-11 in figure 17). The local service

proxy interacts with the actual “live” service implementation and a result is returned to the

Jini LNC. The result is then delegated using the communication subsystem to the remote

HAN with the result or error (steps 12-16 in figure 17). The Jini VRM (in HAN1) receives

the result and passes it to the virtual service implementation, which returns the result or

error if any to the virtual service proxy. Finally the virtual service proxy returns the result or

error back to the client application (steps 17-19 in figure 17).

4.3.4.2.3. Jini service protocol plug-in security guidelines

While Jini service protocol can be considered secure with the mechanisms described in

section 4.3.4.1.3, these mechanisms must be used in order to prevent a hostile or

misbehaving entity in a Jini environment to create an attack that would spread beyond the

scope of a single HAN.

The Jini LNC interacts with the lookup service and service proxies in the local HAN. Since

the LNC runs a proxy to the lookup service as part of its code, it should accept proxies only

if they (the corresponding registrar) are signed by a trusted authority. The same rule applies

Figure 17 Multi-HAN Jini Service Invocation

Client
Application

Lookup
Service

Virtual Service
Proxy

Jini Virtual Service
Implementation

Communication
subsystem

1. Find service
2. Return service
proxy

3. Invoke service
action

4. Communicate with
service implementation

5. Send service
Invocation request
to remote HAN 6. Send message

Jini Local
Network

Controller

Service
Proxy

Service
Implementation

8. Resolve service
proxy from service
id

9. Check access
permissions

12. Communicate with
service implementation
over some protocol
13. Return result over
Some network protocol 14. Return

result 15. Send result
remote HAN

16. Send message
18. Return result
over RMI

19. Return result

Capability
Sharing
Manager

11. Invoke service
proxy method

HAN1 HAN2
Communication

subsystem

7. Invoke service

10. Grant access

17. Result received

 157

to the Jini VRM, which interacts with the lookup service in its HAN in order to register

virtual services. The trust is configured in the security configuration files of the system.

When the Jini LNC downloads a proxy to a service it must do so only if it is signed by a

trusted authority. In addition, it can use a local verifier to verify its trust in the service.

Finally the LNC should use integrity and confidentiality constraints when interacting with

local services to ensure that data is not tampered with on the way to and from the service,

and that communication is encrypted.

4.3.4.3. Summary

The above sections describe the detailed design for a service protocol plug-in that can be

used with the system architecture for an extension of Jini to multi-HAN through service

virtualisation, using the secure communication subsystem. This plug-in design supports

seamless integration through resource virtualisation, such that no HAN service or network

protocols needed to be modified. The extension for supporting sharing of Jini services

across multiple HAN networks does not require modifications to Jini architecture or to

applications consuming Jini services. The design for multi-HAN service discovery and

invocation enables existing and future Jini applications to seamlessly discover and invoke

remote services in a similar fashion to local services. Authorisation is achieved by using the

capability-sharing manager.

While the presented approach for extending Jini service protocol can be useful in many

cases, it may not support all types of Jini services. Jini services are not limited in their

parameter types and return values and can use any Java type. While for parameter types

there is no restriction, as long as the object type is serializable, Jini service return type can

be a networked object that communicates with the physical device. For example, a printer

service PrintService24 returns a DocPrintRequest25 where the doc for printing needs be set.

Therefore the interaction of a client with the printer would require two steps:

24 http://www.jini.org/files/specs/print-api/net/jini/print/service/PrintService.html

25 http://www.jini.org/files/specs/print-api/net/jini/print/job/DocPrintRequest.html

 158

// prepare the document for printing

Doc docToPrint=new InputStreamDoc(…);

// locate the Jini printer service

PrinterService printer=…;

// create a print request job (step 1)

DocPrintRequest request=printer.createDocPrintRequest();

// print the document (step 2)

request.setDoc(docToPrint);

The object that is returned to the caller of printer service in step 1, communicates with the

physical printer for setting the document, when the appropriate method is invoked in step 2.

The Jini service protocol plug-in can be extended to support such scenarios with two

mechanisms. If the return type of a Jini service is an immutable object, therefore cannot be

modified after its construction, there is no need to modify the plug-in, and as long as the

object is serializable, there is no limitation. To support scenarios such as the printing service

described above, the Java dynamic proxy technique can be used. Instead of returning the

actual object from the service, the virtual service implementation should return an interface

implementation dynamically generated using dynamic proxy, such that each call to the

interface is delegated over the communication subsystem to the remote HAN where it is

invoked on the actual object that was returned from the method invocation on the physical

device. For example, if a Jini PrintService returned a DocPrintRequest object when creating

a print job, instead of sending the actual DocPrintRequest Object between the remote

HANs, the object should remain in the HAN hosting the physical printer (in the LNC), and a

virtual DocPrintRequest object would be automatically created in the remote HAN’s VRM.

When methods are invoked on the DocPrintRequest object, they are tunnelled using the

communication subsystem to the remote HAN hosting the physical printer. With this

approach the Jini plug-in can support a return type for a service as long as it is serializable,

and either immutable or implements an interface that can be replaced with a dynamic proxy

implementation.

 159

Section 5.6 in the next chapter presents the details of a prototype implementation of the Jini

service protocol plug-in for Krox system architecture.

4.3.5. Service composition subsystem

Service composition for HAN services is needed to allow construction of complex rich

featured functionality from multiple atomic home services. While services can be composed

in a service protocol specific manner, e.g. using a control point application for constructing

UPnP applications, or a Java program for constructing a Jini application, these approaches

are not reusable themselves as services, i.e. a control point application is not a UPnP device

or service, therefore it cannot be discovered or invoked. Similarly a Java application using

Jini services for an application is not rendered as a Jini service. In addition, the

heterogeneity of devices and services in the HAN and the lack of interoperability between

different service protocols prevent services of different protocols from being composed. In

order to facilitate the composition of services in the HAN, an abstraction layer is required

between the low-level device/service technology, and the service composition layer. This

abstraction layer should hide the differences in format, protocol, and network related details

from the consumer and expose the device services in a common standard way.

The design for the service composition subsystem is based on SOAP web services as a

service representation for HAN services and a BPEL service orchestration engine for

composing and executing composite services. A major advantage of the web-based

approach, in addition to the standard and uniform access to various types of services, is that

it enables the composability of such services using existing service composition standards,

which is an important asset for HAN applications. Using BPEL has the advantage that the

composite service is by itself a reusable web service, which can enable its further

composition. Another advantage is that it can enable the composition of external web

services with HAN services. Finally based on the resource virtualisation in Krox system

architecture, composite services can enable orchestration of local and remote HAN services.

The proposed design for a HAN service composition system contains 3 main components:

1. Orchestration engine – E.g. a standard BPEL engine hosting the executable

composite services

 160

2. Web services – Automatically generated services that correspond to the home

services discovered in local HAN. With the virtualisation framework, such services

can be in fact either local or virtual services available in the local HAN

3. Service Protocol plug-in – A plug-in component is needed for mediating between

the service technology, e.g. UPnP, and the service representation. Following the

plug-in architecture described earlier in this chapter, the plug-in for a service

protocol includes support for mapping between the service protocol and web

services

In Krox system design BPEL is used for composing home services from various sources,

local HAN services, remote HAN services, and external web services. Composite services

are defined in BPEL using dynamic and automatically generated web service proxies that

represent HAN services (either physical or virtual) in the local HAN. As discussed in

section 3.2.3, using BPEL for HAN service composition was suggested in literature in [17,

52, 106]. Redondo et al. [106] present a BPEL based dynamic service composition with

OSGi. It assumes a corresponding bundle exists for mapping the service protocol to OSGi

and is focused on service composition itself, using BPEL to express the orchestration of

OSGi services. The architecture described in [106] does not support service orchestration of

remote services with local ones. Bohn et al. [17] and Hackmann et al. [52] suggest service

protocol specific extension of BPEL, but unlike in Krox system design, this approach is

limited to local services of a single service protocol.

Web services form a generic service representation and need to be mapped from the original

service protocol. For example capabilities offered by a UPnP-enabled device discovered in

the HAN, would be exposed as a set of web services corresponding to the services supported

by this device. These services can then be composed with other services including UPnP

services, Jini services, external web services, and other composite services.

In order to support the mapping of various service protocols to web services, the service

protocol plug-ins discussed earlier in this chapter are extended with additional support for

web service generation and mapping. The advantage of this approach is that it encapsulates

all the details of a certain service protocol under individual pluggable modules. Another

advantage is that the transformation functionality can leverage other capabilities already

existing in the service protocol plug-in as part of the service virtualisation, e.g. service

 161

discovery. By creating an interoperable proxy web service interface, different HAN service

protocols can be used and composed in a uniform manner ignoring the underlying

differences in protocol, data structure, platform and network.

Once a service is discovered by the LNC/VRM, this extension is invoked and generates

dynamically and automatically a corresponding technology neutral SOAP web service. The

web service is deployed into a local web server, which is bundled with the Krox system.

4.3.5.1. UPnP to web service mapping

In order to support the mapping of UPnP services to web services, the LNC and the VRM

are extended. Once a device/service is discovered (a local device/service in the LNC, a

remote device/service in the VRM), its XML description is fetched. By parsing and

inspecting the XML description of the service, a corresponding web service is generated

such that for each UPnP service, a single web service is created, and each UPnP action

corresponds to a web service operation. The parameters of the operation match the

parameters of the UPnP action. Because the invocation of the web service is performed

using SOAP, which is text-based, the web service parameters can be constrained to Strings.

In cases where there is an error in the service invocation, the web service throws an

exception. In case of success, the web service returns the SOAP response as received from

the service. The similarity between the way web service interfaces and UPnP services are

described enables the simple mapping, and the parsable format of a UPnP service

description enabled the automation of the web service generation.

Once a proxy web service has been generated it is built and packaged as a web application

and deployed to a local web server. As soon as the device or service disappears from the

network, its corresponding web service proxies are immediately undeployed from the web

server and removed. When an action is invoked through the web service, the corresponding

device action is called and the result or error code is returned to the caller.

4.3.5.2. Jini to web service mapping

Similarly to the extension of UPnP service protocol plug-in, the mapping from a Jini service

to a corresponding web service is introduced as an extension to the Jini service protocol

 162

plug-in. Whenever a Jini service is discovered, either locally by the Jini LNC or for a remote

service - in the Jini VRM, the transformation from the Jini service interface to a web service

is performed. Once a service interface has been discovered, it is inspected and a web service

is automatically generated for it. Each Jini service interface corresponds to a single web

service such that each method in the Jini service corresponds to a single operation on the

web service. The signature of each web service method corresponds to a single method in

the Jini service interface. The automatic generation of a web service from a Jini service

interface is made possible by the parsable Java interface of a Jini service using Java

reflection API.

The generated web service implementation interacts with the Jini service by locating the

service by its service identifier in the lookup service. Once the web service has been built

and packaged, it is also deployed to the local web server. When the web service is invoked,

it communicates with the Jini service and returns the result/exception as returned from the

Jini service execution. With the integration of service protocol to web service mapping to

the plug-in’s discovery mechanism, as soon as a new services are added, a corresponding

web service is generated and deployed. As soon as the service is no longer available in the

HAN, its corresponding web service is undeployed.

4.3.5.3. Composing home services

After the web service proxy for UPnP and Jini services has been deployed to the web server,

a composite service can then be defined in BPEL involving the web service proxies, and

may include other arbitrary web services, either internal or external. Such a composite

service can be deployed in a BPEL runtime engine and be executed in the home

environment, either as part of a client application, or as part of another composite service.

The advantage of a web service proxy based approach is that it enables seamless

composition of web-based services with UPnP and Jini services. Another important

advantage of this design is that remote and local services (both represented in the local HAN

as web services) can be seamlessly composed.

Composition can be made either by the home user or by a service provider and only

instrumented. For example, a service provider may run a process in the home network that

discovers home services and based on a knowledge base of template composition can

 163

identify potential composite services that can be offered to the home user. When the user

has all the prerequisites for a given composite service, the composite service can be

deployed. It is not the purpose of this thesis to define a methodology for user driven service

composition but only to establish a framework that can enable this process.

4.3.5.4. Composite services as UPnP services

BPEL composite services are accessible to local HAN clients in the form of SOAP web

services. A client can invoke them directly with SOAP requests. While the previous sections

discussed a mechanism to map a service protocol (e.g. UPnP) to a generic web service, in

this section the reverse process is presented for composite services, i.e. by adding a UPnP

interface to a composite service, this enables seamless sharing of BPEL composite services

with remote HANs. There may be cases where composition could be a mechanism to share a

function, rather than share the devices and services implementing this function. A useful

side effect of this approach is that these UPnP services can be discovered by UPnP clients in

the local HAN and interact with other UPnP services. The idea of representing workflows as

UPnP devices was suggested by Bobek et al. in [16]. However the design suggested here is

different in that composite services are available as independent UPnP devices rather than as

embedded devices as part of the workflow engine device as suggested in [16]. In Krox

system design the purpose is not to enable management through UPnP of the workflow

engine, but rather to enable sharing of composite services. Since a sharing framework for

UPnP has already been suggested as part of the design, the mapping from BPEL to UPnP

piggybacks existing functionality and seamlessly enables sharing of composite services with

remote HANs. This means once the BPEL composite service has been mapped to a UPnP

device/service and announced in the local HAN, the UPnP LNC will discover it and share it

as a UPnP device if required, with remote HANs.

 164

In order to support sharing of composite services, a transformation between a BPEL service

and a corresponding UPnP device/service is required. When a BPEL service is deployed to

the BPEL engine, a corresponding UPnP device is automatically generated and can be

discovered and accessed through UPnP. By the parsing of the WSDL of the composite

service, the corresponding service name and actions are taken and used for generating the

corresponding UPnP device, having services corresponding to the BPEL service operations.

The process for generating a UPnP device from a BPEL service is depicted in figure 18.

When a control point invokes the UPnP service, its implementation invokes the composite

service by sending a SOAP request to the process URL.

4.3.5.5. Summary

The above sections described the design for the Krox service composition subsystem. It is

suggested that services can be composed via combining BPEL for expressing and executing

composite services with a plug-in approach to mapping between service protocol and web

services. The design demonstrates how the plug-in approach integrates the discovery

modules in both the VRM and the LNC and the functionality for generating automatically a

corresponding web service for a UPnP or Jini service based on inspection of the parsable

service interface. Once web services are available and deployed in the local HAN, service

composition with BPEL can take place, such that it can compose same technology services,

as well as cross technology services, and external web services. Using BPEL for service

composition supports the requirement for further composability of the composite service.

The final requirement from the service composition subsystem is to enable sharing of

composite services. In order to support this requirement, a mapping between BPEL and

UPnP has been defined such that when a composite service is deployed to the BPEL engine,

a corresponding UPnP service is automatically generated and advertised in the local HAN.

Figure 18 Generating a UPnP Device Proxy for a BPEL Service

BPEL Engine

Composite

Service

Service

Implementation

Service

Description
BPEL2UPnP

Composite

Service UPnP

Device

1. Deploy

2. Generate

UPnP Device/

Service 3. Instantiate

Control Point

Application

4. Invoke

5. Execute

 165

If the sharing policy allows it, the service will be shared.

4.3.6. Security considerations

The above sections describe the Krox system design. The following sections provide more

details about the security mechanisms used as part of the Krox architecture and design.

4.3.6.1. Authentication

Authentication is the first step in the system bootstrap. The system must authenticate itself

against the IM&P server so it can communicate with other instances of Krox system in

remote HANs with which sharing has been agreed (i.e. they are in the local HAN’s Krox

system buddy roster). With XMPP, authentication is made using Simple Authentication and

Security Layer (SASL) [80] as defined in RFC 3920 [114]. SASL does not define a specific

mechanism and XMPP supports all of the mechanisms defined in RFC 4422 [80], however

XMPP recommendation is to use the EXTERNAL mechanism with end user certificates for

client to server authentication.

4.3.6.2. Confidentiality

The inter-HAN traffic must be encrypted to avoid information disclosure and prevent

eavesdropping. With XMPP, as soon as the client (Krox communication subsystem),

authenticated and is connected to the XMPP server, all communication from the client to the

server is encrypted using Transport Layer Security (TLS) [109].

4.3.6.3. Authorisation

The Capability Sharing Manager described in this chapter is responsible for management of

access control. Before a device/service is shared with remote HANs, the CSM checks the

sharing configuration and permits or denies sharing with the remote HAN. Similarly when a

remote HAN requests an action to be executed, permission is checked with the CSM before

action is executed. The CSM can further filter content from the response sent back to a

requester based on the fine-grained sharing configuration.

 166

4.3.6.4. Rate limiting

In order to avoid situations of one instance of Krox system flooding other instances in

remote HANs with messages due to a misbehaving service protocol plug-in, or a software

bug, or an attack, the communication subsystem is required to support rate limiting. Rate

limiting should constrain the number of messages a Krox system can send/receive in a given

amount of time. If more messages are sent or received they will be dropped. This could be

also implemented as a plug-in for the IM&P server, such that the limit will be per a client

connection, or between two endpoints. The advantage of this approach is that it does not

affect the performance of the Krox system in the local HAN.

4.3.6.5. Miscellaneous

XMPP defines a set of best practices and recommendations that should be applied by XMPP

implementations to defend against multiple types of denial of service attacks however these

guidelines are not mandatory [142].

4.4. Conclusions

This chapter presented the Krox integrated system architecture and a design for addressing

the requirements for intra-HAN and inter-HAN service interoperability as they were

presented in the previous chapter (section 3.4). Krox is a service-oriented architecture that

enables HAN services from different multiple HAN service protocols to be composed and

shared with remote HANs. Krox system architecture defines a plug-in framework that

enables plug-ins to support various service oriented HAN service protocols via an extensible

event model.

There are a number of restrictions that need to be considered in regard to the Krox system

architecture presented in this chapter:

1) While the plug-in framework is flexible, it is suitable for a specific subset of HAN

service protocols. The Krox system architecture can support HAN service protocols

that define a service interface in a parsable format. The Krox system architecture

does not require a specific service interface format, however the format must

conform to some standard, e.g. an XML schema, Java interface. A parsable service

 167

interface enables the Krox system architecture, or more specifically, a service

protocol plug-in, to automatically virtualise remote resources in the local HAN by

using the service interface for virtualisation. In addition, the automatic mapping

from a service protocol specific interface to web service relies on being able to

automatically parse and inspect the service interface. When considering this

characteristic against the HAN service oriented architectures we can identify Krox

system architecture as being suitable for UPnP, DPWS, Jini, HAVi, and OSGi, and

not suitable for ZeroConf, and SLP due to their lack of parsable service interface.

2) The design presented for the Jini service plug-in does not cover the full range of

potential Jini services because it only supports simple return type, however section

4.3.4.3 described how this could be extended to support any Java type that is

serializable and either immutable or implements an interface.

3) While Krox system architecture defines a mechanism for intra-HAN service

interoperability, and service composition, it does not address the data type

inconsistencies and incompatibility between service protocols (the semantic

interoperability problem).

4) The support for web service mapping in Jini service protocol plug-in design is

limited to simple serializable immutable data types. If the return type of a service

interface method is mutable (as discussed in section 4.3.4.3) the automatic mapping

to web service is insufficient.

5) The Krox system architecture does not support more than a single instance of Krox

system in the same HAN, e.g. in the case of multiple Internet connection for the

same household. A Krox system identity represents a HAN rather than a human

user, therefore it is not useful for managing different parts of the same HAN by

multiple home users.

The next section reiterates the requirements and how they are addressed by the Krox system

architecture and the design for the service plug-ins for UPnP and Jini.

4.4.1. Requirements

4.4.1.1. Intra-HAN service interoperability

• REQ #1 – Cross service protocol service composition – Krox system architecture

supports service composition of local HAN services through service orchestration of

 168

web services, and an automatic mapping between a service protocol and web service. As

discussed above, such a mapping can exist when the service protocol supports a service

interface with a parsable format. By mapping the service interface to web services,

service composition is enabled for services from different service protocols.

• REQ #2 – Share composite services – Through the automatic mapping between BPEL

composite service description (WSDL) and UPnP service description, the Krox system

can dynamically generate UPnP devices that correspond to composite services deployed

in the local HAN. With a UPnP service protocol plug-in these dynamic UPnP devices

can be seamlessly shared similarly to “live” UPnP devices.

• REQ #3 – Cross HAN service composition – The service protocol plug-in maps both

local HAN services (in the LNC) and remote HAN services (in the VRM) to web

services. Therefore, while service composition only refers to local HAN web services,

some of them can in fact be virtual services representing remote services in the local

HAN.

4.4.1.2. Inter-HAN service interoperability

4.4.1.2.1. Seamless integration

• REQ #4 – Enable sharing of HAN services from the local HAN with remote HANs –

Sharing of HAN services in Krox system architecture is supported through the

implementation of service protocol specific plug-in that is required to implement service

virtualisation for the HAN service protocol. In order to allow remote HANs to

communicate and identify each other, the Krox system architecture has a

communication subsystem that enables secure message exchange between remote

HANs. Sharing relationships between remote HANs are established by adding a remote

HAN to the buddy roster of the local HAN’s Krox system instance.

• REQ #5 – Automatic discovery of resources from remote HANs shared with the local

HAN – This is the heart of seamless integration, which is supported in Krox system

architecture through the use of the automatic service virtualisation techniques. When

local HAN services are discovered in the local HAN, remote HANs with which the

service is shared are informed using the communication subsystem about the added

services and the service is automatically introduced in the remote HAN as a virtual

service. The service virtualisation (as demonstrated with UPnP and Jini service protocol

 169

plug-ins) announces a device/service that supports the corresponding service protocol,

and therefore can be automatically discovered by service protocol clients in that HAN.

• REQ #6 – There must be no restriction that prevents sharing the same devices and

resources with multiple remote HANs – The Krox architecture does not place limitation

on sharing HAN devices and services with multiple HAN. It should be noted that at the

same time Krox system architecture does not restrict or coordinate simultaneous access

to the device by design.

• REQ #7 – Interaction of applications with remote devices must be identical to the

interaction with local of the same service protocol – This is supported in the Krox

system architecture by the automatic resource virtualisation of service protocol plug-ins,

as demonstrated with UPnP and Jini. The interaction with remote devices and services,

facilitated by the service protocol plug-in’s VRM is identical to the interaction with a

local device/service of the same service protocol.

• REQ #8 – The system must not require modification to service protocols and must

support plug-and-play – The Krox system architecture and the service plug-ins that

were designed for UPnP and Jini do not require modifications to be made to the service

protocols. When the Krox system is deployed, based on its installed service protocol

plug-ins it immediately starts to discover devices and services and share them based on

the defined sharing configuration.

• REQ #9 – Independence of access network technology – the Krox system architecture

and design does not require specific access connectivity. Only a single Internet

connection per HAN is supported.

4.4.1.2.2. Private networks and firewalls

• REQ #10 - The system must be able to discover and share devices with networks that

are using NAT even in the existence of devices with identical IP addresses in multiple

HANs – In Krox system architecture and design, private addresses are not used beyond

the scope of the local HAN. When informing remote HANs on local devices their IP

address is not sent. This is demonstrated with the design for the UPnP service protocol

plug-in such that the location of the device in the local HAN is not sent to the remote

HAN, and rather the VRM assigns the device a local URL in its network. This approach

can be adapted for additional service protocols. Since IP addresses are not sent between

HANs, the existence of the same private IP addresses in multiple HANs is not

problematic. Another mechanism is required for the UPnP service protocol plug-in to

 170

support out-of-band traffic. Section 4.3.3.2.5 presented a possible solution to this

problem.

• REQ #11 – The system must be able to communicate with remote HANs behind firewalls

– All service protocol traffic in Krox system architecture is sent using the

communication subsystem. With XMPP based communication subsystem, Krox system

requires port 5222 to be open (XMPP client to server communication port), however

this is a standard instant messaging port (defined in RFC 3920). No additional ports are

required for Krox system communication between remote HANs.

4.4.1.2.3. Security

• REQ #12 – All communication with remote HANs must be authenticated – All

messaging between Krox system instances is only made through the communication

subsystem, which means it is made after authentication has succeeded.

• REQ #13 – Access control – Sharing must not be automatic and must enable home

users to control which resources are shared with which remote HANs – In the Krox

system architecture access control is enforced by the Capability Sharing Manager

through the interaction with the service protocol plug-ins. Given the home user’s

configuration of which resources should be shared with which remote HAN, as

demonstrated in the design of the service protocol plug-ins for UPnP and Jini, the CSM

is consulted before resources are shared, as well as before actions are invoked on local

resources on behalf of remote HANs to prevent unauthorised access. While the Krox

system does not define sharing policies, it is designed to enable enforcing fine-grained

access control to device/service/action/content level as illustrated in the design for

service protocol plug-ins.

• REQ #14 – Confidentiality - all traffic between remote HANs must be encrypted – In

Krox system architecture the communication subsystem guarantees that all data

exchange between remote HANs is encrypted. With XMPP as the underlying IM&P

system, this is support at the transport layer with TLS.

• REQ #15 – Security vulnerability – some service protocols have inherent security

vulnerabilities, in a multi-HAN setting, such vulnerabilities must be confined to a single

HAN. While it follows from supporting a multi-HAN system that vulnerabilities for the

HAN increase, it must be shown how Krox system defends against such threats and

vulnerabilities. In order to analyse the security threats and define methods for defending

 171

against them both at the system level and in the service protocol plug-in level, a security

analysis is given in section 6.4.

4.4.1.2.4. Performance

A separate performance evaluation will be performed to demonstrate that Krox system

satisfies the performance requirements (REQ #16-REQ #19) using a prototype

implementation (see sections 6.2-6.3).

4.4.1.2.5. Extensibility

• REQ #20 – Extensibility to additional HAN service protocols – One of the key

characteristics of the Krox system architecture is its extensibility through the plug-in

based architecture and the plug-in framework. The design for Krox identified the

characteristics of HAN service protocols that can be supported in the Krox system

architecture, and the plug-in framework provides the structure for such support

complemented by the communication subsystem and the capability management.

4.4.1.2.6. Manageability

• REQ #21 – Dynamic relation management with remote HANs – through the use of

IM&P and more specifically XMPP, agreement to share local HAN resources with

remote HANs is reduced to adding the Krox system identifier of the remote HAN (i.e.

its IM&P identifier) to the buddy roster of the Krox system in the local HAN. Remote

HANs can be added, deleted, and blocked, following IM&P user management patterns.

• REQ #22 – Pause/resume sharing with remote HANs – through the use of IM&P and

more specifically XMPP in Krox system design, the home user can change the status of

the otherwise “always on” Krox system to “unavailable” which results in termination of

all virtual resources in remote HANs that correspond to the local HAN’s resources.

• REQ #23 – The system must not require manual configuration of the home gateway and

its administration must be appropriate for non-technical users – Krox system

architecture does not require any manual configuration to the home gateway.

Configuration of the Krox system architecture is restricted to adding and removing

remote HANs, which is equivalent to managing a buddy roster for IM applications and

 172

controlling the sharing status of the system, which is equivalent to the connection status

of an IM system.

4.4.2. Summary

The previous section described how Krox system architecture and design address the system

requirements as they were defined in section 3.4. Some of the requirements (REQ #15-19)

still need to be evaluated with a prototype implementation.

This chapter presented the Krox integrated plug-in based architecture with a plug-in

framework and an extensible event model that supports the design of multiple HAN service

protocol plug-ins for intra-HAN and inter-HAN service interoperability. The design

approach was demonstrated using multiple service protocols, UPnP and Jini. With resource

virtualisation techniques, leveraging an extensible event model, resources from remote

HANs are made available to the local HAN as virtual resources enabling seamless

integration with client applications in the local HAN. By mapping from a service protocol

service interface to web services, and service orchestration, Krox system architecture

supports intra-HAN service interoperability and service composition. Krox system

architecture builds on the IM&P user metaphor for defining the relationships between

remote HANs that agree to share resources. IM&P also provides a secure and scalable

communication subsystem for exchanging messages between Krox system instances in

remote HANs. Finally the capability-sharing manager provides an infrastructure for

enforcing fine-grained sharing policies through interaction with the service protocol plug-

ins.

An important aspect of the Krox system architecture is its modularity through the loose

coupling between its components. The clients of the communication subsystem are

abstracted from the fact that it is based on IM&P system, such that it can be replaced with

an alternative system that provides the necessary features of messaging and status change

notifications. The modularity of the service composition subsystem enables changing the

format of the generated services without changing the system, while also supporting

evolution and addition of service protocol plug-in releases. Similarly the BPEL service

orchestration engine can be replaced with an alternative service orchestration approach.

 173

The next chapter presents a prototype implementation of Krox system architecture with

service protocol plug-ins for UPnP and Jini, and service composition supported by web

services and BPEL.

 174

Chapter 5
IMPLEMENTATION

The previous chapter presented the Krox high-level architecture and a system design for

integrated intra-HAN and inter-HAN service interoperability supporting the requirements

presented earlier in this thesis. This chapter presents a prototype implementation of the Krox

system architecture and design with service protocol plug-in implementations for UPnP and

Jini. The system implementation has the following objectives:

• Demonstrates and validate the utility of the system design for solving the problem

addressed by this thesis.

• Provide a performance measurement instrument.

• Provide a grounding for a security analysis.

The following sections describe the details of the system prototype implementation as well

as the service protocol plug-ins and client application prototype.

 175

5.1. Prototype system

5.1.1. Technology selection

• Programming language – the system prototype is implemented with core Java using

JDK626. Java provides the desired platform independence and enables deployment on

multiple operating systems.

• IM&P server – the system prototype uses the open source OpenFire XMPP server

version 3.6.427. OpenFire was chosen because of its simplicity for install and

administration and its well-established developers community.

• IM&P client – the system prototype uses the open source Smack SDK version 3.1.028

for the implementation of client-side XMPP application. Smack provides an easy to use

Java API for interaction with the XMPP server.

• Orchestration engine – the system prototype uses Apache ODE 1.3.529 for executing

service orchestrations. The advantage of Apache ODE is that is an open source BPEL

implementation, is lightweight and extensible.

• Application server – The system prototype uses Apache Tomcat version 6.0.1830, which

is a lightweight servlet container, both for hosting the ODE orchestration engine, as well

as the automatically generated web services.

• UPnP SDK – the system prototype uses CyberLink Java version 2.031 as an SDK for the

interaction with UPnP devices and services. CyberLink is a lightweight library that

provides tools infrastructure for interaction with UPnP networks.

• Jini – Jini service protocol plug-in was implemented using Jini 2.132.

26 http://www.oracle.com/technetwork/java/javase/downloads/index.html

27 http://www.igniterealtime.org/downloads/index.jsp
28 http://www.igniterealtime.org/downloads/index.jsp

29 http://ode.apache.org/getting-ode.html

30 http://tomcat.apache.org/

31 http://sourceforge.net/projects/cgupnpjava/files/clinkjava/

32 http://www.jini.org/wiki/Jini_Starter_Kit_2.1_-_Java

 176

5.1.2. Implementation components

The main components of the system implementation (depicted in figure 19) are described in

the following sections:

1) MessagingPresenceManager – implements the communication subsystem,

responsible for the messaging and presence infrastructure (section 5.2)

2) CapabilitySharingManager – implements the capability sharing management for

checking access control for local resources (section 5.3)

3) KroxGateway – the main class of the implementation, responsible for instantiating

the MessagingPresenceManager and the PluginManager (section 5.4)

4) PluginManager – responsible for management of service protocol plug-ins –

loading, unloading, and register the plug-ins with the MessagingPresenceManager

(section 5.4)

5) ILocalNetworkController – an interface definition for an LNC, must be

implemented by service protocol plug-in (section 5.4.1)

6) IVirtualResourceManager – an interface definition for a VRM, must be

implemented by service protocol plug-in (section 5.4.2)

7) UPnPLocalNetworkController – UPnP service protocol plug-in implementation for

LNC (implements the ILocalNetworkController interface) (section 5.5)

8) UpnPVirtualResourceManager – UPnP service protocol plug-in implementation for

VRM (implements the IVirtualResourceManager interface) (section 5.5)

9) JiniLocalNetworkController – Jini service protocol plug-in implementation for LNC

(implements the ILocalNetworkController interface) (section 5.6)

 177

10) JiniVirtualResourceManager – Jini service protocol plug-in implementation for

VRM (implements the IVirtualResourceManager interface) (section 5.6)

5.2. Communication subsystem

The communication subsystem is encapsulated in the MessagingPresenceManager object,

providing messaging and presence services to other components of the system, specifically

to plug-ins. It is important to note that while the MessagingPresenceManager relies on

IM&P for exchanging messages with Krox system instances in remote HANs, it abstracts

the use of IM&P technology from the users of its API, therefore the interface it provides to

its users is implementation agnostic. The implementation could be changed without

affecting the users of the communication subsystem. The users of the communication

subsystem API, e.g. plug-in components can send and receive messages using the

MessagingPresenceManager, and in addition they are notified on changes in the list of

HANs with which they need to communicate and the status (presence) of these HANs.

The MessagingPresenceManager (figure 20) implements several interfaces from the Smack

IM&P client library in order to provide messaging and presence capabilities:

1) RosterListener – Once authenticated, the MessagingPresenceManager subscribes

Figure 19 Krox System Prototype UML Class Diagram

 178

itself as a listener for changes in the buddy roster. This is important for being

notified when buddies are added or removed from the buddy list, which correspond

to remote HANs with which sharing should be initiated or terminated. When

buddies are added or removed from the list, the Capability Sharing Manager must

be updated such that its model of remote HANs with which sharing is allowed or

disallowed is updated. The RosterListener also allows the

MessagingPresenceManager to respond to presence changes for members of the

buddy list. The MessagingPresenceManager handles the cases where buddies

change the state to “available” and when a buddies change their state from

“available” to anything else.

2) PacketListener – The MessagingPresenceManager registers itself with the XMPP

server as a packet listener, which means it intercepts received messages. The

handling of messages is explained below.

Figure 20 Communication Subsystem Implementation

 179

Krox system instances have a unique identifier that is used for message exchange between

them. For simplicity, this identifier reuses the communication subsystem identifier, which

corresponds to a Krox system instance, however this is opaque to users of the API (i.e.

service protocol plug-ins) that use this identifier for sending messages to system instances in

remote HANs. The communication system uses this identifier to route messages to the

correct system instance in a specific HAN.

5.2.1. Messaging and presence

The core functionality of the MessagingPresenceManager is to enable sending messages to

the Krox system in remote HANs and dispatching and processing messages received from

Krox system instances in remote HANs. Another functionality provided by the

MessagingPresenceManager is access to the buddy list (the list of remote HANs with which

Figure 21 Krox Communication Subsystem Interaction

Local Network
Controller MessagingPresenceManager XMPP Server

1. Authenticate

2. Register as packet
Listener and roster
listener

3.1 Register supported
message types and message
pre/post processors

Virtual Resource
Manager

3.2 Register supported
message types and message
pre/post processors

6. Remote buddy
available

7. Remote buddy
available

12. Remote buddy
unavailable

13.1 Remote buddy
unavailable

13.2 Remote buddy
unavailable

8. Send message to
remote buddy

9. Send message to
remote buddy

10. Message received
From remote buddy

11. Process message

Capability Sharing
Manager

4. Remote buddy
added

5. Remote HAN added

14. Remote buddy
removed

15. Remote HAN removed

 180

services/devices can be shared) which includes up to date presence status of its members.

This is needed for propagating discovery announcement to remote HANs with which

devices/services are shared. The sendMessage() method takes several parameters: the

address of the destination, the type of the message, and the body of the message. The

MessagingPresenceManager concatenates the type as a prefix to the body and sends the

messages to the destination. Message dispatching in the destination is based on maintaining

a mapping of supported message types against which component needs to be called for

processing the message. When the system loads a plug-in, the plug-in’s supported message

types are registered with the MessagingPresenceManager along with the interface that needs

to process them. In addition the plug-in components can register pre/post processors that

will be called by the MessagingPresenceManager before an incoming message is processed

by the relevant component, or before a message is send to a remote HAN. A plug-in’s

interaction with the MessagingPresenceManager is depicted in figure 21.

For performance purposes the actual processing of the message (other than message

dispatching) is performed in another thread, rather than the message dispatching thread. For

this purpose the MessagingPresenceManager has a thread pool and the processing of a

messages is made by wrapping the call to the processing method in a runnable task wrapper

and handing it over to the thread pool for execution. This enables the

MessagingPresenceManager to offer full concurrency in handling incoming messages.

Incoming and outgoing messages are also handled in separate threads. At all times there is

only a single instance of the MessagingPresenceManager in the system. All messages

exchanged between the authenticated Krox system instances in remote HANs are encrypted,

which is handled by the underlying XMPP framework.

5.3. Capability sharing manager

As mentioned in the previous chapter, fine-grained modelling of resources and the actual

definition of sharing policies is out of the scope of this thesis. However in order to

demonstrate the interaction between the service protocol plug-in and the

CapabilitySharingManager, a default stub was implemented defining the contract between

the plug-in implementation and the CapabilitySharingManager. The interface and

implementation described in figure 22 as a UML class diagram, enables updates and query

 181

the managed resource model. The CapabilitySharingManager is expected to have a

persistent storage such that when it is started it loads the information about sharing policies

and remote HANs with which sharing has been configured. The CapabilitySharingManager

interface enables the communication subsystem to update the model when sharing with

remote HANs is agreed as implied by adding a remote HAN to the local HAN’s roster by

calling remoteHANAdded with the corresponding remote HAN identifier. Similarly when

the relation is terminated, the communication subsystem updates the model with the

removed HAN identifier by calling remoteHANRemoved.

Service protocol plug-ins update the CapabilitySharingManager when resources are added

and removed giving the resource identifier, and possibly additional data that can be used

when applying sharing policies, such as device model, device vendor, or any other protocol

specific information that can be useful as represented using the ResourceData object. When

the plug-in’s LNC discovered a new resource, it queries the CapabilitySharingManager for

the identifiers of the remote HANs with which the resource is shared. When a remote HAN

changes its status to available, the LNC queries the CapabilitySharingManager for the

resources that need to be shared with that remote HAN.

Figure 22 Capability Sharing Manager UML Class Diagram

 182

The CapabilitySharingManager enables components to register a listener

(SharingConfigurationListener), which is called when the sharing configuration for a

resource is changed. This enables the LNC components of service protocol plug-ins to be

notified when access-sharing configuration is changed and respond appropriately.

For the purpose of performance evaluation with maximal load, the only sharing policy

supported by the Krox prototype implementation is share-all which means all resources are

shared with all other remote HANs.

5.4. Service protocol plug-in framework

The outer most object of the implementation is the KroxGateway (see figure 23). The

KroxGateway is responsible for instantiating the necessary components of the Krox system

and initiate their bootstrap process. In its bootstrap, the KroxGateway starts the

MessagePresenceManager and PluginManager and initiates their bootstrap. The

PluginManager is responsible for loading, unloading and managing service protocol plug-

ins. The mechanism used by the PluginManager to locate plug-ins is abstracted from the rest

of the system. When the system is started, the PluginManager starts looking for available

plug-ins. In the prototype implementation the UPnP and Jini service protocol plug-ins are

pre-loaded. The PluginManager registers plug-ins with the MessagingPresenceManager to

support message exchange with system instances in remote HANs. In addition the

PluginManager registers the LNC’s sharing configuration change listener with the

CapabilitySharingManager.

Figure 23 Plug-in Framework Implementation

 183

A service protocol plug-in must contain two modules, the LNC and VRM. The Local

Network Controller must implement the Java interface: ILocalNetworkController and the

Virtual Resource Manager must implement the java interface: IVirtualResourceManager.

For the purpose of the prototype it is assumed that all HANs have the same configuration of

plug-ins, therefore unsupported messages are never received to the

MessagingPresenceManager. If they were received, the MessagingPresenceManager will

ignore all messages which have a type for which no LNC or VRM have registered.

The design of the LNC and VRM interfaces (figure 24) follows the core event model

described in section 4.2.2.2-4.2.2.3. The LNC and VRM implementation extend the core

event model with additional events required to facilitate the required interaction between

local and remote components. Additional events are expressed using message types that are

dynamically registered with the PresenceMessagingManager, which are forwarded to the

registered LNC. The VRM interface provides a tighter event model, where the events of

resource added/removed are part of the generic event model. The VRM implementation is

required to declare the message type that corresponds to add/remove of remote resource.

This enables the plug-in framework to link this message type to the required VRM

implementation handling addition or removal of remote shared resources, rather than

leaving this as an internal contract between plug-in components. The reason for requiring

the VRM to explicitly support resource added/removed events is that this is an essential part

Figure 24 (a) LNC Interface (b) VRM Interfaces

 184

of the plug-in behaviour. The VRM is also required to specify the message type for sharing

configuration change, such that it can be linked to the handling of changes in the sharing

configuration in remote HAN.

The extensible event model enables the definition of specific join points (as discussed in

section 4.3.3).

5.5. UPnP service protocol plug-in

The UPnP service protocol plug-in includes an implementation for the

ILocalNetworkController (UPnPLocalNetworkController) and the

IVirtualResourceManager (UPnPVirtualResourceManager). Figure 25 is a UML class

diagram corresponding to the plug-in implementation. The UPnP LNC and VRM use the

CyberLink Java UPnP SDK for interaction with UPnP devices. The UPnP LNC implements

the INotifyListener and ISearchResponseListener interfaces which enable it to listen to

search responses (triggered by its search requests) and device announcements (by listening

to the multicast address in the local HAN). The UPnP LNC also implements an

HTTPRequestListener for listening to event notifications corresponding to event

subscriptions made on behalf of remote HANs. In addition the LNC implements the

SharingConfigurationListener to be notified by the CSM when the sharing configuration of

a resource in the local HAN changed. The registration with the CSM is made during the

bootstrap of the LNC. The UPnP VRM implements the SearchListener interface for being

able to receive and respond to search requests made in the local HAN. The UPnP VRM

implements the HTTPRequestListener for responding to HTTP requests including

description requests, SOAP requests, and event subscription requests.

 185

The following sections describe how the design of UPnP service plug-in as presented in the

previous chapter was implemented.

5.5.1. Discovery

The UPnPLocalNetworkController implements discovery through two mechanisms:

Figure 25 UPnP Plug-in Implementation

 186

1) Sending SSDP search request and listening to responses

2) Listening to device presence announcements sent to the SSDP multicast address

The discovery interaction between the plug-in components in remote HANs is illustrated as

a sequence diagram in figure 26. Steps 1-11 in figure 26 describe how device and service

announcements in the local HAN (HAN1) are reported to all other HANs (HAN2 in figure

26) with which the device or service is shared. Steps 12-19 in figure 26 represent how SSDP

byebye messages are forwarded to remote HANs and handled in their VRM after the LNC

updated its local repository. The VRM updates its local announcement repository and

repeats the byebye for the corresponding virtual device/service in its local HAN (HAN2 in

figure 26). Steps 20-21 describe how the VRM responds to search requests made by control

points in its local HAN (HAN2). The VRM uses the search request processing for cleaning

stale announcements that have expired and announcing corresponding byebye messages.

When a remote HAN changes its presence status to available the

MessagingPresenceManager calls the UPnP LNC remoteNetworkAvailable() giving the

remote HAN identifier. The LNC responds by sending the remote HAN all of the

Figure 26 UPnP Plug-in Discovery Protocol Implementation

MessagingPresenceManager UPnPVirtualResourceManager

2. SSDP Search

7. Send message
SSDPNOTIFYADD

CapabilitySharingManager

6. Should share with HAN2

8. Send message
9. remoteResourceAdded

KroxGateway UPnPLocalNetworkController

4. Update local repository

3. SSDP Search
Response / SSDP
alive announcement

HAN1 HAN2

1. discover

MessagingPresenceManager

5. Update model and get the list of
HANs with which the device
should be shared

10. Generate local
address and update local
repository

11. Announce virtual
device/service to local
HAN

12. SSDP byebye
announcement

13. Update local repository

15. Send message
SSDPNOTIFYREMOVE

17. remoteResourceRemoved 18. Remove from local
repository

16. Send message

19. Announce byebye for
virtual device/service

20. SSDP Search

21. send SSDP search response for
each device/service that has the
search type in the request

14. Update model

 187

announcements in the repository that are shared with that remote HAN. Since the LNC’s

repository should only cache SSDP announcements for their duration in the network as was

reported in the SSDP message (cached-control parameter in the SSDP announcement),

before the message is sent to the remote HAN, its expiration time is checked and if it

expired, it is removed from the repository and will not be sent to the remote HAN.

If the LNC is notified on a change in the sharing configuration it needs to update the

affected remote HANs on the change. If sharing was added for a resource, the LNC sends an

announcement about this resource to the remote HAN. If sharing was removed, the LNC

sends a byebye announcement for this resource to the corresponding HAN.

As discussed in the previous chapter, the LNC ignores announcements made by the VRM in

its local HAN, avoiding unintentional re-sharing of remote devices, which are not owned by

the local HAN.

5.5.2. Description

In order to provide description documents for devices and underlying services on behalf of

virtual remote devices in the local HAN, the local VRM listens on a local HTTP port. Figure

27 describes the interaction between the control point in HAN1 and the VRM representing

locally (in HAN1) a device from a remote HAN (HAN2). The VRM in HAN1 extracts the

identifier of the Krox system hosting the “live” device and the device UUID from the HTTP

GET request. Before the request is sent to the remote HAN, the VRM checks in its

description cache if it already has a description for this device or service as received from

the remote HAN, if so, the result is immediately posted to the HTTP requester. If not it

follows steps 3-18 in figure 27. Caching can significantly shorten the time it takes to retrieve

device/service description from remote HANs and consequently reduce the inter-HAN

traffic and the load on devices.

 188

In order to optimise the performance of requests for description processing, the VRM also

piggybacks multiple requests for description on pending requests blocking for results. When

a request is currently waiting for a result from a remote HAN, and additional description

request is received for the same resource, the request will block, but will not send another

request to the remote HAN. Instead when the result returns for the first request the same

result will immediately be published to all other waiting requesters. This optimisation as

well as the caching of descriptions saves both time and inter-HAN traffic, and reduces the

load on the remote “live” device.

When a description request is sent to a Krox system instance in a remote HAN, the thread

handling the description request in the VRM blocks for as long as the result has not returned

from the remote HAN or a timeout expires. When the message is received in the remote

HAN, the VRM notifies the waiting thread and the result is posted back the waiting control

point and cached for future reference. If the timeout expires or an error message was

returned from the remote LNC, then the error is posted back to the local control point with

Figure 27 UPnP Plug-in Description Protocol Implementation

MessagingPresenceManager UPnPVirtualResourceManager CapabilitySharingManager

4. Send message

Control point UPnPLocalNetworkController

2. Extract remote HAN identifier
and device UUID and check in
cache

HAN1 HAN2

1. HTTP GET description

MessagingPresenceManager

9. HTTP GET
description

11. Parse description

7. Check sharing of device/service
with HAN1

“live”
Device

5. processMessage 6. Resolve
device location
from UUID

8. Share device/service with HAN1

10. HTTP
description

15. DESCRIPTIONRES

3. DESCRIPTIONREQUEST

16. Send message 17. processMessage

19. HTTP description

12. Check services/actions shared
with HAN1 for device/service
description

13. Services/actions shared with
HAN1 for the given device/service

14. Filter excluded
services/actions from
the description

18. Localise URLs and
update cache

 189

an HTTP status reflecting the error. While the thread is blocked, concurrent description

requests can be processed.

If a message from a remote HAN indicating a sharing configuration change that affects the

local HAN is received to the VRM, it is required to remove the relevant resource’s cached

description, as it may have been invalidated.

5.5.3. Control and post processing

The control interaction with remote devices is depicted in figure 28. When an HTTP POST

containing a SOAP request is received by the VRM from a control point (HAN1 in figure

28), the VRM extracts the identifier of the Krox system hosting the “live” device and the

device UUID from the HTTP SOAP request and sends this information to HAN2 where it is

processed by the local UPnP LNC (steps 1-5 in figure 28). The LNC in the remote HAN

(HAN2) resolves the device location from the given device UUID and verifies with the

Figure 28 UPnP Control and Post Processing Protocol Implementation

MessagingPresenceManager UPnPVirtualResourceManager CapabilitySharingManager

4. Send message

Control point UPnPLocalNetworkController

2. Extract remote HAN identifier
and device UUID

HAN1 HAN2

1. HTTP POST SOAP request

MessagingPresenceManager

9. HTTP POST
SOAP request

11. Parse response

7. Check HAN1 permission for
the requested action

“live”
Device

5. processMessage 6. Resolve
device location
from UUID

8. Permission granted

10. SOAP response

12. SOAPRESPONSE

3. SOAPREQUEST

13. Send message
14. processMessage

Join point: before handing
response to VRM

15. SOAP response

Join point – before sending the
message to destination

 190

CSM that the requesting HAN is permitted to execute the requested action. If it is, the

SOAP request is sent to the “live” device. When the SOAP response is received from the

device, the LNC parses the result and then sends the result back to the requesting HAN

(steps 6-12 in figure 28).

Before the SOAP response is sent by the communication subsystem to the remote HAN

(HAN1), the UPnP plug-in implemented an extension in the scope of all UPnP devices (as

opposed to a specific device type) to replace all private IP addresses in a SOAP response (if

any) with the external IP address of the HAN. This approach is different than the design as

presented in section 4.3.3.4. As discussed in the previous chapter, the actual streaming of

data is not an integral part of the UPnP protocol, and hence is not an integral part of the

UPnP plug-in, however for being able to test the plug-in and to demonstrate that it behaves

as expected, some approach for enabling client application to stream media from remote

HAN is required. For simplicity of testing the implementation assumes that the firewall and

home gateway have been configured to allow access from the remote HAN with which the

device is shared to the device. While this implementation is not appropriate for the HAN

because of the required manual configuration, it was sufficient for testing and demonstration

purposes of the Krox system architecture.

Similarly to the description protocol implementation, while waiting for the response from

the remote HAN, the local VRM’s thread processing the SOAP request is blocking. When

the SOAP response is received, the waiting thread is notified. Again, multiple concurrent

SOAP requests can be invoked. In cases where a timeout expires before the response is

received an error will be posted. In the prototype system, 5 seconds is the default timeout for

a remote device SOAP request to return. This timeout was defined as the maximum time a

control point application is willing to wait for an invocation to return.

5.5.4. Eventing

The final protocol in the UPnP service plug-in implementation is eventing (figure 29). An

event related request (delivered over HTTP) could be either an event subscription request or

request for removal of an event subscription. An event subscription request can either be a

new subscription request or a subscription renewal. When the VRM receives an event

subscription request from a local control point for a remote service it represents, the VRM

 191

extracts the identifier of the Krox system hosting the “live” device and the device UUID

from the subscription URI. The VRM then sends a subscription request to the remote HAN

hosting the “live” device (steps 1-4 in figure 29). In the remote HAN (HAN2 in figure 29),

the LNC handles the subscription request by resolving the device from the given UUID. If

the requesting HAN (HAN1) is allowed to subscribe for events on the requested service, an

HTTP subscription request is sent to the device, which responds with a subscription id

(steps 5-10 in figure 29). The LNC maps the subscription id to the identifier of the Krox

system requesting the event subscription. The subscription id is then sent using the

MessagingPresenceManager to the requesting HAN (HAN1) where it is passed to the VRM

(steps 11-14 in figure 29). The VRM maps the subscription identifier to the callback

interface, provided in the original subscription request, such that the subscription identifier

can be used to resolve event notifications and direct them to the subscribing control point.

The subscription identifier is then sent back to the subscribing control point (steps 15-16 in

figure 29). The VRM’s thread processing the event subscription blocks until the response is

received from the remote HAN (HAN2) with a subscription identifier (SID). This blocking

does not prevent additional HTTP requests from being processed concurrently as the

processing is multithreaded.

Figure 29 UPnP Plug-in Eventing Protocol Implementation

MessagingPresenceManager UPnPVirtualResourceManager CapabilitySharingManager

4. Send message

Control point UPnPLocalNetworkController

2. Extract remote HAN identifier and
device UUID

HAN1 HAN2

1. HTTP SUBSCRIBE
request

MessagingPresenceManager

9. HTTP POST
subscription request

11. Update subscription
id->remote HAN id
mapping

7. Check HAN1 permission for the
service

“live”
Device

5. processMessage 6. Resolve device
location from UUID

8. Permission granted

10. Subscription id

12. UPNPEVENTSUBSCRIPTIONRES

3. UPNPEVENTSUBSCRIPTIONREQ

13. Send message
14. processMessage

15. Update mapping from
subscription id to callback

16. Subscription
response with the
subscription id 17. HTTP notification

18. Resolve remote HAN
id from subscription id

19. UPNPEVENTNOTIFICATION
20. Send message

21. processMessage

22. Resolve callback
interface from subscription id

23. Post notification

 192

When a notification corresponding to a subscription is received from the “live” device to the

LNC, the LNC extracts its subscription id and resolves the identifier of the remote Krox

system instance corresponding to this subscription id. The notification is then forwarded to

that HAN where the VRM processes it. The VRM resolves the callback interface from the

subscription id, and notifies the corresponding control point (steps 17-23 in figure 29).

If the LNC is notified on a removal of sharing of a resource on device/service on which

subscription has been made from remote HAN, the subscription is terminated and an error is

sent to the subscribed remote HAN.

5.5.5. Testing

The Krox system was tested with UPnP plug-in in a setup that included multiple HANs

distributed in multiple geographical locations. The purpose of testing was to validate that the

implementation conforms to the plug-in design as described in the design chapter.

The testing technique used logging such that each event from the core event model and

plug-in extension is printed to a log file with a timestamp and additional information. Each

message was assigned an identifier, such that the messages across multiple HANs’ logs can

be correlated. Through this correlation, it verified that the implementation of the event

model for the UPnP plug-in follows the design by validating that the set of related printed

log messages follows order indicated by the design. This technique was used to validate the

implementation of the discovery, description, control, and eventing of the UPnP plug-in in a

controlled environment with a small number of UPnP devices and control points. Testing

has shown that the implementation worked as expected and that the event model defined by

the design of the plug-in was sufficient to express the required interaction between the plug-

in components for supporting sharing of UPnP devices across multiple HANs. Additional

testing was performed using the client application described in section 5.8.

 193

5.5.6. Summary

The UPnP service plug-in implementation, described in the above sections, demonstrates the

feasibility of the Krox system design for a UPnP service plug-in. UPnP service protocol

plug-in was implemented supporting service discovery, description, invocation, and

eventing layers of the UPnP service protocol. Table 4 summarises the event model (core and

extensions) that is included in the UPnP plug-in implementation.

A number of performance optimisations have been applied in order to support high

throughput with low latency:

1) Description caching – the VRM caches description documents retrieved from

remote HANs such that they only need to be fetched once.

2) Description fetch piggyback – in order to optimise the first retrieval of a remote

device/service description, even in the case of multiple concurrent requests for the

same device/service description from local control points, the description is fetched

only once and is published to all requesting control points in the same HAN.

3) Local device/service announcement caching – in order to respond promptly when a

remote HAN changes its status to “available”, all local device/service

announcements are cached, such that the communication with the remote HAN does

not require the LNC to initiate a UPnP search in the local HAN.

4) Search response bundling – When communication is started between two HANs,

the information about shared devices/services is sent in a single message containing

information about all shared devices/service, rather than sending a single message

corresponding to each shared device/service. This optimization enables to reduce

the overhead of many small messages (each message corresponding to a single

device/service).

 194

All of the UPnP control protocol traffic is sent over the secure communication subsystem

and is therefore encrypted and can be sent and received only by authenticated participants

(i.e. Krox system instances).

The testing performed with a number of remote HANs has shown that the UPnP plug-in

works as expected, and that the event model described above is sufficient to represent the

required interaction between the LNC and VRM to support seamless service integration of

remote services with local client applications.

5.6. Jini service protocol plug-in

The Jini service protocol plug-in (figure 30) includes an implementation for the

ILocalNetworkController (JiniLocalNetworkController) and the IVirtualResourceManager

(JiniVirtualResourceManager). The GenericJiniForwarder is used by the Jini VRM for

generating dynamic implementation for remote shared Jini services. The ProxyGenerator is

used by the Jini VRM to export a Jini proxy for the generated service. In addition the Jini

Table 4 UPnP Plug-in Event Model

Event Initiated By Processed By Description

DISCOVER Plug-in Manager UPnP LNC Initiate discovery in the local HAN through search and listen to

device announcements

REMOTEHANAVAILABLE Communication

subsystem

UPnP LNC A remote HAN from the buddy roster became “available” - need to

send it information about all local shared resources

REMOTEHANUNAVAILABLE Communication

subsystem

UPnP LNC,

UPnP VRM

A remote HAN from the buddy roster became “unavailable” – need to

clean related resources in LNC and VRM

SHARINGCONFIGURATIONADDED Capability

Sharing Manager,

UPnP LNC

UPnP LNC,

UPnP VRM

Sharing configuration changed, additional resources should be shared

now with remote HANs. VRM needs to clean description cache

SHARINGCONFIGURATIONREMOVED Capability

Sharing Manager,

UPnP LNC

UPnP LNC,

UPnP VRM

A resource that was previously shared is not longer allowed for

sharing. The LNC receives a notification from the CSM and sends an

update to the relevant remote VRMs. Both LNC and VRM need to

clean relevant resources

UPNPSSDPNOTIFY UPnP LNC UPnP VRM Device/service announcement. Mapped to the core event of resource

added/removed in the VRM

UPNPDESCRIPTIONREQUEST UPnP VRM UPnP LNC Request for remote device/service description

UPNPDESCRIPTIONRES UPnP LNC UPnP VRM Device/service description response

UPNPSOAPREQUEST UPnP VRM UPnP LNC Remote service action invocation request

UPNPSOAPRESPONSE UPnP LNC UPnP VRM Remote service invocation response

UPNPEVENTSUBSCRIPTIONREQ UPnP VRM UPnP LNC Remote event subscription request

UPNPEVENTSUBSCRIPTIONRES UPnP LNC UPnP VRM Remove Event subscription response

UPNPEVENTNOTIFICATION UPnP LNC UPnP VRM Remote event notification

 195

LNC implements the SharingConfigurationListener to be notified by the CSM when the

sharing configuration of a resource in the local HAN changes. The registration with the

CSM is made during the bootstrap of the LNC.

The Jini plug-in event model is completely different from the one described in the previous

section for UPnP. In addition the mechanism used by the Jini VRM to represent remote

services in the local HAN is significantly different than the one used by the UPnP plug-in

due to the differences between the service protocols.

The following sections describe how the design of Jini service plug-in as presented in the

previous chapter was implemented. Section 5.6.1 describes the implementation of Jini

service discovery and automatic service virtualisation. Section 5.6.2 describes the

implementation of Jini service invocation.

Figure 30 Jini Plug-in Prototype Implementation UML Class Diagram

 196

5.6.1. Service discovery

Jini service discovery implementation, illustrated in figure 31 begins when the plug-in is

started and the KroxGateway (through the PluginManager) calls the discover() of the plug-

in. The Jini LNC registers itself with the local lookup services in the local HAN and is

notified therefore on all existing services and added and removed services. Steps 1-14 in

figure 31 describe the discovery process and registration of a virtual service proxy in the

remote HAN (HAN2).

The Jini VRM is required to dynamically generate a synthetic local implementation for the

service interface. The message received from HAN1 contained the name of the interface

corresponding to the shared service and the Java implementation dynamically created by the

Jini VRM implements (in the Java programming language sense) this service interface.

Before the service can be used in the local HAN (HAN2), a proxy must be exported and

registered with a local lookup service. The full details of how a service implementation is

Figure 31 Jini Plug-in Service Discovery Prototype Implementation

MessagingPresence
Manager

JiniLocalNetwork
Controller

CapabilitySharing
Manager

ServiceDiscovery
Manager

JiniVirtualResource
Manager

HAN1 HAN2

1. discover

MessagingPresence
Manager

LookupService GenericJini
Forwarder

ServiceProxy

3. serviceAdded 4. update repository with service id,
proxy, internal service id

5. Get sharing configuration
for the service

6. Sharing
configuration for the
service

7. JINIDISCOVERYADDNOTIFY
8. Send message

9. remoteResourceAdded
10. Generate
implementation

11. Export proxy
12. update repository
with service
implementation, and
service proxy

13. Register service
proxy

14. service
Discarded

15. update repository

16. JINIDISCOVERYREMOVEDNOTIFY
17. Send message

18. remoteResourceRemoved
19. Remove proxy
and service
implementation from
repository

KroxGateway

2. register

 197

generated in the remote HAN (HAN2) and how it is exported are given in the next section.

When a “live” service is removed, the LNC (in HAN1) receives a notification from the

lookup service. The LNC removes the local service proxy from its repository and notifies

remote HANs about the removed service. In the remote HAN (HAN2) the proxy and the

service implementation are removed from the repository and the VRM (in HAN2) cancels

the lease of the virtual service with the local lookup service (steps 14-19 in figure 31).

When a remote HAN comes online, the LNC sends JINIDISCOVERYADDEDNOTIFY for

all services currently available in the HAN that are shared with that remote HAN. When a

remote HAN goes offline, the VRM removes all of the service it received from this HAN

from its local mapping.

As discussed in the previous chapter, the LNC ignores announcements made by the VRM in

its local HAN, avoiding unintentional re-sharing of remote devices, which are not owned by

the local HAN. In order to be able to distinguish between remote and local services, a new

service characteristic was added. When the VRM in the local HAN registers the remote

service, it registers it with a “remote” attribute. The Jini LNC can then ignore and suppress

notifications about added services with the “remote” attribute.

If the LNC is notified on a change in the sharing configuration, it needs to inform the

relevant remote VRMs on the update. If sharing was added for additional service, the LNC

needs to notify the remote HANs on the added service. If sharing for a service was removed,

then the remote HAN’s VRM should destruct the service implementation and proxy and

deregister it from the lookup service.

5.6.1.1. Jini service implementation dynamic generation

When a resourceAdded notification for a shared remote service arrives at a VRM from

remote HAN, it contains information about the remote HAN, which owns the “live” service

and the service interface. Given the Jini service interface name, the VRM uses the Java

dynamic proxy technique [60] to dynamically create an implementation for this interface.

The Java dynamic proxy technique enables implementing several design patterns including

 198

the façade, proxy, decorator [42], and others in a dynamic manner. Dynamic proxy objects

enable the dynamic implementation of one or more interfaces and dispatch the calls of those

interfaces using the Java reflection API. This provides a mechanism for intercepting method

calls and redirecting them or extending their functionality dynamically. The dynamic proxy

approach does not involve code generation; instead it uses Java reflection to offer a runtime

dynamic implementation for a given interface.

Using this technique, a generic implementation acts as an implementation of the given

interface. This is done by instantiating the generic GenericJiniForwarder class (see figure

32), which implements Java InvocationHandler33 and therefore supports the dynamic proxy

pattern. The GenericJiniForwarder is a generic forwarder that takes an interface class object,

an identifier for remote Krox system instance, and a service identifier in its constructor and

uses the dynamic proxy technique to instantiate a proxy that dynamically implements the

given interface. The getInstance() method of the GenericJiniForwarder returns an

implementation of the Jini service interface with which the GenericJiniForwarder was

constructed, such that the implementation of each method of the interface simply forwards

the call over the communication subsystem to the remote HAN where the “live” service is

hosted.

33 http://download.oracle.com/javase/6/docs/api/java/lang/reflect/InvocationHandler.html

Figure 32 Dynamic Proxy Implementation for a Jini Service Interface

 199

5.6.1.2. Jini service proxy dynamic generation

Once the service implementation has been generated, its Jini service proxy needs to be

generated automatically and registered with the lookup service. The Jini service proxy is

exported from the service implementation by the ProxyGenerator using Jini Extensible

Remote Invocation (JERI34), and is registered with the local lookup service. The service

proxy is a generated automatically by the Jini exporter and contains only RMI35

communication support to the service implementation. The service implementation in turn

serves as a delegator of the method invocation using the MessagingPresenceManager to the

remote HAN’s Jini LNC. Once the service implementation and service proxy have been

generated and registered, the VRM updates its local repository with a mapping between the

service identifier and the proxy, and service identifier and the implementation.

5.6.2. Service invocation

34 http://www.jini.org/files/specs/porter/api/net/jini/jeri/package-summary.html

35 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

Figure 33 Jini Plug-in Service Invocation Prototype Implementation

MessagingPresence

Manager

JiniVirtualResource

Manager

Jini

Client
JiniLocalNetwork

Controller

HAN1 HAN2

1. Invoke

method

MessagingPresence

Manager

Service

Implementation
Service

Proxy

12. JINIINVOCATION

RESULT

4. Send message

5. processMessage

8. Invoke method on

local proxy

9. Invoke method

16. Return

result

15. Return result

Service

Proxy
GenericJini

Forwarder
CapabilitySharing

Manager

2. Invoke

method

3. JINIINVOCATION

6. Check permission to

invoke the method on

the service

7. Permission granted

10. Return result

11. Return result

13. Send message

14. processMessage

17. Return

result

 200

Jini service invocation (figure 33) is started once an application in the local HAN discovers

a Jini service, and downloads a service proxy. Then it is ready to invoke methods on this

service proxy that implements the Java service interface. When the service proxy interface

method is invoked, the proxy communicates the method invocation request to the service

implementation. As was mentioned in the previous section, the service implementation is

maintained in the JiniVirtualResourceManager mappings. The implemented Jini virtual

service dynamic proxy class is generic and forwards the call over the communication

subsystem to the remote HAN hosting the “live” service (steps 1-4 in figure 33). In the

remote HAN the message is processed by the LNC. The LNC finds the Jini service proxy in

its local repository and checks with the CSM if the requesting HAN has appropriate

permission to execute the requested method. If so, the method is invoked on the real service

proxy and the result is sent back over the communication subsystem to the remote HAN

(HAN1) where it is passed to the VRM in the requesting HAN (steps 5-14 in figure 33). The

local VRM hands the result to the service implementation instance (the

GenericJiniForwarder), which sends it back to the service proxy, which in turn returns the

result to the Jini client (steps 15-17 in figure 33).

From a performance point of view the service implementation (GenericJiniForwarder)

blocks until the response from the remote HAN is received, however it does not prevent

other service clients invoking methods on the same service object. When the result is

received at the VRM, the blocked service implementation is notified and it can return the

result to the client via the service proxy.

5.6.3. Testing

In order to test the Jini plug-in, the Krox system was tested with a number of participating

remote HANs. The purpose of testing was to validate that the implementation conforms to

the plug-in design as described in the design chapter. For testing purposes a number of

simple Jini services were implemented and registered in each local HAN with the lookup

service.

Similarly to UPnP plug-in testing, the Jini plug-in code was instrumented to print log

messages, which correspond to the event model, such that local events can be correlated

with remote events. For example when the LNC receives a notification on added service, it

 201

prints a message to the log with the identifier that is then used to notify remote HANs on

this service. In the remote HAN, the VRM prints the message with the identifier before and

after it registers the virtual service with the lookup service, such that it can be verified that

flow of events corresponds to the one defined in the design. In order to test Jini invocation, a

Jini client was developed such that it registers with the lookup service and is notified on

added services, and for each added service it invokes a method from its interface.

Testing has shown that the implementation worked as expected and that the event model

defined by the design of the plug-in was sufficient to express the required interaction

between the plug-in components for supporting sharing of Jini services across multiple

HANs. Additional testing was performed using the client application described in section

5.8.

5.6.4. Summary

The Jini service plug-in implementation, described in the above sections, demonstrates the

feasibility of the Krox system design for Jini service plug-in. Jini service protocol plug-in

was fully implemented supporting service discovery, and service invocation as required by

the Jini service protocol. The implementation is lightweight in that it sends over the wire

only the minimal information required to represent the Jini service in the remote HAN (the

service identifier and the name of the service interface). In addition, the generated service

implementation only relays the request to the remote HAN where the “live” service proxy is

invoked; therefore it is both lightweight in memory as well as in processing.

Table 5 summarises the event model (core and extensions) that is included in the Jini plug-

in implementation.

The testing performed with a number of remote HANs and emulated Jini services has shown

that the Jini plug-in works as expected, and that the event model described above is

sufficient to represent the required interaction between the LNC and VRM to support

seamless service integration of remote services with local client applications.

 202

5.7. System administration

The first aspect of system administration for the Krox system prototype is management of

sharing relationships with remote HANs. Based on the IM&P user metaphor, relationships

with remote HANs are reduced to adding or removing “buddies” from the buddy roster.

When the home user wishes to add a friend’s HAN to his sharing list, he needs to know the

identifier of the remote HAN. Adding a buddy to the buddy list enables the communication

subsystem to send and receive messages between the local HAN and the remote “buddy”

HAN. For the purpose of the prototype all configuration of users and relations between

users was made via direct user administration interface in the IM&P server rather than

through a client application. IM&P user configuration is used daily by a large number of

untrained users, therefore, this provides a demonstration of how relatively easy user

administration can be based on the IM&P user metaphor applied to sharing of HAN

resources.

When the Krox system is started the KroxGateway reads its configuration from a

configuration file (figure 34). The system configuration for the prototype contains

Table 5 Jini Plug-in Event Model

Event Initiated By Processed By Description

DISCOVER Plug-in Manager Jini LNC Initiate discovery in the local HAN through registration

with lookup services

REMOTEHANAVAILABLE Communication

subsystem

Jini LNC A remote HAN from the buddy roster became

“available” - need to send it information about all local

shared resources

REMOTEHANUNAVAILABLE Communication

subsystem

Jini LNC, Jini VRM A remote HAN from the buddy roster became

“unavailable” – need to clean related resources in LNC

and VRM

SHARINGCONFIGURATIONADDED Capability Sharing

Manager

Jini LNC Sharing configuration changed, additional resources

should be shared now with remote HANs. The LNC

receives a notification from the CSM and sends an

update to the relevant remote VRMs.

SHARINGCONFIGURATIONREMOVED Capability Sharing

Manager

Jini LNC

A resource that was previously shared is not longer

allowed for sharing. The LNC receives a notification

from the CSM and sends an update to the relevant

remote VRMs.

JINIDISCOVERYADDEDNOTIFY Jini LNC Jini VRM New Jini service was discovered, notify remote HANs

on the added service

JINIDISCOVERYREMOVEDNOTIFY Jini LNC Jini VRM Jini service is no longer available in the HAN, notify

remote HANs on the removed service

JINIINVOCATION Virtual service

implementation

(GenericJiniForwarder)

Jini LNC A request for an invocation of a method on a remote Jini

service

JINIINVOCATIONRESULT Jini LNC Virtual service

implementation

(GenericJiniForwarder)

The result of an invocation of a method on a remote Jini

service

 203

information about the username and password, the IM&P server to connect to, http proxy if

needed, and information about where to search for plug-ins to load. In a production system

the configuration file should not be manually modifiable or human readable, however for

prototyping purposes the configuration file was implemented using a text file to make it

easier to modify for the frequent configuration changes during testing and evaluation

phases.

The event_grace parameter defines the amount of time to wait for the completion of event

subscription when an event notification is received. This is related to the race condition in

UPnP event handing that was described in section 5.5.4.

5.8. Client application prototype

The term client application refers here to service protocol specific clients that interact with

services that support the service protocol, e.g. a UPnP control point is a UPnP client

application, a Java program that discovers and interact with Jini services is referred to as a

Jini client. As seamless integration of remote services with local client applications in the

local HAN is an important aspect of the Krox system architecture, an application was

developed (figure 35) to test and demonstrate this seamless integration. The client

application enables the discovery and invocation of specific service protocol local and

virtual services. The client application organises virtual devices and services by the user

Figure 34 Krox System Configuration File

 204

from which they were shared, enabling to distinguish between local and remote devices and

services for testing purposes. The discovery capabilities of the client application enable to

validate that all devices from remote HANs are virtualised and shown under the user that

shared them. It enables to verify that when a device is no longer available it is not shown

anymore in the local HAN. For discovered devices and services, the client application

enables inspection of the device/service and invocation of actions. For example the

screenshots in figure 35 were taken from a HAN sharing devices and services with four

other HANs. The local HAN devices are shown under “My Devices”, and devices and

services from remote HANs are shown under the identifier of the remote HAN that shared

them.

Figure 35 Krox Client Application Prototype

 205

The client application embeds an IM&P endpoint for receiving updates on added users (i.e.

remote HANs with which sharing has been agreed) and the status of remote HANs.

To support UPnP services, the Krox client embeds a UPnP control point which locates

UPnP devices and services in the local HAN and shows them either under the HAN that

shared them, or under the local HAN. When a UPnP device is discovered, its description is

fetched and parsed and the supported services are shown in the client application under the

device. For each service, its corresponding description is fetched and parsed and its

corresponding actions are shown under the service. This behaviour enables testing and

validating the discovery and description implementation of the UPnP plug-in. The client

application enables manual invocation of UPnP actions for both local and remote devices in

a fully transparent fashion. The invocation is facilitated by sending a SOAP request to the

local device, which can be either a “live” device or a virtual remote device. This behaviour

enables testing and validation of the invocation implementation of the UPnP plug-in. The

client application supports subscription for event notifications for UPnP services. This

capability enables testing and validation of the eventing implementation of the UPnP plug-

in. Finally, the client application was used in validation of the implementation of

representation of composite services as UPnP devices and services. Since composite

services are represented as UPnP devices, they are discovered, inspected, and can be

invoked using the client application as can be seen in figure 35.

For supporting Jini services, the Krox client application finds a lookup service in the local

HAN and listens to changes. Jini services that are discovered are shown under the network

that shared them. When a service is discovered, the Krox client retrieves the service proxy

from the lookup service and parses the service interface, extracts the methods and

parameters and presents it as the child of the service in the client application. Similarly to

UPnP, Jini service invocation is supported. The client application was also used in

functional testing for Jini discovery and invocation for HANs from remote HANs shared

with the local HAN.

5.9. Home service composition with BPEL

In order to demonstrate the service composition subsystem design, a prototype

implementation was developed for mapping UPnP and Jini services to web services, and

 206

then composing them to BPEL processes and deploying and executing such services. The

following sections provide details about this prototype implementation.

5.9.1. WS-BPEL

The prototype builds on service composition with BPEL. BPEL 2.0 is supported through

Apache ODE version 1.3.5. ODE was deployed on a Apache Tomcat version 6.0.18 servlet

container in the local HAN. The following sections describe how UPnP and Jini service

protocols were mapped to web services for automatic generation and deployment of web

service proxies corresponding to HAN services.

5.9.2. UPnP to web service mapping extension

The implementation of the UPnP to web services mapping is based on three steps:

1) Device inspection – fetching the device description, and for each service fetch the

service description. Each service will correspond to a web service; each action in

the service description will correspond to a method in the generated web service.

2) Code generation – generating the code for a web service, given the device name,

service type, and names of parameters (input and output) for the UPnP actions.

3) Web service package and deployment – the generated Java web service is compiled,

built and deployed to the local web server.

When a UPnP device was discovered by the UPnP LNC or UPnP VRM, its description is

fetched. For each supported service, the corresponding Java code for a JAX-WS web service

is generated (see figures 36-37). Once the Java file for the web service has been saved to

disk, a script is executed to compile, package and deploy the web service to the servlet

container .

Figure 36 shows a generated web service WSDL corresponding to an AVTransport UPnP

service (from a media renderer device). The screenshot on the left shows the AVTransport

service description XML as retrieved from the UPnP media renderer device. On the right, is

the WSDL (shown from the web server) of the deployed web service that corresponds to the

UPnP AVTransport service. It can be seen that each action in the UPnP service is mapped to

 207

an operation in the web service, and the entire UPnP service is mapped to a single web

service.

Figure 37 shows the generated code for the web service, which corresponds to the UPnP

service shown on figure 36. The generated code has a method for each action in the UPnP

service and an additional generic invocation method, which is called from all of the action

implementations. The class is generated with a number of identifiers that are hardwired: the

control URL for the service, which should be used when invoking actions (ctrlURL in figure

37), the service type, which is used in creating the SOAP request, and the host/port of the

device, which are used for sending the SOAP request. All action implementations are

similar: they create two arrays of Strings: one for the variable names and one for the

variable values – the variable names for the methods correspond to the names of the variable

Figure 36 UPnP AVTransport Service Description (right) and Corresponding Web Service (left)

 208

in the UPnP action and the name of the method corresponds to the name of the UPnP action.

The last parameter for the action invocation is the action name, which is hardwired to the

method during the code generation. Each method calls the generic invokeMethod() method

which handles the interaction with the device and either returns the SOAP response or

throws a UPnPException. The invokeMethod() prepares the SOAP request and sends it to

the device. If the invocation was successful, the String SOAP response is sent back to the

calling method and back to the web service client. If there was an error, a UPnPException is

constructed with the corresponding UPnP error code and error description and is thrown

back from the web service. For each UPnP service, once the code is automatically

generated, the code is saved to disk and compiled. The artefacts are packaged in a Web

Archive (WAR) file that is copied to the auto-deploy directory of the servlet container

(Tomcat), which initiates the deployment of the web service.

Figure 37 AVTransport Web Service Generated Code

 209

Whenever the Krox system is restarted all existing services are undeployed. If they are

rediscovered they are redeployed. When a device is removed, its corresponding services are

undeployed from the local servlet container.

5.9.3. Jini to web service mapping extension

The generation of web services for Jini services is very similar to the technique used for

UPnP services with a minor difference. While UPnP requires inspection of the service

description document in order to determine the names of methods and types of parameters,

for Jini this is much simplified using the Java reflection API. When the Jini LNC or Jini

VRM discover a service, the generation of a web service is triggered. Given the interface,

the names of the methods and types of parameters are retrieved from the interface using the

Java reflection API. Unfortunately using Java reflection API it is not possible to retrieve the

Figure 38 Jini Service Interface (top) and Corresponding Web Service (bottom)

 210

names of the parameters, therefore they are named param1, param2, etc. For each method in

Jini service interface, a method is created in the web service. Figure 38 illustrates a Jini

service interface and its corresponding generated web service code. In the Jini generated

web service code there is no generic invocation method. Instead in the implementation of

each method, the Jini service proxy is retrieved from the lookup service using the hardwired

service identifier. Given this proxy and the hardwired service interface, the corresponding

method is invoked on the Jini service and the result is returned. Once the Java web service

code generation is completed, the service is saved to disk and the same script mentioned

above is used to build, package, and deploy the service. Undeployment of services is

triggered both on system bootstrap and when services are removed from the local HAN.

5.9.4. Composing home services

When the HAN services are deployed as web services they can be composed using BPEL

regardless if they represent UPnP, Jini, or any other HAN services protocol. In addition,

since both the LNC and the VRM in the local HAN trigger automatic web service

generation, local and remote services (through their local representations) can be composed

seamlessly. A further advantage of using ordinary web services is that it is possible to also

compose external 3rd party web services and other composite services.

In order to demonstrate the feasibility of the design approach, a composite service involving

a local HAN UPnP service, a remote UPnP service, a local HAN Jini service, and an

external web service were composed. The composite service used the following services:

• Local UPnP device – an XBox Media Centre (XBMC36) media renderer,

specifically AVTransport service.

• Remote UPnP device – a MediaGate37 media server, specifically ContentDirectory

service.

• Jini Service – an emulated Jini service

• External web service – Microsoft translation service38

36 xbmc.org

37 http://www.cybergarage.org/twiki/bin/view/Main/MediaGateForJava

38 api.microsofttranslator.com/V2/Soap.svc

 211

The composite service (figure 39) takes a String parameter corresponding to a title of media.

The name is translated to French and then searched in the remote media server. If the media

is found on the remote server, the local media renderer is setup to play the media, and in

Figure 39 HAN Service Orchestration with BPEL

 212

parallel the Jini service is invoked. If the media is not found, an error message is returned

indicating that the media was not found. The purpose of the example composite service is

not to show the utility of the design for creating a specific composite service, but instead to

demonstrate the variety of options for composition of services from different service

protocols, and from multiple HANs, with external web services. The composite service was

deployed to the ODE BPEL engine and testing has shown it worked as expected.

5.9.5. Representing BPEL services as UPnP devices

The last part of the implementation is a standalone application that enables the

representation of BPEL composite services as UPnP devices in the local HAN, and by that

enable their sharing with the UPnP service protocol plug-in. The only purpose of this

application is to enable sharing of composite services, which was defined as a requirement

(#22). The representation as UPnP devices was chosen because UPnP does not require the

client to know in advance on the existence of the service. Unlike Jini, which requires the

service client to have the service interface in advance, when representing composite services

as UPnP devices, they can be safely advertised and consumed by applications without

requiring previous information about the service. BPEL2UPnP is a singleton process

running in the local HAN that is responsible for generating and maintaining virtual UPnP

devices that correspond to composite services. When a composite service is deployed, the

BPEL2UPnP application is called with a URL that corresponds to the WSDL document of a

BPEL composite service. Using a WSDL parser, the document is parsed and information

about the service name, input and output parameters, port and operation names and more is

extracted. The service name is used to create a unique device identifier. Each port type in

the composite service WSDL corresponds to a new UPnP service for the virtual UPnP

device. BPEL2UPnP uses the service information extracted from the WSDL document to

advertise the new virtual device and services to the local HAN. The device is advertised as

having type: CompositeService:1 (version 1), however in the future this could be

customised to a more meaningful service type with metadata given for the composite

service. The device location is set to <host>:<port>/<device unique identifier>. When a

SOAP request is received requesting the invocation of an action, the request is parsed and a

corresponding SOAP request is composed and sent to the BPEL process URL. The SOAP

response from the service is used to populate the output variables of the UPnP service and

the corresponding SOAP response is returned to the requesting control point application.

Figure 40 shows the device description corresponding to the BPEL composite service

 213

presented in figure 39 as automatically generated and hosted by the BPEL2UPnP

application.

When the composite service is undeployed, it is removed from the cache of BPEL2UPnP,

which in turn announces a byebye on behalf of the virtual device and its constituent services.

For the purpose of the prototype, the integration between the BPEL engine and

BPEL2UPnP is manual. This means that when a new process is deployed, BPEL2UPnP

needs to be invoked separately with the URL representing the WSDL document in the

application server. The purpose of BPEL2UPnP is to demonstrate how BPEL services can

be shared with remote HANs as UPnP services, therefore it is sufficient to demonstrate that

a given BPEL composite service described as WSDL can be mapped to a UPnP device. The

BPEL2UPnP was tested and worked as expected.

5.10. Summary

This chapter presented the prototype implementation for Krox system architecture and

system design with plug-in implementations for UPnP and Jini. The Krox system prototype

implementation demonstrated the utility, and feasibility of Krox system design, specifically

the plug-in framework and the design for the specific HAN service protocols. The level of

testing, which was conducted for the prototype system, as described in section 5.5.5, 5.6.3,

5.8, and 5.9.4, indicates that the system worked as expected and conformed to the design

specification, except for specific areas where this is explicitly discussed.

Figure 40 UPnP Device Description Corresponding to a BPEL Composite Service

 214

Table 6 KROX System Prototype Requirements Addressing

Req # Description Addressed by Tested with

#1 Cross service protocol

service composition

Using a BPEL engine and the plug-in’s generated web services that were

deployed in the local servlet container

Tested with a composite service that included Jini, UPnP, and

web service

#2 Share composite services BPEL2UPnP standalone application addressed the mapping from the

WSDL of the composite service and its stateful representation as a UPnP

device

Tested and demonstrated via the client application

#3 Cross HAN service

composition

Using the service virtualisation and the web service generation in the

VRM of the UPnP and Jini plug-ins, enabled the composability of remote

services

Tested with the composite service that included a local media

renderer and a remote media server

#4 Enable sharing of HAN

services from the local HAN

with remote HANs

The service virtualisation implementation of the plug-ins through the

core event model and its extensions

Tested for each plug-in separately using the log validation

technique and demonstrated via the client application

#5 Automatic discovery of

resources from remote HANs

shared with the local HAN

The implementation of the different implementations of the VRM in the

UPnP and Jini plug-ins.

Tested for each plug-in separately using the log validation

technique and demonstrated via the client application

#6 There must be no restriction

that prevents sharing the

same devices and resources

with multiple remote HANs

The implementation does not restrict sharing of the same devices to

multiple remote HANs

Testing was made with all HANs sharing all devices with all

other HANs, thereby showing that the same devices can be

shared with multiple HANs

#7 Interaction of applications

with remote devices must be

identical to the interaction

with local of the same service

protocol

The implementation of the different implementations of the VRM in the

UPnP and Jini plug-ins.

Tested with the client application

#8 The system must not require

modification to service

protocols and must support

plug-and-play

Supported through the plug-in framework event model, and the service

virtualisation implementation of the different plug-ins

Tested with the client application that was implemented as a

UPnP and Jini regular client, thereby showing that client

applications do not require modifications to discover and

interact with remote devices in the local HAN. In addition, this

was tested and demonstrate using a standard control point

application included with XBOX Media Centre (XBMC)

#9 Independence of access

network technology

The implementation is independent from any access technology and does

not make assumptions on a specific access technology

The system was tested with both DSL and cable access

technologies

#10 The system must be able to

discover and share devices

with networks that are using

NAT even in the existence of

devices with identical IP

addresses in multiple HANs

This is addressed by multiple components:

•  The communication subsystem uses TCP connection

•  The UPnP plug-in does not use private IP addresses beyond the scope

of the local HAN, thereby supporting duplicate addresses in

connected HANs.

•  Out of band communication was addressed by replacing the internal

IP address with external IP address assuming that the appropriate

configuration of firewall has been pre-made

Tested and demonstrated via the client application with multiple

HANs having identical private IP addresses. Devices were

appropriately discovered, and the client enabled to invoke

actions on them. Streaming was tested and demonstrated with

remote media server connected to a local media renderer

#11 The system must be able to

communicate with remote

HANs behind firewalls

The communication subsystem only requires the instant messaging port

to be open. For the prototype purpose only, for out of band

communication the firewall needs to be preconfigured

Tested with the client application with remote HANs behind

firewall.

#12 All communication with

remote HANs must be

authenticated

The first step in the system’s bootstrap is authentication with IM&P

server

Unit testing, if authentication fails the system exists.

#13 Access control – Sharing

must not be automatic and

must enable home users to

control which resources are

shared with which remote

HANs

This was addressed partially by this prototype – the implementation

mandates that only resources that are shared are notified to remote HANs

with which sharing has been agreed, however for this version, the only

policy that was supported was share all devices with all remote HANs.

The system was tested with a stub implementation of access

control, such that access control is checked but always returns

true.

#14 Confidentiality - all traffic

between remote HANs must

be encrypted

The XMPP server was configured such that all communication between

the client and the server is encrypted

The system was tested with the client-to-server encryption

handled by the XMPP client and server.

#15 Security vulnerability Was not addressed specifically by the prototype implementation. This is

the subject of the security analysis presented in the next chapter

N/A

#16-

#19

Performance requirements The prototype implementation was implemented with performance

considerations however, the actual performance evaluation is presented

in the next chapter

N/A

#20 Extensibility to additional

HAN service protocols

The extensible event model was extended for the implementation of

UPnP and Jini service protocols. The differences between the service

protocols, and their similarities with other protocols give good indication

about the generality of the system architecture

Tested with UPnP and Jini plug-ins and demonstrated with the

client application

#21 Dynamic relation

management with remote

HANs

The IM&P user model implemented with the Smack XMPP client library

provides notifications when a remote HAN is added to the buddy list of

the local HAN. In the prototype adding and removing remote HANs to/

from the buddy list was made using the XMPP server administration user

interface, however the Smack API support these operations.

Tested using the XMPP server administration user interface, for

adding/removing remote HANs from the buddy list of a local

HAN and validating that the notification is received and

processed correctly. Demonstrated via the client application

user interface

#22 Pause/resume sharing with

remote HANs

The IM&P user model implemented with the Smack XMPP library

enables changing the presence status of the local HAN and by that pause

all sharing with remote HANs. “Blocking” the sharing with a specific

remote HAN enables to suspend the sharing with this remote HAN

temporarily

Was not tested

#23 The system must not require

manual configuration of the

home gateway and its

administration must be

appropriate for non-technical

users

Configuration of the home gateway is not required for the system,

however for demonstration of streaming, the home gateway was

preconfigured as discussed above. An administration application was not

implemented however the IM&P user metaphor demonstrated with the

client application gives good indication on the appropriateness of the

level of administration required for operating the Krox system

N/A

 215

Table 6 summarises the requirements as they were defined in section 3.4 and their

addressing by the prototype implementation and their level of testing.

In accordance with the design science research methodology the key contribution of Krox is

the architecture and design for integrated intra-HAN and inter-HAN service interoperability.

Krox system architecture extends the state of the art presented in chapter 3 in the following

aspects:

1) An integrated approach to service interoperability – Enables services from multiple

service protocols to be shared with remote HANs and composed in both local and

remote HANs with other services. This has not been addressed by any of the systems

reviewed in chapter 3.

2) An open pluggable architecture and an extensible plug-in framework that enables

multiple different HAN service oriented protocols to be supported for intra-HAN and

inter-HAN service interoperability without requiring modifications to the service

protocols, while supporting seamless integration with client applications in the HAN.

The utility of the plug-in framework was demonstrated with multiple service protocols.

3) Krox service composition subsystem enables seamless composition of local and remote

HAN services as well as further sharing of composite service. The Krox system

architecture enables services of multiple HAN service protocols to be composed through

the mapping between the HAN service interface and web service, which enables service

orchestration. Through service virtualisation both local and remote HAN services can be

composed. While the ability to compose services across multiple service protocols was

suggested in literature [106, 2], the orchestration presented in this thesis for services

from local and remote HANs is novel. Finally it has been shown how composite

services can be shared with remote HANs through mapping to virtual UPnP services

and then seamlessly shared similarly to actual UPnP devices and services.

The following chapter presents a performance evaluation of the system prototype and a

security analysis of the potential system vulnerabilities and mechanisms for defending

against them.

 216

Chapter 6
EVALUATION

Chapter 4 presented the Krox system architecture and system design supporting integrated

intra-HAN and inter-HAN service interoperability. In chapter 5, a prototype implementation

of Krox system was presented, demonstrating the feasibility of the design approach. The

design science research methodology requires the quality, and efficacy of a design artefact

to be rigorously demonstrated and then assessed though a well executed evaluation method.

Section 6.1 defines the evaluation goals based on the relevant performance and security

requirements. In this research two evaluation methods, experimental evaluation, and

analytical evaluation were used to assess the system design and implementation. The

experimental evaluation intends to study the behaviour of the Krox system in a controlled

environment with regard to performance with respect to the system requirements using

simulation. Section 6.2 presents a performance evaluation of inter-HAN service

interoperability (HAN service sharing), and section 6.3 describes the performance

evaluation of intra-HAN service interoperability (HAN service composability). For

evaluating the security of the system architecture and design, section 6.4 presents an

analytical evaluation that examines the potential security vulnerabilities and threats and how

the system can prevent an attack on an individual HAN from using the Krox system to

spread to additional HANs. Finally section 6.5 presents concluding remarks.

6.1. Evaluation goals

The requirements for the Krox system architecture as specified in section 3.4 identified

several performance and security requirements:

 217

6.1.1. Performance

1. REQ #16 – Scale up (intra HAN) – The system must be able to represent up to 300

remote services with no significant latency. More services can be supported with

reduced performance.

1) REQ #17 – Scale up (inter HAN) – The system must be able to scale to a small

number of remote HANs corresponding to close family and friends. The number of

remote HANs must not exceed 15 remote HANs.

2) REQ #18 – Scale down – The system should be deployable on popular operating

environments including Linux, Windows, Mac OS X. The system’s deployment

requirements should be appropriate for home area networks – It must be possible to

deploy the system on low-end machines, specifically home gateways where RAM

does not exceed 1GB and CPU does not exceed 2GHz.

3) REQ #19 – Concurrent access – It must be possible for multiple remote HANs to

interact with the same local HAN resource simultaneously.

Based on the above requirements, the goal of the performance evaluation is to assess the

different performance aspects of the Krox system with between 5 and 15 remote HANs and

up to 300 remote services represented in the local HAN. There are two main areas for

evaluating the performance of Krox system: inter-HAN service interoperability i.e. the

ability to represent remote services and interact efficiently with remote HANs and intra-

HAN service interoperability and composability, i.e. the ability to efficiently represent

remote and local HAN services as composable and interoperable services with no significant

latency. More specific criteria for inter-HAN and intra-HAN performance evaluation are

given in section 6.2 and section 6.3 respectively.

6.1.2. Security

The security requirements for authentication (REQ #12), access control (REQ #13), and

confidentiality (REQ #14) were already addressed in the previous chapters. The focus of

this chapter is the analysis of security vulnerabilities and the corresponding required

mitigation mechanisms:

 218

REQ #15 – Vulnerability – Some service protocols for the HANs contain security

vulnerabilities, however as they are not designed to work over unsecure networks such as

the Internet, these vulnerabilities are relatively of low risk when restricted to a single

network. It is an essential requirement that the multi HAN sharing system will not increase

security vulnerability of the home network by introducing new threats or by extending

existing vulnerabilities.

6.2. Inter-HAN service interoperability
performance evaluation

The inter-HAN service interoperability performance evaluation assesses the ability of the

Krox system to efficiently discover resources in the local HAN, share them with remote

HANs and represent them in these HANs as virtual resources. In order to assess the effect of

each service protocol on performance, two separate experiments were designed for UPnP

and Jini. Due to its verbose nature, and its support for event notifications, it is expected that

UPnP plug-in would provide a worst-case scenario for performance evaluation. Therefore

the main performance evaluation of the Krox system was made with UPnP service protocol

plugin and UPnP devices. A complementary evaluation for the Krox system with the Jini

service plug-in was performed to assess specifically the effect of using the dynamic proxy

technique on the performance of invocation of remote Jini services. The performance

evaluation of the Krox system with UPnP service protocol plug-in is described in section

6.2.1 and the performance evaluation of the Krox system with Jini is described in section

6.2.2.

6.2.1. UPnP

Following the experimental evaluation methodology [57], the performance of Krox system

implementation was evaluated using a controlled experiment using an emulation of UPnP

devices and control points. The emulation of UPnP networks enables the experiment to

evaluate the Krox system architecture as the design artefact in a controlled environment

where device and control point behaviour can be controlled and tuned to the experiment

requirements. The performance requirements as described in section 3.4 specify two

dimensions that need to be assessed: the number of HANs with which services are shared,

 219

and the number of remote services shared with the local HAN. The first experiment

evaluates the system performance with an increasing number of services while the number

of participating HANs remains fixed, however the results of this experiment are also

analysed to predict the impact of adding more HANs.

The following sections describe the performance evaluation parameters and the

experimental design.

6.2.1.1. Evaluation parameters

When considering the inter-HAN performance aspects of Krox system architecture, several

parameters need to be evaluated:

• CPU utilisation – What is the processing overhead added by the system?

Regardless of whether the Krox system is deployed on a powerful server, embedded

within the home gateway, or running on a standalone appliance, it must be verified

that CPU usage of the system is relatively low.

• Memory utilisation – How much memory is consumed by the Krox system? It is

important to analyse the system’s memory utilisation and observe the impact of

caching (e.g. of description documents in the VRM) on memory consumption. Both

the LNC and the VRM affect the memory utilisation of the system. The LNC

maintains a repository of all local announcements, and the VRM maintains a

repository of all remote announcements and caches description documents fetched

from remote HANs. It is therefore expected that the memory utilisation will grow

linearly with the number of services available in the local HAN, both local devices

and remote devices and services shared with the local HAN.

• Responding to local HAN’s search requests – How long does it take for the UPnP

VRM to respond to search requests in the local HAN with responses corresponding

to remote devices and services? The VRM in the local HAN listens to search

requests made by control points in the local HAN. When search request is received,

the VRM needs to respond with every device/service announcement that

corresponds to the service type in the search request. More services shared with the

local HAN lead to potentially more processing in the VRM.

 220

• Discovery delay – How long does it take to process a remote device announcement

from when it is received to the local HAN, until it is announced? Once the LNC

discovers a local device it sends notifications to all remote HANs with which it is

shared, where the corresponding VRMs announce it. The purpose of the evaluation

is not to measure the delay introduced by the external network time, which depends

on the downstream and upstream bandwidth of the HAN and on the public network.

Instead the purpose is to evaluate the delay introduced by the processing of the

VRM, and observe the effect of having more devices and services shared with the

local HAN with respect to the time it takes for the VRM to announce remote

services in the local HAN especially with machines without high concurrency – i.e.

machines with no multiple processors or multiple cores, where the processing of

received messages is streamlined.

• Remote description delay – How much overhead is added by the VRM to

description request processing (with and without caching)? Fetching device/service

description requires a number of steps. While the system does not control the time it

takes to fetch the description from the device, or to send it over the network, it is

important to evaluate the delay added by the VRM itself. This delay equals the time

spent in the VRM – i.e. until a message is sent to the remote HAN requesting the

description, and from the time a response message is received with the description is

received from the remote HAN, until the description is sent to the requesting control

point.

• Remote invocation delay – How much overhead is added by the VRM to SOAP

request processing? i.e. of the overall time that a SOAP request processing took,

how much was spent in the VRM, before a message was sent to the remote HAN

requesting the invocation, and after the response was received. While the number of

SOAP requests may be relatively small comparing to the number of description

requests, the handling of control requests must be very efficient to minimise the

overhead to allow true seamless integration, abstracting the remoteness of a shared

device.

• Event notification delay – How long it takes from the time a subscribed event

notification from a remote device is received in a VRM, until the notification is sent

to the subscribed control point? Remote event notification processing must be very

efficient to abstract the remoteness and enable applications to get real-time status

updates about service changes.

 221

• Bandwidth utilisation – How much bandwidth is consumed by the Krox system for

its message exchange between remote HANs? The bandwidth use of the Krox

system is assessed by measurement of the number and size of messages sent

between Krox system instances in remote HANs. The bandwidth used by Krox

system depends on the behaviour of control points and their interaction with the

system. More interaction leads to more SOAP requests, which lead to more inter-

HAN communication, such that the size of the response can affect the consumption

of bandwidth. The purpose of this parameter is to assess the levels of the bandwidth

used by the Krox system for inter-HAN communication.

6.2.1.2. UPnP emulated network design

When considering a network of UPnP devices there are a number of parameters that may

impact performance:

1) Number of devices – More devices lead to more SSDP announcements, which

leads to more processing overhead on the LNC. More shared devices from remote

HANs imply more inter-HAN traffic and more overhead on the VRM in the HANs

with which devices are shared.

2) Number of services per device – More services lead to more SSDP

announcements, which have the same impact as more devices.

3) Duration of device availability in the HAN – It is expected that some of the

devices in the HAN are stationary and not moving, while others are mobile and can

join and leave the HAN more frequently. The duration of the device availability, as

indicated in its SSDP announcement affects discovery and inter-HAN

communication. More mobile devices mean more devices with shorter duration, and

possibly devices that leave and re-join the network frequently. The impact on

performance is not limited to discovery but also affects description requests that can

be initiated by control points every time a device joins the HAN.

4) Frequency of search requests – Search requests in the local HAN require the

VRM to respond with search response for each remote service that corresponds to

the service type given in the request. In case the control point is interested in all

service types, this means that the VRM must respond with a search response for all

remote services. Therefore more search requests lead to more overhead on the

VRM.

 222

5) Frequency of description requests – The typical behaviour of a control point is to

request the description of all services that match a certain type – e.g. if the control

point sent a search request for media servers to the local HAN, it will request the

description for each root device that replied to the search request. More description

requests imply more processing overhead on the VRM, more inter-HAN traffic

(until description cache is populated), and more processing overhead in the remote

LNC.

6) Frequency of SOAP requests – There is no typical behaviour with regard to SOAP

requests as they correspond to actions orchestrated by control points on behalf of

users, however it is clear that more SOAP requests lead to more overhead on the

VRM, more inter-HAN traffic for requests and responses, and more overhead on the

remote LNC. In addition, SOAP responses can be of variable size, such that longer

SOAP responses can have bigger impact on performance.

7) Number of event subscriptions – More event subscriptions may lead to more event

notifications being sent, and for shared devices it increases both the inter-HAN

communication as well as the processing in both the LNC and the VRM. In

addition, since event subscription is proxied by the LNC on behalf of the remote

Krox system instance, it also affects memory consumption.

8) Number of event notifications – More event notifications lead to more processing

in the LNC that receives the notification, more inter-HAN traffic, and finally more

processing in the VRM that is subscribed on behalf of a control point.

9) Number of shared devices vs. unshared devices – More local devices shared with

remote HAN lead to more inter-HAN traffic and more processing in the VRM of the

remote HAN. More local device shared with remote HANs, also imply more

overhead on the LNC for processing remote requests related to those shared

devices.

10) Number of remote HANs with which sharing is allowed – More HANs with

which sharing is allowed leads to more inter-HAN traffic and more processing on

the local system’s LNC for remote description, invocation, and event subscription

requests.

In order to be able to control all of the above parameters in an experimental environment, an

emulation of UPnP devices and control points was designed and implemented. The

following sections present the design for the emulated UPnP device and control point.

 223

6.2.1.2.1. Emulated UPnP device

The emulated UPnP device (figure 41), designed and implemented for the performance

evaluation of the Krox system, implements the UPnP specification for discovery,

description, control, and eventing, and can be configured to load a number of services and

embedded devices.

The emulated device is constructed with a duration parameter that defines for how long it is

available in the HAN. When the emulated device receives a search request, it responds with

a search response packets for each supported service that corresponds to the service type in

the request. Following the UPnP specification and the MAX_REPLY_DELAY_TIMEOUT

(MX) parameter of the search request, the emulated device waits a random number of

seconds (between 0 and the value of MX) before it sends its search response. In addition to

responding to search requests in the local HAN, the emulated device announces its presence

regularly in an interval that corresponds to its preconfigured duration by sending presence

announcements to the SSDP port in the local HAN (UDP port 1900) in regular intervals.

When the emulated device leaves the HAN it sends byebye SSDP announcements. This

provides a mechanism to emulate both stationary devices, i.e. available for longer duration

in the HAN, and mobile devices, i.e. available for shorter duration in the HAN, joining and

Figure 41 Emulated Device Architecture

Emulated UPnP Device

SSDP Presence Announcer

SSDP Search Listener

HTTP
Listener

Description

Control

Eventing

 224

leaving the HAN frequently.

The emulated device listens to HTTP description requests and responds with a well-formed

XML description document. For the purpose of performance evaluation, the coarse-grained

description request is sufficient to assess the performance impact of description requests on

the Krox system, therefore it was not necessary to implement different types of description

request/response as they are processed similarly across the Krox system. The returned XML

description document is based on a template of a media server instrumented with the

specific device details during the processing of a description request.

The emulated device supports the UPnP control protocol only in a limited way. Support is

restricted to accepting UPnP control SOAP requests and returning one of two successful

SOAP responses. The responses, selected in turn, differ in their size: the long response is

150 kilobytes corresponding to a “browse” response with 150 items and their metadata, and

the short response is 4 kilobytes, corresponding to a “browse” response of one directory

entry.

The emulated device also supports the UPnP eventing protocol, enabling control points to

subscribe for changes in the service state variables. Every execution of a SOAP request on

the emulated device triggers event notification to its subscribers. In “live” UPnP devices

some SOAP actions lead to changes in the state of the devices and consequently in its state

variables, which in turn leads to notifications being sent to event subscribers. In this sense

the event model of the emulated device is a superset of these cases.

6.2.1.2.2. Emulated UPnP control point

The emulated UPnP control point, designed and implemented for the performance

evaluation of the Krox system, is a UPnP client application that sends periodic search

requests and listens to device announcements in the local HAN. In order to maximise the

load on Krox system, all search requests sent by the emulated control point are sent with a

search type: ssdp:all that indicates that all devices in the HAN must respond with all of their

services. In fact, based on the UPnP specification, a root device (a device that is not

embedded inside another device) with 3 services must respond with 6 search response

 225

announcements, one per service, and 3 for the device - one corresponding a root device, one

corresponding to the device unique identifier (UUID), and one corresponding to the device

type. The control point sends search requests to the local HAN at regular predefined

intervals. Following the typical control point behaviour, for each search response that

corresponds to a root device, the control point sends a description request. For a

preconfigured percentage of the root device announcements, the control point sends 2

consecutive SOAP requests. This corresponds for example to the interaction required for

setting up streaming between a media server and a media renderer. Finally, if the device

duration (as given in the device announcement) is above a preconfigured threshold, the

control point subscribes for event notifications.

6.2.1.3. Experimental setup

The UPnP emulation described in the previous sections specifies a number of parameters

that need to be configured for the Krox performance evaluation experiments. This section

discusses the value selection and the reasons for selecting these values.

1) Device duration – As discussed earlier, UPnP devices can be divided into two

groups: stationary devices and mobile devices. Stationary devices do not leave and

re-join the network with any frequency e.g. a UPnP enabled refrigerator, a UPnP

TV, a residential gateway. The UPnP device architecture document [133]

recommends that 1800 seconds is the minimum interval between UPnP device

announcements and recommends that stationary devices should have a much longer

interval, typically one day. For the purpose of the experiment, stationary emulated

devices are constructed with announcements interval of 900 seconds. The purpose is

to increase the number of announcements and therefore the overall traffic to enable

stress testing of the Krox system implementation. Mobile emulated device are

constructed with a short duration randomly selected from the set (in seconds) {60,

120, 300, 450, 600}.

2) Search requests – The emulated UPnP control point is configured to send a search

request every 2 minutes. The purpose of the search request is to force the VRM to

process these requests and consequently respond on behalf of remote services,

which leads to the control point requesting description for root devices, which

finally leads to more inter-HAN communication. The emulated control point is

interested only in remote devices, therefore it ignores all responses for local

 226

emulated devices. Typically a control point does not send a broad search request for

all devices in the HAN. Control points are typically in a specific type of device, e.g.

media server, or Internet Gateway Device. However since only a single control

point is running in the HAN, and in order to evaluate the system under stress this

value was selected.

3) Description requests – As discussed above, whenever a search request is received

for a remote root device, the emulated control point sends a description request. In

addition, whenever an announcement is received from an emulated device, another

description request is sent.

4) SOAP requests – The emulated UPnP control point is configured to send SOAP

request for 10% of the device announcements it receives from remote emulated root

devices. SOAP requests correspond to an action requested by a human user via a

control point, or through a composite service. Therefore by artificially increasing

the number of SOAP request, the load on the system via SOAP requests can

emulate more the load from more HANs that actually participating in the

experiment. The SOAP request is triggered whenever a device announcement or

search response is received.

5) Event subscription requests – The emulated UPnP control point is configured to

subscribe to event notifications for all stationary devices (i.e. all devices whose

duration is greater than or equal to 900 seconds). The subscription request is

triggered when a device announcement or search response was received. Therefore

the control point may be subscribed more than once to the same service.

6) Event notifications – The emulated UPnP device is configured to send event

notifications to subscribed clients. In a normal UPnP setup, a change to the state of

the service leads to an event related to the state variable that changed. In order to

increase the inter-HAN traffic, each SOAP request that is served by the emulated

device results in a number of events being sent to all of the subscribers of the

service.

7) Shared vs. unshared devices – for the evaluation all devices are shared with all

other remote HANs. This is useful for increasing the inter-HAN traffic, and the load

on each of the participating HANs.

The following section describes the hardware that was used for performing the UPnP

experiment.

 227

6.2.1.3.1. Hardware

The hardware for the evaluation included 5 desktop components such that each one

corresponds to a HAN controller and runs the Krox system as well as the UPnP network

emulation during the experiment. The desktops differ in their processors, cache size,

memory, and network card. It is expected that the evaluation results will be proportional to

the computing resources available in the machine running the Krox system:

• 5 Desktop machines with Linux Ubuntu39 10.04 operating system

o Desktop 1: Intel Pentium 4, 2GHz, 512KB cache, 1GB Memory, 100Mb/s

network card

o Desktop 2: Intel Pentium 4, 3GHz, 2MB cache, 2GB Memory, 1000Mb/s

network card

o Desktop 3: Intel Pentium 4, 3.2GHZ, 2MB cache, 2GB Memory, 1000Mb/s

network card

o Desktop 4: Intel Pentium 4, 2GHZ, 512KB cache, 750MB Memory,

100Mb/s

o Desktop 5: Intel Pentium 4, 2.4GHZ, 512KB cache, 1GB Memory,

100Mb/s

• Macbook Pro with OS X 10.6.7 operating system, Intel Core 2 Duo, 2.6GHz, 6MB

cache, 4GB Memory running XMPP OpenFire server 3.6.4.

In the Desktop machines running Linux, no other software is installed besides the Krox

system.

6.2.1.3.2. Experiment design

The evaluation setup (shown in figure 42) consists of the hardware described above, such

that each desktop computer corresponds to a single HAN and runs the Krox system, a single

emulated control point, and a set of emulated devices. A number of experiments were run,

39 http://www.ubuntu.com/

 228

and the number of devices and the ratio between stationary and mobile devices depends on

the specific experiment. All the participating Krox systems are configured to share all of

their devices with all of the other participating HANs. This is in order to increase the inter-

HAN traffic during the experiments. The XMPP server, installed on the 6th machine

(macbook laptop), is accessible to all of the Krox system instances.

The following sections describe the experiments that were performed with UPnP network

emulation and their results.

For these UPnP experiments, the number of HANs is fixed to 5, such that each HAN runs

the emulated UPnP network and an instance of Krox system. In order to evaluate the

performance of Krox system implementation with a growing number of services shared

from remote HANs, the experiment included 10 steps such that each step is run for an hour.

In every step of the experiment, the number of emulated devices in each HAN is increased

by 5. Since there are 5 HANs and since all devices are shared with all other HANs (i.e. 4

other HANs), this results in 20 remote devices shared with each of the HANs added during

each step of the experiment. Each emulated UPnP device has 3 services; therefore 20 remote

devices correspond to 60 remote services shared with each of the HANs, added during each

step of the experiment. For consistency, each step of the experiment is separate and involves

restarting the Krox system and the emulated UPnP devices and control point followed by an

hour of execution.

Figure 42 Experimental Setup

XMPP
Server

Emulated HAN 1

Emulated HAN 3

Emulated HAN 5

Emulated HAN 2 Emulated HAN 4

Emulated
Devices Emulated

Control
Point

Krox
System

Emulated
Devices Emulated

Control
Point

Krox
System

Emulated
Devices Emulated

Control
Point

Krox
System

Emulated
Devices Emulated

Control
Point

Krox
System

Emulated
Devices Emulated

Control
Point

Krox
System

 229

At the first step, each HAN has 5 local emulated UPnP devices, and in the final step, each

HAN has 50 local UPnP emulated devices, which implies 200 remote shared devices, and

600 remote services shared in each HAN. While the requirement is for maximum number of

300 remote services shared with the HAN, testing with this larger load gives a higher degree

of comfort in evaluating the system’s performance under the target load.

The experiment was repeated twice with different mixes between stationary and mobile

devices. The first iteration of the experiment was performed with 80% stationary devices

and 20% mobile devices. The second iteration was performed with 60% stationary devices

and 40% mobile devices. Each iteration repeated the 10 steps described above such that the

number of devices starts from 5 per HAN in the first step, and reaches 50 devices per HAN

in the last step. The purpose of running two iterations with different mobile to stationary

devices ratio, was to validate the assumption that the impact of the proportion of mobile to

stationary devices on the overall performance is negligible. The results show that the

differences are indeed insignificant, therefore for presentation purposes the averaging of the

two iterations is used, in order to focus on the significant performance issues.

Stationary devices are constructed at the beginning of each step of the experiment and

announce their presence every 900 seconds. Mobile devices are constructed in the beginning

of each step but are short lived and once their duration expires they are removed from the

network. In order to maintain a fixed number of devices in each HAN for consistency,

whenever a mobile device is removed from the HAN, another mobile device is created

immediately.

6.2.1.4. Experimental results

The following sections describe the results of the experiments.

6.2.1.4.1. CPU utilisation

In order to measure the CPU utilisation of the Krox system, the CPU utilisation is sampled

every 30 seconds. Figure 43 shows the increase in CPU utilisation of the Krox system with

 230

the increased number of services shared with the local HAN. It can be seen that the CPU

with 300 services shared with the HAN (which is the maximum required) in all of the

desktops is below 4%. Even with 600 remote shared services the CPU grows linearly to less

than 7% for all of the desktops in the setup.

6.2.1.4.2. Memory utilisation

The heap memory utilisation of Krox system was sampled every 30 seconds. Before the

heap size was sampled, full garbage collection was performed, to ensure de-allocated

memory is freed. Memory is used by the LNC to store local device announcements and

remote HAN’s event subscriptions. The VRM stores in memory remote device

announcements, cached descriptions, and event subscription information. Therefore it is

expected that the heap memory will grow linearly with the number of available services

(both local and remote). Figure 44 shows the growth in heap memory with the increase in

remote services shared with the local HAN. It should be noted that this heap memory also

includes instrumentation required for collection of results during the experiment; therefore

the actual heap memory usage of the Krox system is even lower than what is shown in

figure 45. The heap memory of the system does not exceed 6 megabytes with 300 remote

services shared with the local HAN in all machines and with 600 remote shared services, the

heap memory is still below 10 megabytes.

Figure 43 Krox System CPU Utilisation with polling

0

1

2

3

4

5

6

7

8

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

C
P
U
 %

Remote Services Shared With Each HAN

Average CPU U:lisa:on (with polling)

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

 231

6.2.1.4.3. Local search processing

As described earlier (6.2.1.2.2), the emulated UPnP control point sends an ssdp:all search

request every 120 seconds to the local HAN, which requires all devices in the local HAN to

respond. Specifically this requires the VRM in the HAN to respond on behalf of all remote

devices and services it currently represents (i.e. that have not expired). Since the VRM

caches remote device/service announcements, handling search requests does not require

inter-HAN communication. Instead it requires the VRM to check all cached remote

device/service announcements and announce a search response for each one that has not

expired. If the announcement has expired, it is removed from the cache and its removal is

announced (i.e. byebye announcement). It is therefore expected that the processing time for

search requests will be proportional to the number of remote services shared with the local

HAN. According to the UPnP specification, this means for example, if the number of

remote devices the VRM represents is 100, each with 3 services, the VRM needs to send

600 search responses to the requesting control point, i.e. 3 per device + 1 per each service

(i.e. 3 more). The time here is measured from when a search request was received, until the

VRM finished its processing, therefore sent the last search response. Figure 45 shows the

average and maximum results of the measurement of the VRM’s search processing time. As

can be seen the processing time grows linearly with the number of services. It can also be

observed that the more powerful desktops (desktop 2, desktop 3 with more powerful

processors) outperform the others (desktop 1, desktop 4, desktop 5). With 300 remote

Figure 44 Krox System Heap Memory Utilisation

0

1

2

3

4

5

6

7

8

9

10

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
e
g
a
B
y
te
s

Remote Services Shared With Each HAN

Average Memory Heap Size

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

 232

services shared with the local HAN, a search request is processed in less than 1.5 seconds.

In fact, in the more powerful desktops (desktop 2, desktop 3), this is completed in less than

750 milliseconds. The maximum search request processing time for 300 remote services is

less than 4 seconds. With 600 services shared with the local HAN, the average processing

time reaches 2.5 seconds, which is still reasonable time for a control point to wait for device

results.

The VRM implicitly implements the MX behaviour, which requires a device to wait

between 0 and MX seconds randomly before sending the response to a search request (the

MX is given in the search request). Therefore the sequential processing of the VRM can be

considered to implement the desired MX behaviour without explicitly waiting before

sending the result. To make this more accurate, when the number of remote services shared

with the local HAN is small, the VRM could introduce some random wait in order not to

overwhelm the local HAN with search responses. Indexing the remote device

announcements by common service types could further optimise the results. While this

would not change the results for the case of ssdp:all service type, it would improve the

performance for specific service types that are commonly searched by control points.

Figure 45 Krox System Search Processing Time

0

500

1000

1500

2000

2500

3000

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Average Search Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

0

1000

2000

3000

4000

5000

6000

7000

8000

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Maximum Search Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

 233

6.2.1.4.4. Discovery delay

The discovery processing of the VRM starts when a message is received in the

communication subsystem indicating a remote resource has been added or removed. In the

case where the resource was added, the VRM needs to construct a local announcement, with

a location that corresponds to the remote device/service in the local HAN and announce it in

its local HAN. Figure 46 shows the increase in discovery processing time that corresponds

to the increase in remote devices/services shared with the local HAN. The processing

includes construction of a device/service announcement from the original remote

announcement that was sent, assignment of a local location to it and sending it to the local

HAN’s multicast address. It can be seen that the average processing time remains constant

Figure 46 Krox System Remote Discovery Processing Time

0

1

2

3

4

5

6

7

8

9

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Average Remote Discovery Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

0

50

100

150

200

250

300

350

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Maximum Remote Discovery Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

 234

at less than 8 milliseconds however the maximum processing time grows to less than 250

milliseconds with 300 remote services and less than 320 milliseconds with 600 remote

services shared with the local HAN. The increase in the maximum while the average

remains constant is explained by the fact that with more load, there are only occasional

peaks that increase the maximum, however there are more samples due to the increased

number of shared devices, and as most of them are handled efficiently and the average

remains constant even under the high load. Moreover, the median is also constant and is

very close to the average, and similarly the 90th percentile remains constant with the

increase in the number of devices shared with the local HAN.

6.2.1.4.5. Remote description delay

As discussed earlier, the remote description processing time corresponds to the processing

of a description request for a remote device/service in the VRM before sending a request to

Figure 47 Krox System Remote Description Processing Time

0

2

4

6

8

10

12

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Average Remote Descrip;on Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

0

100

200

300

400

500

600

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Maximum Remote Descrip<on Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

 235

the LNC, and from the time the VRM receives the corresponding description document

from the LNC until it sends it to the control point in the local HAN. Once the VRM receives

the description from the LNC it needs to parse it and add prefixes to the service URLs.

While description latency is important, with the caching mechanism in the VRM, the

description for each stationary device is only fetched once from the remote HAN. For

mobile devices the description is fetched once during the lifetime of the device, however

mobile devices are short lived. Therefore, the processing time of requests from the cache is

even more significant. Figure 47 shows the average processing time for description requests

remains relatively constant with the increased number of services shared with the local

HAN. The average processing time is less than 10 milliseconds for 300 services shared, for

all desktops. The increase in the load on the system with more shared services does increase

the maximum processing time for remote description request. While for 300 remote services

the maximum processing time is less than 450 milliseconds for all desktops, it goes above

500 milliseconds when 600 services are shared with the local HAN. For cached description

request processing, the processing time (average and max) is always below 5 milliseconds

for all desktops, which is useful for reducing the inter-HAN traffic and processing overhead

in the VRM.

6.2.1.4.6. Remote invocation delay

Remote invocation processing time measures the time it takes the VRM in the local HAN to

process a SOAP request – from the time a request is received in the VRM, until it sends a

message to the remote HAN requesting the invocation, and from the time it receives the

SOAP response, until the message is sent back to the requesting control point. Figure 48

shows the average and maximum processing time for SOAP requests in the VRM. It can be

seen that the average SOAP processing overhead increases slowly with the growing number

of devices. In addition it can be seen that for all desktops in the experiment the maximum

processing time of invocation requests in the VRM is less than 250 milliseconds for 600

shared services and under 175 milliseconds for 300 shared services.

The number of SOAP requests made by local control point for remote devices grows from

78 (with 60 remote services shared with the local HAN) to 780 (with 600 remote services

shared with the local HAN), which produces the resulting additional load on the local Krox

 236

system which affects all of the measurements, not only the processing time of SOAP

requests.

6.2.1.4.7. Event notification processing time

When the LNC receives an event notification that corresponds to a subscription made by a

remote instance of Krox system, the LNC forwards the event using the communication

subsystem to the subscribed Krox system. In the remote Krox system, the VRM resolves the

actual subscriber and sends the event notification. The event processing time is the time it

takes the VRM from when it received the event notification message from the remote LNC,

until when the VRM sends the notification to the subscribed control point. Figure 49 shows

that the event notification processing time in the VRM increases slowly with the growing

number of devices with less than 15 milliseconds per event notification with up to 600

remote services shared with the local HAN. It should be noted that the number of event

notifications grows with the number of services (or more precisely with the number of

Figure 48 Krox System Remote Invocation Processing Time

0

2

4

6

8

10

12

14

16

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Average Remote Invoca:on Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

0

50

100

150

200

250

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Maximum Remote Invoca;on Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

 237

SOAP requests and event subscriptions made by the control point). The number of event

notifications grows from 300 per hour (for 60 services shared with the local HAN) to 3000

per hour (for 600 services shared with the local HAN). With more services in the HAN the

maximum event notification processing time grows to 250 milliseconds with 300 remote

services shared with the local HAN and 412 milliseconds with 600 remote services shared

with the local HAN.

6.2.1.4.8. Bandwidth utilisation

Figure 50 shows the increase in inter-HAN bandwidth, utilising the upstream and

downstream Internet connection of the household, with more devices shared devices. The

messages correspond to inter-HAN discovery announcements, description request and

responses, control requests and responses, and event subscription and notifications. The

Figure 49 Krox System Event Notification Processing Time

0

2

4

6

8

10

12

14

16

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Average Remote Event Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

0

50

100

150

200

250

300

350

400

450

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

M
il
li
se
co
n
d
s

Remote Services Shared With Each HAN

Maximum Remote Event Processing Time

Desktop 1

Desktop 2

Desktop 3

Desktop 4

Desktop 5

 238

messages are counted in the communication subsystem, before they are sent and after they

are received, and their size in bytes is measured. It should be noted that the amount of

bandwidth consumed in this experiment is dominated by the large SOAP responses. With

5.8-58 megabytes used for 39-390 large SOAP responses (in one hour), the bandwidth used

for discovery, description, eventing, and shorter SOAP responses, which is the remaining

bandwidth used is relatively small.

6.2.1.4.9. Summary

The sections above presented the results of the controlled experiment for Krox system

implementation with UPnP plug-in and a UPnP emulated network with a setup of 5 HANs,

such that each HAN is sharing all devices with all other 4 HANs. The results show linear

scalability of the system both on average as well as on the maximum. The increase of the

CPU utilisation shows that with up to 300 remote services in the local HAN the CPU is still

relatively low at less than 4% on average on all desktop machines. The heap memory

required to run the Krox with up to 300 remote services is less than 6 Megabytes. While this

is relatively low, in addition to the memory required for the intra-HAN service

interoperability, this may exclude potential deployment platforms, which are more resource

constrained. The VRM response time to search requests made every 2 minutes with a search

Figure 50 Krox System Bandwidth Utilisation

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

60" 120" 180" 240" 300" 360" 420" 480" 540" 600"

M
eg
ab

yt
es
)

Remote)Services)Shared)With)Each)HAN)

Received"Data"(Average"per"HAN"in"MB)" Sent"Data"(Average"per"HAN"in"MB)"

 239

type of ssdp:all grows to less than 1.5 seconds on average with up to 300 remote services.

With a maximum of up to 4 seconds these result indicate that control points in the local

HAN can seamlessly discover remote services with no significant difference from local

devices and services. From discovery point of view, an important factor is how long it takes

before a device is discovered in its original HAN until it is announced in remote HANs with

which it is shared. From the results shown in this experiment, it is apparent that this delay

will be dominated by the network latency between the HANs because the local processing

time of the VRM given a remote announcement is relatively small. Remote description

delay is an important factor because it affects the seamless interaction with control points.

The results show that on average this delay will be dominated by the network latency

between the HANs and the time it takes the actual device description to be fetched.

However when adding these delays, the overall delay exhibited by the VRM may be

excessive in some cases. Therefore the use of caching is important and significantly

improves the latency seen by the control point. Remote invocation delay affects the

interaction with a human user or a composite service that is waiting for its completion. The

results of the experiment show that on average the delay introduced by the VRM is

negligible, however the maximum delay add to the network latency and the actual time

taken for the device to return the response may impact the user experience. This is

especially important in nested composite services where each layer can introduce a latency

that when considered separately is negligible but the accumulative delay may be excessive.

Event notification is an important mechanism for enabling control points to keep up to date

with the state of devices they interact with. For example, a control point may want to know

the status of a media player (playing, stopped, paused) so it can present it to its users, in

addition a composite service may be using events to trigger some functionality. Therefore

event notification delay should be relatively small. The experiment shows that on average

the event delay is dominated by the network latency, and can enable seamless integration

with control point applications with no significant delay. Similarly to remote invocation

delay, in a nested composite service, when the maximum delay is exhibited in addition to

the network latency, this delay may be excessive and may need to be reduced. Finally the

experiment shows that the levels of bandwidth used for the communication required for

enabling remote services to be discovered in local HANs is relatively small, therefore the

actual amount of bandwidth used for communication between the HANs will be dominated

by the amount of data used for interaction with devices, e.g. retrieval of play lists, or actual

streaming of data.

 240

As discussed earlier, since the setup is limited to 5 HANs sharing devices and services, in

order to be able to reason about the scalability to more HANs, the emulated control point

increases the load on the local HAN artificially. If the number of services shared with

remote HANs remains fixed, more HANs with which devices are shared lead to more

overhead on the LNC, with more description requests, SOAP requests, and event

subscriptions from these remote HANs. Therefore the emulated HAN artificially increases

the load on the LNC by sending more requests than is expected for sharing devices and

services with 4 remote HANs

Finally, the experiment was performed in a controlled environment, with no additional

network activity such as downloading or uploading of content done in parallel to the

experiment using the HAN’s bandwidth. Therefore it is apparent that the results only

provide lower bounds on the potential performance of the system under realistic conditions.

6.2.2. Jini

In the implementation described in the previous chapter, remote Jini services are represented

in the local HAN with lightweight objects (GenericJiniForwarder). Additionally, Jini

requires both HANs to have the Java interfaces of the services they wish to interact with in

their path, therefore during discovery, only the name of the interface, the service instance

identifier and the service attributes are sent using the communication subsystem. This

guarantees that discovery related inter-HAN traffic is efficient. The main challenge with

regard to remote Jini services is the invocation latency, as the number of hops from a client

calling a method on a proxy to the service implementation being invoked in a remote HAN

is relatively high as discussed in section 5.6.2.

In order to evaluate the overhead of invoking actions of remote services, a sample Jini

service was implemented (this is the name guessing service shown in figure 38). In this

experiment two HANs were used such that one HAN (HAN1) was hosting the implemented

Jini service and sharing it with the other HAN (HAN2), therefore the Jini service from

HAN1 was shown in HAN2 as a remote Jini service. The service takes a String as a

parameter and returns a String. To check the remote overhead of sending the request and

response over the communication subsystem, the local execution time was compared with

the remote execution time. In 100 executions, the method took 0.92 milliseconds on average

 241

with the local Jini service. This time does not include the initial lookup but only the

invocation of the method on the proxy object that was returned from the lookup service. In

100 executions of the method on a proxy obtained for a virtual Jini service took 35.17

milliseconds on average. This includes the full implementation of the remote invocation.

The remote invocation added an overhead of ~34 milliseconds per each call. Considering

that the method tested simply returns a string concatenation and is very light weight, it is a

reasonable assumption that with a method that implements some more complicated function

and with running on a public network infrastructure and the latency it may add, this

overhead would be negligible.

6.2.3. Summary

In the previous sections, the results from the inter-HAN service interoperability performance

evaluation performed using the Krox system implementation were described. In this section

the performance requirements as defined in section 3.4 are assessed based on the results

presented in the previous sections.

6.2.3.1. Scale-up (intra-HAN) – REQ #16

The requirement (REQ #16) is to be able to represent 300 remote services in the local HAN.

The results of the experiment described in 6.2.1.4 show that the Krox system with UPnP

service protocol plug-in performs well with up to 300 remote services and scales linearly

beyond that. The average CPU is below 5% for all systems in the evaluation, heap memory

is below 8MB. Local search requests are completed on average in less than 1.5 seconds and

the maximum processing time is less than 4 seconds. The overhead of the VRM for

discovery, description, control and event notification is negligible – on average it is below

15 milliseconds, and the maximum processing time is below 400 milliseconds. The results

of the experiment for Jini services described in section 6.2.2 shows that the overhead for Jini

service invocation is negligible and would be dominated by the network latency rather than

by the processing overhead of the VRM or LNC. It is important to restate that the

experiment does not evaluate the actual latency of the network between the HANs. The

purpose is to evaluate the performance of the system in a controlled environment. A

production system would be affected by the network latency and the upstream and

downstream of HANs, however the relevant metrics measured in this evaluation should still

hold and can therefore be compared against other systems implementations.

 242

6.2.3.2. Scale-up (inter-HAN) – REQ #17

The requirement (REQ #17) is to be able to share devices and services from the local HAN

with up to 15 remote HANs. As discussed in the experimental design (section 6.2.1.3.2), the

experiment was designed such that load on the LNC will represent more than the 4 HANs

with which devices are shared. The results of the evaluation indicate that the number of

remote HANs can be extended without incurring significant performance overhead. The

number of HANs (as opposed to the number of services shared from remote HANs) affects

only the LNC and only subset of the LNC behaviour. The VRM is only affected by the

number of services shared from remote HANs rather than by the number of remote HANs.

The following aspects of the LNC are affected by sharing with more remote HANs:

1) The number of messages sent by the LNC about added/removed resources – The

overhead of sending additional messages is negligible. The communication

subsystem inherits messaging scalability from its underlying IM&P system, and

given the inherently small size of discovery messages, the overhead of an additional

message is negligible.

2) The number of description requests received in the local HAN – More remote

HANs with which local services are shared will lead to more description requests

from client applications in these HANs. The maximum number of these description

requests therefore corresponds to the number of shared services, such that each

HAN would request the service description no more than once.

3) The number of SOAP requests received in the local HAN – More remote HANs

with which local services are shared could also potentially lead to more SOAP

request made by client applications from these HANs to interact with the local

HANs shared devices and services.

4) The number of event subscriptions received in the local HAN – More remote HANs

with which local services are shared could potentially lead to more event

subscriptions in the local HAN made by client applications in remote HANs, which

could lead to more event notifications being sent. However the overhead of more

event notifications on the LNC is restricted to resolving the identifier of the Krox

system in the remote HAN and sending the event notification using the

communication subsystem. Since event notification has a very low overhead, and

 243

only indicates a change in a state variable, it is limited in size, therefore it does not

require excessive bandwidth, even with additional HANs.

While it cannot be directly argued that it follows from the scalability of the results that the

system can scale to a larger number of HANs, it can be reasoned from the design of the

experiment and from the linear scalability observed that the system is capable of scaling to

more than 4 HANs with reasonable performance.

6.2.3.3. Scale-down – REQ #18

The Java implementation of the Krox system enabled the system to be deployed on multiple

platforms. The performance evaluation was performed on Linux, however the system was

also tested successfully on Windows and OSX and worked as expected. The requirement

(REQ #18) is to be able to run the system on machines with processor with clock speed of

no more than 2GHz and no more than 1 gigabyte of RAM. Out of 5 desktops that were used

for the performance evaluation 3 of them have processors with 2GHz (desktop 1, desktop 4,

desktop 5). The same desktops have 1 gigabytes of RAM or less (desktop 4 has 750

megabytes). Desktop 2 and Desktop 3 have more processing power and RAM. The reason

for using more powerful machines in the experiment was to assess the effect of more

processing power on the results.

6.2.3.4. Concurrent access – REQ #19

As indicated in the design and implementation chapters, there is no inherent mechanism

preventing concurrent access to local HAN’s resources (REQ #19). During the UPnP

experiment, and Jini experiments concurrent requests were made and they are not

synchronised in any way by the Krox system.

6.2.3.5. Conclusions

As shown by this inter-HAN service interoperability experiment and summarised in this

section all of the performance requirements (REQ #16-REQ #19) are addressed by the

design and implementation.

 244

6.3. Intra-HAN service interoperability
performance evaluation

The service composition subsystem affects performance both in terms of processing and

memory. The service composition subsystem requires a servlet container for hosting the

generated web services, and an orchestration engine for hosting and executing composite

services. From performance point of view there are number of parameters that need to be

evaluated:

1) The overhead of generating of web services – How long it takes to generate web

service proxies and deploy them

2) What is the memory overhead of a deployed web service on the servlet container

3) What is the latency introduced by the additional layer of indirection for interaction

with a service – i.e. interacting with a service through a web service adds another

chain of processing that handles the request

The following sections present an evaluation of the Krox service composition subsystem

with these parameters.

6.3.1. Experiment Environment

Web services are typically hosted in a servlet container, although with Java 6 this is not

mandated. However, the service orchestration engine, Apache ODE cannot run as a stand-

alone Java program and is deployed as a web application in a servlet container. The

prototype used Tomcat servlet container version 6.0.18, which requires only 10-15MB of

RAM including the orchestration engine installed as a web application.

6.3.2. Web services

The process of automatic web service generation and deployment includes several steps as

described in the previous chapter. When a device is discovered an automatic JAX-WS web

service is generated and built for each service that the device contains. The web service is

then packaged and deployed in the local application server. This whole process requires

 245

between 2-5 seconds per service as measured on the generation of a web service for a UPnP

AVTranport service (measured 1000 times).

Table 7 shows indicative performance overheads introduced by the web service proxy for

UPnP services prototype implementation for 3 media renderer AVTransport service

operations (“Play”, “Pause” and “Stop”). The first column (UPnP) shows the time taken to

directly invoke the operation using SOAP messaging. The second column shows the server-

side time required to perform the same operation when it is wrapped in a web service

interacting with the UPnP control point application, here the additional redirection overhead

introduced by the server-side processing is approx. 5 milliseconds. Column three (round-

trip) shows the time taken to invoke the operation from a Java web service client on the

same host as the web service and demonstrates the additional overhead introduced by the

client side processing to form the web service request, passing it to the web server, and then

waiting for the web service response. The overall overhead introduced by the web service

based approach is equal to round trip time (column 3) minus the UPnP time (column 1) as

shown in column 4. On average this time equals to ~200 milliseconds, and it is important to

note that it includes the marshalling and un-marshalling of Java objects from XML which is

required only for a Java client and is not relevant for a composite service using the web

service.

6.3.3. Summary

The results shown in the section above comparing the direct invocation UPnP services

against the web service proxy invocation of the same services indicate that the overhead

added by the web service is relatively small – 200 milliseconds on average for UPnP

services. Table 7 shows the overall time spent in the service implementation in the second

Table 7 Performance Overhead of UPnP Web Service Proxy

UPnP Web Service
Wrapped UPnP

Round-trip
(Client, Web

Service, UPnP)

Web Service
Overhead

Play 112.36ms 117.86ms 202.44ms 90.08ms

Pause 365.46ms 370.98ms 614.85ms 249.39ms

Stop 342.35ms 347.44ms 585.0ms 242.64ms

 246

column and the overall time for a call to the service to return in the third column. It can be

seen from table 7 that the overhead added by the web service implementation is negligible

and constant while the overhead related to the calling the web service as shown in the third

column is 200 milliseconds on average.

The web service generation is time consuming (2-5 seconds) as indicated in 6.3.2. However,

the web service generation does not need to slow down discovery and can be streamlined as

a parallel process. The time is dominated by the time it takes to compile, package, and

deploy the service, which are done in another process. In addition, the implementation did

not use caching of web services to reuse the same web service when a service that was

already available in the HAN re-joins. With such caching, when a service that was already

available in the HAN once is available again, its corresponding web service (packaged as a

web archive) is copied from the caching directory to the auto deploy directory of the servlet

container enabling fast deployment, saving the time required for compiling and archiving

the web service.

This shows that the web service approach taken by the Krox system design works as

expected and does not incur significant overheads. It is extensible through the service

protocol plug-ins and enables intra-HAN service interoperability and service composability.

The web service approach is limited to addressing the syntactic service interoperability and

does not address the semantic interoperability.

6.4. Security analysis

HANs are exposed to various types of attacks for example malicious code (such as Trojan

horses, viruses and worms), Denial of Service (DoS) attacks and eavesdropping. These

attacks may differ in their approach, their goal and the way they interact with the HAN.

However, the HAN is typically considered by its users to be a closed and trusted domain.

With the Krox system for inter-HAN service interoperability, it needs to be guaranteed that

only trusted HANs can see shared devices and services and that only a trusted HAN can

share devices and services. In addition, extending the boundary of the HAN can introduce

new threats that need to be analysed in order to defend against attack on a single HAN from

spreading to HANs with which devices and services are shared.

 247

The first step in protecting a system is to have a deep understanding of the potential threats.

In the context of the Krox system, this means identify both potential attacks on the Krox

system itself as well as assess the impact of existing threats and vulnerabilities relevant to

UPnP and Jini service protocols on the Krox system, specifically in preventing attacks on

these service protocols from using the system to spread to multiple HANs.

In order to consider the potential attacks of the system, the following sections provide a

systematic analysis of the known threats that are relevant in the context of the Krox system

architecture and mitigation techniques. The term weakness refers to a security vulnerability

in the specification or behaviour of an entity. The term vulnerability refers to a flaw or a

security weakness in an asset that can be exploited by a threat [40]. A negative impact can

be the result of a malicious or an accidental action [98]. Attack trees provide an intuitive and

systematic way to represent the weaknesses and risks of a given system [115]. In the

following sections attack trees are used to identify the potential threats to the Krox system,

based on decomposition of the system to its components that are susceptible to attacks: the

communication subsystem, and the service protocol plug-ins. The communication

subsystem uses IM&P as its underlying communication protocol for providing messaging

and presence capabilities to the Krox system instances, therefore the security analysis for the

communication subsystem can extend existing work in the area of IM&P security in the

context of the Krox system, as discussed in section 6.4.1. An assessment of the potential

attacks on UPnP devices and their impact on the Krox system, specifically the potential for

attacks to spread to multiple HANs is given in section 6.4.2. Finally an assessment of the

potential attacks on Jini services, and the potential of these attacks to exploit the Krox

system to spread to multiple HANs is presented in section 6.4.3.

6.4.1. Communication subsystem

The communication subsystem in the Krox architecture enables instances of the system in

multiple HANs to exchange messages and be notified on status changes of the system in

remote HANs for HANs with which sharing has been agreed. For the purpose of this thesis,

the focus is on how to confine an attack made to a single HAN and prevent it from

spreading to multiple HANs with which it is sharing or using devices and services. The

communication subsystem embeds a number of security mechanisms to facilitate secure

 248

communication as described in the design security considerations (section 4.3.6) including

authentication, encryption, and auditing. The analysis in this section is adding to the security

mechanisms that are recommended for IM&P and specifically XMPP based communication.

The main focus of this section therefore is on DoS attacks and their potential to spread using

the communication subsystem to additional HANs.

A Denial of Service (DoS) attack is defined by RFC 4732 as an attack in which the attacker

attempts to cause the victim’s machine or resource to become unavailable to its legitimate

users [53]. DoS can be caused by high demand, faulty implementation or a malicious attack.

For Krox communication subsystem an DoS attack can be made from within the local HAN,

from another HAN with which devices and services are shared, or from a foreign HAN. A

DoS can be caused by a software bug, either in the IM&P endpoint, or in other components,

service protocol plug-ins, or by vulnerabilities in service protocols exploited by an attacker.

While the above could lead to the denial of service of the local Krox system, unless defence

mechanisms are used, these attacks can spread beyond the scope of Krox system to other

HANs. Figure 51 illustrates the potential DoS attacks on Krox communication subsystem

using an attack tree. The following sections describe the nodes on this attack tree from left

to right.

6.4.1.1. Messages flood

A flood of messages sent to the Krox system in the local HAN can cause a denial of service

in the system. If the messages correspond to device announcements in the local HAN, they

may attempt to spread the attack to all remote HANs with which the service is shared and

cause denial of service in them, not only to the Krox system, but also to other systems in

those HANs. The following sections assess the effect of various scenarios of messages flood

Figure 51 Communication Subsystem Attack Tree

Denial of
Service

Messages
flood

Misbehaving
service protocol

plug-in

Misbehaving
IM&P

endpoint

Unwanted
communication

Man-in-the-
middle

TCP session
hijack

Stolen password

Service protocol
messages flood

Network
protocol

messages flood

 249

on Krox system and suggest corresponding defence mechanisms.

6.4.1.1.1. Service protocol messages flood

Description: If the service protocol is vulnerable in such way that can lead to a service

protocol messages flood, such a scenario, caused by either an attacker exploiting the

vulnerability, or by a software bug in a device or a service could result in the corresponding

Krox service protocol plug-in flooding the communication subsystem with messages to

Krox systems in remote HANs.

Effect on Krox system: A service protocol causing a messages flood can result in denial of

service in the local Krox system, but can also cause denial of service in remote Krox

systems, and client applications and lookup services in those remote HANs.

Recommended defence mechanisms: In order to prevent a messages flood from causing

denial of service in the system or hosting HAN, the communication subsystem should

support rate limiting as described in more details in section 4.3.6.4. The rate limiting

mechanism was not implemented as part of the prototype implementation. Rate limiting is

useful only from preventing the messages flood from spreading to remote HANs. The Krox

system in the local HAN will eventually run out of memory.

6.4.1.1.2. Network protocol messages flood

Description: Network protocol messages flood refers to an attacker trying to shut down the

port which is used by the communication subsystem for exchanging messages with remote

HANs.

Effect on Krox system: In case the attack is successful the communication system will be

disconnected from the IM&P server and will not be able to participate in sharing with

remote HANs.

Recommended defence mechanisms: While an arbitrary network protocol attack on the

communication subsystem can definitely shut it down and prevent it from being able to

communicate with remote HANs, it may not spread to remote HANs, therefore no specific

defence mechanisms are defined.

 250

6.4.1.1.3. Misbehaving service protocol plug-in

Description: A misbehaving service protocol plug-in can initiate messages flood to remote

HANs either due to a bug or a malicious plug-in. For example, the service protocol plug-in

can send more messages to remote HANs than required by the service protocol, e.g. by

duplicating discovery announcements.

Effect on Krox system: The effect on the system is similar to that of a messages flood

caused by a service protocol.

Recommended defence mechanisms: While it is assumed that service protocol plug-ins

running in the HAN are well tested, bugs can still exist, and in order to defend against this

vulnerability, the rate limiting mechanism discussed above should be used.

6.4.1.1.4. Misbehaving IM&P endpoint

Description: A misbehaving or malicious IM&P endpoint is an authenticated client of the

IM&P server that initiates a messages flood to the Krox system in the local HAN. The attack

can come from within the HAN, from another HAN with which the local HAN shares or

uses devices and services, or from a foreign HAN. The messages flood could contain

presence messages, service protocol specific messages, or other types of messages.

Effect on Krox system: The effect on the system is similar to that of a messages flood

caused by a service protocol.

Recommended defence mechanisms: This type of attack should be handled at the level of

the IM&P server by restricting the number of connections and the bandwidth that a client

(an IP address) can use in a given time. In addition, the IM&P endpoint in the local HAN

should ignore all messages from other endpoints that are not in its buddy roster. While the

local HAN can still be affected, this would defend against an attack from a foreign HAN

from spreading to remote HANs from the buddy roster of the HAN.

6.4.1.2. Man in the middle

Man in the middle (MITM) attack is an attack where the attacker intercepts and tampers

with the communication between the victim and the host. By injecting themselves between

the victim and the server, the attacker can invoke an attack on the server while

impersonating to the victim, or an attack on the victim while impersonating the server.

 251

6.4.1.2.1. Client TCP session hijack

Description: An attacker can intercept a conversation between the client and the server, and

potentially manipulate it and create a man-in-the-middle attack. This could be done using

TCP session hijack techniques as demonstrated in [145]. By tampering with the messages

sent between a Krox instance and the IM&P server and modifying them with malicious

content an attack against a remote instance of Krox system, or an IM&P server can be

established.

Effect on Krox system: Such an attack could have different effects on the local and remote

Krox systems depending on the goal of the attacker. This could lead to disconnection of the

local HAN from the IM&P server or to corrupt or modify data to appear as if sent from the

Krox system in the local HAN to remote HANs.

Recommended defence mechanisms: In [105] several mechanisms were identified to

improve the robustness of TCP against session hijacking. Since these techniques are applied

in the implementation of the TCP library, and since all communication in the Krox system

architecture is made via IM&P communication, these techniques should be considered for

the IM&P client and server implementations.

6.4.1.3. Unwanted communication

Description: Unwanted communication refers to an authenticated IM&P endpoint that

sends messages to the Krox system, although it is not in its buddy roster. Such an IM&P

endpoint can send arbitrary messages it to the Krox system, long messages consuming its

resources.

Effect on Krox system: Unwanted communication from an IM&P client can result in denial

of service in the local Krox system, however it cannot spread to multiple HANs. It cannot

result in information disclosure because actions will only be invoked on behalf of remote

HANs with which sharing has been agreed, based on the sharing configuration of the home

user.

Recommended defence mechanisms: The communication subsystem of Krox needs to

guarantee that the local system only receives messages from remote Krox systems with

which sharing has been agreed. The filtering can be done in the IM&P client side of Krox

such that messages are checked before they are processed, however this could be

 252

implemented more efficiently as an extension to the IM&P server before messages are sent

to the IM&P client.

6.4.1.4. Stolen password

Description: If an attacker obtained the user/password information for Krox system in

HAN1, he can use this information to access remote devices shared with the HAN1. In

addition the attacker can use the stolen identity to facilitate denial of service attack while

assuming the identity of the victim.

Effect on Krox system: An attacker with a Krox credential could connect from any HAN

and either attack remote HANs with which the victim’s Krox system was sharing resources,

or consume resources from these HANs without permission. The attack as well as

consuming resources shared with the victim’s HAN would seem as if they are made from

the victim’s HAN.

Recommended defence mechanisms: In the Krox system, authentication takes place after

TLS has been negotiated therefore the password cannot be obtained during the

authentication process by sniffing the communication. However, there is no inherent

mechanism in Krox architecture to defend against stolen password. The password should be

stored in Krox system in such way that it is hard to compromise. The system could provide

indication of when the system was last authenticated and the IP address, which was used for

the authentication. In addition the system can provide an indication when another login was

made with the same identity, which can give the home user an indication that his password

was compromised. These mechanisms however were not implemented in the Krox prototype

system.

6.4.2. UPnP service protocol plug-in

UPnP architecture has several potential security vulnerabilities and weaknesses. Some of the

vulnerabilities are inherently related to the way the UPnP protocol works, while others are

related to specific device implementations. Several vulnerabilities are related to specific

classes of devices such as Internet gateway while others are more generic. Following the

attack tree methodology, UPnP attacks can be classified by the goal of the attacker into two

groups: denial of service, and malicious management actions. The purpose of this section is

not to define mechanisms to make UPnP more secure, but rather to defend attacks that

 253

exploit UPnP vulnerabilities from spreading to remote HANs using the Krox system. The

following sections present these potential attacks, the goal an attacker wishes to achieve, the

technique for achieving this goal, the effect on HANs running the Krox system, and

mechanisms to defend against the attack from spreading across the boundaries of a single

HAN. Section 6.4.2.1 discusses the potential DoS attacks on UPnP and their effect on the

Krox system. Section 6.4.2.2 discusses the effect of malicious management actions. Finally

section 6.4.2.3 discusses the effect of eavesdropping to UPnP protocol in the local HAN.

6.4.2.1. Denial of Service

In the context of UPnP, DoS can cause UPnP devices to shut down, and can cause control

points to run out of memory, or crash. Figure 52 shows an attack tree that was created for

this analysis summarising the potential techniques for DoS attacks on UPnP networks. The

following sections are organised according to the nodes in the tree from left to right, such

that for each leaf node, the type of attack is described, with the potential effect on the Krox

system, and the recommended defence mechanism.

6.4.2.1.1. Misbehaving device

A misbehaving UPnP device can either be a faulty device, a device with a bug, or a

malicious device installed by an attacker or by the home user by mistake, such as by

installing a Trojan horse that can act as a malicious device. In addition, the misbehaving

device can be a friend’s mobile device joining the HAN. There are several ways that a

misbehaving device could lead to denial of service in the local HAN as described in the

following sections.

Figure 52 Denial of Service Attack Tree for UPnP

Denial of
Service

External
URLs

Long or
malformed
description

XML document

Frequent
search
request

Misbehaving
device

Misbehaving
control point

Malformed
control
request

Long or
malformed

control
response

Presence
announcement

flood

Event
notification

flood

Obsessive
event

subscription

External IP
for event

subscription

 254

6.4.2.1.1.1. Presence announcement flood

Description: A misbehaving device can announce its presence (through SSDP alive and

byebye messages) with a high frequency and thereby cause denial of service in control

points in the local HAN. The UPnP discovery protocol is based on local multicast of

presence announcements and search requests. A misbehaving device flooding the multicast

address can cause denial of service to all control point applications simultaneously. The

specific frequency of announcements that leads to denial of service is undefined and

depends on the implementation of the control point. There is no inherent workaround in the

UPnP protocol that protects against this type of misbehaving device. The UPnP discovery

specification discusses the need to be able to automatically shut off the discovery algorithm

however this feature has not been defined in the discovery specification [133].

Effect on Krox system: The UPnP LNC listens to device announcements on the local HAN.

Therefore, if a misbehaving device exists in the local HAN, the LNC is affected. In the case

where the device is explicitly shared with remote HANs, this means that every such

announcement would be forwarded to those remote HANs. If the device is not shared, the

LNC only updates its local repository with the device update, however, if the device is

shared with remote HANs, such a flood of device announcements can lead to denial of

service not only of the local Krox instance, but also of remote instances of Krox system and

of control points in remote HANs.

Recommended defence mechanisms: In case the misbehaving device is shared with

remote HANs, Krox system must be able to limit the attack to the HAN hosting the

misbehaving device. This could be achieved using the rate limiting capability of the

communication subsystem as described in section 4.3.6.4. The local Krox system may still

suffer denial of service however it will not be propagated to Krox system instances in

remote HANs. If the Krox system can identify the attack on time, it can disconnect from the

IM&P server and by that stop sharing its devices with remote HANs. Similarly, if a Krox

system identifies that a remote HAN is under attack, it can block it by means of the

underlying IM&P system by pause sharing with this “buddy” (i.e. remote HAN), and by that

ignore all messages received from that HAN.

 255

6.4.2.1.1.2. External URLs

Description: UPnP presence announcements contain a URL for the location of the device

description. The device description contains URLs for interacting with services and

potentially for icons. These URLs must be local to the network containing the control point

and the device, however many control point application do not validate the location before

they try to interact with it. In the case of a malicious device, this could lead to denial of

service to multiple control points in the local HAN when trying to communicate the device

in the given location. An example of this attack is shown in [37] for several versions of

Microsoft Windows. Microsoft released a patch to defend against this attack.

Effect on Krox system: Such an attack can only affect the local instance of Krox. The

reason is that the actual encoded URL of the location is never sent to remote HANs, instead,

remote devices are announced in the local HAN with location URLs that are local to the

network hosting the Krox system. However external location URL can cause the local Krox

system to suffer denial of service, and therefore needs to be protected against.

Recommended defence mechanism: The LNC can validate the presence announcements

and search responses for non-local addresses in the HAN. If they are not local, they can be

discarded. All other URLs are expected to be relative to the device IP address and device

port, therefore if they are not, the device can be ignored, and a warning can be propagated to

the HAN user. This mechanism is included in the design security guidelines for the UPnP

service protocol however it was not implemented prototype implementation (section

4.3.3.2.7).

6.4.2.1.1.3. Long or malformed description document

Description: When a control point sends an HTTP GET request for the device/service

description, the device responds with a device description document. A misbehaving device

can send a sufficiently long description that can cause the control point to run out of

memory. Some embedded control points may not be equipped with powerful parsers for

XML and can fail due to a misbehaving device sending a malformed device/service

description document that contains illegal characters or white spaces.

Effect on Krox system: A sufficiently long description can cause the Krox system to run

out of memory. Even if the Krox system does not run out of memory immediately, if the

description is sufficiently long, and if it is sent to a requesting remote HAN, it may cause it

 256

to run out of memory. A malformed description is not problematic because Krox parses the

description document before it is sent to the requesting remote HAN. A malformed

description document will fail to parse and therefore will not be sent to the requesting Krox

system instance in the remote HAN.

Recommended defence mechanism: While the system cannot defend locally against

running out of memory when receiving long descriptions, it can avoid sending suspiciously

long descriptions to remote HANs and instead report an error. This mechanism is included

in the design security guidelines for the UPnP service protocol however it was not

implemented prototype implementation (section 4.3.3.2.7).

6.4.2.1.1.4. Long or malformed SOAP response

Description: A misbehaving device can return a sufficiently long SOAP response that can

cause a control point to run out of memory. Similarly to the problem with malformed

description, a malformed SOAP response can cause control points to crash due to weak

XML/SOAP parser implementation.

Effect on Krox system: Similarly to the long description problem, even if the Krox system

does not run out of memory, by sending the long SOAP response to the remote HAN, it can

cause the remote Krox system instance to run out of memory, or cause the requesting control

point in the remote HAN to run out of memory. A malformed SOAP responses are not a

problem because the SOAP response is parsed in the local HAN and if it is malformed, an

error will be sent to the requesting remote HAN.

Recommended defence mechanism: Similarly to the handling of description requests the

LNC can check the size of the SOAP response and if it is suspiciously long, it may discard it

and return an error to the requesting remote HAN. This mechanism is included in the design

security guidelines for the UPnP service protocol however it was not implemented prototype

implementation (section 4.3.3.2.7).

6.4.2.1.1.5. Event notification flood

Description: A misbehaving device can flood subscribed control points with event

notifications and cause denial of service. Event notifications are supposed to be sent only

when state variables change their value. A misbehaving device can send many event

 257

notifications in a short interval to all subscribed control points and cause them to run out of

memory or exhaust their resources.

Effect on Krox system: If a control point from a remote HAN is subscribed to event

notifications on a misbehaving device in the local HAN, the notifications are tunnelled to

the remote control point through the Krox system in the local HAN. An event notification

flood could lead to Krox system to run out of memory, but if it can still send the messages to

the remote HAN, it could achieve the effect of denial of service on the subscribed control

point.

Recommended defence mechanism: Rate limiting on the communication subsystem would

prevent the attack from spreading to the remote HAN subscribed for event notifications. In

addition, when such a misbehaving device sending notifications flood is identified, the LNC

block event subscription for the misbehaving device. This mechanism was not implemented,

however it is included in the design security guidelines (sections 4.3.6.4 and 4.3.3.2.7)

6.4.2.1.2. Misbehaving control point

A misbehaving control point can either be a faulty or malicious application installed by an

attacker or by the home user by mistake, such as by installing a Trojan horse. In addition,

the misbehaving control point application can join the HAN via a mobile device. There are

several ways that a misbehaving control point could lead to denial of service in the local

HAN.

6.4.2.1.2.1. Search request flood

Description: A control point can learn about devices in the local HAN by sending periodic

search request. A misbehaving control point can flood the HAN with frequent search

requests that force all devices that support the service type in the request to respond, which

in turn can cause the devices to suffer denial of service.

Effect on Krox system: The VRM in the local HAN acts a proxy for search requests made

by control points. Therefore when a search request is sent by a control point in the local

HAN, the VRM needs to respond on behalf of all devices and services that correspond to the

search type in the request. This could lead to the denial of service in the Krox system in the

local HAN, however it does not affect remote HANs with which the local HAN shares

devices and services.

 258

Recommended defence mechanism: The VRM can define the maximum number of search

request for a period of time, i.e. if a series of search requests are too frequent, the VRM

would ignore the requests for a certain time. The rate limiting definitions can be configured

to accommodate legitimate loads. This mechanism is included in the design security

guidelines for the UPnP service protocol however it was not implemented prototype

implementation (section 4.3.3.2.7).

6.4.2.1.2.2. Malformed or sufficiently long SOAP request

Description: Some UPnP devices are not equipped with powerful SOAP/XML parsing

capabilities, which can result in their crash when they receive a malformed SOAP request.

When the SOAP request is sufficiently long, it can cause the device to run out of memory.

Effect on Krox system: When the VRM receives SOAP request for an action invocation on

a remote device, the request is parsed locally before being sent, therefore, if it is not well

formed, an error will be sent to the local misbehaving control point, and the request will not

be sent to the remote HAN. If the request is very long, it may cause the Krox system to run

out of memory. If it is very long but did not cause the local Krox system to run out of

memory, when sent to the remote HAN it can still cause the Krox system in the remote

HAN or the remote device to run out of memory.

Recommended defence mechanism: In order to defend against excessively long SOAP

requests, the same techniques discussed for protecting against long description response

should be applied (see section 4.3.3.2.7).

6.4.2.1.2.3. External IP for event subscription

Description: A misbehaving control point can try to exhaust the resources of a device by

sending event subscription requests with external IP addresses. In case the device does not

check that the IP address is not in the local HAN, it will accept the subscription and will

never remove it until it expires. Event subscriptions consume device resources and devices

typically limit the number of event subscriptions allowed, therefore a misbehaving control

can lead to genuine subscriptions being refused by the device as was demonstrated in [134].

Effect on Krox system: Event subscriptions to remote devices are made by the LNC in that

HAN, such that the callback interface that is given by the control point to the VRM is not

passed to the remote HAN and therefore is ignored in the HAN hosting the live device.

 259

However, in the HAN hosting the misbehaving control point, the VRM forwards

notifications received from the live device in the remote HAN, to the callback interface

given in the subscription. Therefore if the given callback URL is external, this could lead to

denial of service in the local HAN’s Krox system.

Recommended defence mechanism: When the VRM receives a subscription request with a

callback interface that has an external URL it can refuse the subscription and return an error

message. This mechanism is included in the design security guidelines for the UPnP service

protocol however it was not implemented prototype implementation (section 4.3.3.2.7).

6.4.2.1.2.4. Excessive event subscription

Description: The UPnP protocol does not limit a control point to subscribing for event

notifications only once. Therefore a control point can send many subscriptions to the same

device. When the maximum number of allowed subscription (device specific) is reached, the

device will not allow any more subscriptions to be made, and the existing subscriptions will

remain. With enough event subscriptions the device reaches denial of service, such that the

device remains alive however UPnP is shut down.

Effect on Krox system: More event subscription lead to more inter-HAN traffic, and more

memory overhead, both in the LNC and in the VRM. Given enough subscription, both the

device for which subscription is made, as well as the corresponding Krox systems will reach

denial of service.

Recommended defence mechanism: For each device the LNC could keep a maximum of

one subscription per UPnP service on behalf of all remote HANs with an infinite expiration

time. When additional requests for subscription are received, they will be mapped in

memory against the physical subscription that was already made with the device. When a

remote HAN cancels a subscription, unless it is the last one, it only updates the memory

mapping. In addition, the VRM could subscribe for each service maximum once in the

remote LNC and map all additional subscriptions internally to this remote subscription.

When the last subscription is removed from the VRM, the remote LNC can be notified. This

mechanism is included in the design security guidelines for the UPnP service protocol

however it was not implemented prototype implementation (section 4.3.3.2.7).

 260

6.4.2.2. Malicious management actions

There are various goals behind malicious management actions attacks and the damage of

such attacks can vary significantly. Malicious management actions are actions made using

UPnP to an Internet Gateway Device (IGD). The reason for the emphasis on IGD is because

of its sensitive role in the HAN in controlling traffic and in that it has certain vulnerabilities

that when leveraged by attackers can have severe impact on the HAN.

The UPnP IGD profile enables control points to change several configurations, some of

which could be harmful if made by an attacker. As opposed to DoS attacks that require the

attacker to be present in the HAN (e.g. as malware), for attacks against the IGD this is not

necessarily required. Such an attack can be performed either by a malicious control point

already located in the local HAN, or by a script invoked accidentally by the user through a

web browser as was shown in [45]. The latter is enabled because IGD is typically assigned a

standard IP address or host name (e.g. 192.168.1.1) that can be guessed by an attacker. Such

a script contains a SOAP request that the user unintentionally causes to be sent to a

preconfigured IP address that the attacker guesses to belong to the IGD. If successful, the

attacker can invoke any action supported by the UPnP IGD specification. A UPnP IGD

offers convenient control over the home gateway allowing control points to configure port

forwarding, and configure the DNS. The purpose of this interface is to enable applications to

configure the router with the configuration they require instead of requiring manual

intervention from the user who is typically not qualified in such tasks. For example IGD

interface enables applications such as MSN Messenger, XBOX, BitTorrent clients, and

others to configure port forwarding instead of asking the user to interact directly with the

router. While enabling convenient access to the residential gateway, the IGD suffers from

Figure 53 Malicious Management Actions Attack Tree

Malicious actions
related to

management

Missing target
validation

Port mapping
configuration

change

Mapping to
external IP

DNS
configuration

change

Linux
command
execution

 261

several flaws that can be leveraged by attackers and present severe security threats. Since

the IGD controls some of the most vulnerable features of the home router, an attack on it

may have significant consequences. While the Krox system implementation does not

enforce it, the security guidelines of the UPnP plug-in design (section 4.3.3.2.7) recommend

to not share IGD devices because of the potential damage that can be created if it is

attacked. Figure 53 presents an attack tree that corresponds to malicious management action

attacks. The following sections are organised according to the tree nodes from left to right.

6.4.2.2.1. Port mapping configuration change

Port mapping in the IGD enables redirection of incoming traffic on a specific port of the

IGD to another IPAddress/port. Attacks that attempt to modify the port mapping of the IGD

send a UPnP SOAP request to the device. The techniques for configuring the port mapping

of the IGD rely on weaknesses in the implementation of these devices that have been shown

to exist in commercial IGD implementations [134].

6.4.2.2.1.1. Missing validation

Description: There is no validation in the IGD that the device requesting the mapping is the

target of the mapping – i.e. that a device is asking to configure forwarding for itself. This

means any device/control point can ask to forward any public IP/port to any other private

IP/port. A control point installed as part of a virus or Trojan horse could use this weakness

to direct traffic to applications that are not expecting it and by that disrupt applications

normal behaviour, or to enable external access by attackers to devices or services in the

HAN.

Effect on Krox system: The effect of changes in the configuration of an IGD device affects

the HAN in which the IGD resides. There is no global effect of this on the Krox system.

Recommended defence mechanism: Sharing of IGD should not be allowed.

6.4.2.2.1.2. Mapping to an external IP Address

Description: The interface of the port mapping receives the public IP address and port, and

the local IP address and port. While the UPnP specification allows only the mapping of the

external IP address to an internal one, in some IGD implementations, specifically ones

 262

based on the Broadcom platform as shown in [134], there it is no validation that the internal

IP is indeed internal, thereby enabling mapping traffic to an external IP address. This is a

major risk as it enables an attacker to forward all or part of incoming traffic to a remote

host. This kind of attack can enable the attacker to hijack traffic, such as email or web, and

enables phishing and other types of fraud. It also allows the attackers to route their traffic

through the victim’s network, for example using the victim’s network as spam zombie. As

mentioned above, this threat is not inherent in UPnP specification of IGD profile but is a

bug in some IGD implementations.

Effect on Krox system: There is no specific effect of this that is related to the Krox system.

Recommended defence mechanism: Sharing of IGD should not be allowed.

6.4.2.2.2. DNS configuration changes

Description: Malicious changes can be made to the Domain Name Server (DNS) through a

UPnP service provided by IGD. An attacker can reconfigure the DNS to direct traffic from

the home network to a destination controlled by the attacker potentially enabling phishing.

The victim then uses the browser to visit web sites, sends or receives emails, or uses instant

messaging communication, which are in fact is controlled by the attacker who can redirect

the traffic to any site he chooses. This can also enable the attacker to setup man-in-the-

middle attack.

Effect on Krox system: There is no specific effect of this that is related to the Krox system.

Recommended defence mechanism: Sharing of IGD should not be allowed.

6.4.2.2.3. Linux Command Execution

Description: In some Linux based IGD it is possible to pass a Linux command instead of a

required parameter. This is possible because of old implementations where the parameters

are given to a shell script to execute. Given this implementation, the parameter can be any

Linux command, e.g. ‘/bin/shutdown –r 0’ which will cause the IGD to reboot.

Effect on Krox system: There is no specific effect of this that is related to the Krox system.

Recommended defence mechanism: Sharing of IGD should not be allowed.

 263

6.4.2.3. Eavesdropping

Description: Eavesdropping in the context of UPnP protocol, refers to an application that

uses sniffing to listen to communication with devices in the HAN. UPnP protocol does not

use encryption for communication with local devices, therefore an eavesdropper in the HAN

can “listen” to all communication with devices.

Effect on Krox system: All communication between remote HANs is encrypted, however

since the UPnP protocol does not support encryption, therefore all communication between

the LNC and UPnP devices in the local HAN can be accessible to eavesdroppers.

Recommended defence mechanism: There is no specific defence mechanism against

eavesdropping in the local HAN, as it is not supported by the UPnP protocol.

6.4.3. Jini service protocol plug-in

Unlike UPnP, Jini has several embedded security mechanisms for authentication,

authorisation, code level protection, privacy and integrity as described in section 4.3.4.1.3.

However these mechanisms are not enforced by the Jini service protocol. The reliance of

Jini on mobile code makes it especially susceptible to malicious services and malicious

service proxies. The following sections describe the potential attacks on Jini services, the

effect on Krox system and recommended defence mechanisms. Denial of service is

discussed in section 6.4.3.1, and eavesdropping is discussed in section 6.4.3.2.

6.4.3.1. Denial of Service

Figure 54 illustrates the relevant DoS attacks as described in the following sections.

Figure 54 Denial of Service Attack Tree for Jini

Denial of
Service

Misbehaving
service

Malicious
service proxy

Misbehaving
client

application

Malicious
lookup service

 264

6.4.3.1.1. Misbehaving client application

Description: A misbehaving or malicious client can shutdown the lookup service or any

other service it can gain access to in the local HAN as a result of a software fault or a

malicious attack. Another type of attack could be performed if the service interface method

takes parameters that are not final (in the Java modifier sense, i.e. they can be extended),

and the malicious client includes a parameter in a service call that extends the parameter

type in such way that a call to a method on the parameter would lead to an attack on the

service.

Effect on Krox system: If the lookup service is shutdown, no Jini services can be

announced in the local HAN, and therefore be shared with remote HANs. An attacker can

attack services including the lookup service in the local HAN, however it does not have

direct access, to remote “live” services, therefore a direct attack against remote Jini service

is not possible. For defending against a malicious attack that is using inherited parameters,

the service provider must ensure that the service parameter classes are final and cannot be

extended.

Recommended defence mechanism: In order to defend against clients that attack services

using inherited objects, the Krox system can ignore services, which contain in their

interfaces parameters that are not defined as final. The LNC will inspect the service

interface of a discovered service and will not share it if it has parameters whose classes are

not final. This mechanism was not implemented in the prototype system.

6.4.3.1.2. Malicious lookup service

Description: A malicious lookup service can act as a lookup service in the HAN and return

malicious service proxies implementing the required interface. In addition, since when

services register with the lookup service, they use a proxy to the lookup service, which runs

in their Java Virtual Machine, which means if the lookup service is hostile, this could result

in a denial of service or other severe consequences for the service/device itself. Similarly if

a client registers with the lookup service for notifications on new services, this could result

in the same effect on the client machine.

Effect on Krox system: The risk of malicious lookup service is twofold: it could host

malicious service proxies that implement common Jini services, such that when downloaded

from the lookup server, they could harm the Jini LNC. The other risk is that when the VRM

 265

registers a service proxy, the service registrar that it gets (a proxy of the lookup service) is

malicious and could harm the VRM, or as it is executing within the Krox system it can try to

initiate an attack on remote HANs.

Recommended defence mechanism: In order to defend against malicious lookup service,

the LNC and VRM should only accept service registrars signed by trusted authorities. This

is controlled by the security policy configuration of the Krox system.

6.4.3.1.3. Misbehaving service proxy

Description: A misbehaving or malicious service proxy is dangerous because it is Java code

that runs on the client process. This means it can damage the process, e.g. by calling

System.exit(), or harm resources on that machine.

Effect on Krox system: Since the LNC invokes methods on the service proxy in the local

HAN in response to a request message sent from a remote HAN, a malicious service proxy

can harm the Krox system in the local HAN, however it cannot harm the remote HAN.

Recommended defence mechanism: In order to defend against malicious service proxy,

the LNC should only accept service proxies if they are signed by trusted authorities as

configured in the security policy file of the Krox system. In addition, the LNC can require

the proxy to be verified by a local trust verifier.

6.4.3.1.4. Misbehaving service

Description: A misbehaving service or malicious service can cause denial of service in

multiple ways. The first way is by attacking the lookup service, by leasing and cancelling its

lease frequently. This could potentially result in a denial of service of the lookup service. In

case an attacker did not register a proxy, but instead registered the service itself, the same

risk as explained in the section above for misbehaving proxies exists. The service in this

case would run as part of the client JVM, and could easily cause denial of service, or even

worse – for example, it could erase the hard disk on the machine running the client.

Effect on Krox system: A misbehaving service that registers and cancels its registration can

result in inter-HAN traffic and therefore affect both the local Krox (LNC) and the remote

Krox system in HANs with which the service is shared, until the lookup service fails. If the

service is used as proxy it can harm the local Krox system.

 266

Recommended defence mechanism: In order to defend against a message flood caused by

discovery announcement from the lookup service, the rate of messages can be limited in the

communication subsystem, therefore preventing from the denial of service attack from

spreading. The second type of attack by a misbehaving service described above is limited to

the local HAN’s LNC. In order to defend against such a service, the LNC can require the

service to be signed by a trusted authority and request a verifier to approve the service.

6.4.3.2. Eavesdropping

Description: Eavesdropping refers to an unauthorised application listening to the

communication between a Jini client and a Jini service. The severity of such an attack

depends on what type of information is sent between the client and the server. For example

if the Jini service represents a printer and the document is confidential this might be

problematic. Jini 2.1 enables client to define constraints on the communication between the

client and a service such that it may require communication to be encrypted.

Effect on Krox system: The communication between remote HANs is encrypted using the

communication subsystem, however if the communication with the proxy locally is not

encrypted, an eavesdropper in the HAN hosting the “live” service can get access to

confidential content from the remote HAN.

Recommended defence mechanism: The LNC should require the communication with a

service proxy to be encrypted. This can be accomplished by defining a confidentiality

constraint on method invocations using the Jini security mechanism.

6.5. Conclusions

This chapter presented an evaluation of the Krox system architecture and design, which

included a performance evaluation and a security analysis. The utility of the design artefact

was demonstrated with the implementation of the prototype system; therefore the main

purpose of this chapter was to demonstrate the quality and efficacy of the Krox system

architecture and design through a performance assessment and an analysis of the security

threats and mitigation techniques.

 267

The high level goals for the evaluation (defined in section 6.1) were derived from the system

requirements. For performance this requires the system to enable home user to share

resources with up to 15 remote HANs, such that no more than 300 remote services are

shared with the local HAN. For security the main focus of the evaluation was to analyse the

potential threats and ensure they are not spread using the system to remote HANs when the

local HAN is attacked. The following sections discuss how the evaluation goals were

addressed.

6.5.1. Performance

A number of specific evaluation parameters (see 6.2.1.1) were derived from the high-level

evaluation goals defined. These parameters define the key performance indicators for the

ordinary performance of the Krox system that correspond to the requirements for 300

remote services shared with the local HAN, such that sharing can be made with up to 15

remote HANs. Table 8 summarises the results of the experiment described in section 6.2.1.4

with 300 remote services shared with the local HAN and with 4 remote HANs. Column 1 in

table 8 presents the evaluation parameter and column 2 and 3 present the experiment

average and maximum result respectively. The results demonstrate the linear scalability of

the system to adding more devices and services. As argued in section 6.2.3.2, the evaluation

was made with increased load on each local system to assess the scalability of the system to

more than 4 remote HANs as participated in the evaluation. The Jini plug-in evaluation

demonstrated the relatively small overhead of the plug-in implementation for remote service

invocation.

Additional performance evaluation assessed the overhead of web service orchestration –

specifically the generation and deployment of web services and the overhead introduced by

the additional layer of indirection. The results were presented in 6.3.2. The web service

generation and deployment takes between 2-5 seconds. This includes the code generation,

compilation, packaging and deployment in the servlet container. While this is relatively long

process, it should be noted that it is not blocking the system’s processing and can be done in

the background. The overhead introduced by the web service indirection is shown to be

relatively small with less than 200 milliseconds on average per invocation as measured with

a Java client. When invoked from an orchestration engine performance could be even faster

because of using pure SOAP without requiring to marshal and un-marshal to Java objects.

 268

However in a nested composite service when these small delays are aggregated this could

lead to a noticeable delay that can affect performance and usability of the services.

It should be noted that the evaluation only provides a lower bound and an assessment of the

scalability of the Krox system rather than providing absolute performance indicators. A full

implementation of the design needs to include additional access control support and an

implementation of the recommended security mechanisms. The system was evaluated with

access control that returns in constant time, however a full access control implementation

may scale linearly with the number of resources and remote HANs. On the other hand in a

realistic scenario the HAN user will not share all resources with all of his friends therefore

the inter-HAN traffic will be reduced in respect to the performance evaluation. The

additional security mechanisms required for defending against potential attacks can also

affect performance with additional checks and validations required; therefore these must be

implemented with special care with regard to performance.

6.5.2. Security

The security analysis (see section 6.4) used a decomposition of the Krox system

architecture, and corresponding attack trees to the relevant components in order to identify

potential weaknesses of the system and recommend on defence mechanisms. Since the

communication subsystem of Krox facilitates the transmission of messages between HANs

over the Internet, it is more susceptible to attacks. On the other hand, since it is based on an

IM&P system, it can reuse existing standard security mechanisms to protect the Krox system

in the HAN. The Krox system does not intend to make the HAN more secure, but only to

Table 8 Performance Evaluation Results Summary

Parameter Average

Maximum

CPU utilisation <4% N/A

Heap utilisation <6 megabytes N/A

Search request processing <1.5 seconds <4 seconds

Discovery processing delay <10 milliseconds <250 milliseconds

Remote description delay <10 milliseconds <450 milliseconds

Remote invocation delay <15 milliseconds <175 milliseconds

Event notification delay <15 milliseconds <250 milliseconds

 269

defend from attacks on a single HAN from spreading using the Krox system to multiple

HANs. Therefore, while it may be possible to cause denial of service to the local Krox

system, the security analysis shows that by following the security design guidelines, such an

attack will not spread to other remote HANs.

The security analysis included assessment of UPnP and Jini service protocols for known

potential attacks. The potential attacks on the service protocols were identified with their

potential effect on Krox system and defence mechanisms were recommended. By using the

defence mechanisms against these common attacks the Krox system can confine the scope

of these attacks to the local HANs and prevent it from spreading to remote HANs using the

system, as required.

Finally, the security requirements as defined in section 3.4 are addressed with the security

considerations described in the design chapter and the defence mechanisms described in

section 6.4.

6.5.3. Achieving of evaluation and security requirements

Chapter 1 defined the following challenges for this research:

• Extending HAN service protocols to multiple HANs – since HAN service protocols

do not extend natively beyond the scope of a single HAN, the challenge was to

extend the HAN service protocols beyond the scope of a single household, such that

they can seamlessly interact with client applications in those HANs. The Krox

system architecture, described in chapter 4, and the corresponding prototype

implementation that was evaluated in this chapter, provide a plug-in based

architecture that enables service protocols to be extended to multiple HANs using

the service virtualisation technique. This approach is appropriate when the service

protocol has a self-describing service interface that can be used for automatic

virtualisation. The feasibility and utility of using the Krox system architecture to

extend HAN service protocols for multiple HANs was demonstrated using a design

and implementation of plug-ins for UPnP and Jini.

• Enabling services from multiple service protocols to be composed together – service

composition can enable reusable units of functionality to be available in the HAN

 270

through the composition of multiple atomic services. For service interoperability,

the Krox system relies on web services as an interoperable service format. For

service composition, the Krox system architecture uses service orchestration engine.

In order to automatically map HAN services to web services and enable their

participation in composite services, the plug-in approach is used, such that a service

protocol plug-in is required to support the mapping from a service protocol (e.g.

UPnP) to a web service, such that the output of the mapping is a Java code for web

service that can be compiled and deployed to the local servlet container. The

automatic web service generation approach is powerful in providing interoperability

and enabling service composition. Through its integration with the service protocol

plug-in, it enables seamless generation of web service proxies for local and remote

services that are available in the local HAN. The web service generation has

limitations however. It is suitable only for HAN service protocols that support a

parsable self-describing service interface.

• Performance – as a system that runs in the HAN, the system must not overuse

computing resources such as bandwidth, CPU, and memory. In addition, in order to

be useful it is required to enable sharing of HAN resources with a representative

number of family members and friends with no significant latency. Moreover, the

performance show linear scalability well beyond the intended target, which

indicates that it will scale gracefully in response to more demanding future

requirements. The performance evaluation presented in this chapter demonstrated

the linear scalability of the Krox system in regard to the number of remote devices

that are shared with it with no significant effect on the CPU utilisation (<5% for 300

remote services). The heap memory used by the system for representing 300 remote

services is less than 6 Megabytes, however this is added to the 10-15 Megabytes

required for the servlet container and orchestration engine. The evaluation was

performed on desktop machines that are representative of home PCs which are a

potential platform for future deployment of the Krox architecture. However the least

powerful of these still represented computing power slightly beyond that available

at the top end of contemporary home gateway devices, which are another important

class of platforms for potential Krox deployment. Therefore, it cannot be claimed

that the system can be deployed as part of a home gateway at the time of writing,

however modern home gateways are increasingly seen as a platform for hosting

additional applications, e.g. for value added services by ISPs, therefore device

manufacturers are pressured to develop models with more processing power and

 271

RAM. The performance evaluation indicates that the delays added by the system are

relatively small, and that the actual delays will be dominated by the network

latency. This enables remote services represented by the system in the local HAN to

seamlessly interact with control points without incurring significant delays.

However, while each delay separately may be negligible, when aggregated in a

composite service, especially a nested one, these delays may become more

detectable by the user. In such case the benefits of composite service should be

balanced against the performance cost.

• Security – when the HAN service protocols are extended beyond the scope of a

single HAN, it must be made with minimal additional potential vulnerability for the

HAN. The security assessment presented in this chapter identified the known

threats, their potential effect on the Krox system and devised recommended defence

mechanisms against them. Such attacks can still harm the local HAN if an attacker

succeeds in introducing them to the HAN, but Krox system would prevent them

from using the connection between the HAN and remote HANs from spreading.

These mechanisms must be implemented carefully to minimise the impact on the

performance of inter-HAN service interoperability.

• Simple configuration and administration – HAN users expect configuration of

systems to be minimal and simple. Krox system architecture and design supports

intuitive configuration through the use of IM&P user metaphor with which HAN

users are known to be familiar as demonstrated in chapter 4 and 5 of this thesis. The

development and usability assessment of an optimised user interface is beyond the

scope of this thesis, and is not claimed as a contribution, beyond the illustrative

client presented in section 5.7.

In summary, the Krox system architecture and design was shown to address the

requirements specified in section 3.4 and the research challenges as shown above beyond

the known systems in literature as reviewed in chapter 3. The next chapter will discuss

further work and concluding remarks.

 272

Chapter 7
CONCLUSIONS AND FUTURE WORK

This chapter concludes this thesis with a summary of the thesis, an overview of the

contributions presented, and a brief description of a number of open research topics not

tackled in this thesis.

7.1. Overview of this thesis

A design science research must produce an artefact created to address a problem. This thesis

addressed the unsolved problem of integrated inter-HAN and intra-HAN service

interoperability. In accordance with the design science research methodology the design

artefact resulting from this research is the Krox system architecture and its design for

supporting sharing services of multiple service protocols with remote HANs, and enabling

their interaction and composition with other services in the HAN.

Following the design science methodology, the research objectives design in Chapter 1 were

addressed as follows:

1) Review the state of the art in intra-HAN and inter-HAN service interoperability to

establish the requirements for an integrated approach – A HAN service protocol review

(section 2.3) asserted that the inter-HAN service interoperability and the intra-HAN

interoperability were not addressed to a full extent by the service protocols for the HAN.

The state of the art (presented in chapter 3) resulted in the identification of a gap in

support for integrated intra-HAN and inter-HAN service interoperability. In addition the

 273

state of the art review identified the advantages and disadvantages of existing

approaches and derived a set of requirements for an integrated solution (section 3.4).

2) Design an architecture that extends current intra-HAN systems with support for service

composition with multiple service protocols, and inter-HAN sharing of service scalable

to a number of HANs appropriate for sharing with a household’s personal circle of

family and friends - This thesis presented the Krox system architecture, which supports

integrated approach for intra-HAN and inter-HAN service interoperability and addresses

the requirements presented in section 3.4. The architecture supports multiple service

protocols through its plug-in framework, such that the support for each service protocol

is encapsulated in a Krox plug-in. The plug-in framework defines a concise and

extensible event model for plug-ins, which dictates an interaction model between

remote HANs for achieving the desired seamless integration with applications in remote

HANs. The Krox system architecture supports seamless integration through its use of

automatic service virtualisation. A service shared from a remote HAN is represented in

the local HAN using a virtual service that implements the service interface on behalf of

the remote “live” service and tunnels the communication from the local HAN to the

remote HAN hosting the “live” service. The plug-in also supports a mapping from the

service protocol to a web service, which makes it available to the service composition

subsystem. Both remote and local services are mapped to web services, thereby

enabling seamless interoperability between local and remote services through their web

service representation. Once mapped to web services, composite services can be created

and deployed to a service orchestration engine in the local HAN. The Krox system

architecture uses IM&P as a user metaphor, such that an IM&P user correspond to the

local HAN, and HANs that agree to share devices between them are represented using

buddy relation in the IM&P network. In addition IM&P is used for the secure

communication subsystem connecting remote HANs. In order to demonstrate the utility

of the Krox system design, two service protocol plug-ins were implemented for the

UPnP and Jini service protocols. These plug-ins demonstrate the feasibility and

applicability of the plug-in framework event model. The implementation of two plug-ins

for representative service protocols demonstrate the completeness and the extensibility

of the plug-in framework event model, and the mapping of these protocols to web

services demonstrated their interoperability and composability. While a number of

system in the literature address the problems of intra-HAN service interoperability and

inter-HAN service interoperability separately, their integration is an unsolved problem.

The work in this thesis is therefore novel in presenting and evaluating a comprehensive

 274

integrated architecture that addresses this problem. In the area of inter-HAN service

interoperability, the Krox architecture and design adopts the service virtualisation

approach that is used in a number of inter-HAN service interoperability solutions [31,

51, 139], combining it with a user metaphor that is appropriate for HAN users as applied

with SIP in [51, 52]. It takes the novel step of adding to this a standard secure

communication mechanism using IM&P and XMPP. This is then extended it with

support for an additional protocol and an extensible framework and event model that

enables supporting more HAN service protocol in the future. While [10, 51] claim their

solutions support similar extensibility goals, no evidence or evaluation of designs for

such extensibility are presented in the literature. In the area of intra-HAN service

interoperability, the contribution of the Krox system architecture is that it facilitates the

interoperability and composability of both local and remote services using a common

service model. The application of web services as a common service model for HAN

service interoperability has been suggested in literature [102, 2], and similarly the

composition of services in the HAN has been investigated by a number of authors [16,

17, 52, 126]. However the Krox architecture enables, through integration with the inter-

HAN components, the seamless interaction and composition of local and remote

services, which is not addressed by these existing solutions. Equally however, while

some of these authors attempt to define a process for dynamically matching and

composing services, this is out of the scope of the Krox, architecture, such that it is

limited to enabling the composition of local and remote service through the

representation via a common service model, and their further sharing and reuse via

representation of composite services as UPnP devices.

3) Validate the architecture through implementation with two established HAN service

protocols - This thesis presents a prototype implementation of Krox system architecture

and design with plug-ins for UPnP and Jini that shows the utility and feasibility of the

design, and provides an end-to-end system for the purpose of performance evaluation

and security analysis.

4) Evaluate the performance and security of the system implementation – The purpose of

the performance evaluation and security analysis is to demonstrate the quality and

efficacy of the design artefact, which is Krox system architecture and design. The

performance evaluation performed as part of this thesis specified a number of evaluation

parameters that affect the performance of the integrated intra-HAN and inter-HAN

service interoperability. The performance evaluation showed that Krox system

implementation has linear scalability (sections 6.2-6.3) with the scope defined for

 275

sharing with households in an immediate social circle. The result indicate that on

average, the delays introduced by the interaction with remote HANs are dominated by

the network latency, however in stress conditions or in the context of nested composite

services, the accumulation of the different delays can become apparent. Another aspect

of performance that has been explored in the evaluation is the processing power and

RAM that are required for the system to execute. As discussed in the previous chapter

the evaluation was performed on desktop machines, which are more powerful than

home gateways, however with the increased demand for the home gateway as an

application platform, its appropriateness as a deployment platform for the Krox system

is likely to improve. Finally this thesis includes a comprehensive security analysis

(section 6.4) that identified the potential threats and attacks that can affect inter-HAN

service interoperability, through the communication subsystem, and through attacks

made on a specific service protocol. The security analysis is given in the form of attack

trees followed by an analysis of the potential risk associated with the attack and with a

recommendation for defence mechanism. While it is clear that when supporting inter-

HAN service interoperability, new threats are introduced, the purpose of the security

analysis is to identify this threats and present mechanisms to defend against them from

spreading beyond the scope of a single HAN.

The next section describes the main contributions of this thesis and how they were achieved.

7.2. Contributions of this thesis

This section briefly summarises the contributions of this thesis, as presented in the previous

chapters.

This thesis provides an in depth study of solutions for integrated sharing resources (devices,

services, and content) between multiple home area networks leading to an analysis of the

existing IP based application level service protocols and their appropriateness for service

sharing. The various service protocols are analysed and compared to identify the type of

service protocols that can support seamless inter-HAN service interoperability. This thesis

discussed the requirements from a service for sharing devices, services, and content from

the HAN with remote HANs. This resulted in a comprehensive specification of these

 276

requirements that extends the state of the art, in that it integrates intra-HAN and inter-HAN

service interoperability requirements.

In accordance with the design science research methodology, the major contribution of this

thesis is the design of Krox system architecture that addresses the unsolved question of

integrated intra-HAN and inter-HAN service interoperability and addresses the set of

requirements identified in the state of the art study. The approach taken by Krox system

architecture is suitable for service protocols with a parsable service interface and support for

communication mechanism for service invocation. This service interface can lend itself to

virtualisation in remote HANs and enable seamless integration with remote HANs. In

addition, such a parable service interface enables the service protocol plug-in to map the

service interface to web service thereby enabling its intra-HAN interoperability. The plug-in

event model defines how service virtualisation can be achieved for multiple service

protocols, as demonstrated with the plug-in implementations for Jini and UPnP. A key

aspect of the Krox system architecture is its use of standard based IM&P communication, to

provides a simple and commonly accepted user metaphor for managing sharing and a

scalable and secure communication channel. This architecture includes well-defined

interfaces, through which extensions for additional protocols can be implemented.

While vendors and manufacturers have adopted SOC as a useful abstraction for supporting

device interoperability, service composition was not fully addressed by these

implementations. Service composition is an important part of SOC that can enable the

realisation of more of the potential of the HAN and can enable 3rd party service providers to

offer innovative services based on existing HAN devices. With the growing interest and

demand for supporting service composition, and with the availability of more services in the

HAN, through sharing from remote HANs, the importance of service composition increases.

More services available in the local HAN lead to more potential for innovative composite

services that can reuse and leverage the value of these atomic services. Krox system

architecture supports service interoperability and service composability using a common

service interface and a mapping between the service protocol and the common service

interface. The plug-in based approach taken by Krox system architecture enables the support

of mapping from the service protocol to web services, and by that increasing the service

interoperability in the HAN, and enabling services to be composed using standard web

service orchestration techniques. While service composition for HAN has been suggested in

literature, the contribution of this thesis is in its integrated approach that enables to

 277

seamlessly compose local and remote services, and even share the composite services.

A minor contribution of this thesis is the comprehensive performance evaluation of the

system design that identified the key performance indicators that affect sharing of services

from the HAN with remote HANs. While performance is an important requirement for

systems for inter-HAN service interoperability, only little information is given in the

literature regarding the performance aspects of the relevant systems. Wegner [139]

described a benchmark to evaluate the delay introduced by invocation of remote SOAP

action, however this evaluation was made in isolation with a single device and on a

powerful desktop machine (Intel Core Duo @ 2GHz) and did not include full UPnP

implementation. Other systems reviewed in the literature do not present relevant benchmark

information, especially in the context of their scalability to multiple HANs and the relevant

key performance indicators. The evaluation of Krox system provided a benchmark baseline

both for intra-HAN and inter-HAN service interoperability that can be compared against by

future work in this area.

Finally, a minor contribution of this thesis is a comprehensive analysis of the security

aspects of sharing devices, services, and content from the HAN with remote HANs. This

analysis in the form of attack trees identified potential attacks on HAN service protocols,

their impact on the service protocols, on the system for sharing, potential impact on remote

HANs with which it is shared, and potential defence mechanisms. While security is an

important requirement from systems for sharing devices and services from the HAN, most

attention has been given to standard security mechanisms such as authentication, access

control, and encryption. Seikkinen et al. [119] Chowdhury et al. [31] focus on

authentication, encryption, and access control. Such mechanisms are also discussed in [51,

55, 76, 77, 84, 97, 121, 137, 139]. However the problem of defending against attacks using

the vulnerabilities of relevant protocols for spreading beyond the scope of a single HAN is

not addressed in the literature. The security analysis given in this thesis gives a reusable

baseline in the form of attack trees that can be extended and referenced by future works in

inter-HAN service sharing.

7.3. Further work

This section described a number of related research topics and a number of open research

 278

topics that have not been fully researched as part of this thesis.

7.3.1. Additional Krox plug-ins

This thesis demonstrated the feasibility of the Krox plug-in framework and extensible event

model using two service protocols. Additional service protocols could be supported, such as

DPWS, OSGi, and HAVi. Moreover, while Krox system architecture is restricted to those

service protocols with a parsable service interface, it leaves out a number of important

protocols for the HAN such as ZeroConf and Bluetooth. A further direction could be to

explore how much additional information, in the form of additional annotations to service

descriptions, is needed to enable full support for these service protocols with Krox system

architecture for both intra-HAN and inter-HAN service interoperability.

7.3.2. Capability Sharing Management

Krox system architecture as described in chapter 4 relies on a fine-grained definition of

permission per resources. Though the specification of the sharing policies is out of the scope

of this thesis, the utility and efficacy of potential solutions should be explored. For example,

the Federal Relation Manager [23] was originally suggested for management of capability

sharing between large telecoms providers with heterogeneous technical platforms. The FRM

represents managed services and resources using a hierarchical capability authority model,

which can be dynamically modified in order to create new aggregations of the basic

capabilities made available by the underlying devices. By reusing this approach for HAN

resources, users can assign different remote HANs different sets of capabilities that

correspond to policies applied on the local HAN resources. The integration between Krox

system and the FRM is on-going research involving the author, which will be completed

after the submission of this thesis.

In addition, while the configuration of the sharing policies is out of the scope for this thesis,

the integration with FRM will require user studies to determine if the level of sharing

control suits the level of technical management skill of the HAN user.

Finally, the integration with the FRM would enable the evaluation of the impact of

capability sharing management on the performance of Krox system. While the performance

 279

evaluation presented in chapter 6 assumed all devices are shared in order to increase the

load on the Krox system, the integration with FRM can enable to evaluate the relation

between the number of shared and non shared devices and the performance of Krox system,

with different types of sharing policies of variable complexity.

7.3.3. Lightweight service composition for HAN

One drawback of using XML/SOAP web services and BPEL for service orchestration is

their performance. RESTful web services present a more lightweight and scalable approach

for web services. However current BPEL specification does not allow composition of

RESTFul web services, which is more typically implemented in mashups. A number of

recent publications suggest supporting RESTful web services with BPEL service

orchestration, such as BPEL for REST [99], and Apache ODE extension for RESTful

services [6]. A potential direction could be representation of the composite service with a

subset of BPEL constructs and compile the service into a more compact implementation.

Bohn et al. [17] suggested promising approach using BPEL-to-Java compiler that could be

extended to support RESTful services and result in a more compact representation of BPEL

services that is application server free and requires less resources for execution.

7.3.4. Service composition tools for HAN

While the Krox system architecture provides the mechanisms needed for interoperability

and service composition, it does not define a process for how services are composed. A

complementary mechanism is required to exist in the HAN for identifying resources that are

needed for specific composite services and just-in-time instrumentation of a composite

service that reuses this resource. The Krox system architecture provides capabilities that can

be used as part of such as system with its service protocol plug-in’s support for discovery

and mapping to web services. Composite services could be defined using a template, and

additional description of the type of constituent services that are required for the

instrumentation of the composite service’s template. When all of the requirements for a

composite service are met, it can be suggested to the user and automatically instrumented

and deployed in the local HAN. The significance of service composition will increase in the

following years with more devices and services available in the local HAN, therefore tools

that allow service providers to offer innovative services to home users will take on

increasing importance.

 280

7.3.5. Rate limiting for communication subsystem

As discussed in the security analysis, rate limiting is an important mechanism for increasing

the robustness of the Krox system architecture to a various types of attacks. There are a

number of directions for supporting rate limiting. One direction is to support rate limiting as

an XMPP plug-in such that it will allow only a configured amount of messages per time

interval to be sent and received between a pair of users or from a single user. Another option

is to support this at the communication subsystem level, such that rate limiting will be

applied within the Krox system instance. The drawback of this approach is that it may have

implications on performance.

 281

References
[1] ABI Research. Home networking end-user snapshot: Consumer adoption of home

and media networking, June 2008. [online]. Available:

http://www.abiresearch.com/research/1007478-Home+Networking+End-

User+Snapshot. 26 April 2011 [date accessed].

[2] Aiello, M., "The Role of Web Services at Home," Telecommunications, 2006.

AICT-ICIW '06. International Conference on Internet and Web Applications and

Services/Advanced International Conference on, pp. 164-164, 19-25 Feb. 2006

[3] Alexander, J., D. Box, L.F. Cabrera, D. Chappell, G. Daniels, R. Janecek, C. Kaler,

B. Lovering, R. McCollum, D. Orchard, S. Parastatidis, J. Schlimmer, I. Sedukhin,

and J. Shewchuk, "Web Service Transfer (WS-Transfer)," September, 2006.

[online]. Available: http://specs.xmlsoap.org/ws/2004/09/transfer/WS-Transfer.pdf.

26 April 2011 [date accessed].

[4] Allard, J., V. Chinta, S. Gundala, and G. G Richard III,. 2003. "Jini Meets UPnP:

An Architecture for Jini/UPnP Interoperability," In Proceedings of the 2003

Symposium on Applications and the Internet (January 27 - 31, 2003). SAINT. IEEE

Computer Society, Washington, DC, 268.

[5] Andrews, T., F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.

Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, S. Business Process

Execution Language for Web Services, Version 1.1. OASIS, 2003.

[6] Apache ODE Project. (2010) [online]. RESTful BPEL part II

(http://ode.apache.org/restful-bpel-part-ii.html) 25 April 2011 [date accessed].

[7] Arnold, K., R. W. Scheifler, J. Waldo, A. Wollrath, B. O'Sullivan, The Jini

Specification, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1999.

[8] Beatty, J., G. Kakivaya, D. Kemp, T. Kuehnel, B. Lovering, B. Roe, C. St. John, J.

Schlimmer, G. Simonnet, D. Walter, J. Weast, Y. Yarmosh, and P. Yendluri, "Web

 282

Services Dynamic Discovery (WS-Discovery)," April 2005. [Online]. Available:

http://schemas.xmlsoap.org/ws/2005/04/discovery/. 26 April 2011 [date accessed].

[9] Belimpasakis P., A. Saaranen, and R. Walsh, "Home DNS: Experiences with

Seamless Remote Access to Home Services," World of Wireless, Mobile and

Multimedia Networks, 2007. WoWMoM 2007. IEEE International Symposium on a,

2007, pp. 1-8.

[10] Belimpasakis, P. and V. Stirbu, "Remote Access to Universal Plug and Play (UPnP)

Devices Utilizing the Atom Publishing Protocol," In proceedings of the Third

International Conference Networking and Services (ICNS 2007) pp. 59-59, Athens,

Greece, June 2007.

[11] Belimpasakis, P. and A. Saaranen, "Seamless User-Oriented Content Sharing,".

Tampere University of Technology. Department of Communications Engineering.

Research Report 2009:1, 23 p., Tampered 2009.

[12] Belimpasakis, P., S. Moloney, V. Stirbu, and J. Costa-Requena, J., "Home media

atomizer: remote sharing of home content - without semi-trusted

proxies," Consumer Electronics, IEEE Transactions on, vol.54, no.3, pp.1114-1122,

August 2008.

[13] Belimpasakis, P., "Seamless User-Generated Content Sharing in the Extended

Home," Doctoral Thesis, Tampere University of Technology, June 2009.

[14] Berners-Lee, T., J. Hendler and O. Lassila (May 17, 2001). "The Semantic Web,"

Scientific American Magazine, May 2001, pp. 28-37.

[15] Bluetooth, "Specification of the Bluetooth system: core specification v2.0 + EDR,"

Nov. 2004. [online]. Available:

https://www.bluetooth.org/Technical/Specifications/adopted.htm. 26 April 2011

[date accessed].

[16] Bobek, A., H. Bohn, F. Golatowski, G. Kachel, and A. Spreen. "Enabling Workflow

in UPnP Networks, " in INDIN’05, Perth, Australia, 2005.

[17] Bohn, H., F. Golatowski, and D. Timmermann, "Dynamic device and service

discovery extensions for WS-BPEL," Service Systems and Service Management,

2008 International Conference on,pp.1-6, June 30 2008-July 2 2008.

[18] Bottaro, A., A. Gérodolle, and P. Lalanda, "Pervasive Service Composition in the

Home Network," AINA ‘07: Proc. 21st Int. Conf. Advanced Networking and

Applications, Washington, DC, USA, May 21–23, pp. 596–603. IEEE Computer

Society.

[19] Bottaro, A. and A. Gérodolle, 2008. "Home SOA : facing protocol heterogeneity in

 283

pervasive applications," In Proceedings of the 5th international Conference on

Pervasive Services (Sorrento, Italy, July 06 - 10, 2008). ICPS '08. ACM, New York,

NY, 73-80.

[20] Box, D., D. Ehnebuske, G. Kakivaya, A. Layman, A. Mendelsohn, H.F. Nielsen, S.

Thatte, and D. WinerSimple, "Object Access Protocol (SOAP), " Version 1.1. W3C

Note, W3C, May 2000. [online]. Available: http://www.w3.org/TR/soap/ 25 April

2011 [date accessed].

[21] Box, D., L.F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S. Graham, D. Hull,

G. Kakivaya, A. Lewis, B. Lovering, P. Niblett, D. Orchard, S. Samdarshi, J.

Schlimmer, I. Sedkhin, J. Shewchuk, S. Weerawarana, and D. Wortendike, "Web

Services Eventing (WS-Eventing)," March 2006. [online]. Available:

www.w3.org/Submission/WS-Eventing/. 26 April 2011 [date accessed].

[22] Bray, T., J. Paoli, C.M. Sperberg McQueen, Eve Maler, F. Yergeau, and J. Cowan,

"Extensible Markup Language (XML) 1.1," W3C Recommendation, August 2006.

[online]. Available: http://www.w3.org/TR/xml11/. 26 April 2011 [date accessed].

[23] Brennan, R., K. Feeney, J. Keeney, D. O'Sullivan, J.J. Fleck, S. Foley, and S. v.der

Meer. 2010. "Multi-Domain IT Architectures for Next Generation Communications

Providers," IEEE Communications Mag. vol. 48, no. 6, pp 110- 117, Aug 2010.

[24] Brennan, R., D. Lewis, J. Keeney, Z. Etzioni, K. Feeney, D. O'Sullivan, J.A.

Lozano, B. Jennings, "Policy-based Integration of Multi-Provider Digital Home

Services", IEEE Network Magazine, special issue on Digital Home Services, 23,

(6), 2009, p50 – 55.

[25] Brown N., and C. Kindel, "Distributed Component Object Model Protocol –

DCOM/1.0," Internet Draft, November 1996. [online]. Available:

http://tools.ietf.org/html/draft-brown-dcom-v1-spec-00. 26 April 2011 [date

accessed].

[26] Bull, P.M., P.R. Benyon, and P.R. Limb, "Residential Gateways," BT Tech. J., Apr.

2002. pp. 73-81.

[27] Campbell, C.S., E. Kandogan, A. November, R. Barrett, and P.P. Maglio. "Policity:

an experimental evaluation of policy-based administration in a city simulation,"

IEEE Workshop on Policies for Distributed Systems (Policy 2005), Stockholm,

Sweden, 6-8 June 2005.

[28] Chan, S., D. Conti, C. Kaler, T. Kuehnel, A. Regnier, B. Roe, D. Sather, J.

Schlimmer, H. Sekine, J. Thelin, D. Walter, J. Weast, D. Whitehead, D. Wright, and

Y. Yarmosh, "Devices Profile for Web Services," Feb. 2006. [Online]. Available:

 284

http://schemas.xmlsoap.org/ws/2006/02/devprof/ 25 April 2011 [date accessed].

[29] Cheshire, S., and D. H. Steinberg, Zero Configuration Networking, the Definitive

Guide O’Reilly, 2005.

[30] Cheshire, S., B. Aboba, and E. Guttman, "Dynamic Configuration of IPv4 Link-

Local Addresses," Internet Engineering Task Force, RFC 3927, May 2005. [online].

http://tools.ietf.org/html/rfc3927. 26 April 2011 [date accessed].

[31] Chowdhury, R., A. Arjona, J. Lindqvist, and A. Yla-Jaaski, "Interconnecting

multiple home networks services," Telecommunications, 2008. ICT 2008.

International Conference on, pp.1-7, 16-19 June 2008.

[32] Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana, "Web Services

Description Language (WSDL) 1.1", World Wide Web Consortium, Note NOTE-

wsdl-20010315, March 2001. [online]. Available: http://www.w3.org/TR/wsdl. 26

April 2011 [date accessed].

[33] Czarnecki, K. and U.W. Eisenecker, "Aspect Oriented Programming", in

Generative programming: methods, tools, and applications. Addison-Wesley. 2000.

[34] Digital Living Network Alliance, "DLNA Interoperability Guidelines v1.0, " 2004.

[35] DNS-SD.org. [online]. DNS-SRV (RFC 2782) Service Types: http://www.dns-

sd.org/ServiceTypes.html. 26 April 2011 [date accessed].

[36] Droms, R., "Dynamic Host Configuration Protocol," Internet Engineering Task

Force, RFC2663, March 1997. [online]. Available:

http://www.ietf.org/rfc/rfc2131.txt. 26 April 2011 [date accessed].

[37] EEye Digital Security website. [online]. UPNP - Multiple Remote Windows

XP/ME/98 Vulnerabilities

http://research.eeye.com/html/advisories/published/AD20011220.html 26 April

2011 [date accessed].

[38] Egevang k. and P. Francis, "The IP Network Address Translator," Internet

Engineering Task Force, RFC 1631, May 1994. www.ietf.org/rfc/rfc1631.txt 25

April 2011 [date accessed].

[39] Fielding, R., "Architectural Styles and The Design of Network-based Software

Architectures," Ph.D. thesis, University of California, Irvine, 2000.

[40] Foley, S. N., W. M. Fitzgerald, "An Approach to Security Policy Configuration

using Semantic Threat Graphs", 23rd Annual IFIP WG 11.3 Working Conference

on Data and Applications Security (DBSec), Concordia University, Montreal,

Canada, July 12-15, 2009.

[41] Freed, N. "Behaviour Of and Requirements for Internet Firewall," Internet

 285

Engineering Task Force, RFC 2979, Oct. 2000. Available:

www.ietf.org/rfc/rfc2979.txt. 25 April 2011 [date accessed].

[42] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley. 1994.

[43] Gamma, E., and K. Beck, Contributing to Eclipse, Addison-Wesley, 2003.

[44] Gaw, J., "worldwide home networking 2007-2011 forecast, " IDC, October 2007.

[45] GNU Citizen website. [online]. http://www.gnucitizen.org/blog/hacking-the-

interwebs/ 26 April 2011 [date accessed].

[46] Gulbrandsen, A., P. Vixie, and L. Esibov, "A DNS RR for specifying the location of

services (DNS SRV)," RFC 2782, Feb. 2000. [online]. Available at http://www.rfc-

editor.org/rfc/rfc2782.txt. 25 April 2011 [date accessed].

[47] Guttman, E., C. Perkins, J. Veizades, and M. Day, "Service Location Protocol,

Version 2," RFC 2608, June 1999. [online]. Available:

http://www.ietf.org/rfc/rfc2608.txt. 25 April 2011 [date accessed].

[48] Guttman, E. and J. Kempf, "Automatic Discovery of Thin Servers: SLP, Jini and the

SLP-Jini Bridge, " Proc. 25th Ann. Conf. IEEE Industrial Electronics Soc. (IECON

99), IEEE Press, Piscataway, N.J., 1999.

[49] H.A. Simon, The sciences of the artificial, 2nd ed. Cambridge: MIT Press, 1981.

[50] Häber A., M. Gerdes, F. Reichert, A. Fasbender, and R. Kumar, "Using SIP

Presence for Remote Service Awareness," Norsk Informatikkonferanse 2008

(NIK'08), Kristiansand, Norway, 2008.

[51] Häber, A., J.G.R. De Mier, and F. Reichert, "Virtualization of Remote Devices and

Services in Residential Networks," In Next Generation Mobile Applications,

Services and Technologies, 2009. NGMAST '09. Third International Conference

on (2009), pp.182-186, 15-18 Sept. 2009

[52] Hackmann, G., M. Haitjema, C. Gill, and G-C. Roman, G.-C., "Sliver: A BPEL

Workflow Process Execution Engine for Mobile Devices," Proc. Service-Oriented

Computing –ICSOC 2006, Springer, Berlin / Heidelberg, 2006, pp. 503-508.

[53] Handley, M., and E. Rescorla, "Internet Denial-of-Service Considerations," Internet

Engineering Task Force, RFC 4732, November 2006. [online]. Available:

http://tools.ietf.org/html/rfc4732. 25 April 2011 [date accessed].

[54] Harrenstien, K., "NAME/FINGER protocol," Internet Engineering Task Force, RFC

742, December 1977. [online]. Available: http://tools.ietf.org/html/rfc742. 26 April

2011 [date accessed].

[55] Haruyama, T., S. Mizuno, M. Kawashima, and O. Mizuno, "Dial-to-Connect VPN

 286

System for Remote DLNA Communication," Consumer Communications and

Networking Conference, 2008. CCNC 2008. 5th IEEE, pp.1224-1225, 10-12 Jan.

2008.

[56] Henry, D., [online]. The Future of your wireless home network.

http://mashable.com/2011/02/23/future-home-networking-tips/. 26 April 2011. [date

accessed].

[57] Hevner, A., S. March, J. Park, and S. Ram, “Design Science in Information Systems

Research,” MIS Quarterly (28:1) 2004, pp. 75-105.

[58] HomePNA, "Interface Specification for HomePNA 2.0: 10M8 Technology, "

Englewood Cliffs, NJ, Dec. 1999.

[59] IANA.org. [online]. Port number assignment http://www.iana.org/assignments/port-

numbers. Last updated: April, 2011. 26 April 2011 [date accessed].

[60] IBM. [online]. Java Theory and Practice: Decorating with Dynamic Proxies.

http://www.ibm.com/developerworks/java/library/j-jtp08305.html 26 April 2011.

[date accessed].

[61] Ibrahim, A., and M. ÓFoghlú, "New Role of Policy-based Management in Home

Area Network – Concepts, Constraints and Challenges," In proceeding of 3rd

International Conference on New Technologies, Mobility and Security (NTMS),

December 2009, Cairo, Egypt.

[62] IEEE, "IEEE Standard for Information technology-Telecommunications and

information exchange between systems-Local and metropolitan area networks-

Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications," IEEE Std 802.11 – 2007 (Revision of IEEE

Std 802.11-1999), pp. C1-1184, 12 2007.

[63] IEEE Std. 1394-1995, "IEEE Standard for a High Performance Serial Bus," IEEE

Press, Piscataway, N.J. Aug. 1996.
[64] IEEE P802.15. [online]. Working Group for WPAN Task Group 1

(http://ieee802.org/15/pub/TG1.html) 25 April 2011 [date accessed].

[65] Intel. [online]. DeviceRelay, http://software.intel.com/en-us/articles/intel-software-

for-upnp-technology-technology-overview. 25 April 2011 [date accessed].

[66] ITU-T FG IPTV, Working Document: IPTV Architecture, FG IPTV-DOC-0084,

2007.

[67] Järvinen, P. (2000) "Research Questions Guiding Selection of an Appropriate

Research Method," Proceedings of the 8th European Conference on Information

Systems (ECIS 2000), Vienna, Austria July 3-5.

 287

[68] Java.net. [online]. JXTA Community Projects, "JXTA protocol specifications,"

https://jxta-spec.dev.java.net. 25 April 2011 [date accessed].

[69] Jordan, D. and J. Evdemon, "Web Services Business Process Execution Language

v2.0," OASIS, 2007. [online]. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.html. 26 April 2011 [date accessed].

[70] Kawsar, F., T. Nakajima, and K. Fujinami, "A document centric approach for

supporting incremental deployment of pervasive applications". In Proceedings of

the 5th Annual international Conference on Mobile and Ubiquitous Systems:

Computing, Networking, and Services, (MOBIQUITOUS2008) Dublin, Ireland,

July 21-25, 2008.

[71] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol, " Internet

Engineering Task Force, RFC 4301, Dec. 2005. [online]. Available:

http://www.ietf.org/rfc/rfc4301.txt 25 April 2011 [date accessed].

[72] Kosiur, D., Building and Managing Virtual Private Networks, John Wiley and Sons,

Inc., USA, 1998.

[73] Kreitz G. and F. Niemela. "Spotify - large scale, low latency,p2p music-on-demand

streaming," In Peer-to-Peer Computing, pp. 1-10. IEEE, 2010.

[74] Laszlo, J., Home Networking: Seizing Near-Term Opportunities to Extend

Connectivity to Every Room. Jupiter Research (BRB02-V01) (2002).

[75] Lea, R., S. Gibbs, A. Dara-Abrams, and E. Eytchison, "Networking home

entertainment devices with HAVi," Computer , vol.33, no.9, pp. 35-43, Sep 2000.

[76] Lee, H.Y., and J.W. Kim, "An Approach for Content Sharing among UPnP Devices

in Different Home Networks," Consumer Electronics, IEEE Transactions on,

vol.53, no.4, pp.1419-1426, Nov. 2007.

[77] Loeser, C., W. Mueller, F. Berger, and H.J. Eikerling, "Peer-to-Peer Networks for

Virtual Home Environments," In Proceedings	
 of	
 the	
 36th	
 Hawaii	
 International	

Conference	
 on	
 System	
 Sciences	
 (HICSS’03),	
 2003.

[78] Mahy, R., P. Matthews, and J. Rosenberg "Traversal using relays around NAT

(TURN): Relay extensions to session traversal utilities for NAT (STUN), " Internet

Engineering Task Force, RFC 5766, April 2010. [online]. Available:

http://tools.ietf.org/html/rfc5766. 26 April 2011 [date accessed].

[79] McIlraith, S.A., T.C. Son, and H. Zeng (March 2001). "Semantic Web Services,"

IEEE Intelligent Systems 16(2) 46-53.

[80] Melnikov, A., and K. Zeilenga, "Simple Authentication and Security Layer (SASL),

" Internet Engineering Task Force, RFC 4422. [online]. Available:

 288

http://tools.ietf.org/html/rfc4422. 26 April 2011 [date accessed].

[81] Metcalfe, R.M., D.R. Boggs, "Ethernet: distributed packet switching for local

computer networks, " Communications of the ACM, v.19 n.7, p.395-404, July 1976.

[82] Miller, B., T. Nixon, Ch. Tai, and M. Wood, "Home networking with universal plug

and play, " IEEE Communications Magazine, (Dec. 2001) 104-109.

[83] Moon, K-D., Y-H. Lee, Y-S. Son, and K. Chae-Kyu, "Universal home network

middleware guaranteeing seamless interoperability among the heterogeneous home

network middleware," Consumer Electronics, IEEE Transactions on, vol.49, no.3,

pp. 546- 553, Aug. 2003.

[84] Motegi, S., K. Tasaka, A. Idoue, and H. Horiuchi, "Proposal on Wide Area DLNA

Communication System," Consumer Communications and Networking Conference,

2008. CCNC 2008. 5th IEEE, pp.233-237, 10-12 Jan. 2008.

[85] Motorola Inc., "LonWorks Technology Device Data Book, revision 2," 1996.

[86] Moyer, S., D. Marples, and S. Tsang, "A protocol for wide-area secure networked

appliance communication" IEEE Communications Magazine, vol. 39, no. 10, pp.

52-59, Oct. 2001.

[87] Moyer, S., and A. Umar, "The impact of network convergence on

telecommunications software", IEEE Communications Magazine, vol. 39, no. 1, pp.

78-84, Jan. 2001.

[88] Nakazawa, J., H. Tokuda, W. K. Edwards, and U. Ramachandran, "A Bridging

Framework for Universal Interoperability in Pervasive Systems, ". In Proceedings

of the 26th IEEE International Conference on Distributed Computing Systems, p.3,

July 04-07, 2006.

[89] Negus, K.J., A.P. Stephens and J. Lansford, "HomeRF: Wireless Networking for the

Connected Home," IEEE Personal Communications 7 1 (2000), pp. 20–27.

[90] Nottingham, M., and R. Sayre, "The Atom Syndication Format, ", RFC 4287, IETF,

December 2005. [online]. Available: http://www.ietf.org/rfc/rfc4287.txt. 25 April

2011 [date accessed].

[91] Newmarch, J., "UPnP Services and Jini Clients," Information Systems: New

Generations (ISNG 2005), Las Vegas 2005.

[92] Object Management Group, The Common Object Request Broker: Architecture and

Specification, Revision 2.0, 1995.

[93] Oh, H., J. Lim, K. Chae, and J. Nah, "Home gateway with automated real-time

intrusion detection for secure home networks," in Computational science and Its

Applications – ICCSA 2006. Springer Berlin / Heidelberg, 2006, pp. 440-447.

 289

[94] Oh, Y-J., H. Lee, J. Kim, E. Paik, and K. Park, “Design of an extended architecture

for sharing DLNA compliant home media from outside the Home,” IEEE

Transactions on Consumer Electronics, vol. 53, no. 2, May 2007.

[95] Papazoglou, M.P., "Service-Oriented Computing: Concepts, Characteristics and

Directions," in Fourth International Conference on Web information Systems

Engineering (WISE), pp. 3, 2003.

[96] Papazoglou, M.P., P. Traverso, S. Dustdar, and F. Leymann, "Service-Oriented

Computing: State of the Art and Research Challenges," Computer, vol. 40, no. 11,

pp. 38-45, November, 2007.

[97] Park, H., E.H. Paik, and N. Kim, "Architecture of Collaboration Platform for

Ubiquitous Home Devices," Mobile Ubiquitous Computing, Systems, Services and

Technologies, International Conference on, pp. 301-304, 2009 Third International

Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies,

2009.

[98] Parrend, P. and S. Frenot. "A security analysis for home gateway architectures," In

International Conference on Cryptography, Coding & Information Security,

Venice, Italy, November 2006.

[99] Pautasso, C., "BPEL for REST," in Proc. of BPM’2008, LNCS 5240, Milan, Italy,

2008, pp. 278–293.

[100] Pavlidou, N., A. J. H.Vinck, J. Yazdani, and B. Honary, "Power line

communications: State of the art and future trends, " IEEE Commun. Mag., vol. 41,

pp. 34–40, Apr. 2003.

[101] Peltz, C., "Web services orchestration and choreography," Computer, vol.36, no.10,

pp. 46- 52, Oct. 2003.

[102] Perumal, T., A.R. Ramli, C.Y. Leong, S. Mansor, and K. Samsudin,

"Interoperability among Heterogeneous Systems in Smart Home

Environment," Signal Image Technology and Internet Based Systems, 2008. SITIS

'08. IEEE International Conference on, pp.177-186, Nov. 30 2008-Dec. 3 2008.

[103] Plummer. D.C., "An Ethernet Address Resolution Protocol," Internet Engineering

Task Force, RFC 826, November 1982. [online]. Available:

http://tools.ietf.org/html/rfc826. 26 April 2011 [date accessed].

[104] Rahman, M., C. Akinlar, and I. Kamel, "On Secured End-to-End Appliance Control

Using SIP," In Proc. of the 5-th IEEE International Workshop on Networked

Appliances, pp.24-28. Oct. 2002.

[105] Ramish, A., R. Stewart, and M. Dalal, "Improving TCP's Robustness to Blind In-

 290

Window Attacks", Internet Engineering Task Force, RFC 5961, August 2010, Work

in progress. [online]. Available: http://tools.ietf.org/html/rfc5961 25 April 2011

[date accessed].

[106] Redondo Diaz, R.P., A.F. Vilas, M.R. Cabrer, J.J. Pazos Arias, and M. Rey Lopez,

"Enhancing Residential Gateways: OSGi Service Composition," Consumer

Electronics, IEEE Transactions on, vol.53, no.1, pp.87-95, February 2007.

[107] Rellermeyer, J.S. and G. Alonso, "Services everywhere: OSGi in distributed

environments," in EclipseCon 2007, 2007.

[108] Rellermeyer, J.S., G. Alonso, and T. Roscoe, "R-OSGi: Distributed Applications

through Software Modularization," In Proceedings of the ACM/IFIP/USENIX 8th

International Middleware Conference (Middleware 2007), Newport Beach, CA,

2007.

[109] Rescorla, E., SSL and TLS: Designing and Building Secure Systems. Addison-

Wesley, 2000.

[110] Rose, B., "Home networks: a standards perspective," Communications Magazine,

IEEE, vol.39, no.12, pp.78-85, Dec 2001.

[111] Rosenberg, J. "Interactive connectivity establishment (ICE): A protocol for network

address translator (NAT) traversal for offer/answer protocols, " Internet Engineering

Task Force, RFC 5766, April 2010. [online]. Available:

http://tools.ietf.org/html/rfc5245. 26 April 2011 [date accessed].

[112] Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley, and E. Schooler, "SIP: Session Initiation Protocol," RFC 3261, Internet

Engineering Task Force (IETF), Jun. 2002. [online]. Available:

http://www.ietf.org/rfc/rfc3621.txt. 25 April 2011 [date accessed].

[113] Rosenblum, D., "What Anyone Can Know: The Privacy Risks of Social Networking

Sites," Security & Privacy Magazine, IEEE, Volume: 5, Issue: 3, June 2007.

[114] Saint-Andre, P., "Extensible messaging and presence protocol (XMPP): Core,"

Internet Engineering Task Force RFC 3920, October 2004. [Online]. Available:

http://www.ietf.org/rfc/rfc3920.txt. 26 April 2011 [date accessed].

[115] Schneier, B., "Attack trees: Modeling security threats," Dr. Dobb's journal,

December 1999.

[116] Schulzrinne H., S. Casner, R. Frederick, and V. Jacobson, "RTP: A Transport

Protocol for Real-Time Applications," Internet Engineering Task Force, RFC 3550,

July 2003 [online]. Available: www.ietf.org/rfc/rfc3550.txt. 25 April 2011 [date

accessed].

 291

[117] Schulzrinne, H., A. Rao, and R Lanphier, "Real Time Streaming Protocol (RTSP),"

Internet Engineering Task Force, RFC 2326, Feb 1998. Available:

www.ietf.org/rfc/rfc2326.txt. 25 April 2011 [date accessed].

[118] Schulzrinne, H., and J. Rosenberg, “The Session Initiation Protocol: Internet centric

signalling,” IEEE Communications Magazine, vol 38, Oct. 2000.

[119] Siekkinen, M., J. Manner, S. Tarkoma, and A. Ylä-Jääski, 2009. "hBox: connecting

homes". In Proceedings of the 3rd international Conference on New Technologies,

Mobility and Security (Cairo, Egypt, December 20 - 23, 2009). K. AI-Agba, M.

Badra, and G. B. Newby, Eds. IEEE Press, Piscataway, NJ, 218-222.

[120] Singh, M.P., and M. Huhns, (2005). Service-Oriented Computing: Semantics,

Processes, Agents. Hoboken, NJ: John Wiley & Sons.

[121] Song, T., Y. Kawahara, and T. Asami, "DAS: An intuitive DLNA content sharing

system using SNS access control," Broadband Network & Multimedia Technology,

2009. IC-BNMT '09. 2nd IEEE International Conference on, pp.570-574, 18-20

Oct. 2009.

[122] Srisuresh, P., and M. Holdrege, "IP Network Address Translator (NAT)

Terminology and Considerations," Internet Engineering Task Force, RFC2663,

August 1999. [online]. Available: http://www.ietf.org/rfc/rfc2663.txt. 25 April 2011

[date accessed].

[123] Sun Microsystems. [online]. Java Remote Method Invocation specification.

java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf. 26 April 2011 [date accessed].

[124] The OSGi Alliance, "OSGi Service Platform, Core Specification r4," Aug. 2005;

[online]. Available: http://www.osgi.org 25 April 2011 [date accessed].

[125] The X10 Specification, X-10 (USA) Inc. 91 Ruckman Road Box 420, Closter, NJ

07624 [online]. Available: http://www.smarthome.com/manuals/MAN-1136.pdf. 26

April 2011 [date accessed].

[126] Timm, C., J. Schmutzler, P. Marwedel, P., and C. Wietfeld, 2009. "Dynamic web

service orchestration applied to the device profile for web services in hierarchical

networks," In Proceedings of the Fourth international ICST Conference on

Communication System Software and middleware (Dublin, Ireland, June 16 - 19,

2009). COMSWARE '09. ACM, New York, NY, 1-6.

[127] TiVo. [online]. Website: http://www.tivo.com/. 25 April 2011 [date accessed].

[128] Townsley, W., A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter, "Layer Two

Tunneling Protocol “L2TP”," Internet Engineering Task Force, RFC 2661, August

1999. [online]. Available: http://www.ietf.org/rfc/rfc2661.txt. 25 April 2011 [date

 292

accessed].

[129] Tsang, S., D. Marples, and S. Moyer, "Accessing networked appliances using the

session initiation protocol", IEEE International Conference on Communications, no.

1, pp. 1280-1285, Jun. 2001.

[130] UPnP Forum. [online]. UPnP website (http://www.upnp.org/). 26 April 2011 [date

accessed].

[131] UPnP Forum, "DeviceSecurity:1 Service Template Version 1.0, " November 2003.

[online]. Available: http://upnp.org/specs/sec/UPnP-sec-DeviceSecurity-v1-

Service.pdf. 26 April 2011 [date accessed].

[132] UPnP Forum, "SecurityConsole:1 Service Template Version 1.0, " November 2003.

[online]. Available: http://upnp.org/specs/sec/UPnP-sec-SecurityConsole-v1-

Service.pdf. 26 April 2011 [date accessed].

[133] UPnP Forum, "UPnP Device Architecture 1.0," October 2008. [online]. Available:

http://upnp.org/sdcps-and-certification/standards/device-architecture-documents/.

26 April 2011 [date accessed].

[134] UPnP Hacks website. [online]. http://www.upnp-hacks.org/ 26 April 2011 [date

accessed].

[135] USB 2.0 Specification, [online]. Available: http://www.usb.org/developers/docs/ 26

April 2011 [date accessed].

[136] Valtchev, D., I. Frankov, "Service gateway architecture for a smart

home," Communications Magazine, IEEE, vol.40, no.4, pp.126-132, Apr 2002.

[137] Venkitaraman, N., "Wide-Area Media Sharing with UPnP/DLNA," Consumer

Communications and Networking Conference, 2008. CCNC 2008. 5th IEEE,

pp.294-298, 10-12 Jan. 2008.

[138] Weerawarana S., F. Curbera, F. Leymann, T. Storey, and D.F. Ferguson. Web

Services Platform Architecture, Prentice Hall, 2005.

[139] Wegner, T., "A Modular UPnP Proxy for Secure Remote Access," Digital Society,

2010. ICDS '10. Fourth International Conference on, pp.72-77, 10-16 Feb. 2010

[140] Weiser, M., "The Computer for the 21st Century," Sci. Amer., Sept., 1991,	
 pp. 94–

104.

[141] Wolfinger, R., S. Reiter, D. Dhungana, P. Grunbacher, and H. Prahofer,

"Supporting Runtime System Adaptation through Product Line Engineering and

Plug-in Techniques," Composition-Based Software Systems, 2008. ICCBSS 2008.

Seventh International Conference on, pp.21-30, 25-29 Feb. 2008.

[142] XMPP standard foundation. [online]. XEP-0205: Best Practices to Discourage

 293

Denial of Service Attacks http://xmpp.org/extensions/xep-0205.html. 26 April 2011

[date accessed].

[143] Zahariadis, T. and K. Pramataris, "Multimedia home networks: standards and

interfaces," Comput. Stand. Interfaces 24, 5 (Nov. 2002), 425-435.

[144] Zang, N., M. Beth Rosson and V. Nasser, "Mashups: who? what? why?, " in

Conference on Human Factors in Computing Systems 2008, Florence, Italy: ACM,

2008, pp. 3171-3176.

[145] Zheng, O., J. Poon, and K. Beznosov, "Application-based TCP hijacking,". In

Proceedings of the Second European Workshop on System Security (Nuremburg,

Germany. March 31 - 31, 2009).

[146] Zhu, F., M.W. Mutka, and L.M. Ni, L.M., "Service discovery in pervasive

computing environments," Pervasive Computing, IEEE , vol.4, no.4, pp. 81- 90,

Oct.-Dec. 2005.

[147] Zigbee Alliance, "Zigbee specification: Zigbee document 053474r13 Version 1.1,"

1 Dec. 2006. Zigbee website: www.zigbee.org. 25 April 2011 [date accessed].

