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Abstract 
In recent years the Home Area Network (HAN) has been going through a revolution. From 

enabling multiple desktops in the household to share an Internet connection, it evolved as a 

service-oriented platform, enabling devices to communicate with each other. The HAN 

hosts devices from multiple applications domains including entertainment, home 

automation, security and healthcare. A plethora of different technologies have been 

suggested for addressing the challenges of the HAN, have been widely deployed. These 

protocols and standards enable devices and services to be discovered and to interact with 

each other, however they lack native support for service composition, are incompatible with 

each other, and are limited by design to a single HAN. While service interoperability efforts 

have focused traditionally on a single household, the growing interest and user demand for 

content sharing has promoted efforts into supporting interoperability of the existing HAN 

service between HANs. While a number of systems in literature address the intra-HAN and 

inter-HAN service interoperability separately, the problem of integrated service 

interoperability across both remains unsolved. 

 

This thesis therefore addresses the need for an integrated system to support both intra-HAN 

service interoperability enabling services from multiple service protocols to interact and be 

composed, and inter-HAN service interoperability, enabling services from multiple service 

protocols to be securely shared with remote HANs. This thesis synthesises the requirements 

for an integrated service interoperability system and introduces the integrated Krox system 

architecture and design that satisfy these requirements through a pluggable architecture with 

plug-ins per service protocol and an extensible event model that specifies the interaction 

between plug-in components in remote HANs. The Krox architecture supports inter-HAN 

service interoperability through service virtualisation. It supports intra-HAN service 

interoperability through representation of local and remote services as web services in the 
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local HAN enabling their composition using standard web service orchestration techniques. 

The Krox system architecture builds on the Instant Messaging & Presence (IM&P) user 

metaphor, to share devices and composite services between HANs in a secure and scalable 

manner. This thesis demonstrates the feasibility of the architecture and its generality across 

service technologies through the implementation of plug-in instances for UPnP and Jini.  

 

The thesis presents an evaluation of the key Krox system performance parameters that affect 

intra-HAN and inter-HAN service interoperability. Finally the thesis includes a 

comprehensive security analysis of potential relevant attacks on a HAN and how they can 

use the system to spread to remote HANs.  
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Chapter 1  
INTRODUCTION 

Recent years have radically changed the concept of a Home Area Network (HAN) beyond 

enabling multiple desktops and laptops at home to share an Internet connection and 

exchange documents and files. Led by the increasing availability of high-speed Internet 

connectivity and the reduction in cost of high performance networked devices, the HAN 

now hosts many network-enabled devices in various application domains including digital 

entertainment, home automation, intelligent appliances, home security, and healthcare. With 

network-enabled devices including TV, media centres, Network-Attached Storage (NAS), 

tablets, cameras, printers, game consoles, picture frames, and others, gaining in popularity, 

it is predicted that the number of connected devices on HANs will keep rising to over 7 

billion devices by 2015 [56]. In parallel, the number of HANs has grown from 100 million 

in 2007 to an expected 200 million households with a HAN in 2011 [44]. Home networking 

has the potential therefore to cut across the traditional boundaries between application 

domains and industries. Legacy home automation systems (e.g. for the control of lighting, 

heating and cooling) have the potential to be fused with state of the art entertainment 

systems, home security systems, and health monitoring systems amongst many others to 

yield new integrated applications. However, the persistence of this application-centred 

industry fragmentation means that no single domain-independent standard for exposing and 

invoking services in the HAN has emerged. With the assumption that no single technology 

for device internetworking is likely to become a de facto standard across these multiple 

application domains, interoperability between protocols becomes of paramount importance. 

Service Oriented Computing (SOC) [96] is a promising paradigm that can enable 

interoperability between different service protocols, potentially from different device 

vendors. While already used in several HAN service protocols in a different way, applying 

SOC concepts and principles more consistently in the HAN can open new opportunities for 
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both consumers and service providers to create new applications and new reusable services 

from existing HAN device services through service composition. In this way, service 

composition can motivate more application-driven intra-HAN service interoperability.  

 

In addition, content sharing via the Internet has become popular in recent years. Peer-to-peer 

file sharing systems that broker sharing activities beyond immediate social cycle of family 

and friends, have often conflicted with the interests of copyright holders. However, in the 

recent years the commercial success of many Web 2.0 based enterprises such as Facebook1, 

and Flickr2, was strongly based on harnessing the compulsion for sharing within social 

networks. Users wish to share their media with family and friends, however, they may be 

wary of doing so while giving up their usage and administration rights to a third party [113]. 

There are several reasons for users concern, such as the potential exposure of their 

information to 3rd parties, or unintentional exposure beyond the expected audience. In the 

context of the HAN, sharing resources is not limited to just content, as other networked 

services available at home can also be usefully shared with trusted remote HANs. Home 

users can benefit from consuming various services in other networks, e.g. remote security or 

health monitoring, printing on a remote printer, using available space in a remote Digital 

Video Recorder (DVR), consuming remote content such as photos, streaming user generated 

content from remote HANs. Sharing of HAN services with remote HANs can enable 

seamless collaboration between devices across multiple HANs, which here is termed inter-

HAN service interoperability. This, coupled with service composition, opens new 

application opportunities for both consumers and service providers.  

 

In the following sections, the scope, goals, and objectives of this research is presented, 

addressing how the HAN can be extended for integrated service interoperability both inside 

the HAN and across multiple HANs, overcoming the barriers to integration that exist. 

 

                                                        

1 www.facebook.com 

2 www.flickr.com 
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1.1. Motivation 

The Service Oriented Computing (SOC) paradigm has emerged in the last few years as a 

key approach to building loosely coupled, low cost, interoperable, evolvable software 

systems [95]. The core of service oriented computing is the concept of a service. A service 

is a program or a piece of software that is autonomous, capable of completing a task, can be 

published, discovered, invoked, and composed [96]. Singh et al. argue that while there can 

be some value in accessing a single service, the greater value is achieved through enabling 

the composition of services, which leads to creation of new services from existing ones 

[120]. Typically in HANs, devices offer services to other devices or to end-users. For 

example, logically connecting a media server with a media renderer and speakers enables 

streaming multimedia directly from the source without having to physically move the media 

source (e.g. a DVD disc) to the media player. Connecting via a mobile phone for controlling 

home lighting or air-conditioning system can provide fine-grained one click home control 

from your bed. HAN networked devices should be able to use SOC to seamlessly integrate 

themselves into the network and be able to discover and communicate with each other. This 

must be done without manual administration and control, which is typically impractical for 

home users.  

 

Several service protocols for addressing the HAN challenges have been widely deployed, 

including Universal Plug and Play (UPnP) [82, 130], ZeroConf [29], Jini [7], Zigbee [147], 

Device Profiles for Web Services (DPWS) [28], Service Location Protocol (SLP) [47], 

Bluetooth [15], Home Audio-Video Interoperability (HAVi) [75] and Open Service 

Gateway initiative (OSGi) [124]. Driven by the requirement for minimal to zero 

configuration, these protocols and standards define how devices and services connect to the 

network, and how they discover and interact with each other. Attempts have been made to 

promote interoperability amongst devices in the home network however they were limited to 

specific application domains, such as multimedia or home automation. For example, the 

Digital Living Network Alliance (DLNA) [34] is an industry consortium formed to promote 

interoperability of Internet, mobile and broadcast services through simple integration of 

consumer devices with home networks, and to operate by certifying compliant devices. 

However interoperability is promoted by DLNA by selecting “best of breed technologies” 

and certifying devices that support them, rather than defining interoperability interfaces 

between multiple service protocols, which co-exist in the HAN. To address interoperability 
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between service protocols, this thesis proposes a fuller application of SOC principles in the 

HAN. It uses service composition to support integration of services implemented using 

different protocols and for the generation of new, composite, services that in turn can be 

discovered and invoked via different service protocols. 

 

HAN service interoperability efforts have focused on the single household, however the 

increased value placed by users in the content and services held by devices and their 

interplay, rather than the value of the device itself, makes the sharing of content and services 

an increasingly attractive option. At the same time, the widespread adoption of SOC for 

service discovery and invocation within the home provides a readily extensible architecture 

for sharing services between homes. Such sharing must, however, address the HAN users’ 

wish to remain in control over what they share and with whom, as opposed to unrestricted 

P2P sharing. Privacy is also a major issue, so resources may need to be shared with multiple 

HANs with different access rights. Sharing must be easy to perform, easy to configure and 

must be performant to allow users to share and consume remote resources as easily as they 

do local ones. Allowing users to share HAN devices, services, and content with their friends 

and family in a controlled way could increase the potential value of the HAN for both 

consumers and service providers. Consumers would benefit from having more services 

available in their local HAN. Service providers could offer more innovative composite 

services leverage services already deployed in the local HAN.  

 

While the intra-HAN and inter-HAN service interoperability have been addressed separately 

in literature, an integrated approach is still missing. Such integration between intra-HAN 

and inter-HAN service interoperability may enable services from multiple HANs to be 

seamlessly discovered, invoked and composed across multiple HANs. Being able to 

compose local and remote services seamlessly can enable a new platform for 3rd party 

vendors to offer new applications from existing services and thereby help HAN users to 

realise more of the network potential of their HAN devices.  

 

1.2. Research question 

Creating a system that integrates intra-HAN and inter-HAN service interoperability presents 

several challenges: 
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1. Extending HAN service protocols to multiple HANs: Most of the common HAN service 

protocols are not natively extensible to multiple HANs by design. The main challenge is 

how to extend a HAN service protocols beyond the scope of a single household while 

allowing local HAN client applications to seamlessly integrate with remote services.  

2. Enabling services from multiple service protocols to be composed together: Service 

protocols for HANs (e.g. UPnP, Jini, DPWS) are not interoperable with each other, 

which hinders the ability to compose them for creating complex applications from 

existing services.  

3. Performance: As a system that runs in the HAN, solutions must not have a notable 

impact on the HAN resources, such as CPU processing power, memory consumption, 

and bandwidth. Such a system must scale to simultaneously support sharing with a 

number of households that is representative of a typical domestic social network 

including a number of close family and friends.  

4. Security: With the assumption that HAN devices work behind a home gateway firewall, 

vendors of HAN devices and service protocol designers often relax security 

requirements in favour of ease of use. However when sharing the same resources with 

remote HANs over an unsecured network such as the Internet another balance must be 

found between simplicity of configuration and the need to protect against unauthorised 

access or malicious attacks. From a user’s point of view, sharing resources with remote 

HANs should be done with minimal additional potential vulnerability for the HAN.  

 

Therefore the research question addressed by this thesis is: how to enable integrated sharing 

and composition of devices, services and content within the HAN and between multiple 

HANs in a secure and performant manner? 

 

1.3. Research objectives 

To address this research question the following research objectives are pursued: 

1) A review of the state of the art in intra-HAN and inter-HAN service interoperability 

to establish the requirements for an integrated approach. 

2) The design of an architecture that extends current intra-HAN systems with support 

for service composition that uses multiple service protocols, and inter-HAN sharing 
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of services scalable to a number of HANs consistent with sharing with a 

household’s personal circle of family and friends. 

3) Validate the architecture through implementation with two established HAN service 

protocols. 

4) Evaluate the performance and security of the system implementation.  

 

1.4. Research methodology 

In his classification of research methodologies [67], Jarvinen distinguishes between 

approaches studying reality and mathematical approaches. The study of reality is further 

classified as “what is reality” and “utility of artefacts”, also referred to as design science 

[49]. This research adopted the design science research methodology as a problem solving 

paradigm that leads to innovations that have utility in the problem domain. Design science 

requires research to produce an artefact in the form of a construct, a model, or a method. 

The objective of design science research is to develop a technology-based solution to a 

relevant business problem [57]. The business problem addressed by this thesis is how 

services from the HAN could be shared with remote HANs and composed with both local 

and remote HAN services to enable the introduction of complex composite services from 

existing services. Design science requires the design utility, quality and efficacy to be 

demonstrated via well-executed evaluation, which must be constructed and applied 

rigorously.  

 

The design artefact of this thesis is the Krox3 architecture and system design, which 

addresses the unsolved problem of integrated intra-HAN and inter-HAN service 

interoperability. Krox architecture defines a method for sharing devices and services from 

multiple service protocols, enabling their service composition in local and remote HANs. 

The architecture defines an extensible event model for the plug-ins for supporting inter-

HAN service interoperability through automatic representation of remote devices and 

services as virtual devices and services in the local HAN. This facilitates the seamless 

integration with client applications in the local HAN and their interoperability and 

composability with other services in the local HAN. Intra-HAN service interoperability and 

                                                        

3 http://starwars.wikia.com/wiki/Krox 
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service composition are integrated with the Krox system architecture through the use of a 

common service model to enable service interoperability and service composability of 

services from multiple service protocols, from local and remote HANs. 

 

The utility of the design artefact is demonstrated with two service protocols (UPnP and 

Jini). The contributions of design science must be clear and verifiable in the area of the 

design artefact so a clear description of the design is given in chapter 4, and the 

corresponding implementation is described in detail in chapter 5. Two evaluation methods 

were used to assess the quality and efficacy of the design artefact, experimental evaluation 

and analytical evaluation. The performance evaluation used emulated devices designed for 

the purpose of evaluating the system in a controlled experimental environment (section 6.2, 

6.3). The security analysis uses attack trees as a formal framework to identify potential 

attacks on the system and on HAN service protocols (section 6.4).  

 

1.5. Contributions of the research 

While a number of systems were suggested in literature for sharing services from HANs 

[10, 12, 31, 51, 55, 65, 76, 77, 84, 97, 119, 121, 137, 139], none of them aims to define a 

generic method for sharing services via multiple service protocols, that combines use of a 

standard application layer communication mechanism, simple configuration, and support for 

seamless integration of remote services with existing applications in the local HAN. In 

addition, they do not address the challenges of intra-HAN service interoperability and 

service composition. Similarly, while the subject of intra-HAN service interoperability has 

been addressed by a number of systems in literature [16, 17, 18, 52, 106, 126], those 

systems lack the support for inter-HAN service interoperability.  

 

The key contribution of this thesis is therefore, the design, prototype implementation, and 

evaluation of the Krox architecture and system design for integrated intra-HAN and inter-

HAN service interoperability. The approach is based on standard secure communication 

protocols enabling HAN services from remote HANs to be discovered in the local HAN and 

to seamlessly interact and be composed with local HAN services and client applications. 

The generality of the approach is demonstrated with implementations for two important 

service-oriented HAN protocols: UPnP and Jini.  
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While security is a major challenge and a clear requirement to systems for inter-HAN 

service sharing, very little attention has been given in the literature to the security aspect of 

resource sharing systems. A minor contribution of this thesis therefore, is the security 

analysis for sharing of HAN resources, specifically for UPnP and Jini networks, in the form 

of attack trees, which could be used for future HAN sharing research. 

 

Very little information exists in the literature regarding the performance of systems for 

sharing services between remote HANs. A minor contribution of this thesis, therefore, is a 

comprehensive performance evaluation of inter-HAN interoperability, identifying the key 

parameters that affect inter-HAN service sharing and providing a baseline for future 

benchmarks with other systems.  

 

1.6. Publications 

The contributions of this thesis were published in the following peer reviewed papers: 

 

I. David Lewis, Stephen Curran, Kevin Feeney, Zohar Etzioni, John Keeney, Andy Way, 

and Reinhard Schäler 2009. Web service integration for next generation localisation. In 

Proceedings of the Workshop on Software Engineering, Testing, and Quality Assurance 

for Natural Language Processing (SETQA-NLP '09). Association for Computational 

Linguistics, Stroudsburg, PA, USA, 47-55. 

II. Rob Brennan, Dave Lewis, John Keeney, Zohar Etzioni, Kevin Feeney, Declan 

O'Sullivan, Jose A. Lozano, Brendan Jennings, Policy-based Integration of Multi-

Provider Digital Home Services, IEEE Network Magazine, special issue on Digital 

Home Services, 23, (6), 2009, p50 - 55 

III. Zohar Etzioni, John Keeney, Rob Brennan, David Lewis, Supporting Composite Smart 

Home Services with Semantic Fault Management, The 5th International Symposium on 

Smart Home (SH 2010) at FutureTech 2010,21-23 May 2010 in Busan, Korea, 21-23 

May 2010, 2010 
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IV. Zohar Etzioni, Kevin Feeney, John Keeney, Declan O’Sullivan, Federated homes: 

Secure sharing of home services, IEEE Consumer Communications and Networking 

Conference (CCNC 2011), Las Vegas, USA, 9th-12th January, IEEE, 2011 

V. Rob Brennan, Zohar Etzioni, Kevin Feeney, John Keeney, Declan O’Sullivan, William 

Fitzgerald, Simon Foley, Federated Autonomic Management of HAN Services, to 

appear in IFIP IEEE International Symposium on Integrated Network Management, 

IM2011 Technical Sessions, Dublin, Ireland, 23rd-27th May, 2011 

 

The contribution of [I] to this thesis is mainly in the foundation of the concept for service 

composition with BPEL. My main contribution to this paper was the technique of 

composing linguistic services from multiple providers with BPEL service orchestration. 

While this work is not directly related to this thesis it helped in establishing the idea of using 

web services as a canonical service description and leverage the composition capabilities of 

BPEL for web services. 

 

The contribution of [II] to this thesis is in setting the scene with the motivating scenario and 

home area network technologies. The paper looks at the problem of end-to-end service 

management for federating multi-provider services. My contribution to this paper was 

focused in service composition for home networks. At this point the idea of mapping UPnP 

services to web services and their composition with BPEL was developed. 

 

The contribution of [III] was in the development of a prototype for plug-in based 

architecture that enabled cross service protocol service orchestration. The prototype 

demonstrated the architecture with UPnP and was extended to support composite service 

fault management based on semantic annotations and fault ontology. Though this semantic 

management approach was not pursued further in the thesis, the paper introduced the 

motivation for interoperability between HAN service protocols for service orchestration and 

the plug-in based approach for automatic mapping from a service protocol (demonstrated 

with UPnP) to web services.  

 

The contribution of [IV] was the presentation of the design for the sharing system based on 

XMPP as a communication channel and the extension of UPnP for multiple home networks. 

Additionally, this paper presented the application of model-based capability sharing 

management and its application to management of resource sharing between HANs. 
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Finally, the contribution of [V] was in the presentation of partial evaluation of the sharing 

system with an earlier prototype of Krox system architecture and design. 

 

1.7. Thesis outline 

The rest of this dissertation is structured as follows: This chapter has briefly introduced the 

motivation for sharing and composition of HAN services, the main challenges associated 

with it and presents the goals and objectives for the rest of the work. 

 

• Chapter 2 sets the scene of home area networking and the infrastructure, concepts and 

technologies involved in home networks and service architectures. The concept of 

service oriented computing is introduced and the various service protocols for HANs are 

assessed with regard to their service orientation.  

• Chapter 3 describes the interoperability problem in the HAN and between multiple 

HANs and surveys existing approaches for solving this problem. The main focus of the 

chapter is a review of the research directions for sharing home devices, services and 

content between home networks that have been published in literature. Finally the 

requirements for a service-oriented architecture for sharing and composition of multiple 

HAN services are presented. 

• Chapter 4 introduces the Krox service-oriented architecture for inter-HAN and intra-

HAN service interoperability. The second part of the chapter describes the details of the 

design of plug-ins for UPnP and Jini service protocols, and illustrates the realisation of 

the Krox system architecture with these service protocols.  

• Chapter 5 presents a prototype implementation for Krox architecture and design with 

plug-in implementations for UPnP and Jini service protocols, supporting service sharing 

between HANs and service composition. The prototype demonstrates the feasibility of 

Krox system architecture and system design. 

• Chapter 6 presents an evaluation of the Krox system design and implementation. The 

evaluation focuses on two significant aspects of the system behaviour: performance, and 

security. The performance evaluation examines the system’s behaviour under stress 

conditions. The security analysis discusses the potential security weaknesses of the 

system and ways to protect against them. Finally the chapter concludes how the 

objectives of the thesis were met and how contributions were achieved.  
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• The final chapter presents the conclusions of the work presented in this dissertation and 

summarises the contribution. Finally, areas for potential future work are identified. 
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Chapter 2  
BACKGROUND 

The widespread availability of network enabled electronic devices for a variety of different 

application domains are finally fulfilling the vision of Mark Weiser from 1991 [140] for 

ubiquitous computing environment where computing devices are gracefully integrating with 

human users. In recent years home networking has been going through a revolution, from a 

few desktops sharing Internet connections to a network of digital appliances, devices with 

embedded computing and networking that are capable to support IP level protocols. The 

home area network can host diverse devices from multiple application domains including 

entertainment (e.g. home theatre systems, gaming consoles), security (e.g. surveillance 

cameras), communication (IP telephony), and comfort (e.g. heating and cooling, lighting, 

health care). In reality, the availability of devices from multiple application domains did not 

result in full-networked collaboration between devices but only in “functionality islands” 

that are not interoperable with each other [19]. Moreover, even within an application 

domain, multiple competing protocols and standards were suggested. The combination of 

the diversity of devices protocols and their lack of interoperability with each other creates a 

real challenge for creating applications that connect devices from multiple protocols [18].  

Mixing services from multiple service protocols and application domains can enable 

creation of richer value-add services for the home environment.  

 

Nowadays, along with the social networking trend as well as the emergence of user 

generated content, users are interested in sharing their home resources and content with their 

family and friends as well as being able to consume content and services remotely. An ABI 

market research [1] argues that the next generation in the evolution of the HAN is centred 

on sharing media between connected devices from the HAN. However users wish to share 
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their services and content while remaining in control over what they are sharing, with whom 

and when without compromising their privacy [113].   

 

The purpose of this chapter is to analyse the HAN from a service oriented computing point 

of view: i.e. assess the service orientation of the HAN device and service protocols and 

standards based on a criteria that is established in this chapter. Since this thesis is focused on 

extending the service oriented HAN beyond the scope of a single household for integrated 

intra-HAN and inter-HAN service interoperability, the analysis is necessary for 

understanding capabilities and gaps of existing service protocols used with HAN with 

regard to the objectives of this thesis to present an integrated system for composition and 

sharing of home services.  

 

The next sections define the scope of the home area network, and specify the criteria for 

comparison between the home network technologies in relation to common service oriented 

concepts. The rest of the chapter describes and compares the relevant service protocols and 

standards according to the defined criteria.  

 

2.1. Home area networking  

With the widespread availability of always-on high speed broadband to an ever-growing 

percentage of households, the usage scenarios of home networking have evolved from web 

browsing and printer sharing to complex peer to peer communication and interaction 

between devices.  

 

A Home Area Network (HAN) is defined by Oh et al. [93] as interconnecting electronic 

products and systems, enabling remote access to and control of those products and systems, 

and any available content such as music, video or data. Rose identified a number of 

requirements from this definition [110]: (i) devices need to be able to connect with each 

other; (ii) devices need to facilitate access to content that can come from the home network 

device or from external service providers; (iii) devices need to enable their control from 

either within the home or remotely. Another point of paramount importance in home area 

networking is the ease-of-use as users expect technology to be simple, transparent and 

working. Survey of key factors impeding home networking uptake [74] name complexity of 

installation and configuration as a key factor. In contrast with enterprise networks, the home 
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network lacks the function of the expert system administrator. Typical home users can be 

considered non-technical, therefore most HAN device features must be supported “out of 

the box” and not require additional user configuration, which is not appropriate for non-

technical home users.  

 

The HAN is connected to the Internet over cable, telephone, or electricity network through a 

residential gateway (also referred to as home gateway or HG) [26]. In addition to connecting 

the home network to the external network, the HG can provide additional services such as 

quality of service (for both upstream and downstream), firewall [41], Network Address 

Translation (NAT) [38], Dynamic Host Configuration Protocol (DHCP) [36] and Virtual 

Private Network (VPN) [72]. Network interfaces typically offered to the HAN by HG 

include Ethernet [81], IEEE802.11 [62], HomePNA (phone line) [58], power line [100], 

IEEE1394 [63], Bluetooth [15], and Universal Serial Bus (USB) [135]. Home gateways run 

three layers of software: the firmware layers which runs diagnostics, boot loader, and 

additional required support for the operating system. The second layer is the operating 

system, an embedded operating system (such as Embedded Linux, VxWorks4, and 

Nucleous5) equipped with drivers for all the home gateway’s physical interfaces. On top of 

the operating system runs the application layer of the home gateway, which supports the 

communication protocol stacks for routing, bridging, DNS, NAT, DHCP, VPN, Firewalls, 

and system management. Other application layer support often includes Voice over IP, 

OSGi support, and support for audio/video streaming protocols such as Real-time Transport 

Protocol (RTP) [116], Real-time Streaming Protocol (RTSP) [117], and Real-Time 

Transport Control Protocol (RTCP) [116]. HG components are based on open standards 

such as IEEE specifications, IETF RFCs, and other industry standards such as UPnP Forum, 

OSGi Alliance, and DSL Forum.  

 

A home area network establishes connectivity between multiple devices at home and 

enables their access and control using one or more of several network interfaces. 

Additionally some device and service technologies leverage the physical connectivity for 

providing application level protocols that are used for inter device communication. The next 

section presents the existing technologies for physical medium connectivity for home area 

                                                        

4 http://www.windriver.com/products/vxworks/ 

5 http://www.mentor.com/embedded-software/nucleus/ 
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networks.  

 

2.1.1.  Physical medium connectivity for HAN 

The physical connectivity of the HAN defines the physical aspect of how devices 

communicate with each other. The purpose of physical connectivity technologies is to 

provide network level interoperability and enable higher-level service protocols to be 

established in the HAN. A common classification for HAN physical connectivity 

technologies refers to wired technologies and “no new wires” technologies [143].  

 

The most common wired technology is Ethernet [81], which offers mature technology from 

years of use in enterprise networks, high-speed communication and no complex 

configuration. Its simplicity and low cost make it one of the major alternatives for the HAN. 

One drawback of Ethernet for home networks is that it does not have inherent support for 

QoS for isochronous streams, which is needed for multimedia scenarios [143]. IEEE1394 

[63] offers another wired connectivity alternative with a digital interface that integrates 

entertainment, communication and computing into a single consumer multimedia network. 

IEEE1394 supports peer-to-peer high-speed communication and both asynchronous and 

isochronous data transfer. As IEEE1394 was designed mainly for consumer applications it is 

a very common choice for entertainment networks. Universal Serial Bus (USB) [135] is 

typically used to connect peripheral devices such as mass-storage devices directly to other 

devices.  

 

The other approach for home networking is “no new wires” which indicates that 

connectivity should be provided either by using technologies that already exist at the home 

such as power distribution network, or based on the telephone line, or by using radio 

technologies.  PowerLine [100] is based on connecting devices to the network through the 

mains power supply. PowerLine is considered an attractive wired connectivity alternative 

for the connected home due to its simplicity and since it does not require any “rewiring”. A 

disadvantage of PowerLine is the lack of standardisation. Home Phone-line Network 

Alliance (HomePNA) [58] offers high-speed communication over coax and phone lines. 

Phone line networking has a number of challenges, such as the signal noise on phone lines 

from home appliances, and the signal attenuation in delivering data, voice and video 

throughout the HAN caused by the random topology of telephone wiring. IEEE802.11 [62] 
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became very popular for wireless LAN (WLAN) in recent years enabling wireless 

connectivity to the local HAN with the reduction of implementation costs. The IEEE802.11 

addresses both the physical layer and the Media Access Control (MAC) layer. Ethernet is 

often used as wired Local Area Network (LAN) with IEEE802.11 interacting with Ethernet 

through a wireless access point (Wi-Fi), another option is Wi-Fi integrated in the home 

gateway. Bluetooth [15] is another industry standard for wireless communication based on 

short-ranged, low-cost radio. Bluetooth was designed to replace infrared and cabling 

technologies for communication between portable devices such as laptops, PDA and mobile 

phones. Bluetooth relies on IEEE802.15.1 [64] as its physical layer and supports a Service 

Discovery Protocol (SDP) [15]. Bluetooth is mainly used to connect between mobile 

devices and laptops, printers, tablets, keyboards, and gaming devices for replacing 

cumbersome wiring. ZigBee [147] is a specification for high level communication protocols 

for low power radios aimed to support low-cost, low power networks – mainly but not only 

sensor networks. Most of the applications for Zigbee are in the home network are related to 

home automation, such as energy management, including heating, lighting, and air-

conditioning.   

 

2.1.2.  Summary 

The home area network enables devices to be distributed around the household. Moreover, 

while some networked devices in the HAN are stationary, others are mobile and can be 

located in different places at different times, and can join and leave the network frequently. 

The distribution of devices in the HAN and the mobility of devices lead to required 

dynamism of the network configuration. The HAN hosts devices from multiple application 

domains such as home automation, entertainment, security, and healthcare. The 

heterogeneity of applications lead to heterogeneity of technologies and standards - each 

industry has its own hardware standards, software and protocol evolution. Interoperability at 

an industry level – such as between multimedia devices and home automation device, and at 

a vendor level – such as between multimedia devices from multiple vendors, is a great 

challenge.  

 

With the heterogeneity of devices added to the dynamism of configuration, the result is 

increased management complexity. Typical management tasks involve configuration of 

network resources, assurance of quality of service, provision of dynamic network changes 
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and resources, and implementation of security measures and access rights. Ibrahim et al. 

[61] argue that these tasks and repeating them per network resource can be time consuming 

as well as complex and error prone. However this contradicts with the ease of use that is 

desired for the HAN where users are typically non-technical. This implies that systems and 

applications running in the HAN must not require deep technical understanding and must 

automate as much of its operations as possible. In addition, while a market exists for various 

price levels, the vast majority of consumers look for cheap solutions, devices, and 

applications, however they require these to have acceptable performance and security levels. 

Home users see the HAN as a private space. Users expect their home network to be secure 

against malicious attacks, against eavesdropping, unauthorised access, phishing, privacy 

violations, and others. However the management complexity resulting from the dynamism 

and device heterogeneity makes security a challenge.  

 

This section presented the home network environment with the physical connectivity 

infrastructure, and its potential applications and challenges. The physical infrastructure by 

itself is not enough for devices to successfully interact. Higher-level protocols are needed to 

enable devices and services to be discovered, described, invoked, and reused by other 

devices or applications in the HAN. The SOC paradigm, presented in the following section, 

defines concepts that can be used for home networking applications to face the challenges 

presented above in this section.  

 

2.2. Service-oriented computing  

Service oriented computing (SOC) is a paradigm that defines principles and concepts that 

support the development of rapid, low cost, and easy composition of distributed applications 

through the concept of services. A service, in SOC, is merely a networked software with a 

fine-grained goal that can act as an autonomous unit with respect to other service-oriented 

programs, and can be described, published, discovered, invoked and assembled [96].  

Papazoglou defined 3 principles for services in SOC [95]: (i) loose-coupling between 

service providers and service consumer - such that interaction with the service does not 

require knowledge of the internals of the service at the client or service side; (ii) technology-

neutral - a service must be independent of a programming language or operating system; 

(iii) location transparency - such that services should have their definition in a repository 
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that is accessible by clients that can in turn find a service and invoke it, irrespective of the 

service location.  

 

Service oriented computing defines distinct roles for service providers, services consumers, 

service brokers and a loose coupling between them. The service provider describes the 

service, implements it, and publishes it in a service registry, or elsewhere where service 

consumers can find it. The service broker operates the service registry, enabling service 

providers to register services and service consumers to find them. The service consumer 

searches for a service, finds it, binds to it, and then invokes it.  

 

The concept of a service as an atomic unit of functionality promotes reusability; the loose 

coupling between service consumer and service provider, the technology abstraction, and 

the location transparency, enable to create composite services by assembling existing 

services, potentially from different service providers for achieving some goal.  

 

2.2.1. Web services 

Web services present a promising realisation of the service-oriented computing [138]. They 

offer loosely coupled networked autonomous units of functionality. Web services are 

published, discovered, composed, and are designed for ease of integration via a set of 

standard commonly used protocols across platforms, programming languages and 

enterprises. Web services can be dynamically discovered and invoked over the web. Web 

services are offered in two flavours: web service based on Simple Object Access Protocol 

(SOAP) [20]; and web services based on the Representational State Transfer (REST) 

approach [39].  

 

Web services based on SOAP, are described in Web Service Description Language (WSDL) 

[32]. WSDL is a machine-readable specification using XML [22] syntax to describe and 

specify the functional capabilities of the web service. The WSDL specification includes 

information required for a consumer to interact with this service. SOAP is used as a message 

passing protocol that defines how messages are sent over the wire for interacting with the 

service. SOAP web services are invoked via SOAP messages typically but not exclusively 

over HTTP.  
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RESTful web services are based on Representational State Transfer (REST), an architecture 

style that was first referenced by Fielding [39] in the context of the massive scalability of 

HTTP. RESTful web services expose a set of resources through URI and are accessed using 

a small set of remote operations that describe the action to be applied on the resource. The 

services are stateless and use only universal operations: PUT, GET, POST, and DELETE. 

RESTful web services do not use SOAP, WSDL, or any other web service specifications. 

Instead they only leverage HTTP as an application protocol.  

 

Semantic Web Services (SWS) [79] suggest a semantic based approach for interoperability. 

The semantic web [14] transforms the web into a repository of a machine-readable data, and 

web services provide the means for consuming this data. Semantic web services extend the 

definition of web services to support not only service syntax but also service semantics, to 

enable semantic service interoperability. SWS describe a service not only syntactically but 

also provide a semantic description of the service, thereby enabling the automation of 

dynamic discovery, selection, and composition of services.  

 

2.2.2. Service composition 

SOC defines two types of services: a simple service, and a composite service [95]. Simple 

services are the smallest unit of reuse in SOC that accomplishes some task without using 

additional services in its implementation. Composite services involve assembly of existing 

services potentially from multiple sources for accomplishing some task. Singh et al. define 

service composition as a form of putting services together to achieve some desired 

functionality [120].  

 

There are several categories for service composition approaches. Static and dynamic service 

composition, are strategies that differ in the time concrete services are composed. Static 

service composition refers to a non-adaptive composition, where services are hard-wired to 

each other at composition design time. With dynamic service composition, only control flow 

is hard-wired, while services can be dynamically selected when the composition is executed.  

 

Service orchestration [5] refers to an explicit description of the interactions through message 
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exchange between multiple web services along with control and execution flow that is 

controlled by a single party. Service orchestration describes the composite service from the 

point of view of a single participant in a hub/spoke model. Business Process Execution 

Language (WS-BPEL or BPEL in short) [5, 69] is a standard language for describing SOAP 

web services orchestrations. In addition to being able to compose services, in BPEL the 

service composition is also rendered as a SOAP web service described with WSDL. The 

language enables definition of both abstract and concrete processes. BPEL terminology 

includes a process concept, which is the service composition itself; partners, which define 

the services that are taking part in the composition; and activities, which correspond to an 

exchange of messages with a partner or some transformation on the messages. The business 

process logic is manifested in the process description as a set of interactions between 

constituent web services and structured activities facilitating sequential and parallel 

execution of process flows. BPEL defines several control flow structures that facilitate the 

interaction between web services. As it is targeted for running long-lived business 

processes, it supports transactions, fault handlers and compensation handlers. Working with 

BPEL typically involves using a tool for the design of a service orchestration, which would 

create the service orchestration template. This template then needs to be deployed into a 

BPEL engine to enable its execution and calls to constituent services. Typically the BPEL 

engine would provide some administration for deployed BPEL service compositions, such 

as suspend, resume, get state, and reconfigure, but no standard has been agreed. 

 

Service choreography [101] is another alternative for service composition that relies on 

collaboration between services. Service choreography does not require nor depend on a 

central controller. Instead it is based on multi-party peer-to-peer collaboration.  In 

choreography, the message exchange is not defined from the point of view of a single 

participant, but from the perspective of all parties.  

 

Another loose form of composition is referred to as mash-up, where for mash-ups content 

from unrelated data sources (e.g. Google maps, Flickr, news sources, shopping sites) is 

composed in an innovative way to create useful new content made for human (rather than 

machine) consumption [144]. A mashup can be created using traditional web application 

server-side dynamic content generation technologies, such as PHP or using client-side 

scripting with JavaScript. Mashups can use both technologies (client and server) for 

implementing their business logic.  
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2.3. HAN service standards and protocols 

The previous section presented the concepts of service orientated computing in general. In 

this section various service standards and protocols for enabling client applications to 

control devices and device-to-device communication are presented. The main purpose of 

HAN service protocols is to enable applications to discover and control devices and allow 

interoperability between devices supporting similar protocols in the HAN, for improved user 

experience or enabling new applications and services to be constructed from existing ones. 

While a large variety of service standards and protocols were suggested for the HAN, the 

focus of this survey is IP level service protocols and standards. The review includes the 

following service protocols: UPnP [82], DPWS [28], Jini [7], SLP [47], ZeroConf [29], 

OSGi [124], and HAVi [75]. Additional service protocols that do not work at IP layer were 

excluded from this survey: Bluetooth [15], Zigbee [147], LonWorks [85], X.10 [125], 

HomeRF [89].  

 

Before the service protocols are described it is important to define the criteria for their 

comparison. Zhu et al. [146] suggest a classification of service protocols for pervasive 

environments based on several distinguishing attributes. To highlight the differences the 

attributes can be divided into several groups:  

(i) How services are discovered - Search mechanism, communication method, 

support for query, support for advertise, scope of discovery 

(ii) How services are used (how services are selected from the result of a search, 

how service interaction is facilitated, how can the service status be inquired) 

(iii) Supported security mechanism – Authentication, authorisation, confidentiality, 

integrity, and privacy. 

 

This classification is extended here to form a more comprehensive comparison criteria as 

the following: 

• Scope and market uptake 

o Application domain – Services in the home network come from multiple 

different application domain and industries: entertainment devices (e.g. media 
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servers, speakers, TV), computing products (e.g. pc, laptop), telecommunication 

devices (e.g. IP phone), home automation (e.g. lighting, Heating Ventilating and 

Air Conditioning - HVAC, security systems), mobile devices (e.g. 

smartphones), and home appliances (e.g. white goods, brown goods). While 

some service technologies are generic, others specialise in specific application 

domain, such as entertainment multimedia systems, and home automation. The 

purpose of this criterion is to evaluate the generality of the protocol. While the 

scope of this thesis is not limited to a specific set of devices or application 

domains, the set of supported devices will be derived from the set of devices 

supporting the relevant service protocols. However, from the application 

domain it can be concluded how pervasive the service technology is, and the 

more generic its use is, the better it is as a case study for this thesis. 

o Market acceptance – It is important to understand the market uptake of a 

service protocol or standard. The relevance to the thesis is in order to avoid 

selecting service protocols with low market acceptance as case studies for the 

sharing and composition system.  

o Standardisation body – It is interesting to compare the various standardisation 

bodies and the segmentation of their support for the different standards and 

protocols. 

• Generality 

o Physical layer dependency – While some service technologies are physical 

layer agnostic, some other depend on a specific physical layer. 

o Programming language dependency – Some protocols and standards are 

programming language agnostic while others depend on a specific programming 

language for facilitating the interaction with the service. 

• Service orientation 

o Service discovery – The most basic aspect of service-oriented computing is the 

ability for services to be discovered. There are several approaches to service 

discovery, such as advertisement of services by their host when they become 

available in the network, responding to search requests for a specific service 

type, or using a lookup service as a broker between the service providers and 

service consumers. Service discovery will play an important role in the system 

design for service sharing and composition, therefore it is important to study the 

various approaches used by the different protocols and standards and consider 

their extensibility. 
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o Service description – A service description provides information about the 

actions supported by the service. The importance of this factor is in the ability 

to extract information about the service from its description. The more 

information about the service and its supported actions can assist in its 

composition with others. Services that cannot be described cannot be composed 

with other services in a generic fashion.  

o Service invocation – Compares the level of support for service invocation. 

There are three levels of support for service invocation that can be provided by 

a service protocol [146]:  

(i) Service location – A network address representing an endpoint 

where the service can be communicated 

(ii) Communication mechanism – In addition to service location, a 

mechanism for invocation of service methods, e.g. Java RMI, 

SOAP.  

(iii) Application Programming Interface (API) – Domain specific 

application domain operation definition. 

o Service composition – To what extent does the service protocol includes native 

support for composition of services. 

• Extensibility 

o Multi-home readiness – To what extent is the service protocol supporting 

discovery and access to services from outside the HAN. 

• Non functional aspects 

o Security – There are many aspects for security such as authentication, 

authorisation, confidentiality, privacy, and data integrity. The purpose of this 

parameter is to understand the extent of support for security that is embedded in 

the protocol. 

o Performance – Are there any known performance issues with the service 

protocol? 

 

The following sections present a number of service protocols and standards for home area 

networks that can be considered service oriented protocols. Finally section 2.3.8 presents a 

comparison of the protocol and conclusions from the comparison.  
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2.3.1. Universal Plug and Play 

Universal Plug and Play (UPnP) [82, 130] is a standard and an architecture initiated by the 

UPnP Forum, which was formed in 1999. The UPnP Forum [130] currently has members 

from 929 leading companies from various industries: consumer electronics, printing, 

networking, home appliances, automation, security, and mobile products. The UPnP 

architecture is a plug and play service oriented architecture for enabling seamless home 

networking. UPnP relies heavily on standard protocols such as IP, UDP, HTTP and XML. 

UPnP does not dictate any physical layer, which enables it to work with various physical 

layer architectures. UPnP Device Architecture (UDA) [133] specifies several protocols that 

allow devices to connect to the network, be discovered, describe their capabilities, invoke 

their capabilities and send events to interested parties. A UPnP network contains service 

providers (termed devices) and service clients (termed control points). Devices are typically 

hardware-based, however they can be either software or hardware, physical or logical. A 

device is merely a container for services and further embedded devices. A UPnP service 

defines an operational aspect of the device that is controlled through the service interface 

and can be invoked over the home network. Services define actions, state variables, and 

associated events. A common example of a device is a media server (either hardware or 

software) that offers services for browsing and searching for digital media. UPnP devices do 

not communicate directly with other devices but only through control points. Control points 

are controllers that are responsible for facilitating interaction with devices on behalf of the 

users. In some cases a physical device can serve as both a UPnP device and a UPnP control 

point in order to engage in peer to peer networking.  

 

The Simple Service Discovery Protocol (SSDP) [133] is used by UPnP to enable devices to 

advertise their presence and enable clients (control points) to search for devices that support 

a certain service type. SSDP uses multicast over UDP to send search requests to the network 

and for devices to announce their presence. Device and service capabilities are described via 

an XML document with a standard schema – which conforms to the device and service 

profile defined by the UPnP forum. The device and service description document can be 

accessed over HTTP within the local HAN. The device description contains information 

about the device such as manufacturer, version, embedded devices and supported services. 

The service description contains information about supported actions and their parameters. 

SOAP [20] is used as a control protocol, allowing clients to invoke actions on the UPnP 

devices over an HTTP connection. UPnP does not dictate an operating system or 

programming language, which enables implementers to choose their preferred environment 
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as well as clients to interact with the device from their programming environment of choice.  

 

In addition to the specification of UPnP communication protocols, the UPnP specification 

standardises a set of device profiles, which define a standard schema for common devices 

such as Internet Gateway Device (IGD)6, media devices7, and others. A device profile 

defines a device category and specifies the services expected to be supported by this type of 

device. Some of the services may be required while others may be optional within the 

device profile specification. Vendors can also extend the specification with their specific 

extensions such as additional services, actions and arguments. The purpose of the profile 

specification is to facilitate device standardisation. The UPnP organisation forms working 

groups that define these standards for an increasing number of device types however at the 

moment its application domain coverage is not very wide. Most effort is spent standardizing 

the entertainment application domain (A/V architecture) and home Internet gateway.  

 

Security is not an integral part of UPnP and is only supported as an add-on. With the huge 

popularity of UPnP over the years, security has become the primary flaw hindering its 

proliferation. The rationale behind not implementing security (authentication, access 

control) in the protocol is to avoid complex administration and to support easy plug and 

play. However this advantage requires compromising security demands and has resulted 

over the years in several exploits of UPnP vulnerabilities. 

 

Digital Living Network Alliance (DLNA) [34] is an industry organisation of consumer 

electronics, computers, and mobile communication manufacturers whose mission is to 

promote interoperability between products for home networks. While UPnP provides some 

level of interoperability, it is incomplete in some ways. For example, UPnP does not define 

formats of media that need to be supported by media players or digital rights management. 

The scope of DLNA is therefore broader than specifying how devices communicate in the 

home network. In order to tackle the interoperability problem, DLNA defines a set of 

standard recommendations to be used by device vendors, including connectivity standards, 

IP networking, discovery and control, media management, media transport, media formats, 

and link protection. UPnP is the DLNA recommendation for discovery and control, and for 

media management. DLNA defines a set of standard device classes such as Digital Media 

                                                        

6 http://upnp.org/specs/gw/igd2 

7 http://upnp.org/specs/av/av3/ 
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Player (DMP), Digital Media Server (DMS), and others to which device manufacturers can 

conform to and certify their devices to be in compliance with the DLNA guidelines. At the 

moment DLNA is focused at scenarios within a single network and does not address multi-

home sharing scenarios. 

 

Evaluation: 

• Scope and market uptake 

o Application domain – UPnP is generic and is not specific to an application 

domain. However first standardised device profiles and popular 

implementations were focused on multimedia devices and networking devices. 

Nowadays, the standard includes profiles for additional application domains 

including printing, and home automation. 

o Market acceptance – UPnP is very popular in current home networks. UPnP is 

promoted by the Digital Living Network Alliance (DLNA) [34] as a 

recommendation for service protocol for home networking, which contributed 

to its popularity. 

o Standardisation body – UPnP is standardised by the UPnP Forum. 

• Service orientation  

o Service discovery – Enabling service discovery through search request as well 

as device and service announcement. Search is restricted to service type. Service 

announcement includes the device/service type, the duration for which the 

device/service is expected to be available in the HAN, and a URL from which 

the device description can be retrieved. 

o Service description – XML document that conforms to a standardised schema. 

The device description specifies the services supported by the device and 

general information about the device, such as friendly name, and version. 

Service description includes information about the actions supported by the 

service and the state variables related to those actions.  

o Service invocation – Supports communication mechanism for service 

invocation with SOAP over HTTP.  

o Service composition – UPnP specification does not define how services can be 

composed. 

• Generality 

o Physical layer dependency – UPnP is physical layer agnostic. 

o Programming language dependency – UPnP is programming language 
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agnostic.  

• Non functional aspects 

o Security – UPnP lacks embedded security mechanism, which results in several 

serious security vulnerabilities (see section 4.3.3.1.7 and section 6.4.2) 

o Performance – UPnP requires a small memory footprint on the device, 

however XML and SOAP require significant amount of memory and processing 

power for parsing as opposed to less verbose protocols such as Java Remote 

Method Invocation [123] for example. Another problem of UPnP is the 

vulnerability of its discovery protocol. UPnP service discovery does not embed 

mechanisms for automatic shutdown or control, therefore in some conditions 

the network may be overwhelmed with discovery messages. For example, a 

control point that sends many frequent search requests can cause the devices in 

the network to crash because devices must respond to search requests if they 

support the service type in the request. 

• Extensibility 

o Multi-home readiness – UPnP is limited by design to a single household due to 

its reliance on local multicast for discovery. Another problem is that devices are 

assigned private addresses that are not accessible remotely; therefore HTTP 

access, which is required for description, control, and eventing protocols of 

UPnP is problematic. 

 

2.3.2. Device Profile for Web Services 

Device Profile for Web Services (DPWS) [28], submitted for standardisation to 

Organisation for the Advancement of Structured Information Standards (OASIS) in 2008, is 

proposed as a lightweight service oriented architecture targeted at home network devices. 

The proliferation of web services in enterprise markets and their success in promoting 

interoperability encouraged their adoption to devices and home networking. Device profiles 

constrain the web service standards to guarantee that implementations remain interoperable 

by defining a set of specifications that are mandatory for implementations described below. 

DPWS shares goals with UPnP, however by using web services it inherits native 

interoperability with enterprise web services, which can be used for its composition with 

other services, including external web services. The DPWS architecture specifies how 

DPWS-enabled devices can be discovered in the local HAN, how messages can be 

exchanged with a DPWS service, how services are described, how the service is invoked, 
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and how to subscribe for event notifications from a service. The DPWS terminology defines 

a hosting service, which corresponds to a device, and hosted services, which are services 

hosted on a device. All messaging in DPWS is based on SOAP and WS-Addressing. WS-

Discovery [8] is used for discovering available devices. WS-Discovery is agnostic to the 

transport layer and can work over UDP, HTTP or other protocols. Services are described via 

Web Service Description Language (WSDL) [32] and service description and metadata is 

retrieved using WS-Transfer [3]. SOAP is used to invoke actions on devices and WS-

Eventing [21] is used for managing subscriptions for device events. DPWS defines a 

recommendation for security, which is optional for device implementation. A baseline is 

defined such that if a device supports components of security (such as integrity, 

confidentiality, authentication), it is assumed to conform to the baseline specification.  

 

Evaluation: 

• Scope and market uptake 

o Application domain – DPWS is generic and is not specific to an application 

domain. 

o Market acceptance – Little market acceptance at the time of writing of this 

thesis, however the recent appearance of commercial automation products such 

as ConnectedLife.Home8 equipped with DPWS interface indicates that this 

might change in the near future. 

o Standardisation body - OASIS 

• Service orientation  

o Service discovery – Supported through WS-Discovery, enables to search a 

service by its type. Devices must support presence announcement when they 

join and leave the HAN.  

o Service description – Service description provides information about the 

available actions represented as WSDL 1.1. 

o Service invocation – Supports communication mechanism for service 

invocation with SOAP over HTTP.  

o Service composition – DPWS services can be composed using standard web 

service composition techniques. 

• Generality 

                                                        

8 ConnectedLife.Home - http://www.bestbuybusiness.com/bbfb/en/US/adirect/bestbuy?cmd=catProductDetail&showAddButton=true&productID=BB10722723 
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o Physical layer dependency – DPWS is physical layer agnostic. 

o Programming language dependency – DPWS, through its reliance on web 

services is programming language agnostic. 

• Non functional aspects 

o Security – DPWS has built-in mechanisms for security including 

authentication, encryption and integrity however they are not mandatory. 

o Performance – Small memory footprint 

• Extensibility 

o Multi-home readiness – DPWS is designed for a single HAN. It suffers from 

similar limitations to UPnP, including the multicast based discovery and the 

HTTP based invocation. 

 

2.3.3. Jini 

Jini [7] is a Java based service-oriented architecture. Jini can be seen as a successor of 

earlier distributed architectures such as CORBA [92], Microsoft Distributed Component 

Object Model (DCOM) [25], and Java Remote Method Invocation (RMI) [123]. These 

technologies share the common goal of facilitating networked distributed applications. Jini 

proposed a new approach for reducing the burden of administration by making “plug and 

play” networked services and abstracting the networking and communication aspects from 

its users. Jini relies on mobile code for facilitating the interaction between clients and 

services. Service discovery is supported through the use of look up services that can provide 

clients with catalogues of available services. Jini services register a service proxy with one 

or more lookup services. A lookup service is a meta Jini service that acts as a broker that 

connects clients with services and either has a well-known IP address or listens to a well 

know multicast address. TCP/IP is used for communication between clients, lookup services 

and services. Clients discover services through searching in lookup services. Once they find 

a service, they download the service proxy and can invoke methods on it. The service proxy 

communicates with the service implementation and returns the result to the calling client. 

The protocol for communication between the service proxy and service implementation is 

not defined by Jini and is left for the implementation.  

 

Evaluation: 

• Scope and market uptake 
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o Application domain – Jini is generic and is not targeted for a specific 

application domain. 

o Market acceptance – At the time of writing, Java, (and therefore Jini) is not 

very common yet in the embedded hardware industry. 

o Standardisation body – There is no general standardisation body for defining 

Jini service, however some conform to Application Programming Interfaces 

(API) defined in Java (by Sun/Oracle), such as Java Printing API.  

• Service orientation  

o Service discovery – Service discovery is facilitated through a look up service, 

which enabled the registration and discovery of services. Service clients can 

search services by the service interface and additional characteristics that were 

registered with the service in the lookup service.  

o Service description – Services are described via Java interfaces. 

o Service invocation – Jini supports communication mechanism for service 

invocation using Java RMI 

o Service composition – Jini does not define a specific mechanism for 

composition of Jini services. A composite Jini service can be written (with Java 

programming language) to use other Jini services with some business logic, and 

then registered with a lookup service as an ordinary Jini service.  

• Generality 

o Physical layer dependency – Jini is physical layer agnostic. 

o Programming language dependency – Jini is a Java based protocol. 

• Extensibility 

o Multi-home readiness – Jini discovery depends on broadcast and multicast and 

does not natively support discovery beyond the scope of a single home. 

• Non functional aspects 

o Security – Java based security mechanisms for authentication, authorisation, 

confidentiality, and integrity. 

o Performance – There are no known inherent performance issues with Jini. In 

general the use of Java Remote Method Invocation is considered more efficient 

than SOAP because of the verbose nature of SOAP.  

 

2.3.4. Service Location Protocol 

Service Location Protocol (SLP) version 2 [47] is an Internet Engineering Task Force 
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(IETF) protocol for service discovery and advertisement (RFC 2608). Unlike other 

protocols, which aim to abstract the transport layer from the service discovery protocol, SLP 

is restricted to allowing applications to discover the existence of networked resources and 

provide a service location where the service can be interacted. Services can represent 

physical or logical devices. SLP enables clients to find services according to their type and 

associated attributes rather than their host name.  SLP defines 3 types of entities: service 

agents, user agents, and directory agents. Service agents advertise one or more services 

enabling user agents to discover them. Directory agents cache service information and 

enable look up. Directory agents are optional, however they can improve performance by 

reducing the number of searches that user agents initiate to the network. Directory agents 

and user agents listen to periodic device multicast presence messages. For active discovery, 

service agents and user agents can send multicast messages and locate directory agents. 

Once they find a directory agent, they can register a service/look up services respectively. 

SLP has limited support for security. In fact only authentication is supported while access 

control, and the security of the communication channel is not defined. 

 

Evaluation: 

• Scope and market uptake 

o Application domain – SLP is generic and is not targeted for a specific 

application domain. 

o  Market acceptance – SLP is used in printers and earlier versions of Mac OS 

X. 

o Standardisation body – Internet Engineering Task Force (IETF) 

• Service orientation 

o Service discovery – SLP supports discovery through user agents that can search 

for services in directory agents, where services register information about them, 

and through service agents’ announcements.  

o Service description – SLP does not support service description. 

o Service invocation – SLP service invocation support is limited to defining the 

URL where the service is located.  

o Service composition – SLP services support invocation by service location 

only, therefore their composition requires tight coupling between the consumer 

and the provider of the service. The inputs, outputs and operations on the 

service are not expressed explicitly in a service interface, which can be used for 

service composition.  
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• Generality 

o Physical layer dependency – SLP is physical layer agnostic. 

o Programming language dependency – SLP is programming language 

agnostic. 

• Non functional aspects 

o Security – SLP supports only authentication 

o Performance – SLP is considered a scalable protocol, and since it does not 

dictate a specific interface other than the network characteristics of the service 

and the way information is sent or received from the service is left for the 

specific service implementation, enables efficient implementation. 

• Extensibility 

o Multi-home readiness – SLP relies on multicast for service discovery, 

therefore it is not natively extensible beyond the scope of a single network. 

 

2.3.5. ZeroConf 

ZeroConf [29] is a technology for zero-configuration networking aimed for HANs. 

ZeroConf has multiple implementations including Apple Rendezvous (formerly Bonjour), 

Avahi for Linux and Link Local Multicast Name Resolution (LLMNR) by Microsoft for 

Windows CE. ZeroConf involves 3 main protocols: address auto-configuration, name-to-

address translation, and service discovery. Devices obtain their IP address from a DHCP if 

such is available or use IPv4 link local addressing if DHCP is not available. The name-to-

address protocol enables mapping from host name to host address in the absence of a DNS 

server. This is done using Link-local multicast DNS (mDNS). The multicast DNS protocol 

allows client applications to resolve a name or an IP address by sending the request to a 

well-known multicast address. The host whose name matches the one in the request must 

respond if it has a match to the request. ZeroConf supports two types of service discovery 

protocols: Service Location Protocol (SLP) version 2 [47], and Domain Name System 

Resource Record (DNS RR) [46]. SLP v2 uses an administrative-scope multicast address as 

opposed to other protocols of ZeroConf, which are based on link local multicast. DNS RR 

enables a client to lookup a service by the transport protocol, and the domain name, and type 

of service. A comprehensive list of supported services types can be found in [35, 59]. 

ZeroConf has another protocol for allocating multicast address for applications. The 

ZeroConf multicast address allocation protocol (ZMAAP) is required to allow applications 

obtain and maintain unique multicast addresses. The scope of ZeroConf is limited to service 
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discovery and does not dictate an application layer protocol for invocation. The last step of 

ZeroConf is a binding of a host and a port number to a specific service and protocol type 

(e.g. UDP, TCP), however the interaction with the service remains as a contract between the 

client and the service.  

 

Evaluation: 

• Scope and market uptake 

o Application domain – ZeroConf is generic and is not targeted for a specific 

application domain. It is targeted for IP networks and was implemented for 

various services in the HAN.  

o Market acceptance – ZeroConf is very common as a service discovery 

protocol with several implementations from Apple, Microsoft and Linux. 

o Standardisation body – Internet Engineering Task Force (IETF) 

• Service orientation 

o Service discovery – Search is supported through multicast DNS. 

Devices/services can announce their presence in the network.  

o Service description – ZeroConf does not support service description. 

o Service invocation – ZeroConf service invocation support is limited to defining 

the URL where the service is located. 

o Service composition – ZeroConf does not support service composition, and 

since service invocation is limited to service location, it is inherently limited in 

its potential for service composition. 

• Generality 

o Physical layer dependency – ZeroConf is physical layer agnostic. 

o Programming language dependency – ZeroConf is programming language 

agnostic. 

• Non functional aspects 

o Security – ZeroConf supports only authentication. 

o Performance – ZeroConf employs a number of optimisations for the service 

discovery such as exponential reduction mechanism, and same query 

suppression. 

• Extensibility 

o Multi-home readiness – ZeroConf has limited support for multi-home 

networks with its use of DNS. Through modifying a DNS server, services can 

become available over the Internet (i.e. can be discovered remotely). This 
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requires both admin rights to the DNS server, and technical know-how for 

modifying the DNS server allowing services to be discovered by remote 

ZeroConf clients. 

 

2.3.6. Open Service Gateway initiative 

Open Service Gateway initiative (OSGi) [124] defines a component model and service 

oriented architecture for Java, initially targeted at limited resource devices such as home 

gateways, but now more generally used in both desktop applications and enterprise 

application servers. Key features of the framework are that it manages the life cycle of Java-

based software components and supports loose coupling of these components through a 

common service model. OSGi has a dynamic module system, which can load and unload 

modules dynamically during runtime, which makes it efficient to install, start, stop, update, 

and uninstall modules on an as-needed basis. OSGi is restricted to a single Java process, 

therefore does not support distributed computing between multiple devices. In recent years 

some work has enabled distributed OSGi with OSGi version 4.29 and remote access to OSGi 

services with R-OSGi [107] so enables the use of OSGi beyond the scope of a single 

system. While the Distributed OSGi intends to extend the OSGi platform for distributed 

computing, R-OSGi is an OSGi bundle that can run on any OSGi platform and enables 

remote access to services.  

 

OSGi has wide penetration in the embedded systems marketplace with large deployments 

worldwide; thus OSGi is a mature technology with many attractive features for HAN 

equipment vendors, especially software life cycle management.  

 

An OSGi service is an implementation of a Java interface and a bundle is the deployment 

packaging mechanism that can contain service implementations. During the deployment of a 

bundle, its services are registered with the service registry, thereby allowing it to be found 

by clients. Once a service has been found, a Java interface is returned to the client and the 

client can then interact with it directly. Due to the various facets of OSGi, it can be found in 

different contexts in the home network including as a device management interface, home 

interoperability environment [19, 136], and service composition for home devices [106, 

126].  

                                                        

9 http://www.osgi.org/download/r4v42/r4.cmpn.pdf 
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Evaluation: 

• Scope and market uptake 

o Application domain – OSGi is generic and is not targeted at a specific 

application domain, however in the HAN it is common in set top box and home 

gateway devices. 

o Market acceptance – OSGi is common for device management for specific 

devices such as set top box, but it is not common for device-to-device 

interoperability. 

o Standardisation body – OSGi alliance 

• Service orientation  

o Service discovery – Services are registered and can be found in a service 

registry. 

o Service description – Services are described in a service interface. 

o Service invocation – OSGi supports service invocation on service objects. 

o Service composition – With OSGi services can be composed with 

programming language code and registered as an OSGi service with the OSGi 

framework.   

• Generality 

o Physical layer dependency – OSGi is physical layer agnostic. 

o Programming language dependency – OSGi is Java based. 

• Non functional aspects 

o Security – As a Java based framework OSGi supports Java security. 

o Performance – OSGi has a significant overhead and its minimum requirements 

are for at least 8MB of RAM and a CPU of 50MHz. According to performance 

measurements, R-OSGi outperformed both UPnP and Java RMI service 

invocation by two orders of magnitude when evaluated with the 

Javaparty/KaRMI performance benchmark as shown in  [108]. The benchmark 

tested the same services implemented as a UPnP service, Java service invoked 

with RMI, and R-OSGi service. 

• Extensibility 

o Multi-home readiness – OSGi can support multi-home networking through the 

use of R-OSGi, however it does not have a multi-home service discovery 

protocol as its main use case is as a centralised system. R-OSGi is relatively 
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new and at the moment is targeted for distributed application rather than for 

HAN. 

 

2.3.7. Home Audio-Video interoperability 

Home Audio–Video Interoperability (HAVi) [75] first introduced in 1998, aims to allow 

consumer electronics and networked appliances such as television, speakers, and cameras to 

communicate with each other through a set of API, services and on wire protocols. HAVi 

builds on IEEE1394 as a communication medium. As with UPnP, HAVi has support for 

plug and play, enabling devices to join the network, configure themselves, and find other 

devices in the local HAN in a peer-to-peer fashion without requiring user intervention. The 

HAVi architecture defines controlled devices and controllers. A controlled device is a 

device that provides some functionality, e.g. a DVD, or a set top box. A controller enables 

control of a controlled device and can be either part of the device or an external entity. 

Devices are controlled through Device Control Modules (DCM) – a set of compiled Java 

objects that can be downloaded from the controller. A DCM contains a set of Function 

Control Module (FCM) such that each FCM corresponds to a single service supported by a 

device. HAVi devices can be divided into several categories: Full AV Devices (FAV), 

Intermediate AV Devices (IAV), Base AV Devices (BAV), and Legacy AV Devices. The 

FAV and IAV are controlling devices while the latter are controlled devices in the HAVi 

network. FAV has the richest HAVi capabilities enabling it to control other devices. Typical 

HAVi Full AV devices are set top boxes, and residential gateways. IAV have more limited 

control capabilities, such devices are typically amplifiers or DVD players. BAV are devices 

that can be controlled but have no ability to control other devices, for example camcorders, 

and portable audio players. Legacy devices do not directly support HAVi however they can 

be connected to a HAVi network through an FAV or IAV acting as a gateway. Discovery in 

HAVi is facilitated through registries. Applications can query the registry with the set of 

required attributes. Once a service is found in the registry, applications can then download 

required device or function control module from the registry.  

 

Evaluation: 

• Scope and market uptake 

o Application domain – HAVi is targeted to multimedia devices in the HAN. 

o Market acceptance – HAVi is not widely used 

o Standardisation body – HAVi consortium. 
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• Service orientation 

o Service discovery – Service discovery is made via a service registry.  

o Service description – Services are described with a java interface. 

o Service invocation – HAVi supports invocation on Java objects. 

o Service composition – HAVi does not support service composition. 

• Generality 

o Physical layer dependency – HAVi depends on IEEE1394, typically wired 

connections. 

o Programming language dependency – HAVi is Java based. 

• Non functional aspects 

o Security – The HAVi service discovery protocol is vulnerable to internal and 

external attacks, e.g. due to a faulty device. For example a single device update 

contains a virus and it uploads it to all other devices in the network. 

o Performance – HAVi is not designed for use in large networks due to its 

reliance on IEEE1394, which is limited to 63 devices in the same network, 

however since it is designed for consumer electronics and multimedia networks, 

this limit is reasonable. 

• Extensibility 

o Multi-home readiness – HAVi is not designed for multiple HANs. 

 

2.3.8. Summary 

The above sections reviewed a number of service-oriented architectures for home area 

networking. The protocols and standards were compared according to the criteria defined in 

section 2.3 and the results are summarised in table 1. The following section summarise the 

comparison with respect to the criteria defined in section 2.3. 

 

2.3.8.1. Scope and market uptake 

From market acceptance point of view, UPnP and ZeroConf are the most dominant 

protocols in the HAN. Many standardisation bodies are involved in HAN service protocol 

standardisation efforts: UPnP Forum, OASIS, IETF, HAVi consortium, OSGi, and Sun.   
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2.3.8.2. Service orientation 

From a service oriented standpoint the protocols and standards can be divided into two main 

groups: those supporting full service orientation including service discovery, service 

description, and service invocation with a communication mechanism for service 

invocation; and those supporting partial service orientation with service discovery and URL 

for service location as service invocation mechanism. 

 

A closer examination of discovery strategies reveals two main patterns for finding services: 

(i) multicast based; (ii) via lookup service; Multicast based service discovery indicates that a 

search request is sent to a multicast address that devices listen on and they must respond (via 

unicast) to the initiator of the search in case they support the service type indicated in the 

search request. The lookup service based discovery implies that services register themselves 

with a lookup service and client applications use the lookup service to search for services of 

interest. Another aspect of service discovery is the availability of service announcements 

when a device or service becomes available/unavailable in the HAN. Announcements are an 

important complementary mechanism to discovery that enables a reduction on the number 

of search requests by letting applications learn about the existence of new devices and 

services through their presence announcements.  

 

With regard to service invocation, the reviewed protocols can be divided between those 

supporting service location only (SLP, and ZeroConf), and the rest of the protocols (UPnP, 

DPWS, Jini, HAVi, and OSGi) that describe a communication mechanism to invoke service 

methods. While the API is not part of the protocol itself for those protocols supporting a 

communication mechanism for invocation, it is part of the standardisation effort and profiles 

or device interfaces are defined and used by these protocols. The protocols supporting a 

communication mechanism for service invocation can be further divided between Java 

based protocols, SOAP based protocols. Java based protocols are more limited in their 

ability to integrate with other non-java services, however they benefit of a potentially more 

optimal on-wire data representation than SOAP XML which is relatively verbose. 

 

Service composition is not the focus of any of the reviewed service protocols. UPnP 

specification does not define how services can be composed. DPWS do not define how 

services are composed however, since DPWS services are compatible with web services 
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they can be composed with web service composition techniques. Jini does not define how 

services are composed. SLP and ZeroConf are limited in their invocation support therefore 

they are limited in their ability to be composed. HAVi specification does not define how 

HAVi services can be composed. OSGi does not define how services are composed.  

 

2.3.8.3. Generality 

Several of the reviewed protocols and standards are programming language agnostic (UPnP, 

DPWS, SLP, and ZeroConf) while the rest depend on Java (Jini, HAVi, OSGi). The 

dependency on Java is more restricting in that it requires client applications to be written in 

Java. It also requires the service provider and the service client to agree on a Java interface – 

which implies a Java service is the product of the device or service standardisation, while in 

language agnostic protocols the standardisation can be defined as an XML document. This 

observation applies only to those protocols that support a communication mechanism for 

service invocation.   

 

All of the reviewed protocols except HAVi, which relies on IEEE1394, are physical layer 

independent.  

 

2.3.8.4. Non functional aspects 

Most of the reviewed protocols support some level of built in security except for UPnP, 

which has security as an add-on. For others the level of security varies between 

authentication only (SLP) and full support for authentication, authorisation, integrity, and 

encryption (Jini, DPWS, and HAVi). The relevance of the levels of security supported by 

the protocol is for evaluating the impact of sharing on the level of security.  
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With regard to performance,  UPnP and DPWS have small memory footprint on the device. 

The use of SOAP for remote invocation in these service protocols is considered less 

efficient than Java RMI because of its verbosity as opposed to a binary representation, as 

used by Jini, OSGi and HAVi. SLP and ZeroConf are considered scalable because of their 

abstraction of invocation mechanism. In addition ZeroConf has optimised discovery 

mechanisms for reducing the traffic needed for discovery.  

 

2.3.8.5. Extensibility 

With regard to multi-home readiness it can be seen in the table that ZeroConf is the only 

protocol with some support for multi-home networking. It should be noted though, that this 

support is not native and requires manual administration and configuration of a DNS server, 

which is not appropriate for typical home users. To some extent OSGi can also support 

multi-home setting with distributed OSGi and R-OSGi, however this is not common and 

requires administration. The rest of the protocols and standards (UPnP, DPWS, Jini, SLP, 

 

Table 1 Service Protocols and Standards Comparison 

Property/Protocol UPnP DPWS Jini SLP ZeroConf OSGi HAVi 

Scope and 

Market 

Uptake 

Application 

Domain 

Generic, 

currently focused 

in consumer 

electronics 

Generic Generic Broad TCP/IP 

services 

 

Broad TCP/IP 

services 

Generic, 

common for set 

top box 

Consumer 

electronics 

Standardization 

Body 

UPnP Forum OASIS Sun (Oracle) IETF IETF OSGi Alliance HAVi consortium 

Market 

Acceptance 

Very common, 

promoted by 

DLNA 

Not yet common 

in HAN 

Not common in 

HAN 

Used as part of 

ZeroConf 

Very common Not common for 

inter-device 

interoperability 

Not widely used 

Service 

Orientation 

Service Adverts Multicast Multicast Via lookup 

service 

Multicast Multicast Via service 

registry 

Via lookup 

service 

Service 

Discovery 

Multicast Multicast Via lookup 

service 

Multicast Multicast Via service 

registry 

Via lookup 

service 

Service Registry Not supported Not supported Supported Supported Supported Supported Supported 

Service 

Description 

XML WSDL Java API Not supported Not supported Java API Java API 

Service 

Invocation 

Communication 

mechanism 

(SOAP) 

Communication 

mechanism 

(SOAP) 

 

Communication 

mechanism (Java 

RMI) 

Service  location Service location Communication 

mechanism 

(Java API) 

Communication 

mechanism (Java 

RMI) 

Service 

Composition 

Not supported Compatible with 

web service 

composition 

Not supported Not supported 

 

Not supported 

 

Not Supported Not supported 

Generality 

Programming 

Language 

Any Any Java Any Any Java Java 

Physical Layer Any Any Any Any Any Any IEEE1394 

Non 

Functional 

Aspects 

Security Available as an 

add-on 

Authentication, 

integrity, 

encryption 

Authentication, 

authorization, 

integrity, 

encryption 

Authentication Authentication, 

integrity 

Java based 

security 

Authentication, 

authorization, 

integrity 

Performance Small memory 

footprint 

Small memory 

footprint 

RMI is 

considered to 

have better 

performance than 

SOAP 

Considered 

scalable because 

of the 

abstraction of 

invocation 

protocol 

Optimised 

discovery 

protocol with 

shutdown 

mechanisms. 

Considered 

scalable. 

No specific 

issues 

Designed for 

small networks 

Extensibility 

Multi-home 

Readiness 

None None None None Via DNS-SD R-OSGi/

Distributed 

OSGi 

None 
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and HAVi), do not support natively service discovery or access to services beyond the scope 

of a single network. 

 

2.4. Service oriented HAN 

As demonstrated in the previous section, service oriented computing has been adopted by 

multiple standards and service protocols for the HAN. Bottaro et al. claim that SOC is a 

promising paradigm for addressing the challenges of pervasive computing within the HAN 

for enabling seamless integration between heterogeneous devices and services [18]. A 

“home service”, hosted by a home device, in this terminology can define an action or 

operation that can be invoked over the network by clients in the HAN. For example, a clock 

service may have a get time operation, which returns the current time, a media server may 

have a search action, enabling client to search for media. Devices may have additional 

embedded devices, for example a mobile phone device may have a digital camera embedded 

in it.  

 

While multiple service-oriented protocols have been suggested and deployed in the HAN, 

the incompatibility between these service protocols, as demonstrated in the previous section, 

resulted in formation of islands of interoperability [88]. Redondo et al. [106] argue that the 

availability of different devices forms a pool of resources that is committed to various 

activities in the HAN and can be leveraged by combining and reusing existing resources 

through service composition. Devices can shift from providing content only over the 

network, to providing services, such that innovative composite services can reuse these 

services for building custom applications for the HAN. However, while service composition 

is a key premise for SOC for enabling creation of reusable complex services from multiple 

simple ones, it is limited by the lack of interoperability between multiple service protocols. 

Applications can still compose services in the traditional style, by writing code in a 

programming language that interacts with multiple services. For example a UPnP control 

point can interact with multiple UPnP services, and can even include code to interact with a 

service that in DPWS. However this overlooks the SOC advantages of loose coupling and 

technology neutrality, and does not result in reusable services. Support for nested 

composition of atomic services means that service providers can expand their service 

offerings by re-using their own atomic resources and services as parts of composite or 
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specialised services that they then offer directly to consumers. Finally the ability to compose 

local services with other service providers facilitates the building and maintenance of 

strategic partnerships with other service providers in order to maximise the value (and hence 

demand) for the atomic services.  

 

2.5. Summary 

This chapter introduced the main HAN challenges, applications, and technologies. The main 

focus of this chapter was a review and assessment of the various service-oriented protocols 

and standards that leverage the home physical connectivity for enabling services to be 

discovered and invoked locally by other devices, services, or applications.  The outcome of 

this assessment is a comparison of the protocols and standards based on the criteria defined 

in section 2.3. The purpose of the review was to assess their support for service orientation 

in terms of service discovery, description, invocation, and composition, and in addition to 

assess their suitability for extension beyond the scope of a single HAN.  

 

While significant efforts were made in enabling device-to-device interoperability resulting 

in the diversity of service protocols reviewed above, the plethora of service protocols and 

standards that were suggested for the HAN presents new challenges from a service-oriented 

point of view. HAN service protocols and standards enable, to a greater or lesser extent, 

interconnectivity between heterogeneous devices and services. While they generally provide 

useful abstractions for interaction with a particular device, these protocols and standards are 

not interoperable with each other. This leaves vendors and consumers locked into spot 

solutions and ultimately not delivering on the promise of pervasive HAN device and service 

integration. As indicated in this chapter, service composition is not an inherent part of the 

reviewed service protocols, except for DPWS services, which are compatible with web 

services and can be composed with web service composition techniques. Finally, only 

ZeroConf and distributed OSGi and R-OSGi support access of HAN resources from outside 

the HAN.  

 

The next chapter presents a review and analysis of the state of the art in the area of service 

oriented architectures for home area networks with emphasis on intra-HAN service 

interoperability and service composition, and on inter-HAN service interoperability.  
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Chapter 3  
STATE OF THE ART 

The previous chapter discussed the service oriented HAN, presenting the various service 

protocols and standards for home networking, and assessing their service orientation. The 

previous chapter also presented the fundamental concepts of service orientation and 

emphasised the role of service composition and its potential value for HANs both for 

consumers as well as service providers. Being able to compose services available in the 

HAN can realise the full potential of the HAN through enabling the innovative creation of 

new complex services from those already existing in the home network. Moreover, service 

oriented computing can also benefit from the availability of services from multiple HANs. 

With increasing broadband availability, consumers can leverage remote resources shared 

with them, thereby extending the scope of the service-oriented HAN. However this 

extension of scope must be made carefully with regard to security, privacy and performance. 

 

This chapter presents the state of the art in these two aspects of interoperability related to 

SOC in the HAN: Intra-HAN service interoperability, which allows services from different 

service protocols to discover and interact with each and to be composed in the scope of a 

single network; and inter-HAN service interoperability, which allows services in different 

HANs to discover and interact with each other.  

 

The purpose of this chapter is to identify the shortcomings of existing approaches for both 

intra-HAN with respect to service composition (section 3.2) and inter-HAN service 

interoperability (section 3.3) and derive the requirements for an integrated service oriented 

system that supports both intra-HAN and inter-HAN service interoperability (section 3.4). 
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3.1. HAN service interoperability 

The previous chapter showed the diversity of devices, services, and the service protocols 

and standards used for their interconnection. These service protocols and standards are 

incompatible with each other and therefore are not interoperable in their syntax, and the 

semantics of the interfaces they expose.  It is unlikely in the near term to expect that a single 

technology will dominate the home network. There are several reasons for the coexistence 

of multiple service technologies at the home network. Due to the wide spectrum of devices 

from low-cost, resource-constrained appliances to powerful desktops, a single service 

protocol may not be suitable for all devices. Additionally, the traditional segmentation of 

industries has led to the development of multiple service protocols and standards, each with 

its own application domain. Moreover, this segmentation has shown little sign of 

convergence, which could promote interoperability in recent year.  While on more powerful 

devices multiple protocols could be supported, on low-cost devices, it is unrealistic to 

expect to find more than one service protocol implemented on a single low cost device.  

 

HAN service interoperability is defined as the ability of devices and services to discover, 

configure and control other devices and services in the network [83]. There are various 

levels of interoperability from the lower network level interoperability, which specifies how 

messages can be exchanged between systems, through syntactic interoperability, which 

defines the structure of messages that can be sent between heterogeneous systems in the 

home networks. Finally there is semantic interoperability, which is required to understand 

the format and content of the actual data that is exchanged between systems.       

 

Since the HAN service protocols and standards differ in their network, syntax, and semantic 

layers, they are not designed for discovering, and interacting with services supporting other 

service protocols. In addition, these protocols are designed to run within the scope of a 

single HAN and are not able to interoperate with other services in remote HANs (i.e. 

discover, interact).  Interoperability between the different service protocols is also a building 

block in enabling HAN service composition. Service interoperability, both inter-HAN and 

intra-HAN has various advantages to several players including consumers, service providers 

and service developers. Service interoperability can enable service consumers to enjoy a 
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richer choice and experience from being able to connect multiple services, in multiple 

HANs, augment the functionality of a single device or service with available extensions. 

Service providers can profit from the potential of their devices and services being used in 

ways that were not necessarily intended through combination and collaboration with other 

services. Interoperability enables rapid service development and makes it easier to introduce 

new applications from existing devices and services.  

 

The lack of service interoperability indicates that devices supporting one protocol cannot 

discover and interact with devices supporting other protocols and with devices supporting 

the same service protocol in other networks. This poses a challenge to the home service 

oriented environment and impedes the realisation of its potential, which can be achieved 

through connecting and composing services from multiple protocols and networks. 

 

The following sections therefore present the state of the art in intra-HAN and inter-HAN 

service interoperability. The importance of intra-HAN service interoperability for this thesis 

is in that HAN service composition requires broader intra-HAN service interoperability.  

 

3.2. Intra-HAN service interoperability 

The objective of intra-HAN service interoperability is to enable devices supporting different 

service protocols and standards to discover and interact with each other. The approaches 

proposed in the literature can be classified into two main groups: bridge-based service 

interoperability, and middleware-based interoperability. The bridge-based interoperability 

attempt to connect two specific service protocols and enable their unidirectional or 

bidirectional discovery and interaction. The middleware-based approach to intra-HAN 

service interoperability takes a platform centric standpoint in positioning a middleware as a 

hub between multiple spoke service protocols.  

 

3.2.1.  Bridge-based interoperability 

A number of bridge-based solutions were suggested for enabling the unidirectional or 

bidirectional bridge between service protocols, enabling clients of one protocol to access 
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services of the bridged service protocol. In [91] Newmarch presents a lightweight approach 

for a unidirectional bridge connecting Jini clients with UPnP services. Jini’s abstraction of 

the way a service proxy communicates with a service implementation is leveraged to create 

Jini service proxies for UPnP devices such that SOAP is used to facilitate the interaction. 

This requires the UPnP device side to register the proxy with the lookup such that the proxy 

should implement all the methods defined in the service description of the UPnP service. 

This requires an extension of the UPnP device stack to make the proxy classes available to 

be registered with the lookup service.  

 

Allard et al. present an approach for a bidirectional bridge between Jini and UPnP service 

discovery architectures [4]. This approach is external to the devices and enables 

bidirectional communication. While it does not require clients to be rewritten, it does 

require new code to be added for each additional service introduced for bidirectional 

mapping between UPnP and Jini to be deployed as part of the system. The design suggests 

creating a virtual proxy for each UPnP service that would register with a Jini look up service 

and bridge Jini client calls to the UPnP device, and similarly for a Jini service, a UPnP 

virtual proxy would advertise the service using SSDP and bridge SOAP calls to the Jini 

implementation. The architecture is meant to minimise the amount of code needed and to 

facilitate rapid development of bridged services. While the bridge presents a solution to the 

syntactic interoperability problem, the semantic interoperability remains a problem, e.g. a 

Jini printer service may differ from a UPnP printer in the functionality offered, therefore 

mapping between them is imperfect. Another problem refers to the argument types in Jini 

services that tend not to be restricted to primitive types and Strings, which is more 

problematic to map to UPnP. Another problem for bridging service discovery is that while 

UPnP search is limited to the service type, in Jini lookup, several attributes can be used for 

locating a required service (in addition to the service interface), including manufacturer and 

version. These attributes if available in UPnP are part of the service description, which is 

not available before the service is located.   

 

Guttman et al. [48] present another bridge between Jini and Service Location Protocol (SLP) 

service discovery. Their work is targeted for devices that support SLP discovery however 

they do not host a Java Virtual Machine (JVM) and do not have a Jini interface. In order to 

allow Jini clients to use SLP devices, the Jini-SLP bridge acts as an SLP User Agent (SA) 

and discovers Jini-enabled SLP services in the network. While these devices are expected 
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not to have a JVM, they are required to have a Jar file that contains a driver factory class 

that can be used to register the service with a Jini lookup service. When a client wants to 

invoke the Jini service, it downloads the driver factory object from the lookup service and 

the driver factory can then interact with the SLP service agent. The advantage of this 

approach over direct interaction with the SLP service agent is that it abstracts the 

networking code from the client and enables thinner, simpler, and more flexible clients.  

 

3.2.2.  Middleware-based interoperability 

A more generic approach for establishing service interoperability between home service 

protocols is the platform centric approach where interoperability is achieved through central 

middleware software. Such a middleware can abstract service discovery and service 

interaction differences between different protocols and technologies and allows uniform 

access to services for clients.  

 

Several service oriented middleware systems for home networks were suggested in 

literature. These middleware systems can be classified into 3 groups:  

1) OSGi middleware - OSGi provides useful flexibility in its module system for 

service middleware systems. The service technology can be mapped to an OSGi 

service interface, then loaded into the platform runtime, and then discovered and 

invoked by other bundles [136].  

2) Web services middleware – SOAP or RESTful web services can provide syntactic 

interoperability between services in addition to the network interoperability and 

basic connectivity provided by lower layers (e.g. IP, UDP, wireless, Ethernet) [102]. 

Web services are used as the service representation, such that the web service serves 

as the proxy between various service protocols. The benefit of using web services 

for home networking interoperability is their reuse of open standards, proven 

scalability in enterprise applications given their loose coupling, and their 

independence of platforms, programming languages, and operating systems [2]. 

3) Proprietary canonical service representation – proprietary frameworks that define or 

reuse a service format to which service protocols are transformed, in addition to 

discovery mechanisms and invocation protocol. Universal Service Description 

Language (USDL) [88] for example is an XML language used by uMiddle to 

describe semantics of devices. The main drawback of this approach is that it is 
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incompatible with any existing software in the home network. It also requires 

application developers to be trained with new API rather than well known industry 

standards.  

 

• Middleware systems using OSGi service representation: 

o Home SOA [19] is an attempt to tackle the home interoperability problem via 

open pluggable component architecture. Based on an OSGi platform, Home 

SOA offers a service oriented device control framework. The main concept in 

this architecture is the use of several types of drivers in conjunction with an 

OSGi platform to provide a rich service oriented interoperable environment. 

Base drivers are used for handling a specific technology and hiding its protocol 

details through device reification on the platform. Refined drivers react to the 

discovery of a base driver and perform mapping between multiple technologies. 

Service composition is supported through chaining syntactic functions via 

reactive adapters. 

• Middleware systems using web service representation:  

o FedNet [70] is an intermediary based solution for transparent integration of 

applications with diverse smart objects by wrapping the interaction with the 

smart object and placing the FedNet intermediary between the applications and 

the smart devices. Smart devices are described via proprietary description 

documents. The interaction between the application and the smart device 

representation is made through a RESTful interface. 

o Perumal et al. [102] tackle the problem of interoperability and heterogeneity in 

smart homes, and discuss the different layers of interoperability and for each 

layer suggest their preferred solution. For connectivity interoperability they 

suggest an Ethernet cloud; for network interoperability – TCP; and for syntactic 

interoperability - XML/SOAP web services. 

• Middleware systems using proprietary service representation:  

o uMiddle [88] is a universal and extensible middleware for interoperability in 

pervasive environments. uMiddle uses a proprietary XML universal description 

language (USDL) as a canonical service description thereby enabling 

developers to write applications that interact with devices with a technology-

neutral interface.  
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3.2.3.  Home service composition  

As mentioned earlier in this chapter an important aspect of a service-oriented architecture is 

service composition – the ability to construct complex services from atomic simple ones 

available in the network. This section reviews several middleware-based solution for intra-

HAN interoperability that focus on service composition. 

 

Several service composition platforms for home services are focused on a specific 

technology while others aim at a more holistic mediation solution for multiple service 

technologies. Bobek et al. [16] suggest a framework for enabling workflows in UPnP 

networks. The architecture supports two different modes: workflow as a UPnP device, and 

workflow as a UPnP control point. By adding a UPnP interface to a workflow engine, it can 

theoretically interact in a seamless manner with other UPnP devices in the network. 

Workflows are modelled as embedded devices in the workflow engine device enabling 

control points to discover and invoke them via UPnP protocols. Taking the role of a control 

point allows the workflow engine to interact directly with UPnP devices. The combination 

of both capabilities enables workflows modelled as UPnP devices to be further composable 

for creating composite workflows, which are again modelled as UPnP devices for further 

composition. Wrapping the workflow management system as a UPnP device enables 

uniform workflow management via a UPnP service. This approach has the advantage of 

enabling control point applications in the home network to discover and invoke composite 

services. For service composition, the disadvantage of [16] is that it only supports UPnP 

services.  

 

In [126] Timm et al. present MORE, a middleware system, which supports dynamic service 

orchestration on DPWS-compliant embedded devices. Their main application domain is for 

hierarchical sensor networks. The middleware runs DPWS on an OSGi platform. WS-BPEL 

is too heavy for a sensor network deployment – for example, the open source Apache ODE 

BPEL engine requires Java runtime as well as a Tomcat servlet container, which requires 

10-15 megabytes of RAM. The static nature of BPEL is not flexible enough for the 

application domain – this is because the sensor network is dynamic, sensors are added, 

network conditions change in such way that the workflow has to be modified dynamically 

throughout its lifetime. Instead MORE suggests a simplified workflow technique called 

service chaining, which is merely a description of the order of execution of a set of web 
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services such that the WSDL for the service chaining is generated on the fly. Through the 

web service interface for the service chaining, the system achieves seamless integration with 

BPEL, which may be applicable at higher layers of the sensor network. While the simplistic 

approach of dynamically generated service chains may suffice for sensor networks, however 

for home service composition it lacks concurrency (in service chaining services are executed 

sequentially), and structural activities such as conditional branching, and sophisticated event 

handling.  

 

An OSGi based service composition for smart services with BPEL is presented in [106]. In 

this architecture a composite service is expressed as a BPEL process that orchestrates a set 

of OSGi services. The composite service is deployed in the OSGi platform as a virtual 

bundle and then can be accessed by other services as an ordinary OSGi service. When a 

composite service is located and invoked, the implementation bundle calls the BPEL engine, 

which interprets the process specification and executes the process and can call back OSGi 

services. Smart home services are discovered and registered with the OSGi platform as 

services via technology related bundles (e.g. a UPnP bundle) and thereby can be invoked 

from composite services running on the OSGi platform. An important aspect of the 

proposed approach is an improvement of the OSGi service registry to support semantic 

description of services and thereby enable the automatic semantic OSGi service 

composition, which is based on an understanding of what the service does rather than what 

is the syntax of the service. This allows replacement or load balancing of equivalent 

services.  The main drawback of this approach is the lock-in to Java indicated by the use of 

OSGi. In addition, OSGi is typically centralised and while it allows clients to discover and 

invoke services, these clients must run in the same process as the OSGi platform. In this 

sense, seamless integration is achieved only through embedding of client applications into 

the OSGi process space, which is not likely for the dynamic environment of the home 

network. The main advantage of this approach is that the modularity of OSGi enables 

support for multiple service protocols through the OSGi service interface by registering a 

service protocol bundle with the OSGi framework.  

 

The authors of [17] suggest an extension of BPEL for dynamic device and service 

discovery. The purpose of this framework is to adjust BPEL to the more dynamic 

environment of mobile devices. The discovery extension supports DPWS enabled devices. 

The benefit of this approach is in its flexibility such that the services invoked during the 
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execution of the process do not need to be known at design time. Another contribution is a 

code generator that generates Java code from BPEL service description. The advantage of 

this approach is that the generated byte code can be executed on a Java virtual machine 

without requiring a heavy BPEL engine, therefore it may be appropriate for running on 

devices. 

 

Sliver [52] is an extension for BPEL targeted for mobile devices. While the disk space and 

memory size required for running BPEL engine are reasonable for modern computers, they 

are inappropriate for most mobile devices. Another problem is that most mobile devices are 

not equipped with full Java runtime but with a more limited version (JavaME10). Mobile 

devices that do not support 3G typically lack support for TCP/IP sockets and UDP/IP 

datagrams, while typically BPEL relies on HTTP for communication with hosts. Through 

the abstraction of communication with partner links, use of dedicated lightweight parsers 

and small set of Java API available on mobile device Java environment the goals described 

above are met. 

 

In [18] Bottaro et al. suggest an OSGi service-oriented middleware supporting ontology-

based home service composition, specifically in the audio/video domain. By using OSGi, 

the system can support multiple different service protocols, for dynamic service composition 

based on semantic technology. Service composition is accomplished by matching required 

services with provided services. They define device and capability ontology, which are used 

to assist with service composition to enable determining which device can perform which 

semantic task. 

 

3.2.4.  Analysis 

The sections above presented a number of bridge-based and middleware-based approaches 

for enabling intra-HAN service interoperability. Bridge-based solutions provide a direct 

mapping between two service protocols, enabling services of one (or both) protocols to be 

discovered by the other service protocol’s clients. Middleware approaches take a platform 

centric approach and suggest mapping each service protocol to a canonical service protocol 

                                                        

10 http://www.oracle.com/technetwork/java/javame/overview/index.html 
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and service format. For home service composition, BPEL is commonly used for static 

service composition, where dynamic service composition is supported through either 

extension of BPEL or extension of OSGi. As was shown no service-oriented middleware for 

intra-HAN service interoperability supports inter-HAN service interoperability. The 

following sections analyse the bridge-based, middleware-based and service composition 

existing solutions for intra-HAN service interoperability. 

 

3.2.4.1. Analysis of bridge-based approaches 

The main problem with bridge-based solutions to intra-HAN service interoperability is that 

they are not extensible to additional protocols. Supporting another protocol requires a bridge 

between the new protocol and all existing protocols. With regard to service composition, 

bridge-based solutions to intra-HAN service interoperability do not support or enable 

service composition. They focus on making more services available to application clients – 

by enabling one protocol’s client to interact with another protocol’s services - however they 

do not address the problem of being able to compose services, either from a similar or 

different service protocol in a reusable manner. 

 

3.2.4.2. Analysis of middleware-based approaches 

Middleware systems aim to hide the heterogeneity of networks behind a middleware by 

mapping between service protocols and some other service protocol selected as a canonical 

form. The main advantage of the middleware approach over the bridge-based approach is its 

extensibility for supporting new protocols and service formats – where all service protocols 

are mapped to a single canonical protocol and service format. Therefore, mapping a new 

protocol requires only mapping to the canonical for, rather than mapping to all of the other 

protocols as in the bridge approach. A major drawback of the middleware approach is that 

due to mapping to a canonical protocol, client applications supporting a specific protocol 

cannot benefit from the service interoperability unless they are modified to use the canonical 

protocol. With bridge-based approaches, e.g. UPnP to Jini bridge, UPnP control points can 

discover Jini services, and Jini client applications can seamlessly discover UPnP devices 

and services through the bridge. Similarly to protocol bridges, a problem of middleware 

approaches is that while they solve the syntactic interoperability between protocols, the 

semantic interoperability problem remains. If a printer service in UPnP has different 

operations than a printer service in Jini, their representations in the middleware will differ. 

Through the abstraction of protocol syntax, a middleware approach enables applications to 



 70 

be written in a protocol agnostic manner, however the mismatches and data format 

differences between the service interfaces of semantically equivalent services limit this 

ability.  

 

Several service representations were suggested above: OSGi service format, web services, 

and proprietary service format. The advantage of OSGi services and web services over 

proprietary service formats is that a proprietary middleware supporting a non standard 

service format is required to re-implement a complete service oriented environment for this 

service format, i.e. service discovery, service selection, service invocation, and service 

composition, while all of the above are already supported for web services and OSGi 

services through standard and commonly known protocols. One strong disadvantage of 

OSGi based solutions is that it is centralised and requires client applications to run as 

bundles on the OSGi platform. Another drawback of OSGi is that it is Java specific and 

requires Java-based interaction, on the other hand web service based middleware enables 

programming language agnostic interaction. A common drawback to all middleware 

solutions is that they are incompatible with existing client applications supporting the 

service protocol and require new applications to be developed to interact with the 

middleware-based services. 

 

3.2.4.3. Analysis of service composition 

Table 2 summarises the approaches presented above for home service composition. As can 

be seen home service composition is supported mainly with BPEL or OSGi service 

composition. BPEL is considered a common solution for service composition for enterprise 

applications. The advantage of applying the same solution to home service composition is in 

the simplicity that it offers and the readiness of development tools. There are two main 

drawbacks for using BPEL for home service composition. BPEL is not lightweight and 

requires significant amounts of RAM. While it is still reasonable for deployment on more 

powerful home computers, it may not be appropriate for smaller devices such as mobile 

phones. A potential solution to this problem is proposed in [17] with the mapping of a BPEL 

composite service to Java such that the executable composite service is compiled into Java. 

Another drawback of BPEL is its lack of support for dynamic composition. In a BPEL 

composite service, the service bindings are hard wired at composition design time. In 

dynamic environments this may be insufficient, as services are added and removed from the 
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network and better options may exist for the selection of a constituent service within a 

composite service.  

 

Dynamic service composition allows service selection to be done during runtime rather than 

design time as in static service composition. While it makes dynamic service composition 

more flexible, it comes at the cost of complexity. Mechanisms are needed to extend service 

definitions with semantic information, and to support just-in-time selection. Additionally, 

semantic information needs to be available for services to provide the service composition 

contextual information.  

 

Finally, it is interesting to note that none of these systems discussed above supports inter-

HAN service interoperability.  

 

3.3. Inter-HAN service interoperability 

This thesis argues that the service oriented HAN could benefit from the availability of 

remote services. By extending the boundaries of the HAN and making more services from 

remote HANs available, home users could realise even more of the potential of their own 

devices. More services available in the local HAN (through sharing from remote HANs) can 

lead to more potential for service compositions that could leverage these devices and 

services and provide more added value complex services to the home user. In addition, with 

the emergence of social networks such as Facebook, YouTube11, Flickr and others, along 

                                                        

11 www.youtube.com 

 

Table 2 Home Service Composition Approaches 

Middleware type Service 
composition 
technique 

Service 
composition 
level 

Adaptability Supported 
service 
protocol 

Inter-network 
interoperability 

Bobek et al. [16] Proprietary Workflow Syntactic Static UPnP Not supported 

Timm et al. [126] OSGi Service chaining Syntactic Dynamic DPWS Not supported 
 

Redondo et al. [106] OSGi BPEL Syntactic/
semantic 

Dynamic Generic Not supported 
 

Bohn et al. [17] BPEL extension BPEL/Java Syntactic Static DPWS Not supported 
 

Hackmann et al. [52] BPEL extension BPEL Syntactic Static SOAP Not supported 
 

Botaro et al. [18] OSGi OSGi Semantic Dynamic Generic Not supported 
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with the growing popularity of high speed broadband at households, and the growing, yet 

limited standardisation of home devices interoperability with DLNA, users are ready to 

share their HAN resources and content in a controlled and managed manner with their 

friends and family as shown in an ABI market research survey [1]. The focus of this thesis is 

on integrated inter-HAN and intra-HAN service interoperability and composition. Inter-

HAN service interoperability refers to the ability to share services between multiple HANs.  

 

Remote access to HAN resources is a closely related scenario to sharing, however it has a 

number of subtle but important differences. In the remote-access scenario, the sharing is 

performed with the identity of a person. In HAN-to-HAN scenario, the sharing is performed 

with the identity of the network. Hence if a service is shared in the latter scenario, it is 

shared (and will be discoverable) in the target network, while in the prior scenario, a shared 

service will not be discoverable in the target network but only by the user identity. The 

differences in the scenarios imply differences in the set of problems that need to be handled 

by potential solutions, therefore given the scope of this thesis is restricted to home-to-home 

scenario, this section focuses on architectures that support inter-HAN service 

interoperability.  

 

In order to be able to identify shortcomings and advantages of the various approaches and 

compare between them, a common comparison criteria has to be defined first. The following 

parameters are defined as the assessment criteria for inter-HAN service interoperability 

systems: 

• Seamless integration  – A major challenge for inter-HAN service interoperability is to 

enable the seamless integration of remote resources into local HANs without requiring 

the extension of the device, the service or network protocols, or of client applications. 

Another aspect to this is the ability to make local services available to multiple remote 

HANs simultaneously.  

• Private networks – The introduction of Network Address Translation (NAT) and 

private networks solves the problem of the explosion in IP addresses, however it poses a 

serious challenge for enabling sharing of resources and content between remote HANs. 

With NAT, the private IP addresses assigned to devices in the local HAN are 

meaningless outside this scope. The same IP address can be used in two HANs. 

Moreover, the private IP address of a device is not addressable from the outside world. 
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There are two different challenges with private IP addresses in the context of sharing 

services and content outside private networks: 

o Service discovery – How to announce a service with a private IP address in 

remote HANs?  

o Communication – How to enable point-to-point communication between private 

IP addresses in remote HANs? 

• Security – Interconnecting remote HANs for service interoperability presents several 

security related challenges: 

o Authentication – Needs to guarantee that communication is made only between 

authenticated parties.  

o Access control – The main challenge is to enable maximal flexibility for the 

home users to control what they wish to share, with whom, and when. More 

fine-grained sharing specification, leads to higher level of flexibility.  

o Encryption – Prevents eavesdropping and revealing of private data while being 

transferred between remote HANs. 

• Extensibility – With the coexistence of many service protocols in the HAN supporting 

multiple service protocols for service sharing. 

• Manageability – Each system is deployed in the HAN and interacts with non-technical 

home users. It is important to assess what is required from the home user in order to be 

able to configure the system, e.g. add friends to share services with, control which 

resources are shared.  

• Intra-HAN service interoperability – The extent of support for intra-HAN service 

interoperability, i.e. enable services from multiple service protocols to interact. 

• Support for service composition – The extent of support offered by the architecture for 

service composition, in the same HAN or across multiple HANs. 

 

In the following sections the various approaches and implementations are assessed with 

regard to the above criteria.  

 

3.3.1. IP addressing in a HAN  

The most basic approach for enabling remote access to a service or content within the home 

network is based on configuration of the home gateway [13]. Typically home networks are 

configured as private networks behind a NAT such that the home network has a single 
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external IP address and devices in the home network are assigned private addresses. To 

enable remote traffic to a specific device the NAT router needs to be configured to forward 

such traffic to the specific private address IP/port. Given the correct NAT configuration, 

devices within the home network could be accessed from outside the home. The same 

configuration needs to be applied for each service or device that the user wishes to share. 

The configuration is made on IP level and means that incoming traffic to the external IP 

with a given port will be internally redirected to the home device or service. For example, to 

enable remote access to a media server that is locally advertised with the address: 

192.168.1.3:56000, the home gateway needs to be configured to map incoming traffic to the 

external IP address of the HAN: 89.100.49.96:56000 to the internal address of the device. It 

only means that a device can be seen as having an external address, and therefore a remote 

host can interact with it. It does not mean that a remote host can see device announcements 

made to the local HAN. Therefore it does not support seamless integration and remote 

services cannot be discovered. A remote user needs to know the IP address of the home 

network sharing a device and the service details in order to communicate with it. Additional 

security settings are required to the firewall to make sure access can only be made from a 

specific source IP addresses. The main drawback of this approach is the requirement for 

complex manual configuration to home gateway and firewall system, which is not 

appropriate for most non-technical users. Misconfiguration or lack of security configuration 

can put the network at risk of unrestricted access to the local HAN. Finally it requires 

remote users to be aware of the IP address of the home network, which again may not be 

reasonable to ask of home users.  

 

3.3.2. Web-based content sharing  

It is envisaged that for inter-HAN interoperability sharing content is one of the main drivers, 

e.g. for sharing multimedia content with friends, it is relevant to refer to it in order to better 

understand the motivation behind sharing of resources, its evolution, and its limitations. 

 

Early approaches for web based sharing were based on emailing media from one user to 

another [11]. These approaches however had a few problems. Due to the nature of email, 

size was a problem. High definition movies, high-resolution pictures require large size files, 

which are not appropriate for email. Another problem with email is that once the media is 

shared, it cannot be un-shared as it is always available to the recipient of the email. The next 
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generation of web based sharing of content came with the introduction of 3rd party services 

such as YouTube, Flickr, and Facebook. These services enable users to share content they 

generate with other users. As part of the social networking proliferation, these web-based 

services have become widely used. Content is uploaded to 3rd party hosting sites and is 

managed beyond the scope and out of control of the home network. Most of these services 

also provide the users with some mechanism of access control allowing them to control 

what they share with whom. While these services provide very convenient access for users 

they have an inherent drawback in the way users give up full control over administration of 

their content to a 3rd party. This could also lead to invasion to user’s privacy by data mining 

of the content the user uploads. In [113] Rosenblum discuss the implicit loss of control that 

takes place when users upload pictures and movies to such a 3rd party service, which can 

have severe consequences, such as unauthorised use by a 3rd party, or having the content 

exposed to broader than expected audience. Another drawback of web based sharing is the 

need to conform to some format required by the hosting services, e.g. flash or mp4. Another 

aspect is that due to the hosting service being public (and typically free) it puts some 

limitations on the content’s quality, length, and space, therefore high quality media can only 

be stored if it is short enough according to the provider’s guidelines. Another aspect of web 

based sharing is that at the moment the integration between TV and Internet content is 

limited. In order to watch shared content stored on the web on a TV, users need to connect 

the TV to the computer, however with the migration of traditional services over IP (IPTV) 

[66] this may be changing.  

 

TiVo [127] is a popular Digital Video Recorder enabling consumers to record television 

programs onto an internal storage for watching it at their preferred time. In addition, TiVo 

enables users to share their movies and photos with friends by creating a personalised 

channel. Movies are uploaded to a server and friends with whom the channel is shared can 

access them through a TiVo device. Friends can access all content placed on the channel as 

soon as they are given the channel key. They can either watch the content or download it to 

their TiVo device similarly to a regular TV channel. The main purpose of this channels are 

for photos and short video clips. 

 

Spotify [73] is a peer-to-peer streaming service that enables users to search and stream 

music on demand. Spotify uses a proprietary client and network protocol. Spotify has two 
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modes – stream from dedicated servers and peer-to-peer streaming. The Spotify client has 

local access to music files and enables other peers to discover them. 

 

3.3.2.1. Analysis 

Web based sharing is easy-to-use, and the skills required are easily accessible to home users, 

however it has a number of significant limitations and drawbacks.  

• Size limitations – When uploading files to a 3rd party hosting service there are 

typically restrictions on the maximum file size, preventing sharing of large files, e.g. 

high definition videos. 

• Loss of control – When files are uploaded to a 3rd party hosting site, users have no 

longer full control over the content.  

• Privacy – When users upload files to a 3rd party hosting service they surrender their 

administration rights and in some cases their copyright over the shared files. 

• Limited to file sharing – The approach is only applicable to file sharing, rather than 

resources or services in general therefore insufficient to address the full range of 

inter-HAN service interoperability. 

 

The main advantage of this approach is its simplicity and familiarity of home users with it, 

however as mentioned earlier, web based sharing enables content sharing, it does not 

support services and seamless integration as only content sharing available through the web 

browser. Authentication and authorisation depend on the level of security and privacy 

supported by the service provider. No manual configuration is required and web-based 

sharing does not support intra-service or service composition. Private networks do not 

present a challenge to web based sharing since sharing not made directly from the HAN. 

Extensibility is not applicable to web based sharing because sharing is supported only for 

content and only by uploading the content to a hosting web site, therefore it does not support 

a specific service protocol, but the content that is hosted by the devices that use the service 

protocol.  

 

3.3.3. Peer-to-peer sharing 

Peer-to-peer (P2P) networking is a distributed computing paradigm in which there is no 
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hierarchy between the peers. Unlike conventional client-server architectures where client 

and server are well defined and have different functional roles, in P2P peers can act as both 

clients and servers at the same time. Peers expose to other peers’ shared services, resources 

or content, which can then be accessed without the orchestration of a server. 

Communication between the nodes is based on hop-by-hop messaging from each peer to its 

neighbour until the message is delivered to the destination. In addition to file sharing, P2P 

has been very popular infrastructure for Internet telephony applications like Skype12, and 

IPTV broadcasting applications like Joost13.  

 

JXTA [68] is an attempt to standardise P2P architectures and API. JXTA creates a virtual 

network on top of the physical network hiding the complexities of the physical network 

from interacting peers. JXTA enables peers to exchange messages with other peers 

regardless of their network location including firewalls, NAT and non-IP devices. In [97] 

Park et al. present a JXTA based P2P collaboration platform for connecting multiple home 

networks. The platform supports a number of use case scenarios: remote control of devices 

and services, P2P content sharing, home-to-home multimedia content sharing, P2P 

multicasting. The architecture connects personal computers and diverse devices including 

legacy devices, non-IP devices and various service protocols to a P2P network through P2P 

middleware. For each of these service protocols a proxy is defined that acts as a gateway 

between the service protocols and the P2P protocols. Special peers called relay peers are 

responsible for relaying messages to peers with NAT thereby supporting private networks. 

Only authenticated devices can join the P2P network, however no access control is defined 

which means all services are available to all authenticated users. The communication 

between the nodes is made over P2P pipes that define virtual communication channel that 

enables remote devices to exchange messages. The architecture does not support seamless 

services integration in the sense that service protocol clients for services running in the 

home network are not able to discover remote services, as they are not advertised locally. 

Sharing is not made with a specific user but with the P2P network, this enables applications 

to search for services in the P2P “cloud” and use them, however it requires them to use the 

P2P middleware. The system does not require manual configuration, however it does require 

installing a P2P proxy for each “legacy” device in the network to relay the discovery and 

                                                        

12 http://www.skype.com/ 

13 http://www.joost.com/ 
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interaction with the P2P middleware. The architecture is extensible and can support multiple 

service protocols, however it does not address specifically intra-HAN service 

interoperability and service composition.  

 

Loeser et al. [77] suggest architecture based on integrating JXTA with OSGi for creating 

Virtual Home Environment (VHE) enabling users to remotely control their home devices. 

The concept behind the virtual environment was to provide users with unified access to all 

of their resources regardless of their location. The architecture supports two modes: in-home 

and inter-home. The in-home mode supports intra-HAN service interoperability by making 

services from multiple protocols available to each other over the P2P network following the 

middleware approach described in 3.2.2, however it does not support service composition. 

The inter-home mode supports connecting multiple home networks over the P2P network 

such that the communication with the local devices is facilitated through a centralised OSGi 

server running the local HAN, which then communicates with other peer OSGi servers 

running in remote HANs. Several aspects of security are supported: authentication, 

encryption, and message fingerprints for data integrity, however access control is not 

supported. The architecture does not support seamless integration with existing service 

protocol client applications. Interaction with local and remote devices requires a P2P client 

application that connects to the P2P network. Interaction with the local devices is made 

from the OSGi platform via device drivers that are loaded as bundled to the OSGi platform, 

which makes the approach extensible. There is no information in literature regarding how 

this approach handles NAT and private IP addresses assigned to devices.  

 

In [137] Venkitaraman proposed an approach for secure sharing and control of DLNA home 

resources based on P2P middleware. The middleware is responsible for the creation and 

maintenance of groups, which form a logical union of devices based on some criteria. For 

example a group of devices can correspond to the set of devices in a certain home network, 

or a group of mobile devices can represent a set of friends. Groups could also be based on 

context information such as location or interests. Groups are implemented and maintained as 

an overlay network that is not dependent on an underlying particular protocol or service 

logic. In order to enable extension of DLNA to multiple home networks [137] suggested 

xUPnP as a UPnP extension that runs over the P2P middleware. xUPnP understands the 

UPnP discovery protocol and maps it to messages that can be sent between the device node 

and friends with which it is shared by sending the messages to the members of the groups – 
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where the group can be defined as all the friends of the home network sharing the device. In 

the remote HAN messages are advertised, thereby achieving seamless integration with client 

applications. Once advertised in the remote HAN, direct communication can be made 

between local control points and remote devices and services. The P2P overlay is 

responsible for providing the local xUPnP application with presence information about 

group members joining or leaving the network, which can trigger local updates, e.g. 

removing remote devices originating in the leaving peer, or sending joining peer 

information about local services. Private networks are supported in a limited way through 

tunnels as long as there are no colliding IP addresses i.e. devices with identical addresses in 

different NAT-ed domains. While this approach may be applicable for connecting mobile 

devices connected to a public network to a home network, it is not reasonable to expect no 

IP collision between two home networks. The IP addresses assigned by home gateways are 

typically in the same range therefore collisions are highly likely. The system is designed for 

UPnP/DLNA services and is not extensible to support other service protocols. The home 

user is required to configure and administer the membership of the groups, which 

determines the groups to which discovery messages are advertised. Communication is 

allowed between authenticated peers and is encrypted. The system does not include support 

for intra-HAN service interoperability.  

 

3.3.3.1. Analysis 

Peer to peer is a well established distributed computing paradigm. Using P2P for sharing 

home resources relies on connecting the home network, through a P2P middleware to a P2P 

network; thereby allowing searching and downloading content, or discovering services from 

participating networks. A peer that runs the middleware and sends the information to remote 

peers collects the information about the local HAN. P2P is an established mechanism for 

searching and downloading content. P2P file sharing applications have been shown to scale 

to millions of nodes. A major drawback of such systems with regard to controlled inter-

HAN service interoperability is the lack of mechanisms for access control. The typical 

notion of sharing in P2P is that a resource, e.g. a file, is either shared with all, or not shared 

at all. Another drawback is that access to services is typically made through a P2P client 

[97, 77] rather than through a service protocol client, thereby implying the need for service-

P2P bridging solution. None of the reviewed protocols support service composition. Loeser 

et al. [77] support intra HAN service interoperability by bridging between multiple service 

protocols and the P2P network. Park et al. [97] support only UPnP devices. While Park et al. 
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use relay nodes to circumvent NAT, it is unknown if and how private IP address are handled 

by [77]. 

 

3.3.4.  Distributed OSGi-based sharing 

OSGi platform (introduced in section 2.3.6) is a mature technology with many attractive 

features for HAN equipment vendors, especially software life cycle management. However 

it is typically used as a central server rather than a node in a distributed architecture.  

 

Wegner presented an architecture for interconnecting UPnP networks using OSGi 

technology [139]. The architecture presented is based on 4 main concepts: (i) OSGi 

platform, (ii) proxying remote devices in the local HAN, (iii) communication through a 

single secure channel, and (iv) device/service filtering. OSGi provides the basic 

infrastructure for a proxy that is split between the local HAN and remote HAN. In each 

network a proxy runs and collects information about the local HAN UPnP services and 

reports to the remote proxy about shared services. When the local proxy learns about remote 

devices it generates a local device proxy in the local HAN to represent the remote device, 

thereby supporting seamless integration with existing UPnP applications. The 

communication between the remote HANs is based on R-OSGi [107] which also allows for 

a secure connection to be established, e.g. with SSL/TLS encryption. Moreover R-OSGi 

does not dictate a transport layer; therefore various secure communication channels could be 

used including TCP, HTTP, and HTTPS. An important aspect of the architecture is the 

ability to control and modify invocation requests before they are sent to the remote HAN. 

Filtering is supported through configuration of which users a device or a service should be 

shared with using LDAP syntax. The actual streaming of content is performed through the 

same communication channel. The system does not support intra-HAN service 

interoperability. This system provides a benchmark that demonstrates the invocation delay 

for remote invocation with an increased argument size for a SOAP request. The benchmark 

was made on Intel Core 2 Duo @ 2 GHz and showed that with small argument size (<8 

killobytes) the delay is roughly 100 milliseconds, and when the argument size grows to 65 

killobytes, the delay grows to 1400 milliseconds. The system was evaluated with one device 

and did not include support for UPnP eventing. 

 

One drawback of this architecture is that the administration of the relationships with friend’s 
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networks requires configuration of R-OSGi systems, which require knowledge of IP 

addresses or some other pre-shared key. In addition, it is not clear how the dynamics of 

adding and removing remote HANs with which the local HAN is agreeing to share devices 

is handled. While R-OSGi may be very efficient in supporting remote invocation as shown 

in [108], however it is not clear if it is suitable as a system that connects HANs with 

dynamic relations between them. Finally, the architecture is designed specifically for UPnP 

services and does not claim extensibility to other service technologies.  

 

3.3.4.1. Analysis 

OSGi architecture provides a flexible infrastructure for intra-HAN service interoperability 

as well as to inter-HAN service interoperability through its module management system. 

OSGi has many advantages for home networks, especially its flexible and resilient module 

system with existing support for mapping UPnP services to the OSGi platform. Additionally 

OSGi is positioned as a solution for intra-HAN service interoperability as well as device 

management, e.g. for set top box. However, as a distributed architecture, especially in the 

context of home network, OSGi is not mature yet. The home user is not an enterprise 

architect and the assembly and configuration of OSGi servers for establishing relationship 

between remote HANs is beyond the scope of a non-technical user. While the low-level 

mechanisms for enabling secure remote communication exist in R-OSGi, high-level and 

standard mechanisms for identifying users and therefore establishing trusted communication 

with remote HANs is missing. R-OSGi could potentially enable composition of services 

from multiple HANs, however this is not part of the architecture described in [107]. NAT is 

handled by using local addresses that are mapped to remote addresses. When a proxy 

advertises a remote device locally, it assigned it a local address. When a result from a UPnP 

action on a remote device contains URLs, they are replaced with local URLs that would be 

forwarded to the remote ones over the tunnel between the HANs.  

 

3.3.5.  SIP-based sharing 

The Session Initiation Protocol (SIP) [112] was first introduced in 1996 as an application 

layer control protocol to establish, modify and terminate networking sessions. The protocol 

supports point to point, and point to multi-point sessions. Typical applications of SIP 

include instant messaging, presence, file transfer, video conferencing, phone/voice, and 

streaming of media [118]. In SIP terminology a SIP client is an end point identified by a SIP 
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URL that wishes to participate in a communication session. A client can initiate a SIP 

request, which is answered by a SIP server (User Agent Server). The SIP request is passed 

between SIP servers until it arrives to the destination. Connecting multiple networks with 

SIP requires additional support for NAT traversal because SIP uses UDP for both signalling 

and media. There are several solutions to this problem, such as SIP-aware NAT, STUN or 

TURN [78]. Another technique is Interactive Connectivity Establishment (ICE) [111], 

which enables a public rendezvous point for devices with private addresses.  

 

In [51], a Service Virtualizer based on the SIP Service Discovery Gateway [50], facilitates 

service discovery through a presence extension of SIP. Communication between the 

networks is made over a SIP session between the users which both have a SIP identity. The 

local Service Virtualizer learns about remote services by subscribing to a remote service 

discovery gateway or an intermediary presence server. Once the local Service Virtualizer 

learns about a remote service it creates a local instance of it with proxies that handle control 

requests and event notifications. The HAN user has no control over which services are 

shared, remote HAN users can select which services they wish to virtualise in their HANs 

from all the services that are shared with them. Users control the virtualisation configuration 

either on demand when a new device is discovered or by defining a managed list of devices 

that should be virtualised. However this only defines which remote devices are shown 

locally, it does not define access control (i.e. which local devices are shared with remote 

HANs), which is not handled in this architecture. Once the device has been announced in 

the local HAN, control applications can interact with it directly, thereby supporting the 

desired seamless integration. Control requests and event subscription requests require 

establishing a remote service usage session with the remote service discovery gateway. As a 

result, the remote service discovery gateway configures the firewall to grant remote access 

to the requester. Authors of [51] claim that the service virtualisation is generic and can be 

applied to additional service protocols, however they only described a design and 

implementation for UPnP services. The architecture does not address intra-HAN service 

interoperability. In order to handle private networks and possible collisions between 

identical private addresses used by multiple networks, Home DNS [9] is used. Home DNS 

has a number of advantages, the most important of which is seamless addressing, such that 

the device can be accessed from within the HAN and from remote HANs with the same 

address. However one significant drawback is that it requires users to configure the address 

of a dynamic DNS provider, which is a service provided over the Internet. This is a one-time 
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configuration, however non-technical users are not typically familiar with this kind of 

configuration. In addition, some dynamic DNS providers charge for this service  

 

W-DLNA [84] describes a SIP based architecture for connecting remote media devices with 

DLNA based home network. The main concept of this architecture is the virtualisation of 

Digital Media Player (DMP)/Digital Media Server (DMS) devices. The virtual devices are 

installed in the home gateway and communicate through a SIP server with remote 

counterparts. The SIP server is installed in some public domain, which is accessible over the 

Internet. W-DLNA supports various remote access scenarios for DLNA content including 

home-to-home, and remote mobile access to local home content. In each participating 

network, a gateway running the W-DLNA system is running. In a mobile device, the 

gateway is installed locally in the mobile device, in a home network it can be installed on 

the home gateway device. The SIP server is used for interconnecting the various gateways. 

Interaction with remote devices is made through dedicated proxies tailored for media access, 

which are generated in the gateway. In a network hosting a media server, a virtual media 

player will be created, and similarly in a network hosting a media player, a virtual media 

server will be created and hosted in the gateway. The architecture supports seamless 

integration between remote devices and client applications in the local HAN only partially - 

remote devices are not announced in the local HAN; instead their content is available 

through the local proxy that facilitates the access from the local player to a remote media 

server. This approach is therefore specific to media and does not extend to UPnP services or 

other service protocols in general. The virtual devices are also responsible for IP mapping 

between internal and external addresses. This is done by mapping the internal IP address 

and port of the local device to a port on the external IP address. When the local device sends 

a packet to a remote address, the virtual device (which is part of the home gateway) replaces 

the headers with a source IP address that corresponds to the external IP address of the HAN 

and a port that is mapped to the local device. The same procedure is repeated in reverse in 

the remote HAN when a message is received. This approach however relies on dynamic 

configuration for opening ports in the firewall and allowing only source based access. 

Authentication and access control are both supported. Access control is specified per 

content per user and is enforced by the virtual device. The implementation does not include 

support for intra-HAN service interoperability. The specific technique used by this 

architecture for NAT traversal for SIP is not described in the literature.  
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3.3.5.1. Analysis 

SIP based solutions use SIP sessions to communicate between remote homes. Each home 

networks (or mobile device) additionally runs a server that collects information about the 

local HAN and interchanges this information with the server in peer remote HANs over the 

authenticated SIP session.  The concept of service virtualisation was introduced, such that 

virtual services represent remote services in the local HAN. Discovery information is 

relayed over the SIP connection. SIP is problematic with regard to NAT traversal, however 

there are several solutions such as STUN, TURN, and ICE to work around these problems. 

There are several drawbacks to these approaches. TURN, which is an IETF standard has 

scalability issues and assumes clients have trust relations with the TURN server. In addition, 

TURN complicates the configuration of the SIP user agent. STUN is limited and is not 

appropriate for all NAT configurations, and finally ICE is complex to configure. None of 

the reviewed SIP based systems support intra-HAN service interoperability, and specifically 

none supports service composition. They are focused on a single HAN service protocol 

(UPnP) and do not address extensibility to additional service protocols.  

 

3.3.6.  VPN-based sharing 

Virtual private networks (VPNs) have emerged as an economic alternative to leased lines 

for building private networks [72]. The private network is said to be virtual as it is 

constructed over another network (typically a public carrier network such as the Internet). A 

VPN enables users to tunnel their traffic securely through public networks as if they are 

connected to the same private network. A tunnel employs cryptographic techniques to 

prevent access to VPN packets for non-VPN members while sent on the public network. 

There are many variations of VPN tunnels, some are based on layer 2 tunnelling such as 

Layer 2 Tunnelling Protocol (L2TP) [128], while others are based on layer 3 (IP) tunnelling 

such as IPSec [71]. VPN was mainly targeted for enterprises aiming at reducing costs while 

providing security and scalability. While in enterprises, this could be established and 

maintained by system administrators and security experts, applying the same approach for 

home users requires special consideration to aspects such as the simplicity of setup, which 

may require more technical skills, the performance overhead and the bandwidth limitations. 

Some home gateways provide VPN functionality, allowing clients to establish end-to-end 

secure tunnels to the home network.  
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A VPN based solution for communication between home networks is presented in [10] with 

a special solution for discovery based on the ATOM [90] web syndication protocol. The 

architecture involves an IP tunnelling mechanism such as a VPN, which is used as a 

communication channel for all traffic except for discovery between the remote home 

networks. A UPnP aggregator in the local HAN collects information on local UPnP devices 

and publishes this information through an ATOM feed on a local HTTP server. An 

extension of a control point application can access remote HTTP servers and request the 

feed containing information about available devices and services. The aggregator can also 

accept HTTP POST message updates from remote HANs with information about remote 

devices. It is suggested that a future architecture of UPnP devices and control points will 

have the embedded support for out-of-band discovery mechanisms such as ATOM feeds. 

One weakness of this solution is that it rules out many of existing control applications using 

standard UPnP in their implementation because standard UPnP clients need to be enhanced 

with an ATOM reader to receive discovery notifications. Another drawback of this approach 

is the lack of a uniform approach to service discovery (of local and remote devices), which 

can lead to additional complexity of control points. Since the approach suggested builds on 

ATOM for discovery and IP tunnelling for the rest, a direct connection to the remote service 

endpoint is still required such that an IP packet can be routed to the remote IP address. With 

private networks in place such that IP addresses collision are very likely, this approach is 

not applicable for connecting two networks. The system architecture does not address access 

control for HAN resources. In addition user management (being able to add and remove 

networks with which services are shared) is not supported. Finally, the system architecture 

does not address intra-HAN service interoperability.  

 

DLNA Agents for SNS (DAS) [121] is an architecture based on using social network 

services (SNS) and VPN connections for interconnecting remote HANs. The DAS 

architecture is composed of an SNS server, DLNA agent and DLNA devices. The user has 

an account on the SNS server and at configuration time the SNS authentication details are 

entered. When two users wish to connect with each other, the local DAS instance will 

collect information from the available media servers in the local HAN and upload it to the 

host user’s SNS page. In addition the local VPN server in the user’s DAS instance will 

upload connection details to the user’s SNS page enabling the VPN client of the remote user 

to connect to it. The SNS server enables the configuration of what should be shared with 

which friend via editing of a sharing management configuration page. Once content has 
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been shared, a page is be created for the remote user (in their SNS account) with the list of 

shared content from which the remote user will be able to choose what they wish to access, 

and the VPN server details are downloaded to the remote DAS instance. A virtual media 

server is established in the remote HAN, which advertises itself as having the content list 

that was downloaded over the VPN connection, thereby enabling seamless integration. 

Finally a reverse proxy is used to transfer traffic between DAS instances. The reverse proxy 

is used to transfer traffic that is sent to the local address of the virtual DMS to the VPN IP of 

the remote the DAS in the remote HAN, where it is forwarded to the local device. Private IP 

addresses are not published beyond the local HAN, instead the local DAS instance 

maintains a mapping between content and the device, which owns it. The advantage of DAS 

is that it uses common social networking practice to hide the details of secure 

communication setup from the users. intra-HAN service interoperability is not addressed by 

this architecture.  

 

The Dial-to-Connect (D2C) VPN System [55] was designed as a simplified version of an 

on-demand VPN that works over a SIP network to enable sharing of DLNA devices and 

services. Phone numbers are used for user identification. In order to establish a connection 

between users, they need to enter the phone number of the other user via a SIP client. Once 

the remote user accepts the request, the two-way VPN connection can be established. In 

order to meet the quality of service required for media streaming, D2C uses the QoS service 

provided by the SIP network. D2C uses an IPSec [71] tunnel in order to establish secure 

communication between the remote HANs. IPSec packets are encapsulated in UDP packets 

for NAT traversal. In addition, in order to handle duplicate private IP addresses (assigned by 

the NAT in the two networks) bi-directional NAT [122] is used, such that both the source 

and destination addresses are modified consistently to identify the devices in the local and 

remote HAN. Since DLNA discovery is based on UDP multicast, which cannot be sent over 

the VPN, an additional mechanism is required to relay messages from the local to the 

remote HAN. Once the VPN is established, local multicast discovery announcements are 

translated into unicast messages and are relayed over the VPN connection to the remote 

HAN, enabling seamless integration with local DLNA clients. The interaction is ad hoc and 

does not support multiple remote HANs simultaneously. Authentication is supported 

through SIP authentication but access control is not supported. The architecture is designed 

for DLNA devices and does not support extensions to additional service protocols. The 

system is deployed in the home gateway and is interacted with through a SIP client. No user 
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configuration is required, however the system requires interaction between human users, 

such that once a remote HAN requests a connection with the local HAN, the local HAN’s 

user needs to accept or decline the request.  

 

3.3.6.1. Analysis 

VPN based approaches are drawn from experience from multi-site enterprise secure 

communication and its application to connecting home networks. Several approaches have 

been presented for setting up the communication and for using it for inter-HAN service 

interoperability as presented above. The main advantage of these approaches is that it 

provides higher security and can enable higher-level protocols to work as if they run within 

a single network. However this is not desired when access control is needed. None of the 

reviewed protocols support service composition or intra HAN service interoperability. NAT 

traversal support ranges from limited support in [10], local redirection in [121] and 

bidirectional NAT in [55]. Support for seamless integration is also limited, [10] does not 

support seamless integration, [121] partially supports it through aggregation to a virtual 

media server, and [55] supports seamless integration. Access control is only supported by 

[121] while all of the reviewed systems support authentication.  

 

3.3.7.  Proprietary protocols for sharing  

P. Belimpasakis et al. propose an architecture based on a Home Media Atomizer (HMA) 

which is a component that can be either added to the home media server or run as a 

standalone component [12]. This element acts as a mediation layer between UPnP media 

servers content in the local HAN and HTTP based web feed protocols such as ATOM [90]. 

The HMA acts as a UPnP control point and loads data about local HAN’s media content to 

the HTTP server that can handle requests from remote users about locally available media 

content. The HMA enforces access control so that remote users can only access services and 

content that is shared with them. This approach is very similar to that proposed in [10] 

(remote access to UPnP with ATOM based service discovery) however instead of using a 

VPN for the connection between remote HANs it is based on reconfiguration of the home 

gateway for allowing remote access to local HAN.  

 

Siekkinen et al. present hBox in [119]. hBox is similar to [51] in its virtualisation approach 
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to remote resources. In this architecture a UPnP embedded device is introduced to all 

networks that wish to be interconnected. This device is capable of establishing and 

maintaining secure tunnels between local and remote HANs. This device is controlled via a 

mobile phone, which is used to establish trust with the remote HAN by sending SMS 

authentication messages. Selecting a remote user from a mobile phone address book makes 

the initial connection establishment. A request is sent as a text message to the target phone, 

which is required to accept the request for connection. The response includes the IP address 

to connect to and some shared security key.  The mobile phone application is used to select 

services to be shared from those discovered in the local HAN. Once a device is shared with 

a remote HAN, hBox starts forwarding its presence announcement to the remote HAN’s 

hBox, which announces it locally. Remote devices are represented in local HANs as 

embedded devices within the hBox UPnP device, thereby facilitating seamless integration 

with existing UPnP applications. Requests made by local control points to the hBox 

embedded devices are relayed to the remote hBox, which forwards them to the devices and 

returns back the result. Private networks are handled through STUN/TURN or ICE. hBox 

requires the introduction of an additional appliance to the home network. In addition, it uses 

non-standard communication, authentication, and user management protocols. Another 

disadvantage is the cost related to sending text messages for initiating the connection. The 

authors of [119] argue that the approach can be potentially extended to other types of 

service protocols however they have only implemented UPnP services. Finally, the 

architecture does not address intra-HAN service interoperability.  

 

The SHARE architecture [76] extends the home gateway to manage the connections with 

peer networks and to exchange information about streaming services (UPnP AV servers) in 

local and remote HANs. In essence this home gateway extension relays SSDP messages to 

remote home networks by establishing a TCP connection, which eliminates the need to 

retransmit packets more than once. An additional component of the SHARE architecture is a 

virtual media server that contains an expanded control point and an expanded media server. 

The expanded control point discovers remote media servers and collects information about 

the media they contain. The expanded media server consolidates the media content received 

from multiple remote media servers. Media streaming is enabled using another component 

(Media Distributer) in this architecture that acts as a proxy for remote streams. The Media 

Distributer supports distributed streaming, and proxies streaming protocol data between 

multiple remote sources and the local UPnP media renderer. The system is focused on 
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enabling inter-home communication however it is not described in literature how it 

addresses NAT traversal. In addition the architecture does not address fine-grained access 

control over what content is shared. The system is designed specifically for UPnP A/V 

architecture and is not extensible to other service protocols and it does not support any intra-

HAN service interoperability.   

 

Intel’s Device Relay software [65] enables connection between two UPnP networks by 

mirroring of UPnP devices across these networks. The connection between local and remote 

device relays requires the user to provide the local relay with the IP address of the remote 

relay. Then the device relay can mirror devices from local to remote HAN by relaying 

discovery messages to the remote HAN where they are virtualised by the local device relay 

instance, thereby enabling seamless integration with local control points. There is no 

indication in literature with regard to how Device Relay handles private HANs behind NAT 

or how the communication between Device Relay instances is performed. The Device Relay 

approach has a few limitations, such as only being able to connect to a single remote HAN 

simultaneously as opposed to several as supported by most other solutions presented here. 

Another drawback is that all devices are mirrored; there is no control over what is being 

shared. Finally the Device Relay requires open ports in both local and remote HANs and 

corresponding firewall configuration. The Device Relay is specifically designed for UPnP 

and does not support additional service protocols or intra-HAN service interoperability.  

 

In [31] Chowdhury et al. describe a system for connecting multiple UPnP networks via an 

extension of the home gateway. A proprietary protocol is suggested for establishing a secure 

channel between local and remote HANs based on a pre-shared key that has to be available 

to all networks that wish to share devices and services with each other. This key is used for 

encryption of messages exchanged between the home networks. In addition, in order to 

establish connection with a remote HAN, its IP address needs to be available to the home 

user initiating the request. This requirement is problematic both because it is not realistic to 

require non technical users to be aware of other home network’s IP addresses, but also 

because IP addresses may be changed dynamically (with DHCP). Once connected, the local 

and remote home gateways exchange information about devices in their network and access 

level for each device (permit/deny). Similar to the approach presented in [119], remote 

devices are added as embedded devices within the home gateway with necessary 

modification to URLs in the device location and control URLs so that they will be served 
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locally, facilitating seamless integration with local UPnP applications. The configuration of 

communication between the remote HANs is made through the modification of the home 

gateway and firewall when a connection request is accepted, and is updated whenever a 

device or service is shared with another network. The architecture relies on the home 

gateway to map from public IP address to services’ private IP addresses when request from 

remote HANs are received to local HAN. The system is designed specifically for UPnP 

services and is not natively extensible for other service protocol and does not support intra-

HAN service interoperability. 	
  

 

3.3.7.1. Analysis 

Various specialised solutions have been suggested for enabling home-to-home sharing of 

services and content. The approaches presented in this section differ in the problem they 

focus on, as well as in the methodology towards the general sharing problem. The different 

approaches suggest mechanisms for establishing trust between remote HANs (e.g. hBox 

[119], Chowdhury [31]) or mechanisms for propagation of discovery messages (e.g. HMA 

with ATOM web syndication protocol [12]). None of the reviewed systems support service 

interoperability or service composition. Access control is not supported by [65, 76], and 

supported by [12, 31, 119]. Authentication is supported by all of the reviewed systems. All 

of them except for Home Media Atomizer [12] support seamless integration. With regard to 

NAT support there are different approaches: hBox [119] uses SIP TURN/STUN or ICE, 

Home Media Atomizer [12] relies on modifying the HG, and Chowdary et al. use local 

redirection. For [65, 76] there is no information in literature about how and if they support 

NAT traversal.  
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3.3.8.  Conclusions 

The various approaches for inter-HAN service interoperability reviewed in the previous 

sections. Table 3 presents a summary of the comparison between them with regard to the 

comparison criteria defined in section 3.3  

 

The first column in table 3 defines the scope of the reviewed architecture. Some 

architectures support sharing of services in general [10, 51, 77, 97], however most of the 

systems reviewed focus on a single service protocol – UPnP or even a subset of it support 

by DLNA, especially multimedia devices such as media player and media server. Some of 

those supporting UPnP services argue for broader generality (e.g. [119]) however they have 

only presented a design and implementation for UPnP services.  

 

The second column in table 3 refers to the computing platform, which is used for the 

suggested architecture. The term computing platform refers to the hardware or software on 

which the system executes. A number of architectures suggest deploying the inter-HAN 

 

Table 3 Inter-HAN Service Interoperability Architectures Comparison 

Architecture/
Criteria 

Scope Platform Communication Seamless 
integration 

NAT 
traversal 

Remote 
Service 

discovery 

Remote service 
in local 
network 

Security System 
configuration 

Intra-
network 
support 

Service 
composition 

IP 
configuration 

 

Services Home 
gateway 

N/A X HG 
manipulation 

X X Requires 
manual config 

Manual HG 
configuration 

X X 

Web-based 
sharing 

Content Web N/A N/A N/A N/A X Authentication, 
authorization 

N/A N/A X 

Park et al. [97] Services
, content 

JXTA P2P 
 

X Relay peers X X Authentication N/A X X 

Loeser et al. 
[77] 

Services
, content 

OSGi + 
JXTA  

P2P X Unknown X X Authentication, 
encryption 

N/A √ 
 

X 

Venkitaraman 
[137] 

DLNA 
services 

Proprietary 
P2P 

P2P √ Limited 
support 

Relay Direct access 
 

Authentication, 
encryption 

Creation of 
sharing 
groups 

X X 

Wegner [139] UPnP 
services 

OSGi R-OSGi 
 

√ Local 
redirection 

Relay Virtual service Authentication, 
authorization 

R-OSGi 
relationships 

X X 

W-DLNA [84] DLNA 
services 

Proprietary SIP X Unknown Relay Content 
aggregator 

virtual service 

Authentication, 
authorization 

SIP users X X 

Haber et al. 
[51] 

Services Proprietary SIP √ Home DNS Relay Virtual service 
 

Authentication SIP users, 
Home DNS 

X X 

Belimpasakis et 
al. [10] 

Services Proprietary VPN X Limited 
support 

ATOM Direct access 
 

Authentication, 
encryption 

N/A X X 

DAS [121] 
 

DLNA 
services 

Proprietary VPN + reverse 
proxy 

√ Local 
redirection 

SNS Direct access 
 

Authentication, 
authorization 

N/A X X 

Dial-to-
Connect [55] 

DLNA 
services 

Home 
gateway 

SIP+VPN √ VPN, 
bidirectional 

NAT 

Relay Direct access Authentication N/A X X 

Home Media 
Atomizer [12] 

DLNA 
services 

Proprietary IP X HG 
manipulation 

ATOM Direct access Authentication, 
authorization 

N/A X X 

hBox [119] 
 

UPnP 
services 

Proprietary Proprietary √ TURN/
STUN/ICE 

Relay Virtual service Authentication, 
authorization, 

encryption 

N/A X X 

SHARE [76] 
 

UPnP 
services 

Home 
gateway 

IP √ 
 

Unknown Relay Direct access Authentication N/A X X 

Intel Media 
Relay [65] 

UPnP 
services 

Proprietary Unknown √ Unknown Relay Virtual service Authentication IP addresses X X 

Chowdhury et 
al. [31] 

UPnP 
services 

Home 
gateway 

Proprietary √ 
 

Local 
redirection 

Relay Virtual service 
 

Authentication, 
authorization, 

encryption 

IP addresses X X 
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service interoperability system as part of the home gateway. The advantage of this approach 

is its always-connected nature – being installed as part of a device that is always connected 

to the Internet, rather than on a desktop or an appliance that may be shutdown periodically. 

A potential drawback could be the lock-in to a single vendor, and the CPU and RAM 

limitations that may apply when provided as a home gateway extension. JXTA is a common 

platform used by P2P based approaches for establishing a P2P overlay. OSGi offers 

attractive platform due to its flexible module management system, however most OSGi 

experience is with centralised systems and it is not clear that R-OSGi is appropriate for use 

in the home-to-home setting due to the possibly complex configuration of relation between 

remote OSGi instances. Other solutions are based on proprietary architectures and platforms 

and are therefore poorly positioned to support service protocol interoperability and 

extensibility.  

 

The communication column in table 3 defines the channel that is used between remote 

HANs to exchange information. Table 3 shows that there are several standard approaches 

for establishing communication channel between remote HANs. P2P approaches [77, 97, 

137] rely on sending messages over the P2P network; such that each network must run at 

least one instance or more of a P2P middleware system that connects to the P2P overlay 

network. Distributed OSGi architectures using R-OSGi [139] rely on a communication 

channel that is established between remote instances of the platform. R-OSGi does not 

dictate a transport layer; therefore various secure communication channels could be used. 

SIP based approaches [51, 84] establish sessions between remote HANs and use these 

sessions to exchange information about services existing in these networks. VPN based 

architecture establish a VPN connection between the remote HANs enabling IP 

connectivity. Other communication channels rely on establishing secure IP channels 

between networks.  

 

Seamless integration of remote devices with local HAN is an important feature required 

from an inter-HAN service interoperability system for allowing existing applications to 

interact with remote services similarly to the way they do with local services. Surprisingly 

not all of the architectures support seamless integration in this sense as can be seen in table 

3. Another aspect of seamless integration as defined in section 3.3 is the ability to connect to 

multiple networks simultaneously. Most reviewed architectures support this behaviour with 

several exceptions: Dial-to-Connect [55] is on-demand and allows a network to be 
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connected to only a single remote HAN at a time. Intel Device Relay supports only one 

target network for mirroring at a time.  

 

NAT Traversal is one of the most challenging problems for service inter-HAN service 

interoperability. The main challenge with private networks is that devices are assigned 

private IP addresses that are not reachable from outside the home network. In UPnP 

discovery, devices announce an address where they can be contacted. This address will 

typically be a private address. Therefore when shared with a remote HAN, by default this IP 

address is not reachable. Moreover, the remote HAN may have a device with identical 

private IP address locally. As can be seen in table 3, several techniques are used in the 

reviewed architectures. The local redirection approach indicates that private addresses are 

not reported to remote HANs, therefore there is no need to handle duplicate IP addresses, 

however there is no direct access from a remote HAN to the device, and traffic to, and from 

the device is proxied. Another technique is home gateway manipulation to allow remote 

access. This approach requires publication of the external IP address of the home gateway 

instead of the device private IP address, and configuration of the home gateway to redirect 

traffic on the device port on the public IP address to the device. One problem with this 

approach is that it does not allow fine-grained access control, when a device is shared with a 

remote HAN; all services are available for the remote HAN to use. STUN, TURN, and ICE 

are common techniques for NAT traversal. The problem with these approaches for NAT 

traversal is that they are not suitable to all scenarios and NAT configurations, and in 

addition there are specific issues related to each of these techniques as discussed in 3.3.5.1.  

 

Remote service discovery (column 6) and remote service in local HAN (column 7) 

summarise how remote services are advertised in the local HAN and how they are accessed. 

The most common approach for announcing remote services in local HAN is through relay 

of discovery announcements received from the remote HAN. The announcement is not 

necessarily repeated in the local HAN, in some cases the announcement message is 

processed and is not repeated in the local HAN, e.g. W-DLNA [84]. Two other techniques 

for transmitting discovery information were suggested: ATOM web syndication protocol 

[10, 12] and social networking services in DAS [121]. Using ATOM for discovery relies on 

mapping between UPnP announcements and ATOM protocol and therefore does not 

integrate seamlessly with local client applications. Access to remote services can be divided 

into two groups: direct access, and virtual service. Direct access assumes IP connectivity 
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between the remote HANs, therefore relies on a VPN or on manipulation of the home 

gateway. The virtual service approach implies that the communication with remote services 

is proxied in the local HAN by a virtual service that interacts with the local HAN 

applications and encapsulates the interaction with the “live” device in the remote HAN.  

 

As indicated in table 3, while security is an important aspect of inter-HAN service 

interoperability, not all of its aspects are fully supported. While authentication is supported 

by all reviewed architectures, access control is only supported in a few of them [12, 31, 84, 

119, 121, 139]. P2P based architectures [77, 97, 137] do not support access control as it is 

assumed that once a service is shared, it is shared with the P2P network rather than with a 

specific user. In VPN based architectures, which use relay-and-repeat technique for 

discovery messages, there is no access control and all messages are delivered to all 

participants. While it is important to ensure the privacy and confidentiality of the traffic 

between the networks, only a number of architectures support encrypted communication 

channels [10, 31, 77, 119, 137]. 

 

The system configuration column in table 3 refers to the interaction of the system with the 

home user and how high level actions are translated into this interaction. For example 

adding a friend’s network and initiating communication with them may require the IP 

address of the remote HAN [31, 65]. In SIP based architectures, system administration is 

performed by adding the SIP address of the remote friend’s network. The distributed OSGi 

based architecture [139] requires configuration of the OSGi server instances such that they 

are able to communicate. In [137] the user is required to create and administer groups such 

that other users can join pending his approval. The IP configuration approach for sharing 

resources requires manipulation of the home gateway and potentially the firewall system. 

The above manual configurations required from the home user do not seem realistic for a 

non-technical home user.  

 

The intra-HAN interoperability column in table 3 indicates that only [77] has some level of 

support for intra-HAN service interoperability and as mentioned earlier this is limited to 

being able to locate services from multiple service protocols locally.  However none of the 

reviewed systems includes support for service composition.  
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The purpose of the review was to identify the gaps in existing approaches, however also to 

identify the requirements for an inter-HAN service interoperability system, that together 

with the requirements for intra-HAN interoperability system, define the requirements for an 

integrated service oriented architecture for HANs. As can be seen from table 3, no single 

system supports all of the reviewed aspects. The next section specifies the requirements for 

this architecture.  

 

3.4. System Requirements 

From the state of the art presented in previous sections we can draw the requirements for an 

integrated intra-HAN and inter-HAN service oriented system. It can be seen from table 2 

and table 3 that no single system offers an integrated approach for both intra-HAN and 

inter-HAN service interoperability. This section presents a consolidated set of requirements 

for the proposed system. The overarching objective of the architecture is to enable services 

from multiple technologies to be shared across multiple HANs in a controlled manner and 

facilitate their interoperability and composition in local HANs with other services of 

multiple service protocols. 

 

3.4.1. Intra-HAN service interoperability requirements 

• (#1) Cross service protocol service composition – The reality of home networks 

indicates that no single service protocol dominates. In order to achieve richer user 

experience for home users, service composition must not be limited to composition of 

services from the same service protocol. The full potential of services in the home can 

be realised through connecting services from multiple application domains, and multiple 

manufacturers, which may support different service technologies. The system must 

support composition of services from both similar and different service protocols. 

Composite services must also be composable to allow further composition with other 

services.  

• (#2) Shared composite services – There may be cases when users would like to share 

composite services rather than exposing the constituent low level resources. As 

composite services may offer some functions that may be usefully shared, the system is 

required to enable sharing of composite services in an analogous way to the sharing of 

atomic services. 
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• (#3) Cross HAN service composition – The system must support composition with both 

local as well as remote services (services from another home network) in a seamless 

fashion, hence composite services may include either local, remote or even external 

services (public domain services). 

 

3.4.2. Inter-HAN service interoperability requirements 

The requirements for inter-HAN service interoperability can be divided into a number of 

main categories: (i) seamless integration; (ii) private networks and firewalls; (iii) security;  

(iv) performance; (v) extensibility; and (vi) manageability.  

 

3.4.2.1.  Seamless integration 

In order to integrate with existing technologies in the home network while providing the 

user with the new capability for sharing devices, services, and content with remote users, the 

following is required: 

• (#4) The system must enable users to share devices from a local HAN with remote 

HANs.  

• (#5) It must be possible for service protocol clients in the local HAN to automatically 

discover devices and services shared from remote HANs. 

• (#6) There must be no restriction that prevents sharing the same devices and resources 

with multiple remote HANs.  

• (#7) The interaction of applications in the local HAN with devices and services from 

remote HANs must be identical to the interaction with local devices. This is required so 

that existing service applications in the local HAN can interact with remote devices 

indistinguishably to the way they currently do with local devices. 

• (#8) The system must be plug and play such that it is installed in the local HAN and can 

immediately interact with local devices and services without requiring any 

modifications to standardised device or service protocols. 

• (#9) Networking – The system must be able to work regardless of the network 

technology supporting access connectivity (e.g. xDSL, cable).  

 



 97 

3.4.2.2.  Private networks and firewalls 

Modern networks use NAT to assign private IP addresses to internal devices in the home 

network. Firewalls protect the home networks from unprivileged access and malicious 

attacks. The sharing system must be able to operate in such an environment.  

• (#10) With the increasing popularity of private networks, the system must be able to 

discover and share devices with networks that are using NAT, supporting devices with 

identical IP addresses across multiple HANs.  

• (#11) The system must able to communicate with remote HANs protected by firewalls 

without requiring any manual reconfiguration. 

 

3.4.2.3.  Security 

Security is an important aspect of the system. This is to ensure that the home network does 

not become exposed to new threats, illegal access of resources or any other type of known 

threat. Security has a number of aspects: 

 

• (#12) Authentication – All communication with remote HANs must be made by 

authenticated users only. Unauthenticated access must not be allowed. 

• (#13) Access control – Sharing must not be automatic. Users must be able to control 

explicitly which resources are shared with which other remote HAN. The sharing 

control must not only allow a user to define per resource whether it is shared or not but 

also with which other remote HANs it is shared.  

• (#14) Confidentiality – Access to private data must be restricted to privileged users, 

therefore all communication must be secure. In order to protect the privacy of 

transmitted data from malicious code sniffing the network traffic, all communication 

between the local and remote HANs must be encrypted. 

• (#15) Vulnerability – Some service protocols for the HANs contain security 

vulnerabilities, however as they are not designed to work over unsecure networks such 

as the Internet, these vulnerabilities are relatively low risk when restricted to a single 

HAN. The multi HAN sharing system must not increase security vulnerability of the 

home network by introducing new threats or by extending or exposing existing 

vulnerabilities. 
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3.4.2.4.  Performance 

System scalability has several dimensions: the number of HANs with which sharing is 

enabled, the number of services in the local HAN, and the number of overall services shared 

with the local HAN. For the purpose of defining the performance requirements for the 

sharing system we anticipate that the number of HANs with which a HAN user will share 

devices, services and content will be in the range of 5-15 friends which represents a social 

circle of family and close friends. Parks Associates market research report from 2010 

estimated the number of connected devices in the HAN globally to be over a billion. An 

IDC market research from 2007 predicted that the number of HANs would exceed 200 

million households by 2011 [44]. A customer survey from 2008 by a HAN equipment 

retailer specialising in the technical hobbyist market recorded that an average of 7 connected 

devices in their customers’ HANs [24]. Assuming not all devices can be shared (e.g. home 

gateway), we expect the number of shared devices will not exceed 5 devices per HAN. 

When considering UPnP devices, each device has typically no more than 3 services. Using 

the UPnP device to service ratio as a reference, the number of services shared from the 

HAN is estimated between 10-20 services which when shared from 5-15 remote HANs 

sums to up to 300 remote services with which the system is expected to operate with.  

 

• (#16) Scale up (intra HAN) – the system must be able to represent up to 300 remote 

services with no significant latency. More services can be supported with reduced 

performance.  

• (#17) Scale up (inter HAN) – the system must be able to scale to a small number of 

remote HANs corresponding to number of close family and friends. The number of 

remote HANs must not exceed 15 remote HANs. 

• (#18) Scale down – the system should be deployable on various operating environment 

including Linux, Windows, OSX. The system’s deployment requirements should be 

appropriate for home networks – it must be possible to deploy the system on low-end 

machines, where RAM does not exceed 1GB and CPU does not exceed 2GHz.  

• (#19) Concurrent access – It must be possible for multiple remote HANs to interact with 

the same local HAN resource simultaneously.  
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3.4.2.5.  Extensibility 

• (#20) Given the heterogeneity of the HAN service protocols and its fast evolution it is 

desired that the system architecture will support extensions for additional service 

oriented protocols dynamically when such support for them is available. 

 

3.4.2.6.  Manageability 

• (#21) While some relations between networks may be permanent, others may be ad hoc. 

Therefore the system must support dynamic addition and removal of remote HANs, i.e. 

change the set of remote HANs with which sharing is enabled during the lifetime of the 

system.  

 

• (#22) The local HAN must be able to temporarily pause all sharing without removing 

the relationship with remote HANs. This could be required in cases of maintenance to 

local HAN or in case the user wants to use all of his or her bandwidth for another 

purpose.  

 

• (#23) The system should not require manual configuration of home devices or of home 

gateway. Administration of the system should be appropriate for non-technical home 

users.  

 

3.5. Summary 

This chapter presented several aspects of the challenges in current home area networking. 

The intra-HAN and inter-HAN service interoperability challenges were explained and 

several approaches towards its solution were presented and assessed. Finally the 

requirements for an integrated service oriented architecture for home network addressing 

intra-HAN service interoperability with focus on service composition, and inter-HAN 

service interoperability were presented. Table 2 and table 3 indicate that no existing system 

in the literature meets all of these requirements. Based on the requirements presented at the 

end of this chapter, the next chapter present the Krox architecture for a service sharing and 

composition system and a design that realises the architecture. 
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Chapter 4  
ARCHITECTURE AND DESIGN 

The previous chapter presented the state of the art in intra-HAN service interoperability with 

emphasis on service composition and inter-HAN service interoperability. The relevant gaps 

were identified and presented, deriving the requirements for an integrated service-oriented 

architecture for HAN that supports both service composition and service sharing across 

multiple HANs. The key objective of this thesis is to design and implement an integrated 

service oriented architecture for HAN that supports secure and performant composition and 

sharing of HAN resources that can plug into existing HANs without requiring changes to 

network or device technologies. This chapter presents the Krox architecture and design 

based on the requirements presented in the end of the previous chapter.  

 

This chapter has two parts: the first part introduces the Krox high level architecture for 

service sharing and composition; in the second part a design is presented for the realisation 

of the architecture with multiple service protocols: UPnP and Jini. While the Krox 

architecture is independent from any specific implementation, the realisation of Krox 

architecture with plug-ins for UPnP and Jini service protocol shows how a mapping between 

the architecture onto different service protocols is feasible. As discussed in chapter 2 UPnP 

and Jini are service-oriented protocols that support service discovery, service description, 

and service invocation. While UPnP is programming language agnostic, Jini relies on Java 

programming language. From market uptake point of view, UPnP devices are very common 

in HAN, while devices with Jini services are less common at the time of writing but have 

the potential to become more common with its support for Java. UPnP and Jini both support 

a communication mechanism for service invocation, however while UPnP supports SOAP 
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over HTTP, Jini supports Java RMI. Both UPnP and Jini support a parsable service interface 

that can be used for service composition and for sharing the service with multiple HANs.  

 

The next section describes the high level concepts underlying the Krox architecture.  

 

4.1. Architectural concepts 

This section presents the main architectural concepts and patterns underlying the 

architecture and design proposed in this thesis in response to the requirements presented in 

section 3.4. The architecture is based on the following high-level concepts:  

i) Plug-in architecture – In order to meet the extensibility requirements, an open 

architecture with plug-in modules for each supported service protocol is 

suggested for handling the diversity of service protocols which has been shown 

in chapter 2. The concept of plug-in architectures, more specifically OSGi based 

architecture was suggested in literature [77, 139] for enabling sharing of HAN 

resources with remote HANs. While OSGi provides adequate module 

management and support for dynamic loading, unloading, and management of 

plug-ins, it is mainly useful as a centralised service oriented architecture and it 

lacks the features required for use in a distributed environment as the HAN-to-

HAN requires. Plug-in architectures require an infrastructure that can manage 

plug-ins lifecycle. A plug-in in the Krox architecture is a module that 

implements the interfaces required by the Krox architecture and supports the 

required extensible event model. A plug-in encapsulates the details of protocol 

specific discovery, automatic service virtualisation of services from remote 

HANs, and mapping from the service interface to web services. Each service 

protocol is supported through a separate service protocol plug-in. 

ii) Resource virtualisation – Resource virtualisation has been shown in the 

literature to be useful for achieving seamless integration, as shown in the 

previous chapter. The Krox architecture is based on representing resources from 

remote HANs (devices and services) in the local HAN using “virtual 

resources”. “Virtual resources” proxy the communication with the remote HAN 

and provide an interface to the local HAN that is identical to the interface 

provided by local devices or services of the same technology. For example a 
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remote UPnP media server would be represented in the local HAN using a 

virtual UPnP device. The virtual device would facilitate all the interaction with 

control point applications in the local HAN by tunnelling the communication 

over a secure IM&P connection to the remote HAN hosting the “live” device. 

There, the tunnelled messages are received by the Krox system and forwarded 

to the “live” device. The response messages are tunnelled back to the virtual 

device. The resource virtualisation is based on the service-oriented nature of 

HAN service protocols, where devices and services are represented by 

interfaces, which are abstracted from the implementation, such that the service 

interface lends itself to virtualisation.  

iii) Automatic virtual resource generation – The Krox architecture automatically 

generates local virtual resources for devices from remote HANs that are shared 

with the local HAN. The automation is enabled due to the availability of service 

interfaces in a parsable format, e.g. Java (for Jini and HAVi services), WSDL 

(for DPWS) or XML (for UPnP services). 

iv) Instant Messaging and Presence (IM&P) user metaphor – IM&P defines a user 

model which when adapted for the multi-HAN settings can greatly simplify 

required administration. When applying the IM&P user metaphor, remote 

HANs can be represented as IM&P users, such that if an IM&P user is in the 

“buddy list” it indicates that the local HAN is sharing devices with the remote 

HAN represented by this IM&P user. This approach abstracts lower level 

configuration from the home user such as remote HAN IP addresses or phone 

numbers, and configuration of sharing with a remote HAN, is reduced to adding 

the username of the remote HAN to a “buddy list”.  

v) Instant Messaging and Presence (IM&P) based communication – In order to 

establish secure communication and be able to exchange messages between 

remote HANs behind NAT and firewall systems, the Krox architecture builds 

on leveraging instant messaging and presence system for secure communication 

and messaging between remote HANs. Tables 3 in section 3.3.8 reviewed the 

communication mechanisms used by inter-HAN architectures. The main 

approaches reviewed were SIP-based communication, VPN based 

communication, and other proprietary mechanisms. The advantage of the IM&P 

based communication is its embedded security (authentication, encryption) with 

its simple setup and established scalability. In addition IM&P provides 

embedded presence features which can be used to trigger communication 
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initiation or termination between remote HANs. A disadvantage of IM&P is 

that it typically requires a server for communication between peers.  

vi)  Service orchestration – Through representation of HAN services as web 

services, enable the creation of reusable composite services from atomic ones.  

 

The following sections describe the above architectural concepts and how they are used in 

Krox system architecture.  

 

4.1.1.   Plug-in architecture 

The fast pace of service protocol and standards evolution implies that changes and 

introduction of new HAN service protocols are highly probable. The Krox architecture is 

limited in its scope to supporting HAN service protocols that define a parsable service 

interface (such that can lend itself to virtualisation), however it does not limit the underlying 

mechanisms defined by the service protocol for service discovery, parsable service 

description, control, eventing, and any additional protocol. The plug-in approach avoids 

trying to abstract all service protocols and instead suggests separation through bundling the 

support for a specific service protocol, such that the support for a service protocol is bundled 

in a plug-in that contains all the needed support for the specific protocol. Through the 

bundling of a HAN service protocol support as a plug-in, the system remains service 

protocol agnostic.  

 

 

Figure 1 High-level Plug-in Architecture 
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A plug-in architecture, also referred to as a pluggable architecture [43, 141] is an 

architectural pattern that is desired when the full function set of the system is unknown 

during the system design. There are many recent examples to the usability of plug-in 

architecture such as OSGi plug-in framework, Eclipse plug-in framework14, Firefox plug-

ins15 and others. The main advantage of a plug-in component architecture is that it enables 

dynamic assembly of the system from its components. To illustrate this approach, the 

support for a certain HAN service protocol such as UPnP can be packaged as a plug-in, and 

a given instance of Krox system can load a set of plug-ins. When a new service protocol is 

introduced and its corresponding plug-in has been developed (potentially by a 3rd party), it 

can be loaded into the system extending its support to the new service protocol without 

requiring modifications to the Krox system itself thereby providing the required 

extensibility. 

 

Figure 1 illustrates the concept of an extensible plug-ins in Krox architecture. The support 

for a service protocol is packaged as a plug-in and is loaded into the system by a plug-in 

manager. The plug-in manager is responsible for management of the life cycle of plug-ins, 

i.e. loading, starting, stopping, and unloading of plug-ins. The plug-in architecture needs to 

be complemented by a set of framework services that a plug-in can interact with. It is worth 

defining more clearly what defines a plug-in and therefore what should be inside a plug-in 

and what is a framework service. A plug-in encapsulates the support for a HAN service 

protocol for enabling seamless sharing and interoperability with remote HANs. The plug-in 

must respond to a set of predefined events representing the core event model, which 

correspond to status changes of the local and remote HANs and discovery related events. A 

plug-in can support additional events as required for implementing the support for the 

service protocol. The plug-in framework defines how plug-ins interact with the rest of the 

Krox architecture the set of events that they are required to respond to. The plug-in 

framework is described in detail in section 4.2.2. As opposed to plug-ins, a framework 

service may not contain service protocol specific logic and must have a clear and single 

function. The messaging & presence service encapsulates the communication subsystem and 

is described in section 4.2.1. The plug-in manager is described as part of the plug-in 

framework in section 4.2.2. Finally the sharing manager is described in section 4.2.3.  

                                                        

14 http://www.eclipse.org/articles/Article-Plug-in-architecture/plug-in_architecture.html 

15 https://developer.mozilla.org/en/Plug-ins 
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4.1.2.  Instant Messaging & Presence  

Instant Messaging and Presence (IM&P) is selected for the communication subsystem of 

Krox architecture and as a user metaphor for representing remote HANs. The following 

sections provide background for IM&P and motivation for this design decision.  

 

4.1.2.1. History of Instant Messaging & Presence 

Instant messaging is a well know communication pattern, where the basic idea is the ability 

to send and receive messages in real-time. Presence messages indicate the availability of the 

users, e.g. available, offline, busy. While Instant Messaging and Presence (IM&P) gained its 

immense popularity with the advent of instant messaging chat applications, first 

implementations of such systems were already introduced in the early days of UNIX 

operating system. For example UNIX enabled users to get limited presence information and 

to send and receive instant messages using UNIX commands, FINGER for presence, TALK 

for sending messages [54]. These protocols were suitable to the early days of the Internet, 

however they suffered from security and privacy issues. Next in the evolution of instant 

messaging was Internet Relay Chat (IRC). Introduced in the late 80s, IRC provided real-

time conversation between users over a public network. Users could dynamically join and 

leave the chat room at anytime. In the 90s ICQ16, America Online, and later Microsoft MSN 

Messenger17 presented an Internet scale chat application, which eliminated the need for a 

chat room. Users could finally communicate directly with each other over a public network. 

These applications grew rapidly to millions of users, however they were not natively 

interoperable with each other and were built on proprietary protocols. Subsequently, this 

started the standardisation efforts. Jabber18 is an open source project started in 1998 as a 

client and server that could communicate with several instant-messaging systems. As part of 

the standardisation efforts, two working groups were formed by the Internet Engineering 

Task Force (IETF) at different points in time, SIP for Instant Messaging and Presence 

Leveraging Extensions (SIMPLE)19 – based on Session Initiation Protocol (SIP), and 

eXtensible Messaging and Presence Protocol (XMPP) [114] – based on XML streaming 
                                                        

16 http://www.icq.com/ 

17 http://explore.live.com/windows-live-messenger 

18 http://www.cisco.com/web/about/ac49/ac0/ac1/ac258/JabberInc.html 

19 http://datatracker.ietf.org/wg/simple/charter/ 
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which was originally Jabber’s underlying protocol. Instant messaging and presence 

communication pattern is not limited to plain text messaging and has been extended to 

audio, video, IP telephony and many other types of innovative services. 

 

The concept of IM&P has a number of characteristics that make it suitable for this 

architecture: 

1. Ease of use – IM&P based applications are easy to use and well adapted by non-

technical home users.  

2. Established massive scalability – IM&P systems have user bases of hundreds of 

million users and have been show to perform well.  

3. Communication overlay – IM&P provides the overlay abstraction for the low-level 

communication mechanisms between remote HANs. Users of IM&P do not need to 

worry about low-level networking protocol for establishing connectivity between 

remote hosts.  

4. Captures the concept of “buddies” – The IM&P terminology of users, and friends 

can be useful for defining relationships between the local HAN (i.e. the “user”) and 

remote HANs (“buddies”).  

5. Support for point-to-point connections – Enabling messages to be exchanged 

between remote HANs, e.g. for transmitting service discovery messages.  

6. Built-in presence alerting – can be used for being notified when a remote HAN 

comes online or goes offline.  

7. Easy to secure – The experience gained in instant messaging and other applications 

described above provided well-established security models between clients and 

servers and between IM&P servers.  

 

4.1.2.2. IM&P as a user metaphor 

In order to adopt the IM&P user metaphor for defining the relationships between remote 

HANs we need to establish a vocabulary that will be used throughout this chapter defining 

consistently the terms user, buddy, and buddy list: 

• User – In instant messaging system the user is identified using a username, and defines 

a human user signed into the overlay network formed by the IM&P system. 

• Buddy – In instant messaging terminology, a “buddy” identifies a remote user with 

whom relationship has been agreed to enable users to exchange instant messages.  
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• Buddy list or buddy roster – In instant messaging, the buddy list identifies the set of 

buddies to which a user is connected.  

 

In the Krox system architecture the IM&P user metaphor is adapted such that each HAN 

corresponds to a user in the IM&P system. To be accurate, if there is more than one network 

within the household, each could run a separate instance of the Krox system. In order for 

two Krox system instances to be able to share devices and services with each other, a buddy 

relation between the HANs must be established first in the IM&P network. Therefore a 

remote HAN is referred to as a buddy of the local HAN if the two HANs agreed to share 

devices. This does not indicate anything about the level of sharing that is derived from their 

sharing policies, but only that the messaging required for informing each other about shared 

resources is allowed. Similarly the buddy roster of a Krox system instance indicates all the 

remote HANs with which devices can be shared.  

 

4.1.2.3. IM&P as a communication substrate 

In the Krox system architecture, IM&P is used as the communication substrate for control 

messaging between the HANs. Each HAN has an IM&P identifier and is connected to a 

single IM&P server. If there are multiple network segments within the same household, 

each network segment will need to run its own instance of the Krox system with its own 

identifier for the IM&P server. As discussed in the previous section, HANs establish trusted 

communication channel by adding the remote HAN’s Krox system identifier as a buddy. 

Once the buddy relationship has been agreed between the home users, a communication 

channel is established between the HANs, and they can start exchanging messages.  An 

advantage of IM&P for the communication subsystem is the ability to use presence features 

indications for initiating or terminating communication with remote HANs. The presence 

feature of IM&P system provides a just-in-time notification of changes in the availability of 

remote users in the buddy list, without requiring any additional protocol; therefore it is 

appropriate for this purpose.  

  

In the Krox system architecture, each HAN endpoints connects to a remote IM&P server 

that can be operated by a service provider, or deployed in one of the HANs, as long as it is 

accessible from all participating HANs. The IM&P server can be a standard public domain 

IM&P server and does not require any modifications. Having each HAN endpoint 
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implement an IM&P client fulfils three separate but complementary functions in this 

architecture: 

1) Enable remote Krox system instances to exchange messages – The instant 

messaging capabilities are used for delivering messages between local and remote 

HANs that are configured as buddies.  

2) Enable the local system to be notified on changes in the availability of remote 

HANs from its buddy list – Presence indications are used for detecting remote 

HANs’ status and controlling local HAN’s sharing status (e.g. by going offline, or 

busy). 

3) Enable home users to administer their buddy lists in a familiar manner and control 

their sharing status – Buddy relations in IM&P are used to establish trusted 

communication channels between remote home networks. 

 

4.1.3.  Automatic resource virtualisation 

The vision of pervasive home sharing of devices/service requires that services from remote 

HANs can be seamlessly made available in the local HAN without requiring any 

modification in network, device or service protocols. The ultimate goal is to enable seamless 

integration between existing applications and remote services that are made available in the 

local HAN. In order to support this behaviour it is suggested to use the concept of automatic 

resource virtualisation. As discussed in the previous chapter, several variations of this 

concept have been suggested in [51, 76, 119, 139]. Automatic device or service 

virtualisation means that remote devices or services can be automatically represented in the 

local HAN as virtual resources (devices or services) presenting a virtual interface in the 

remote HAN, i.e. be seamlessly discovered and interacted with by clients of the same 

service protocol running in the same HAN. The virtual resource can communicate with the 

“live” device through a communication infrastructure. The automation aspect indicates that 

once a resource is discovered, a virtual resource instance is automatically generated in 

remote HANs with which it is shared, that can represent the shared resource in these remote 

HANs without requiring additional configuration or coding. The virtual resource is made 

available only to networks with which the service or device is explicitly shared. The 

importance of virtualisation is in enabling virtual resources to be discovered and used in 

HANs in a manner identical to physical devices and services. With this approach existing 

clients can use local and remote services seamlessly without being aware of the location of 
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the service they are consuming, therefore they do not require modifications to be able to 

interact with remote service.  

 

4.2. High-level architecture 

The high-level system architecture depicted in figure 2 defines the proposed integrated 

architecture. The architecture contains several components: 

• Communication subsystem - Provides the required secured communication 

channel and the presence and messaging infrastructure. The communication 

subsystem is described in section 4.2.1. 

• Plug-in framework – Service protocol specific plug-ins encapsulate the extensions 

for a service protocol for multi-HAN and for service orchestration. The plug-in 

framework defines the requirements from a plug-in, an extensible event model, and 

 

Figure 2 Krox System High Level Architecture 
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the infrastructure required to support and manage service protocol plug-ins. The 

plug-in framework is described in section 4.2.2. 

• Capability Sharing Manager (CSM) – Responsible for controlling resource 

sharing. A capability defines a resource that can be shared. It can be a device, a 

service, content, or some grouping of such. The CSM is described in section 4.2.3. 

• Service composition subsystem – Composing functionality that is made available 

by services in the local HAN – these could be either local services or remote 

services represented by local virtual resources. Service composition subsystem is 

described in section 4.2.4. 

• System administration application – Used by the home user to administer the 

buddy list and sharing status and other aspects of system configuration. System 

administration is described in 4.2.5.  

 

4.2.1. Communication subsystem 

The role of the communication subsystem is twofold:  

(i) To enable the Krox system instances in remote HANs to establish a trusted 

communication channel, such that they can securely exchange messages, and 

receive notifications on status changes of each other.  

(ii) To enable components of a service protocol plug-in on a single HAN to 

exchange messages with components of a similar service protocol plug-in in 

remote HANs with which a trusted communication channel has been 

established, for example, the UPnP plug-in in HAN A, can send messages to the 

UPnP plug-in HAN B, if HAN A and HAN B agreed to share devices.  

 

The communication subsystem architecture leverages concepts from IM&P for 

communication between multiple HANs and is based on an application layer protocol 

providing a scalable and secure overlay network connecting heterogeneous network 

infrastructure.  

 

Using an IM&P based communication paradigm for interaction between instances of the 

system in multiple networks can benefit from various aspects of IM&P communication: 
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1. User abstraction – Simplicity is an important aspect for any system that is installed 

in the HAN. IM&P provides a useful abstraction of remote HANs as IM&P  

“users”. This eliminates the need for home users to know about IP addresses or to 

exchange trusted keys. Additionally, many home users are experienced with using 

IM systems and are familiar with the concepts of buddy rosters, which can simplify 

the administration of the system.  

2. Integration with presence – IM&P has a inbuilt support for presence notification 

about end points. The plug-in framework can use this presence mechanism for 

receiving notifications of remote HAN presence status changes that can trigger the 

initiation or termination of the communication with that HAN. In the context of 

Krox system in the HAN, presence indicates the willing of the home user to 

participate in sharing with remote HANs with which sharing has been agreed. Once 

signed in, the system is always on, unless intentionally changed. This means 

presences represents the sharing status of remote HAN rather than physical presence 

of the home user.  

3. Standard communication interfaces – At minimum, IM&P systems enable end 

points to exchange messages. In Krox system architecture, this feature can be used 

for exchanging messages between instances of the Krox system deployed in remote 

HANs. 

4. Embedded security – IM&P systems typically support at least authentication and 

encryption, which are important requirements for the Krox system architecture.  

5. NAT traversal – IM&P systems typically provide standard mechanisms for NAT 

traversal, which is required for Krox system architecture.  
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6. Support for unicast and multicast messaging models – IM&P servers can support 

both unicast and multicast messaging that can be useful for different communication 

paradigms. 

 

IM&P systems also have a number of disadvantages that need to be considered: 

1. Text based messaging – There are different types of communication interfaces 

supported by IM&P systems. The drawback of text based messaging for the 

communication in Krox system architecture is both its verbosity, and the limitation 

to message payload that can be expressed with textual representation. However, 

modern IM&P systems support other means of communication such as byte streams 

that can support any type of data being transferred.  

2. Requires a server – IM&P architecture typically requires a server for 

communication between end points. While server-less architecture exist, they are 

less common than server based architectures.  

 

As shown in figure 3, the communication subsystem contains an IM&P client that connects 

to a single IM&P server. There are no restrictions about where the IM&P server is deployed 

as long as connectivity exists between the server and all its clients in both directions. A 

service provider typically hosts the IM&P server, however it can be hosted inside the HAN 

 

Figure 3 Krox Communication Subsystem 
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as long as it is accessible to other HANs using it. However, the IM&P network is not 

necessarily limited to a single server and can refer to a set of interconnected servers. The 

IM&P client is a software module that manages the connectivity with the server and enables 

its users to exchange messages with each other and be notified on presence status changes of 

other IM&P users from the buddy roster. Once the IM&P client connects to the IM&P 

server, it starts sending presence messages to the server such that the server can notify 

“buddies” of that HAN (i.e. Krox system instances in remote HANs with which sharing has 

been agreed) that the local HAN is ready to start sharing. When remote Krox system 

instances send messages to each other the messages go to the IM&P server and through the 

IM&P server network to the target client. The communication subsystem needs to support 

authentication to verify that only authenticated users can send or receive messages. 

Therefore the first step during the bootstrap of the Krox system is an authentication of the 

IM&P client with the IM&P server. Another aspect of security is encryption. The 

communication between the client and the server should support encryption of the sent 

messages such that anyone sniffing the traffic between the remote HANs, or between IM&P 

servers cannot intercept and use the information sent in a malicious manner. Typically 

IM&P systems support encryption at the network level, however even if not, then the 

communication subsystem needs to implement encryption and decryption before using the 

IM&P for sending messages, and after receiving a message.  

 

4.2.2.  Plug-in framework  

Plug-ins encapsulate the support for a specific service protocol for service sharing and 

service composition. The plug-in framework defines the roles of plug-ins, their abstract 

interface, their interaction with the rest of Krox system architecture, and how they are 

managed. This section describes how the plug-in framework is used to achieve seamless 

integration between services from remote HANs and client applications in the local HAN. 

The service composition aspects of service protocol plug-ins are discussed in section 4.2.4.  

 

The plug-in requires a parsable service interface that can lend itself to virtualisation, and can 

enable automatic generation of corresponding virtual resources. Therefore it is suitable only 

to those HAN service protocols with such a service interface – i.e. UPnP, DPWS, Jini, 

HAVi, and OSGi, and not suitable to ZeroConf, and SLP.  
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In order to achieve plug and play behaviour and seamless integration it is necessary that 

remote devices be represented in the local HAN in an identical way to local devices of the 

same service protocol. This can enable existing applications running in the local HAN to 

interact with remote devices and services in an identical fashion to the way they interact 

with local devices and services, thereby achieving the desired seamless integration. To 

support this with multiple service protocols, the open plug-in based architecture is used. 

Each service protocol plug-in provides service protocol specific resource virtualisation 

functions for achieving seamless integration and inter-HAN service interoperability. Each 

service protocol plug-in has two roles for resource virtualisation: 

(i) Interact with local HAN resources (devices and services) that support the service 

protocol 

(ii) Represent remote resource (devices and services) in the local HAN 

 

The service protocol plug-in is responsible for discovering resources of the relevant service 

protocol in the local HAN and reporting them to all remote HANs with which this resource 

is shared. The communication subsystem provides the plug-in with a secure and efficient 

messaging infrastructure, and presence notifications indicating status changes from Krox 

systems in remote HANs. The Capability Sharing Manager provides an interface to the 

plug-in for checking sharing configuration of HAN resources with specific remote HANs, 

and enable plug-in components to listen to changes in the sharing policies. The resource 

virtualisation architecture does not define a concrete interface for service protocol plug-ins 

because their diversity implies that this can be over-restrictive. The plug-in framework 

defines an extensible event model to which the plug-in is required to respond and provides a 

mechanism for plug-ins to exchange additional messages – see 4.2.2.2 and 4.2.2.3 for a 

specification of the core event model.   

 

Resource virtualisation results in a distributed system with “live” devices/services and 

virtual resources interacting through the framework via an IM&P communication system. A 

service protocol plug-in is comprised of two modules that represent the way a service 

protocol is supported through the virtualisation framework: a Local Network Controller 

(LNC) and a Virtual Resource Manager (VRM). The plug-in framework is limited to 

defining the conceptual roles of the LNC and VRM and a minimal event model that must be 

supported by them, however the service protocol specific plug-in is required to extend this 

event model for its support for resource virtualisation.  
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The LNC is responsible for all interaction with the devices and services that support a 

specific service protocol in the local HAN. Typically this support includes discovery and 

invocation of actions, but can also include support for event subscription, retrieval of service 

description and others. The VRM is responsible for representing devices and services of a 

specific service protocol from remote HAN at the local HAN. When prompted by a remote 

HAN, the service protocol plug-in automatically generates a virtual instance of the remote 

resource that can be interacted with in the local HAN without requiring any additional steps.  

 

The following sections describe the components of the plug-in framework, and their 

interaction.  

 

4.2.2.1. Plug-in Manager 

The Plug-in Manager is responsible for management of the life cycle of service protocol 

plug-ins, including their load, start, stop, and unload. When the Krox system is started, the 

Plug-in Manager loads and initialises the available plug-ins, and if any service protocol 

plug-ins are deployed during the runtime of the system, the Plug-in Manager is responsible 

for their loading and initialisation.  

 

In order to support different plug-ins loaded in different HANs, when a remote HAN from 

the buddy list comes online, the local Krox system should send the list of plug-ins it 

supports to that Krox system instance in that remote HAN. The remote HAN should respond 

with the list of plug-ins it supports. This information should be used such that a remote 

HAN from the buddy list will be notified only on service protocols it supports. When a 

plug-in is added to the remote HAN it notifies all of its buddies. When a notification on 

added plug-in is received to the Krox system in the local HAN, if the same plug-in is loaded 

locally, the message is treated as an indication of the Krox system in the remote HAN 

coming online for this specific service protocol and the local plug-in is notified so that 

interaction can be initiated. 
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4.2.2.2. Local Network Controller 

The Local Network Controller (LNC) for each service protocol plug-in is responsible for all 

interaction with resources of the specific service protocol supported by the plug-in in the 

local HAN. The LNC can notify remote HANs, with which sharing has been agreed, about 

resources added or removed from the local HAN that are shared with these HANs via the 

communication subsystem. The LNC receives status change notifications from the 

communication subsystem when a Krox system in a remote HAN with which sharing has 

been agreed, comes online. This information is used by the LNC to initiate the 

communication with the remote HAN, e.g. by sending discovery information about existing 

resources in the local HAN that are shared with the remote HAN. The Capability Sharing 

Manager is consulted before the LNC notifies a remote HAN about an added or removed 

resource.  

 

The plugin framework defines a core event model with events (described below) that must 

be supported by an LNC for a service protocol. In addition, a service protocol plug-in may 

extend the core model with additional events. Figure 4 illustrates the event interaction 

between the different components of the Krox system. For clarity, in each HAN only one 

plug-in component is shown to illustrate that the interaction is made between the local LNC 

and the remote VRM. In general the core model contains two types of events, discovery 

 

Figure 4 Krox Plug-in Event Model 
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events and remote HAN state change events. In addition, the protocol specific local LNC 

and remote VRM can extend the event model for their interaction.  

 

LNC core event model 

• Discovery - The heart of the LNC is the discovery of local HAN resources. When a 

plug-in is loaded, the Plug-in Manager triggers the LNC discovery event. The 

discovery event is only triggered once in the plug-in life cycle when the Krox 

system is started, however the plug-in may invoke it internally in order to keep in 

sync with the local HAN. To remain as generic as possible, the plug-in framework 

does not define the type or content of messages that need to be exchanged for 

reporting added or removed resources between networks. This message exchange is 

unique to the specifics of the service protocol supported by the plug-in.  

• Remote HAN available - When a remote HAN with which sharing has been agreed 

(i.e. is a member of the buddy roster of the local HAN’s Krox system) comes online, 

the LNC in the local HAN is called by the communication subsystem and is notified 

of the change. The availability of the remote HAN is detected by the 

communication subsystem presence mechanism of its underlying IM&P system, 

however this is transparent for the plug-in. The LNC in the local HAN is required to 

retrieve information about all its local HAN devices and services of the service 

protocol it supports that are shared with that HAN, and send this information using 

the communication subsystem to the remote HAN. The information describing each 

resource should be concise however sufficient to enable the remote HAN’s VRM to 

advertise an instance of the virtual resource to its local HAN (as required by the 

specific service protocol). It is not mandated that each LNC maintains a cache of 

local devices and service, however it is highly recommended for achieving better 

performance. 

• Remote HAN unavailable – When a remote HAN with which sharing has been 

agreed (i.e. is a member of the buddy roster of the local HAN’s Krox system) goes 

offline, as indicated by the communication subsystem, the local LNC is notified by 

the communication subsystem. The event should be used for clean-up of local 

resources related to the remote HAN, such as remote subscriptions, and local 

mappings.  

• Sharing configuration changed (add/remove) – The LNC must respond to 

dynamic changes in the configuration of sharing. The LNC must provide a listener 
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that is registered by the plugin manager with the Capability Sharing Manager during 

the plug-in bootstrap in order to be notified on changes in the sharing configuration 

of local resources. When sharing is permitted, additional resources may need to be 

sent to remote HANs. When permission to share is revoked, the LNC needs to 

notify remote HANs that the resource is no longer available and possibly clean local 

subscriptions made on behalf of remote HANs to those resources.  

 

LNC event model extensions 

The core event model can be extended by a service protocol plug-in for specifying the 

interaction between the plug-in components. The interaction between plug-in components of 

the service protocol plug-in in remote HANs (i.e. LNC and VRM) is made through 

messages. The LNC for a certain service protocol supports a set of message types that are 

agreed between the LNC and the VRM at design time of this plug-in. For example, the 

VRM can send a message for getting the service description. The LNC needs to understand 

the message body and be able to respond accordingly. The LNC needs to register the set of 

supported message types with the framework when it is loaded, so that the framework will 

know to forward these messages to the LNC. This is done by the LNC declaring the 

supported message types during the bootstrap process, whereby these message types are 

registered with the communication subsystem, such that received messages having this type 

are delegated to the LNC. To remain generic enough the plug-in framework does not define 

the other events that need to be supported by the LNC, therefore extensions of the event 

model are left for the service protocol plug-in design.  

 

4.2.2.3. Virtual Resource Manager 

The Virtual Resource Manager (VRM) represents remote resources (e.g. devices, services) 

in the local HAN. Given information from a remote HAN on a resource that is shared with 

the local HAN, the VRM creates a virtual instance of a device or service in the local HAN 

to represent the remote physical resource. From the point of view of applications in the local 

HAN, the virtual resource appears as an ordinary local device or service. The VRM uses the 

communication subsystem to relay messages and requests it receives from local applications 

to the remote HAN hosting the “live” device where the interaction with the device is 

facilitated by the corresponding remote LNC. When the VRM is capable of responding 
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immediately without communicating with the remote device it is encouraged to do so. This 

can be done for example by caching information – e.g. device descriptions.  

 

The plugin framework defines a core event model with events (described below) that must 

be supported by a VRM for a service protocol. In addition, a service protocol plug-in may 

extend the core model with additional events.  

 

VRM core event model 

• Remote resource added/removed - The VRM must respond to resource discovery 

events when resources are added or removed in remote HAN that are shared with 

the local HAN. As part of the communication between the VRM and the LNC, the 

LNC of a remote HAN sends a message to the VRM of all of the remote HANs with 

which the resource is shared indicating the added or removed resource. When a 

notification is received from a remote HAN indicating an added remote device, the 

local HAN’s VRM is responsible for using this information to announce a 

corresponding virtual resource in the local HAN to represent the remote resource. 

The virtualised resource instance must be able to respond to the relevant service 

protocol requests. The extent of the service protocol support is left to the design of 

the service specific plug-in. When a notification is received from a remote HAN’s 

LNC indicating a removed resource, the VRM should respond by terminating the 

corresponding virtual resource’s instance in the local HAN. 

• Remote HAN unavailable - The VRM must respond to the event of a remote HAN 

changing its status to unavailable as indicated by the communication subsystem. 

When a remote HAN with which sharing has been agreed (i.e. is a member of the 

buddy roster of the local HAN’s Krox system) changes its status to unavailable the 

virtual resource instances representing resources originating in that unavailable 

HAN must be terminated. All other local mappings in the VRM related to the 

unavailable remote HAN must be cleaned. 

• Sharing configuration changed (add/remove) – The VRM must respond to the 

event of a change in the sharing configuration of a remote HAN that shares 

resources with its local HAN. This enables the VRM to clean relevant caches if 

needed.  
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VRM event model extensions 

The VRM can use the communication subsystem to exchange additional types of messages 

with remote LNC, hosting “live” devices. The types of the messages that the VRM may 

accept must be registered with the communication subsystem, such that the communication 

subsystem can dispatch messages to the correct plug-in component. Similarly to the LNC, 

the VRM must declare the message types it supports. As part of the loading of the plug-in, 

the Plug-in Manager queries these message types and registers them with the 

communication subsystem, which then knows to forward received messages with this type 

to the VRM. 

 

4.2.2.4. Summary 

The plug-in framework supports remote representation of local devices through message 

exchange between remote HANs using the communication subsystem. The plug-in modules 

respond to changes in the status of remote HANs such that when a remote HAN comes 

online, the LNC component responds with plug-in specific messages to the corresponding 

remote HAN with discovery information for all the resources shared with this HAN. When a 

remote HAN changes its status to unavailable the VRM responds by terminating and 

removing all of the local virtual resources that correspond to resources from this remote 

HAN. Plug-in specific messages are exchanged between the LNC and VRM in different 

HANs for exchanging service protocol specific information related to discovery, invocation, 

eventing for supporting sharing of resources of the service protocol.  

 

4.2.3.  Capability sharing management subsystem 

HAN service sharing requires fine-grained access control that allows the home user to 

grant/delegate access to certain devices/services/actions/content to a subset of its peer 

HANs. Access right management must be dynamic in order to accommodate the dynamic 

HAN environment, where remote HANs can be added and removed, and resources can join 

and leave the network frequently. Sharing management addresses identity management and 

access control. Supporting fine-grained access control requires modelling of the 

device/service capabilities. Such models could include descriptions of the capabilities and 

who may have access to them. In the Krox architecture, identity management is facilitated 

by the logical identities provided by the IM&P framework (i.e. unique IM&P usernames for 

each HAN). 
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In Krox system architecture the Capability Sharing Manager (CSM) is populated with 

information about the local HAN resources and the remote HANs with which sharing has 

been agreed. The CSM provides plug-ins with an interface through which they can query if 

a resource should be shared with a specific remote HAN or with which remote HANs a 

resource is shared. In addition, before a resource is used the CSM is queried to verify that 

the remote HAN trying to access the resource is authorised to do so. Finally the CSM 

provides notifications to registered listeners when the sharing policies are changed, so that 

the plug-in components can respond. As mentioned above (section 4.2.2.2), the LNC must 

provide a listener that is registered by the plug-in manager with the CSM for receiving 

update notifications when sharing policies change. The CSM design is described in section 

4.3.2. 

 

4.2.4.  Service composition subsystem 

The service composition subsystem is based on using web services as an interoperable and 

composable interface, and using an orchestration engine for their composition. Mapping 

between the service protocol and web services should be handled by the service protocol 

plug-in. Using web services as an interoperable service interface has a number of 

advantages and disadvantages. Web services are based on a service oriented architecture 

realisation based on open standards and their interoperability. The main advantage of using 

web service for representing HAN resources is their interoperability. The main drawback is 

that they may incur performance overhead in both memory as well as in CPU processing. 

An additional drawback to using web services is the potential loss of information during the 

mapping process due to the generality of the interface as opposed to the service protocol 

specific capability description model. Web services require a web server for hosting, which 

can also require significant amount of memory.  

 

Aiello [2] argued that web services would have an important role in the future of the HAN 

as the key enabler for total interoperability between devices and services. While for the 

more powerful devices it suggests that the web services stack would be offered as part of the 

device, less powerful devices could connect to a controller implementing the web service 

stack for them. This approach is complementary to the Krox system architecture such that if 

devices offered web services, there would be no need for a transformation between the 
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service protocol and web services. Perumal et al. argue that SOAP and web services 

maximise the interoperability of heterogeneous resources and systems with satisfactory 

performance for smart home environment [102].  

 

When designing the architecture for home service composition it is necessary to consider 

the relevant challenges of home networking: dynamicity (devices can dynamically join and 

leave the network), heterogeneity (variety of hardware, software and protocols) and 

distribution (devices can be located anywhere in the home). Heterogeneity is handled by 

using web services as a common interoperable interface. The discovery module of the LNC 

and VRM handles dynamicity and distribution. With the plug-in based architecture 

described in previous sections, the transformation from a service protocol to the 

representation as a web service is required as part of the service protocol plug-in 

implementation. The transformation takes place in both the LNC as well as the VRM. The 

LNC discovers devices and services in the local HAN, once a device/service is discovered it 

is required to generate a local web service for it. Similarly the VRM is responsible for 

generating web services for the corresponding resources in the remote HANs that it 

represents. The Krox system architecture does not define how the generation of web service 

for the specific service protocol should be made, however, given the service protocol has a 

self describing parsable service interface, as required by Krox system architecture, it should 

be possible to generate an automatic mapping from the protocol specific service interface to 

the web service interface. Once the web service corresponding a local live or virtual 

device/service has been generated it is deployed to a local web server. Similarly when it is 

no longer available in the local HAN (as a physical or virtual device/service) it is 

undeployed from the local web server. 

 

4.2.4.1. HAN service orchestration  

With HAN services mapped into web services, the Krox system architecture suggests 

service orchestration as an approach for constructing complex HAN services from existing 

simple services either live or virtual. A number of approaches for home service composition 

were described in section 3.2.3 and are summarised in table 2. The Krox system architecture 

extends the state of the art for service orchestration in supporting the orchestration of 

services from both the local HAN and remote HAN seamlessly. Through the automatic 

mapping of service protocols to web services by the corresponding plug-in components 

(LNC for local HAN services, VRM for remote HAN services), local web service proxies 
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(corresponding to either physical local or virtual remote services) are available in the local 

HAN for orchestration.  

 

The Krox system architecture does not define the process of service orchestration for HAN 

services, but only provides a mechanism for making services available for service 

orchestration and a mechanism for executing service composition.  

 

4.2.5.  System administration application 

As part of the Krox system architecture, an administration client application is required for 

controlling the various aspects of system management and monitoring: 

• User management – Is required for adding and removing remote HANs for sharing, 

suspending and resuming relationship with remote buddies. This is done using an 

IM&P client, where nodes correspond to remote HANs. Changing the status of the 

Krox system enables pausing or resuming sharing with remote HANs.  

• Sharing management – Is required to enable the configuration of sharing policy that 

defines which resources are shared with which remote HAN. For each remote HAN, 

identified by its Krox system identifier (i.e. its IM&P identifier) the home user can 

select which resources to share.  

• Plug-in management – Is required to enable the user to control which plug-ins are 

currently installed and running, and to start and stop installed plug-ins.  

 

4.2.6. Deployment considerations 

The system could benefit from being deployed as part of the home gateway, however this is 

not mandated. The gateway has a number of advantages as a platform for running the Krox 

system: firstly it is available in most HANs and therefore it does not require an additional 

device to be introduced to the HAN. Additionally the home gateway is always connected, 

which is useful for the Krox communication subsystem. The drawback of deployment on the 

home gateway is the relatively resource constrained nature of home gateway platforms. 

Another potential drawback with deploying Krox system as part of the home gateway is the 

security risk – if Krox system is compromised, an attacker may gain access to configuration 

of the home gateway which is undesired. An alternative deployment option is as an 

application on the home user’s desktop. The advantage of this approach is the much greater 
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computing power of the desktop computer compared to the home gateway. Modern multi-

CPU and multi-core desktop PCs can provide much improved performance. The 

disadvantage of deployment on a desktop is that such an application is less likely to be 

always-connected. Another device that can host the Krox system is a Network-Attached 

Storage (NAS) device. Similarly to the home gateway, a NAS device would typically be 

always connected, however such devices are not as pervasive as home gateway devices.  

Finally the Krox system could be offered as an appliance for the HAN. The advantage of 

such an approach is that the appliance could be equipped with processing power that 

matches its requirements. The drawback is that it requires an additional appliance, which 

also implies additional cost for the home user. From an architecture point of view, none of 

these options should be excluded.  

 

4.3. System design 

The previous section presented the high level architecture for Krox system and its support 

for inter-HAN and intra-HAN service interoperability. In order to demonstrate the utility 

and applicability of this high-level architecture, in this section a corresponding system 

design is presented. The Krox system design (depicted in figure 5) makes two design 

decisions with regard to the high level architecture: 

1) XMPP [114] as an IM&P system – XMPP provides a standard (RFC3920) secure, 

decentralised, and extensible implementation for IM&P. XMPP has many 

advantages, which make it an adequate choice for the communication subsystem of 

Krox system architecture as discussed in section 4.3.1.  

2) Business Process Execution Language (BPEL) [5, 69] for HAN service 

orchestration – As discussed in section 2.2.2, BPEL is a standard language for 

expressing web service orchestrations. BPEL has several advantages for using in 

HAN and a few disadvantages. BPEL service orchestration can enable composition 

of HAN services, both local and remote (through their web service proxies), and 

additionally composition with external web services. In addition, BPEL renders the 

service orchestration as a web service itself, which enables its reusability for further 

composition. The main disadvantage of BPEL for the purpose of HAN service 

composition is that it may be too heavyweight in terms of its memory and CPU 

prerequisites. Another potential disadvantage of BPEL is that it supports only static 

service composition, where service binding is done at design time rather than in 
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runtime, which may be more appropriate for the HAN. These advantages and 

disadvantages are discussed in section 4.3.5. 

 

To demonstrate the utility of the plug-in framework, which is part of the key contribution of 

this thesis, two service protocol plug-ins were designed for supporting sharing and 

composing of UPnP and Jini service protocols.  

  

The following sections describe the details of the Krox system design including the design 

for the system components as they were described in the previous section and the UPnP and 

Jini service protocol plug-ins.  

 

4.3.1. Communication subsystem 

The high level architecture presented in the previous sections outlined the use of IM&P as a 

communication mechanism between remote HANs. In the system design, eXtensible 

Messaging and Presence Protocol (XMPP) [114] is suggested as the IM&P architecture. The 

following section describes XMPP and its applicability for the communication subsystem of 

Krox system architecture.  

 

 

Figure 5 Krox System Design 
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4.3.1.1. eXtensible Messaging and Presence Protocol 

XMPP was initially designed as the underlying protocol for the popular instance messaging 

Jabber20. Jabber suggested an extensible protocol built on XML that allowed development of 

applications not only for its original purpose for IM but also for general purpose transport 

layer for distributed applications. The Internet Engineering Task Force (IETF) standardised 

the core protocol of XMPP to RFC3920 [114]. RFC3920 specifies how XML streaming 

protocol enables entities to exchange XML elements over the network. XMPP supports 

authentication and encryption in the streaming layer through Simple Authentication and 

Security Layer (SASL) [80] and Transport Layer Security (TLS) [109]. In the classical 

XMPP architecture clients communicate with each other through a server. Servers can also 

communicate with each other allowing connections of multiple cooperating domains. Each 

entity in XMPP has a unique address called JID in the following format: <node 

>@<domain>/<resource>. This approach enables the user to have multiple connections for 

the same user with the resource denoting a specific resource or location – e.g. laptop, 

desktop, home, work. Communication between XMPP clients is made through XML 

streams, which are envelopes containing XML stanzas (atomic unit of information). The 

core of XMPP is defined using 3 XML stanza types: message, presence, and info/query.  

• Message XML stanzas enable an entity to send information asynchronously to 

another entity. Typically delivery is made in real time but there is also support for 

store-and-deliver later.  

• Presence XML stanza is used for representing the availability status of the entity, 

e.g. online, busy, away. Presence stanzas are exchanged in a publish-subscribe 

manner such that entities can subscribe and be notified about changes in the 

presence status of another entity.  

• Info/Query (IQ) stanza can be used by entities to make requests and receive 

responses from each other. IQ supports 4 types of request/responses: get, result, set, 

error. The different request and response are identified using an identifier per 

operation  

 

The key element provided by the core stanza types is the near-real-time delivery semantics 

for communications, which is beneficial for the Krox communication subsystem to deliver 

messages between remote HANs with minimal latency. The content of a stanza is pure 

                                                        

20 http://www.cisco.com/web/about/ac49/ac0/ac1/ac258/JabberInc.html 
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XML structured data rather than a specific type, thus XMPP enables the exchange of any 

type of data that can be represented in XML. As stated earlier, XMPP provides a server-

based model but where the servers may be decentralised. This means that there is no central 

authoritative server. From the point of view of users, they still connect to a single server 

with which they authenticate and connect to the XMPP network. Numerous public domain 

XMPP servers exist, primarily in support of instant messaging applications but these servers 

can also be used for other purposes such as for Krox system communication. Public XMPP 

servers are available for everyone, but any user may run their own XMPP server on their 

own domain. Although peer-to-peer implementations of XMPP exist, the typical 

architecture of XMPP is a pure client-server model, whereby clients connect to a server and 

servers connect to other servers for inter-domain communications. Besides instant 

messaging applications XMPP has been used as communication substrate for various 

purposes including enabling complex communication between applications in the cloud 

(project Vertebra21), gaming (e.g. Chesspark22) and VOIP (e.g. GoogleTalk via the Jingle 

XMPP extension).  

 

The following section describes how XMPP is used in the Krox system design and the 

advantages of selecting XMPP over other IM&P systems. 

 

4.3.1.2. XMPP in Krox communication subsystem 

In the Krox system design, following the Krox system architecture, each Krox HAN 

controller connects to an XMPP network. HANs are identified using an IM&P identifier 

(JID in XMPP architecture) and agreement to share with a remote HAN is indicated in 

adding the identifier of the remote HAN to the buddy roster of the local HAN. Buddy roster 

management and administration is a typical and familiar operation in instant messaging and 

therefore it can be considered simple enough for non-technical home users.  

 

XMPP presence alerts indicate when XMPP users come online. In the Krox system design, a 

presence change corresponds to a change in the sharing status of the corresponding Krox 

system instance – a Krox system instance whose status is “available” indicates that the 

                                                        

21 http://www.engineyard.com/ 

22 http://www.chesspark.com 
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system is ready to accept notifications about devices and services shared with it. An 

“unavailable” presence status indicates that the corresponding Krox system instance is in 

non-sharing mode, and all devices and services that were shared from it are no longer 

available. The home user, as an administrative operation, can trigger the changes in the 

presence state of a Krox system instance, to start/stop/pause sharing of local devices with 

remote HANs. In addition, when the system is not connected, its presence status is 

“unavailable”. Once the status of a remote HAN (with which sharing is authorised) changes 

to “available”, the local HAN’s Krox system initiates the interaction with it for sending it 

information about all the devices and services that are shared with that remote HAN. When 

the remote HAN changes its presence status to unavailable, all of the virtual resources in the 

local HAN that were shared from the remote HAN need to be destructed.  

 

The communication subsystem uses XMPP message stanzas to wrap control messaging 

between Krox system instances in remote HANs, e.g. service discovery announcements, 

description requests, invocations, and results.  

 

Several attributes of XMPP mentioned above make it an adequate for using as an IM&P 

system underlying the Krox communication subsystem design: 

1. Scalability – XMPP has shown to exhibit scalability in instant messaging with 

world scale deployments and with large numbers of users and high volumes of 

traffic (REQ #16, REQ #17) 

2. Security – With TLS and SASL, XMPP provides secure messaging infrastructure 

including authentication and encryption (REQ #12, REQ #14) 

3. Extensibility – XMPP is open for extensions, which can be utilised for using a 

protocol extension instead of instant messaging for the message exchange between 

the LNC and the VRM 

4. Presence – XMPP presence information can be used to trigger communication 

between remote HANs and enable prompt response to the event of HANs coming 

online or going offline (REQ #22) 

5. Ease of administration for users – With XMPP all home users need is the identifier 

of the remote HAN they want to add as a sharing buddy. From user management 

point of view, XMPP provides a familiar and easy to use model that has been 

extensively adopted by users for instant messaging. (REQ #21, REQ #23) 

6. NAT – Communication between an XMPP client and XMPP server is TCP-based 
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rather than UDP-based and is always initiated by the client, which indicates that the 

communication subsystem has no problem with NAT (REQ #10).  

7. Multiple Point of Presence (MPOP) – XMPP allows a user to be connected with the 

same address in multiple locations, which are differentiated using a resource 

identifier. The benefit of this approach is that it can enable the Krox server as well 

as the administration application to connect to the XMPP server using different 

resources without any conflicts.  

 

4.3.2. Capability sharing manager 

The role of the Capability Sharing Manager (CSM) component is to enforce home users 

sharing policies for HAN services. During the system runtime the CSM is populated with 

resource sharing/capability models for remote HANs and with local resources. Remote 

HANs are identified using their IM&P identifier. Whenever sharing with a remote HAN is 

agreed, the CSM in both HANs need to be updated, such that sharing policies can be 

applied. Whenever resources are discovered in the local HAN the CSM resource model is 

updated with information about the resource, including the resource identifier, resource 

type, and any protocol specific information that can be used by home users in defining 

sharing policies, e.g. device vendor, device family (e.g. media device). When a service 

protocol plug-in discovers a resource it needs to query the CSM and check with which other 

HANs this resource needs to be shared based on the home user’s sharing policy. The CSM 

responds with the set of identifiers of remote HANs. When a remote HAN with which 

sharing has been agreed changes its status to “available”, service protocol plug-ins query the 

CSM for all local HAN resources that need to be shared with this remote HAN. Service 

protocol plug-ins are also required to check access permission before they perform an action 

on a local device/service on behalf of a remote HAN. The CSM only contains local 

information, i.e. information about devices and services in the local HAN (not including 

virtual services), and identification of remote HANs with which sharing has been agreed. 

Finally, the CSM needs to provide notifications to affected components when sharing 

configuration changes. However since access permission is checked before an action is 

executed on behalf of remote HAN on a local resource, if access permission was revoked, 

the action will be denied.  

 

In order to give users enough flexibility, CSM should support fine-grained sharing 

specification that would allow users to share some services with some users and other 
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services with other users even for services from the same device. Similarly for content 

hosted in a media server, users can define sharing policies based on the name of a container 

or based on tagging. During runtime, the CSM is queried whether specific 

device/service/action/content should be shared with a given user and replies with positive or 

negative authorisation based on its internal sharing models. When the sharing policies are 

changed, the plug-in components are notified on the changes and can respond accordingly.  

 

The actual specification of sharing policies is not part of Krox system architecture. In order 

to be able to specify sharing policies, integration with a policy based capability management 

system is planned as part of a research project (FAME23) but is explored in further work – 

see section 7.3.2. 

 

4.3.3. UPnP  
This section gives a description of the UPnP layered architecture (section 4.3.3.1) followed 

by a presentation of the corresponding UPnP service protocol plug-in for Krox system 

architecture (section 4.3.3.2).  

 

4.3.3.1. UPnP Architecture 

UPnP Device Architecture (UDA) [133] shown in figure 6 defines the layers of plug-and-

play communication protocol: addressing, discovery, description, control, eventing, and 

presentation. These layers are described in the following sections. 

 

4.3.3.1.1. UPnP addressing 

Obtaining an IP address is the first step in UPnP communication, before a device can be 

discovered and interact with control points. UPnP addressing protocol enables devices to 

automatically obtain an IP address upon joining the local HAN without user administration. 

The IP address is obtained using Dynamic Host Configuration Protocol (DHCP) [36] if 

possible. If DHCP is not found then automatic IP addressing (Auto-IP) [30] is used. Auto IP 

allows the device to select an IP address from the 169.254/16 range and then it uses Address 

                                                        

23 Federated Autonomic Management of End to End Communication Systems – SFI Strategic Research Cluster (“FAME”): 08/SRC/I1403 (www.fame.ie) 
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Resolution Protocol (ARP) [103] to check if the address is available. Once a device has an 

IP address it can take part in the UPnP discovery protocol. 

 

4.3.3.1.2. UPnP discovery 

A control point must know about the existence of a UPnP device in the local HAN before it 

can start interacting with it, therefore a discovery protocol is needed. UPnP discovery is 

based on Simple Service Discovery Protocol [133]. SSDP supports two complementary 

modes of operation: advertisement and search. When a device is added to the network it 

announces its presence, and similarly when a control point is added to the network it should 

be able to find devices. Search mode enables control points to initiate discovery in the 

network with a certain service type such that all the devices that support the requested 

service type must respond with a short message indicating its identification. This mode of 

operation is useful for applications that join the network and want to find certain type of 

services already existing in the network or for ad hoc searches, e.g. for showing the list of 

printers in a certain network. Search requests are HTTP packets sent over UDP to a local 

multicast address (239.255.255.250 port 1900) in the local HAN. The search request needs 

 

Figure 6 UPnP Architecture Stack 
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to describe the type of service of interest, such as root devices, or specific device type such 

as media server. All UPnP devices on that network must listen on the same multicast port 

and respond if they support the service described by the discovery request message. The 

response is made via a unicast HTTP POST over UDP packet directly to the requesting 

control point. When a new device joins the network it must announce its presence by 

sending an HTTP packet over UDP to the same multicast address, thereby enabling control 

points in the local HAN to learn about its existence. Control points interested in new devices 

can listen to the multicast address and thereby learn about new devices joining the local 

HAN. Devices must also announce when they leave the network. An example of a device 

announcement as defined in [133] is given in figure 7. The announcement contains basic 

details about the device such as its service type (blender in the example), its unique 

identifier (someunique:idscheme3), a URL to its description and expiration time which 

indicate for how long the information is valid for enabling applications to cache the device 

information. When a device leaves the network it only needs to send its service type and 

identifier.  The purpose of presence announcements is to optimise the interaction with UPnP 

devices and to minimise the need for repeated searches that result in more control traffic and 

enable control points to learn about existing devices in the network as soon as possible. 

 

4.3.3.1.3. UPnP description 

UPnP devices and services are described via XML documents. A device description 

document contains information about the physical device such as its friendly name, 

manufacturer information, version, icons, and additional information about embedded 

devices and supported services. The device description (figure 8) document is organised 

according to a predefined schema that corresponds to the device profile. Once the device has 

been discovered by a control point, the control point can query the device description by 

sending an HTTP GET request to the URL specified in the discovery packet location 

header. The device responds by posting the description XML document in an HTTP 

response to the requesting control point. The control point needs to parse the XML 

document and extract more details about the supported services and how to interact with 

them. The device description may contain additional URLs for services, which can be 

further queried by control point applications to obtain more information about a specific 

service. The service description includes information about the actions supported by the 

service, their parameters and the state variables related to the service. State variables 
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provide information about the state of the service, for example, a status state variable in a 

media player can indicate if the media player is playing/stopped/paused.  

 

4.3.3.1.4. UPnP control 

The UPnP control protocol specifies a methodology for remote procedure calls, enabling 

control point applications to invoke actions on UPnP devices in a platform and 

programming language neutral manner. Invocation is made by sending a SOAP request over 

HTTP to the relevant service’s control URL as obtained from the service description. Once 

 

Figure 8 UPnP Device Description Example 
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the execution completes, a result or an error is sent back from the device to the requesting 

control point. Operations can either query some state or modify the state of the device. 

 

4.3.3.1.5. UPnP eventing 

The UPnP eventing protocol enables control points to subscribe for events indicating 

changes in state variables. UPnP supports two styles of event subscription: unicast 

subscription, which allows interested control points to subscribe for event updates, and 

multicast subscription, which enables all listening control points to listen to event updates 

which are sent to the multicast address in local HAN. Interaction with the device involves 

subscription for events, renewal of subscriptions, and un-subscription. The interaction is 

made through HTTP requests and events notifications are based on Generic Event 

Notification Architecture (GENA) [133] and delivered over HTTP. 

 

4.3.3.1.6. UPnP presentation 

The UPnP presentation layer enables control points to retrieve a web page from the 

presentation URL and present it in a web browser. Where the device supports presentation, a 

URL is provided in the description XML document to a web page hosted in the device’s 

embedded web server. The web page can support dynamic updates to the device state and 

can potentially enable client to invoke actions on the device. UPnP presentation layer is 

optional and the extent of support may vary between device implementations.  

 

4.3.3.1.7. UPnP security 

While UPnP does not have an inherent security mechanism, it does offer some form of 

authentication and authorisation via the DeviceSecurity [131] and SecurityConsole [132] 

profiles. The UPnP specification suggests that the DeviceSecurity device enforces 

authentication and access control such that the access control policy is in fact stored in the 

SecurityConsole which is a single point in the home network that facilitates authorisation. 

The DeviceSecurity profile attempts to secure only the UPnP control protocol. If an action is 

defined to be access controlled, then a control point must be authorised to perform this 

action on the device before the device will accept the execution request. An authorised 

control point must digitally sign SOAP messages in order to provide integrity protection. 

The authorisation is made through a control point application that has a device interface as 
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well (SecurityConsole) that enables the user to configure security settings for devices on the 

network. DeviceSecurity supports confidentiality by enabling SOAP action messages to be 

encrypted. If authorised, the device decrypts and executes the request and then encrypts the 

result when it is sent back to the caller. DeviceSecurity also considers replay prevention by a 

sequence number for actions that are executed within the context of a secure session. For 

other actions in a non-session context a state variable value is used to generate a non-

repeating value for replay prevention.  

 

4.3.3.2. UPnP service protocol plug-in 

This section gives an in-depth description of the design for multi-HAN extension for UPnP 

through device and service virtualisation, packaged as a service protocol plug-in, which 

contains two software modules: a Local Network Controller and a Virtual Resource 

Manager as required by the plug-in framework (see 4.2.2). UPnP discovery relies on UDP 

multicast – devices announcement are sent to a local multicast address and similarly control 

point search messages are sent to the same multicast address when such applications intend 

to find devices in the local HAN. UDP multicast is limited in its scope to a single HAN. In 

order to be able to deliver discovery notifications to remote HANs with which devices are 

shared, the communication subsystem is used. However a secure communication channel is 

not sufficient for extending UPnP across multiple HANs. The reason is UPnP discovery 

announcements include a device location, which represents a URL where more information 

about the devices could be retrieved. This location would represent a private IP address that 

is not reachable from remote HANs therefore repeating the original device announcement in 

the remote HAN is insufficient for achieving seamless integration with client control point 

applications.  

 

The UPnP LNC collects information about the local HAN UPnP resources. The UPnP VRM 

aggregates information about devices and services from remote HANs and automatically 

generates corresponding virtual UPnP devices and service in its local HAN. It is a design 

choice to have a single instance of VRM managing all the local representations of UPnP 

devices from remote HANs, rather than having many VRM instances. The rationale behind 

this decision is to optimise communication and shared resources, such that there will be only 

a single listener to local search requests on behalf of remote devices. With a single VRM 

instance encapsulating all remote UPnP devices in the local HAN, when a search request is 

received, the VRM is required to respond on behalf of all of the devices and services that 
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correspond to service type indicated in the search request. When a request is directed to a 

single UPnP service or device (e.g. service description request), the VRM processes the 

request in the context of that device. From an external point of view (e.g. a control point), 

there is no central VRM entity but as many devices as and services as shared with the local 

HAN. The VRM entity is inaccessible, instead, the VRM masquerades as multiple UPnP 

devices.   

 

Section 4.3.3.1 described the details of the various layers of UPnP protocol. The following 

sections describe how the UPnP layered protocol is mapped to the interactions between 

LNC and VRM for supporting multi-HAN UPnP networks.  

 

4.3.3.2.1. UPnP Discovery 

In order to extend the UPnP discovery protocol across multiple HANs, the multicast 

limitation to a single HAN needs to be circumvented. In this design the communication 

subsystem messages are used by the UPnP plug-in as envelopes to SSDP notifications 

between Krox system instances in multiple HANs. It must be noted that only HANs with 

which devices are shared are notified.  

 

The UPnP Local Network Controller (LNC) listens to local SSDP announcements made by 

local UPnP devices. The LNC uses these announcements to keep an up-to-date repository of 

all announcements representing current devices/services in the local HAN. Periodic searches 

are used as a complementary mechanism in order to keep the repository in sync with the 

network and overcome cases of missed announcements due to network congestion or the 

unreliable nature of UDP communication (see steps 1-3 in figure 9), however the frequency 

of such searches is left for the implementation. While such complementary search is 

essential for guaranteeing that no announcement is missed for a too long time, it must be 

balanced against the overhead it places on the network devices in the local HAN.  

 

The device and service announcements update the CSM and are cached for the duration 

indicated in their discovery announcement. When the duration expires they are removed 

from the local repository and update the CSM of their expiration. The purpose of caching 

local discovery announcements is to be able to report to a remote HAN about available 
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shared devices and services in the local HAN efficiently. When a remote HAN comes online 

as indicated by the communication subsystem (step 4-5 in figure 9), the UPnP LNC uses the 

communication subsystem to send an SSDP announcement to the “available” remote HAN 

for each UPnP device/service that is shared with that remote HAN and whose duration has 

not expired yet (steps 6-9 in figure 9). This behaviour emulates a search request being sent 

from the remote HAN to the local HAN. Similarly when a local device or service 

announcement is received at the LNC, it is sent to all remote HANs with which it is shared. 

Checking for sharing configuration is made by querying the capability-sharing manager, 

before any message is sent to the remote HAN.  

 

When an SSDP announcement is received to Krox system from a remote HAN (from its 

UPnP LNC), it is delivered to the local UPnP VRM (step 10 in figure 9). The VRM needs to 

announce the SSDP device or service announcement in its local HAN. The SSDP 

announcement that was received from the HAN hosting the “live” device does not contain 

any location, which is not sent with the announcement for security and conciseness 

considerations. The reason is that the original location (as can be seen in figure 7) is not 
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accessible from the remote HAN. Therefore before the received SSDP announcement can be 

repeated in the receiving network, its location must be set to a locally meaningful one, i.e. a 

location that can be accessed later when a control point tries to retrieve the device 

description or subscribe for events (step 11 in figure 9). The UPnP VRM needs to assign the 

device/service a meaningful unique local address where control points can interact with it. 

The addressing scheme for device location is described in the next section. Finally, once the 

local location has been set, the VRM updates its local announcements cache and announces 

the device/service locally (step 12 in figure 9). The VRM maintains this cache so that it 

would be able to respond promptly to search requests made by applications in its local HAN 

on behalf of the remote devices and services it represents (steps 13-14 in figure 9). This 

caching eliminates the need to ever delegate search requests between multiple HANs and 

therefore reduces the control traffic on the expense of additional memory.  

 

When a byebye announcement is received from a remote HAN for a device or service that is 

shared with the local HAN, the corresponding SSDP announcement is removed from the 

VRM local repository and the byebye announcement is repeated in the VRM’s local HAN. 

Similarly when the duration of an alive device or service announcement received from a 

remote HAN to the VRM expires, the SSDP announcement is also removed from the 

VRM’s repository.  

 

When the UPnP LNC sharing configuration change listener receives a notification from the 

CSM on a change in the sharing configuration of a resource with relation to a set of remote 

HANs, the LNC must respond by sending the corresponding announcements to the relevant 

HANs. If sharing is added, then the device announcement should be sent, if sharing is 

removed, a byebye announcement should be sent to the relevant HANs. In addition a 

message should be sent to the remote HANs indicating the change in the sharing 

configuration, enabling them to clean related caches.  

 

It is mentioned above that the LNC listens to discovery messages in the local HAN. A subtle 

point is that the LNC must ignore and discard announcements that represent virtual devices 

originated in the local VRM. Therefore when an SSDP announcement is received by the 

LNC it must verify first that it does not represent a remote device before it attempts to 

forward it to remote HANs. A remote announcement can be detected by examining the 
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location field. A remote announcement will conform to the remote addressing scheme 

therefore is easy to differentiate from a local announcement.  

 

4.3.3.2.2. Device addressing scheme 

A number of alternatives addressing scheme to be used by the VRM were considered: from 

assigning each UPnP device from a remote HAN a local port in the local HAN, through 

assigning a single port to each remote HAN and representing remote devices in local HAN 

using relative addresses. Another option, which was the design choice, was to listen on a 

single port for all remote devices from all HANs and use a consistent addressing scheme in 

the VRM. The first two options require listening on multiple ports and are more complex to 

manage and less bandwidth efficient. The third approach, which is the one selected for the 

UPnP plug-in design, allows listening on a single port however requires the location 

identifying a remote device to include more information identifying the HAN and the 

remote device.  

  

In order to make the device location unique across the VRM’s local HAN, and be able to 

extract the id of the devices along with the remote HAN hosting it from prospective calls, 

the device is announced the VRM’s local HAN with a location that is comprised of the 

communication subsystem identifier for the HAN hosting the “live” device and the device 

unique identifier. The resulting URL is an address in the local HAN that represents the 

remote device.  

 

Figure 10 illustrates how the original announcement (as shown in figure 7) sent from a 

blender in Bob’s HAN will look like when shared with Alice and announced by the VRM in 

 

Figure 10 Live Device Announcement (left) and the Corresponding Virtual Device Announcement (right) 

NOTIFY * HTTP/1.1     

Host: 239.255.255.250:1900     

NT: blenderassociation:blender     

NTS: ssdp:alive     

USN: someunique:idscheme3     

LOCATION: 
http://192.168.1.2:4004/u1@server.com/uuid:ab
cdefgh-7dec-11d0-a765-00a0c91e6bf6 

Cache-Control: max-age = 7393 

NOTIFY * HTTP/1.1     

Host: 239.255.255.250:1900     

NT: blenderassociation:blender     

NTS: ssdp:alive     

USN: someunique:idscheme3     

LOCATION: http://192.168.1.3/foo/bar     

Cache-Control: max-age = 7393 
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Alice’s HAN. The announcement is directed to the multicast address 

(239:255:255:250:1900) and contains the location of the blender device. In Bob’s HAN, the 

blender has the location http://192.168.1.3/foo/bar. When announced in Alice’s network it 

will have the location as can be seen on the right hand side of figure 10: 

http://192.168.1.2:4004/u1@server.com/uuid:abcdefgh-7dec-11d0-a765-00a0c91e6bf6. The 

location in the VRM’s local HAN (Alice’s HAN) is made of three parts: host:port – the host 

corresponds to the private IP address of the machine running the VRM and the port 

identifies the HTTP port on which the VRM listens for communication with remote devices 

represented in the local HAN. The second part of the address identifies the remote HAN 

hosting the “live” device by using its communication subsystem identifier. This identifier 

uniquely identifies the remote HAN and can be used with the communication subsystem for 

sending messages to the Krox system in that HAN. The third part of the location identifies 

the device in the remote HAN using its Universally Unique Identifier (UUID). It is 

important to note that from the discovery point of view there is no significance or 

complexity with the fact that both HANs in the example (Bob and Alice) are behind NAT 

and the original location of the blender in Bob’s HAN may be used in Alice’s HAN for a 

completely different device. 

 

4.3.3.2.3. UPnP description 

Once a control point has learned about the existence of a remote device (represented locally 

as a virtual device) it can start interacting with it. It is important to note that the control 

point is not aware if the device with which it interacts is remote. The control point follows 

its regular interaction protocol with the UPnP device it sees, so no change is required to the 

control point. This device is the virtual device represented by the VRM, which relays 

messages to the remote HAN hosting the “live” device. The interaction depicted in figure 11 

begins after the remote UPnP device has already been announced by the VRM in the local 

HAN with a location that corresponds to a URL served locally by the VRM. A control point 

that has already received the device presence announcement, or search response, is 

interested in getting more information about the device through its description document. 

This is done by issuing an HTTP GET request by the control point and sending it to the 

location URL as it was defined in the device announcement (step 1 in figure 11). The HTTP 

GET is received by the VRM, which is expected to respond by posting the XML device 

description document. In order to accomplish that, the VRM in the local HAN (HAN1) 

needs to relay the request to the remote HAN hosting the “live” device corresponding to the 
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request (HAN2). The request that is sent to the remote HAN using the communication 

subsystem containing an identifier for the request, the UUID of the device whose 

description is requested, and the relative path to the description. The relative path is 

extracted from the URI given in the HTTP request. As explained in the previous section, the 

location that the request was directed to in the local HAN contains the communication 

subsystem identifier of the HAN hosting the “live” device, therefore this identifier can be 

extracted from the location and the request for description can be redirected to the correct 

remote HAN over the communication subsystem (step 2-3 in figure 11). In the remote HAN 

(HAN2) the description request is delegated to the UPnP LNC (steps 4-6 in figure 11). The 

LNC in HAN2 parses the XML description of the device or service and consults with the 

capability-sharing manager for checking which services or actions are shared with the 

requesting HAN (HAN1). Devices, services, or actions that are not shared with the 

requesting HAN are filtered from the returned device description document. For a device 

description, services may be filtered, and from a service description, actions may be filtered. 

Filtering is made possible by the conformance of device and service description to the 

device and service schema defined as part of the UPnP Device Architecture document [133]. 

The filtered XML document is then sent using the communication subsystem to the 

requesting HAN (steps 7-10 in figure 11). The VRM in HAN1 receives the returned 

description and before it can be posted to the requesting control point, URLs contained in it 

must be “localised”. Modifications are required for all URLs that are to be accessed locally, 

such as the SCPDURL (service location), control (address for SOAP requests), 

eventSubURL (address for event subscription). These URLs must be prefixed similarly to 

the way the device location is constructed with the communication subsystem identifier of 

the originating HAN hosting the device, and the device UUID. Once URLs have been 

modified, the VRM in HAN1 posts the description to the requesting control point (steps 11-

12 in figure 11).  

 

In order to reduce the communication between remote HANs, several optimisations can be 

applied. The typical behaviour of a control point is to respond with a description request for 

every device/service it discovers. Therefore when the VRM announces a device or a service, 

it is highly likely that many control points in the local HAN that are interested in the service 

type will request the same description. To reduce the inter-HAN communication overhead 

and the load on the “live” device, device and service description can be cached in the VRM. 

The cache remains valid for the duration of the device announcement and enables the virtual 
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device to serve control points requesting the device description of remote devices very 

quickly. It also reduces potential contention on the actual device. While caching boosts 

performance it also incurs memory overhead, therefore it has to be balanced. It would be 

part of the evaluation to determine the benefit of caching in performance vs. its associated 

memory overhead. In case there is a change in the sharing permissions in remote HAN, the 

remote HAN can request peer HANs to invalidate their VRM cache due to a change that 

may impact the description of devices and services shared with them. However even if the 

remote HAN would see a description that is broader than what it might be able to access, the 

access control will be enforced when unauthorised access is attempted.  

 

4.3.3.2.4. UPnP control and post processing 

If the UPnP VRM receives an HTTP SOAP request for execution, it extracts the 

communication subsystem identifier of the HAN hosting the live device (HAN2) and the 

UUID of the remote live device from the URI header (steps 1-2 in figure 12). The SOAP 

execution request, along with an invocation identifier is forwarded to the corresponding 

hosting HAN using the communication subsystem where it is routed to the UPnP LNC (step 

3 in figure 12). After verifying that the HAN (HAN1 in figure 12) attempting to execute the 

action has sufficient permissions to do so, the UPnP LNC in HAN2 posts a SOAP request to 
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the corresponding “live” device (steps 4-7 in figure 12). In case of an error, either an error 

received from the device, a network error, or a timeout, it is immediately forwarded back to 

the HAN requesting the invocation (HAN1 in figure 12). If the execution is successful, 

further filtering may be required in case the sharing configuration policy was defined for 

content sharing (step 8-9 in figure 12).  

  

The UPnP VRM automatically generates a local proxy for a remote resource regardless of 

the device or service type. The UPnP VRM runtime entity is minimal and for all interaction 

it only serves as a generic proxy for the “live” device. However there may be a need for 

device or service specific extensions to the execution of the virtual resource. For example 

the result from a media server browse or search actions may contain content directories or 

URLs which the home user may or may not wish to share with a specific remote HAN. 

Therefore special handling needs to parse the result of such a query in its context and filter it 

based on sharing configuration as defined in the capability sharing manager. Another 

scenario is when the result of a query or action contains URLs, such as the printer queue 

URL in a printing service, or a URL for media in a media server. These URLs will not be 

accessible in remote HANs therefore additional processing needs to be performed either in 

 

Figure 12 Multi-HAN UPnP Control Protocol Interaction 

Communication 
Subsystem 

Capability 
Sharing 
Manager 

UPnP Local Network 
Controller 

1. HTTP POST 
SOAP request 

3. Send message 

Communication 
Subsystem 

10. Send message 

Control Point 
Application 

UPnP Virtual 
Resource Manager 

Media Server  
(192.168.1.2) 

2. Dereference URL and 
send request to the remote 
HAN hosting the “live” 
device 

4. Invoke SOAP 
action 

7. HTTP POST SOAP 
request to the device 

5. Check  permission for 
HAN1 to invoke the 
requested action 

6. HAN1 permitted to 
invoke the requested 
action 

9. Post process and 
send SOAP response 

12. Post-process 
response if needed 
and HTTP POST 
SOAP response 

HAN 1 HAN2 

11. SOAP response message 
received 

8. HTTP POST SOAP 
response 



 144 

originating network or in remote HAN in order to enable control point applications in the 

remote HAN to use these URLs to print or access media streams. In order to allow greater 

flexibility, the Krox system architecture enables a service protocol plug-in to include 

extensions that can be invoked at predefined join points. Such a join point defines an event, 

which allows pre or post processing code to be inserted [33].  

 

In order to support pre/post processing, a service protocol plug-in can provide pre or post 

processors that can be attached to a set of join points specified by the plug-in. Join points are 

mapped to the event model of the plug-in, either the core event model or plug-in specific 

extension of the model. The device/service specific processors can be attached at various 

levels such as for all devices of the service protocol, for a specific device type, for a specific 

service type and for a specific action in a service. This granularity, in addition to the 

available extension points, provides flexible and extensible behaviour complementing the 

generic functionality provided by the UPnP virtual device. The difference between a joint 

point and logic that is part of the regular execution flow (e.g. handling control request), is 

that an extension point may depend on the device type, and may have various strategies that 

can be separately composed in each deployment, while the regular execution flow is generic 

and independent of the device type. The configuration for pre/post processors is defined in 

the plug-in configuration and is registered when the plug-in manager loads the plug-in. 

 

4.3.3.2.5. Out of band access to UPnP resources 

As discussed above, the result received from a UPnP service can contain URLs which are 

meaningful and accessible only in the local HAN. These URLs must be replaced with URLs 

that can be accessed from the remote HAN that expects the result of the UPnP action. While 

the data access (e.g. media streaming) is out of band from UPnP point of view and is not 

standardised by the protocol, for the completeness of the solution the following approach is 

presented: the LNC replaces the URLs before sending them with a URL that has a unique 

identifier that the LNC maps to the original URL. http://192.168.1.3:53262/exportItem?id=5 

it will be replaced with the URL: http://ExportItem?id=5 where the private IP address of the 

“live” device is removed. When the VRM receives the result containing URLs it adds as 

prefix to the URLs the identifier of the Krox system in the remote HAN hosting the device 

and the device unique identifier in addition to the host name and port for the UPnP VRM. 

The VRM would return the above URL to a client in the local HAN as: 
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http://192.168.1.1:4004/uuid:111233445555/resource/ExportItem?id=5. When the VRM 

receives a request that corresponds to a resource (as indicated by the structure of the URL), 

it extracts the identifier of the Krox system in the remote HAN, and forwards the request to 

that remote HAN with the device identifier. In the remote HAN, the LNC resolves the 

device from the device unique identifier and checks with the CSM that the remote HAN is 

allowed to access the resource and if so, it forwards the request to the device. The response 

from the device is tunnelled using the communication subsystem. In order to separate 

control traffic (for UPnP traffic) and data traffic (out of band communication between 

devices and control points) a separate channel in the communication system is used for 

transferring data. While the bandwidth is still limited, the separation of channels can enable 

assigning different priorities to the different communication channels. The advantage of this 

approach is that it avoids opening additional ports in the firewall of the HAN and does not 

require any manual configuration.  

 

4.3.3.2.6. UPnP eventing 

Control points that are interested in receiving event notifications from a UPnP service can 

subscribe by sending an HTTP subscription request to the virtual device’s event subscription 

address as published by the VRM in the device description XML document. (step 1 in figure 

13). The VRM extracts from the subscription URL the communication subsystem identifier 

of the HAN hosting the “live” device, and the device UUID similarly to the way this is 

handled for SOAP requests (Step 2 in figure 13). A subscription request is then sent to the 

remote HAN hosting the “live” device (HAN2 in figure 13) where it is received by the LNC 

(steps 3-4 in figure 13). The LNC checks with the CSM if the remote HAN (HAN1) is 

allowed to subscribe for events for the given device, and if so, it sends a subscription request 

to the device giving a local callback interface for subscription, which means the LNC would 

be the notification target for this subscription (steps 5-7 in figure 13). The device responds 

with a subscription identifier, which is cached by the LNC and mapped against the 

communication subsystem identifier of the HAN requesting the subscription, and then sends 

the subscription identifier to the requesting HAN using the communication subsystem (steps 

8-10 in figure 13). The subscription identifier is received at the VRM in HAN1, which 

updates its local mappings with a subscription identifier and the callback interface that was 

given by the control point application in the original subscription request. The VRM then 

posts the subscription response with the subscription identifier to the requesting control 

point (steps 11-12 in figure 13). When the device sends a notification related to this 
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subscription, it is received by the LNC (in HAN2). The LNC extracts the subscription 

identifier from the notification and resolves the communication subsystem identifier of the 

subscribing HAN from its local mapping. The LNC then forwards the notification using the 

communication subsystem to that HAN (steps 13-15 in figure 13). When the appropriate 

VRM receives the notification, it resolves the callback interface given by the control point 

corresponding to the subscription identifier and posts the notification to this callback URL 

(steps 16-17 in figure 13).  

 

When a control point unsubscribes, the VRM in HAN1 removes the mapping between the 

callback interface and the given subscription identifier, and forwards the unsubscribe 

request using the communication subsystem to the remote HAN (HAN2). Similarly, the 

LNC in HAN2 updates its local mapping and sends an unsubscribe request to the device.  

 

If the sharing configuration was changed such that a subscribed remote HAN is no longer 

allowed to subscribe for events for the relevant service, the LNC should respond by 

removing the event subscription corresponding the remote HAN.  

 

Figure 13 Multi-HAN UPnP Eventing Protocol Interaction 
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4.3.3.2.7. UPnP service protocol plug-in security guidelines 

UPnP can be subject to many different types of attacks (see section 6.4.2). The UPnP 

service protocol plug-in design should be able to defend against common types of attacks 

from spreading beyond the scope of a single HAN. This section define a set of defence 

techniques: 

1) Discovery – The VRM handles search requests in the local HAN for the remote 

devices it represents. In order to defend against misbehaving control points, the 

VRM should restrict the frequency of search requests to which it responds. Once the 

threshold is crossed, additional requests should be ignored. The LNC must verify 

that the location for the device specified in the device announcement is in the local 

HAN. If the URL is not local then the device announcement should be ignored.   

2) Description – The LNC parses the service description before it sends it back to the 

requesting remote HAN. The device description should only be sent if parsing 

succeeds. In addition, if the size of the description document is suspiciously long – 

over a predefined threshold, it should be discarded and an error should be sent 

instead to the requester.  

3) Control – The VRM should parse the SOAP request and verify that it is valid. It 

should identify suspiciously long SOAP requests based on a configuration of the 

maximum acceptable SOAP request. The LNC should parse the SOAP response and 

identify suspiciously long SOAP responses that are longer than a predefined 

threshold. If such response is identified, it should be discarded and an error should 

be returned.  

4) Eventing – The VRM should verify that the callback URL is in the local HAN. The 

LNC should not subscribe for events more than once per each service irrespective of 

the number of remote HANs requesting subscription. Additional subscription 

request should be notified based on the existing subscription with the device. When 

the last remote HAN subscription is removed, then the LNC should unsubscribe 

from the device. If an event notification attack is identified (e.g. when the number 

of event notifications per time window crosses a threshold) in the local HAN event 

notifications from this device should be discarded. Similarly, the VRM can have a 

maximum of one subscription per remote service sent to the remote LNC, and map 

all additional subscriptions to this single subscription.  
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5) Due to the potential high risk of sharing the Internet Gateway Device, it is 

recommended that the IGD is not shared with any remote HANs. The UPnP plug-in 

implementation can either prohibit sharing of IGD or give a warning to the home 

user indicating the risk.  

 

4.3.3.3. Summary 

The above sections described the details of a design for a service protocol plug-in that can 

be used with the Krox system architecture for an extension of the UPnP protocol to multi-

HAN through service virtualisation using the Krox communication subsystem. This plug-in 

design supports seamless integration through resource virtualisation, such that network 

protocols do not need to be modified, and the UPnP protocol extension is designed in a way 

that is transparent to existing applications. The design for the UPnP plug-in gracefully 

handles private networks by using the Krox communication subsystem and an addressing 

scheme that translates between private network addresses and published addresses. Since all 

UPnP protocol traffic is carried over the Krox communication subsystem, the plug-in does 

not require additional ports to be open and therefore firewalls do not present an additional 

challenge for this design. The secure communication subsystem guarantees that only 

authenticated Krox system instances can interact with each other and all UPnP traffic 

between HANs is encrypted. Authorisation is achieved by using the capability-sharing 

manager. While performance needs to be evaluated, it can be observed that the control 

traffic carried on the wire does not add significant overhead to the UPnP payload to/from 

the control point or device, since only an additional device UUID and a request identifier is 

added to the constant overhead of each message. The design for out-of-band communication 

enables control points in the local HAN to send and receive data from devices in remote 

HANs securely using a separate secure communication subsystem channel. The UPnP plug-

in does not include support for UPnP presentation layer because it is not very common in 

HAN devices, however the presentation layer is optional in the UPnP protocol stack.  

 

Section 5.5 in the next chapter presents the details of a prototype implementation of the 

UPnP service protocol plug-in for Krox system architecture.  
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4.3.4. Jini  

In order to demonstrate the generality of the Krox system architecture and its applicability 

for HAN service protocol plug-ins, this section presents the design for Jini service protocol 

plug-in. As described in chapter 2 (section 2.3.3) Jini is a Java based service oriented 

distributed architecture. Through the definition of protocols for look up and discovery, Jini 

enables clients to find and invoke services in the local HAN. Jini takes a service-centric 

approach whereby services can be software or hardware, and can communicate with each 

other and facilitate the composition of complex applications from several atomic services. 

This section gives a description of the Jini architecture (section 4.3.4.1) followed by a 

presentation of the corresponding Jini service protocol plug-in for Krox system architecture 

(section 4.3.4.2). 

 

4.3.4.1. Jini architecture 

Jini architecture, presented in figure 14 includes Jini services and Jini clients. The 

architecture is based on service interfaces, service implementations and service proxies. A 

service interface defines the contract that the service supports. A service implementation 

implements this interface. A service proxy is a stub that can be downloaded to the client 

from the lookup service for interaction with the service. The advantage of this approach is 

the loose coupling between the client and the server, and that the client does not depend on 

the implementation of the service. Jini is Java based and requires devices to include a Java 

Virtual Machine (JVM).  

 

 

Figure 14 Jini Architecture 
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4.3.4.1.1. Service discovery 

The first step in Jini service discovery is finding a lookup service. A lookup service enables 

devices to register their services, and clients to locate services. As shown in figure 14 (step 

1), once a lookup service has been found, the service provider can use it to register the 

service, and a client can use it to search for services of interest by the service interface and 

additional characteristics, such as manufacturer, and a friendly name (step 2). At the time a 

service is registered, it can attach a set of attributes that can be used by the lookup service 

for matching against client queries. These attributes can be modified at a later time. The 

service interface is defined in terms of Java interfaces and there is no standardisation to date 

for classes of devices or services, therefore a device, e.g. printers from different vendor may 

have very similar yet different Jini service interfaces. When the service registers itself with 

the lookup service it can do so with a “lease”, indicating the time it is available for. The 

service can then renew or cancel the lease. The lookup service “leases” a proxy object to the 

client for a period of time, such that when it expires the client needs to renew the lease. 

Similarly when the device leaves the network the lease is automatically expired. For high 

availability, multiple lookup services may exists in the HAN, and the devices can register 

their services in more than one lookup service, to ensure their availability even if one lookup 

service becomes unavailable.  

 

4.3.4.1.2. Service invocation 

Once the client obtained a service proxy for a Jini device/service, it can invoke methods on 

this proxy. The proxy implementation communicates with the remote service 

implementation via a network protocol, which is abstracted from the service client. Jini does 

not dictate the specific protocol for interaction between the service proxy on the client side 

and service object on the server side. However, typically this involves Java Remote Method 

Invocation (RMI). The service developer can choose between a “thin” proxy that only 

communicates with the remote object or a “fat” proxy that implements some or even the 

whole business logic on behalf of the remote object.  

 

4.3.4.1.3. Jini security 

Security is an important aspect of Jini due to its extensive use of mobile code, which is 

downloaded from lookup services and potentially HTTP servers. Early versions of Jini 

supported various security mechanisms through Java security for controlling access to 
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resources. Using Jini (both in client and service) requires using the Java Security manager. 

The Java security manager uses a policy file that controls permission that enable the client 

or server to protect them in a hostile environment. The permission file is additive, therefore 

a client or server cannot exclude permission, but rather it needs to specify permission 

explicitly. Java security policy can restrict access to activities, such as connection to sockets. 

In addition, activities can be allowed based on the host from where the code is downloaded, 

and finally, access to activities can be associated with digital signatures. 

 

Jini 2.1 introduced a number of mechanisms for integrity, confidentiality, and 

authentication, in addition to the standard mechanisms described above. Integrity ensures 

that classes and instances were not modified on their way between the server and the client. 

Confidentiality ensures that unauthorised access to the data was not allowed. Authentication 

ensures that the data comes from whom you expect. These mechanisms are supported 

through the definition of constraints. Jini security defines a set of constrains that can be 

applied on the server or the client, and can be defined on a method level. This could be used 

such that when the client receives a notification from the lookup service on a new service 

discovered, it can use a custom proxy preparer such that enables using the service only if the 

client constraints are met. A client can require the proxy to support integrity by defining the 

integrity constraint. Another risk when using Jini is that code may be downloaded from an 

HTTP server. When a client discovered a service and downloaded the proxy from the 

lookup service, it in fact received a URL from where class files can be downloaded. In order 

to verify that the downloaded class actually corresponds to the version on the server, MD5 

hashing technique is used such that the client can verify that the jar file that was downloaded 

has the same hash signature as was given in the URL. In addition the client can require the 

proxy to be verified by a local trust verifier. For confidentiality the client can constrain the 

invocation to require encryption.   

 

4.3.4.2. Jini service protocol plug-in 

Jini fits very well into the design approach for extending services beyond the scope of a 

single HAN described in this thesis. In the Jini programming model the actual way a proxy 

service object interacts with the service instance implementation is abstracted from the 

client of the service (either human or machine). Therefore the client of the service is not 

aware of which underlying network protocol is used to interact with the actual service. 
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Following the Krox system architecture described earlier, the approach proposed by this 

thesis is to represent shared resources from remote HANs as virtual resources in the local 

HAN. A virtual resource that represents a remote Jini service interface must support all 

actions on this interface. For each Jini service that is shared with a remote HAN, a virtual 

service is automatically generated in the corresponding remote HAN. This virtual service 

can be discovered in its hosting HAN in an identical way to other Jini services with no 

further configuration or administration. Once discovered, actions can be invoked on it, such 

that each call is delegated to the “live” service in its hosting HAN. The Jini LNC is 

responsible for all interaction with local HAN’s Jini services including the discovery and 

invocation. The Jini VRM is responsible for representing services shared from remote 

HANs in the local HAN. The Krox communication subsystem is used for securely 

exchanging messages between the Jini LNC and Jini VRM.  

 

The Jini VRM is designed as an aggregator for all remote HANs’ Jini services. The Jini 

VRM caches information about remote services shared from other HANs and dynamically 

generates an implementation and a proxy (conforming to the Jini architecture) that 

correspond to the interfaces of the shared services. The generated proxy communicates 

locally with the instance implementation and relays the invocations request and response. 

The Jini VRM caches the service implementation and registers the proxy with the local 

HAN’s lookup services.  

 

The full details of the design for Jini service protocol plug-in for Krox system architecture 

are given in following sections. 

 

4.3.4.2.1. Service discovery 

The Jini LNC is responsible for discovering Jini services in the local HAN. This is done by 

first locating lookup services via a multicast message to a well-known multicast address. 

Once the Jini LNC finds lookup services, it subscribes for service updates (step 1 in figure 

15). In order to enumerate all types of services in the local HAN, the LNC does not specify 

a certain service type but instead listens to all types of services in the local HAN. When a 

local Jini service is added, the LNC is notified by the lookup service, which in turn updates 

its local repository with the added service proxy (steps 2-3 in figure 15). When a remote 

HAN changes its status to “available”, the LNC checks with the Capability Sharing 
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Manager which services should be shared with it, and in turn and sends a notification about 

these services to that HAN using the communication subsystem (steps 4-9 in figure 15). 

Similarly when a Jini service is added to the local HAN, the LNC checks with the 

Capability Sharing Manager with which remote HANs it should be shared, and 

consequently sends an announcement about the added service to each of these HANs. The 

service announcement contains only the service interface name and a service identifier. 

Unlike UPnP where the service description could be modified to reflect partial sharing of 

actions from a service, in Jini this is not possible. The Jini service “client” and the Jini 

service “server” must pre-share the Jini service Java interface - therefore it cannot be 

modified to reflect sharing of parts of the interface, at least not in the interface level. This 

does not mean however that home users must share all the methods of a Jini interface. It 

only means that all the methods of a Jini service interface are visible to a remote HAN with 

which is it shared. If an action is not shared with a remote HAN, when the remote HAN will 

attempt to execute the method, the execution will fail in the LNC due to insufficient 

privileges.  

 

 

Figure 15 Multi-HAN Jini Service Discovery 
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Once the Jini VRM is notified of an added Jini service, it is responsible for virtualizing the 

remote service by creating a local instance of the Jini service that forwards requests to the 

network hosting the “live” Jini service. In order to create a local service that will act as 

described above, the Jini VRM needs to register a proxy for the service implementation with 

the local lookup service. As explained above, a Jini service is a trio of service interface, 

service implementation, and a service proxy (steps 10-13 in figure 15).  

 

When a local Jini service becomes unavailable, the Jini LNC notifies the remote HANs with 

which the service is shared, and the corresponding VRM in these HANs cancels the lease 

for the virtual service that was registered with the lookup service in those HANs. 

 

When the sharing configuration is changed the Jini LNC is notified by the CSM and sends a 

corresponding update to the affected remote HANs where the Jini VRM needs to create or 

destruct relevant Jini service implementations and service proxies. 

 

Figure 16 Jini Service Plug-in Example 
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Figure 16 illustrates the discovery process of Jini across multiple HANs. HAN1 has two 

“live” Jini enabled devices, each with one service. Each service is a trio of a service 

interface, a service implementation (hosted by the device) and a service proxy. The service 

registers itself with a lookup service, which results in a service proxy being stored in the 

lookup service. HAN1’s Jini LNC locates the lookup service and then retrieves information 

about Jini services in the HAN and updates its repository with the service proxies for the 2 

services. HAN1 shares one service (service1) with HAN2. HAN2 runs one “live” Jini 

enabled device with one service. Similarly to HAN1 the service has a service interface, a 

service implementation and a service proxy. The service registers with the lookup service in 

HAN2 and as a result the lookup service repository is updated with the service proxy. When 

HAN2 comes online, the Jini LNC in HAN1 sends information about the HAN1’s shared 

service (service1). The information is received in the HAN2 VRM and results in the 

automatic dynamic generation of a virtual service implementation and a virtual service 

proxy in HAN2. Once the virtual service has been generated, the service implementation is 

kept in the VRM repository in HAN2, and the virtual proxy is registered with the local 

(HAN2) lookup service. At this point, HAN1 has 2 Jini services, all of them are local, and 

HAN2 has 2 services, one of them is local, and the other one is virtual, shared from HAN1.  

 

4.3.4.2.2. Service invocation 

Once the Jini VRM has registered a local virtual service proxy for the remote Jini service, 

client applications searching for services having the particular service interface will be able 

to find the virtual service in the lookup service in the same way as local services. Figure 17 

illustrates the interaction that takes place between the client application and the other parts 

of the system. Once an application in the local HAN discovers the virtual service, it 

downloads the service proxy and invokes methods from the service interface (steps 1-3 in 

figure 17). When a method is invoked, the virtual service proxy relays the request to the 

virtual service implementation that is hosted in the Jini VRM. The virtual service delegates 

the call using the communication subsystem to the network hosting the “live” Jini service 

(steps 4-6 in figure 17). When the Jini LNC in the remote HAN receives an invocation 

request, it resolves the local service proxy. Before the service is invoked the Jini LNC must 

verify that the remote HAN has sufficient permissions to execute this method by checking 

with the capability-sharing manager. If the requesting HAN (HAN1 in figure 17) is not 

allowed to call this method then an error is sent back. Otherwise the LNC invokes the 
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required method on the local “live” service proxy (steps 7-11 in figure 17). The local service 

proxy interacts with the actual “live” service implementation and a result is returned to the 

Jini LNC. The result is then delegated using the communication subsystem to the remote 

HAN with the result or error (steps 12-16 in figure 17). The Jini VRM (in HAN1) receives 

the result and passes it to the virtual service implementation, which returns the result or 

error if any to the virtual service proxy. Finally the virtual service proxy returns the result or 

error back to the client application (steps 17-19 in figure 17). 

 

4.3.4.2.3. Jini service protocol plug-in security guidelines 

While Jini service protocol can be considered secure with the mechanisms described in 

section 4.3.4.1.3, these mechanisms must be used in order to prevent a hostile or 

misbehaving entity in a Jini environment to create an attack that would spread beyond the 

scope of a single HAN.  

 

The Jini LNC interacts with the lookup service and service proxies in the local HAN. Since 

the LNC runs a proxy to the lookup service as part of its code, it should accept proxies only 

if they (the corresponding registrar) are signed by a trusted authority. The same rule applies 

 

Figure 17 Multi-HAN Jini Service Invocation 
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to the Jini VRM, which interacts with the lookup service in its HAN in order to register 

virtual services. The trust is configured in the security configuration files of the system.  

 

When the Jini LNC downloads a proxy to a service it must do so only if it is signed by a 

trusted authority. In addition, it can use a local verifier to verify its trust in the service. 

Finally the LNC should use integrity and confidentiality constraints when interacting with 

local services to ensure that data is not tampered with on the way to and from the service, 

and that communication is encrypted. 

 

4.3.4.3. Summary 

The above sections describe the detailed design for a service protocol plug-in that can be 

used with the system architecture for an extension of Jini to multi-HAN through service 

virtualisation, using the secure communication subsystem. This plug-in design supports 

seamless integration through resource virtualisation, such that no HAN service or network 

protocols needed to be modified. The extension for supporting sharing of Jini services 

across multiple HAN networks does not require modifications to Jini architecture or to 

applications consuming Jini services. The design for multi-HAN service discovery and 

invocation enables existing and future Jini applications to seamlessly discover and invoke 

remote services in a similar fashion to local services. Authorisation is achieved by using the 

capability-sharing manager.  

 

While the presented approach for extending Jini service protocol can be useful in many 

cases, it may not support all types of Jini services. Jini services are not limited in their 

parameter types and return values and can use any Java type. While for parameter types 

there is no restriction, as long as the object type is serializable, Jini service return type can 

be a networked object that communicates with the physical device. For example, a printer 

service PrintService24 returns a DocPrintRequest25 where the doc for printing needs be set. 

Therefore the interaction of a client with the printer would require two steps: 

 

                                                        

24 http://www.jini.org/files/specs/print-api/net/jini/print/service/PrintService.html 

25 http://www.jini.org/files/specs/print-api/net/jini/print/job/DocPrintRequest.html 
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// prepare the document for printing 

Doc docToPrint=new InputStreamDoc(…); 

// locate the Jini printer service 

PrinterService printer=…; 

// create a print request job (step 1) 

DocPrintRequest request=printer.createDocPrintRequest(); 

// print the document (step 2) 

request.setDoc(docToPrint); 

 

The object that is returned to the caller of printer service in step 1, communicates with the 

physical printer for setting the document, when the appropriate method is invoked in step 2. 

 

The Jini service protocol plug-in can be extended to support such scenarios with two 

mechanisms. If the return type of a Jini service is an immutable object, therefore cannot be 

modified after its construction, there is no need to modify the plug-in, and as long as the 

object is serializable, there is no limitation. To support scenarios such as the printing service 

described above, the Java dynamic proxy technique can be used. Instead of returning the 

actual object from the service, the virtual service implementation should return an interface 

implementation dynamically generated using dynamic proxy, such that each call to the 

interface is delegated over the communication subsystem to the remote HAN where it is 

invoked on the actual object that was returned from the method invocation on the physical 

device. For example, if a Jini PrintService returned a DocPrintRequest object when creating 

a print job, instead of sending the actual DocPrintRequest Object between the remote 

HANs, the object should remain in the HAN hosting the physical printer (in the LNC), and a 

virtual DocPrintRequest object would be automatically created in the remote HAN’s VRM. 

When methods are invoked on the DocPrintRequest object, they are tunnelled using the 

communication subsystem to the remote HAN hosting the physical printer. With this 

approach the Jini plug-in can support a return type for a service as long as it is serializable, 

and either immutable or implements an interface that can be replaced with a dynamic proxy 

implementation.  
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Section 5.6 in the next chapter presents the details of a prototype implementation of the Jini 

service protocol plug-in for Krox system architecture.  

 

4.3.5. Service composition subsystem 

Service composition for HAN services is needed to allow construction of complex rich 

featured functionality from multiple atomic home services. While services can be composed 

in a service protocol specific manner, e.g. using a control point application for constructing 

UPnP applications, or a Java program for constructing a Jini application, these approaches 

are not reusable themselves as services, i.e. a control point application is not a UPnP device 

or service, therefore it cannot be discovered or invoked. Similarly a Java application using 

Jini services for an application is not rendered as a Jini service. In addition, the 

heterogeneity of devices and services in the HAN and the lack of interoperability between 

different service protocols prevent services of different protocols from being composed. In 

order to facilitate the composition of services in the HAN, an abstraction layer is required 

between the low-level device/service technology, and the service composition layer. This 

abstraction layer should hide the differences in format, protocol, and network related details 

from the consumer and expose the device services in a common standard way.  

 

The design for the service composition subsystem is based on SOAP web services as a 

service representation for HAN services and a BPEL service orchestration engine for 

composing and executing composite services. A major advantage of the web-based 

approach, in addition to the standard and uniform access to various types of services, is that 

it enables the composability of such services using existing service composition standards, 

which is an important asset for HAN applications. Using BPEL has the advantage that the 

composite service is by itself a reusable web service, which can enable its further 

composition. Another advantage is that it can enable the composition of external web 

services with HAN services. Finally based on the resource virtualisation in Krox system 

architecture, composite services can enable orchestration of local and remote HAN services. 

 

The proposed design for a HAN service composition system contains 3 main components: 

1. Orchestration engine – E.g. a standard BPEL engine hosting the executable 

composite services 
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2. Web services – Automatically generated services that correspond to the home 

services discovered in local HAN. With the virtualisation framework, such services 

can be in fact either local or virtual services available in the local HAN 

3. Service Protocol plug-in – A plug-in component is needed for mediating between 

the service technology, e.g. UPnP, and the service representation. Following the 

plug-in architecture described earlier in this chapter, the plug-in for a service 

protocol includes support for mapping between the service protocol and web 

services 

 

In Krox system design BPEL is used for composing home services from various sources, 

local HAN services, remote HAN services, and external web services. Composite services 

are defined in BPEL using dynamic and automatically generated web service proxies that 

represent HAN services (either physical or virtual) in the local HAN. As discussed in 

section 3.2.3, using BPEL for HAN service composition was suggested in literature in [17, 

52, 106]. Redondo et al. [106] present a BPEL based dynamic service composition with 

OSGi. It assumes a corresponding bundle exists for mapping the service protocol to OSGi 

and is focused on service composition itself, using BPEL to express the orchestration of 

OSGi services. The architecture described in [106] does not support service orchestration of 

remote services with local ones. Bohn et al. [17] and Hackmann et al. [52] suggest service 

protocol specific extension of BPEL, but unlike in Krox system design, this approach is 

limited to local services of a single service protocol.  

 

Web services form a generic service representation and need to be mapped from the original 

service protocol. For example capabilities offered by a UPnP-enabled device discovered in 

the HAN, would be exposed as a set of web services corresponding to the services supported 

by this device. These services can then be composed with other services including UPnP 

services, Jini services, external web services, and other composite services.  

 

In order to support the mapping of various service protocols to web services, the service 

protocol plug-ins discussed earlier in this chapter are extended with additional support for 

web service generation and mapping. The advantage of this approach is that it encapsulates 

all the details of a certain service protocol under individual pluggable modules. Another 

advantage is that the transformation functionality can leverage other capabilities already 

existing in the service protocol plug-in as part of the service virtualisation, e.g. service 
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discovery. By creating an interoperable proxy web service interface, different HAN service 

protocols can be used and composed in a uniform manner ignoring the underlying 

differences in protocol, data structure, platform and network. 

 

Once a service is discovered by the LNC/VRM, this extension is invoked and generates 

dynamically and automatically a corresponding technology neutral SOAP web service. The 

web service is deployed into a local web server, which is bundled with the Krox system.  

 

4.3.5.1. UPnP to web service mapping  

In order to support the mapping of UPnP services to web services, the LNC and the VRM 

are extended. Once a device/service is discovered (a local device/service in the LNC, a 

remote device/service in the VRM), its XML description is fetched. By parsing and 

inspecting the XML description of the service, a corresponding web service is generated 

such that for each UPnP service, a single web service is created, and each UPnP action 

corresponds to a web service operation. The parameters of the operation match the 

parameters of the UPnP action. Because the invocation of the web service is performed 

using SOAP, which is text-based, the web service parameters can be constrained to Strings. 

In cases where there is an error in the service invocation, the web service throws an 

exception. In case of success, the web service returns the SOAP response as received from 

the service. The similarity between the way web service interfaces and UPnP services are 

described enables the simple mapping, and the parsable format of a UPnP service 

description enabled the automation of the web service generation.  

  

Once a proxy web service has been generated it is built and packaged as a web application 

and deployed to a local web server. As soon as the device or service disappears from the 

network, its corresponding web service proxies are immediately undeployed from the web 

server and removed. When an action is invoked through the web service, the corresponding 

device action is called and the result or error code is returned to the caller. 

 

4.3.5.2. Jini to web service mapping  

Similarly to the extension of UPnP service protocol plug-in, the mapping from a Jini service 

to a corresponding web service is introduced as an extension to the Jini service protocol 
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plug-in. Whenever a Jini service is discovered, either locally by the Jini LNC or for a remote 

service - in the Jini VRM, the transformation from the Jini service interface to a web service 

is performed. Once a service interface has been discovered, it is inspected and a web service 

is automatically generated for it. Each Jini service interface corresponds to a single web 

service such that each method in the Jini service corresponds to a single operation on the 

web service. The signature of each web service method corresponds to a single method in 

the Jini service interface. The automatic generation of a web service from a Jini service 

interface is made possible by the parsable Java interface of a Jini service using Java 

reflection API.   

 

The generated web service implementation interacts with the Jini service by locating the 

service by its service identifier in the lookup service. Once the web service has been built 

and packaged, it is also deployed to the local web server. When the web service is invoked, 

it communicates with the Jini service and returns the result/exception as returned from the 

Jini service execution. With the integration of service protocol to web service mapping to 

the plug-in’s discovery mechanism, as soon as a new services are added, a corresponding 

web service is generated and deployed. As soon as the service is no longer available in the 

HAN, its corresponding web service is undeployed.  

 

4.3.5.3. Composing home services  

After the web service proxy for UPnP and Jini services has been deployed to the web server, 

a composite service can then be defined in BPEL involving the web service proxies, and 

may include other arbitrary web services, either internal or external. Such a composite 

service can be deployed in a BPEL runtime engine and be executed in the home 

environment, either as part of a client application, or as part of another composite service. 

The advantage of a web service proxy based approach is that it enables seamless 

composition of web-based services with UPnP and Jini services. Another important 

advantage of this design is that remote and local services (both represented in the local HAN 

as web services) can be seamlessly composed.  

 

Composition can be made either by the home user or by a service provider and only 

instrumented. For example, a service provider may run a process in the home network that 

discovers home services and based on a knowledge base of template composition can 
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identify potential composite services that can be offered to the home user. When the user 

has all the prerequisites for a given composite service, the composite service can be 

deployed. It is not the purpose of this thesis to define a methodology for user driven service 

composition but only to establish a framework that can enable this process.  

 

4.3.5.4. Composite services as UPnP services  

BPEL composite services are accessible to local HAN clients in the form of SOAP web 

services. A client can invoke them directly with SOAP requests. While the previous sections 

discussed a mechanism to map a service protocol (e.g. UPnP) to a generic web service, in 

this section the reverse process is presented for composite services, i.e. by adding a UPnP 

interface to a composite service, this enables seamless sharing of BPEL composite services 

with remote HANs. There may be cases where composition could be a mechanism to share a 

function, rather than share the devices and services implementing this function. A useful 

side effect of this approach is that these UPnP services can be discovered by UPnP clients in 

the local HAN and interact with other UPnP services. The idea of representing workflows as 

UPnP devices was suggested by Bobek et al. in [16]. However the design suggested here is 

different in that composite services are available as independent UPnP devices rather than as 

embedded devices as part of the workflow engine device as suggested in [16]. In Krox 

system design the purpose is not to enable management through UPnP of the workflow 

engine, but rather to enable sharing of composite services. Since a sharing framework for 

UPnP has already been suggested as part of the design, the mapping from BPEL to UPnP 

piggybacks existing functionality and seamlessly enables sharing of composite services with 

remote HANs. This means once the BPEL composite service has been mapped to a UPnP 

device/service and announced in the local HAN, the UPnP LNC will discover it and share it 

as a UPnP device if required, with remote HANs. 
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In order to support sharing of composite services, a transformation between a BPEL service 

and a corresponding UPnP device/service is required. When a BPEL service is deployed to 

the BPEL engine, a corresponding UPnP device is automatically generated and can be 

discovered and accessed through UPnP. By the parsing of the WSDL of the composite 

service, the corresponding service name and actions are taken and used for generating the 

corresponding UPnP device, having services corresponding to the BPEL service operations. 

The process for generating a UPnP device from a BPEL service is depicted in figure 18. 

When a control point invokes the UPnP service, its implementation invokes the composite 

service by sending a SOAP request to the process URL.  

 

4.3.5.5. Summary  

The above sections described the design for the Krox service composition subsystem. It is 

suggested that services can be composed via combining BPEL for expressing and executing 

composite services with a plug-in approach to mapping between service protocol and web 

services. The design demonstrates how the plug-in approach integrates the discovery 

modules in both the VRM and the LNC and the functionality for generating automatically a 

corresponding web service for a UPnP or Jini service based on inspection of the parsable 

service interface. Once web services are available and deployed in the local HAN, service 

composition with BPEL can take place, such that it can compose same technology services, 

as well as cross technology services, and external web services. Using BPEL for service 

composition supports the requirement for further composability of the composite service. 

The final requirement from the service composition subsystem is to enable sharing of 

composite services. In order to support this requirement, a mapping between BPEL and 

UPnP has been defined such that when a composite service is deployed to the BPEL engine, 

a corresponding UPnP service is automatically generated and advertised in the local HAN. 

 

Figure 18 Generating a UPnP Device Proxy for a BPEL Service 
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If the sharing policy allows it, the service will be shared.   

 

4.3.6. Security considerations 

The above sections describe the Krox system design. The following sections provide more 

details about the security mechanisms used as part of the Krox architecture and design. 

 

4.3.6.1. Authentication 

Authentication is the first step in the system bootstrap. The system must authenticate itself 

against the IM&P server so it can communicate with other instances of Krox system in 

remote HANs with which sharing has been agreed (i.e. they are in the local HAN’s Krox 

system buddy roster). With XMPP, authentication is made using Simple Authentication and 

Security Layer (SASL) [80] as defined in RFC 3920 [114]. SASL does not define a specific 

mechanism and XMPP supports all of the mechanisms defined in RFC 4422 [80], however 

XMPP recommendation is to use the EXTERNAL mechanism with end user certificates for 

client to server authentication.  

 

4.3.6.2. Confidentiality 

The inter-HAN traffic must be encrypted to avoid information disclosure and prevent 

eavesdropping. With XMPP, as soon as the client (Krox communication subsystem), 

authenticated and is connected to the XMPP server, all communication from the client to the 

server is encrypted using Transport Layer Security (TLS) [109]. 

 

4.3.6.3. Authorisation 

The Capability Sharing Manager described in this chapter is responsible for management of 

access control. Before a device/service is shared with remote HANs, the CSM checks the 

sharing configuration and permits or denies sharing with the remote HAN. Similarly when a 

remote HAN requests an action to be executed, permission is checked with the CSM before 

action is executed. The CSM can further filter content from the response sent back to a 

requester based on the fine-grained sharing configuration.  
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4.3.6.4. Rate limiting 

In order to avoid situations of one instance of Krox system flooding other instances in 

remote HANs with messages due to a misbehaving service protocol plug-in, or a software 

bug, or an attack, the communication subsystem is required to support rate limiting. Rate 

limiting should constrain the number of messages a Krox system can send/receive in a given 

amount of time. If more messages are sent or received they will be dropped. This could be 

also implemented as a plug-in for the IM&P server, such that the limit will be per a client 

connection, or between two endpoints. The advantage of this approach is that it does not 

affect the performance of the Krox system in the local HAN.  

 

4.3.6.5. Miscellaneous 

XMPP defines a set of best practices and recommendations that should be applied by XMPP 

implementations to defend against multiple types of denial of service attacks however these 

guidelines are not mandatory [142].  

 

4.4. Conclusions 

This chapter presented the Krox integrated system architecture and a design for addressing 

the requirements for intra-HAN and inter-HAN service interoperability as they were 

presented in the previous chapter (section 3.4). Krox is a service-oriented architecture that 

enables HAN services from different multiple HAN service protocols to be composed and 

shared with remote HANs. Krox system architecture defines a plug-in framework that 

enables plug-ins to support various service oriented HAN service protocols via an extensible 

event model.  

 

There are a number of restrictions that need to be considered in regard to the Krox system 

architecture presented in this chapter: 

1) While the plug-in framework is flexible, it is suitable for a specific subset of HAN 

service protocols. The Krox system architecture can support HAN service protocols 

that define a service interface in a parsable format. The Krox system architecture 

does not require a specific service interface format, however the format must 

conform to some standard, e.g. an XML schema, Java interface. A parsable service 
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interface enables the Krox system architecture, or more specifically, a service 

protocol plug-in, to automatically virtualise remote resources in the local HAN by 

using the service interface for virtualisation. In addition, the automatic mapping 

from a service protocol specific interface to web service relies on being able to 

automatically parse and inspect the service interface. When considering this 

characteristic against the HAN service oriented architectures we can identify Krox 

system architecture as being suitable for UPnP, DPWS, Jini, HAVi, and OSGi, and 

not suitable for ZeroConf, and SLP due to their lack of parsable service interface.   

2) The design presented for the Jini service plug-in does not cover the full range of 

potential Jini services because it only supports simple return type, however section 

4.3.4.3 described how this could be extended to support any Java type that is 

serializable and either immutable or implements an interface. 

3) While Krox system architecture defines a mechanism for intra-HAN service 

interoperability, and service composition, it does not address the data type 

inconsistencies and incompatibility between service protocols (the semantic 

interoperability problem).  

4) The support for web service mapping in Jini service protocol plug-in design is 

limited to simple serializable immutable data types. If the return type of a service 

interface method is mutable (as discussed in section 4.3.4.3) the automatic mapping 

to web service is insufficient.  

5) The Krox system architecture does not support more than a single instance of Krox 

system in the same HAN, e.g. in the case of multiple Internet connection for the 

same household. A Krox system identity represents a HAN rather than a human 

user, therefore it is not useful for managing different parts of the same HAN by 

multiple home users. 

 

The next section reiterates the requirements and how they are addressed by the Krox system 

architecture and the design for the service plug-ins for UPnP and Jini.  

 

4.4.1. Requirements  

4.4.1.1.  Intra-HAN service interoperability  

• REQ #1 – Cross service protocol service composition – Krox system architecture 

supports service composition of local HAN services through service orchestration of 
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web services, and an automatic mapping between a service protocol and web service. As 

discussed above, such a mapping can exist when the service protocol supports a service 

interface with a parsable format. By mapping the service interface to web services, 

service composition is enabled for services from different service protocols.  

• REQ #2 – Share composite services – Through the automatic mapping between BPEL 

composite service description (WSDL) and UPnP service description, the Krox system 

can dynamically generate UPnP devices that correspond to composite services deployed 

in the local HAN. With a UPnP service protocol plug-in these dynamic UPnP devices 

can be seamlessly shared similarly to “live” UPnP devices.  

• REQ #3 – Cross HAN service composition – The service protocol plug-in maps both 

local HAN services (in the LNC) and remote HAN services (in the VRM) to web 

services. Therefore, while service composition only refers to local HAN web services, 

some of them can in fact be virtual services representing remote services in the local 

HAN.  

 

4.4.1.2.  Inter-HAN service interoperability  

4.4.1.2.1. Seamless integration 

• REQ #4 – Enable sharing of HAN services from the local HAN with remote HANs – 

Sharing of HAN services in Krox system architecture is supported through the 

implementation of service protocol specific plug-in that is required to implement service 

virtualisation for the HAN service protocol. In order to allow remote HANs to 

communicate and identify each other, the Krox system architecture has a 

communication subsystem that enables secure message exchange between remote 

HANs. Sharing relationships between remote HANs are established by adding a remote 

HAN to the buddy roster of the local HAN’s Krox system instance.  

• REQ #5 – Automatic discovery of resources from remote HANs shared with the local 

HAN – This is the heart of seamless integration, which is supported in Krox system 

architecture through the use of the automatic service virtualisation techniques. When 

local HAN services are discovered in the local HAN, remote HANs with which the 

service is shared are informed using the communication subsystem about the added 

services and the service is automatically introduced in the remote HAN as a virtual 

service. The service virtualisation (as demonstrated with UPnP and Jini service protocol 
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plug-ins) announces a device/service that supports the corresponding service protocol, 

and therefore can be automatically discovered by service protocol clients in that HAN.  

• REQ #6 – There must be no restriction that prevents sharing the same devices and 

resources with multiple remote HANs – The Krox architecture does not place limitation 

on sharing HAN devices and services with multiple HAN. It should be noted that at the 

same time Krox system architecture does not restrict or coordinate simultaneous access 

to the device by design. 

• REQ #7 – Interaction of applications with remote devices must be identical to the 

interaction with local of the same service protocol – This is supported in the Krox 

system architecture by the automatic resource virtualisation of service protocol plug-ins, 

as demonstrated with UPnP and Jini. The interaction with remote devices and services, 

facilitated by the service protocol plug-in’s VRM is identical to the interaction with a 

local device/service of the same service protocol.  

• REQ #8 – The system must not require modification to service protocols and must 

support plug-and-play – The Krox system architecture and the service plug-ins that 

were designed for UPnP and Jini do not require modifications to be made to the service 

protocols. When the Krox system is deployed, based on its installed service protocol 

plug-ins it immediately starts to discover devices and services and share them based on 

the defined sharing configuration.  

• REQ #9 – Independence of access network technology – the Krox system architecture 

and design does not require specific access connectivity. Only a single Internet 

connection per HAN is supported.  

 

4.4.1.2.2. Private networks and firewalls 

• REQ #10 - The system must be able to discover and share devices with networks that 

are using NAT even in the existence of devices with identical IP addresses in multiple 

HANs – In Krox system architecture and design, private addresses are not used beyond 

the scope of the local HAN. When informing remote HANs on local devices their IP 

address is not sent. This is demonstrated with the design for the UPnP service protocol 

plug-in such that the location of the device in the local HAN is not sent to the remote 

HAN, and rather the VRM assigns the device a local URL in its network. This approach 

can be adapted for additional service protocols. Since IP addresses are not sent between 

HANs, the existence of the same private IP addresses in multiple HANs is not 

problematic. Another mechanism is required for the UPnP service protocol plug-in to 
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support out-of-band traffic. Section 4.3.3.2.5 presented a possible solution to this 

problem. 

• REQ #11 – The system must be able to communicate with remote HANs behind firewalls 

– All service protocol traffic in Krox system architecture is sent using the 

communication subsystem. With XMPP based communication subsystem, Krox system 

requires port 5222 to be open (XMPP client to server communication port), however 

this is a standard instant messaging port (defined in RFC 3920). No additional ports are 

required for Krox system communication between remote HANs. 

 

4.4.1.2.3. Security 

• REQ #12 – All communication with remote HANs must be authenticated – All 

messaging between Krox system instances is only made through the communication 

subsystem, which means it is made after authentication has succeeded.  

• REQ #13 – Access control – Sharing must not be automatic and must enable home 

users to control which resources are shared with which remote HANs – In the Krox 

system architecture access control is enforced by the Capability Sharing Manager 

through the interaction with the service protocol plug-ins. Given the home user’s 

configuration of which resources should be shared with which remote HAN, as 

demonstrated in the design of the service protocol plug-ins for UPnP and Jini, the CSM 

is consulted before resources are shared, as well as before actions are invoked on local 

resources on behalf of remote HANs to prevent unauthorised access. While the Krox 

system does not define sharing policies, it is designed to enable enforcing fine-grained 

access control to device/service/action/content level as illustrated in the design for 

service protocol plug-ins. 

• REQ #14 – Confidentiality - all traffic between remote HANs must be encrypted – In 

Krox system architecture the communication subsystem guarantees that all data 

exchange between remote HANs is encrypted. With XMPP as the underlying IM&P 

system, this is support at the transport layer with TLS.  

• REQ #15 – Security vulnerability – some service protocols have inherent security 

vulnerabilities, in a multi-HAN setting, such vulnerabilities must be confined to a single 

HAN. While it follows from supporting a multi-HAN system that vulnerabilities for the 

HAN increase, it must be shown how Krox system defends against such threats and 

vulnerabilities. In order to analyse the security threats and define methods for defending 
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against them both at the system level and in the service protocol plug-in level, a security 

analysis is given in section 6.4.  

 

4.4.1.2.4. Performance 

A separate performance evaluation will be performed to demonstrate that Krox system 

satisfies the performance requirements (REQ #16-REQ #19) using a prototype 

implementation (see sections 6.2-6.3).  

 

4.4.1.2.5. Extensibility 

• REQ #20 – Extensibility to additional HAN service protocols – One of the key 

characteristics of the Krox system architecture is its extensibility through the plug-in 

based architecture and the plug-in framework. The design for Krox identified the 

characteristics of HAN service protocols that can be supported in the Krox system 

architecture, and the plug-in framework provides the structure for such support 

complemented by the communication subsystem and the capability management. 

 

4.4.1.2.6. Manageability 

• REQ #21 – Dynamic relation management with remote HANs – through the use of 

IM&P and more specifically XMPP, agreement to share local HAN resources with 

remote HANs is reduced to adding the Krox system identifier of the remote HAN (i.e. 

its IM&P identifier) to the buddy roster of the Krox system in the local HAN. Remote 

HANs can be added, deleted, and blocked, following IM&P user management patterns.  

• REQ #22 – Pause/resume sharing with remote HANs – through the use of IM&P and 

more specifically XMPP in Krox system design, the home user can change the status of 

the otherwise “always on” Krox system to “unavailable” which results in termination of 

all virtual resources in remote HANs that correspond to the local HAN’s resources. 

• REQ #23 – The system must not require manual configuration of the home gateway and 

its administration must be appropriate for non-technical users  – Krox system 

architecture does not require any manual configuration to the home gateway. 

Configuration of the Krox system architecture is restricted to adding and removing 

remote HANs, which is equivalent to managing a buddy roster for IM applications and 
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controlling the sharing status of the system, which is equivalent to the connection status 

of an IM system.  

 

4.4.2. Summary 

The previous section described how Krox system architecture and design address the system 

requirements as they were defined in section 3.4. Some of the requirements (REQ #15-19) 

still need to be evaluated with a prototype implementation. 

 

This chapter presented the Krox integrated plug-in based architecture with a plug-in 

framework and an extensible event model that supports the design of multiple HAN service 

protocol plug-ins for intra-HAN and inter-HAN service interoperability. The design 

approach was demonstrated using multiple service protocols, UPnP and Jini. With resource 

virtualisation techniques, leveraging an extensible event model, resources from remote 

HANs are made available to the local HAN as virtual resources enabling seamless 

integration with client applications in the local HAN. By mapping from a service protocol 

service interface to web services, and service orchestration, Krox system architecture 

supports intra-HAN service interoperability and service composition. Krox system 

architecture builds on the IM&P user metaphor for defining the relationships between 

remote HANs that agree to share resources. IM&P also provides a secure and scalable 

communication subsystem for exchanging messages between Krox system instances in 

remote HANs. Finally the capability-sharing manager provides an infrastructure for 

enforcing fine-grained sharing policies through interaction with the service protocol plug-

ins.  

 

An important aspect of the Krox system architecture is its modularity through the loose 

coupling between its components. The clients of the communication subsystem are 

abstracted from the fact that it is based on IM&P system, such that it can be replaced with 

an alternative system that provides the necessary features of messaging and status change 

notifications. The modularity of the service composition subsystem enables changing the 

format of the generated services without changing the system, while also supporting 

evolution and addition of service protocol plug-in releases. Similarly the BPEL service 

orchestration engine can be replaced with an alternative service orchestration approach.  
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The next chapter presents a prototype implementation of Krox system architecture with 

service protocol plug-ins for UPnP and Jini, and service composition supported by web 

services and BPEL.  
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Chapter 5  
IMPLEMENTATION 

The previous chapter presented the Krox high-level architecture and a system design for 

integrated intra-HAN and inter-HAN service interoperability supporting the requirements 

presented earlier in this thesis. This chapter presents a prototype implementation of the Krox 

system architecture and design with service protocol plug-in implementations for UPnP and 

Jini. The system implementation has the following objectives: 

 

• Demonstrates and validate the utility of the system design for solving the problem 

addressed by this thesis. 

• Provide a performance measurement instrument. 

• Provide a grounding for a security analysis. 

 

The following sections describe the details of the system prototype implementation as well 

as the service protocol plug-ins and client application prototype.  
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5.1. Prototype system 

5.1.1. Technology selection 

• Programming language – the system prototype is implemented with core Java using 

JDK626. Java provides the desired platform independence and enables deployment on 

multiple operating systems.  

• IM&P server – the system prototype uses the open source OpenFire XMPP server 

version 3.6.427. OpenFire was chosen because of its simplicity for install and 

administration and its well-established developers community.  

• IM&P client – the system prototype uses the open source Smack SDK version 3.1.028 

for the implementation of client-side XMPP application. Smack provides an easy to use 

Java API for interaction with the XMPP server.  

• Orchestration engine – the system prototype uses Apache ODE 1.3.529 for executing 

service orchestrations. The advantage of Apache ODE is that is an open source BPEL 

implementation, is lightweight and extensible.  

• Application server – The system prototype uses Apache Tomcat version 6.0.1830, which 

is a lightweight servlet container, both for hosting the ODE orchestration engine, as well 

as the automatically generated web services.  

• UPnP SDK – the system prototype uses CyberLink Java version 2.031 as an SDK for the 

interaction with UPnP devices and services. CyberLink is a lightweight library that 

provides tools infrastructure for interaction with UPnP networks.  

• Jini – Jini service protocol plug-in was implemented using Jini 2.132.  

 

                                                        

26 http://www.oracle.com/technetwork/java/javase/downloads/index.html 

27 http://www.igniterealtime.org/downloads/index.jsp 
28 http://www.igniterealtime.org/downloads/index.jsp 

29 http://ode.apache.org/getting-ode.html 

30 http://tomcat.apache.org/ 

31 http://sourceforge.net/projects/cgupnpjava/files/clinkjava/ 

32 http://www.jini.org/wiki/Jini_Starter_Kit_2.1_-_Java 
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5.1.2. Implementation components 

The main components of the system implementation (depicted in figure 19) are described in 

the following sections: 

1) MessagingPresenceManager – implements the communication subsystem, 

responsible for the messaging and presence infrastructure (section 5.2) 

2) CapabilitySharingManager – implements the capability sharing management for 

checking access control for local resources (section 5.3) 

3) KroxGateway – the main class of the implementation, responsible for instantiating 

the MessagingPresenceManager and the PluginManager (section 5.4) 

4) PluginManager – responsible for management of service protocol plug-ins – 

loading, unloading, and register the plug-ins with the MessagingPresenceManager 

(section 5.4) 

5) ILocalNetworkController – an interface definition for an LNC, must be 

implemented by service protocol plug-in (section 5.4.1) 

6) IVirtualResourceManager – an interface definition for a VRM, must be 

implemented by service protocol plug-in (section 5.4.2) 

7) UPnPLocalNetworkController – UPnP service protocol plug-in implementation for 

LNC (implements the ILocalNetworkController interface)  (section 5.5) 

8) UpnPVirtualResourceManager – UPnP service protocol plug-in implementation for 

VRM (implements the IVirtualResourceManager interface) (section 5.5) 

9) JiniLocalNetworkController – Jini service protocol plug-in implementation for LNC 

(implements the ILocalNetworkController interface) (section 5.6) 
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10) JiniVirtualResourceManager – Jini service protocol plug-in implementation for 

VRM (implements the IVirtualResourceManager interface) (section 5.6) 

 

5.2. Communication subsystem 

The communication subsystem is encapsulated in the MessagingPresenceManager object, 

providing messaging and presence services to other components of the system, specifically 

to plug-ins. It is important to note that while the MessagingPresenceManager relies on 

IM&P for exchanging messages with Krox system instances in remote HANs, it abstracts 

the use of IM&P technology from the users of its API, therefore the interface it provides to 

its users is implementation agnostic. The implementation could be changed without 

affecting the users of the communication subsystem. The users of the communication 

subsystem API, e.g. plug-in components can send and receive messages using the 

MessagingPresenceManager, and in addition they are notified on changes in the list of 

HANs with which they need to communicate and the status (presence) of these HANs.  

 

The MessagingPresenceManager (figure 20) implements several interfaces from the Smack 

IM&P client library in order to provide messaging and presence capabilities: 

1) RosterListener – Once authenticated, the MessagingPresenceManager subscribes 

 

Figure 19 Krox System Prototype UML Class Diagram 
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itself as a listener for changes in the buddy roster. This is important for being 

notified when buddies are added or removed from the buddy list, which correspond 

to remote HANs with which sharing should be initiated or terminated. When 

buddies are added or removed from the list, the Capability Sharing Manager must 

be updated such that its model of remote HANs with which sharing is allowed or 

disallowed is updated. The RosterListener also allows the 

MessagingPresenceManager to respond to presence changes for members of the 

buddy list. The MessagingPresenceManager handles the cases where buddies 

change the state to “available” and when a buddies change their state from 

“available” to anything else.  

2) PacketListener – The MessagingPresenceManager registers itself with the XMPP 

server as a packet listener, which means it intercepts received messages. The 

handling of messages is explained below.  

 

 

Figure 20 Communication Subsystem Implementation 
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Krox system instances have a unique identifier that is used for message exchange between 

them. For simplicity, this identifier reuses the communication subsystem identifier, which 

corresponds to a Krox system instance, however this is opaque to users of the API (i.e. 

service protocol plug-ins) that use this identifier for sending messages to system instances in 

remote HANs. The communication system uses this identifier to route messages to the 

correct system instance in a specific HAN.  

 

5.2.1. Messaging and presence 

The core functionality of the MessagingPresenceManager is to enable sending messages to 

the Krox system in remote HANs and dispatching and processing messages received from 

Krox system instances in remote HANs. Another functionality provided by the 

MessagingPresenceManager is access to the buddy list (the list of remote HANs with which 

 

Figure 21 Krox Communication Subsystem Interaction 
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services/devices can be shared) which includes up to date presence status of its members. 

This is needed for propagating discovery announcement to remote HANs with which 

devices/services are shared. The sendMessage() method takes several parameters: the 

address of the destination, the type of the message, and the body of the message. The 

MessagingPresenceManager concatenates the type as a prefix to the body and sends the 

messages to the destination. Message dispatching in the destination is based on maintaining 

a mapping of supported message types against which component needs to be called for 

processing the message. When the system loads a plug-in, the plug-in’s supported message 

types are registered with the MessagingPresenceManager along with the interface that needs 

to process them. In addition the plug-in components can register pre/post processors that 

will be called by the MessagingPresenceManager before an incoming message is processed 

by the relevant component, or before a message is send to a remote HAN. A plug-in’s 

interaction with the MessagingPresenceManager is depicted in figure 21.  

 

For performance purposes the actual processing of the message (other than message 

dispatching) is performed in another thread, rather than the message dispatching thread. For 

this purpose the MessagingPresenceManager has a thread pool and the processing of a 

messages is made by wrapping the call to the processing method in a runnable task wrapper 

and handing it over to the thread pool for execution. This enables the 

MessagingPresenceManager to offer full concurrency in handling incoming messages. 

Incoming and outgoing messages are also handled in separate threads. At all times there is 

only a single instance of the MessagingPresenceManager in the system. All messages 

exchanged between the authenticated Krox system instances in remote HANs are encrypted, 

which is handled by the underlying XMPP framework.  

 

5.3. Capability sharing manager 

As mentioned in the previous chapter, fine-grained modelling of resources and the actual 

definition of sharing policies is out of the scope of this thesis. However in order to 

demonstrate the interaction between the service protocol plug-in and the 

CapabilitySharingManager, a default stub was implemented defining the contract between 

the plug-in implementation and the CapabilitySharingManager. The interface and 

implementation described in figure 22 as a UML class diagram, enables updates and query 
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the managed resource model. The CapabilitySharingManager is expected to have a 

persistent storage such that when it is started it loads the information about sharing policies 

and remote HANs with which sharing has been configured. The CapabilitySharingManager 

interface enables the communication subsystem to update the model when sharing with 

remote HANs is agreed as implied by adding a remote HAN to the local HAN’s roster by 

calling remoteHANAdded with the corresponding remote HAN identifier. Similarly when 

the relation is terminated, the communication subsystem updates the model with the 

removed HAN identifier by calling remoteHANRemoved.  

 

Service protocol plug-ins update the CapabilitySharingManager when resources are added 

and removed giving the resource identifier, and possibly additional data that can be used 

when applying sharing policies, such as device model, device vendor, or any other protocol 

specific information that can be useful as represented using the ResourceData object. When 

the plug-in’s LNC discovered a new resource, it queries the CapabilitySharingManager for 

the identifiers of the remote HANs with which the resource is shared. When a remote HAN 

changes its status to available, the LNC queries the CapabilitySharingManager for the 

resources that need to be shared with that remote HAN.  

 

Figure 22 Capability Sharing Manager UML Class Diagram 
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The CapabilitySharingManager enables components to register a listener 

(SharingConfigurationListener), which is called when the sharing configuration for a 

resource is changed. This enables the LNC components of service protocol plug-ins to be 

notified when access-sharing configuration is changed and respond appropriately.  

 

For the purpose of performance evaluation with maximal load, the only sharing policy 

supported by the Krox prototype implementation is share-all which means all resources are 

shared with all other remote HANs.  

 

5.4. Service protocol plug-in framework 

The outer most object of the implementation is the KroxGateway (see figure 23). The 

KroxGateway is responsible for instantiating the necessary components of the Krox system 

and initiate their bootstrap process. In its bootstrap, the KroxGateway starts the 

MessagePresenceManager and PluginManager and initiates their bootstrap. The 

PluginManager is responsible for loading, unloading and managing service protocol plug-

ins. The mechanism used by the PluginManager to locate plug-ins is abstracted from the rest 

of the system. When the system is started, the PluginManager starts looking for available 

plug-ins. In the prototype implementation the UPnP and Jini service protocol plug-ins are 

pre-loaded. The PluginManager registers plug-ins with the MessagingPresenceManager to 

support message exchange with system instances in remote HANs. In addition the 

PluginManager registers the LNC’s sharing configuration change listener with the 

CapabilitySharingManager. 

 

Figure 23 Plug-in Framework Implementation 
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A service protocol plug-in must contain two modules, the LNC and VRM. The Local 

Network Controller must implement the Java interface: ILocalNetworkController and the 

Virtual Resource Manager must implement the java interface: IVirtualResourceManager. 

For the purpose of the prototype it is assumed that all HANs have the same configuration of 

plug-ins, therefore unsupported messages are never received to the 

MessagingPresenceManager. If they were received, the MessagingPresenceManager will 

ignore all messages which have a type for which no LNC or VRM have registered.  

 

The design of the LNC and VRM interfaces (figure 24) follows the core event model 

described in section 4.2.2.2-4.2.2.3. The LNC and VRM implementation extend the core 

event model with additional events required to facilitate the required interaction between 

local and remote components. Additional events are expressed using message types that are 

dynamically registered with the PresenceMessagingManager, which are forwarded to the 

registered LNC. The VRM interface provides a tighter event model, where the events of 

resource added/removed are part of the generic event model. The VRM implementation is 

required to declare the message type that corresponds to add/remove of remote resource. 

This enables the plug-in framework to link this message type to the required VRM 

implementation handling addition or removal of remote shared resources, rather than 

leaving this as an internal contract between plug-in components. The reason for requiring 

the VRM to explicitly support resource added/removed events is that this is an essential part 

 

Figure 24 (a) LNC Interface (b) VRM Interfaces 
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of the plug-in behaviour. The VRM is also required to specify the message type for sharing 

configuration change, such that it can be linked to the handling of changes in the sharing 

configuration in remote HAN.  

 

The extensible event model enables the definition of specific join points (as discussed in 

section 4.3.3).  

 

5.5. UPnP service protocol plug-in 

The UPnP service protocol plug-in includes an implementation for the 

ILocalNetworkController (UPnPLocalNetworkController) and the 

IVirtualResourceManager (UPnPVirtualResourceManager). Figure 25 is a UML class 

diagram corresponding to the plug-in implementation. The UPnP LNC and VRM use the 

CyberLink Java UPnP SDK for interaction with UPnP devices. The UPnP LNC implements 

the INotifyListener and ISearchResponseListener interfaces which enable it to listen to 

search responses (triggered by its search requests) and device announcements (by listening 

to the multicast address in the local HAN). The UPnP LNC also implements an 

HTTPRequestListener for listening to event notifications corresponding to event 

subscriptions made on behalf of remote HANs. In addition the LNC implements the 

SharingConfigurationListener to be notified by the CSM when the sharing configuration of 

a resource in the local HAN changed. The registration with the CSM is made during the 

bootstrap of the LNC. The UPnP VRM implements the SearchListener interface for being 

able to receive and respond to search requests made in the local HAN. The UPnP VRM 

implements the HTTPRequestListener for responding to HTTP requests including 

description requests, SOAP requests, and event subscription requests.  
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The following sections describe how the design of UPnP service plug-in as presented in the 

previous chapter was implemented.  

 

5.5.1.  Discovery 

The UPnPLocalNetworkController implements discovery through two mechanisms: 

 

Figure 25 UPnP Plug-in Implementation 
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1) Sending SSDP search request and listening to responses 

2) Listening to device presence announcements sent to the SSDP multicast address 

The discovery interaction between the plug-in components in remote HANs is illustrated as 

a sequence diagram in figure 26. Steps 1-11 in figure 26 describe how device and service 

announcements in the local HAN (HAN1) are reported to all other HANs (HAN2 in figure 

26) with which the device or service is shared. Steps 12-19 in figure 26 represent how SSDP 

byebye messages are forwarded to remote HANs and handled in their VRM after the LNC 

updated its local repository. The VRM updates its local announcement repository and 

repeats the byebye for the corresponding virtual device/service in its local HAN (HAN2 in 

figure 26). Steps 20-21 describe how the VRM responds to search requests made by control 

points in its local HAN (HAN2). The VRM uses the search request processing for cleaning 

stale announcements that have expired and announcing corresponding byebye messages.  

 

When a remote HAN changes its presence status to available the 

MessagingPresenceManager calls the UPnP LNC remoteNetworkAvailable() giving the 

remote HAN identifier. The LNC responds by sending the remote HAN all of the 

 

Figure 26 UPnP Plug-in Discovery Protocol Implementation 
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announcements in the repository that are shared with that remote HAN. Since the LNC’s 

repository should only cache SSDP announcements for their duration in the network as was 

reported in the SSDP message (cached-control parameter in the SSDP announcement), 

before the message is sent to the remote HAN, its expiration time is checked and if it 

expired, it is removed from the repository and will not be sent to the remote HAN.   

 

If the LNC is notified on a change in the sharing configuration it needs to update the 

affected remote HANs on the change. If sharing was added for a resource, the LNC sends an 

announcement about this resource to the remote HAN. If sharing was removed, the LNC 

sends a byebye announcement for this resource to the corresponding HAN.  

 

As discussed in the previous chapter, the LNC ignores announcements made by the VRM in 

its local HAN, avoiding unintentional re-sharing of remote devices, which are not owned by 

the local HAN.   

 

5.5.2.  Description 

In order to provide description documents for devices and underlying services on behalf of 

virtual remote devices in the local HAN, the local VRM listens on a local HTTP port. Figure 

27 describes the interaction between the control point in HAN1 and the VRM representing 

locally (in HAN1) a device from a remote HAN (HAN2). The VRM in HAN1 extracts the 

identifier of the Krox system hosting the “live” device and the device UUID from the HTTP 

GET request. Before the request is sent to the remote HAN, the VRM checks in its 

description cache if it already has a description for this device or service as received from 

the remote HAN, if so, the result is immediately posted to the HTTP requester. If not it 

follows steps 3-18 in figure 27. Caching can significantly shorten the time it takes to retrieve 

device/service description from remote HANs and consequently reduce the inter-HAN 

traffic and the load on devices. 
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In order to optimise the performance of requests for description processing, the VRM also 

piggybacks multiple requests for description on pending requests blocking for results. When 

a request is currently waiting for a result from a remote HAN, and additional description 

request is received for the same resource, the request will block, but will not send another 

request to the remote HAN. Instead when the result returns for the first request the same 

result will immediately be published to all other waiting requesters. This optimisation as 

well as the caching of descriptions saves both time and inter-HAN traffic, and reduces the 

load on the remote “live” device. 

 

When a description request is sent to a Krox system instance in a remote HAN, the thread 

handling the description request in the VRM blocks for as long as the result has not returned 

from the remote HAN or a timeout expires. When the message is received in the remote 

HAN, the VRM notifies the waiting thread and the result is posted back the waiting control 

point and cached for future reference. If the timeout expires or an error message was 

returned from the remote LNC, then the error is posted back to the local control point with 

 

Figure 27 UPnP Plug-in Description Protocol Implementation 
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an HTTP status reflecting the error. While the thread is blocked, concurrent description 

requests can be processed.  

 

If a message from a remote HAN indicating a sharing configuration change that affects the 

local HAN is received to the VRM, it is required to remove the relevant resource’s cached 

description, as it may have been invalidated. 

 

5.5.3.  Control and post processing 

The control interaction with remote devices is depicted in figure 28. When an HTTP POST 

containing a SOAP request is received by the VRM from a control point (HAN1 in figure 

28), the VRM extracts the identifier of the Krox system hosting the “live” device and the 

device UUID from the HTTP SOAP request and sends this information to HAN2 where it is 

processed by the local UPnP LNC (steps 1-5 in figure 28). The LNC in the remote HAN 

(HAN2) resolves the device location from the given device UUID and verifies with the 

 

Figure 28 UPnP Control and Post Processing Protocol Implementation 

MessagingPresenceManager UPnPVirtualResourceManager CapabilitySharingManager 

4. Send message 

Control point UPnPLocalNetworkController 

2. Extract remote HAN identifier 
and device UUID 

HAN1 HAN2 

1. HTTP POST SOAP request 

MessagingPresenceManager 

9. HTTP POST 
SOAP request 

11. Parse response 

7. Check HAN1 permission for 
the requested action 

“live”  
Device 

5. processMessage 6. Resolve 
device location 
from UUID 

8. Permission granted 

10. SOAP response 

12. SOAPRESPONSE 

3. SOAPREQUEST 

13. Send message 
14. processMessage 

Join point: before handing 
response to VRM 

15. SOAP response 

Join point – before sending the 
message to destination 



 190 

CSM that the requesting HAN is permitted to execute the requested action. If it is, the 

SOAP request is sent to the “live” device. When the SOAP response is received from the 

device, the LNC parses the result and then sends the result back to the requesting HAN 

(steps 6-12 in figure 28).  

 

Before the SOAP response is sent by the communication subsystem to the remote HAN 

(HAN1), the UPnP plug-in implemented an extension in the scope of all UPnP devices (as 

opposed to a specific device type) to replace all private IP addresses in a SOAP response (if 

any) with the external IP address of the HAN. This approach is different than the design as 

presented in section 4.3.3.4. As discussed in the previous chapter, the actual streaming of 

data is not an integral part of the UPnP protocol, and hence is not an integral part of the 

UPnP plug-in, however for being able to test the plug-in and to demonstrate that it behaves 

as expected, some approach for enabling client application to stream media from remote 

HAN is required. For simplicity of testing the implementation assumes that the firewall and 

home gateway have been configured to allow access from the remote HAN with which the 

device is shared to the device. While this implementation is not appropriate for the HAN 

because of the required manual configuration, it was sufficient for testing and demonstration 

purposes of the Krox system architecture.   

 

Similarly to the description protocol implementation, while waiting for the response from 

the remote HAN, the local VRM’s thread processing the SOAP request is blocking. When 

the SOAP response is received, the waiting thread is notified. Again, multiple concurrent 

SOAP requests can be invoked. In cases where a timeout expires before the response is 

received an error will be posted. In the prototype system, 5 seconds is the default timeout for 

a remote device SOAP request to return. This timeout was defined as the maximum time a 

control point application is willing to wait for an invocation to return.  

  

5.5.4.  Eventing 

The final protocol in the UPnP service plug-in implementation is eventing (figure 29). An 

event related request (delivered over HTTP) could be either an event subscription request or 

request for removal of an event subscription. An event subscription request can either be a 

new subscription request or a subscription renewal. When the VRM receives an event 

subscription request from a local control point for a remote service it represents, the VRM 
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extracts the identifier of the Krox system hosting the “live” device and the device UUID 

from the subscription URI. The VRM then sends a subscription request to the remote HAN 

hosting the “live” device (steps 1-4 in figure 29). In the remote HAN (HAN2 in figure 29), 

the LNC handles the subscription request by resolving the device from the given UUID. If 

the requesting HAN (HAN1) is allowed to subscribe for events on the requested service, an 

HTTP subscription request is sent to the device, which responds with a subscription id 

(steps 5-10 in figure 29). The LNC maps the subscription id to the identifier of the Krox 

system requesting the event subscription. The subscription id is then sent using the 

MessagingPresenceManager to the requesting HAN (HAN1) where it is passed to the VRM 

(steps 11-14 in figure 29). The VRM maps the subscription identifier to the callback 

interface, provided in the original subscription request, such that the subscription identifier 

can be used to resolve event notifications and direct them to the subscribing control point. 

The subscription identifier is then sent back to the subscribing control point (steps 15-16 in 

figure 29). The VRM’s thread processing the event subscription blocks until the response is 

received from the remote HAN (HAN2) with a subscription identifier (SID). This blocking 

does not prevent additional HTTP requests from being processed concurrently as the 

processing is multithreaded.  

 

Figure 29 UPnP Plug-in Eventing Protocol Implementation 
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When a notification corresponding to a subscription is received from the “live” device to the 

LNC, the LNC extracts its subscription id and resolves the identifier of the remote Krox 

system instance corresponding to this subscription id. The notification is then forwarded to 

that HAN where the VRM processes it. The VRM resolves the callback interface from the 

subscription id, and notifies the corresponding control point (steps 17-23 in figure 29).  

 

If the LNC is notified on a removal of sharing of a resource on device/service on which 

subscription has been made from remote HAN, the subscription is terminated and an error is 

sent to the subscribed remote HAN.  

 

5.5.5. Testing 

The Krox system was tested with UPnP plug-in in a setup that included multiple HANs 

distributed in multiple geographical locations. The purpose of testing was to validate that the 

implementation conforms to the plug-in design as described in the design chapter.  

 

The testing technique used logging such that each event from the core event model and 

plug-in extension is printed to a log file with a timestamp and additional information. Each 

message was assigned an identifier, such that the messages across multiple HANs’ logs can 

be correlated. Through this correlation, it verified that the implementation of the event 

model for the UPnP plug-in follows the design by validating that the set of related printed 

log messages follows order indicated by the design. This technique was used to validate the 

implementation of the discovery, description, control, and eventing of the UPnP plug-in in a 

controlled environment with a small number of UPnP devices and control points. Testing 

has shown that the implementation worked as expected and that the event model defined by 

the design of the plug-in was sufficient to express the required interaction between the plug-

in components for supporting sharing of UPnP devices across multiple HANs. Additional 

testing was performed using the client application described in section 5.8. 
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5.5.6. Summary 

The UPnP service plug-in implementation, described in the above sections, demonstrates the 

feasibility of the Krox system design for a UPnP service plug-in. UPnP service protocol 

plug-in was implemented supporting service discovery, description, invocation, and 

eventing layers of the UPnP service protocol. Table 4 summarises the event model (core and 

extensions) that is included in the UPnP plug-in implementation.  

 

A number of performance optimisations have been applied in order to support high 

throughput with low latency: 

1) Description caching – the VRM caches description documents retrieved from 

remote HANs such that they only need to be fetched once. 

2) Description fetch piggyback – in order to optimise the first retrieval of a remote 

device/service description, even in the case of multiple concurrent requests for the 

same device/service description from local control points, the description is fetched 

only once and is published to all requesting control points in the same HAN. 

3) Local device/service announcement caching – in order to respond promptly when a 

remote HAN changes its status to “available”, all local device/service 

announcements are cached, such that the communication with the remote HAN does 

not require the LNC to initiate a UPnP search in the local HAN.  

4) Search response bundling – When communication is started between two HANs, 

the information about shared devices/services is sent in a single message containing 

information about all shared devices/service, rather than sending a single message 

corresponding to each shared device/service. This optimization enables to reduce 

the overhead of many small messages (each message corresponding to a single 

device/service). 
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All of the UPnP control protocol traffic is sent over the secure communication subsystem 

and is therefore encrypted and can be sent and received only by authenticated participants 

(i.e. Krox system instances).  

 

The testing performed with a number of remote HANs has shown that the UPnP plug-in 

works as expected, and that the event model described above is sufficient to represent the 

required interaction between the LNC and VRM to support seamless service integration of 

remote services with local client applications.  

 

5.6. Jini service protocol plug-in 

The Jini service protocol plug-in (figure 30) includes an implementation for the 

ILocalNetworkController (JiniLocalNetworkController) and the IVirtualResourceManager 

(JiniVirtualResourceManager). The GenericJiniForwarder is used by the Jini VRM for 

generating dynamic implementation for remote shared Jini services. The ProxyGenerator is 

used by the Jini VRM to export a Jini proxy for the generated service. In addition the Jini 

 

Table 4 UPnP Plug-in Event Model 

Event Initiated By Processed By Description 

 

DISCOVER Plug-in Manager UPnP LNC Initiate discovery in the local HAN through search and listen to 

device announcements 

REMOTEHANAVAILABLE Communication 

subsystem 

UPnP LNC A remote HAN from the buddy roster became “available” - need to 

send it information about all local shared resources 

REMOTEHANUNAVAILABLE Communication 

subsystem 

 

UPnP LNC, 

UPnP VRM 

A remote HAN from the buddy roster became “unavailable” – need to 

clean related resources in LNC and VRM 

SHARINGCONFIGURATIONADDED Capability 

Sharing Manager, 

UPnP LNC 

UPnP LNC, 

UPnP VRM 

Sharing configuration changed, additional resources should be shared 

now with remote HANs. VRM needs to clean description cache 

SHARINGCONFIGURATIONREMOVED Capability 

Sharing Manager, 

UPnP LNC 

 

UPnP LNC, 

UPnP VRM 

 

A resource that was previously shared is not longer allowed for 

sharing. The LNC receives a notification from the CSM and sends an 

update to the relevant remote VRMs. Both LNC and VRM need to 

clean relevant resources 

UPNPSSDPNOTIFY  UPnP LNC  UPnP VRM Device/service announcement. Mapped to the core event of resource 

added/removed in the VRM  

UPNPDESCRIPTIONREQUEST  UPnP VRM UPnP LNC  Request for remote device/service description 

UPNPDESCRIPTIONRES  UPnP LNC UPnP VRM Device/service description response 

UPNPSOAPREQUEST  UPnP VRM UPnP LNC Remote service action invocation request  

UPNPSOAPRESPONSE  UPnP LNC UPnP VRM Remote service invocation response 

UPNPEVENTSUBSCRIPTIONREQ  UPnP VRM UPnP LNC Remote event subscription request 

UPNPEVENTSUBSCRIPTIONRES  UPnP LNC UPnP VRM Remove Event subscription response 

UPNPEVENTNOTIFICATION  UPnP LNC UPnP VRM Remote event notification 
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LNC implements the SharingConfigurationListener to be notified by the CSM when the 

sharing configuration of a resource in the local HAN changes. The registration with the 

CSM is made during the bootstrap of the LNC. 

 

The Jini plug-in event model is completely different from the one described in the previous 

section for UPnP. In addition the mechanism used by the Jini VRM to represent remote 

services in the local HAN is significantly different than the one used by the UPnP plug-in 

due to the differences between the service protocols.  

 

The following sections describe how the design of Jini service plug-in as presented in the 

previous chapter was implemented. Section 5.6.1 describes the implementation of Jini 

service discovery and automatic service virtualisation. Section 5.6.2 describes the 

implementation of Jini service invocation.  

 

 

Figure 30 Jini Plug-in Prototype Implementation UML Class Diagram 
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5.6.1.  Service discovery 

Jini service discovery implementation, illustrated in figure 31 begins when the plug-in is 

started and the KroxGateway (through the PluginManager) calls the discover() of the plug-

in. The Jini LNC registers itself with the local lookup services in the local HAN and is 

notified therefore on all existing services and added and removed services. Steps 1-14 in 

figure 31 describe the discovery process and registration of a virtual service proxy in the 

remote HAN (HAN2).  

 

The Jini VRM is required to dynamically generate a synthetic local implementation for the 

service interface. The message received from HAN1 contained the name of the interface 

corresponding to the shared service and the Java implementation dynamically created by the 

Jini VRM implements (in the Java programming language sense) this service interface. 

Before the service can be used in the local HAN (HAN2), a proxy must be exported and 

registered with a local lookup service. The full details of how a service implementation is 

 

Figure 31 Jini Plug-in Service Discovery Prototype Implementation 
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generated in the remote HAN (HAN2) and how it is exported are given in the next section.  

 

When a “live” service is removed, the LNC (in HAN1) receives a notification from the 

lookup service. The LNC removes the local service proxy from its repository and notifies 

remote HANs about the removed service. In the remote HAN (HAN2) the proxy and the 

service implementation are removed from the repository and the VRM (in HAN2) cancels 

the lease of the virtual service with the local lookup service (steps 14-19 in figure 31).  

 

When a remote HAN comes online, the LNC sends JINIDISCOVERYADDEDNOTIFY for 

all services currently available in the HAN that are shared with that remote HAN. When a 

remote HAN goes offline, the VRM removes all of the service it received from this HAN 

from its local mapping.  

 

As discussed in the previous chapter, the LNC ignores announcements made by the VRM in 

its local HAN, avoiding unintentional re-sharing of remote devices, which are not owned by 

the local HAN. In order to be able to distinguish between remote and local services, a new 

service characteristic was added. When the VRM in the local HAN registers the remote 

service, it registers it with a “remote” attribute. The Jini LNC can then ignore and suppress 

notifications about added services with the “remote” attribute. 

 

If the LNC is notified on a change in the sharing configuration, it needs to inform the 

relevant remote VRMs on the update. If sharing was added for additional service, the LNC 

needs to notify the remote HANs on the added service. If sharing for a service was removed, 

then the remote HAN’s VRM should destruct the service implementation and proxy and 

deregister it from the lookup service.  

 

5.6.1.1.  Jini service implementation dynamic generation  

When a resourceAdded notification for a shared remote service arrives at a VRM from 

remote HAN, it contains information about the remote HAN, which owns the “live” service 

and the service interface. Given the Jini service interface name, the VRM uses the Java 

dynamic proxy technique [60] to dynamically create an implementation for this interface. 

The Java dynamic proxy technique enables implementing several design patterns including 
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the façade, proxy, decorator [42], and others in a dynamic manner. Dynamic proxy objects 

enable the dynamic implementation of one or more interfaces and dispatch the calls of those 

interfaces using the Java reflection API. This provides a mechanism for intercepting method 

calls and redirecting them or extending their functionality dynamically. The dynamic proxy 

approach does not involve code generation; instead it uses Java reflection to offer a runtime 

dynamic implementation for a given interface.  

 

Using this technique, a generic implementation acts as an implementation of the given 

interface. This is done by instantiating the generic GenericJiniForwarder class (see figure 

32), which implements Java InvocationHandler33 and therefore supports the dynamic proxy 

pattern. The GenericJiniForwarder is a generic forwarder that takes an interface class object, 

an identifier for remote Krox system instance, and a service identifier in its constructor and 

uses the dynamic proxy technique to instantiate a proxy that dynamically implements the 

given interface. The getInstance() method of the GenericJiniForwarder returns an 

implementation of the Jini service interface with which the GenericJiniForwarder was 

constructed, such that the implementation of each method of the interface simply forwards 

the call over the communication subsystem to the remote HAN where the “live” service is 

hosted.  

                                                        

33 http://download.oracle.com/javase/6/docs/api/java/lang/reflect/InvocationHandler.html 

 

Figure 32 Dynamic Proxy Implementation for a Jini Service Interface 



 199 

 

5.6.1.2. Jini service proxy dynamic generation  

Once the service implementation has been generated, its Jini service proxy needs to be 

generated automatically and registered with the lookup service. The Jini service proxy is 

exported from the service implementation by the ProxyGenerator using Jini Extensible 

Remote Invocation (JERI34), and is registered with the local lookup service. The service 

proxy is a generated automatically by the Jini exporter and contains only RMI35 

communication support to the service implementation. The service implementation in turn 

serves as a delegator of the method invocation using the MessagingPresenceManager to the 

remote HAN’s Jini LNC. Once the service implementation and service proxy have been 

generated and registered, the VRM updates its local repository with a mapping between the 

service identifier and the proxy, and service identifier and the implementation.  

 

5.6.2.  Service invocation 

                                                        

34 http://www.jini.org/files/specs/porter/api/net/jini/jeri/package-summary.html 

35 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html 

 

Figure 33 Jini Plug-in Service Invocation Prototype Implementation 
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Jini service invocation (figure 33) is started once an application in the local HAN discovers 

a Jini service, and downloads a service proxy. Then it is ready to invoke methods on this 

service proxy that implements the Java service interface. When the service proxy interface 

method is invoked, the proxy communicates the method invocation request to the service 

implementation. As was mentioned in the previous section, the service implementation is 

maintained in the JiniVirtualResourceManager mappings. The implemented Jini virtual 

service dynamic proxy class is generic and forwards the call over the communication 

subsystem to the remote HAN hosting the “live” service (steps 1-4 in figure 33). In the 

remote HAN the message is processed by the LNC. The LNC finds the Jini service proxy in 

its local repository and checks with the CSM if the requesting HAN has appropriate 

permission to execute the requested method. If so, the method is invoked on the real service 

proxy and the result is sent back over the communication subsystem to the remote HAN 

(HAN1) where it is passed to the VRM in the requesting HAN (steps 5-14 in figure 33). The 

local VRM hands the result to the service implementation instance (the 

GenericJiniForwarder), which sends it back to the service proxy, which in turn returns the 

result to the Jini client (steps 15-17 in figure 33).  

 

From a performance point of view the service implementation (GenericJiniForwarder) 

blocks until the response from the remote HAN is received, however it does not prevent 

other service clients invoking methods on the same service object. When the result is 

received at the VRM, the blocked service implementation is notified and it can return the 

result to the client via the service proxy.  

  

5.6.3. Testing  

In order to test the Jini plug-in, the Krox system was tested with a number of participating 

remote HANs. The purpose of testing was to validate that the implementation conforms to 

the plug-in design as described in the design chapter. For testing purposes a number of 

simple Jini services were implemented and registered in each local HAN with the lookup 

service.  

 

Similarly to UPnP plug-in testing, the Jini plug-in code was instrumented to print log 

messages, which correspond to the event model, such that local events can be correlated 

with remote events. For example when the LNC receives a notification on added service, it 
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prints a message to the log with the identifier that is then used to notify remote HANs on 

this service. In the remote HAN, the VRM prints the message with the identifier before and 

after it registers the virtual service with the lookup service, such that it can be verified that 

flow of events corresponds to the one defined in the design. In order to test Jini invocation, a 

Jini client was developed such that it registers with the lookup service and is notified on 

added services, and for each added service it invokes a method from its interface.  

 

Testing has shown that the implementation worked as expected and that the event model 

defined by the design of the plug-in was sufficient to express the required interaction 

between the plug-in components for supporting sharing of Jini services across multiple 

HANs. Additional testing was performed using the client application described in section 

5.8. 

 

5.6.4. Summary 

The Jini service plug-in implementation, described in the above sections, demonstrates the 

feasibility of the Krox system design for Jini service plug-in. Jini service protocol plug-in 

was fully implemented supporting service discovery, and service invocation as required by 

the Jini service protocol. The implementation is lightweight in that it sends over the wire 

only the minimal information required to represent the Jini service in the remote HAN (the 

service identifier and the name of the service interface). In addition, the generated service 

implementation only relays the request to the remote HAN where the “live” service proxy is 

invoked; therefore it is both lightweight in memory as well as in processing.  

 

Table 5 summarises the event model (core and extensions) that is included in the Jini plug-

in implementation.   

 

The testing performed with a number of remote HANs and emulated Jini services has shown 

that the Jini plug-in works as expected, and that the event model described above is 

sufficient to represent the required interaction between the LNC and VRM to support 

seamless service integration of remote services with local client applications. 
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5.7. System administration 

The first aspect of system administration for the Krox system prototype is management of 

sharing relationships with remote HANs. Based on the IM&P user metaphor, relationships 

with remote HANs are reduced to adding or removing “buddies” from the buddy roster. 

When the home user wishes to add a friend’s HAN to his sharing list, he needs to know the 

identifier of the remote HAN. Adding a buddy to the buddy list enables the communication 

subsystem to send and receive messages between the local HAN and the remote “buddy” 

HAN. For the purpose of the prototype all configuration of users and relations between 

users was made via direct user administration interface in the IM&P server rather than 

through a client application. IM&P user configuration is used daily by a large number of 

untrained users, therefore, this provides a demonstration of how relatively easy user 

administration can be based on the IM&P user metaphor applied to sharing of HAN 

resources.  

 

When the Krox system is started the KroxGateway reads its configuration from a 

configuration file (figure 34). The system configuration for the prototype contains 

 

Table 5 Jini Plug-in Event Model 

Event Initiated By Processed By Description 

 

DISCOVER Plug-in Manager Jini LNC Initiate discovery in the local HAN through registration 

with lookup services 

REMOTEHANAVAILABLE Communication 

subsystem 

Jini LNC A remote HAN from the buddy roster became 

“available” - need to send it information about all local 

shared resources 

REMOTEHANUNAVAILABLE Communication 

subsystem 

 

Jini LNC, Jini VRM A remote HAN from the buddy roster became 

“unavailable” – need to clean related resources in LNC 

and VRM 

SHARINGCONFIGURATIONADDED Capability Sharing 

Manager 

Jini LNC Sharing configuration changed, additional resources 

should be shared now with remote HANs. The LNC 

receives a notification from the CSM and sends an 

update to the relevant remote VRMs.  

SHARINGCONFIGURATIONREMOVED Capability Sharing 

Manager 

Jini LNC 

 

A resource that was previously shared is not longer 

allowed for sharing. The LNC receives a notification 

from the CSM and sends an update to the relevant 

remote VRMs.  

JINIDISCOVERYADDEDNOTIFY Jini LNC Jini VRM New Jini service was discovered, notify remote HANs 

on the added service 

JINIDISCOVERYREMOVEDNOTIFY Jini LNC Jini VRM Jini service is no longer available in the HAN, notify 

remote HANs on the removed service 

JINIINVOCATION Virtual service 

implementation 

(GenericJiniForwarder) 

Jini LNC A request for an invocation of a method on a remote Jini 

service 

JINIINVOCATIONRESULT Jini LNC Virtual service 

implementation 

(GenericJiniForwarder) 

The result of an invocation of a method on a remote Jini 

service 
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information about the username and password, the IM&P server to connect to, http proxy if 

needed, and information about where to search for plug-ins to load. In a production system 

the configuration file should not be manually modifiable or human readable, however for 

prototyping purposes the configuration file was implemented using a text file to make it 

easier to modify for the frequent configuration changes during testing and evaluation 

phases.  

 

The event_grace parameter defines the amount of time to wait for the completion of event 

subscription when an event notification is received. This is related to the race condition in 

UPnP event handing that was described in section 5.5.4.  

 

5.8. Client application prototype 

The term client application refers here to service protocol specific clients that interact with 

services that support the service protocol, e.g. a UPnP control point is a UPnP client 

application, a Java program that discovers and interact with Jini services is referred to as a 

Jini client. As seamless integration of remote services with local client applications in the 

local HAN is an important aspect of the Krox system architecture, an application was 

developed (figure 35) to test and demonstrate this seamless integration. The client 

application enables the discovery and invocation of specific service protocol local and 

virtual services. The client application organises virtual devices and services by the user 

 

Figure 34 Krox System Configuration File 
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from which they were shared, enabling to distinguish between local and remote devices and 

services for testing purposes. The discovery capabilities of the client application enable to 

validate that all devices from remote HANs are virtualised and shown under the user that 

shared them. It enables to verify that when a device is no longer available it is not shown 

anymore in the local HAN. For discovered devices and services, the client application 

enables inspection of the device/service and invocation of actions. For example the 

screenshots in figure 35 were taken from a HAN sharing devices and services with four 

other HANs. The local HAN devices are shown under “My Devices”, and devices and 

services from remote HANs are shown under the identifier of the remote HAN that shared 

them.  

 

 

Figure 35 Krox Client Application Prototype 
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The client application embeds an IM&P endpoint for receiving updates on added users (i.e. 

remote HANs with which sharing has been agreed) and the status of remote HANs.  

To support UPnP services, the Krox client embeds a UPnP control point which locates 

UPnP devices and services in the local HAN and shows them either under the HAN that 

shared them, or under the local HAN. When a UPnP device is discovered, its description is 

fetched and parsed and the supported services are shown in the client application under the 

device. For each service, its corresponding description is fetched and parsed and its 

corresponding actions are shown under the service. This behaviour enables testing and 

validating the discovery and description implementation of the UPnP plug-in. The client 

application enables manual invocation of UPnP actions for both local and remote devices in 

a fully transparent fashion. The invocation is facilitated by sending a SOAP request to the 

local device, which can be either a “live” device or a virtual remote device. This behaviour 

enables testing and validation of the invocation implementation of the UPnP plug-in. The 

client application supports subscription for event notifications for UPnP services. This 

capability enables testing and validation of the eventing implementation of the UPnP plug-

in. Finally, the client application was used in validation of the implementation of 

representation of composite services as UPnP devices and services. Since composite 

services are represented as UPnP devices, they are discovered, inspected, and can be 

invoked using the client application as can be seen in figure 35.  

 

For supporting Jini services, the Krox client application finds a lookup service in the local 

HAN and listens to changes. Jini services that are discovered are shown under the network 

that shared them. When a service is discovered, the Krox client retrieves the service proxy 

from the lookup service and parses the service interface, extracts the methods and 

parameters and presents it as the child of the service in the client application. Similarly to 

UPnP, Jini service invocation is supported. The client application was also used in 

functional testing for Jini discovery and invocation for HANs from remote HANs shared 

with the local HAN.  

 

5.9. Home service composition with BPEL 

In order to demonstrate the service composition subsystem design, a prototype 

implementation was developed for mapping UPnP and Jini services to web services, and 
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then composing them to BPEL processes and deploying and executing such services. The 

following sections provide details about this prototype implementation.  

 

5.9.1. WS-BPEL 

The prototype builds on service composition with BPEL. BPEL 2.0 is supported through 

Apache ODE version 1.3.5. ODE was deployed on a Apache Tomcat version 6.0.18 servlet 

container in the local HAN.  The following sections describe how UPnP and Jini service 

protocols were mapped to web services for automatic generation and deployment of web 

service proxies corresponding to HAN services. 

 

5.9.2. UPnP to web service mapping extension 

The implementation of the UPnP to web services mapping is based on three steps: 

1) Device inspection – fetching the device description, and for each service fetch the 

service description. Each service will correspond to a web service; each action in 

the service description will correspond to a method in the generated web service. 

2) Code generation – generating the code for a web service, given the device name, 

service type, and names of parameters (input and output) for the UPnP actions. 

3) Web service package and deployment – the generated Java web service is compiled, 

built and deployed to the local web server. 

 

When a UPnP device was discovered by the UPnP LNC or UPnP VRM, its description is 

fetched. For each supported service, the corresponding Java code for a JAX-WS web service 

is generated (see figures 36-37). Once the Java file for the web service has been saved to 

disk, a script is executed to compile, package and deploy the web service to the servlet 

container .  

 

Figure 36 shows a generated web service WSDL corresponding to an AVTransport UPnP 

service (from a media renderer device). The screenshot on the left shows the AVTransport 

service description XML as retrieved from the UPnP media renderer device. On the right, is 

the WSDL (shown from the web server) of the deployed web service that corresponds to the 

UPnP AVTransport service. It can be seen that each action in the UPnP service is mapped to 
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an operation in the web service, and the entire UPnP service is mapped to a single web 

service.  

 

Figure 37 shows the generated code for the web service, which corresponds to the UPnP 

service shown on figure 36. The generated code has a method for each action in the UPnP 

service and an additional generic invocation method, which is called from all of the action 

implementations. The class is generated with a number of identifiers that are hardwired: the  

control URL for the service, which should be used when invoking actions (ctrlURL in figure 

37), the service type, which is used in creating the SOAP request, and the host/port of the 

device, which are used for sending the SOAP request. All action implementations are 

similar: they create two arrays of Strings: one for the variable names and one for the 

variable values – the variable names for the methods correspond to the names of the variable 

 

Figure 36 UPnP AVTransport Service Description (right) and Corresponding Web Service (left) 
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in the UPnP action and the name of the method corresponds to the name of the UPnP action. 

The last parameter for the action invocation is the action name, which is hardwired to the 

method during the code generation. Each method calls the generic invokeMethod() method 

which handles the interaction with the device and either returns the SOAP response or 

throws a UPnPException. The invokeMethod() prepares the SOAP request and sends it to 

the device. If the invocation was successful, the String SOAP response is sent back to the 

calling method and back to the web service client. If there was an error, a UPnPException is 

constructed with the corresponding UPnP error code and error description and is thrown 

back from the web service. For each UPnP service, once the code is automatically 

generated, the code is saved to disk and compiled. The artefacts are packaged in a Web 

Archive (WAR) file that is copied to the auto-deploy directory of the servlet container 

(Tomcat), which initiates the deployment of the web service.  

 

Figure 37 AVTransport Web Service Generated Code 
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Whenever the Krox system is restarted all existing services are undeployed. If they are 

rediscovered they are redeployed. When a device is removed, its corresponding services are 

undeployed from the local servlet container.  

 

5.9.3. Jini to web service mapping extension 

The generation of web services for Jini services is very similar to the technique used for 

UPnP services with a minor difference. While UPnP requires inspection of the service 

description document in order to determine the names of methods and types of parameters, 

for Jini this is much simplified using the Java reflection API. When the Jini LNC or Jini 

VRM discover a service, the generation of a web service is triggered. Given the interface, 

the names of the methods and types of parameters are retrieved from the interface using the 

Java reflection API. Unfortunately using Java reflection API it is not possible to retrieve the 

 

Figure 38 Jini Service Interface (top) and Corresponding Web Service (bottom) 
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names of the parameters, therefore they are named param1, param2, etc. For each method in 

Jini service interface, a method is created in the web service. Figure 38 illustrates a Jini 

service interface and its corresponding generated web service code. In the Jini generated 

web service code there is no generic invocation method. Instead in the implementation of 

each method, the Jini service proxy is retrieved from the lookup service using the hardwired 

service identifier. Given this proxy and the hardwired service interface, the corresponding 

method is invoked on the Jini service and the result is returned. Once the Java web service 

code generation is completed, the service is saved to disk and the same script mentioned 

above is used to build, package, and deploy the service. Undeployment of services is 

triggered both on system bootstrap and when services are removed from the local HAN.  

 

5.9.4. Composing home services 

When the HAN services are deployed as web services they can be composed using BPEL 

regardless if they represent UPnP, Jini, or any other HAN services protocol. In addition, 

since both the LNC and the VRM in the local HAN trigger automatic web service 

generation, local and remote services (through their local representations) can be composed 

seamlessly. A further advantage of using ordinary web services is that it is possible to also 

compose external 3rd party web services and other composite services.  

 

In order to demonstrate the feasibility of the design approach, a composite service involving 

a local HAN UPnP service, a remote UPnP service, a local HAN Jini service, and an 

external web service were composed. The composite service used the following services: 

• Local UPnP device – an XBox Media Centre (XBMC36) media renderer, 

specifically AVTransport service. 

• Remote UPnP device – a MediaGate37 media server, specifically ContentDirectory 

service. 

• Jini Service – an emulated Jini service  

• External web service – Microsoft translation service38 

 
                                                        

36 xbmc.org 

37 http://www.cybergarage.org/twiki/bin/view/Main/MediaGateForJava 

38 api.microsofttranslator.com/V2/Soap.svc 
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The composite service (figure 39) takes a String parameter corresponding to a title of media. 

The name is translated to French and then searched in the remote media server. If the media 

is found on the remote server, the local media renderer is setup to play the media, and in 

 

Figure 39 HAN Service Orchestration with BPEL 
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parallel the Jini service is invoked. If the media is not found, an error message is returned 

indicating that the media was not found. The purpose of the example composite service is 

not to show the utility of the design for creating a specific composite service, but instead to 

demonstrate the variety of options for composition of services from different service 

protocols, and from multiple HANs, with external web services. The composite service was 

deployed to the ODE BPEL engine and testing has shown it worked as expected.  

 

5.9.5. Representing BPEL services as UPnP devices 

The last part of the implementation is a standalone application that enables the 

representation of BPEL composite services as UPnP devices in the local HAN, and by that 

enable their sharing with the UPnP service protocol plug-in. The only purpose of this 

application is to enable sharing of composite services, which was defined as a requirement 

(#22). The representation as UPnP devices was chosen because UPnP does not require the 

client to know in advance on the existence of the service. Unlike Jini, which requires the 

service client to have the service interface in advance, when representing composite services 

as UPnP devices, they can be safely advertised and consumed by applications without 

requiring previous information about the service. BPEL2UPnP is a singleton process 

running in the local HAN that is responsible for generating and maintaining virtual UPnP 

devices that correspond to composite services. When a composite service is deployed, the 

BPEL2UPnP application is called with a URL that corresponds to the WSDL document of a 

BPEL composite service. Using a WSDL parser, the document is parsed and information 

about the service name, input and output parameters, port and operation names and more is 

extracted. The service name is used to create a unique device identifier. Each port type in 

the composite service WSDL corresponds to a new UPnP service for the virtual UPnP 

device. BPEL2UPnP uses the service information extracted from the WSDL document to 

advertise the new virtual device and services to the local HAN. The device is advertised as 

having type: CompositeService:1 (version 1), however in the future this could be 

customised to a more meaningful service type with metadata given for the composite 

service. The device location is set to <host>:<port>/<device unique identifier>. When a 

SOAP request is received requesting the invocation of an action, the request is parsed and a 

corresponding SOAP request is composed and sent to the BPEL process URL. The SOAP 

response from the service is used to populate the output variables of the UPnP service and 

the corresponding SOAP response is returned to the requesting control point application. 

Figure 40 shows the device description corresponding to the BPEL composite service 



 213 

presented in figure 39 as automatically generated and hosted by the BPEL2UPnP 

application.  

 

When the composite service is undeployed, it is removed from the cache of BPEL2UPnP, 

which in turn announces a byebye on behalf of the virtual device and its constituent services.  

 

For the purpose of the prototype, the integration between the BPEL engine and 

BPEL2UPnP is manual. This means that when a new process is deployed, BPEL2UPnP 

needs to be invoked separately with the URL representing the WSDL document in the 

application server. The purpose of BPEL2UPnP is to demonstrate how BPEL services can 

be shared with remote HANs as UPnP services, therefore it is sufficient to demonstrate that 

a given BPEL composite service described as WSDL can be mapped to a UPnP device. The 

BPEL2UPnP was tested and worked as expected.  

 

5.10. Summary 

This chapter presented the prototype implementation for Krox system architecture and 

system design with plug-in implementations for UPnP and Jini. The Krox system prototype 

implementation demonstrated the utility, and feasibility of Krox system design, specifically 

the plug-in framework and the design for the specific HAN service protocols. The level of 

testing, which was conducted for the prototype system, as described in section 5.5.5, 5.6.3, 

5.8, and 5.9.4, indicates that the system worked as expected and conformed to the design 

specification, except for specific areas where this is explicitly discussed.  

 

Figure 40 UPnP Device Description Corresponding to a BPEL Composite Service 
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Table 6 KROX System Prototype Requirements Addressing 

Req # Description Addressed by Tested with 

#1 Cross service protocol 

service composition  

Using a BPEL engine and the plug-in’s generated web services that were 

deployed in the local servlet container 

Tested with a composite service that included Jini, UPnP, and 

web service 

#2 Share composite services  BPEL2UPnP standalone application addressed the mapping from the 

WSDL of the composite service and its stateful representation as a UPnP 

device 

Tested and demonstrated via the client application 

#3 Cross HAN service 

composition  

Using the service virtualisation and the web service generation in the 

VRM of the UPnP and Jini plug-ins, enabled the composability of remote 

services 

Tested with the composite service that included a local media 

renderer and a remote media server 

#4 Enable sharing of HAN 

services from the local HAN 

with remote HANs  

The service virtualisation implementation of the plug-ins through the 

core event model and its extensions 

Tested for each plug-in separately using the log validation 

technique and demonstrated via the client application 

#5 Automatic discovery of 

resources from remote HANs 

shared with the local HAN  

The implementation of the different implementations of the VRM in the 

UPnP and Jini plug-ins.  

Tested for each plug-in separately using the log validation 

technique and demonstrated via the client application 

#6 There must be no restriction 

that prevents sharing the 

same devices and resources 

with multiple remote HANs  

The implementation does not restrict sharing of the same devices to 

multiple remote HANs 

Testing was made with all HANs sharing all devices with all 

other HANs, thereby showing that the same devices can be 

shared with multiple HANs 

#7 Interaction of applications 

with remote devices must be 

identical to the interaction 

with local of the same service 

protocol  

The implementation of the different implementations of the VRM in the 

UPnP and Jini plug-ins.  

 

Tested with the client application 

#8 The system must not require 

modification to service 

protocols and must support 

plug-and-play  

Supported through the plug-in framework event model, and the service 

virtualisation implementation of the different plug-ins 

Tested with the client application that was implemented as a 

UPnP and Jini regular client, thereby showing that client 

applications do not require modifications to discover and 

interact with remote devices in the local HAN. In addition, this 

was tested and demonstrate using a standard control point 

application included with XBOX Media Centre (XBMC) 

#9 Independence of access 

network technology  

The implementation is independent from any access technology and does 

not make assumptions on a specific access technology 

The system was tested with both DSL and cable access 

technologies 

#10 The system must be able to 

discover and share devices 

with networks that are using 

NAT even in the existence of 

devices with identical IP 

addresses in multiple HANs  

This is addressed by multiple components: 

•  The communication subsystem uses TCP connection 

•  The UPnP plug-in does not use private IP addresses beyond the scope 

of the local HAN, thereby supporting duplicate addresses in 

connected HANs.  

•  Out of band communication was addressed by replacing the internal 

IP address with external IP address assuming that the appropriate 

configuration of firewall has been pre-made 

Tested and demonstrated via the client application with multiple 

HANs having identical private IP addresses. Devices were 

appropriately discovered, and the client enabled to invoke 

actions on them. Streaming was tested and demonstrated with 

remote media server connected to a local media renderer 

 

 

#11 The system must be able to 

communicate with remote 

HANs behind firewalls  

The communication subsystem only requires the instant messaging port 

to be open. For the prototype purpose only, for out of band 

communication the firewall needs to be preconfigured 

Tested with the client application with remote HANs behind 

firewall.  

#12 All communication with 

remote HANs must be 

authenticated  

The first step in the system’s bootstrap is authentication with IM&P 

server 

Unit testing, if authentication fails the system exists. 

#13 Access control – Sharing 

must not be automatic and 

must enable home users to 

control which resources are 

shared with which remote 

HANs  

This was addressed partially by this prototype – the implementation 

mandates that only resources that are shared are notified to remote HANs 

with which sharing has been agreed, however for this version, the only 

policy that was supported was share all devices with all remote HANs. 

The system was tested with a stub implementation of access 

control, such that access control is checked but always returns 

true. 

#14 Confidentiality - all traffic 

between remote HANs must 

be encrypted  

The XMPP server was configured such that all communication between 

the client and the server is encrypted 

The system was tested with the client-to-server encryption 

handled by the XMPP client and server.  

#15 Security vulnerability  Was not addressed specifically by the prototype implementation. This is 

the subject of the security analysis presented in the next chapter 

N/A 

#16-

#19 

Performance requirements The prototype implementation was implemented with performance 

considerations however, the actual performance evaluation is presented 

in the next chapter 

N/A 

#20 Extensibility to additional 

HAN service protocols  

The extensible event model was extended for the implementation of 

UPnP and Jini service protocols. The differences between the service 

protocols, and their similarities with other protocols give good indication 

about the generality of the system architecture 

Tested with UPnP and Jini plug-ins and demonstrated with the 

client application 

#21 Dynamic relation 

management with remote 

HANs  

The IM&P user model implemented with the Smack XMPP client library 

provides notifications when a remote HAN is added to the buddy list of 

the local HAN. In the prototype adding and removing remote HANs to/

from the buddy list was made using the XMPP server administration user 

interface, however the Smack API support these operations. 

Tested using the XMPP server administration user interface, for 

adding/removing remote HANs from the buddy list of a local 

HAN and validating that the notification is received and 

processed correctly. Demonstrated via the client application 

user interface 

#22 Pause/resume sharing with 

remote HANs  

The IM&P user model implemented with the Smack XMPP library 

enables changing the presence status of the local HAN and by that pause 

all sharing with remote HANs. “Blocking” the sharing with a specific 

remote HAN enables to suspend the sharing with this remote HAN 

temporarily 

Was not tested  

#23 The system must not require 

manual configuration of the 

home gateway and its 

administration must be 

appropriate for non-technical 

users  

Configuration of the home gateway is not required for the system, 

however for demonstration of streaming, the home gateway was 

preconfigured as discussed above. An administration application was not 

implemented however the IM&P user metaphor demonstrated with the 

client application gives good indication on the appropriateness of the 

level of administration required for operating the Krox system  

N/A 
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Table 6 summarises the requirements as they were defined in section 3.4 and their 

addressing by the prototype implementation and their level of testing.  

  

In accordance with the design science research methodology the key contribution of Krox is 

the architecture and design for integrated intra-HAN and inter-HAN service interoperability. 

Krox system architecture extends the state of the art presented in chapter 3 in the following 

aspects: 

1) An integrated approach to service interoperability – Enables services from multiple 

service protocols to be shared with remote HANs and composed in both local and 

remote HANs with other services. This has not been addressed by any of the systems 

reviewed in chapter 3. 

2) An open pluggable architecture and an extensible plug-in framework that enables 

multiple different HAN service oriented protocols to be supported for intra-HAN and 

inter-HAN service interoperability without requiring modifications to the service 

protocols, while supporting seamless integration with client applications in the HAN. 

The utility of the plug-in framework was demonstrated with multiple service protocols.  

3) Krox service composition subsystem enables seamless composition of local and remote 

HAN services as well as further sharing of composite service. The Krox system 

architecture enables services of multiple HAN service protocols to be composed through 

the mapping between the HAN service interface and web service, which enables service 

orchestration. Through service virtualisation both local and remote HAN services can be 

composed. While the ability to compose services across multiple service protocols was 

suggested in literature [106, 2], the orchestration presented in this thesis for services 

from local and remote HANs is novel. Finally it has been shown how composite 

services can be shared with remote HANs through mapping to virtual UPnP services 

and then seamlessly shared similarly to actual UPnP devices and services.  

 

The following chapter presents a performance evaluation of the system prototype and a 

security analysis of the potential system vulnerabilities and mechanisms for defending 

against them. 
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Chapter 6  
EVALUATION 

Chapter 4 presented the Krox system architecture and system design supporting integrated 

intra-HAN and inter-HAN service interoperability. In chapter 5, a prototype implementation 

of Krox system was presented, demonstrating the feasibility of the design approach. The 

design science research methodology requires the quality, and efficacy of a design artefact 

to be rigorously demonstrated and then assessed though a well executed evaluation method. 

Section 6.1 defines the evaluation goals based on the relevant performance and security 

requirements. In this research two evaluation methods, experimental evaluation, and 

analytical evaluation were used to assess the system design and implementation. The 

experimental evaluation intends to study the behaviour of the Krox system in a controlled 

environment with regard to performance with respect to the system requirements using 

simulation. Section 6.2 presents a performance evaluation of inter-HAN service 

interoperability (HAN service sharing), and section 6.3 describes the performance 

evaluation of intra-HAN service interoperability (HAN service composability). For 

evaluating the security of the system architecture and design, section 6.4 presents an 

analytical evaluation that examines the potential security vulnerabilities and threats and how 

the system can prevent an attack on an individual HAN from using the Krox system to 

spread to additional HANs. Finally section 6.5 presents concluding remarks.  

  

6.1. Evaluation goals 

The requirements for the Krox system architecture as specified in section 3.4 identified 

several performance and security requirements: 
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6.1.1.  Performance 

1. REQ #16 – Scale up (intra HAN) – The system must be able to represent up to 300 

remote services with no significant latency. More services can be supported with 

reduced performance. 

1) REQ #17 – Scale up (inter HAN) – The system must be able to scale to a small 

number of remote HANs corresponding to close family and friends. The number of 

remote HANs must not exceed 15 remote HANs. 

2) REQ #18 – Scale down – The system should be deployable on popular operating 

environments including Linux, Windows, Mac OS X. The system’s deployment 

requirements should be appropriate for home area networks – It must be possible to 

deploy the system on low-end machines, specifically home gateways where RAM 

does not exceed 1GB and CPU does not exceed 2GHz. 

3) REQ #19 – Concurrent access – It must be possible for multiple remote HANs to 

interact with the same local HAN resource simultaneously.  

 

Based on the above requirements, the goal of the performance evaluation is to assess the 

different performance aspects of the Krox system with between 5 and 15 remote HANs and 

up to 300 remote services represented in the local HAN. There are two main areas for 

evaluating the performance of Krox system: inter-HAN service interoperability i.e. the 

ability to represent remote services and interact efficiently with remote HANs and intra-

HAN service interoperability and composability, i.e. the ability to efficiently represent 

remote and local HAN services as composable and interoperable services with no significant 

latency. More specific criteria for inter-HAN and intra-HAN performance evaluation are 

given in section 6.2 and section 6.3 respectively.  

 

6.1.2.  Security 

The security requirements for authentication (REQ #12), access control (REQ #13), and 

confidentiality  (REQ #14) were already addressed in the previous chapters. The focus of 

this chapter is the analysis of security vulnerabilities and the corresponding required 

mitigation mechanisms: 
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REQ #15 – Vulnerability – Some service protocols for the HANs contain security 

vulnerabilities, however as they are not designed to work over unsecure networks such as 

the Internet, these vulnerabilities are relatively of low risk when restricted to a single 

network. It is an essential requirement that the multi HAN sharing system will not increase 

security vulnerability of the home network by introducing new threats or by extending 

existing vulnerabilities. 

 

6.2. Inter-HAN service interoperability 
performance evaluation 

The inter-HAN service interoperability performance evaluation assesses the ability of the 

Krox system to efficiently discover resources in the local HAN, share them with remote 

HANs and represent them in these HANs as virtual resources. In order to assess the effect of 

each service protocol on performance, two separate experiments were designed for UPnP 

and Jini. Due to its verbose nature, and its support for event notifications, it is expected that 

UPnP plug-in would provide a worst-case scenario for performance evaluation. Therefore 

the main performance evaluation of the Krox system was made with UPnP service protocol 

plugin and UPnP devices. A complementary evaluation for the Krox system with the Jini 

service plug-in was performed to assess specifically the effect of using the dynamic proxy 

technique on the performance of invocation of remote Jini services. The performance 

evaluation of the Krox system with UPnP service protocol plug-in is described in section 

6.2.1 and the performance evaluation of the Krox system with Jini is described in section 

6.2.2. 

 

6.2.1.  UPnP 

Following the experimental evaluation methodology [57], the performance of Krox system 

implementation was evaluated using a controlled experiment using an emulation of UPnP 

devices and control points. The emulation of UPnP networks enables the experiment to 

evaluate the Krox system architecture as the design artefact in a controlled environment 

where device and control point behaviour can be controlled and tuned to the experiment 

requirements. The performance requirements as described in section 3.4 specify two 

dimensions that need to be assessed: the number of HANs with which services are shared, 
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and the number of remote services shared with the local HAN. The first experiment 

evaluates the system performance with an increasing number of services while the number 

of participating HANs remains fixed, however the results of this experiment are also 

analysed to predict the impact of adding more HANs. 

  

The following sections describe the performance evaluation parameters and the 

experimental design.  

 

6.2.1.1. Evaluation parameters 

When considering the inter-HAN performance aspects of Krox system architecture, several 

parameters need to be evaluated: 

• CPU utilisation – What is the processing overhead added by the system? 

Regardless of whether the Krox system is deployed on a powerful server, embedded 

within the home gateway, or running on a standalone appliance, it must be verified 

that CPU usage of the system is relatively low.  

• Memory utilisation – How much memory is consumed by the Krox system? It is 

important to analyse the system’s memory utilisation and observe the impact of 

caching (e.g. of description documents in the VRM) on memory consumption. Both 

the LNC and the VRM affect the memory utilisation of the system. The LNC 

maintains a repository of all local announcements, and the VRM maintains a 

repository of all remote announcements and caches description documents fetched 

from remote HANs. It is therefore expected that the memory utilisation will grow 

linearly with the number of services available in the local HAN, both local devices 

and remote devices and services shared with the local HAN.  

• Responding to local HAN’s search requests – How long does it take for the UPnP 

VRM to respond to search requests in the local HAN with responses corresponding 

to remote devices and services? The VRM in the local HAN listens to search 

requests made by control points in the local HAN. When search request is received, 

the VRM needs to respond with every device/service announcement that 

corresponds to the service type in the search request. More services shared with the 

local HAN lead to potentially more processing in the VRM.  
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• Discovery delay – How long does it take to process a remote device announcement 

from when it is received to the local HAN, until it is announced? Once the LNC 

discovers a local device it sends notifications to all remote HANs with which it is 

shared, where the corresponding VRMs announce it. The purpose of the evaluation 

is not to measure the delay introduced by the external network time, which depends 

on the downstream and upstream bandwidth of the HAN and on the public network. 

Instead the purpose is to evaluate the delay introduced by the processing of the 

VRM, and observe the effect of having more devices and services shared with the 

local HAN with respect to the time it takes for the VRM to announce remote 

services in the local HAN especially with machines without high concurrency – i.e. 

machines with no multiple processors or multiple cores, where the processing of 

received messages is streamlined. 

• Remote description delay – How much overhead is added by the VRM to 

description request processing (with and without caching)? Fetching device/service 

description requires a number of steps. While the system does not control the time it 

takes to fetch the description from the device, or to send it over the network, it is 

important to evaluate the delay added by the VRM itself. This delay equals the time 

spent in the VRM – i.e. until a message is sent to the remote HAN requesting the 

description, and from the time a response message is received with the description is 

received from the remote HAN, until the description is sent to the requesting control 

point.  

• Remote invocation delay – How much overhead is added by the VRM to SOAP 

request processing? i.e. of the overall time that a SOAP request processing took, 

how much was spent in the VRM, before a message was sent to the remote HAN 

requesting the invocation, and after the response was received. While the number of 

SOAP requests may be relatively small comparing to the number of description 

requests, the handling of control requests must be very efficient to minimise the 

overhead to allow true seamless integration, abstracting the remoteness of a shared 

device.  

• Event notification delay – How long it takes from the time a subscribed event 

notification from a remote device is received in a VRM, until the notification is sent 

to the subscribed control point? Remote event notification processing must be very 

efficient to abstract the remoteness and enable applications to get real-time status 

updates about service changes.  
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• Bandwidth utilisation – How much bandwidth is consumed by the Krox system for 

its message exchange between remote HANs? The bandwidth use of the Krox 

system is assessed by measurement of the number and size of messages sent 

between Krox system instances in remote HANs. The bandwidth used by Krox 

system depends on the behaviour of control points and their interaction with the 

system. More interaction leads to more SOAP requests, which lead to more inter-

HAN communication, such that the size of the response can affect the consumption 

of bandwidth. The purpose of this parameter is to assess the levels of the bandwidth 

used by the Krox system for inter-HAN communication.  

 

6.2.1.2. UPnP emulated network design 

When considering a network of UPnP devices there are a number of parameters that may 

impact performance: 

1) Number of devices – More devices lead to more SSDP announcements, which 

leads to more processing overhead on the LNC. More shared devices from remote 

HANs imply more inter-HAN traffic and more overhead on the VRM in the HANs 

with which devices are shared.  

2) Number of services per device – More services lead to more SSDP 

announcements, which have the same impact as more devices.  

3) Duration of device availability in the HAN – It is expected that some of the 

devices in the HAN are stationary and not moving, while others are mobile and can 

join and leave the HAN more frequently. The duration of the device availability, as 

indicated in its SSDP announcement affects discovery and inter-HAN 

communication. More mobile devices mean more devices with shorter duration, and 

possibly devices that leave and re-join the network frequently. The impact on 

performance is not limited to discovery but also affects description requests that can 

be initiated by control points every time a device joins the HAN.  

4) Frequency of search requests – Search requests in the local HAN require the 

VRM to respond with search response for each remote service that corresponds to 

the service type given in the request. In case the control point is interested in all 

service types, this means that the VRM must respond with a search response for all 

remote services. Therefore more search requests lead to more overhead on the 

VRM. 
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5) Frequency of description requests – The typical behaviour of a control point is to 

request the description of all services that match a certain type – e.g. if the control 

point sent a search request for media servers to the local HAN, it will request the 

description for each root device that replied to the search request. More description 

requests imply more processing overhead on the VRM, more inter-HAN traffic 

(until description cache is populated), and more processing overhead in the remote 

LNC.  

6) Frequency of SOAP requests – There is no typical behaviour with regard to SOAP 

requests as they correspond to actions orchestrated by control points on behalf of 

users, however it is clear that more SOAP requests lead to more overhead on the 

VRM, more inter-HAN traffic for requests and responses, and more overhead on the 

remote LNC. In addition, SOAP responses can be of variable size, such that longer 

SOAP responses can have bigger impact on performance.  

7) Number of event subscriptions – More event subscriptions may lead to more event 

notifications being sent, and for shared devices it increases both the inter-HAN 

communication as well as the processing in both the LNC and the VRM. In 

addition, since event subscription is proxied by the LNC on behalf of the remote 

Krox system instance, it also affects memory consumption.  

8) Number of event notifications – More event notifications lead to more processing 

in the LNC that receives the notification, more inter-HAN traffic, and finally more 

processing in the VRM that is subscribed on behalf of a control point.  

9) Number of shared devices vs. unshared devices – More local devices shared with 

remote HAN lead to more inter-HAN traffic and more processing in the VRM of the 

remote HAN. More local device shared with remote HANs, also imply more 

overhead on the LNC for processing remote requests related to those shared 

devices. 

10) Number of remote HANs with which sharing is allowed – More HANs with 

which sharing is allowed leads to more inter-HAN traffic and more processing on 

the local system’s LNC for remote description, invocation, and event subscription 

requests.   

 

In order to be able to control all of the above parameters in an experimental environment, an 

emulation of UPnP devices and control points was designed and implemented. The 

following sections present the design for the emulated UPnP device and control point. 
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6.2.1.2.1.  Emulated UPnP device 

The emulated UPnP device (figure 41), designed and implemented for the performance 

evaluation of the Krox system, implements the UPnP specification for discovery, 

description, control, and eventing, and can be configured to load a number of services and 

embedded devices.  

 

The emulated device is constructed with a duration parameter that defines for how long it is 

available in the HAN. When the emulated device receives a search request, it responds with 

a search response packets for each supported service that corresponds to the service type in 

the request. Following the UPnP specification and the MAX_REPLY_DELAY_TIMEOUT 

(MX) parameter of the search request, the emulated device waits a random number of 

seconds (between 0 and the value of MX) before it sends its search response. In addition to 

responding to search requests in the local HAN, the emulated device announces its presence 

regularly in an interval that corresponds to its preconfigured duration by sending presence 

announcements to the SSDP port in the local HAN (UDP port 1900) in regular intervals. 

When the emulated device leaves the HAN it sends byebye SSDP announcements. This 

provides a mechanism to emulate both stationary devices, i.e. available for longer duration 

in the HAN, and mobile devices, i.e. available for shorter duration in the HAN, joining and 

 

Figure 41 Emulated Device Architecture 

Emulated UPnP Device 

SSDP Presence Announcer 

SSDP Search Listener 

HTTP 
Listener 

Description 

Control 

Eventing 



 224 

leaving the HAN frequently.  

 

The emulated device listens to HTTP description requests and responds with a well-formed 

XML description document. For the purpose of performance evaluation, the coarse-grained 

description request is sufficient to assess the performance impact of description requests on 

the Krox system, therefore it was not necessary to implement different types of description 

request/response as they are processed similarly across the Krox system. The returned XML 

description document is based on a template of a media server instrumented with the 

specific device details during the processing of a description request.  

 

The emulated device supports the UPnP control protocol only in a limited way. Support is 

restricted to accepting UPnP control SOAP requests and returning one of two successful 

SOAP responses. The responses, selected in turn, differ in their size: the long response is 

150 kilobytes corresponding to a “browse” response with 150 items and their metadata, and 

the short response is 4 kilobytes, corresponding to a “browse” response of one directory 

entry.  

 

The emulated device also supports the UPnP eventing protocol, enabling control points to 

subscribe for changes in the service state variables. Every execution of a SOAP request on 

the emulated device triggers event notification to its subscribers. In “live” UPnP devices 

some SOAP actions lead to changes in the state of the devices and consequently in its state 

variables, which in turn leads to notifications being sent to event subscribers. In this sense 

the event model of the emulated device is a superset of these cases.  

 

6.2.1.2.2.  Emulated UPnP control point 

The emulated UPnP control point, designed and implemented for the performance 

evaluation of the Krox system, is a UPnP client application that sends periodic search 

requests and listens to device announcements in the local HAN. In order to maximise the 

load on Krox system, all search requests sent by the emulated control point are sent with a 

search type: ssdp:all that indicates that all devices in the HAN must respond with all of their 

services. In fact, based on the UPnP specification, a root device (a device that is not 

embedded inside another device) with 3 services must respond with 6 search response 
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announcements, one per service, and 3 for the device - one corresponding a root device, one 

corresponding to the device unique identifier (UUID), and one corresponding to the device 

type. The control point sends search requests to the local HAN at regular predefined 

intervals. Following the typical control point behaviour, for each search response that 

corresponds to a root device, the control point sends a description request. For a 

preconfigured percentage of the root device announcements, the control point sends 2 

consecutive SOAP requests. This corresponds for example to the interaction required for 

setting up streaming between a media server and a media renderer. Finally, if the device 

duration (as given in the device announcement) is above a preconfigured threshold, the 

control point subscribes for event notifications.  

 

6.2.1.3. Experimental setup 

The UPnP emulation described in the previous sections specifies a number of parameters 

that need to be configured for the Krox performance evaluation experiments. This section 

discusses the value selection and the reasons for selecting these values.  

 

1) Device duration – As discussed earlier, UPnP devices can be divided into two 

groups: stationary devices and mobile devices. Stationary devices do not leave and 

re-join the network with any frequency e.g. a UPnP enabled refrigerator, a UPnP 

TV, a residential gateway. The UPnP device architecture document [133] 

recommends that 1800 seconds is the minimum interval between UPnP device 

announcements and recommends that stationary devices should have a much longer 

interval, typically one day. For the purpose of the experiment, stationary emulated 

devices are constructed with announcements interval of 900 seconds. The purpose is 

to increase the number of announcements and therefore the overall traffic to enable 

stress testing of the Krox system implementation. Mobile emulated device are 

constructed with a short duration randomly selected from the set (in seconds) {60, 

120, 300, 450, 600}. 

2) Search requests – The emulated UPnP control point is configured to send a search 

request every 2 minutes. The purpose of the search request is to force the VRM to 

process these requests and consequently respond on behalf of remote services, 

which leads to the control point requesting description for root devices, which 

finally leads to more inter-HAN communication. The emulated control point is 

interested only in remote devices, therefore it ignores all responses for local 
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emulated devices. Typically a control point does not send a broad search request for 

all devices in the HAN. Control points are typically in a specific type of device, e.g. 

media server, or Internet Gateway Device. However since only a single control 

point is running in the HAN, and in order to evaluate the system under stress this 

value was selected.  

3) Description requests – As discussed above, whenever a search request is received 

for a remote root device, the emulated control point sends a description request. In 

addition, whenever an announcement  is received from an emulated device, another 

description request is sent. 

4) SOAP requests – The emulated UPnP control point is configured to send SOAP 

request for 10% of the device announcements it receives from remote emulated root 

devices. SOAP requests correspond to an action requested by a human user via a 

control point, or through a composite service. Therefore by artificially increasing 

the number of SOAP request, the load on the system via SOAP requests can 

emulate more the load from more HANs that actually participating in the 

experiment. The SOAP request is triggered whenever a device announcement or 

search response is received.  

5) Event subscription requests – The emulated UPnP control point is configured to 

subscribe to event notifications for all stationary devices (i.e. all devices whose 

duration is greater than or equal to 900 seconds). The subscription request is 

triggered when a device announcement or search response was received. Therefore 

the control point may be subscribed more than once to the same service.  

6) Event notifications – The emulated UPnP device is configured to send event 

notifications to subscribed clients. In a normal UPnP setup, a change to the state of 

the service leads to an event related to the state variable that changed. In order to 

increase the inter-HAN traffic, each SOAP request that is served by the emulated 

device results in a number of events being sent to all of the subscribers of the 

service.  

7) Shared vs. unshared devices – for the evaluation all devices are shared with all 

other remote HANs. This is useful for increasing the inter-HAN traffic, and the load 

on each of the participating HANs. 

 

The following section describes the hardware that was used for performing the UPnP 

experiment.  
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6.2.1.3.1. Hardware 

The hardware for the evaluation included 5 desktop components such that each one 

corresponds to a HAN controller and runs the Krox system as well as the UPnP network 

emulation during the experiment. The desktops differ in their processors, cache size, 

memory, and network card. It is expected that the evaluation results will be proportional to 

the computing resources available in the machine running the Krox system: 

• 5 Desktop machines with Linux Ubuntu39 10.04 operating system 

o Desktop 1: Intel Pentium 4, 2GHz, 512KB cache, 1GB Memory, 100Mb/s 

network card 

o Desktop 2: Intel Pentium 4, 3GHz, 2MB cache, 2GB Memory, 1000Mb/s 

network card 

o Desktop 3: Intel Pentium 4, 3.2GHZ, 2MB cache, 2GB Memory, 1000Mb/s 

network card 

o Desktop 4: Intel Pentium 4, 2GHZ, 512KB cache, 750MB Memory, 

100Mb/s 

o Desktop 5: Intel Pentium 4, 2.4GHZ, 512KB cache, 1GB Memory, 

100Mb/s 

• Macbook Pro with OS X 10.6.7 operating system, Intel Core 2 Duo, 2.6GHz, 6MB 

cache, 4GB Memory running XMPP OpenFire server 3.6.4.  

 

In the Desktop machines running Linux, no other software is installed besides the Krox 

system. 

 

6.2.1.3.2. Experiment design 

The evaluation setup (shown in figure 42) consists of the hardware described above, such 

that each desktop computer corresponds to a single HAN and runs the Krox system, a single 

emulated control point, and a set of emulated devices. A number of experiments were run, 

                                                        

39 http://www.ubuntu.com/ 



 228 

and the number of devices and the ratio between stationary and mobile devices depends on 

the specific experiment. All the participating Krox systems are configured to share all of 

their devices with all of the other participating HANs. This is in order to increase the inter-

HAN traffic during the experiments. The XMPP server, installed on the 6th machine 

(macbook laptop), is accessible to all of the Krox system instances.  

 

The following sections describe the experiments that were performed with UPnP network 

emulation and their results.  

 

For these UPnP experiments, the number of HANs is fixed to 5, such that each HAN runs 

the emulated UPnP network and an instance of Krox system. In order to evaluate the 

performance of Krox system implementation with a growing number of services shared 

from remote HANs, the experiment included 10 steps such that each step is run for an hour. 

In every step of the experiment, the number of emulated devices in each HAN is increased 

by 5. Since there are 5 HANs and since all devices are shared with all other HANs (i.e. 4 

other HANs), this results in 20 remote devices shared with each of the HANs added during 

each step of the experiment. Each emulated UPnP device has 3 services; therefore 20 remote 

devices correspond to 60 remote services shared with each of the HANs, added during each 

step of the experiment. For consistency, each step of the experiment is separate and involves 

restarting the Krox system and the emulated UPnP devices and control point followed by an 

hour of execution.  

 

Figure 42 Experimental Setup 
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At the first step, each HAN has 5 local emulated UPnP devices, and in the final step, each 

HAN has 50 local UPnP emulated devices, which implies 200 remote shared devices, and 

600 remote services shared in each HAN. While the requirement is for maximum number of 

300 remote services shared with the HAN, testing with this larger load gives a higher degree 

of comfort in evaluating the system’s performance under the target load.  

 

The experiment was repeated twice with different mixes between stationary and mobile 

devices. The first iteration of the experiment was performed with 80% stationary devices 

and 20% mobile devices. The second iteration was performed with 60% stationary devices 

and 40% mobile devices. Each iteration repeated the 10 steps described above such that the 

number of devices starts from 5 per HAN in the first step, and reaches 50 devices per HAN 

in the last step. The purpose of running two iterations with different mobile to stationary 

devices ratio, was to validate the assumption that the impact of the proportion of mobile to 

stationary devices on the overall performance is negligible. The results show that the 

differences are indeed insignificant, therefore for presentation purposes the averaging of the 

two iterations is used, in order to focus on the significant performance issues.  

 

Stationary devices are constructed at the beginning of each step of the experiment and 

announce their presence every 900 seconds. Mobile devices are constructed in the beginning 

of each step but are short lived and once their duration expires they are removed from the 

network. In order to maintain a fixed number of devices in each HAN for consistency, 

whenever a mobile device is removed from the HAN, another mobile device is created 

immediately.  

 

6.2.1.4. Experimental results 

The following sections describe the results of the experiments.  

 

6.2.1.4.1. CPU utilisation 

In order to measure the CPU utilisation of the Krox system, the CPU utilisation is sampled 

every 30 seconds. Figure 43 shows the increase in CPU utilisation of the Krox system with 
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the increased number of services shared with the local HAN. It can be seen that the CPU 

with 300 services shared with the HAN (which is the maximum required) in all of the 

desktops is below 4%. Even with 600 remote shared services the CPU grows linearly to less 

than 7% for all of the desktops in the setup. 

 

6.2.1.4.2. Memory utilisation 

The heap memory utilisation of Krox system was sampled every 30 seconds. Before the 

heap size was sampled, full garbage collection was performed, to ensure de-allocated 

memory is freed. Memory is used by the LNC to store local device announcements and 

remote HAN’s event subscriptions. The VRM stores in memory remote device 

announcements, cached descriptions, and event subscription information. Therefore it is 

expected that the heap memory will grow linearly with the number of available services 

(both local and remote). Figure 44 shows the growth in heap memory with the increase in 

remote services shared with the local HAN. It should be noted that this heap memory also 

includes instrumentation required for collection of results during the experiment; therefore 

the actual heap memory usage of the Krox system is even lower than what is shown in 

figure 45. The heap memory of the system does not exceed 6 megabytes with 300 remote 

services shared with the local HAN in all machines and with 600 remote shared services, the 

heap memory is still below 10 megabytes. 

 

Figure 43 Krox System CPU Utilisation with polling  
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6.2.1.4.3. Local search processing 

As described earlier (6.2.1.2.2), the emulated UPnP control point sends an ssdp:all search 

request every 120 seconds to the local HAN, which requires all devices in the local HAN to 

respond. Specifically this requires the VRM in the HAN to respond on behalf of all remote 

devices and services it currently represents (i.e. that have not expired). Since the VRM 

caches remote device/service announcements, handling search requests does not require 

inter-HAN communication. Instead it requires the VRM to check all cached remote 

device/service announcements and announce a search response for each one that has not 

expired. If the announcement has expired, it is removed from the cache and its removal is 

announced (i.e. byebye announcement). It is therefore expected that the processing time for 

search requests will be proportional to the number of remote services shared with the local 

HAN. According to the UPnP specification, this means for example, if the number of 

remote devices the VRM represents is 100, each with 3 services, the VRM needs to send 

600 search responses to the requesting control point, i.e. 3 per device + 1 per each service 

(i.e. 3 more). The time here is measured from when a search request was received, until the 

VRM finished its processing, therefore sent the last search response. Figure 45 shows the 

average and maximum results of the measurement of the VRM’s search processing time. As 

can be seen the processing time grows linearly with the number of services. It can also be 

observed that the more powerful desktops (desktop 2, desktop 3 with more powerful 

processors) outperform the others (desktop 1, desktop 4, desktop 5). With 300 remote 

 

Figure 44 Krox System Heap Memory Utilisation 
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services shared with the local HAN, a search request is processed in less than 1.5 seconds. 

In fact, in the more powerful desktops (desktop 2, desktop 3), this is completed in less than 

750 milliseconds. The maximum search request processing time for 300 remote services is 

less than 4 seconds.  With 600 services shared with the local HAN, the average processing 

time reaches 2.5 seconds, which is still reasonable time for a control point to wait for device 

results.  

 

The VRM implicitly implements the MX behaviour, which requires a device to wait 

between 0 and MX seconds randomly before sending the response to a search request (the 

MX is given in the search request). Therefore the sequential processing of the VRM can be 

considered to implement the desired MX behaviour without explicitly waiting before 

sending the result. To make this more accurate, when the number of remote services shared 

with the local HAN is small, the VRM could introduce some random wait in order not to 

overwhelm the local HAN with search responses. Indexing the remote device 

announcements by common service types could further optimise the results. While this 

would not change the results for the case of ssdp:all service type, it would improve the 

performance for specific service types that are commonly searched by control points.  

 

Figure 45 Krox System Search Processing Time 
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6.2.1.4.4. Discovery delay 

The discovery processing of the VRM starts when a message is received in the 

communication subsystem indicating a remote resource has been added or removed. In the 

case where the resource was added, the VRM needs to construct a local announcement, with 

a location that corresponds to the remote device/service in the local HAN and announce it in 

its local HAN. Figure 46 shows the increase in discovery processing time that corresponds 

to the increase in remote devices/services shared with the local HAN. The processing 

includes construction of a device/service announcement from the original remote 

announcement that was sent, assignment of a local location to it and sending it to the local 

HAN’s multicast address. It can be seen that the average processing time remains constant 

 

Figure 46 Krox System Remote Discovery Processing Time 
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at less than 8 milliseconds however the maximum processing time grows to less than 250 

milliseconds with 300 remote services and less than 320 milliseconds with 600 remote 

services shared with the local HAN. The increase in the maximum while the average 

remains constant is explained by the fact that with more load, there are only occasional 

peaks that increase the maximum, however there are more samples due to the increased 

number of shared devices, and as most of them are handled efficiently and the average 

remains constant even under the high load. Moreover, the median is also constant and is 

very close to the average, and similarly the 90th percentile remains constant with the 

increase in the number of devices shared with the local HAN.  

 

6.2.1.4.5. Remote description delay 

As discussed earlier, the remote description processing time corresponds to the processing 

of a description request for a remote device/service in the VRM before sending a request to 

 

Figure 47 Krox System Remote Description Processing Time 
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the LNC, and from the time the VRM receives the corresponding description document 

from the LNC until it sends it to the control point in the local HAN. Once the VRM receives 

the description from the LNC it needs to parse it and add prefixes to the service URLs. 

While description latency is important, with the caching mechanism in the VRM, the 

description for each stationary device is only fetched once from the remote HAN. For 

mobile devices the description is fetched once during the lifetime of the device, however 

mobile devices are short lived. Therefore, the processing time of requests from the cache is 

even more significant. Figure 47 shows the average processing time for description requests 

remains relatively constant with the increased number of services shared with the local 

HAN. The average processing time is less than 10 milliseconds for 300 services shared, for 

all desktops. The increase in the load on the system with more shared services does increase 

the maximum processing time for remote description request. While for 300 remote services 

the maximum processing time is less than 450 milliseconds for all desktops, it goes above 

500 milliseconds when 600 services are shared with the local HAN. For cached description 

request processing, the processing time (average and max) is always below 5 milliseconds 

for all desktops, which is useful for reducing the inter-HAN traffic and processing overhead 

in the VRM.  

 

6.2.1.4.6. Remote invocation delay 

Remote invocation processing time measures the time it takes the VRM in the local HAN to 

process a SOAP request – from the time a request is received in the VRM, until it sends a 

message to the remote HAN requesting the invocation, and from the time it receives the 

SOAP response, until the message is sent back to the requesting control point. Figure 48 

shows the average and maximum processing time for SOAP requests in the VRM. It can be 

seen that the average SOAP processing overhead increases slowly with the growing number 

of devices. In addition it can be seen that for all desktops in the experiment the maximum 

processing time of invocation requests in the VRM is less than 250 milliseconds for 600 

shared services and under 175 milliseconds for 300 shared services.  

 

The number of SOAP requests made by local control point for remote devices grows from 

78 (with 60 remote services shared with the local HAN) to 780 (with 600 remote services 

shared with the local HAN), which produces the resulting additional load on the local Krox 



 236 

system which affects all of the measurements, not only the processing time of SOAP 

requests.  

 

6.2.1.4.7. Event notification processing time 

When the LNC receives an event notification that corresponds to a subscription made by a 

remote instance of Krox system, the LNC forwards the event using the communication 

subsystem to the subscribed Krox system. In the remote Krox system, the VRM resolves the 

actual subscriber and sends the event notification. The event processing time is the time it 

takes the VRM from when it received the event notification message from the remote LNC, 

until when the VRM sends the notification to the subscribed control point. Figure 49 shows 

that the event notification processing time in the VRM increases slowly with the growing 

number of devices with less than 15 milliseconds per event notification with up to 600 

remote services shared with the local HAN. It should be noted that the number of event 

notifications grows with the number of services (or more precisely with the number of 

 

Figure 48 Krox System Remote Invocation Processing Time 
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SOAP requests and event subscriptions made by the control point).  The number of event 

notifications grows from 300 per hour (for 60 services shared with the local HAN) to 3000 

per hour (for 600 services shared with the local HAN). With more services in the HAN the 

maximum event notification processing time grows to 250 milliseconds with 300 remote 

services shared with the local HAN and 412 milliseconds with 600 remote services shared 

with the local HAN.  

 

6.2.1.4.8. Bandwidth utilisation 

Figure 50 shows the increase in inter-HAN bandwidth, utilising the upstream and 

downstream Internet connection of the household, with more devices shared devices. The 

messages correspond to inter-HAN discovery announcements, description request and 

responses, control requests and responses, and event subscription and notifications. The 

 

Figure 49 Krox System Event Notification Processing Time 
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messages are counted in the communication subsystem, before they are sent and after they 

are received, and their size in bytes is measured. It should be noted that the amount of 

bandwidth consumed in this experiment is dominated by the large SOAP responses. With 

5.8-58 megabytes used for 39-390 large SOAP responses (in one hour), the bandwidth used 

for discovery, description, eventing, and shorter SOAP responses, which is the remaining 

bandwidth used is relatively small.  

 

6.2.1.4.9. Summary 

The sections above presented the results of the controlled experiment for Krox system 

implementation with UPnP plug-in and a UPnP emulated network with a setup of 5 HANs, 

such that each HAN is sharing all devices with all other 4 HANs. The results show linear 

scalability of the system both on average as well as on the maximum. The increase of the 

CPU utilisation shows that with up to 300 remote services in the local HAN the CPU is still 

relatively low at less than 4% on average on all desktop machines. The heap memory 

required to run the Krox with up to 300 remote services is less than 6 Megabytes. While this 

is relatively low, in addition to the memory required for the intra-HAN service 

interoperability, this may exclude potential deployment platforms, which are more resource 

constrained. The VRM response time to search requests made every 2 minutes with a search 

 

Figure 50 Krox System Bandwidth Utilisation 
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type of ssdp:all grows to less than 1.5 seconds on average with up to 300 remote services. 

With a maximum of up to 4 seconds these result indicate that control points in the local 

HAN can seamlessly discover remote services with no significant difference from local 

devices and services. From discovery point of view, an important factor is how long it takes 

before a device is discovered in its original HAN until it is announced in remote HANs with 

which it is shared. From the results shown in this experiment, it is apparent that this delay 

will be dominated by the network latency between the HANs because the local processing 

time of the VRM given a remote announcement is relatively small. Remote description 

delay is an important factor because it affects the seamless interaction with control points. 

The results show that on average this delay will be dominated by the network latency 

between the HANs and the time it takes the actual device description to be fetched. 

However when adding these delays, the overall delay exhibited by the VRM may be 

excessive in some cases. Therefore the use of caching is important and significantly 

improves the latency seen by the control point. Remote invocation delay affects the 

interaction with a human user or a composite service that is waiting for its completion. The 

results of the experiment show that on average the delay introduced by the VRM is 

negligible, however the maximum delay add to the network latency and the actual time 

taken for the device to return the response may impact the user experience. This is 

especially important in nested composite services where each layer can introduce a latency 

that when considered separately is negligible but the accumulative delay may be excessive. 

Event notification is an important mechanism for enabling control points to keep up to date 

with the state of devices they interact with. For example, a control point may want to know 

the status of a media player (playing, stopped, paused) so it can present it to its users, in 

addition a composite service may be using events to trigger some functionality. Therefore 

event notification delay should be relatively small. The experiment shows that on average 

the event delay is dominated by the network latency, and can enable seamless integration 

with control point applications with no significant delay. Similarly to remote invocation 

delay, in a nested composite service, when the maximum delay is exhibited in addition to 

the network latency, this delay may be excessive and may need to be reduced. Finally the 

experiment shows that the levels of bandwidth used for the communication required for 

enabling remote services to be discovered in local HANs is relatively small, therefore the 

actual amount of bandwidth used for communication between the HANs will be dominated 

by the amount of data used for interaction with devices, e.g. retrieval of play lists, or actual 

streaming of data.  
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As discussed earlier, since the setup is limited to 5 HANs sharing devices and services, in 

order to be able to reason about the scalability to more HANs, the emulated control point 

increases the load on the local HAN artificially. If the number of services shared with 

remote HANs remains fixed, more HANs with which devices are shared lead to more 

overhead on the LNC, with more description requests, SOAP requests, and event 

subscriptions from these remote HANs. Therefore the emulated HAN artificially increases 

the load on the LNC by sending more requests than is expected for sharing devices and 

services with 4 remote HANs 

 

Finally, the experiment was performed in a controlled environment, with no additional 

network activity such as downloading or uploading of content done in parallel to the 

experiment using the HAN’s bandwidth. Therefore it is apparent that the results only 

provide lower bounds on the potential performance of the system under realistic conditions.  

 

6.2.2.  Jini 

In the implementation described in the previous chapter, remote Jini services are represented 

in the local HAN with lightweight objects (GenericJiniForwarder). Additionally, Jini 

requires both HANs to have the Java interfaces of the services they wish to interact with in 

their path, therefore during discovery, only the name of the interface, the service instance 

identifier and the service attributes are sent using the communication subsystem. This 

guarantees that discovery related inter-HAN traffic is efficient. The main challenge with 

regard to remote Jini services is the invocation latency, as the number of hops from a client 

calling a method on a proxy to the service implementation being invoked in a remote HAN 

is relatively high as discussed in section 5.6.2.  

 

In order to evaluate the overhead of invoking actions of remote services, a sample Jini 

service was implemented (this is the name guessing service shown in figure 38). In this 

experiment two HANs were used such that one HAN (HAN1) was hosting the implemented 

Jini service and sharing it with the other HAN (HAN2), therefore the Jini service from 

HAN1 was shown in HAN2 as a remote Jini service. The service takes a String as a 

parameter and returns a String. To check the remote overhead of sending the request and 

response over the communication subsystem, the local execution time was compared with 

the remote execution time. In 100 executions, the method took 0.92 milliseconds on average 
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with the local Jini service. This time does not include the initial lookup but only the 

invocation of the method on the proxy object that was returned from the lookup service. In 

100 executions of the method on a proxy obtained for a virtual Jini service took 35.17 

milliseconds on average. This includes the full implementation of the remote invocation. 

The remote invocation added an overhead of ~34 milliseconds per each call. Considering 

that the method tested simply returns a string concatenation and is very light weight, it is a 

reasonable assumption that with a method that implements some more complicated function 

and with running on a public network infrastructure and the latency it may add, this 

overhead would be negligible.  

 

6.2.3.  Summary 

In the previous sections, the results from the inter-HAN service interoperability performance 

evaluation performed using the Krox system implementation were described. In this section 

the performance requirements as defined in section 3.4 are assessed based on the results 

presented in the previous sections.  

 

6.2.3.1. Scale-up (intra-HAN) – REQ #16 

The requirement (REQ #16) is to be able to represent 300 remote services in the local HAN. 

The results of the experiment described in 6.2.1.4 show that the Krox system with UPnP 

service protocol plug-in performs well with up to 300 remote services and scales linearly 

beyond that. The average CPU is below 5% for all systems in the evaluation, heap memory 

is below 8MB. Local search requests are completed on average in less than 1.5 seconds and 

the maximum processing time is less than 4 seconds. The overhead of the VRM for 

discovery, description, control and event notification is negligible – on average it is below 

15 milliseconds, and the maximum processing time is below 400 milliseconds. The results 

of the experiment for Jini services described in section 6.2.2 shows that the overhead for Jini 

service invocation is negligible and would be dominated by the network latency rather than 

by the processing overhead of the VRM or LNC. It is important to restate that the 

experiment does not evaluate the actual latency of the network between the HANs. The 

purpose is to evaluate the performance of the system in a controlled environment. A 

production system would be affected by the network latency and the upstream and 

downstream of HANs, however the relevant metrics measured in this evaluation should still 

hold and can therefore be compared against other systems implementations.  
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6.2.3.2. Scale-up (inter-HAN) – REQ #17 

The requirement (REQ #17) is to be able to share devices and services from the local HAN 

with up to 15 remote HANs. As discussed in the experimental design (section 6.2.1.3.2), the 

experiment was designed such that load on the LNC will represent more than the 4 HANs 

with which devices are shared. The results of the evaluation indicate that the number of 

remote HANs can be extended without incurring significant performance overhead. The 

number of HANs (as opposed to the number of services shared from remote HANs) affects 

only the LNC and only subset of the LNC behaviour. The VRM is only affected by the 

number of services shared from remote HANs rather than by the number of remote HANs. 

The following aspects of the LNC are affected by sharing with more remote HANs: 

 

1) The number of messages sent by the LNC about added/removed resources – The 

overhead of sending additional messages is negligible. The communication 

subsystem inherits messaging scalability from its underlying IM&P system, and 

given the inherently small size of discovery messages, the overhead of an additional 

message is negligible. 

2) The number of description requests received in the local HAN – More remote 

HANs with which local services are shared will lead to more description requests 

from client applications in these HANs. The maximum number of these description 

requests therefore corresponds to the number of shared services, such that each 

HAN would request the service description no more than once. 

3) The number of SOAP requests received in the local HAN – More remote HANs 

with which local services are shared could also potentially lead to more SOAP 

request made by client applications from these HANs to interact with the local 

HANs shared devices and services.  

4) The number of event subscriptions received in the local HAN – More remote HANs 

with which local services are shared could potentially lead to more event 

subscriptions in the local HAN made by client applications in remote HANs, which 

could lead to more event notifications being sent. However the overhead of more 

event notifications on the LNC is restricted to resolving the identifier of the Krox 

system in the remote HAN and sending the event notification using the 

communication subsystem. Since event notification has a very low overhead, and 
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only indicates a change in a state variable, it is limited in size, therefore it does not 

require excessive bandwidth, even with additional HANs.  

 

While it cannot be directly argued that it follows from the scalability of the results that the 

system can scale to a larger number of HANs, it can be reasoned from the design of the 

experiment and from the linear scalability observed that the system is capable of scaling to 

more than 4 HANs with reasonable performance.  

 

6.2.3.3. Scale-down – REQ #18 

The Java implementation of the Krox system enabled the system to be deployed on multiple 

platforms. The performance evaluation was performed on Linux, however the system was 

also tested successfully on Windows and OSX and worked as expected. The requirement 

(REQ #18) is to be able to run the system on machines with processor with clock speed of 

no more than 2GHz and no more than 1 gigabyte of RAM. Out of 5 desktops that were used 

for the performance evaluation 3 of them have processors with 2GHz (desktop 1, desktop 4, 

desktop 5). The same desktops have 1 gigabytes of RAM or less (desktop 4 has 750 

megabytes). Desktop 2 and Desktop 3 have more processing power and RAM. The reason 

for using more powerful machines in the experiment was to assess the effect of more 

processing power on the results.  

 

6.2.3.4. Concurrent access – REQ #19 

As indicated in the design and implementation chapters, there is no inherent mechanism 

preventing concurrent access to local HAN’s resources (REQ #19). During the UPnP 

experiment, and Jini experiments concurrent requests were made and they are not 

synchronised in any way by the Krox system.  

 

6.2.3.5. Conclusions 

As shown by this inter-HAN service interoperability experiment and summarised in this 

section all of the performance requirements (REQ #16-REQ #19) are addressed by the 

design and implementation.  
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6.3. Intra-HAN service interoperability 
performance evaluation 

The service composition subsystem affects performance both in terms of processing and 

memory. The service composition subsystem requires a servlet container for hosting the 

generated web services, and an orchestration engine for hosting and executing composite 

services. From performance point of view there are number of parameters that need to be 

evaluated: 

1) The overhead of generating of web services – How long it takes to generate web 

service proxies and deploy them 

2) What is the memory overhead of a deployed web service on the servlet container 

3) What is the latency introduced by the additional layer of indirection for interaction 

with a service – i.e. interacting with a service through a web service adds another 

chain of processing that handles the request 

 

The following sections present an evaluation of the Krox service composition subsystem 

with these parameters.  

  

6.3.1.  Experiment Environment 

Web services are typically hosted in a servlet container, although with Java 6 this is not 

mandated. However, the service orchestration engine, Apache ODE cannot run as a stand-

alone Java program and is deployed as a web application in a servlet container. The 

prototype used Tomcat servlet container version 6.0.18, which requires only 10-15MB of 

RAM including the orchestration engine installed as a web application.  

 

6.3.2.  Web services 

The process of automatic web service generation and deployment includes several steps as 

described in the previous chapter. When a device is discovered an automatic JAX-WS web 

service is generated and built for each service that the device contains. The web service is 

then packaged and deployed in the local application server. This whole process requires 



 245 

between 2-5 seconds per service as measured on the generation of a web service for a UPnP 

AVTranport service (measured 1000 times).   

 

Table 7 shows indicative performance overheads introduced by the web service proxy for 

UPnP services prototype implementation for 3 media renderer AVTransport service 

operations (“Play”, “Pause” and “Stop”). The first column (UPnP) shows the time taken to 

directly invoke the operation using SOAP messaging. The second column shows the server-

side time required to perform the same operation when it is wrapped in a web service 

interacting with the UPnP control point application, here the additional redirection overhead 

introduced by the server-side processing is approx. 5 milliseconds. Column three (round-

trip) shows the time taken to invoke the operation from a Java web service client on the 

same host as the web service and demonstrates the additional overhead introduced by the 

client side processing to form the web service request, passing it to the web server, and then 

waiting for the web service response. The overall overhead introduced by the web service 

based approach is equal to round trip time (column 3) minus the UPnP time (column 1) as 

shown in column 4. On average this time equals to ~200 milliseconds, and it is important to 

note that it includes the marshalling and un-marshalling of Java objects from XML which is 

required only for a Java client and is not relevant for a composite service using the web 

service.  

 

6.3.3.  Summary 

The results shown in the section above comparing the direct invocation UPnP services 

against the web service proxy invocation of the same services indicate that the overhead 

added by the web service is relatively small – 200 milliseconds on average for UPnP 

services. Table 7 shows the overall time spent in the service implementation in the second 

 

Table 7 Performance Overhead of UPnP Web Service Proxy 

UPnP Web Service 
Wrapped UPnP 

Round-trip 
(Client, Web 

Service, UPnP) 

Web Service 
Overhead 

Play 112.36ms 117.86ms 202.44ms 90.08ms 

Pause 365.46ms 370.98ms 614.85ms 249.39ms 

Stop 342.35ms 347.44ms 585.0ms 242.64ms 
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column and the overall time for a call to the service to return in the third column. It can be 

seen from table 7 that the overhead added by the web service implementation is negligible 

and constant while the overhead related to the calling the web service as shown in the third 

column is 200 milliseconds on average.  

 

The web service generation is time consuming (2-5 seconds) as indicated in 6.3.2. However, 

the web service generation does not need to slow down discovery and can be streamlined as 

a parallel process. The time is dominated by the time it takes to compile, package, and 

deploy the service, which are done in another process. In addition, the implementation did 

not use caching of web services to reuse the same web service when a service that was 

already available in the HAN re-joins. With such caching, when a service that was already 

available in the HAN once is available again, its corresponding web service (packaged as a 

web archive) is copied from the caching directory to the auto deploy directory of the servlet 

container enabling fast deployment, saving the time required for compiling and archiving 

the web service.  

 

This shows that the web service approach taken by the Krox system design works as 

expected and does not incur significant overheads. It is extensible through the service 

protocol plug-ins and enables intra-HAN service interoperability and service composability. 

The web service approach is limited to addressing the syntactic service interoperability and 

does not address the semantic interoperability.  

 

6.4. Security analysis 

HANs are exposed to various types of attacks for example malicious code (such as Trojan 

horses, viruses and worms), Denial of Service (DoS) attacks and eavesdropping. These 

attacks may differ in their approach, their goal and the way they interact with the HAN. 

However, the HAN is typically considered by its users to be a closed and trusted domain. 

With the Krox system for inter-HAN service interoperability, it needs to be guaranteed that 

only trusted HANs can see shared devices and services and that only a trusted HAN can 

share devices and services. In addition, extending the boundary of the HAN can introduce 

new threats that need to be analysed in order to defend against attack on a single HAN from 

spreading to HANs with which devices and services are shared.  
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The first step in protecting a system is to have a deep understanding of the potential threats. 

In the context of the Krox system, this means identify both potential attacks on the Krox 

system itself as well as assess the impact of existing threats and vulnerabilities relevant to 

UPnP and Jini service protocols on the Krox system, specifically in preventing attacks on 

these service protocols from using the system to spread to multiple HANs. 

 

In order to consider the potential attacks of the system, the following sections provide a 

systematic analysis of the known threats that are relevant in the context of the Krox system 

architecture and mitigation techniques. The term weakness refers to a security vulnerability 

in the specification or behaviour of an entity. The term vulnerability refers to a flaw or a 

security weakness in an asset that can be exploited by a threat [40]. A negative impact can 

be the result of a malicious or an accidental action [98]. Attack trees provide an intuitive and 

systematic way to represent the weaknesses and risks of a given system [115]. In the 

following sections attack trees are used to identify the potential threats to the Krox system, 

based on decomposition of the system to its components that are susceptible to attacks: the 

communication subsystem, and the service protocol plug-ins. The communication 

subsystem uses IM&P as its underlying communication protocol for providing messaging 

and presence capabilities to the Krox system instances, therefore the security analysis for the 

communication subsystem can extend existing work in the area of IM&P security in the 

context of the Krox system, as discussed in section 6.4.1. An assessment of the potential 

attacks on UPnP devices and their impact on the Krox system, specifically the potential for 

attacks to spread to multiple HANs is given in section 6.4.2. Finally an assessment of the 

potential attacks on Jini services, and the potential of these attacks to exploit the Krox 

system to spread to multiple HANs is presented in section 6.4.3.  

 

6.4.1. Communication subsystem 

The communication subsystem in the Krox architecture enables instances of the system in 

multiple HANs to exchange messages and be notified on status changes of the system in 

remote HANs for HANs with which sharing has been agreed. For the purpose of this thesis, 

the focus is on how to confine an attack made to a single HAN and prevent it from 

spreading to multiple HANs with which it is sharing or using devices and services. The 

communication subsystem embeds a number of security mechanisms to facilitate secure 
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communication as described in the design security considerations (section 4.3.6) including 

authentication, encryption, and auditing. The analysis in this section is adding to the security 

mechanisms that are recommended for IM&P and specifically XMPP based communication. 

The main focus of this section therefore is on DoS attacks and their potential to spread using 

the communication subsystem to additional HANs.  

 

A Denial of Service (DoS) attack is defined by RFC 4732 as an attack in which the attacker 

attempts to cause the victim’s machine or resource to become unavailable to its legitimate 

users [53]. DoS can be caused by high demand, faulty implementation or a malicious attack. 

For Krox communication subsystem an DoS attack can be made from within the local HAN, 

from another HAN with which devices and services are shared, or from a foreign HAN. A 

DoS can be caused by a software bug, either in the IM&P endpoint, or in other components, 

service protocol plug-ins, or by vulnerabilities in service protocols exploited by an attacker. 

While the above could lead to the denial of service of the local Krox system, unless defence 

mechanisms are used, these attacks can spread beyond the scope of Krox system to other 

HANs. Figure 51 illustrates the potential DoS attacks on Krox communication subsystem 

using an attack tree. The following sections describe the nodes on this attack tree from left 

to right.   

 

6.4.1.1. Messages flood 

A flood of messages sent to the Krox system in the local HAN can cause a denial of service 

in the system. If the messages correspond to device announcements in the local HAN, they 

may attempt to spread the attack to all remote HANs with which the service is shared and 

cause denial of service in them, not only to the Krox system, but also to other systems in 

those HANs. The following sections assess the effect of various scenarios of messages flood 

 

Figure 51 Communication Subsystem Attack Tree 
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on Krox system and suggest corresponding defence mechanisms.  

 

6.4.1.1.1. Service protocol messages flood 

Description: If the service protocol is vulnerable in such way that can lead to a service 

protocol messages flood, such a scenario, caused by either an attacker exploiting the 

vulnerability, or by a software bug in a device or a service could result in the corresponding 

Krox service protocol plug-in flooding the communication subsystem with messages to 

Krox systems in remote HANs.  

Effect on Krox system: A service protocol causing a messages flood can result in denial of 

service in the local Krox system, but can also cause denial of service in remote Krox 

systems, and client applications and lookup services in those remote HANs. 

Recommended defence mechanisms: In order to prevent a messages flood from causing 

denial of service in the system or hosting HAN, the communication subsystem should 

support rate limiting as described in more details in section 4.3.6.4. The rate limiting 

mechanism was not implemented as part of the prototype implementation. Rate limiting is 

useful only from preventing the messages flood from spreading to remote HANs. The Krox 

system in the local HAN will eventually run out of memory.  

 

6.4.1.1.2. Network protocol messages flood 

Description: Network protocol messages flood refers to an attacker trying to shut down the 

port which is used by the communication subsystem for exchanging messages with remote 

HANs.   

Effect on Krox system: In case the attack is successful the communication system will be 

disconnected from the IM&P server and will not be able to participate in sharing with 

remote HANs.  

Recommended defence mechanisms: While an arbitrary network protocol attack on the 

communication subsystem can definitely shut it down and prevent it from being able to 

communicate with remote HANs, it may not spread to remote HANs, therefore no specific 

defence mechanisms are defined.  
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6.4.1.1.3. Misbehaving service protocol plug-in 

Description: A misbehaving service protocol plug-in can initiate messages flood to remote 

HANs either due to a bug or a malicious plug-in. For example, the service protocol plug-in 

can send more messages to remote HANs than required by the service protocol, e.g. by 

duplicating discovery announcements.  

Effect on Krox system: The effect on the system is similar to that of a messages flood 

caused by a service protocol.  

Recommended defence mechanisms: While it is assumed that service protocol plug-ins 

running in the HAN are well tested, bugs can still exist, and in order to defend against this 

vulnerability, the rate limiting mechanism discussed above should be used. 

 

6.4.1.1.4. Misbehaving IM&P endpoint 

Description:  A misbehaving or malicious IM&P endpoint is an authenticated client of the 

IM&P server that initiates a messages flood to the Krox system in the local HAN. The attack 

can come from within the HAN, from another HAN with which the local HAN shares or 

uses devices and services, or from a foreign HAN. The messages flood could contain 

presence messages, service protocol specific messages, or other types of messages.  

Effect on Krox system: The effect on the system is similar to that of a messages flood 

caused by a service protocol.  

Recommended defence mechanisms: This type of attack should be handled at the level of 

the IM&P server by restricting the number of connections and the bandwidth that a client 

(an IP address) can use in a given time. In addition, the IM&P endpoint in the local HAN 

should ignore all messages from other endpoints that are not in its buddy roster. While the 

local HAN can still be affected, this would defend against an attack from a foreign HAN 

from spreading to remote HANs from the buddy roster of the HAN. 

 

6.4.1.2. Man in the middle 

Man in the middle (MITM) attack is an attack where the attacker intercepts and tampers 

with the communication between the victim and the host. By injecting themselves between 

the victim and the server, the attacker can invoke an attack on the server while 

impersonating to the victim, or an attack on the victim while impersonating the server.  
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6.4.1.2.1. Client TCP session hijack 

Description: An attacker can intercept a conversation between the client and the server, and 

potentially manipulate it and create a man-in-the-middle attack. This could be done using 

TCP session hijack techniques as demonstrated in [145]. By tampering with the messages 

sent between a Krox instance and the IM&P server and modifying them with malicious 

content an attack against a remote instance of Krox system, or an IM&P server can be 

established.  

Effect on Krox system: Such an attack could have different effects on the local and remote 

Krox systems depending on the goal of the attacker. This could lead to disconnection of the 

local HAN from the IM&P server or to corrupt or modify data to appear as if sent from the 

Krox system in the local HAN to remote HANs.  

Recommended defence mechanisms: In [105] several mechanisms were identified to 

improve the robustness of TCP against session hijacking. Since these techniques are applied 

in the implementation of the TCP library, and since all communication in the Krox system 

architecture is made via IM&P communication, these techniques should be considered for 

the IM&P client and server implementations.  

 

6.4.1.3. Unwanted communication 

Description: Unwanted communication refers to an authenticated IM&P endpoint that 

sends messages to the Krox system, although it is not in its buddy roster. Such an IM&P 

endpoint can send arbitrary messages it to the Krox system, long messages consuming its 

resources. 

Effect on Krox system: Unwanted communication from an IM&P client can result in denial 

of service in the local Krox system, however it cannot spread to multiple HANs. It cannot 

result in information disclosure because actions will only be invoked on behalf of remote 

HANs with which sharing has been agreed, based on the sharing configuration of the home 

user.  

Recommended defence mechanisms: The communication subsystem of Krox needs to 

guarantee that the local system only receives messages from remote Krox systems with 

which sharing has been agreed. The filtering can be done in the IM&P client side of Krox 

such that messages are checked before they are processed, however this could be 
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implemented more efficiently as an extension to the IM&P server before messages are sent 

to the IM&P client.  

 

6.4.1.4. Stolen password 

Description:  If an attacker obtained the user/password information for Krox system in 

HAN1, he can use this information to access remote devices shared with the HAN1. In 

addition the attacker can use the stolen identity to facilitate denial of service attack while 

assuming the identity of the victim.  

Effect on Krox system: An attacker with a Krox credential could connect from any HAN 

and either attack remote HANs with which the victim’s Krox system was sharing resources, 

or consume resources from these HANs without permission. The attack as well as 

consuming resources shared with the victim’s HAN would seem as if they are made from 

the victim’s HAN.  

Recommended defence mechanisms: In the Krox system, authentication takes place after 

TLS has been negotiated therefore the password cannot be obtained during the 

authentication process by sniffing the communication. However, there is no inherent 

mechanism in Krox architecture to defend against stolen password. The password should be 

stored in Krox system in such way that it is hard to compromise. The system could provide 

indication of when the system was last authenticated and the IP address, which was used for 

the authentication. In addition the system can provide an indication when another login was 

made with the same identity, which can give the home user an indication that his password 

was compromised. These mechanisms however were not implemented in the Krox prototype 

system. 

 

6.4.2. UPnP service protocol plug-in 

UPnP architecture has several potential security vulnerabilities and weaknesses. Some of the 

vulnerabilities are inherently related to the way the UPnP protocol works, while others are 

related to specific device implementations. Several vulnerabilities are related to specific 

classes of devices such as Internet gateway while others are more generic. Following the 

attack tree methodology, UPnP attacks can be classified by the goal of the attacker into two 

groups: denial of service, and malicious management actions. The purpose of this section is 

not to define mechanisms to make UPnP more secure, but rather to defend attacks that 
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exploit UPnP vulnerabilities from spreading to remote HANs using the Krox system. The 

following sections present these potential attacks, the goal an attacker wishes to achieve, the 

technique for achieving this goal, the effect on HANs running the Krox system, and 

mechanisms to defend against the attack from spreading across the boundaries of a single 

HAN. Section 6.4.2.1 discusses the potential DoS attacks on UPnP and their effect on the 

Krox system. Section 6.4.2.2 discusses the effect of malicious management actions. Finally 

section 6.4.2.3 discusses the effect of eavesdropping to UPnP protocol in the local HAN.  

  

6.4.2.1. Denial of Service 

In the context of UPnP, DoS can cause UPnP devices to shut down, and can cause control 

points to run out of memory, or crash. Figure 52 shows an attack tree that was created for 

this analysis summarising the potential techniques for DoS attacks on UPnP networks. The 

following sections are organised according to the nodes in the tree from left to right, such 

that for each leaf node, the type of attack is described, with the potential effect on the Krox 

system, and the recommended defence mechanism.  

 

6.4.2.1.1. Misbehaving device 

A misbehaving UPnP device can either be a faulty device, a device with a bug, or a 

malicious device installed by an attacker or by the home user by mistake, such as by 

installing a Trojan horse that can act as a malicious device. In addition, the misbehaving 

device can be a friend’s mobile device joining the HAN.  There are several ways that a 

misbehaving device could lead to denial of service in the local HAN as described in the 

following sections.  

 

Figure 52 Denial of Service Attack Tree for UPnP 
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6.4.2.1.1.1. Presence announcement flood 

Description: A misbehaving device can announce its presence (through SSDP alive and 

byebye messages) with a high frequency and thereby cause denial of service in control 

points in the local HAN. The UPnP discovery protocol is based on local multicast of 

presence announcements and search requests. A misbehaving device flooding the multicast 

address can cause denial of service to all control point applications simultaneously. The 

specific frequency of announcements that leads to denial of service is undefined and 

depends on the implementation of the control point. There is no inherent workaround in the 

UPnP protocol that protects against this type of misbehaving device. The UPnP discovery 

specification discusses the need to be able to automatically shut off the discovery algorithm 

however this feature has not been defined in the discovery specification [133].  

Effect on Krox system: The UPnP LNC listens to device announcements on the local HAN. 

Therefore, if a misbehaving device exists in the local HAN, the LNC is affected. In the case 

where the device is explicitly shared with remote HANs, this means that every such 

announcement would be forwarded to those remote HANs. If the device is not shared, the 

LNC only updates its local repository with the device update, however, if the device is 

shared with remote HANs, such a flood of device announcements can lead to denial of 

service not only of the local Krox instance, but also of remote instances of Krox system and 

of control points in remote HANs. 

Recommended defence mechanisms: In case the misbehaving device is shared with 

remote HANs, Krox system must be able to limit the attack to the HAN hosting the 

misbehaving device. This could be achieved using the rate limiting capability of the 

communication subsystem as described in section 4.3.6.4. The local Krox system may still 

suffer denial of service however it will not be propagated to Krox system instances in 

remote HANs. If the Krox system can identify the attack on time, it can disconnect from the 

IM&P server and by that stop sharing its devices with remote HANs. Similarly, if a Krox 

system identifies that a remote HAN is under attack, it can block it by means of the 

underlying IM&P system by pause sharing with this “buddy” (i.e. remote HAN), and by that 

ignore all messages received from that HAN. 
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6.4.2.1.1.2. External URLs 

Description: UPnP presence announcements contain a URL for the location of the device 

description. The device description contains URLs for interacting with services and 

potentially for icons. These URLs must be local to the network containing the control point 

and the device, however many control point application do not validate the location before 

they try to interact with it. In the case of a malicious device, this could lead to denial of 

service to multiple control points in the local HAN when trying to communicate the device 

in the given location. An example of this attack is shown in [37] for several versions of 

Microsoft Windows. Microsoft released a patch to defend against this attack.  

Effect on Krox system: Such an attack can only affect the local instance of Krox. The 

reason is that the actual encoded URL of the location is never sent to remote HANs, instead, 

remote devices are announced in the local HAN with location URLs that are local to the 

network hosting the Krox system. However external location URL can cause the local Krox 

system to suffer denial of service, and therefore needs to be protected against.  

Recommended defence mechanism: The LNC can validate the presence announcements 

and search responses for non-local addresses in the HAN. If they are not local, they can be 

discarded. All other URLs are expected to be relative to the device IP address and device 

port, therefore if they are not, the device can be ignored, and a warning can be propagated to 

the HAN user. This mechanism is included in the design security guidelines for the UPnP 

service protocol however it was not implemented prototype implementation (section 

4.3.3.2.7).  

 

6.4.2.1.1.3. Long or malformed description document 

Description: When a control point sends an HTTP GET request for the device/service 

description, the device responds with a device description document. A misbehaving device 

can send a sufficiently long description that can cause the control point to run out of 

memory. Some embedded control points may not be equipped with powerful parsers for 

XML and can fail due to a misbehaving device sending a malformed device/service 

description document that contains illegal characters or white spaces.   

Effect on Krox system: A sufficiently long description can cause the Krox system to run 

out of memory. Even if the Krox system does not run out of memory immediately, if the 

description is sufficiently long, and if it is sent to a requesting remote HAN, it may cause it 
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to run out of memory. A malformed description is not problematic because Krox parses the 

description document before it is sent to the requesting remote HAN.  A malformed 

description document will fail to parse and therefore will not be sent to the requesting Krox 

system instance in the remote HAN.  

Recommended defence mechanism: While the system cannot defend locally against 

running out of memory when receiving long descriptions, it can avoid sending suspiciously 

long descriptions to remote HANs and instead report an error. This mechanism is included 

in the design security guidelines for the UPnP service protocol however it was not 

implemented prototype implementation (section 4.3.3.2.7).  

 

6.4.2.1.1.4. Long or malformed SOAP response 

Description: A misbehaving device can return a sufficiently long SOAP response that can 

cause a control point to run out of memory. Similarly to the problem with malformed 

description, a malformed SOAP response can cause control points to crash due to weak 

XML/SOAP parser implementation.   

Effect on Krox system: Similarly to the long description problem, even if the Krox system 

does not run out of memory, by sending the long SOAP response to the remote HAN, it can 

cause the remote Krox system instance to run out of memory, or cause the requesting control 

point in the remote HAN to run out of memory. A malformed SOAP responses are not a 

problem because the SOAP response is parsed in the local HAN and if it is malformed, an 

error will be sent to the requesting remote HAN.  

Recommended defence mechanism: Similarly to the handling of description requests the 

LNC can check the size of the SOAP response and if it is suspiciously long, it may discard it 

and return an error to the requesting remote HAN. This mechanism is included in the design 

security guidelines for the UPnP service protocol however it was not implemented prototype 

implementation (section 4.3.3.2.7). 

 

6.4.2.1.1.5. Event notification flood 

Description: A misbehaving device can flood subscribed control points with event 

notifications and cause denial of service. Event notifications are supposed to be sent only 

when state variables change their value. A misbehaving device can send many event 
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notifications in a short interval to all subscribed control points and cause them to run out of 

memory or exhaust their resources.  

Effect on Krox system: If a control point from a remote HAN is subscribed to event 

notifications on a misbehaving device in the local HAN, the notifications are tunnelled to 

the remote control point through the Krox system in the local HAN. An event notification 

flood could lead to Krox system to run out of memory, but if it can still send the messages to 

the remote HAN, it could achieve the effect of denial of service on the subscribed control 

point.  

Recommended defence mechanism: Rate limiting on the communication subsystem would 

prevent the attack from spreading to the remote HAN subscribed for event notifications. In 

addition, when such a misbehaving device sending notifications flood is identified, the LNC 

block event subscription for the misbehaving device. This mechanism was not implemented, 

however it is included in the design security guidelines (sections 4.3.6.4 and 4.3.3.2.7) 

 

6.4.2.1.2. Misbehaving control point 

A misbehaving control point can either be a faulty or malicious application installed by an 

attacker or by the home user by mistake, such as by installing a Trojan horse. In addition, 

the misbehaving control point application can join the HAN via a mobile device. There are 

several ways that a misbehaving control point could lead to denial of service in the local 

HAN.  

 

6.4.2.1.2.1. Search request flood 

Description: A control point can learn about devices in the local HAN by sending periodic 

search request. A misbehaving control point can flood the HAN with frequent search 

requests that force all devices that support the service type in the request to respond, which 

in turn can cause the devices to suffer denial of service.  

Effect on Krox system: The VRM in the local HAN acts a proxy for search requests made 

by control points. Therefore when a search request is sent by a control point in the local 

HAN, the VRM needs to respond on behalf of all devices and services that correspond to the 

search type in the request. This could lead to the denial of service in the Krox system in the 

local HAN, however it does not affect remote HANs with which the local HAN shares 

devices and services.  
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Recommended defence mechanism: The VRM can define the maximum number of search 

request for a period of time, i.e. if a series of search requests are too frequent, the VRM 

would ignore the requests for a certain time. The rate limiting definitions can be configured 

to accommodate legitimate loads. This mechanism is included in the design security 

guidelines for the UPnP service protocol however it was not implemented prototype 

implementation (section 4.3.3.2.7). 

 

6.4.2.1.2.2. Malformed or sufficiently long SOAP request 

Description: Some UPnP devices are not equipped with powerful SOAP/XML parsing 

capabilities, which can result in their crash when they receive a malformed SOAP request. 

When the SOAP request is sufficiently long, it can cause the device to run out of memory.  

Effect on Krox system: When the VRM receives SOAP request for an action invocation on 

a remote device, the request is parsed locally before being sent, therefore, if it is not well 

formed, an error will be sent to the local misbehaving control point, and the request will not 

be sent to the remote HAN. If the request is very long, it may cause the Krox system to run 

out of memory. If it is very long but did not cause the local Krox system to run out of 

memory, when sent to the remote HAN it can still cause the Krox system in the remote 

HAN or the remote device to run out of memory.  

Recommended defence mechanism: In order to defend against excessively long SOAP 

requests, the same techniques discussed for protecting against long description response 

should be applied (see section 4.3.3.2.7). 

 

6.4.2.1.2.3. External IP for event subscription 

Description: A misbehaving control point can try to exhaust the resources of a device by 

sending event subscription requests with external IP addresses. In case the device does not 

check that the IP address is not in the local HAN, it will accept the subscription and will 

never remove it until it expires. Event subscriptions consume device resources and devices 

typically limit the number of event subscriptions allowed, therefore a misbehaving control 

can lead to genuine subscriptions being refused by the device as was demonstrated in [134].  

Effect on Krox system: Event subscriptions to remote devices are made by the LNC in that 

HAN, such that the callback interface that is given by the control point to the VRM is not 

passed to the remote HAN and therefore is ignored in the HAN hosting the live device. 
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However, in the HAN hosting the misbehaving control point, the VRM forwards 

notifications received from the live device in the remote HAN, to the callback interface 

given in the subscription. Therefore if the given callback URL is external, this could lead to 

denial of service in the local HAN’s Krox system.  

Recommended defence mechanism: When the VRM receives a subscription request with a 

callback interface that has an external URL it can refuse the subscription and return an error 

message. This mechanism is included in the design security guidelines for the UPnP service 

protocol however it was not implemented prototype implementation (section 4.3.3.2.7). 

 

6.4.2.1.2.4. Excessive event subscription 

Description: The UPnP protocol does not limit a control point to subscribing for event 

notifications only once. Therefore a control point can send many subscriptions to the same 

device. When the maximum number of allowed subscription (device specific) is reached, the 

device will not allow any more subscriptions to be made, and the existing subscriptions will 

remain. With enough event subscriptions the device reaches denial of service, such that the 

device remains alive however UPnP is shut down.  

Effect on Krox system: More event subscription lead to more inter-HAN traffic, and more 

memory overhead, both in the LNC and in the VRM. Given enough subscription, both the 

device for which subscription is made, as well as the corresponding Krox systems will reach 

denial of service.  

Recommended defence mechanism: For each device the LNC could keep a maximum of 

one subscription per UPnP service on behalf of all remote HANs with an infinite expiration 

time. When additional requests for subscription are received, they will be mapped in 

memory against the physical subscription that was already made with the device. When a 

remote HAN cancels a subscription, unless it is the last one, it only updates the memory 

mapping. In addition, the VRM could subscribe for each service maximum once in the 

remote LNC and map all additional subscriptions internally to this remote subscription. 

When the last subscription is removed from the VRM, the remote LNC can be notified. This 

mechanism is included in the design security guidelines for the UPnP service protocol 

however it was not implemented prototype implementation (section 4.3.3.2.7). 
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6.4.2.2. Malicious management actions 

There are various goals behind malicious management actions attacks and the damage of 

such attacks can vary significantly. Malicious management actions are actions made using 

UPnP to an Internet Gateway Device (IGD). The reason for the emphasis on IGD is because 

of its sensitive role in the HAN in controlling traffic and in that it has certain vulnerabilities 

that when leveraged by attackers can have severe impact on the HAN.  

 

The UPnP IGD profile enables control points to change several configurations, some of 

which could be harmful if made by an attacker. As opposed to DoS attacks that require the 

attacker to be present in the HAN (e.g. as malware), for attacks against the IGD this is not 

necessarily required. Such an attack can be performed either by a malicious control point 

already located in the local HAN, or by a script invoked accidentally by the user through a 

web browser as was shown in [45]. The latter is enabled because IGD is typically assigned a 

standard IP address or host name (e.g. 192.168.1.1) that can be guessed by an attacker. Such 

a script contains a SOAP request that the user unintentionally causes to be sent to a 

preconfigured IP address that the attacker guesses to belong to the IGD. If successful, the 

attacker can invoke any action supported by the UPnP IGD specification. A UPnP IGD 

offers convenient control over the home gateway allowing control points to configure port 

forwarding, and configure the DNS. The purpose of this interface is to enable applications to 

configure the router with the configuration they require instead of requiring manual 

intervention from the user who is typically not qualified in such tasks. For example IGD 

interface enables applications such as MSN Messenger, XBOX, BitTorrent clients, and 

others to configure port forwarding instead of asking the user to interact directly with the 

router. While enabling convenient access to the residential gateway, the IGD suffers from 
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several flaws that can be leveraged by attackers and present severe security threats. Since 

the IGD controls some of the most vulnerable features of the home router, an attack on it 

may have significant consequences. While the Krox system implementation does not 

enforce it, the security guidelines of the UPnP plug-in design (section 4.3.3.2.7) recommend 

to not share IGD devices because of the potential damage that can be created if it is 

attacked. Figure 53 presents an attack tree that corresponds to malicious management action 

attacks. The following sections are organised according to the tree nodes from left to right.  

 

6.4.2.2.1. Port mapping configuration change 

Port mapping in the IGD enables redirection of incoming traffic on a specific port of the 

IGD to another IPAddress/port. Attacks that attempt to modify the port mapping of the IGD 

send a UPnP SOAP request to the device. The techniques for configuring the port mapping 

of the IGD rely on weaknesses in the implementation of these devices that have been shown 

to exist in commercial IGD implementations [134]. 

 

6.4.2.2.1.1. Missing validation 

Description: There is no validation in the IGD that the device requesting the mapping is the 

target of the mapping – i.e. that a device is asking to configure forwarding for itself. This 

means any device/control point can ask to forward any public IP/port to any other private 

IP/port. A control point installed as part of a virus or Trojan horse could use this weakness 

to direct traffic to applications that are not expecting it and by that disrupt applications 

normal behaviour, or to enable external access by attackers to devices or services in the 

HAN.  

Effect on Krox system: The effect of changes in the configuration of an IGD device affects 

the HAN in which the IGD resides. There is no global effect of this on the Krox system. 

Recommended defence mechanism: Sharing of IGD should not be allowed. 

 

6.4.2.2.1.2. Mapping to an external IP Address  

Description: The interface of the port mapping receives the public IP address and port, and 

the local IP address and port. While the UPnP specification allows only the mapping of the 

external IP address to an internal one, in some IGD implementations, specifically ones 
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based on the Broadcom platform as shown in [134], there it is no validation that the internal 

IP is indeed internal, thereby enabling mapping traffic to an external IP address. This is a 

major risk as it enables an attacker to forward all or part of incoming traffic to a remote 

host. This kind of attack can enable the attacker to hijack traffic, such as email or web, and 

enables phishing and other types of fraud. It also allows the attackers to route their traffic 

through the victim’s network, for example using the victim’s network as spam zombie. As 

mentioned above, this threat is not inherent in UPnP specification of IGD profile but is a 

bug in some IGD implementations. 

Effect on Krox system: There is no specific effect of this that is related to the Krox system. 

Recommended defence mechanism: Sharing of IGD should not be allowed.  

 

6.4.2.2.2. DNS configuration changes 

Description: Malicious changes can be made to the Domain Name Server (DNS) through a 

UPnP service provided by IGD. An attacker can reconfigure the DNS to direct traffic from 

the home network to a destination controlled by the attacker potentially enabling phishing. 

The victim then uses the browser to visit web sites, sends or receives emails, or uses instant 

messaging communication, which are in fact is controlled by the attacker who can redirect 

the traffic to any site he chooses. This can also enable the attacker to setup man-in-the-

middle attack. 

Effect on Krox system: There is no specific effect of this that is related to the Krox system.  

Recommended defence mechanism: Sharing of IGD should not be allowed.  

 

6.4.2.2.3. Linux Command Execution 

Description: In some Linux based IGD it is possible to pass a Linux command instead of a 

required parameter. This is possible because of old implementations where the parameters 

are given to a shell script to execute. Given this implementation, the parameter can be any 

Linux command, e.g. ‘/bin/shutdown –r 0’ which will cause the IGD to reboot.  

Effect on Krox system: There is no specific effect of this that is related to the Krox system. 

Recommended defence mechanism: Sharing of IGD should not be allowed.  
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6.4.2.3. Eavesdropping 

Description: Eavesdropping in the context of UPnP protocol, refers to an application that 

uses sniffing to listen to communication with devices in the HAN. UPnP protocol does not 

use encryption for communication with local devices, therefore an eavesdropper in the HAN 

can “listen” to all communication with devices.  

Effect on Krox system: All communication between remote HANs is encrypted, however 

since the UPnP protocol does not support encryption, therefore all communication between 

the LNC and UPnP devices in the local HAN can be accessible to eavesdroppers.  

Recommended defence mechanism: There is no specific defence mechanism against 

eavesdropping in the local HAN, as it is not supported by the UPnP protocol. 

 

6.4.3. Jini service protocol plug-in 

Unlike UPnP, Jini has several embedded security mechanisms for authentication, 

authorisation, code level protection, privacy and integrity as described in section 4.3.4.1.3. 

However these mechanisms are not enforced by the Jini service protocol. The reliance of 

Jini on mobile code makes it especially susceptible to malicious services and malicious 

service proxies. The following sections describe the potential attacks on Jini services, the 

effect on Krox system and recommended defence mechanisms. Denial of service is 

discussed in section 6.4.3.1, and eavesdropping is discussed in section 6.4.3.2. 

 

6.4.3.1. Denial of Service 

Figure 54 illustrates the relevant DoS attacks as described in the following sections. 
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6.4.3.1.1. Misbehaving client application 

Description: A misbehaving or malicious client can shutdown the lookup service or any 

other service it can gain access to in the local HAN as a result of a software fault or a 

malicious attack. Another type of attack could be performed if the service interface method 

takes parameters that are not final (in the Java modifier sense, i.e. they can be extended), 

and the malicious client includes a parameter in a service call that extends the parameter 

type in such way that a call to a method on the parameter would lead to an attack on the 

service.  

Effect on Krox system: If the lookup service is shutdown, no Jini services can be 

announced in the local HAN, and therefore be shared with remote HANs. An attacker can 

attack services including the lookup service in the local HAN, however it does not have 

direct access, to remote “live” services, therefore a direct attack against remote Jini service 

is not possible. For defending against a malicious attack that is using inherited parameters, 

the service provider must ensure that the service parameter classes are final and cannot be 

extended.  

Recommended defence mechanism: In order to defend against clients that attack services 

using inherited objects, the Krox system can ignore services, which contain in their 

interfaces parameters that are not defined as final. The LNC will inspect the service 

interface of a discovered service and will not share it if it has parameters whose classes are 

not final. This mechanism was not implemented in the prototype system. 

 

6.4.3.1.2. Malicious lookup service 

Description: A malicious lookup service can act as a lookup service in the HAN and return 

malicious service proxies implementing the required interface. In addition, since when 

services register with the lookup service, they use a proxy to the lookup service, which runs 

in their Java Virtual Machine, which means if the lookup service is hostile, this could result 

in a denial of service or other severe consequences for the service/device itself. Similarly if 

a client registers with the lookup service for notifications on new services, this could result 

in the same effect on the client machine.  

Effect on Krox system: The risk of malicious lookup service is twofold: it could host 

malicious service proxies that implement common Jini services, such that when downloaded 

from the lookup server, they could harm the Jini LNC. The other risk is that when the VRM 
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registers a service proxy, the service registrar that it gets (a proxy of the lookup service) is 

malicious and could harm the VRM, or as it is executing within the Krox system it can try to 

initiate an attack on remote HANs.  

Recommended defence mechanism:  In order to defend against malicious lookup service, 

the LNC and VRM should only accept service registrars signed by trusted authorities. This 

is controlled by the security policy configuration of the Krox system.  

 

6.4.3.1.3. Misbehaving service proxy 

Description: A misbehaving or malicious service proxy is dangerous because it is Java code 

that runs on the client process. This means it can damage the process, e.g. by calling 

System.exit(), or harm resources on that machine.  

Effect on Krox system: Since the LNC invokes methods on the service proxy in the local 

HAN in response to a request message sent from a remote HAN, a malicious service proxy 

can harm the Krox system in the local HAN, however it cannot harm the remote HAN.  

Recommended defence mechanism:  In order to defend against malicious service proxy, 

the LNC should only accept service proxies if they are signed by trusted authorities as 

configured in the security policy file of the Krox system. In addition, the LNC can require 

the proxy to be verified by a local trust verifier. 

 

6.4.3.1.4. Misbehaving service  

Description: A misbehaving service or malicious service can cause denial of service in 

multiple ways. The first way is by attacking the lookup service, by leasing and cancelling its 

lease frequently. This could potentially result in a denial of service of the lookup service. In 

case an attacker did not register a proxy, but instead registered the service itself, the same 

risk as explained in the section above for misbehaving proxies exists. The service in this 

case would run as part of the client JVM, and could easily cause denial of service, or even 

worse – for example, it could erase the hard disk on the machine running the client.  

Effect on Krox system: A misbehaving service that registers and cancels its registration can 

result in inter-HAN traffic and therefore affect both the local Krox (LNC) and the remote 

Krox system in HANs with which the service is shared, until the lookup service fails. If the 

service is used as proxy it can harm the local Krox system. 
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Recommended defence mechanism: In order to defend against a message flood caused by 

discovery announcement from the lookup service, the rate of messages can be limited in the 

communication subsystem, therefore preventing from the denial of service attack from 

spreading. The second type of attack by a misbehaving service described above is limited to 

the local HAN’s LNC. In order to defend against such a service, the LNC can require the 

service to be signed by a trusted authority and request a verifier to approve the service.  

 

6.4.3.2. Eavesdropping 

Description: Eavesdropping refers to an unauthorised application listening to the 

communication between a Jini client and a Jini service. The severity of such an attack 

depends on what type of information is sent between the client and the server. For example 

if the Jini service represents a printer and the document is confidential this might be 

problematic. Jini 2.1 enables client to define constraints on the communication between the 

client and a service such that it may require communication to be encrypted.  

Effect on Krox system: The communication between remote HANs is encrypted using the 

communication subsystem, however if the communication with the proxy locally is not 

encrypted, an eavesdropper in the HAN hosting the “live” service can get access to 

confidential content from the remote HAN.  

Recommended defence mechanism: The LNC should require the communication with a 

service proxy to be encrypted. This can be accomplished by defining a confidentiality 

constraint on method invocations using the Jini security mechanism.  

 

6.5. Conclusions 

This chapter presented an evaluation of the Krox system architecture and design, which 

included a performance evaluation and a security analysis. The utility of the design artefact 

was demonstrated with the implementation of the prototype system; therefore the main 

purpose of this chapter was to demonstrate the quality and efficacy of the Krox system 

architecture and design through a performance assessment and an analysis of the security 

threats and mitigation techniques.  
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The high level goals for the evaluation (defined in section 6.1) were derived from the system 

requirements. For performance this requires the system to enable home user to share 

resources with up to 15 remote HANs, such that no more than 300 remote services are 

shared with the local HAN. For security the main focus of the evaluation was to analyse the 

potential threats and ensure they are not spread using the system to remote HANs when the 

local HAN is attacked. The following sections discuss how the evaluation goals were 

addressed. 

 

6.5.1. Performance 

A number of specific evaluation parameters (see 6.2.1.1) were derived from the high-level 

evaluation goals defined. These parameters define the key performance indicators for the 

ordinary performance of the Krox system that correspond to the requirements for 300 

remote services shared with the local HAN, such that sharing can be made with up to 15 

remote HANs. Table 8 summarises the results of the experiment described in section 6.2.1.4 

with 300 remote services shared with the local HAN and with 4 remote HANs. Column 1 in 

table 8 presents the evaluation parameter and column 2 and 3 present the experiment 

average and maximum result respectively. The results demonstrate the linear scalability of 

the system to adding more devices and services. As argued in section 6.2.3.2, the evaluation 

was made with increased load on each local system to assess the scalability of the system to 

more than 4 remote HANs as participated in the evaluation. The Jini plug-in evaluation 

demonstrated the relatively small overhead of the plug-in implementation for remote service 

invocation.  

 

Additional performance evaluation assessed the overhead of web service orchestration – 

specifically the generation and deployment of web services and the overhead introduced by 

the additional layer of indirection. The results were presented in 6.3.2. The web service 

generation and deployment takes between 2-5 seconds. This includes the code generation, 

compilation, packaging and deployment in the servlet container. While this is relatively long 

process, it should be noted that it is not blocking the system’s processing and can be done in 

the background. The overhead introduced by the web service indirection is shown to be 

relatively small with less than 200 milliseconds on average per invocation as measured with 

a Java client. When invoked from an orchestration engine performance could be even faster 

because of using pure SOAP without requiring to marshal and un-marshal to Java objects. 
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However in a nested composite service when these small delays are aggregated this could 

lead to a noticeable delay that can affect performance and usability of the services.  

 

It should be noted that the evaluation only provides a lower bound and an assessment of the 

scalability of the Krox system rather than providing absolute performance indicators. A full 

implementation of the design needs to include additional access control support and an 

implementation of the recommended security mechanisms. The system was evaluated with 

access control that returns in constant time, however a full access control implementation 

may scale linearly with the number of resources and remote HANs. On the other hand in a 

realistic scenario the HAN user will not share all resources with all of his friends therefore 

the inter-HAN traffic will be reduced in respect to the performance evaluation. The 

additional security mechanisms required for defending against potential attacks can also 

affect performance with additional checks and validations required; therefore these must be 

implemented with special care with regard to performance. 

 

6.5.2. Security 

The security analysis (see section 6.4) used a decomposition of the Krox system 

architecture, and corresponding attack trees to the relevant components in order to identify 

potential weaknesses of the system and recommend on defence mechanisms. Since the 

communication subsystem of Krox facilitates the transmission of messages between HANs 

over the Internet, it is more susceptible to attacks. On the other hand, since it is based on an 

IM&P system, it can reuse existing standard security mechanisms to protect the Krox system 

in the HAN. The Krox system does not intend to make the HAN more secure, but only to 

 

Table 8 Performance Evaluation Results Summary 

Parameter Average 

 

Maximum 

CPU utilisation <4%  N/A 

Heap utilisation  <6 megabytes N/A 

Search request processing <1.5 seconds <4 seconds 

Discovery processing delay <10 milliseconds <250 milliseconds 

Remote description delay <10 milliseconds <450 milliseconds 

Remote invocation delay <15 milliseconds <175 milliseconds 

Event notification delay <15 milliseconds <250 milliseconds 
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defend from attacks on a single HAN from spreading using the Krox system to multiple 

HANs. Therefore, while it may be possible to cause denial of service to the local Krox 

system, the security analysis shows that by following the security design guidelines, such an 

attack will not spread to other remote HANs.  

 

The security analysis included assessment of UPnP and Jini service protocols for known 

potential attacks. The potential attacks on the service protocols were identified with their 

potential effect on Krox system and defence mechanisms were recommended. By using the 

defence mechanisms against these common attacks the Krox system can confine the scope 

of these attacks to the local HANs and prevent it from spreading to remote HANs using the 

system, as required.   

 

Finally, the security requirements as defined in section 3.4 are addressed with the security 

considerations described in the design chapter and the defence mechanisms described in 

section 6.4.  

   

6.5.3. Achieving of evaluation and security requirements 

Chapter 1 defined the following challenges for this research: 

• Extending HAN service protocols to multiple HANs – since HAN service protocols 

do not extend natively beyond the scope of a single HAN, the challenge was to 

extend the HAN service protocols beyond the scope of a single household, such that 

they can seamlessly interact with client applications in those HANs. The Krox 

system architecture, described in chapter 4, and the corresponding prototype 

implementation that was evaluated in this chapter, provide a plug-in based 

architecture that enables service protocols to be extended to multiple HANs using 

the service virtualisation technique. This approach is appropriate when the service 

protocol has a self-describing service interface that can be used for automatic 

virtualisation. The feasibility and utility of using the Krox system architecture to 

extend HAN service protocols for multiple HANs was demonstrated using a design 

and implementation of plug-ins for UPnP and Jini.  

• Enabling services from multiple service protocols to be composed together – service 

composition can enable reusable units of functionality to be available in the HAN 
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through the composition of multiple atomic services. For service interoperability, 

the Krox system relies on web services as an interoperable service format. For 

service composition, the Krox system architecture uses service orchestration engine. 

In order to automatically map HAN services to web services and enable their 

participation in composite services, the plug-in approach is used, such that a service 

protocol plug-in is required to support the mapping from a service protocol (e.g. 

UPnP) to a web service, such that the output of the mapping is a Java code for web 

service that can be compiled and deployed to the local servlet container. The 

automatic web service generation approach is powerful in providing interoperability 

and enabling service composition. Through its integration with the service protocol 

plug-in, it enables seamless generation of web service proxies for local and remote 

services that are available in the local HAN. The web service generation has 

limitations however. It is suitable only for HAN service protocols that support a 

parsable self-describing service interface.  

• Performance – as a system that runs in the HAN, the system must not overuse 

computing resources such as bandwidth, CPU, and memory. In addition, in order to 

be useful it is required to enable sharing of HAN resources with a representative 

number of family members and friends with no significant latency. Moreover, the 

performance show linear scalability well beyond the intended target, which 

indicates that it will scale gracefully in response to more demanding future 

requirements. The performance evaluation presented in this chapter demonstrated 

the linear scalability of the Krox system in regard to the number of remote devices 

that are shared with it with no significant effect on the CPU utilisation (<5% for 300 

remote services). The heap memory used by the system for representing 300 remote 

services is less than 6 Megabytes, however this is added to the 10-15 Megabytes 

required for the servlet container and orchestration engine. The evaluation was 

performed on desktop machines that are representative of home PCs which are a 

potential platform for future deployment of the Krox architecture. However the least 

powerful of these still represented computing power slightly beyond that available 

at the top end of contemporary home gateway devices, which are another important 

class of platforms for potential Krox deployment. Therefore, it cannot be claimed 

that the system can be deployed as part of a home gateway at the time of writing, 

however modern home gateways are increasingly seen as a platform for hosting 

additional applications, e.g. for value added services by ISPs, therefore device 

manufacturers are pressured to develop models with more processing power and 
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RAM. The performance evaluation indicates that the delays added by the system are 

relatively small, and that the actual delays will be dominated by the network 

latency. This enables remote services represented by the system in the local HAN to 

seamlessly interact with control points without incurring significant delays. 

However, while each delay separately may be negligible, when aggregated in a 

composite service, especially a nested one, these delays may become more 

detectable by the user. In such case the benefits of composite service should be 

balanced against the performance cost.   

• Security – when the HAN service protocols are extended beyond the scope of a 

single HAN, it must be made with minimal additional potential vulnerability for the 

HAN. The security assessment presented in this chapter identified the known 

threats, their potential effect on the Krox system and devised recommended defence 

mechanisms against them. Such attacks can still harm the local HAN if an attacker 

succeeds in introducing them to the HAN, but Krox system would prevent them 

from using the connection between the HAN and remote HANs from spreading. 

These mechanisms must be implemented carefully to minimise the impact on the 

performance of inter-HAN service interoperability.  

• Simple configuration and administration – HAN users expect configuration of 

systems to be minimal and simple. Krox system architecture and design supports 

intuitive configuration through the use of IM&P user metaphor with which HAN 

users are known to be familiar as demonstrated in chapter 4 and 5 of this thesis. The 

development and usability assessment of an optimised user interface is beyond the 

scope of this thesis, and is not claimed as a contribution, beyond the illustrative 

client presented in section 5.7.   

 

In summary, the Krox system architecture and design was shown to address the 

requirements specified in section 3.4 and the research challenges as shown above beyond 

the known systems in literature as reviewed in chapter 3. The next chapter will discuss 

further work and concluding remarks.  
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Chapter 7  
CONCLUSIONS AND FUTURE WORK 

This chapter concludes this thesis with a summary of the thesis, an overview of the 

contributions presented, and a brief description of a number of open research topics not 

tackled in this thesis. 

 

7.1. Overview of this thesis 

A design science research must produce an artefact created to address a problem. This thesis 

addressed the unsolved problem of integrated inter-HAN and intra-HAN service 

interoperability. In accordance with the design science research methodology the design 

artefact resulting from this research is the Krox system architecture and its design for 

supporting sharing services of multiple service protocols with remote HANs, and enabling 

their interaction and composition with other services in the HAN.  

 

Following the design science methodology, the research objectives design in Chapter 1 were 

addressed as follows: 

1) Review the state of the art in intra-HAN and inter-HAN service interoperability to 

establish the requirements for an integrated approach – A HAN service protocol review 

(section 2.3) asserted that the inter-HAN service interoperability and the intra-HAN 

interoperability were not addressed to a full extent by the service protocols for the HAN. 

The state of the art (presented in chapter 3) resulted in the identification of a gap in 

support for integrated intra-HAN and inter-HAN service interoperability. In addition the 
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state of the art review identified the advantages and disadvantages of existing 

approaches and derived a set of requirements for an integrated solution (section 3.4).  

2) Design an architecture that extends current intra-HAN systems with support for service 

composition with multiple service protocols, and inter-HAN sharing of service scalable 

to a number of HANs appropriate for sharing with a household’s personal circle of 

family and friends - This thesis presented the Krox system architecture, which supports 

integrated approach for intra-HAN and inter-HAN service interoperability and addresses 

the requirements presented in section 3.4. The architecture supports multiple service 

protocols through its plug-in framework, such that the support for each service protocol 

is encapsulated in a Krox plug-in. The plug-in framework defines a concise and 

extensible event model for plug-ins, which dictates an interaction model between 

remote HANs for achieving the desired seamless integration with applications in remote 

HANs. The Krox system architecture supports seamless integration through its use of 

automatic service virtualisation. A service shared from a remote HAN is represented in 

the local HAN using a virtual service that implements the service interface on behalf of 

the remote “live” service and tunnels the communication from the local HAN to the 

remote HAN hosting the “live” service. The plug-in also supports a mapping from the 

service protocol to a web service, which makes it available to the service composition 

subsystem. Both remote and local services are mapped to web services, thereby 

enabling seamless interoperability between local and remote services through their web 

service representation. Once mapped to web services, composite services can be created 

and deployed to a service orchestration engine in the local HAN. The Krox system 

architecture uses IM&P as a user metaphor, such that an IM&P user correspond to the 

local HAN, and HANs that agree to share devices between them are represented using 

buddy relation in the IM&P network. In addition IM&P is used for the secure 

communication subsystem connecting remote HANs. In order to demonstrate the utility 

of the Krox system design, two service protocol plug-ins were implemented for the 

UPnP and Jini service protocols. These plug-ins demonstrate the feasibility and 

applicability of the plug-in framework event model. The implementation of two plug-ins 

for representative service protocols demonstrate the completeness and the extensibility 

of the plug-in framework event model, and the mapping of these protocols to web 

services demonstrated their interoperability and composability. While a number of 

system in the literature address the problems of intra-HAN service interoperability and 

inter-HAN service interoperability separately, their integration is an unsolved problem. 

The work in this thesis is therefore novel in presenting and evaluating a comprehensive 
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integrated architecture that addresses this problem. In the area of inter-HAN service 

interoperability, the Krox architecture and design adopts the service virtualisation 

approach that is used in a number of inter-HAN service interoperability solutions [31, 

51, 139], combining it with a user metaphor that is appropriate for HAN users as applied 

with SIP in [51, 52]. It takes the novel step of adding to this a standard secure 

communication mechanism using IM&P and XMPP. This is then extended it with 

support for an additional protocol and an extensible framework and event model that 

enables supporting more HAN service protocol in the future. While [10, 51] claim their 

solutions support similar extensibility goals, no evidence or evaluation of designs for 

such extensibility are presented in the literature. In the area of intra-HAN service 

interoperability, the contribution of the Krox system architecture is that it facilitates the 

interoperability and composability of both local and remote services using a common 

service model. The application of web services as a common service model for HAN 

service interoperability has been suggested in literature [102, 2], and similarly the 

composition of services in the HAN has been investigated by a number of authors [16, 

17, 52, 126]. However the Krox architecture enables, through integration with the inter-

HAN components, the seamless interaction and composition of local and remote 

services, which is not addressed by these existing solutions. Equally however, while 

some of these authors attempt to define a process for dynamically matching and 

composing services, this is out of the scope of the Krox, architecture, such that it is 

limited to enabling the composition of local and remote service through the 

representation via a common service model, and their further sharing and reuse via 

representation of composite services as UPnP devices.  

3) Validate the architecture through implementation with two established HAN service 

protocols - This thesis presents a prototype implementation of Krox system architecture 

and design with plug-ins for UPnP and Jini that shows the utility and feasibility of the 

design, and provides an end-to-end system for the purpose of performance evaluation 

and security analysis.  

4) Evaluate the performance and security of the system implementation – The purpose of 

the performance evaluation and security analysis is to demonstrate the quality and 

efficacy of the design artefact, which is Krox system architecture and design. The 

performance evaluation performed as part of this thesis specified a number of evaluation 

parameters that affect the performance of the integrated intra-HAN and inter-HAN 

service interoperability. The performance evaluation showed that Krox system 

implementation has linear scalability (sections 6.2-6.3) with the scope defined for 
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sharing with households in an immediate social circle. The result indicate that on 

average, the delays introduced by the interaction with remote HANs are dominated by 

the network latency, however in stress conditions or in the context of nested composite 

services, the accumulation of the different delays can become apparent. Another aspect 

of performance that has been explored in the evaluation is the processing power and 

RAM that are required for the system to execute. As discussed in the previous chapter 

the evaluation was performed on desktop machines, which are more powerful than 

home gateways, however with the increased demand for the home gateway as an 

application platform, its appropriateness as a deployment platform for the Krox system 

is likely to improve. Finally this thesis includes a comprehensive security analysis 

(section 6.4) that identified the potential threats and attacks that can affect inter-HAN 

service interoperability, through the communication subsystem, and through attacks 

made on a specific service protocol. The security analysis is given in the form of attack 

trees followed by an analysis of the potential risk associated with the attack and with a 

recommendation for defence mechanism. While it is clear that when supporting inter-

HAN service interoperability, new threats are introduced, the purpose of the security 

analysis is to identify this threats and present mechanisms to defend against them from 

spreading beyond the scope of a single HAN. 

 

The next section describes the main contributions of this thesis and how they were achieved.  

 

7.2. Contributions of this thesis 

This section briefly summarises the contributions of this thesis, as presented in the previous 

chapters. 

 

This thesis provides an in depth study of solutions for integrated sharing resources (devices, 

services, and content) between multiple home area networks leading to an analysis of the 

existing IP based application level service protocols and their appropriateness for service 

sharing. The various service protocols are analysed and compared to identify the type of 

service protocols that can support seamless inter-HAN service interoperability. This thesis 

discussed the requirements from a service for sharing devices, services, and content from 

the HAN with remote HANs. This resulted in a comprehensive specification of these 
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requirements that extends the state of the art, in that it integrates intra-HAN and inter-HAN 

service interoperability requirements.  

 

In accordance with the design science research methodology, the major contribution of this 

thesis is the design of Krox system architecture that addresses the unsolved question of 

integrated intra-HAN and inter-HAN service interoperability and addresses the set of 

requirements identified in the state of the art study. The approach taken by Krox system 

architecture is suitable for service protocols with a parsable service interface and support for 

communication mechanism for service invocation. This service interface can lend itself to 

virtualisation in remote HANs and enable seamless integration with remote HANs. In 

addition, such a parable service interface enables the service protocol plug-in to map the 

service interface to web service thereby enabling its intra-HAN interoperability. The plug-in 

event model defines how service virtualisation can be achieved for multiple service 

protocols, as demonstrated with the plug-in implementations for Jini and UPnP. A key 

aspect of the Krox system architecture is its use of standard based IM&P communication, to 

provides a simple and commonly accepted user metaphor for managing sharing and a 

scalable and secure communication channel. This architecture includes well-defined 

interfaces, through which extensions for additional protocols can be implemented.  

 

While vendors and manufacturers have adopted SOC as a useful abstraction for supporting 

device interoperability, service composition was not fully addressed by these 

implementations. Service composition is an important part of SOC that can enable the 

realisation of more of the potential of the HAN and can enable 3rd party service providers to 

offer innovative services based on existing HAN devices. With the growing interest and 

demand for supporting service composition, and with the availability of more services in the 

HAN, through sharing from remote HANs, the importance of service composition increases. 

More services available in the local HAN lead to more potential for innovative composite 

services that can reuse and leverage the value of these atomic services. Krox system 

architecture supports service interoperability and service composability using a common 

service interface and a mapping between the service protocol and the common service 

interface. The plug-in based approach taken by Krox system architecture enables the support 

of mapping from the service protocol to web services, and by that increasing the service 

interoperability in the HAN, and enabling services to be composed using standard web 

service orchestration techniques. While service composition for HAN has been suggested in 

literature, the contribution of this thesis is in its integrated approach that enables to 
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seamlessly compose local and remote services, and even share the composite services.  

 

A minor contribution of this thesis is the comprehensive performance evaluation of the 

system design that identified the key performance indicators that affect sharing of services 

from the HAN with remote HANs. While performance is an important requirement for 

systems for inter-HAN service interoperability, only little information is given in the 

literature regarding the performance aspects of the relevant systems. Wegner [139] 

described a benchmark to evaluate the delay introduced by invocation of remote SOAP 

action, however this evaluation was made in isolation with a single device and on a 

powerful desktop machine (Intel Core Duo @ 2GHz) and did not include full UPnP 

implementation. Other systems reviewed in the literature do not present relevant benchmark 

information, especially in the context of their scalability to multiple HANs and the relevant 

key performance indicators. The evaluation of Krox system provided a benchmark baseline 

both for intra-HAN and inter-HAN service interoperability that can be compared against by 

future work in this area.  

 

Finally, a minor contribution of this thesis is a comprehensive analysis of the security 

aspects of sharing devices, services, and content from the HAN with remote HANs. This 

analysis in the form of attack trees identified potential attacks on HAN service protocols, 

their impact on the service protocols, on the system for sharing, potential impact on remote 

HANs with which it is shared, and potential defence mechanisms. While security is an 

important requirement from systems for sharing devices and services from the HAN, most 

attention has been given to standard security mechanisms such as authentication, access 

control, and encryption. Seikkinen et al. [119] Chowdhury et al. [31] focus on 

authentication, encryption, and access control. Such mechanisms are also discussed in [51, 

55, 76, 77, 84, 97, 121, 137, 139]. However the problem of defending against attacks using 

the vulnerabilities of relevant protocols for spreading beyond the scope of a single HAN is 

not addressed in the literature. The security analysis given in this thesis gives a reusable 

baseline in the form of attack trees that can be extended and referenced by future works in 

inter-HAN service sharing.  

 

7.3. Further work 

This section described a number of related research topics and a number of open research 
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topics that have not been fully researched as part of this thesis. 

 

7.3.1. Additional Krox plug-ins 

This thesis demonstrated the feasibility of the Krox plug-in framework and extensible event 

model using two service protocols. Additional service protocols could be supported, such as 

DPWS, OSGi, and HAVi. Moreover, while Krox system architecture is restricted to those 

service protocols with a parsable service interface, it leaves out a number of important 

protocols for the HAN such as ZeroConf and Bluetooth. A further direction could be to 

explore how much additional information, in the form of additional annotations to service 

descriptions, is needed to enable full support for these service protocols with Krox system 

architecture for both intra-HAN and inter-HAN service interoperability.  

 

7.3.2. Capability Sharing Management 

Krox system architecture as described in chapter 4 relies on a fine-grained definition of 

permission per resources. Though the specification of the sharing policies is out of the scope 

of this thesis, the utility and efficacy of potential solutions should be explored. For example, 

the Federal Relation Manager [23] was originally suggested for management of capability 

sharing between large telecoms providers with heterogeneous technical platforms. The FRM 

represents managed services and resources using a hierarchical capability authority model, 

which can be dynamically modified in order to create new aggregations of the basic 

capabilities made available by the underlying devices. By reusing this approach for HAN 

resources, users can assign different remote HANs different sets of capabilities that 

correspond to policies applied on the local HAN resources. The integration between Krox 

system and the FRM is on-going research involving the author, which will be completed 

after the submission of this thesis.  

 

In addition, while the configuration of the sharing policies is out of the scope for this thesis, 

the integration with FRM will require user studies to determine if the level of sharing 

control suits the level of technical management skill of the HAN user. 

 

Finally, the integration with the FRM would enable the evaluation of the impact of 

capability sharing management on the performance of Krox system. While the performance 
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evaluation presented in chapter 6 assumed all devices are shared in order to increase the 

load on the Krox system, the integration with FRM can enable to evaluate the relation 

between the number of shared and non shared devices and the performance of Krox system, 

with different types of sharing policies of variable complexity. 

 

7.3.3. Lightweight service composition for HAN  

One drawback of using XML/SOAP web services and BPEL for service orchestration is 

their performance. RESTful web services present a more lightweight and scalable approach 

for web services. However current BPEL specification does not allow composition of 

RESTFul web services, which is more typically implemented in mashups. A number of 

recent publications suggest supporting RESTful web services with BPEL service 

orchestration, such as BPEL for REST [99], and Apache ODE extension for RESTful 

services [6]. A potential direction could be representation of the composite service with a 

subset of BPEL constructs and compile the service into a more compact implementation. 

Bohn et al. [17] suggested promising approach using BPEL-to-Java compiler that could be 

extended to support RESTful services and result in a more compact representation of BPEL 

services that is application server free and requires less resources for execution.  

 

7.3.4. Service composition tools for HAN 

While the Krox system architecture provides the mechanisms needed for interoperability 

and service composition, it does not define a process for how services are composed. A 

complementary mechanism is required to exist in the HAN for identifying resources that are 

needed for specific composite services and just-in-time instrumentation of a composite 

service that reuses this resource. The Krox system architecture provides capabilities that can 

be used as part of such as system with its service protocol plug-in’s support for discovery 

and mapping to web services. Composite services could be defined using a template, and 

additional description of the type of constituent services that are required for the 

instrumentation of the composite service’s template. When all of the requirements for a 

composite service are met, it can be suggested to the user and automatically instrumented 

and deployed in the local HAN. The significance of service composition will increase in the 

following years with more devices and services available in the local HAN, therefore tools 

that allow service providers to offer innovative services to home users will take on 

increasing importance.  
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7.3.5. Rate limiting for communication subsystem 

As discussed in the security analysis, rate limiting is an important mechanism for increasing 

the robustness of the Krox system architecture to a various types of attacks. There are a 

number of directions for supporting rate limiting. One direction is to support rate limiting as 

an XMPP plug-in such that it will allow only a configured amount of messages per time 

interval to be sent and received between a pair of users or from a single user. Another option 

is to support this at the communication subsystem level, such that rate limiting will be 

applied within the Krox system instance. The drawback of this approach is that it may have 

implications on performance. 
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