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Summary

We present a novel framework to reason on programs based on probability distributions on the
state space of a program: they are functions from program states to real numbers in the range
[0..1], which can be used to represent the probability of a program being in that state.

Such framework can be used to provide an elegant semantics in the style of UTP to a variety
of programming languages using both probabilistic and nondeterministic constructs: the use of
probability distributions allows us to give programs a semantics which is based on homogeneous
relations.

The behaviour of probabilistic nondeterministic programs is treated algebraically via this frame-
work, and as a result it is straightforward to derive algebraic expressions for the probability of
some properties to hold for a given program.

Moreover our framework unifies all of the different kinds of choice under a single “generic
choice” construct, and the usual choice constructs (disjunction, conditional choice, probabilis-
tic choice, and nondeterministic choice) can be viewed as some of its specific instances. Later on
we will discuss also other possible specific instances (namely conditional probabilistic choice,
switching probabilistic choice, conditional nondeterministic choice, nondeterministic proba-
bilistic choice, and fair nondeterministic choice).

The use of probability allows us to introduce the notion of probabilistic refinement, which
generalises the traditional one: this is important in view of formal verification of probabilistic
properties of programs via refinement-based techniques.
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CHAPTER 1

Introduction

Formal verification is now mainstream in computer science: the task of establishing if a given
program behaves according to its specification is now a routine step, because of its higher
reliability compared to tests, coupled with time- and money-saving possibilities deriving from a
development approach based on formal methods.

The research community has played an important role in the development of current formal
methods, and its effort has not stopped. As a result of all the different approaches adopted
towards formal verification, nowadays we have a variety of available techniques: the advan-
tage is that for each of the many verification scenarios a particular technique may prove more
efficient than others.

On the other hand the disadvantage is interoperability of these techniques, which would be
quite a desirable feature — it is absolutely standard to use several different techniques towards
the verification of different parts of the same system.

Being able to use different models together is the aim of the Unifying Theories of Program-
ming (UTP), which rely on predicate logic to give a semantics to different languages, so that
unification can happen at the level of the common underlying semantics.

The focus of our work is UTP, in particular we want to come up with an approach that allows
us to treat probabilistic programs in an analogous way as standard nondeterministic programs
are treated in UTP.

There are several reasons for wanting probability in the picture.

A model including probability can offer a more precise description of a system, allowing the
verification procedure to assert that a given property is verified with probability p rather than
simply asserting that the property may be verified.

An example is a system with two alternative behaviours A and B: if we knew nothing more than
this, the only way we would be able to formalise is by merely saying that the system may show
behaviours A and B but we cannot make any other kind of forecasts on the actual observable
behaviour — we could write this using Dijkstra’s nondeterministic choice operator m as A n B.
What if we had also some kind of statistical characterization of the system, for example that A
and B happen randomly half of the time? It would be an unnecessary and detrimental waste
of information not to take this into account and model the system again with nondeterministic
choice: a more desirable option is something saying that both A and B happen with probability
0.5 — we could write something in the style of A , - B.

Sometimes a good statistical behaviour is what makes things usable. Actually, that is always the
real-world case: any appliance or machine that we use is not guaranteed to work every time
we want it to, it is just very likely that it will work.

Statistical observations are what draws a line between good appliances and bad ones: from
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an observer’s perspective the functional difference between a Trabant and a BMW is based on
statistics, one car being probabilistically less reliable than the other.

If we want to describe what happens when the driver turns the ignition key, simply saying that
the engine may (or may not) start running is not a good enough description, a probabilistic
information saying how likely it is that the car turns on is highly desirable.

We obviously have some expectations when we compare a Trabant with a BMW, as we assume
that the components in one car are more reliable than the ones in the other car: we know that
if we assemble correctly reliable components we will obtain a reliable car.

We have no numerical idea about the failure rate for the components used in each car, but an
engineer does: from his perspective the observations on the behaviour of the car can be made
at a lower level, directly on the parts, and this would allow him to infer the probability of some
behaviour (assuming that there are no other design flaws).

This is another reason why it is interesting to talk about probability: the rules for deriving
the probability of composite events from those of the single events are well established and
understood. As a result the overall probability that a certain property holds in a system can be
inferred bottom-up, starting from the probability of the relevant events.

An analogous perspective is that of the interaction between software and hardware: when we
model the behaviour of a program the implicit underlying assumption is that the hardware
is working properly. It would be interesting to integrate in the model also some information
concerning possible hardware failures, which are to be characterised statistically.

An example is the use of flash memories: the physical principles they are based on are quite
brutal (informally speaking, electrons are kicked through a barrier to store information, which
can be then erased by a strong current flow that resets the whole memory block) so failures are
of usual occurrence.

Having a framework which is capable to handle probabilistic information would be of great
value here, for example each write operation to a flash memory could be rendered as:

write(x) = successful_write(x) @ write_error

for an appropriate p, which can vary depending on number of previous writes and time.

From a different point of view, sometimes probability is the very reason why things do work.
Miller-Rabin primality test is an example, and plenty of other examples of interest can be found
in Computer Science, but also in everyday’s situations we rely on this: imperfect systems can be
made more reliable through redundancy, both in terms of physical duplication of components

and/or repetition of measures and experiments.

There are several pitfalls when dealing with probability, as sometimes the solution to some
problems is quite confusing and counter-intuitive. Here are a few examples.

Think of a man who is the father of two children:
* what is the probability that both of them are girls?
* knowing that one of them is a girl, what is the probability that both of them are girls?
* knowing that the older is a girl, what is the probability that both of them are girls?

The difference between the first question and the following two is apparent, but it may be not



so obvious what the difference between the last two. Assuming that there is a 50% probability
for each child to be male or female, the answers are:

* 4
<3
. 1/2‘

The middle one is probably the most surprising answer.
This example highlights the subjective component of probability, as it varies depending on how
well we know a situation we are talking about.

Another example is the (in)famous Monty Hall game: the setting is a TV show, where a par-
ticipant in front of three closed doors is given the chance to win a car if he guesses the door,
which the car has been hidden behind. Behind the doors there are two goats and a car, so the
probability to choose the “right” door is 1/3.

But what if Monty Hall (the host) opens one of the remaining doors, thus revealing where one
of the goat has been hidden, and offers the participant the possibility to change is mind and
switch his choice to the other closed door? Should he do it?

The answer is yes, because in this way he will double his chances to win, jumping to a nice 2/3.
This might sound a bit surprising at a first glance.

When trying to model a situation involving probability, the first and most important issue is the
decomposition of such situation into events, distinguishing atomic events from composite ones.
Atomic events are mutually independent, whereas composite events are a combination/union
of atomic events.

For example if we pick a random natural number in the range [1..10] we can say that:
* the probability of x = 2 is 1/10;
* the probability of x being even is 1/2;
* the probability of x = 2 and x being even is 1/10-1/2 = 1/20.

Or is it?!

The answer 1/20 is wrong, because we have considered the two events “x = 2” and “x being
even” as independent: in fact “x being even” is a composite event which can be rewritten in this
case as “x=2orx=4orx==6orx=38orx=10"— after this observation it is clear that x being
even is always true when x = 2 (i.e. the conditional probability of x being even when x =2 is 1),
so the correct answer is 1/10.

Sometimes two events appear to be independent, but in reality there is a (possibly hidden)
relation. A trivial example is a simple program that picks a random number for x (say either 0
or 1) and then assigns the new value of x to y.

Clearly the probability of x = y is 1, but would we be able to tell it if we were simply given
separately the probability distribution for each value for each variable, like:

P(x=0)=1/2 Px=1)=1/2 Py=0)=1/)2 Py=1)=1/2.
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In this case our answer would be probably that the probability is
Px=0)-Ply=0)+P(x=1)-P(y=1)=1/2.

This is because we lost the “entanglement” between the variables that was created by the pro-
gram.

1.1 Our approach

We want to give a brief overview of our approach, in order to give the reader an intuition
without getting bogged down in details — which will be presented extensively in §3.

With the last example in mind, it is clear that if we want to give a probabilistic description of
a program, we cannot deal with variables separately, but rather treat them as bundled into a
single entity, which we call “state”.

Although the concept of state is very general, it can be thought of as a snapshot of the current
memory content (what is in the RAM, in the processor registries, in the hard drive, and so on).

Each state can be assigned a probability, which corresponds to the probability of the program
being in that state: in this way we create a probability mass distribution, or shortly a proba-
bility distribution, on the state space of a program, so that we can reason on the probability
distribution (and its evolution) to understand the program behaviour.

Lumping variables together poses some serious challenges to track the evolution of a system:
when a state evolves to another state, the associated probability (or a part thereof) has to be
“transferred” to the new state. This is nontrivial in the case of several states evolving into the
same state, so that the associated probabilities (or a part thereof) have to be summed together
and “transferred” to the new state.

This is quite a common occurrence, for example this happens when there is an assignment
operation.

This framework has interesting algebraic properties, as the set of probability distributions is a
precise part of a vector space made of more general distributions (i.e. those distributions that
map states to real numbers, but that are not necessary a probability mass distribution), which
is isomorphic to R™, with n equal to the number of states.

Programs can consequently be seen as distribution transformers: they take an initial distribution
(before-distribution) and transform it into a final distribution (after-distribution) that accounts
for the changes made by the program.

In the case of deterministic programs, the corresponding space has interesting properties as
well, as it is isomorphic to a portion of R™ x R™.

Nondeterminism arises when a program is entitled to choose internally between different al-
ternative behaviours: as a result a single before-distribution can evolve to different possible
after-distributions, all of which are equally valid and no forecasts on the actual outcome is
possible.

As a result a nondeterministic program relates a single before-distribution to a set of after-
distributions.
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This allows us to see programs as predicates in the style of UTP, which are based on homo-
geneous relations among distributions: we are going to give a predicate semantics to a set of
common constructs, and use this to reason on programs with the rules of predicate logic.

1.1.1 Key contributions
The key contributions of this work are:

* a novel framework to reason on programs based on probability distributions on the state
space of a program: they are functions from program states to real numbers in the range
[0..1], which can be used to represent the probability of a program being in that state;

* such framework can be used to provide an elegant semantics in the style of UTP to a vari-
ety of programming languages using both probabilistic and nondeterministic constructs:
the use of probability distributions allows us to give programs a semantics which is based
on homogeneous relations. For this reason we believe that we took important steps to-

wards. ..

. the so-far-unachieved goal of unifying probabilism with other program-
ming constructs in the style of Unifying Theories of Programming.

Chen and Sanders [CS09]

* such framework allows us to treat algebraically the behaviour of probabilistic nondeter-
ministic programs, and as a result it is straightforward to derive algebraic expressions for
the probability of some properties to hold for a given program,;

* moreover our framework unifies all of the different kinds of choice under a single “generic
choice” construct, and the usual choice constructs (disjunction, conditional choice, prob-
abilistic choice, and nondeterministic choice) can be viewed as some of its specific in-
stances. Later on we will discuss also other possible specific instances, namely:

conditional probabilistic choice;

switching probabilistic choice;

conditional nondeterministic choice;

nondeterministic probabilistic choice;

fair nondeterministic choice.

* the use of probability allows us to introduce the notion of probabilistic refinement, which
generalises the traditional one: this is important in view of formal verification of proba-
bilistic properties of programs via refinement-based techniques.

1.1.2 Organization of this thesis

We are going to present the core background material which constitutes the foundations and
main references for this thesis in §2.

Chapter 3 and Appendices A and B are dedicated to a detailed presentation of our framework,
and some case studies are presented in Chapters 4 and 5 and Appendix D; some of the material
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from these chapters has been previously published as part of the work emanated from this
research [BBO9; BB11; BPB11; BB12a; BB12b; BB12c].
We conclude in §6 and include other appendices on mathematical background, proofs and

notation, which the reader can refer to when necessary.



CHAPTER 2

Background and related work

In this chapter we are going to present the background material relevant to this thesis and the
related work; we assume familiarity with all of the underlying mathematics (linear algebra,
measure theory and probability theory), which is anyway briefly presented in Appendix F.

The topic of probability in computer science has been addressed within different scopes in a
variety of different ways, including the Dempster-Shafer belief theory [Dem68; Sha76; Jgs01;
Koh03], Bayesian networks [Pea88; FHM90], probabilistic argumentation [Hae*01], logical/relational
Markov models [DKO3; JKBO7], and probabilistic powerdomain techniques [JP89; Jon90].

Our approach to probability builds on higher-level work relying on Markov models and prob-
abilistic powerdomains, and in particular the main references are Dexter Kozen’s framework
[Koz81; Koz85] and the pGCL framework [MMO04]; such an approach yields a UTP-style frame-
work where nondeterminism and probabilism coexist.

Kozen’s framework, pGCL and UTP are our three main reference areas: although the notation
used in the different references varies, we will try to uniform it for the sake of understandability
— refer to Appendix E for the notation used.

2.1 Kozen’s framework

In the early 1980s Dexter Kozen proposed a formalism to reason about probabilistic programs
[Koz81; Koz85], with an approach which is very different from conventional logic:

Unfortunately, almost all of our logical apparatus belongs to the nondeter-
ministic form. The usual logical connectives and the existential quantifier
are clearly nondeterministic in nature. We must therefore be prepared to de-
part radically from conventional logic in order to accommodate probability

in a satisfactory way.
Kozen [Koz85]

Dijkstra’s nondeterministic choice is therefore left out in Kozen’s approach, and replaced by
probabilistic choice: as we will see later on, this has profound implications.

The motivation for Kozen’s work was providing a common framework to unify the two main-
stream approaches of the late 1970s, i.e. the distributional approach and the randomized ap-
proach, and to analyse probabilistic programs, which had been previously analysed exclusively
by ad hoc methods.

The distributional approach sees a program as being deterministic, and probabilism emerges
from a probability distribution on the input; the randomized approach allows a program to

7
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take probabilistic steps, but the input is fixed. Yao proved the equivalence of these approaches.
[Yao77]

The roots of Kozen’s approach go down to the theory of linear operators in Banach spaces: a
probabilistic program is in fact interpreted as a continuous linear operator on a Banach space
of (probability) distributions.

Kozen deals with probabilistic while programs in [Koz81], which act over the variables vy, v5,..., vy
(all of the same type W for the sake of simplicity) and use the following constructs:

* assignment: v; := e(th,0,...,0n), Where the expression e, which is a function of the
program variables, is evaluated in the current state and the resulting value is assigned to
48]

* random assignment: v; := random, where random is a function returning a random variate
from some random variable of the appropriate type!;

* sequential composition: A ;B, which executes the program B after A has terminated;

* conditional choice: A < ¢ > B, which executes A or B depending on the evaluation of the
condition ¢, which is a boolean expression?;

e (while) loop: c » A, which executes the body of the loop A as long as ¢ holds true.

In semantics 1 of [Koz81] program variables are seen as random variables on the probability
space (S, s, 1s), all of which have the same value space (W, £,,), where:

e 5= {o,az,...} €S and £,y c W are o-algebras defined on the state space S and
on the variable type ‘W;

* ug:Xs— [0..1]is a probability measure on the measurable space (5, X).

We have that the functional composition of the probability measure p after the random vari-
able 7; defines a probability measure on (W, £,,):

. -1
Moy = HgoTp .

The random vector v: (S, L, 1s) » (W, Lqy), where W = W™ and L4y = {B,B,,---} LW,
is a vectorial function whose i-th component is the i-th random variable; we can show that v
induces an isomorphism between the measurable spaces (5, %s) and (W, %,,).

Similarly as above, the functional composition of the probability measure u?after the random
vector v defines the joint distribution for input variables:

. -1
By =HsoT .

1Kozen’s view of things in semantics 1 of [Koz81] is actually based on an infinite stack of random numbers, that
serves as a random generator such that “each time v; := random is executed, the next random number is popped from
the stack and assigned to v;”. The presentation of semantics 1 here is amended in order to avoid this complication:
it is possible to remove this by choosing to identify random vectors with the same distribution, according to Kozen’s
observation at the end of the presentation of this semantics.

2A boolean expression ¢ will evaluate to true or faﬁse when v is mapped to the to elements of a subset ﬁc of W or

top_ = W \ Be, respectively.
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A program A can be seen as a partial measurable linear function £» : ‘W + W on the value
space, which accounts for the changes made by A to the configuration of variables; it is there-
fore possible to express the joint distribution for the output we obtain after running program A
as:

. -1 -1 -1
H’ﬂ=H5°7’ oLN =ugo Ly .

In view of a slightly different semantics that appeared later in [Koz85] (and which is going to
be presented below), it is useful to define now the probability measure

w2 pgo Inva,

where Inva 2 v7' o Z;' o v: the function Inva on (S,L;) corresponds to the function .Z;"
on (W, % w ) under the isomorphism induced by v, and this implies that

woy=psov
Semantics 2 from [Koz81] sees a program A as a homeomorphism on the set of all possible joint
distributions of the program variables (including all linear combinations), or equivalently as a
homeomorphism /%5 on the set My, of all possible probability measures on the measurable
space (W, £,,): therefore a prograrg transforms a measure ., accounting for the initial vari-
able distribution into a measure oy = HA(Key) accounting for the final variable distribution
after the execution of A — the notation A is used both for the program .

(Mg, | |,<), where || is the total variation norm and < is the complete partial order induced
by the positive cone M, of M, is a conditionally complete Banach lattice, where the internal
operations are defined as follows:

(Hapi + B ;) (B) = Hap :(B) + gy ;(B)
(apgy)(B) = a(rgy(B))-

The space P of programs, with addition and scalar multiplication extended point-wise, forms
also a Banach space together with the uniform norm, which is defined |7 || = supy,, i1 {[7a (kagp) [ }-
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The intuition behind this approach is as follows. The program variables
v1,...,Un satisfy some joint distribution 4, on input. We will forget the
variables themselves and concentrate on the distribution Hqgy. We can think
of wqy as a fluid mass distributed throughout ‘W. This mass is concentrated
morgdensely in some areas than others, depending on which inputs are more
likely to occur. Execution of a simple or random assignment redistributes the
mass in ‘W. Conditional tests cause the mass to split apart, and the two sides
of the conditional are executed on the two pieces. In the while loop, the
mass goes around and around the loop; at each cycle, the part of the mass
which occupies B. breaks off and exits the loop, and the rest goes around
again. Part of the mass may go around infinitely often. Thus, at any point in
time, there are different pieces of the mass that occupy different parts of the
program, and each piece is spread throughout the domain according to the
simple and random assignments that have occurred in its history. Different
pieces that have come to occupy the same parts of the program through dif-
ferent paths are accumulated. At certain points in time, parts of the mass find
their way out of the program. The output distribution . (11qy) is the sum
of all the pieces that eventually find their way out. Thus the p?obabi]ity that
program A halts on input distribution w is 55 () (W), the probability of
the universal event ‘W upon output. -

adapted from KOZEN [K0z81]

Subprobability measures are all those positive ones whose norm does not exceed 1, which are
those belonging to the set P = M7, n Bo[1].

It shall be noted that, as probability measures are those with unitary norm, viz. belonging to the
boundary 3B (1) of the unit ball, the set of all positive probability measures is P 2 M3,n0Bo[1].

A program A can therefore be seen as a function 4 :— P » P, which maps a probability
measure to a subprobability measure®. This function can be extended to be applicable on the
whole M, such extension is a |||-bounded continuous linear transformation Mg, -~ M.

As mentioned above, the space P is a Banach one: its subset P* of monotone elements induces
an order c on P — which is the point-wise lifting of the order < on measures.

The semantics for the program constructs is the following:
* in the case of the assignment v, := e(vy, v3,..., ¢, ), the corresponding transformation is:
He(pgy) = po 2,
where %, : W +» W is the function

Le(V1,V2y00csUn) = (1, T2y, Vi1, €(V1, U2y ooy Un)y Piglyenes ¥n);

3Nevertheless more in general we can see them as a homeomorphism on the set of subprobability measures, as
when the function representing the program is applied to a subprobability measure it returns a subprobability measure
whose norm is no larger than that of the function argument.
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* the random assignment v; := random
‘%Oram{om(uﬂ)(ﬁ1 X Bz x e x Bn) = uﬂ(61 X B X xPBiog x W x Bigr x oo x Bn)p(ﬁi);

where (1,82,...,Bn € Zyy and p is the probability distribution for the random number
generator — the random assignment alters the measure 3; used to have before its execu-
tion, as the distribution of the i-th variable changes causing p(f3i) to be the new measure
of Bs;

* the sequential composition A ; B yields the functional composition 5 o #a;

¢ the conditional choice A < ¢ > B is:

Hig(gy)(B) = Ha o mgy(B_ N B) + HBopgy(B.NB),

where 3. and f; are a partition of W/: in these sets the condition c evaluates to true and
fa[se respectively — it is therefore clear how the measure is transformed via .7#4 on the
part of 3 where c is true and via /#3 on the part of 3 where c is false;

* the loop ¢ * A can be interpreted using the least fixed point operator:

%hile(uﬂ)(ﬁ) =lIfp %(Hﬂ)(ﬁ) ° (% o Hp o Uﬂ(ﬁc np)+ Hﬂ(ﬁé ”E)))

where, in the right-hand side, a construct similar to the conditional choice is clearly recog-
nisable: this is because the bracketed term was obtained by unfolding the loop once —
the existence of the least fixed point is guaranteed by the fact that the space of programs
P is a Banach lattice.

These ideas lead to the presentation in [Koz85], where programs are seen as Markov transitions
(or measurable kernels), which are functions p : § x X5 — R satisfying the properties:

1. fo(0) 2 p(o,«’) is a bounded measurable function f, : § — R on the measurable space
(8,XZ5) — let F denote the space of all such functions;

2. po(a') 2 p(o, o) is a finite measure py : g - R on (5, X5) — let M denote the space of
all such functions.

The Markov transition p(o, ') maps a pair, formed by a state and a set of states, to a real num-
ber: with an appropriate choice of p, we can use a Markov transition to express the probability
pa(o,a’) that a program A ends up in some state ¢’ € «’ when starting in state o .

With this in mind it is easy to relate this semantics to the measure-transformer semantics of
[Koz81], by expressing the relation of a measure on the set of after-states §’ to that on the set
of before-states § as:

we(o) = Y palo, o )us({o}).

oeS

It is also possible to use this to express the expected value (f) of a function f : §' - R on
after-states after running a program A from a before-state ¢ — therefore it is (f) : § - R:

(f)(0) = > palo,{o'})f(d").

o’eS’
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If f is the characteristic function of a set of states o, then (f) is the probability that ¢’ € o; if
f is the function describing the probability of an event happening when a program halts in a
given after-state, then (f) is the probability that this event happens when terminating in a state
belonging to «'.

A technique by Jones and Plotkin [JP89] can be used to build what they term the probabilistic
powerdomain of evaluations: they introduce probability into a semantic domain, and thus the
behaviour described by Kozen’s framework can be reproduced in that setting [Jon90] — this is
the basis for the probabilistic predicate-transformer model presented in §2.2 [MMS96; MMO04].

2.2 pGCL

The choice operator is the key ingredient of probabilistic systems, and it can be instantiated in
three different ways:

* demonic choice, that picks the “worst-case” scenario for that choice;
* angelic choice, that picks the “best-case” scenario for that choice;

* probabilistic choice, that picks one of the two options with a given probability.

Probabilistic choice is a desirable feature in a language, as it is doubtless that a quantitative
formal analysis offers great advantages compared to a qualitative one: the challenge is to find
a computationally feasible way of dealing with this.

Interactions among demonic, angelic and probabilistic choices may be subtle. In fact a deter-
ministic (although probabilistic) program is characterised by monotonicity, conjunctivity and
disjunctivity:

Monotonicity (P = Q) = (P(P) = P(Q))

Conjunctivity P(P A Q) = (P(P) A P(Q))

Disjunctivity P(Pv Q) = (P(P)v P(Q))

where P and Q are predicates and P is a predicate transformer.

When introducing demonic choice we drop disjunctivity; if demonic choice and angelic choice
coexist in the same program, we lose also conjunctivity and we remain only with monotonicity.
[MM98]

When composing processes one must be careful about the issue of duplication, which in pres-
ence of probabilistic and nondeterministic choice may lead to incorrect results. [Mor*95]

An example is given by the idempotency of the demonic choice operator, which depends on its
definition: if the demonic choice operator can distribute through probabilistic choice operators
we can have the following behaviour[Mis00]:

(A%GaB)H(A%@B):A%@((AHB) ®B)

1
3

The reason for this is that two instances of the same program containing a demonic choice are
actually two different programs because of it, as every demonic choice is a unique element.
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Another way of seeing this is that it is crucial to know when a choice is made, thus we have to

be very careful when we distribute choice operators.

The main shortcoming of Kozen’s approach is that he chooses not to retain nondeterministic
choice, which — although being undoubtedly a source of complication — turns out to be a

necessary and desirable feature of a programming language:

Dijkstra’s demonic n was not so easily discarded, however. Far from being
“an unnecessary and confusing complication,” it is the very basis of what is
now known as refinement and abstraction of programs.

Mclver and Morgan [MMO04]

In fact refinement and abstraction are the core of formal techniques for software specification
and development, and are necessary to derive an implementation from a given specification via
the refinement calculus.

Before going further on, let us take a step back and present the concept of guarded commands,
which was introduced by Dijkstra in the 1970s [Dij75; Dij76]: a guard is a condition that pre-
cedes a command and is evaluated before the command is executed — obviously this happens
only in case the guard is true.

The Guarded Command Language (GCL) uses the following constructs:
* abort is the aborting program;
* skip is the program which does nothing and terminates;

e assignment: v; := e(vy,v2,...,0n), Where the expression e is evaluated in the current

state and the resulting value is assigned to 7;;
* sequential composition: A ;B, which executes the program B after A has terminated;

* conditional choice: A < ¢ > B, which executes A or B depending on the evaluation of the

condition c;

* nondeterministic choice: A nB, which executes A or B nondeterministically, depending on
the desired outcome — in the case of demonic nondeterminism the executed program is
that leading to the less desirable outcome, the one leading to the most desirable outcome

in the case of angelic nondeterminism;
* (while) loop: c = A, which executes the body of the loop A as long as ¢ holds true.

In Dijkstra’s work, GCL is given a semantics via the so-called weakest precondition, which is a
predicate wp.A.Post that is true in those initial states that guarantee that the postcondition
Post will be reached after running A*.

The work by Morgan, Mclver et al. leads to a probabilistic version of GCL , namely pGCL [MM97;
MMO04; MMO5].

Our simple programming language will be Dijkstra’s, but with @ added and

— crucially — demonic choice n retained: we call it pGCL .
“It is possible to use a Hoare triple to express the same concept: {Pre}A{Post}.
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Mclver and Morgan [MMO04]

Their approach to probabilistic systems is based on what they term expectations, which are used
in place of standard predicates: informally, an expectation is a function that assigns a weight (a
non-negative real number) to program states, thus describing how much each state is “worth”
in relation to some desired outcome. This is nothing but a non-negative real-valued random
variable®.

There is a natural way of embedding the usual boolean predicates in this approach, as an
expectation corresponding to a predicate Pred can be defined as a random variable [Pred ]
that maps a state to 1 if it satisfies the predicate and to 0 otherwise.

Arithmetic operators and relations are extended point-wise to expectations, as is multiplication
by a scalar: the space of all expectations over the state space S is

8:(5—>R+,§);

functions modifying an expectation are referred to as expectation transformers.

pGCL is given a semantics based on expectations, which generalises the concept of weakest
precondition to that of weakest pre-expectation: for this reason this semantics is usually referred
to as the weakest pre-expectation semantics — one expectation is weaker than another if for all
states it returns at most the same weight (it is the < relation lifted point-wise).

A pre-expectation is an expectation whose domain is that of initial states, whereas a post-
expectation is an expectation whose domain is that of final states; given a post-expectation
PostE and a program A, informally wp.A.PostE is the weakest pre-expectation which de-
scribes the expected “worth” of each initial state: the operator wp can be thought of a function
wp : P — T returning the expectation transformer corresponding to each program, where 7 is
the space of expectation transformers.

So we have that Post’E € £ and wp.A € T, and therefore wp.A.PostE € £.

The syntax of pGCL comprises the following constructs:
e abort is the aborting program;
* sKip is the program which does nothing and terminates;

* assignment: v; := e(vy,02,...,0n), Where the expression e is evaluated in the current
state and the resulting value is assigned to 7;;

* sequential composition: A;B, which executes the program B after A has terminated;

* probabilistic choice: A ., B, which executes A with probability p and B with probability
(1 - p) — this is the novelty with respect to GCL;

* conditional choice: A < ¢ > B, which executes A or B depending on the evaluation of the

condition ¢ — this is syntactic sugar for A (@ B;

* nondeterministic choice: A n B, which executes A or B nondeterministically;

5Attention must be paid to the terminology, which may be utterly misleading: many people refer to the expected
value of a random variable X as “expectation of X”, but we will refrain from doing this to try to minimize confusion
and use systematically “expected value of X”.
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wp.abort.PostE = 0
wp.sKip.PostE = PostE
wp.(x = e).PostE = PostE{e/x}
wp.(A;B).PostE = wp.A.(wp.B.PostE)
wp.(A N B).PostE = min{wp.A.PostE, wp.B.PostE}
wp.(A ©B).PostE 2p - wp.A.PostE + (1 -p) - wp.B.PostE
wp.(c * A).PostE = IfpX e wp.((A;X) < ¢ > sKip)

Figure 2.1: wp-semantics of pGCL, adapted from [MMO04, p. 26].

* (while) loop: c = A, which executes the body of the loop A as long as ¢ holds true.

Given a post-expectation Post’E, the weakest pre-expectation semantics corresponding to the
constructs listed above is as follows:

* the weakest pre-expectation with respect to the aborting program is 0 regardless of PostE:

wp.abort.PostE = 0;

* the program sKip does not alter the weight of each state, so the weakest pre-expectation
is unchanged and therefore it is still PostE:

wp.sKip.PostE = PostE;

* in the case of assignment the weight of each state is changed according to the evaluation
of the expression e:
wp.(x = e).PostE = PostE{e/x},

where the notation PostE{¢/x} denotes the expression describing PostE with all free
occurrences of x replaced by e. From this we can see that in some sense it is necessary to
go backwards in order to give a meaning to the assignment construct, as PostE needs to
be “translated” in terms of the states we have before it;

* sequential composition is rendered by functional composition, as the weakest pre-expectation
relative to PostE with respect to B acts as the post-expectation when deriving the weakest
pre-expectation with respect to A:

wp.(A;B).PostE = wp.A.(wp.B.PostE);

* the weakest pre-expectation with respect to the probabilistic choice A ,® B is a linear
combination of the two alternative weakest pre-expectations with respect to A and B,
where the coefficients p and (1 - p) respectively:

wp.(A ©B).PostE =p- wp.A.PostE + (1 -p) - wp.B.PostE
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* the nondeterministic model underlying pGCL is the demonic one, and therefore nonde-
terministic choice picks in each case the option yielding the worst-case behaviour. This
is rendered by taking the point-wise minimum between the two alternative weakest pre-
expectations:

wp.(A N B).PostE = min{ wp.A.PostE, wp.B.PostE} ;

* in the case of the loop, the weakest pre-expectation can be determined via the least fix

point operator in a standard way:

wp.(c * A).PostE = IfpX e wp.((A;X) < ¢ > sKip) .

This is also shown in Figure 2.1.

Having retained nondeterminism, it is possible to define a sensible refinement relation using
this semantics:
Sc A 2VPostE e wp.S.PostE < wp.A.PostE

where A is some program and S is its specification.
In other words a program A refines a specification S if the minimum expected weight for each

state after A has run is at least as much as we would get after S has run.

An alternative is the probabilistic relational model [HSM97; MMO04], which sees a program as a
relation from states to up-, convex- and Cauchy-closed sets of probability distributions & over the
state space — the characteristics of these sets correspond to some healthiness conditions on the
probability distributions they contain, which will be discussed —; the space of all probability
distributions is

@P :{6:5_) [Oa” | ZUES 6(6) S1}~

It is possible to see programs as relations from probability distributions to sets of probability dis-
tributions via the Kleisli composition of programs[MMO04, Chp. 5] — incidentally, this is similar
to our approach to give pGCL a UTP semantics based on distributions.

From this perspective a probabilistic program is seen as a function that maps an initial state to
a fixed final probability distribution over .§; the space of all deterministic programs is

Pp = (S - Dp,t).

Because of nondeterminism each initial state can be mapped to different final probability distri-
butions: it is therefore possible to see a demonic probabilistic program as taking an initial state
to a set of fixed final probability distributions.

Such a set cannot be any subset of D,,, as the distributions it contains must comply with some
healthiness criteria, as mentioned above: this results in the set being up-, convex- and Cauchy-
closed.

The space of all demonic probabilistic programs is therefore

T:(S_)H»E)a
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The probabilistic predicate-transformer model takes a program and turns it
into an expectation transformer. This can be applied to a post-expectation to
derive the corresponding pre-expectation.

& T £
[pre-expecta tionHeXpecta tion transfomeerost—expecta tion]
wp

The probabilistic relational model relates a state to an up-, convex- and
Cauchy-closed set of probability sub-distributions.

S a7 @
Pf ogram up-, convex- and Cauchy-closed set of probability sub—distributions]

Figure 2.2: The two semantic models of pGCL from [MMO04].

where # ¢ £D, is the set of all up-, convex- and Cauchy-closed sets of probability distributions;
these three set properties descend from healthiness conditions that are satisfied only by those
distributions that result from sensible probabilistic programs:

Probabilistic programs are now modelled as the set of functions from ini-
tial state in S to sets of final distributions over S, where the result sets are
restricted by so-called healthiness conditions characterising viable proba-
bilistic behaviour, motivated in detail elsewhere [MMO04]. By doing so the
semantics accounts for specific features of probabilistic programs. In this
case we impose up-closure (the inclusion of all =-dominating distributions),
convex closure (the inclusion of all convex combinations of distributions),
and Cauchy closure (the inclusion of all limits of distributions according to
the standard Cauchy metric on real-valued functions [MMS96]). Thus, by
construction, viable computations are those in which miracles dominate (re-
fine) all other behaviours (implied by up-closure), nondeterministic choice
is refined by probabilistic choice (implied by convex closure), and classic
limiting behaviour of probabilistic events (such as so-called “zero-one laws”)
is also accounted for (implied by Cauchy closure). A further bonus is that
(as usual) program refinement is simply defined as reverse set inclusion. We
observe that probabilistic properties are preserved with increase in this order.

adapred from VICIVer, Cohen, and Morgan [MCMO6]

The visual synthesis of the semantic models is presented in Figure 2.2.

Some work by Hehner [Heh04; Heh11] revisits what has been done on pGCL, with a focus on
predicative semantics.
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To conclude this brief presentation of pGCL, here is a representative sample of laws about
probabilistic programs, that it is possible to prove in this framework:

ANBcA @B
(AnB) @C=(A @C)n(B ()
(AnC) ®(BnC)=(A @B)nC
(AnB);C=(A;C)n(B;C)
A;(BnC)e(A;B)n(A;C)

2.3 pCSP

On the side of process algebras, probabilistic CSP is obtained by adding probability to Hoare’s
CSP [Hoa85b].

In [Mor*96] we can find one of the possible definitions, where probability is defined in such a
way that it distributes through all operators: this leads to a surprising behaviour in the demonic
choice operator, which is not idempotent.

In this paper they define a refinement operator and discuss the ideas of an associated probabilis-
tic refinement calculus, where an implementation satisfies a specification with null probability:
this shows that it is not reasonable to expect an absolute specification in this setting, but it is
wiser to have a sort of “timed” specification. This is in line with real-world systems, as they
cannot possibly work forever (we simply have to wait long enough for their failure probability
to raise), and for this reason we can specify a time limit for which a specification has to be
satisfied.

A different presentation is given in [Mor04], where pCSP is built on top of probabilistic action
systems written in pGCL and is linked back to the relational semantics of pGCL.

This view of the subject highlights how compositionality of probabilistic CSP is not straight-
forward, because of the introduction of probability: in a way probability splits the deterministic
scenario into several possible different scenarios, and one has to take this into account when
composing probabilistic programs.

They explain this using the metaphor of the colour of a child’s eye, knowing the colour of the
parents’ — too much information has to be brought forward if we want accurate information,
but simply a phenotypical description is unreliable and not sufficient, as what is enough is to
know colour and whether the allele is predominant or recessive. This same kind of information
is the one that has to be sought to have an accurate probabilistic compositionality: in fact if we
observe an event, we would want to be able to identify the facts that have led to that event.
For example if we observe a failure (i.e. a composite event) during the run of a program, we
want to track down the reasons of this failure and to identify what factors (i.e. base events)
have been responsible for the happening.

2.4 UTP

The Unifying Theories of Programming (UTP) research activity seeks to bring models of a wide
range of programming and specification languages under a single semantic framework in order
to be able to reason formally about their integration [HH98; DS06; But10; Qin10].
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Computing science is a new subject, and we have not yet achieved the unifi-
cation of theories that should support a proper understanding of its structure.
[...] we face the challenge of building a coherent structure for the intel-
lectual discipline of computing science, and in particular for the theory of
programming. Such a comprehensive theory must include a convincing ap-
proach to the study of the range of languages in which computer programs
may be expressed. It must introduce basic concepts and properties which are
common to the whole range of programming methods and languages. Then
it must deal separately with the additions and variations which are particular
to specific groups of related programming languages.
Hoare and He [HH98]

A success in this area has been the development of the Circus language [OCWO09], which is a
fusion of Z and CSP, with a UTP semantics, providing specifications using a “state-rich” process
algebra along with a refinement calculus; recent extensions to Circus have included timed
[SHO03] and synchronous [GB09] variants. Recent interest in aspects of the POSIX filestore case
study in the Verification Grand Challenge [FWBO08] has led us to consider integrating probability
into UTP, with a view to eventually having a probabilistic variant of Circus.

UTP follows the key principle that “programs are predicates” [Heh84; Hoa85a] and so does not
distinguish between the syntax of some language and its semantics as alphabetised predicates;
theories in UTP are expressed as second-order predicates® over a pre-defined collection of free
observation variables, referred to as the alphabet of the theory. The predicates are generally used
to describe a relation between a before-state and an after-state, the latter typically characterised
by dashed versions of the observation variables. For example, a program using two variables x
and y might be characterised by having the set {x,x’,y,y’} as an alphabet, and the meaning of
the assignment x := y + 4 would be described by the predicate

X' =y+4ry’ =y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational calculus for
reasoning about programs.

In addition to observations of the values of program variables, often we need to introduce
observations of other aspects of program execution via so-called auxiliary variables. So, for
example, in order to reason about total correctness, we need to introduce boolean observa-
tions that record the starting (0k) and termination (0&’) of a program, resulting in the above
assignment having the following semantics:

ok = o@'Ax’:y+4 Ay =y

(if started, it will terminate, and the final value of x will equal the initial value of y plus four,
with y unchanged).

As an example of a UTP theory using both observation and auxiliary variables, we have shown
in Figure 2.3 the UTP semantics of a variant of Dikstra’s GCL [Dij76] according to the so-
called theory of “designs”, which characterises total correctness for imperative programs. x is a

6 Most definitions are in fact first-order, but we need second-order in order to handle the notion of “healthiness”,
and recursion.
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abort = true
skipz ok = ok nv' = v
x:=e2 ok Aeis defined= ok Ax' =env' = v
P13P2 2 30K s 2y @ P1[0K o 20 /K 21 A P2[ 0K 1y 21/ 0K, 7]
Pi<dcD>P22cAPrv-acAP,
PynP2 2Py vP,
c*P2vXe(P;X)< ¢ D sKip

1>

11>

Figure 2.3: UTP Design semantics of simplified GCL

program variable and v is the list of all other program variables, and thus these are observation
variables, and oK is an auxiliary variable.

A problem with allowing arbitrary predicate calculus statements to give semantics is that it is
possible to write unhelpful predicates such as —ok = ok’, which describes a “program” that
must terminate when not started. In order to avoid assertions that are either nonsense or
infeasible, UTP adopts the notion of healthiness conditions which are monotonic idempotent
predicate transformers whose fixpoints characterise sensible (healthy) predicates. Collections
of healthy predicates typically form a sub-lattice of the original predicate lattice under the
reverse implication ordering [HH98, Chapter 3].

Key in UTP is a general notion of program refinement as the universal closure of reverse impli-
cation’:
SEP2[P=S§]

Program P refines S if for all observations (free variables), S holds whenever P does.

The UTP framework also uses Galois connections to link different languages/theories with dif-
ferent alphabets [HH98, Chapter 4], and often these manifest themselves as further modes of
refinement.

2.4.1 Theory of Designs

The theory of designs patches the relational theory, in the sense that predicates from the rela-
tional theory fail to satisfy the following equality:

true;P = true

In fact according to the relational theory true is a left identity of the sequential composition
operator:

true; P =3p, e true{?n/v'} A P{Zn[v}
=3v,, e true A P{Zn/v}
=37, * P(20/0)

7Square brackets denote universal closure — [P] asserts that P is true for all values of its free variables.
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Which reduces to true if v € fo(P), or to P otherwise.
This has disastrous consequences, as this enables us to show that a program can recover from
a never-ending loop:

true » sKip = IfpX e X = L = true

... which is surprising, to say the least.

The theory of designs uses an additional auxiliary variable ok (along with its dashed version
0&’) to record start (and termination) of a program.

A design (specification) is made of a precondition Pre that has to be met when the program
starts, and if so the program establishes Post upon termination, which is guaranteed:

ok A Pre = ok A Post
for which we use the following shorthand:
Pre + Post
The semantics of the assignment x :=y + 3 in this theory is the following:
true-x'=y+3ay’ =y

(if started, it will terminate, and the final value of x will equal the initial value of y plus three,
with y unchanged).

The behaviour of true with respect to sequential composition is the desirable one, as now we
have:

true; (Pre - Post) =true; ok A Pre = ok A Post
=30k, 0, o trie{kn/ok }{2n)o'} A (0K, APre{en/o} = ok A Post)
=30k, 7, ® true A (0K, A Pre{z.[o} = ok’ A Post)
=30K ,,,, ., ® K. A Pre{2nfo} = ok’ A Post

=true

and therefore true is a left zero for sequential composition.
Designs form a lattice, whose bottom and top elements are respectively:

abort = false - false = false  true

and
miracle = true v+ false = -0k

It should be noted that miracle is a (infeasible) program that cannot be started.

Valid designs are predicates R which comply with four healthiness conditions [HH98]. The first
one (unpredictability, H1) excludes from observation all programs that have not started, and
therefore restricts valid relations to those such that:

R=(0k = R)
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All Hi-healthy predicates satisfy the left zero and left unit laws:
true;R=true  and  sKip;R=R

The second one (possible termination, H2) states that a valid relation cannot require nontermi-
nation:
R{fa[se/gk’} = R{true/of'}

The third one (dischargeable assumptions, H3) states that preconditions cannot use dashed vari-
ables. All H3-healthy predicates satisfy the right unit law:

R;sKip =R

The fourth one (feasibility or excluded miracle, H4) requires the existence of final values for the
dashed variables that satisfy the relation:

Jok',v' e R = true

H4 excludes miracle from the valid designs, and this implies that all H4-healthy predicates satisfy
the right zero law:
R; true = true

This condition cannot be expressed as an idempotent healthiness transformer, and does not
preserve the predicate lattice structure. It serves solely to identify and/or eliminate predicates
that characterise infeasible behaviour.

2.4.2 Probabilistic UTP

There has already been a certain amount of work looking at encoding probability in a UTP
setting. He and Sanders have presented an approach unifying probabilistic choice with stan-
dard constructs [HS06], and this work provides an example of how the laws of pGCL could be
captured in UTP as predicates about program equivalence and refinement. However only an
axiomatic semantics was presented, and the laws were justified via a Galois connection to an
expectation-based semantic model.

Sanders and Chen then explored an approach that decomposed demonic choice into a combi-
nation of pure probabilistic choice and a unary operator that accounted for demonic behaviour
[CS09]. There they commented on the lack of a satisfactory UTP theory which could prove
effective towards. . .

. the so-far-unachieved goal of unifying probabilism with other program-
ming constructs in the style of Unifying Theories of Programming.
Chen and Sanders [CS09]

A probabilistic BPEL-like language has recently been described by He [HelO] that gives a UTP
-style semantics for a web-based business semantics language. This language is GCL with ex-
tra constructs to handle probabilistic choice and compensations and coordination operators,
including exception handling. The UTP model that is developed does not relate before- and
after-variables of the same type, but instead uses predicates to encode a relationship between
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an initial state and a final probability distribution over states.

In relatively recent times a paper by Jun Sun et al.[SSL10] has described a probabilistic anal-
ysis of the likelihood of a program in a medical device satisfying a safety specification, given
that random, but hopefully unlikely events, can prevent the correct behaviour, even if the pro-
gram is the best one possible. Their probabilistic model checking directly corresponds to the
probabilistic refinement we are going to present in §3.7.1.

What all the treatments above have in common is that the UTP predicates relate an initial
program variable state (o) to a final probability distribution (8") over states, so the relation
is not homogeneous. This complicates the definition of sequential composition (which has to
involve some form of Kleisli composition) and also makes building links to homogeneous UTP
theories more difficult.

What is still missing is a UTP theory that is defined in terms of predicates based on before/after
relations over the same observation space.

Several UTP theories are based on homogeneous relations: this means that all of these theories
have uniform definitions of many common language features, such as sequential composition.
For example the collection of theories surrounding Circus are all uniform, so the development
of a homogeneous probabilistic UTP theory would open way towards a reasonably easy devel-
opment of a probabilistic theory of Circus .

We believe the ideal such theory would use observations that corresponded to program variables
and to other aspects of behaviour such as termination, in a manner analogous to the UTP theory
of designs: here we present a framework based on probability distributions over the set of
possible states, relating a before-distribution (8) to an after-one (§"), effectively making use
of one observation. Key contributions here are the facts that we provide a means by which
reasoning can still be carried out at program variable level, and we have uncovered a generic
notion of choice that subsumes probabilistic, demonic and conditional choices.
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CHAPTER 3

A framework to deal with
probability distributions over the
state space

This chapter is dedicated to a quite detailed presentation of the framework we have developed:
we have decided to privilege clarity of the exposition over pedantic details, which are therefore
presented in the appendices along with many of the proofs for properties and theorems.

The fundamental reason why we felt the need of a different framework is that the existing ones
do not integrate very well in the UTP framework, in the sense that dealing with probability is
dealing with a great amount of information and complex constructs at a very low level.

In particular one of the key strengths of our framework is the use of homogeneous relations
among distributions on the state space to model programs: in previous work the approach
was to relate a single state to a distribution on the state space, which contains information on
the probability of the different resulting states. The non-homogeneity of this relation makes
sequential composition a non-trivial matter.

Also, in order not to get bogged down in unnecessary details, much of the complexity under is
hidden under the hood, so that we can reason (quite) smoothly on probabilistic programs at a
higher level.

These features together allow us to deal in a straightforward way with both nondeterminis-
tic and probabilistic choice: we deem this to be an important step towards the development
of general probabilistic theories of a variety of languages already treatable in UTP in their
non-probabilistic version, such as CSP or Circus, as we believe it helps overcome the current
unsatisfactory approaches bringing probabilism and nondeterminism together [CS09].

Coherently with the UTP approach, programs are captured as predicates with a suitable alpha-
bet.

Hehner and Hoare wrote that “programs are predicates” [Heh84; Hoa85a], we affirm that
probabilistic programs are predicates too.

3.1 States and distributions, informally

Before presenting formally the foundations of our framework, we find it useful to give a gen-
eral and intuitive overview, where we sacrifice formality and rigour in favour of a more relaxed
introduction of the basic concepts: this should allow the reader to have an intuitive under-
standing of the key points, which we are going to introduce formally in the remainder of the
chapter.
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UTP predicates usually involve relations between variables from the predicate alphabet and the
corresponding values: some people feel that a tempting approach may be to try a naive (and
quite straightforward) generalization of this standard situation by relating a variable to a pair
containing its possible value and the corresponding probability.

In this case the idea is to deal with objects with the following shape’:

where 1 and W are appropriate sets of program variables and corresponding values, respec-
tively.

It should be quite evident that this is not a satisfactory approach. At the risk of stating the
obvious, the reason is that this approach takes each variable individually, so it assumes the
independence of the value assumed by each variable from that of any other — and this is
clearly an assumption which is wrong in general.

To see this let us consider an example, where a program with variables x,y starts in a state
where x and y are each independently initialized to 0 with probability 1/2 and to 1 with prob-
ability 1/2. This program consists simply in the assignment x := y and so the situation after the
program has run can be described as follows, with obvious meaning of the notation:

0~1/2 0~1/2
X Y e .
112 112
The information contained in this description is incomplete, as it does not tell us anything about
the relation between the variables; in this case it seems we are able to make predictions on the
expected value of each variable taken separately? (e.g. the probability of x = 1 is /2), but as

soon as we try to reason on a more complex event, such as the probability of x = y, things go
terribly wrong. If we crudely look at the numbers, the probability we are looking for is:

Px=y)=P(x=0)-Ply=0)+P(x=1)-P(y=1)=1/2.

This is quite an upsetting “I-told-you-so” result, as all the program did was to assign the value
of y to x, so we would have expected P(x =y) = 1.

So, although such an easy generalization may (?) look appealing, this example clearly shows
how this is not a viable approach, as it loses the entanglement among the variables.

A better approach should rather use objects with this other shape:
(V- W) -[0.1].

The example above with this different approach gives the following description:

x 0 o1, X1 -1,
yr0 yr1

This approach assigns different probability to the different mappings o : 1/ — W that relate

1We underline whenever we talk about vectors or sets of vectors: A stands for a n-th dimensional vectorial space
A x A x---x A, for an appropriate n.
2But only because the program is that easy, in general we cannot even do this!
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each variable to its corresponding value in the different situations — these are the different
program states —, so the objects we are using have this shape:

S - [0.1],

where S is the set of all program states (state space).

With the position o35 2 {x = i,y ~ j} we can rewrite the output of the example above as:
Opo — ]/2,0'1] (=g 1/2.

This mapping from program states to probability is what we term probability distribution, a
function 4 : § — [0..1] which has the additional property that the sum of the probabilities of all
program states in S (the weight of the distribution, |5[) cannot exceed 1.

If we define the distributions

52 {og0 = /4,001 = /4,010 = /4,011 = 14}

5= {GOO = ]/2)0-11 = ]/2}3

we can describe the full behaviour of the program in the example by saying that it has trans-
formed the (before-)distribution & into the (after-)distribution 8’ — in UTP we usually use a
dash to mark a variable, in order to refer to the new value 7’ it contains: the same convention
is adopted here, where we use dashes in a similar way to denote after-distributions (8") and
after-states (o).

This transformation has been done by changing the probability associated to each state: the
assignment modifies the variable mapping so that each before-state o becomes the after-state
o’, therefore probability associated to o has to be “transferred” to ¢.

More in general, given an assignment ¢ := e, where e is a vector of expressions, if we perform
this operation on every state of a distribution 5 we obtain the distribution 5{¢/s[}: the postfix
operator {¢/»} modifies § to reflect the modifications introduced by the assignment — the
intuition behind this, roughly speaking, is that all states 0 where the expression e evaluates

) /—\ 8 = 5{ly/x[}

oo /4 oo /2
O—0 O—0
001 1/4 oo1 0
O—0 O——0
Y/x
o0 /4 Pl 010 0
O—0 o—0
011 1/4 o1 /2
O—0 o—0

Figure 3.1: The assignment in the example.
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to the same value w = eval,(e) are replaced by a single state ¢’ = (7 — w) that maps to a
probability that is the sum of the probabilities of the states it replaces.

5¢/e) = {0’ > £, 8(0) | o edom(8) A evalo(e) = 0'(2)} .

Using the postfix notation, we have that the program in the example returns the after-distribution
5" = d{v/x|}, as shown in Figure 3.1.

It is also possible to operate on distributions by point-wise lifting in an obvious way operators
such as addition, product and multiplication by a scalar number.

An interesting case is the one when we multiply a probability distribution by what we term a
weighting distribution, which is a distribution 7= mapping states to real numbers in the interval
[0..1], without the constraint |7t| < 1. The resulting probability distribution, noted 5(r), has
the property of being point-wise smaller than 6, and will have an important role when defining
choice constructs:

{m) 2 {0~ m(0) -86(c) | oedom(b)}.

Another example is when we want to select the subset of a distribution §, which comprises only
states where a condition ¢ (which is a boolean expression) is satisfied; for reasons that will
become clear later on, we have chosen to overload the above notation and note this as 5{c):

d{c) 2 {0~ (o) | oedom(d) satisfies c}.

As the probability of a condition ¢ to be true on a distribution é can be calculated by adding up
the probabilities relative to all states that satisfy such a condition, we can express this probabil-
ity using the notation introduced so far as ||5{(c})||.

This concludes our informal introduction of the foundational elements of our framework; the
following §3.2 gives the main definitions, whereas Appendix A is dedicated to a more rigor-
ous and pedantic presentation of the framework (as a result it is rather dense and filled with
technicalities).

3.2 Definitions

A state ¢ is a map o : i/ — W that maps each program variable to the corresponding value.
A distribution x is a function x : § — R that assigns a weight to each state.

The weight of a distribution is defined as follows:

Ixl= > x(o)
oedom(x)

Among distributions, there are two notable kinds:

* a weighting distribution 7 is a distribution such that img(7) = [0..1];

* a probability distribution d is a weighting distribution with the additional property
that ||5]| = 1.
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We can perform on distributions the following operations:

* point-wise addition:

(x1 +x2)(0) =x1(0) +X2(0);

* point-wise multiplication:

(x10%x2)(0) 2x1(0) -x2(0);

» multiplication by a scalar a € R:
(a-x)(0) = a-x(0);
* restriction through a condition:

. | x(o) ifevals(c)is true
(xteh)(o) = { 0  otherwise;

* sometimes it is useful to see a point-wise multiplication as a restriction through a distribu-
tion:
x1{x2) =x10x2;

* remap:

8{c/el = {0’ ~ |3(Inv(v:=¢,{0'}))| | alph(c’) € alph(s) |

3.3 Programs

We see programs as predicates relating a before- and after-distribution pair: the body of the
program is a distribution-transformer, which acts on an initial before-distribution 4 and returns
a final after-distribution &’ that accounts for the modifications it caused.

We capture this relation as a predicate A(8,3’), which is true if and only if &' is a possible
resulting distribution of program A when the initial distribution is 6. When it is clear from the
context, we can simply write A.

In case of nondeterministic programs there are potentially many possible resulting distributions:
we define the program image of & as the set of all possible after-distributions &’ that can result
from running the program from an initial distribution §. Clearly in the case of a deterministic
program, the corresponding program image is a singleton set: we will discuss deterministic
program first (§3.3.1) and postpone the discussion of nondeterminism till §3.4

With a bit of notation overload, for the image of 6 after a program A we would write the
following:

A(8) ={8 | A(5,8")}.

We can extend the notion of program image to the case of a set of probability distributions X
with the following definition:

A(X) 2 [JA(S).

SeX
In the case of a program A returning always the same program image regardless of the initial
distribution, viz. when V57,5, ¢ A(87) = A(62), we may simply write A instead of A(§) or
A(X).
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In order to help the reader remember this notation, we give the rationale behind it. For a
program A, the possible notations involving its name are:

* A(,d"), which is the predicate associated with the program. This is a function A : D, x
D, — B that returns true if the before- and after-distributions passed as arguments are
compatible: it is the relational view of “programs as predicates”;

* A(%), which is the program image of 5. This is a function A : D, - D, that returns the
set of after-distributions compatible with & as before-distribution: it is the functional view
of “programs as distribution-transformers”;

* A(X), which is the program image of X. This is a function A : #D, - D, that returns
the set of after-distributions compatible with at least one of the elements of X as before-
distribution: it is again the functional view of “programs as distribution-transformers”,
though they actually act on sets of distributions;

* A could stand either for A(5,8"), A(5) or A(X). In the first case it is the standard
convention of UTP to omit input and output variables to make formulas more readable,
whereas in the second and third cases it is the standard omission of the argument for
constant functions. The context allows us to tell the difference between the two uses and
no confusion should arise, as A(5,5") € B while A(3),A(X) € #D,,.

The evaluation of the weight of the program image restricted by a condition ¢ returns informa-
tion on the probability of the condition ¢ being satisfied by program A when starting from the
distribution 6:

[ACX) ()] = {8 )] | 8" e A(X)}.

This is a set of probabilities and the effective probability of ¢ is nondeterministically chosen
from here: it is therefore possible to extract information on the minimum and the maximum
probability of ¢ (a precise value in the case of a singleton set).

We refer to this set as the weight of the program A with respect to the condition c.

3.3.1 Deterministic programs

Initially we look at deterministic programs, where the relation from a before-distribution $ to
the corresponding after-distribution &’ is injective, viz. for each & there is one and only one
corresponding &’ which is compatible with the possible outcome of a program:

v5315" ¢ A(5,5').

We are now going to define a set of deterministic constructs, which can remind of those from
pGCL , and give them a semantics based on the distributional framework introduced so far:

* the program sKip does not produce any modification to the original distribution, therefore
the after-distribution &’ equals the before-distribution b:

skip = &' =§;
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* an assignment 7 := e transforms the before-distribution & by application of the corre-
sponding remap operation, as described in §A.3.4:

vi=e2d = 5{efol;

* the sequential composition of two programs returns the after-distribution &’ output by the
second program when it operates on the after-distribution §,,, resulting from the operation
of the first program on the initial before-distribution &:

A;B 235, 0 A(8,8m) AB(8m,d);

* the conditional choice between two programs depending on the evaluation of a condi-
tion effectively splits the before-distribution into two disjoint parts and operates on them
according to the instructions of the two programs, before finally merging them together
into a single after-distribution:

AdcD>B236a,08 .A(é{C},éA) A B(é{—'C},ég) A = oA + 08

* the probabilistic choice between two programs also splits the before-distribution into two
parts, which are nothing but the original before-distribution scaled down by factors p and
(1 - p) respectively:

A @®B235x,080A(p-8,04) AB((1-p)-5,85) A8 =54 +0s

* the loop construct has a standard definition based on Tarski’s fixed point theorem [Tar55]
and is, in particular, the weakest fixpoint, with respect to the refinement ordering dis-
cussed in the following §83.6,3.7, of the function below:

cxAzIfpXe(A;X)<c > sKip

More on probabilistic choice

We want to make a few remarks on probabilistic choice.
First of all it is worth noticing that, from the above definition of probabilistic choice, we have

the following equivalence:
A pGBB = B (17P)®A

In fact:

A 0 B
[d:P:Ch:Prb] — §B.3

357,08 ¢ A(p-8,84) AB((1-p)8,85) AS' =054+
Arithmetic

35,85  A((1=(1-p))-8,84) AB((1-)8,88) A8’ =8 + 58
[d:P:Ch:Prb]

Bap@A

This is a special case of Proof C.28.



32 Chapter 3. A framework to deal with probability distributions over the state space

Moreover we have the following property:
A®B@C)=(A@B)@CAap=rs A (1-5)=(1-p)(1-q)

In fact:

A @ (B @®C)
[d:P:Ch:Prb] — §B.3

354,88 ¢ A(p-8,84) A (B @ C)((1-p)-8,88c) A8 =84 +dsC
[d:P:Ch:Prb] A bg¢ = 0 + 6¢ (One-point rule)

35A,08,8c  A(p-8,84) AB(q(1-p)-8,88) AC((1-q)(1-p)-8,8c) A8 =5a +0p +8c
(1-p)(0-q)=(0-s) Ap=rs=>q(1-p)=(1-7)s

35A,08,0c @ A(Ts-8,54) AB((1-7)s-8,88) AC((1-5)-8,8c) A8 =5a+8g+dc
[d:P:Ch:Prb] A A = 04 + &g (One-point rule)

35A8,0c ¢ (A ®B)(s-8,8a8) AC((1-5)-8,8c) A8 =dap +6c
[d:P:Ch:Prb]

(A@B)@&C

A few words on the probability p, that parametrises this operator: this may be a number in the
range [0, 1] in the simplest setting, but in a more general case it is one of the possible values of a
stochastic variable P that follows a probability distribution, whose probability density function
fp has the property of being compact in the range [0,1]:

[ iemrar= [ ippiap=1

The distribution of this stochastic variable need not depend on the program variables, but in an
even more general case may depend on other parameters g1, q2,...,qn:

+00 1
[w fPQ(p)qth)---)qn)dp:A fPQ(P>q1>q2)---»Qn)dP:fQ(Ch»qz»---»Qn)

3.4 Nondeterminism

All deterministic programs presented in §3.3.1 are characterised by the fact that their pro-
gram image for any before-distribution is always a singleton set, viz. any before-distribution is
uniquely transformed into a precise after-distribution.

When we introduce nondeterminism this does not hold true anymore as for some before-
distribution there are more than one possible after-distributions that can satisfy the predicate
representing a nondeterministic program.

The most nondeterministic program is the aborting program, which poses (almost) no restric-
tions on the possible relations between before- and after-distributions:

abort = [[&'] <[5,

so that the only restriction given by abort is that the distribution weight cannot be increased.
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A different way for nondeterminism to arise is when a program has the possibility to choose
internally between alternative execution paths:

AnB=3m 54,05 ¢ A(8(m),04) AB(8(7),05) A S =84 +05.

Nondeterministic choice allows picking any weighting distribution 7t to alter the weight of each
state before applying the alternative programs and summing the results.

This definition is different than the one one might expect: according to the relational semantics
of pGCL from [HSM97; MMO04], which sees programs as relations from a state ¢ to a probability
distribution, we have that®

(ANB).o=Upeo..1](A @ B).o

If a demonic choice is performed on a state, the set of resulting distributions is that containing
all possible distributions resulting from a probabilistic choice with probability p varying in the
range [0..1].
Seeing this, one could (reasonably?) expect the following definition for nondeterministic choice
in our framework:

ANBZ3peA ©B

However this definition does not work. In particular, with the above definition, we can prove
the following (which is most definitely not a law of pGCL):

(AnB);(C D) =(C @D);(AnB) )

It describes a demonic choice that is both history-aware, and prescient, and this latter ability to
look into the future is undesirable, and infeasible.

The key point to note is that the first statement is talking about the possible resulting distribu-
tions starting from one single state, whereas this last definition considers all possible starting
states. As a result the set of after-distributions that satisfy this definition of demonic choice (for
a given before-distribution) is strictly smaller then the set of after-distributions satisfying the
first statement.

The solution that led to our definition is therefore that of taking a weighting distribution 7,
use it with its complementary distribution 7 = ¢ — 71) to weight the distributions resulting from
the left- and right-hand side respectively, and existentially quantify it: we obtain some after-
distributions which are the result of composing programs where p is not constrained to be
constant over all states, and these cases were all ruled out in the proposed definition by the
single quantification of p valid for all states.

Usually we talk about demonic nondeterminism when we are expecting the worst-case be-
haviour, to model something that behaves as bad as it can for any desired outcome.

Our definition of nondeterministic choice per se has no such behaviour, but it will show up with
the definition of refinement that we give in §3.7 or, more in general, whenever we explicitly
choose to focus on the worst-case scenario: for this reason we refer to it as to the nondetermin-
istic choice, rather than to the demonic choice.

The nondeterministic choice operator is idempotent according to the above definition, as cus-

3Here we are using the point notation for function application, as in [MMO04].
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tomary in pGCL and UTP.

There are some frameworks where nondeterministic choice is not idempotent, for example
the probabilistic CSP from [Mor*96]. This happens when on both sides we have the same
program containing a probabilistic choice and this choice is resolved independently on each side
before the nondeterministic choice is performed, then idempotency does not hold. Nonetheless
idempotency would hold if the probabilistic choice is resolved after the nondeterministic choice
is made — this is the behaviour that we can find in our framework.

We can reproduce the other behaviour if we run the program twice with probabilistic choice on
local variables, and then we merge the outputs by means of a nondeterministic choice: this is
a behaviour that has nothing to do with idempotency — we keep the actions of one program
separate from the other’s, so we are actually dealing with two different programs that share the
same specification.

3.4.1 A generic choice construct

We can see how all choice constructs look quite similar, or at least they follow a common
pattern. The reason is that all choice constructs can be seen as a specific instance of a generic
choice construct:

choice(A,B,X) 2 37,04,5p e e X AA(8(m),04) AB(8(7),58) A S =5a + 08

where X ¢ D,, and D,, is the set of all weighting distributions.

This construct covers conditional, probabilistic and nondeterministic choice (and more), in fact
we have that:

* for X = {i{c)} we have conditional choice:

A< ¢ > B = choice(A, B, {i(c)})

* for X = {p -1} we have probabilistic choice:

A B = choice(A,B,{p-1})

e for X = D,, we have nondeterministic choice:

A nB = choice(A, B, D,,)

Moreover we can see the disjunction of two programs as another kind of choice, where X =

{e1}:
AV B = choice(A, B, {€,1})

This is the “usual” definition of nondeterministic choice in standard UTP: we can see the differ-
ence with the definition of nondeterministic choice we have given, because the possible after-
distribution after a disjunction are those obtained by running the two programs separately,
whereas with nondeterministic choice we obtain after-distributions which are superpositions of
those obtained by the disjunction.
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Finally we can also use this generic construct to create new kinds of choices, other than the
more traditional ones:

e for X = {p-{c)} we have the conditional probabilistic choice, which behaves like A with
probability p and like B with probability (1 —p) in the case when c holds, but it behaves
like B if ¢ does not hold:

A < ¢ > B = choice(A,B,{p-1c)})

* for X ={p-ic)+ q-t{~c)} we have the switching probabilistic choice, which is equivalent
to a probabilistic choice with parameter p if ¢ holds, with parameter q if ¢ does not hold:

A pacpq® B = choice(A,B, {p-uc) +q-(=c)})

* for X = D,,(c) we have the conditional nondeterministic choice, which behaves like A 1 B
if ¢ holds, but it behaves like B if ¢ does not hold:

A N B = choice(A, B, D,,(c))

e for X = {n | Voep < m(c) <1-q}, where p+q < 1, we have the nondeterministic
probabilistic choice, which guarantees a probability p to behave like A and a probability q
to behave like B:

A,8yB = choice(A,B,{m | Voep<m(0)<1-q})

e for X ={p-t | pe[0..1]} we have the fair nondeterministic choice, which reweighs by p
or (1 - p) the entire before-distributions — and therefore multiplies the weight of each
state in the before-distribution by the same number p or (1 - p) — as opposed to the
nondeterministic choice which can change individually the weight of each state:

AT B = choice(A,B,X = {p-t | pe[0.1]})=3peA @B

It is worth noticing that this kind of choice is different from nondeterministic choice (we can
view it as a less general form of it), in fact from this definition we have that:

fair

Voe(ANB)(8) c (AnB)(d)

A few laws on choice operators

Here is a non-comprehensive list of interesting laws on choice operators, that hold in our frame-
work and that can also be found in pGCL:

Idempotency of choice operators : VX e choice(A,A,X) = A
Discarding right-hand option : choice(A,B, {1}) = A

Distributivity of choice operators :

choice(A, (choice(B,C, X)), X;) = cﬁoice((cﬁoice(/\, B, X, )), (cﬁoice(A, C, X )),Xz)
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Sequential composition : choice(A,B, X);C = choice(A;C,B;C, X)
Choice flipping : V.X e choice(A,B, X) = choice(B,A,X) A X = Upex 7t
Monotonicity of generic choice : V5 e Xy ¢ X, = choice(A,B, X7 )(8) < choice(A, B, X5)(5)

These properties are proven in Appendix C.

3.4.2 Program structure

We can see that all of the program encountered so far can be written as a predicate of the
following shape*:

3 Quant0f(A) ¢ &’ = Body0f(A) o § A OtherCnd0f(A)

where:

* Body0f(A) is a sequence of modifications (i.e. interleaved restrictions and remapping

operations) that are applied to 6 in order to obtain the corresponding &';

* QuantOf(A) is a list of weighting distributions — all of the quantified probability distribu-
tions can be eliminated via the one-point rule, so that §’ can be expressed as Body0£f (A )od;

* OtherCndOf(A) is a list of any other conditions that are asserted by the program — for
example in the generic choice operator.

3.5 Healthiness conditions

In UTP we have the key notion of “healthiness condition”, which is a property that characterises
all healthy predicates, i.e. all those predicates that “make sense”; before moving further on, we
are going to list quickly the healthiness conditions that characterise this framework.

The first one (feasibility, Distl) assures that for any program P(6,5’) the probability of termina-
tion cannot be greater than that of having started:

18" < 18]

It is worth noticing that abort is often defined as true: the definition we gave in this framework
is the weakest one that is healthy (and feasible) as well.

Another healthiness condition (monotonicity, Dist2), states that, for any deterministic program
P, increasing & implies that the resulting &’ increases as well:

P(51,87) AP(52,85) NSy > 81 =8>8

A third healthiness conditions is that multiplication by a (not too large and non-negative®)

constant distributes through commands (scaling, Dist3):

VaeR*Alla-8] <1eP(8,8) < P(a-8,a-8)

4We can prove this by structural induction of the language syntax.
5 Mathematically the relation holds also if this is not met, but in that case a - 5 is not a probability distribution.
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Figure 3.2: Program image lattice (c relation) and program lattice (= relation), represented in
the case when 6 # €.

Proofs of these healthiness conditions are straightforward to be derived if we see the space of

distributions as a vector space and can be found in §B.3.2.

Finally the purely random nondeterministic model adopted in the distributional framework
yields a fourth healthiness condition Dist4 (convexity):

(PN P,)(5,8") = &' > min( Py (8) uP5(5))

This poses restrictions on the space of possible program images, which is strictly a subset of
pD: this is analogous to the He set H [MMO04] as it is the set of all up-closed, Cauchy-closed,
convex-closed sets of distributions.

3.6 The program lattice

Programs in standard UTP form a complete lattice with respect to the partial order induced by
the implication relation [HH98].

Here we have a similar situation, as program images (parametric in §) form a lattice with
respect to the partial order induced by the set-inclusion relation: this relation among program

images is isomorphic to the implication relation among programs:

A(§)CB(8) <« A(5,8) = B(5,8)
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In the case of & = €, the lattice collapses to a single element {e}. Otherwise the bottom element
is clearly the set D, of all probability distributions, which is nothing but the program image of
the aborting program abort, and a top element which is the empty set @.

In standard UTP the program lattice is completed by the top element miracle, which is false:
we can see that we have a similar situation here, as a program which is satisfied by no after-
distribution (viz. for which the corresponding program image is empty) is false.

Nevertheless we cannot define miracle in this way, because for any A we would have:

A n miracle = false = miracle
whereas, according to the standard theory:
A nmiracle = A
We obtain this same behaviour with the following definition:
miracle(8,6') 2 (6 =€) A (8 =€).

Which means that miracles can happen, but only with null probability.

The program image miracle(8) is the empty set @ if § #+ € and {e} otherwise: this shows that
miracle is the top element of the program lattice.

3.7 Refinement

In standard UTP the refinement relation is the universal closure of the reverse implication, but
when probability comes into play this is not enough any longer.
We want to capture as refinement the concept of a program being at least “as good” as an-
other for all conditions, when it comes to the probability of satisfying them: this can be for-
malized by saying that a program A is refined by a program B when for all conditions and
(before-)distributions, the minimal probability that an (after-)distribution from A(9) satisfies a
condition is less than that for B(5).
We are going to give a definition for this in terms of a relation between the corresponding
program images:

AcB=2Vz5emin(|A(S)(z) H) <min(|B(8)(z)])

The use of min here mimics the way it is used in pGCL to define demonic choice.

This notion of refinement creates an order relation that is exactly the one created by the refine-
ment relation used for pGCL [MMO04]: the sets |A(5){z)}| and |B(8)(z)| contain the probabilities
that the condition z is verified according to the possible after-distributions, and this definition
requires that for any before-distributions the minimal probability for program A to satisfy z
must be lower or equal than the minimal probability for program B to satisfy z — this is the
definition given for pGCL.

The whole point of defining refinement this way was to show the similarity with pGCL; moving
further and taking advantage of the structure of our framework, we can give an alternative
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definition:
AcB=2V5eB(5)c(A(5))"

where the refinement set (A(f)))A is the (up-, convex- and Cauchy-closed) set defined as:

(AB) 2{6a | 8'<bacind= Y & AYm=u
8L eA(8(mi))

This set includes all after-distributions that are at least as great as those obtainable because of
the nondeterminism in the behaviour of A: a program whose image lies in this set for all ¢ is a
refinement of A, and hence the term “refinement set”.

From the above definition(s) we can easily demonstrate familiar refinement relations — the
proofs boil down to expressing the refinement set of the left-hand side and the program images

of the right-hand side:
A c© miracle

AnB e A
AnB c B

And also:
AnBc A @B

AnB c Adc>B

This comes as no surprise, in fact:

ApGBB Hﬂ,éA,ég OA(5{7T},5A)/\B(6{7_I},SB)/\6/=6A+5B ANTT=p-L
A< cD>B = 3Im 84,05 ¢ A(8(m),84) AB(8(7T),85) Ad' =84 +8p A m=1{c)

Concerning disjunction, we have that refinement fails to distinguish it from nondeterministic
choice.
In fact we clearly have that:

AnB c AvB

because
AVB = E|7T,5A,6]3 0A(5{7I},5A)/\B(5{’/:[},5B)/\5,:6A+5B A 7IE{€,L},

but we also have that
AvB c AnB

as their refinement sets are the same:
V5o ((AVB)(5)" = (ANB)(3) = (AnB)(5))"
We can use mutual refinement as a notion of equivalence:
AnB < AvB.

This result is due to the definition we have used for refinement, as we have used the traditional
view of nondeterminism as demonic nondeterminism, i.e. that returning the worst possible re-
sult for any desired outcome: this is in line with the traditional use of disjunction as a definition
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for demonic choice.
Alternative definitions of refinement may take advantage of the possibility to distinguish be-
tween the operators rm and v — this is left for future work.

In general, from the definition of refinement and the monotonicity of generic choice, we can
show that:
X, € Xy = choice(A,B, X7) < choice(A,B, X3)

It is worth stressing that the reverse implication is false — a counterexample is given by the
case of the disjunction operator, where we have that:

n

AVvB APGBB
AvB c AdcD>B

n

This can be explained by comparing the lattice induced by refinement with that induced by
the implication ordering: the latter is a sublattice of the former, in fact elements that were not
comparable before are now related by refinement.

3.7.1 Probabilistic refinement

We want to generalise things even further, and introduce a notion of probabilistic refinement:

AEB=2Vz§ep min(|A(8)(z)]) < min(|B(8)(z)])

We call this a p-accurate refinement, meaning that the refinement relation c is true in a fraction
p of the possible cases.

We can give this alternative definition as well, similarly as we did above:
ALB2V5eB(5)c(p-A(5))"

where p - A(6) is the set made of all elements of A($) multiplied by p.

Let p* be the highest positive real number such that A € B: this is the accuracy with which B
refines A and is a measure of how “better” B is when compared to A in any possible case —
and of course p < 1 implies that B is not as “good” as A.

It is immediate to see that the refinement relation we have defined before is a special case of
this more generic operator for p = 1, i.e. it is a 1-accurate refinement®:

This definition makes it much more meaningful to have a deterministic program on the left-
hand side of the refinement relation’: the utility of such a thing is for example that a deter-
ministic specification can be refined probabilistically by a (potentially) nondeterministic imple-

%0r a 100%-accurate refinement, in case we prefer expressing P as a percentage.
7It is immediate to prove that a deterministic program A can be refined only by another program B, which has to be
equivalent to A, i.e. such that Ac B < Bc A.
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mentation, and the implementation accuracy is a piece of information of great value.

This notion of refinement may seem like generalisation for its own sake, but it has useful real-
world applications — an example on medical devices can be found in [SSL10].

3.8 Summary

In this chapter we have introduced a framework which is suitable to model the state space of a
program by means of probability distributions.

By using predicates on homogeneous relations among probability distributions, we can give a
UTP semantics to programs, which include both probabilism and nondeterminism.

All programs satisfy certain healthiness conditions and form a complete lattice.

The next chapters present some case studies where we have fruitfully applied this framework
towards their treatment in the style of UTP.

In §4 and §5 we are going to present two quite general ones, namely that of pGCL followed by
a probabilistic version of the UTP design theory: our aim is to show how different probabilistic
frameworks can be given a UTP semantics by means of predicates on distributions.

Other examples (two well-known problems, namely the Monty-Hall one and Rabin’s coordina-
tion algorithm) and a discussion on the applicability of this methodology to protocol verification
(as a representative example of other domains where probability plays an important role) are
collected in Appendix D.
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CHAPTER 4

pGCL

The first case study we have addressed is that of giving a UTP semantics to pGCL .
The result is very similar to the semantics for the programs in §3.3.1 and §3.4:

abort =[] <3

miracle = (5=¢e)r (8 =¢)
skip = 8 =%
v=e =2 0 =0{¢qf
A;B 2 38, eA(5,8m) AB(5m,d)

A<dcp>B 2 364,05 ¢ A(8{c),0A) AB(8{-c),05) A0 =bA + 0B

A @B = 35,080A(p-8,04)AB((1-p)-5,85) A8 =0a+8p
AnB 2 3m 54,58 ¢ A(8(m),54) AB(8{),55) A S =54 + O
cxA = IfpXe(A;X)< ¢ > sKip

Figure 4.1: UTP semantics of pGCL.

To be noted that conditional, probabilistic and nondeterministic choice are all instances of the
generic choice introduced in §3.4.1.

It is quite straightforward to link the relational semantics model from [HSM97; MMO04]: in
fact it is like pGCL restricts its scope to working only with point distributions, thus relating
a before-state to an after-distribution, whereas we are combining different point distributions
into a single probability distribution and provide an after-distribution given by the same com-
bination of the after-distributions corresponding to each point distributions, thus relating a
before-distribution to an after-distribution.

If we note the program space (S — oD, c) from the relational semantics model as Pg, and use
Pp for the program space (D — oD, c) from our distributional model, the elements represent-

ing a program A in each of the two program spaces will be noted Ag and Ap respectively:

Pr=(S—>pD,c)
Po 2 (D pD,c)
Ar € Pr
Ap e Pp.

For example:

sKip, (5,8") = (8'=5)

and

sKip (0,8") = (8" =no).

43
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For the sake of clarity, in the following Figure 4.2 we will compare the relational semantics
model of pGCL with the distributional semantics model of pGCL presented in Figure 4.1.

Let f : Pr — Pp be the function such that Ap = f(Ag) and ¢ : Pp — Pk the function such that
Ar =9g(Ap):

If we take a point distribution n, 2 € ¥ {0 — 1} we have that:
Ar(0) = Ap(No).

In the case of deterministic programs these are singleton sets:

AR((T) = AD(T]U) = {5EA,G)}’

where 6’( A,0) denotes the after-distribution reached by program A when it starts in the state o;
We can write these functions explicitly in the case of deterministic programs as:

Ar(0) = g(Ap) (0) = Ab(Mo) = {8{a.0) |
Ap(8) = f(AR) (8) = Y. 8(¢) - Ar(C) = > 8(0) - {8(a.c)} -

CeS CeS

We have that f= g ':

9(f(ARr)) (0)

= Definition of f

g(>> 8(0) - Ar(0)) (0)

CeS
= Definition of g

> ne(C) - AR(Q)

CeS

= By definition, 0 # { <> 14 () =0
No(0) - Ar(0)

= By definition, 15 (0) = 1
Ar(0)
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Figure 4.2: pGCL in the relational and distributional semantics model. It is worth to notice that
we can recognise the Kleisli composition in the expression of sequential composition.
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and

f(9(Ap)) (8)

= Definition of g

f(AR(Q)) (8)

= Definition of f
>, 8(¢) - Ar(Q)
CeS

= Definition of g
Ap ().

The generalization to the case of nondeterministic programs is trivial: in fact instead of dealing
with singleton sets we have larger sets whose elements are related to the before-distribution by
(at least) one deterministic execution path among the different alternatives made available by
nondeterminism:

Ar(0) =g(Ap) (0) =Ap(Ms) ={8' | Ab(n,d")}
Ap(8) =f(Ar) (8) = 3. 8(0)-Ar(Q) = Y. 8(0)-{8' | Ap(ne,8)}.

CeS CeS

It is straightforward to relate the concept of equivalence from the relational semantics to equiv-
alence according to the distributional framework: two programs are equivalent in the relational
semantics when they map each state to the same set of distributions (i.e. they are the same func-
tion on Pg), and similarly two programs are equivalent in the distributional framework when
they map each before-distribution to the same set of after-distributions (i.e. they are the same
function on Pp).

If two programs are equivalent according to the relational semantics, the corresponding pro-
grams identified via the above link in the distributional framework (by application of the func-
tion f) are equivalent as well, as a result of the link being an isomorphism; clearly the converse
is also true.

Things are slightly more complicated if we want to relate the wp-semantics from [MMO04] to
our semantic model. The way to do this is to observe that an expectation is a random variable
(with non-negative real values), and as such it can be represented as a distribution x in our
framework. Then if x’' represents a post-expectation and A is a program, we can define the
corresponding pre-expectation x by computing the expected final weight of each state before A

is run:
x(0) =min({|x"-8'| | 8¢ A(no)})

It shall be noted that this set is a singleton set for all deterministic constructs, and its cardinality
can be larger only in the case that nondeterminism is present: in this semantics the model
adopted is the demonic one and this results in the extraction of the (point-wise) minimum from
that set.
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4.1 Interaction of probabilistic and nondeterministic choice

In [MMO04] the authors present a brief, well-known example on the interaction of probabilistic
and nondeterministic choice: we are going to present it here as well, and solve it by means
of our framework and compare the outcome and procedure with those presented in [MMO04],
where they use pGCL .

Let us take these two simple programs:
Azx:=0nx:=1;y:=0 %®y::1
Bax:=0 %eBx::] ;y:=0ny:=1
We evaluate what is the probability that after each program has run we have x = 1, as well as
the probability of having x = y.
We start by examining A:
x=0nx:=1;y:=0 %eay:]

Translation: A
Ime s’ = S{{O/x + (MY 5 8 = 12~ 50l + 1/2- 5{1/y)
[d:P:Seq]
370, 81n @ O = SO/} + SRV T/x} A 8" =128} + 12 S {1 /ul}
One-point rule
Ire s’ = 1/2- (S(rMO) + S(RMxD) Il + 1/2- (S(rMO/] + S (M /xH) 11/l
[p:D:Rmp:Lin]
e " = 1/2- () O/ {Ofult + /2 - S(RMX[HO b + /2 - SO/ ult + 12 - (MY /x[H /ul

The final distribution &’(7) is parametric in the weighting distribution 7t: let us try to use this

to perform a worst-case analysis.
We can show that Ve |§'(7t){x = y)| = /2, which implies that We can show that V7te |d’(7){x =
y)| = /2, which implies that V& e min(|A(8){x =y)||) = 1/2:
I8 () = )| = || (/2 S(rMopb40pult +1/2- SR/ b ol )|
= [z 8¢m) + 112 847)) | = [11/2- 8] = 112

But if we choose 7 = 15, we have &' (ts) = 1/2 - 8{O/x[} {/y]} + /2 - 6{%/x[}{'/uv]} and therefore
[6"(ts){x = 1)| = 0 — so the minimum of the weight of program A is 0.
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Likewise, we examine B:
x:=0 %EBX2=1 ;y:=0ny:=1
Translation: B
8 = 1/2- 80/l +1/2-8{1/x]} 5 Irre 8" = S(m){O/yl} + (M /ult
[d:P:Seq]
370, 81m 8 = 1/2-8{0/x[} + 1/2-8{1/x} A & = &)y + SN /0
One-point rule
3rte 8" = (12 80/} + /2 84 Vxb )Mo uls + (/2 8{0/xly + 12 - S{1/xp A ulb
[p:D:Rmp:Lin]
e 8" =1/2- S{O/[HrMOful + /2 S xHmMIO ul + /2 - SLOHAMN ulk + 1/2- S /x AN /ul}

The final distribution &’(7r) is parametric in a weighting distribution 7t and very similar to the
resulting distribution after A, but with one crucial difference: {7t} is put after the first occurrence
of the remap operator.

We can show that ||§'(7t){x = 1)| = 1/2.

But if we choose 7t = 5/ {x = 1), we have &'(ts(x = 1)) = 1/2- 3{O/x}{/u[t + /2 - 8{1/x} {°/y[t and
therefore ||8'(ts/{x = 1)){x =y)| =0

We have translated the programs and worked them out to express a predicate that links before-
distributions with after-distributions: with this we can easily compute the minimum guaranteed
probability that a condition will hold after the run of the program.

This is the same result we can achieve with pGCL, but:

* the notation is quite handy if we want to calculate the probability that some conditions
holds, in the sense that we first derive the after-distribution and then we compute the
probability that one of the conditions is true on that after-distribution, and then we go
ahead by evaluating the other conditions on the same after-distribution. From the ex-
amples in [MMO04] we can see how it is customary in pGCL to “proceed backwards” and
derive preconditions step by step, so for each condition we would have to do the whole
procedure from the start (or work with a parametric condition all along, which does not
really make things simple);

* we are not forced to stick with the minimum probability (“hard-linked” in the pGCL defi-
nition of demonic choice), but we have a set containing the probabilities of every branch
of the execution tree;

* it is straightforward to refine the demonic choice with any other kind of choice — we
simply have to constrain the existentially quantified 7.
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A probabilistic theory of designs

In §2.4 we have given a general overview of the UTP framework, and in particular we have
presented the theory of designs in §2.4.1.

Here we are going to introduce a probabilistic version of this theory: through our distribu-
tional framework we obtain a richer theory where corresponding healthiness conditions hold
(85.1), even without the introduction of the auxiliary variables ok, 0&'. Moreover the use of
distributions enables us to evaluate the probability both of termination and of meeting a set of
arbitrary postconditions as a function of the initial distribution (which determines the proba-
bility of meeting any required precondition).

A distinguishing characteristic of designs is the use of the auxiliary variables 0k and (JK’. They
are not sufficient in a probabilistic setting, as we need to be able to express quantitative in-
formation about the program also in terms of it having started or finished. We argue that this
information is embedded in the distributions used to express programming constructs.

In fact the variable & records implicitly if the program has started, as for each state ¢ it gives a
precise probability that the program is in that initial state.

If § is a full distribution (i.e. |§] = 1), then the program has started with probability 1: in some
sense we can equate the predicate oK = true with the predicate |§| = 1. Conversely, a program
for which & = € has not started. Obviously there are all situations in between, where the fact of
b being a sub-distribution accounts for the program having started with probability |5 < 1.

Similarly if & is a full distribution, then the program terminates with probability 1: coherently
we can equate the predicate ok’ = true with the predicate |3’|| = 1. In general the weight of &’
is the probability of termination: if the program reaches an after-distribution whose weight is
strictly less than 1, then termination is not guaranteed (and in particular if &' = € it is certain
that it will not terminate).

Given a standard design Pre + ‘Post we can easily derive the corresponding probabilistic design
by using the observation above:

Pre - Post =ok_A Pre = ok A Post
=8| =1APre=|§'| =1 Post
=|5(Pre)| =1 = |§'(Post)| =1

This expression tells us that we have a valid design if whenever the before-distribution 6 is a full
distribution which is null everywhere Pre is not satisfied (and therefore & = 5(‘Pre)), then the
resulting after-distribution &’ is a full distribution which is null everywhere Post is not satisfied
(and therefore &' = §'(Post)).

49
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This gives us a theory of pGCL programs that always terminate.
We can easily redefine assignment, in the same style as it has been redefined to make it a valid

construct according to the theory of designs:

v:=e=truer 8 = 5{¢/o}

=0k A true = ok A 5{e/v}
=[5 =1 =8| =1 18" =5{¢/s}

This states that an assignment is a valid design only if the expression e is defined everywhere in
the state space: in fact undefinedness of e causes {¢/«|} to be a sub-distribution and therefore

© := e reduces to false.

We can redefine sKip in a similar way:

1>

sKip = truer§' =5

ok A true = oK' A S
[ =1=[8'|=1108"=5
=[3]=1=8"=5

This new version of sKip states that the after-distribution is the same as the before-distribution
(and therefore it does not alter the weight, so this can be left implicit), but as any other design

it reduces to true if 6 is not a full distribution.

The bottom of the lattice is abort, which is again true as in the standard theory:

abort = false - false
= ok  false = ok A false
= false = false
= true
= false = true
= 0k A false = ok, A true
= false - true

The standard definition of the construct chaos is

(133

chaos = true v true

= 0k A true = ok A true

ok = ok’
I8 =1=[8"] =1

This is a program that guarantees termination, but in an unspecified state. It is equivalent to:

chaos = true ~ aborty ,
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where the subscript R indicates that we are talking of the relational version of abort, from §3.4.

The top of the lattice is miracle:

miracle = true - false
= ok A true = ok A false
= 0k = false
= -0k
=-([8] = 1)
= 8] <1

This is equivalent to
miracle = true — miracleg .

5.1 Healthiness conditions

These new definitions relying on the distributional framework satisfy the healthiness conditions
H1-H4 as well (§2.4.1).
We can in fact prove that the following laws hold:

¢ left unit law:

sKip;Pre ~ Post = |8 =1=8"=8;|8(Pre)|| =1 = |&'(Post)| =1
=Bme|8)=1=0m=8 A |dm(Pre)| =1= |8 (Post)| =1
= ||5(Pre)| =1 = |6'(Post)| =1
= Pre + Post

* right unit law:

Pre + Post ; sKip = |5(Pre)| =1 = |8’ (Post)| =1;[5]=1=8 =8
= I0m o |8{Pre)| =1= [6m(Post)| =1 A [6m|=1=8=6n
= |8(Pre)| =1 = |5'{Post)| =1
= Pre + Post

¢ left zero law:

true; Pre — Post = true; |5(Pre)| =1 = |§'(Post)| =1
= Fdm @ true A ||dm(Pre)| =1 = |5'(Post)| =1
=30 o |0 (Pre)|| =1 = |8 (Post)| =1

= true
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* right zero law:

Pre  Post ;s true = ||5(Pre)|| =1 = |8 (Post)| =1; true
=38, 0 |0{Pre)| =1 = |dm(Post)|| =1 A true
=38, o |0(Pre)|| =1 = |5m(Post)| =1

= true

5.2 Recasting total correctness

The reason that led to the standard theory of designs was that programs fail to satisfy the left
zero law in the relational theory.

In the distributional framework programming constructs do satisfy this law, as for any program-
ming construct P other than abort or miracle it is never the case that 6 ¢ fo(P).

For this reason we have:

true; P(8,8") = 38, o true A P(5m,d")
= 36m @ P(5m, )

= true

Similarly the right zero law is satisfied as well, along with the left and right unit laws: healthi-
ness conditions equivalent to H1-H4 hold here as well.

Following this observation it appears that restricting the reasoning to programs with guaranteed
termination is somehow limiting, as guaranteed termination is not an actual real-world feature
of programs: programs must be reasonably reliable, but failure is always a possibility.

The reason for this may be inherent to the fact that programs are run on hardware which is
susceptible of failure, as well as being a consequence of the way a program is designed (for
example the implementation of a probabilistic algorithm where termination is probabilistic as
well).

We can fully exploit the potential of the distributional framework towards modelling these
situations by removing the constraints on the weights of the before- and after-distributions —
so we use the programming constructs in Figure 4.1 exactly with the semantics presented there.
The role of preconditions and postconditions is that of restricting the range of acceptable before-
and after-distributions (and therefore act as restrictions to be applied to 5 and &' respectively)
— this allows us to express desirable characteristics of a program in great detail, for example:

e PA|8| =1 requires P to guarantee termination;
o P& >0.95 requires P to terminate with at least 95% probability;

* P A|d'(Post)| > 0.95 requires P to terminate with at least 95% probability in a state
satisfying Post;

* Pre = P A |8/ (Post)| > 0.95 requires P to terminate with at least 95% probability in a
state satisfying Post whenever it starts in a state satisfying Pre;

* ||5(Pre)| > 0.98 = P A |§'(Post)| > 0.95 requires P to terminate with at least 95% prob-
ability in a state satisfying Post whenever the probability of Pre being satisfied at the
beginning is at least 0.98;
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All healthiness conditions deriving from the distributional framework (Distl-Dist4) obviously
hold here as well; with a small modification we can recast the notion of total correctness by
restricting Distl to a variant Distl-TC (which implies Distl), stating that:

N
This requires a program to terminate with the same probability p with which it has started:

|18] =p A Pre= 8| =p A Post

5.3 Link with the standard model

. . / . .
Standard designs have observations 0ok, 0k € B and o, 0’ € S: a standard design is a predicate

! . . . . I,
Ps(o,0’, 0k, 0K ) that states that a program started (if oK_is true) in the state o ends (if oK is
true) in the state o”.

Probabilistic designs have observations 6,8’ € D: a probabilistic design is a predicate Py (5,5")
stating that a before-distribution & will be transformed into the after-distribution &'.

Informally we require the two approaches to yield the same results when we are dealing with
point distributions, i.e. when the probability of being in a given state is 1.
In order to formalise the link between these two worlds, we define the linking predicate L as:

ok < ([8] =1) Aok = (|8'] =1)

A8 =g Ad =My

11>

L((8,8"), (0,0", 0K, oK)

This linking predicate allows us to introduce the following Galois connections; first we define
the weakest probabilistic design corresponding to a standard design Ps:

vo—) 0—,) Ok‘) Okf b L((é) 6,)) (0—) OJ) Ok) Okf)) = TS (0—) OJ) Ok‘) ak‘,)
Analogously, the strongest standard design corresponding to a probabilistic design Pp is:
38,8" # L((8,8"), (0, 0", 0k, 0K.)) A Pp (5, 8")

It is easy to see that all programming constructs from the probabilistic theory that have homo-
logue ones in the standard theory are linked to them, with the restriction of operating only on
point distributions, otherwise they reduce to abort.

5.3.1 Weakening the link

This linking predicate is a bit too strong, as it maps many interesting program constructs to
the aborting program: an example is that of generic choice, which has no homologue in the
standard theory. Ideally a better option would be to relax some constraints and to map generic
choice to nondeterministic choice rather than to abort.

In other words we are aiming at a link that loses all probabilistic information about the possible
after-states and flattens it to a mere list of them.
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This is not straightforward, as the linking predicate L in some sense verifies consistency of 6
with respect to o, 0k and of & with respect to o’, 0.{’: when the support! of the distribution
has more than one element, the relation between $ and a state from its domain is too weak to
be useful.

The situation is similar to that of a 3D-space, where dots are characterised by their x,y,z
coordinates: a transformation creates a space with coordinates x’,y’,z’, whose relation with
the undashed coordinates cannot in general be captured by a relation that mentions only one
undashed and one dashed coordinate.

So far we have seen standard designs as relations:

Ps:SxB—-SxB
but in order to build a more useful link we turn to this other interpretation:
Pos:SxB—-pSxB

which maps a state to what we may term its program image P(o) (as it is a similar concept
to that of program image introduced in §A.2.3), which contains all of the possible after-states
reachable from a given before-state:

P(0) = {0’ | Ps(0,0)}

All deterministic standard constructs map a state to a singleton set, whereas nondeterministic
choice maps it to larger sets.

The interpretation of the predicate P,s(0, o, 0k, 0k ) is therefore that ©P has started (if oK is
true) in the state o and has ended (if OK’ is true) in a state o’ € «’:

Pos(o, o, 0k, ok') = \/ Ps(o,0", 0k, ok

With this in mind we can define the following linking predicate:

Lo((8,8)), (0,0, 0K, 0K))) = ok < (8] =1)nok < (|8'] =1)
A8 =1 Asupp(d’) = o

We can state the variants of the Galois connections above as:

VO', cxl» OK» OK,'L@((& 5/)) (U) 0(,, OK) ak,,)) = prS (G) (xl) OK) OK,)
35,8"eL,((8,8"), (0, &, 0K, 0K )) A P (8,8")

5.4 Considerations on a pCSP theory

We have seen that the UTP theory of CSP is built on that of designs, with the introduction of
three other pairs of auxiliary variables, notably wait, tr, ref and their dashed counterparts.
We recall their roles in the theory:

* wait, wait' are boolean variables recording if the program is waiting for interaction with

1We remind the reader that the support of a function is the set of points where the function is not zero-valued:
supp(d) = dom(§) \ ker(d).



5.4. Considerations on a pCSP theory 55

the environment;
e tr, tr’ record the list of events happened during the program run;
! e .
* ref,ref are sets containing the event refused by the program.

They are in addition to ok, 0.(/, already added when going from the relational theory towards
the concept of designs: the distributional framework presented in §3 spared us from having to
add these variables when creating the concept of probabilistic designs, as we do not need to use
them — we have in fact argued that this information is contained implicitly in the distributions
5,8’ as their weight corresponds exactly to the probability that a particular program step has
started or finished, respectively.

Information about divergent states remains implicit in the distributions: the probability of being
in such a situation is precisely (1 - |[§']).

In some sense the “ok” part of a distribution is mapped to the support of &', whereas the “not-ok”
part gets disregarded.

We can therefore build on the theory of probabilistic designs presented in §5 to get to a proba-
bilistic theory of CSP only by adding the remaining three pairs of auxiliary variables.

Their meaning will be the same as in the standard theory. The question is: what is the best way
to embed them in the probabilistic theory of designs? We may be tempted to introduce them
as auxiliary variables alongside with the program distribution, but the same reasons that were
brought up to decide in favour of an approach that lumps all of the variables together into a

single composite observation variable, require us to work on states with the following shape:
o: (v, wait, tr,ref ) > W x B x Event-seq x Event-set,

where W is the set of possible values for the program variables.

This allows us to embed all of the remaining auxiliary variables in the state domain, and there-
fore this simplifies the definitions of the different programming constructs and healthiness con-
ditions, compared to the traditional reactive definitions that use ok, wait, tr, ref as auxiliary
variables — this is a novel approach.

54.1 r

For example let us take the traditional R1, which states:
P=Pa(tr<tr)

In a probabilistic world this must hold point-wise for each couple of states (o, 0’) from the
before- and after-distributions that are related by the program.

If we write this in the case of a single state o (i.e. we take a point distribution n, as the before-
distribution), the trace in the before-state ¢ must be a prefix of the trace in all of the possible
after-states o’ from the support? of the resulting after-distribution &’.

This must hold true for all states in the state space, so the formulation of the probabilistic Rl is:

P(5,8') = P(5,8') A (VooP(Me,8) = (Vo' esupp(8') e o(tr) < o'(tr)))

where we have used the functional notation o(¢r) to stand for the evaluation of ¢r on o.

2The support of a function is the subset of its domain where the function is non-null.
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From this formulation we can clearly see that divergent states do not take part in the verification
of the condition R1; in addition, it is worth pointing out that, according to this definition, a
totally divergent program (which yields &’ = € for any initial ) is Rl-healthy.

542 r

Healthiness condition R2 states that the initial value of #r cannot have any influence on the
evolution of the program, which determines only the tail (¢’ - tr):

P(tr,tr') = 3s e P(s,s ~ (tr' — tr))

As we did above we first look at the case of point distributions, where a possible formulation is
the following:

P(Mo,d") = 3s @ P(no{ls/erf, 8 {3~ (tr-0(tn)/urf})

Here we have used the remap operator to “change” the value of the trace in the spirit of R2 over
all states.

This gives a sort of “substitution rule” that allows us to replace a state o with another state ¢
that differs only for the value of ¢r in the before-distribution, whereas in the after-distribution
a part &, (accounting for the contribution of o) is replaced by a new part &, (accounting for
the contribution of ():

P(5,58') =Vo3se ({=o{s/tr}) A P((6 —85+8¢),(8 =8+ ,C))

where 8, and &, are point distributions scaled down by the probability of o, i.e. 65 = §(0) ‘¢
and 5& = 6(0') ‘Me-

543 R

Before getting to R3 we have to define the probabilistic version of the reactive sKip, denoted
sKip.
According to the standard theory of reactive designs [HH98], sKip is defined as:

skip 2 (~ok A tr<tr') v (oK A tr' = tr A wait’ = wait A ref = ref)

This definition has to distinguish the case of divergence (when it does not enforce anything
other than trace elongation) from the case of non-divergence (when it states that all variables
are left unchanged), and as a result it is much more complicated than the pure relational skip
which is simply:

v=v

The choice of embedding the auxiliary variables in the state function o (and having left all
information about divergence implicit in §,4’) starts to pay out here, as it enables us to keep
such an easy definition as well:

skip = &' =8

In other words all non-divergent states are preserved as they are, whereas now there is no
statement on divergent states — other than the implicit one that the overall probability of
divergence must be left unchanged.
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R3 does not mention tr, tr':
P = sKip < wait 1> P

As a result this is pretty straightforward to express in a probabilistic setting, as we can use
directly the semantics of the conditional construct presented in §3.3:

sKip < wait > P
definition of conditional

E|6A,5]3 (] S@P(5{Wﬂit},6A) A P(é{—'wait},ég) A = oA + 0B

definition of sKip
164,0p @ skip(é{wait}, SA) ANOA = 5{’Zl/alt} A P((S{—\wait},ég) NS =8a +0B

one-point rule on $5

355 e sKip(S{wait), 5(wait)) A P(5{-wait),5p) A dp = & - S{wait)

one-point rule on ép

sKip((wait), 5(wait)) r P(5(-wait),d - &({wait))

And therefore.
P(8,8") = sKip(8(wait), 8{wait)) A P(8(-~wait),d’ - 8(wait))

We split the before-distribution into two parts, one where wait is true and that equals the
corresponding after-distribution, and one where it is not and that has evolved into the difference
of the total after-distribution &’ and the part 5{zwait) that did not evolve.

This can be simplified down to:

P(5,8') = P(8(~wait),§ - &{wait)).

5.4.4 c¢sp1 and csp2

Another advantage of the distributional framework is that compliance with the remaining two
healthiness conditions, namely CSP1 and CSP2, is subsumed by other conditions, as we are now
going to show.

In standard CSP, CSP1 states that:

P=Pv (=0k Atr<tr')

As all information about divergent states is kept implicit in distributions, we can argue that this
healthiness condition is stripped down to the identity P = P.

In some sense, all states which are “ok” evolve from the support of the before-distribution
towards a state in the support of the after-distribution, which is “ok’”, or diverge to a state,
which is “not-ok’” and is not part of the support of the after-distribution, effectively getting out
of the game; on the other hand all states which are “not-ok” are not part of the support of the
before-distribution and have no means to get back in the game.

Probabilistic reactive programs are therefore CSP1-healthy by design, as P(8,8’) already states
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that either a state evolves according to what is described by 6,3’ or diverges.

Our formalism does not allow us to express the trace-elongation property for divergent states,
but after all it is not crucial information — they diverge, that’s already bad enough!

The other healthiness condition, CSP2, states that:

P;J =P

where
]2 v =vAr(0k= o&')/\tr’:trAwait':waitAref’:ref

In the probabilistic world based on distribution this reduces to:
P;sKip =P

which is nothing but H3. In fact:

1>

(7' =vn (k= a&') A tr' = tr A wait’ = wait A ref/ = ref )

( /

J

v oK Atr' = tr A wait’ = wait A ref = ref )v

{1
S
I

V(2 = vA-0K At = tr A wait’ = wait A ref = ref)

= sKipv (' = v A0k A tr' = tr A wait’ = wait/\ref': ref )

And again the part with —0k_ gets disregarded, thus the reactive program J in the probabilistic
world coincides with sKip — and there we have that CSP2 collapses to H3.

These brief considerations on a pCSP theory based on distributions are preliminary work, that

indicates possible directions of future research.



CHAPTER 6

Conclusion

In the previous chapters we have presented in detail a framework specifically conceived to deal
with programs featuring both probabilism and nondeterminism in the style of UTP.

The novelty in our framework is its approach to probability, which arises from a distributional
model of the state space of a program: thanks to this view of the world we are able to express
concisely the relations between the situation before and after the execution of a program.

The algebraic properties of the distributional model allow us to reason on distributions and
programs using theories and tools borrowed from the domain of vector spaces.

According to the programs-are-predicates view of the world shared by the UTP research com-
munity, we use relations among distributions to give a predicate semantics to several program
constructs: as a result this has enabled us to treat efficiently different cases, all collected in §D.

From these case studies we can see the key strengths of this framework, as well as understand-
ing what the inevitable weaknesses are.

On the plus side the notation is very compact: all probabilistic information is hidden within the
distributions used in the predicates representing the different programs, and side conditions
are kept to a minimum; ordinary logic and algebraic rules make it straightforward to reason on
the semantics of a program.

The algebraic properties of the framework make it suitable for mechanization of several steps in
a verification procedure (left for future work): an example is the use of vectors and matrices as
an elegant formalism to deal with boring and error-prone computations, which can be handled
by a computer.

Moreover several program properties can be inferred by inspection of the corresponding matri-
ces in the vector formalism.

Our framework is very flexible, as some features are not “hard-wired” within. An example is
nondeterminism: we have adopted a neutral view of it, because it shows no demonic behaviour
per se, as instead it is customary in several other frameworks. The demonic behaviour is a con-
sequence of a particular definition of refinement, but nothing forbids us from using a different
definition to look at programs from a different perspective.

Last, but not least, our framework integrates well with UTP: this was a central requirement for
us, as one of the goal of our research was the integration of probability into the UTP framework
— as we have discussed in §2.4 the different approaches used so far were not deemed totally
satisfactory by many people.

What perhaps we feel as the main shortcoming of our approach is highlighted by §5.4: the
treatment of traces is quite complicated and far from being intuitive. As a result we feel that
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our framework may not be the most efficient approach to pCSP and, consequently, the approach
to a probabilistic version of Circus should take this into account.

This is one of the reasons why finding a slightly different approach to model pCSP would be an
interesting direction for future work.

Another interesting line of research would involve probability and security, as they are two sides
of the same medal. We have shown a possible application of our framework in the domain
of protocol verification, but we can probably go beyond that and this would probably yield
interesting results in the field of security.

All of this would benefit greatly from the presence of some tool support, as on one hand it would
make the framework more effective and easy to use, on the other hand a mechanized approach
could take advantage of the different mathematical properties of the framework towards an
efficient implementation.



APPENDIX A

States and distributions

A.1 \Variables, types and expressions

Variables are the elements of a program that we can use to observe and model the behaviour of
a program.

In UTP it is customary to distinguish between observational and auxiliary variables: the former
directly correspond to the variables that a program can access and modify, whereas the lat-
ter are an abstraction which records some particular behaviour of the program, for example
termination or being in a waiting state.

We use the notation 4 to stand for the set of all variables of a program.

UTP offers constructs to introduce new variables within a given scope, nevertheless we will
not take this possibility into account: the framework we are going to present can be modified
to support this construct in a conceptually easy and straightforward way, but in spite of the
conceptual simplicity this requires the introduction of complicated machinery to handle this —
we will get back to this point to clarify what we mean in §A.2 and §A.3.

We assume therefore that V/ is fixed and cannot change dynamically as the program runs.

Variables of a given type can assume a value from a set characteristic of that type; for the
variable 7; € 1V we note the set of its possible values as W:

W; = type(v;) .

Having a possibly different type for each variable adds unnecessary complexity to the frame-
work we are going to introduce; this is easily manageable and does not require a big deal of
effort, but we believe that it shifts attention away from more delicate matters: for this reason
we assume that there is no type distinction among the different variables, whose possible values
will therefore lie in the set of all types W :

Vie W, cW.

For the sake of simplicity, let us assume that W/ contains integers and booleans only.

An expression on variables is a combination of constants and variables, combined by operators;
the set of all expressions is ‘E.

A notable subset of ‘E is that of boolean expressions, which we will refer to as conditions.
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A.2 States

Program states define the mapping that associates each variable to its corresponding value, in
other words they are functions from the set of all variables to the set of their possible values:

oc:vV->W.

We do not allow for the case of a variable not being associated to any value (and hence o is a
total function): as in the real world a variable points to a location in the memory, in the worst
case that location contains garbage, but still the operation of retrieving the value of a variable
returns a result, which will be interpreted as a value of the appropriate type.

The domain of ¢, which is ¥/, is defined as its alphabet:
alph(o) = dom(o) = V.

So the choice we made in §A.1, which disallows for dynamic changes in ¥/, results in dealing
with states with the same alphabet.

The set of all states is the state space S.

It is handy to lump all the variables of  together into a single vector of variables :

(4l
(%)

Un
so that we can give an alternative definition of state as
o:i{z} > W,

where T/ is the cartesian product of n copies of W .

As a result each state o0 maps the variable vector # to the corresponding vector of values w:
0=0->w

where

Wn

and the map operator has been lifted to operate element-wise on vectors:

vow2{vi~>w|l<i<n}.
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A.2.1 Evaluation of an expression

An expression e can be evaluated in a state o by replacing each variable z; it mentions with the
value o(7;) that is contained by that variable in that state: doing the calculations with these
values returns the evaluation of the expression e on the state o, which is the value eval;(e).

Here is a recursive definition, where k is a constant, F a n-ary function and e; an expression:
evals(k) 2k

evalg(7;) = o(7;)

evalg(f(ehez,...,en)) 2 T(evalg(m ),evalg(ez),...,evals(en))

As a shorthand notation for the evaluation function, we overload the function state:

o(e) = evals(e)

When an expression e contains only values and operators, we have that its evaluation is the
same on any state, thus when the notation is clear from the context we will simply write e
instead of evals(e) (or o(e), using the shorthand notation).

Using this, we can write that:
o(e) = evalg(e{o(@)fn}) = o(e{o@)fn}) = e{o(@)fn}

In the case of a boolean expression (condition), we say that a state satisfies a condition ¢ when
it evaluates to true in that state.

As with variables and values, it is useful (in view of the §A.2.3 on assignments) to introduce
some vector notation for expressions as well:

o(er)
o(e) = G(,eZ) )
o(en)
where obviously
€1
e= e,z €E.
€n

We use the following notation for simultaneous substitutions® {f1/g, }{f2/g,}---{fn/g. }:

{Ha} = {"/a1}{ /02 }{"/an},

For this to make sense, it must be the case that Vi=+j e g; # gj-
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where
fi g1
f
f= 2 and g= g.z
fn Jn

When the substitution {f/g} is applied to a vector of expressions e, the meaning is the following:

€1 {ﬂg}
elifa} = | 2070
€n {f/ﬂ}

The composition of two expression vectors f and e is defined as a particular substitution that
involves the variable vector v:

f1{¢/o}
foe=f{eo) = fz{:%/y}
fn{e/v}

We can read the notation f o e as f after e.

Concerning the evaluation of this vector we have

o(foe) = o(f{¢/z}) = o(f{o(©)/z}) = f{o(e)/u}

This is equivalent to evaluating f in a state ¢ such that {(?) = o(e).

Now it should be clear why we intentionally use a symbol like o and the word “after”, which
both remind of functional composition: if for every expression and variable vectors e and v we
define an associated function e, : W » W as:

e,(w) =evaly.u(e)
then for any state o = ¥ — w, we have that o(foe) = f,(e,(@)):
o(foe)=f,(w')

w'=e,(w)

When composing the same expression for k > 1 times, we use the following notation:

We define that for k = 0 this notation has the following meaning:

1>

gO

v
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A.2.2 Abstract states

An abstract state o« € S is a set of states:

x2{07,02,y...,0n,...}

The alphabet of an abstract state is defined as the set of all the different alphabets that appear
in the abstract state:
alph(a) 2 {A4| A4 =alph(c) Ao €}

So in the case of an abstract state containing all states having the same alphabet A4, its alphabet
is the singleton set {A4}; when alphabets may in general vary from state to state, the largest
such abstract state is noted Sg:

Sa={o| alph(o) = A}

We write it this way as it is the largest subset of .S, whose elements are all those states with
alphabet A4: our assumption of all states having the same alphabet simplifies the presentation
of our framework, as the state space S we are dealing with is actually S4.

We say that an abstract state satisfies a condition ¢ when all its elements do.

We define the restriction of an abstract state through a condition c as a total function _(_) :
(PS x E) - £5, defined as follows:

a{c)z{o|oea A o(c) = true}

We have that:

Clearly if the condition is true we have:

a(true) = «

And obviously if the condition is false we have:

«({false) = @

A.2.3 Assignments

An assignment performed in a state ¢ is an operation 7; := e;, that updates the value contained
in o; with o(e;).

We use the following notation for n simultaneous assignments of the expressions e, ez,...,en
to the variables vy, v5,... 7, € V-
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where we remind that:

[ €]

(2] €2
o=\ and e=|

Un en

Let us now define the inverse-image set for a generic assignment v := e, after which the new
state o’ describes the new mapping for the updated vector of variables v:

Inv(v:=e,0") 2 {0 | 0'(2) = 0(e) A 0 € Supn(on)} -

Clearly the above definition is simplified by the assumption that all states o have the same
alphabet, as per assumption in §A.1.
We can generalize this to an abstract state «’:

Inv(v:=e,&')2 |J Inv(v:=¢e,0).

olea!

The abstract state Inv(v := e, «’) is the set of all the possible states before the assignment that
are compatible with the result of the new mapping being in the abstract state o’.

Due to the fact that the evaluation of an expression is an injective function we have that:
]ﬂﬂ(z:zg, O']) al Inv(g::g,(rz) =< 01 %03.

Thanks to this property, if the evaluation of an expression e is defined on all of the states
belonging to an abstract state «, we have that it is possible to partition « through e.
In fact if we have a relation %, defined as:

01%.02 < o1(e) =02(e).

This is an equivalence relation among states belonging to an abstract state «, that is partitioned
into equivalence classes corresponding to inverse-image sets «’:

a=J Inv(v:=e0’),

o’ea!

where each class is represented by a state o such that o(e) = o'(©).
Nested inverse-image set : Inv(v :=e, Inv(v:=f,{o})) = Inv(v := f{¢/v},{0})

The inverse-image set will play an important role, as the remap operator (which is to be intro-
duced in §A.3.4) will be defined in terms of it and is a crucial component of our framework, as
it is needed to give semantics to assignment statements.

A.3 Distributions

In §3.1 we have informally introduced the concept of probability distribution over the state
space, as a means of assigning a probability to each state in S: this is a particular instance of a
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more general concept.

A distribution  is in general a partial function x, that maps some states from § to real numbers:
x:S +R.

We refer to each real number x; as the weight of the corresponding state o;; we use 9 to note
the set of all possible distributions.

The partiality of x is a technical device that allows us to treat efficiently cases when it is assumed
implicitly that some states are mapped to the value 0, but the corresponding pair does not
belong to x: the whole framework is built in such a way that the operators do not distinguish
between a given distribution and another one, which differs only for the addition of some
otherwise undefined states that are mapped to a null weight.

For many application we need to have a measure the collective weight of all states of a distribu-
tion x: we refer to this as to the distribution weight, and it is trivially the sum over its domain
of all the state weights:

Ixl= > x(o)

oedom(x)

This operation can be lifted to a set X ¢ D of distributions in an obvious way:

1X0 = {lxl [ x e X}

In general the alphabet of a distribution is defined as the set of all the different alphabets that
appear in the distribution domain:

alph(x) = alph(dom(x)).

Clearly in the case of a fixed alphabet A4 shared by all states, this reduces to the singleton set
{4}

A particular distribution is the empty distribution €4 : S + R, which is a distribution such that

dom(ey) = o and img(e, ) = {0}, viz. it maps each state in the abstract state o to 0:

exz2{o~0|0ecxa}

Another particular distribution is the unity distribution 1 : § + R, which is a distribution such
that dom(t«) = @ and img(1,) = {1}, viz. it maps each state in the abstract state « to 1:

o 2{om1]|0€ca}

We define the following shortcuts:

1>

€q =€, lg 2 Ls,

€x = €dom(x) tx = ldom(x)
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We define the restriction of a distribution through a condition c as follows:

x{e) = {o = x(0) | o e dom(x)(c) |

This is a distribution where all states satisfying the condition c are mapped to the same weight
as in the original distribution x, whereas those on which ¢ evaluates to false are remapped to
the null weight.

The following properties hold for a restricted distribution, some of which are immediately in-
ferable from the definition and some others which are proven in Appendix C:

Restriction through conjunction of conditions : x{c1 A c2) = x{c1){c2) = x{c2){c1)

Restriction through equivalent condition : (¢1 < c3) = x({c1) =x{c2)

Restriction through implied condition (I) : (c2 = ¢1) < x{c1){c2) = x{c2)

Restriction through implied condition (II) : (c¢1 = —c2) = Xx{ci){c2) =€

In case we have conditions c, and c, selecting (i.e. evaluating true only on) a single state o
and an abstract state « respectively , we simplify the notation as follows:

5(o) = d{cc) d{ax) = 8{cq)

The expression of the distribution weight, in the case of restricted distributions, can be simpli-
fied by excluding from the sum all states which are mapped to 0 by the restriction and therefore
we obtain the following:

* [8{c)] = X oedom(x)(c) O(0)
* [5(0)] = 8(0)
* 15 = Eoea 8(0) -
We define the point distribution (with domain o) as the restriction of a unity distribution to a

single state, viz. all the distribution weight is concentrated in a single state which maps to 1:

Now = L“{O‘}

And clearly we have that:
IMoel =1

We also define the restriction of a distribution through another distribution as follows:

xixz) = {o = x1(0) -x2(0) | 0 € dom(x1) ndom(x2) |

Commutativity of this operation derives directly from the definition:

x1{x2) =x2{x1)-

The reason why we call these operations in a similar way is that if we can see that the restriction
of a distribution through a condition as a generalization to distributions of the restriction of
abstract states through a condition, the restriction of a distribution through a distribution can
be seen as a further generalization:

x{e) = x{i(c))
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All of this can be lifted to a set X ¢ D of distributions in an obvious way:
* X{c) = {x{c) [ x e X}
© X ={Ex) [ Ee X}

A.3.1 Operations on distributions

Arithmetical operations can intuitively be lifted point-wise to operate on distributions?.
The sum of distributions x; and x, is a mapping where each state is mapped to the sum of the
weights from the two distributions:

X1+X2 = {0 s (X1 (o) +X2(0))}

From this definition we can derive that:
o xr+x2l = Ixall + Ixal
o (x1+x2){m) = x1{m) + x2({7)

This can be lifted elementwise to the case of two sets of distributions X, 9" ¢ D:

X+ 2{x+& | xeX,6€T}.

Thanks to the latter property we can split a distribution into two other distributions, where all
the elements of one satisfy a given condition c, while the elements of the other do not:

x = x{c) +x{-c)

This is a key property as whenever a program working on some distribution behaves differently
according to the state it is acting on, it is necessary to be able to split the distribution in this
way.

Distributions can be scaled through point-wise multiplication by a real number. This is the
multiplication by a scalar number, which is then defined as:

n-x2{om (n-x(0))}

We have previously the restriction of a distribution through another distribution in terms of a
point-wise product: depending on the situation it is useful to think of this alternatively as a
restriction or as a product of distributions, so we define the product of two distribution as:

X1-X2 2x1{x2)

As this is just a make-up for the restriction of a distribution through another distribution, com-
mutativity of the product of distributions derives directly from its definition:

X1:°X2=X2"X1

2We are assuming that we are dealing with distributions on the same state space — a trivial generalization can be
used if this is not the case, by adding all states that are missing from either distribution and have them mapped to 0.
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All of this can be lifted to a set X ¢ D of distributions in an obvious way:
* Xox=2{&x[EeX}

s n-Xz2{n-&|&eX}
It is possible to introduce a partial order among distributions:

X1 <X2 2 Voedom(xy)udom(xz)ex1(o) <x2(0)

A.3.2 Specific types of distributions

Some specific types of distributions play special roles in our framework, so we are going to term
them accordingly.

A weighting distribution 7t is a distribution mapping states from its domain to real values in the
range [0..1]:
m: S +» [0..1]

We use D,, to note the subset of D of all weighting distributions; the partial order defined
above results in a complete partial order on the D,,, where the top element is . and the bottom
element is €.

Given a weighting distribution 7, we define its complementary weighting distribution 7t as:

Restriction : 11 {m3) € D,,

A probability distribution & is a weighting distribution such that ||5] < 1.

We can further specify by using the term full probability distribution when |§| = 1 and the term
probability subdistribution® when 5| < 1

We use D, to note the subset of D, of all probability distributions.

Restriction : 5(m) € Dy

In the case of probability distributions we can recognise that 5(o) is the function of o which
is usually referred to as the probability mass function: it represents the way the probability is
distributed depending on o.

So for a pair (o; — pi) € & we will refer to the weight p; as to the probability of the state oj.
Likewise we will talk of the probability of an abstract state rather than of its weight: in fact if
we see a state as an outcome, we can see an abstract state as an event (i.e. a set of outcomes).

A.3.3 A simpler notation

It is apparent that having to deal with distributions with different domains requires the use of
a lot of different subscripts and side-conditions, which are conceptually void and are rather an
exercise of patience and due diligence.

3A small caveat here: when Morgan et al.talk about “probability subdistributions”, they refer to the case of the
cumulative probability being less or equal to 1; we chose to use a stricter connotation of the term “subdistribution”, as
we found it less confusing.
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For this reason in some cases, for example when the state space is finite, it is helpful to think of
a distribution as a total function x : § — R, where the undefined mappings are replaced by the
null mapping; in this case it is handy to use the vector notation, so that:

07 X1

02 X2
X = =

On Xn

This is justified by the fact that we can see a distribution as an element of a vector space: we
will explore later on (§B) in more detail the concept of distributions as vectors along with its
implications.

In order to be able to better focus on more important matters, we are going to work under this
assumption from now on — and coherently we will omit any subscript carrying information on
the distribution domain.

Moreover, in this work we will be talking mostly of probability distributions, so we will usually
be referring to them simply as “distributions”, eventually distinguishing between the case of a
“full distribution” and that of a “subdistribution”.

Whenever we want to use this term in the more general meaning we have used so far, we will
rather use “general distributions”.

A.3.4 The remap operator

We have previously hinted at the importance of the remap operator within our framework.
The reason for its importance is that it is a technical device to deal with all the complicated
machinery that is responsible for the correct modelling of assignments.

When states distributed according to a probability distribution are modified by an assignment
© := e, the original before-distribution § is transformed into the after-distribution & = 5{¢/d]},
where the postfix operator {¢/v|} is the remap operator: it is therefore an effective way of keep-
ing track of the changes affecting a distribution 6 as it “evolves” assignment after assignment
towards a final distribution &’.

The remap operator is defined in terms of the weight of the inverse-image set for the corre-
sponding assignment:

5{efol = {0’ &> [8(Inv(z = e, {o'})] | alph(o) < alph(s)}

In other words, for each after-state ¢’ from the domain of the resulting distribution §{¢/«}}, we
have that the corresponding weight is made up of the original weight of all before-states o that
have been transformed into o’ because of the assignment ¢ := e:

(3{¢/o})(0") = {Z 8(0) | o' =0 {zr evals(e)}

From the definition we can see that after applying the remap operator the alphabet of the
resulting distribution is the same as the alphabet of the original distribution:

alph(5{¢/s}}) = alph(s)
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Quite often it is the case that we are dealing with an assignment e; to a single variable 7; from
: in this case we overload the notation adopted so far and use the postfix operator {e/[}.

Sometimes the same assignment is repeated several times, one after the other, so we define a
compact notation for this case:

8{e/uly = 5 {¢/o}{e/o} ... {0}

k times

Properties

From the definitions of sum and multiplication, we have that the remap operator is a linear
one:

(x- 84/l +y - 8{t/vh){9/oh = x- 5{e/ofi{9/o] +y - 5{£/o] {9/}

Here are some other properties:

Composition (I) : d{e/o[{f/o]} = d{f{/z}/o]

Composition (II) : 5{&/o} {f/+]} = {fo¢/v]}

Composition (III) : d{¢/v. [} {/v ]} = 6{(e:T{/w 1)/ (vi,05)[}

Composition (IV) : 8{e/v. [} {f/v:]} = 5{{/»}/o ]}

Iteration : 5{¢/u}* = 8{"/s]}

Commutativity (D) : 8{¢/v.}{f/v;[} = 8{H/oi} o} {e/o ]} iff v ¢ fv(e)
Commutativity (II) : 8{¢/v:}{/v[} = 8{f/w; [ {e/w: ]} iff w1 ¢ fo(f) A v ¢ fv(e)
Expression substitution : 3(f = g){¢/zf} = 6(f = g){e{7s}/o]}

Contradiction : Vo € dom(8) e o(c{¢/v}) = false A 5+ e < 5{e/s}{c) =€
Assertion : Yo € dom(8) e o(c{e/v}) = true < &{¢/v}}{c) = 5{¢/s}
Remapping a condition : 5{¢/v[}(c) = d{c{e/v}){¢/=|

Weight of a distribution after remapping : ||5{|%/g[}|| = H6|| iff o(e) is defined in dom(5)
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Distributions as vectors

When we are working with distributions, we are in effect dealing with a vector space with size
equal to the cardinality of the state space S: a distribution x over the (finite!) state space S can
be seen as a linear combination of point distributions n, with coefficients x, ranging in R:

X= Z Xo ‘Mo
oeS

Similarly a weighting distribution 7t can be seen as the same linear combination, but with
coefficients w ranging over [0..1]:
= Z Wo Mo
oeS
Finally a probability distribution & can be seen as the same linear combination, with coefficients
po ranging in [0..1] (as for weighting distributions), which have the additional property of being
(at most) one-summing:

o= ch'nc A ZPGS1
0€S oeS

When writing the distributions as a linear combination of point distributions, we have implicitly
chosen the set of all point distribution as a basis of the vector space. In particular it is an
orthonormal basis, which we refer to as the canonical basis (made of the canonical generators).
We can therefore represent all distributions as vectors of the coefficients from the corresponding
linear combinations:

X1 w1 P1

.| X2 . w2 .| P2
xX=| . el 6= p_
X'Tl. WTL pn

For the sake of clarity we assume that states are numbered from 1 to n and use the subscript i
instead of o;; nevertheless we will be very pedantic regarding the vector notation and underline
a distribution whenever we refer to its vector representation.

B.1 Operations on vectors

First of all we can introduce a partial order among these vectors by overloading the < operator:

X, SXZ 2 Viexi; <xi2

IWe assume the state space S to be finite and with cardinality n, but we can deal also with an infinite state space;
moreover we assume that the domain of all distributions coincides with the state space — in other words we are taking
the trivial completion, that maps to 0 all states in .S \ dom(¥).

73
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This definition matches that given in A.3.1; analogously this results in a complete partial order
on the subset of weighting distributions, where we have a top element (, i.e. the unit vector,
and a bottom element ¢, i.e. the zero vector:

0 w1 1
0 < V\.Jz < 1
0 Wn 1

We use the L1-norm (also known as Manhattan norm) as the norm of choice for this space?:
Ixl = Ixl = > il

In the case of distributions from the positive cone of D, noted D*, this coincides with the
notion of distribution weight given in A.3.

Occasionally we will use also the L.,-norm (also known as Chebyshev norm), which we will use
later on:

IXlleo = max{fx:[}

D with the Manhattan norm can therefore be seen as a metric space, where the distance function
is defined as:

d(x,»X,) = Ix; = x|
We use the conventional definition of the scalar product of two vectors:
X; X, 2 XXX =X, X,

With this definition we have that |x| = v-x for all distributions from the positive cone D* (which
includes weighting and probability distributions).

We use the conventional definition of the entry-wise product® of two vectors:
X;°X, 2XH  where xiH = Xi1 - Xi2

If we use the notation diag(v) to denote the diagonal matrix whose element (i,1) is the i-th
component of v, we can write the following equality:

X, °X, =diag(x,) X,

Addition and multiplication by a scalar have the usual definitions as well.

2From now on we will systematically omit the indication of the sum index whenever it is obvious from the context
and it ranges from 1 to n.
3Also known as Hadamard product.
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B.1.1 The set D,

Using the above definition of norm we can express the property that probability distributions
are at most 1-summing:
[o] <1

The set D, of all probability distributions is therefore the intersection of the positive cone of D
and the (closed) n-ball of radius 1, centred in e: D, = D* n By [e].

B.2 Programs as matrices

We have already stated that a deterministic program A can be seen as a distribution-transformer,
as it “turns” a probability distribution 6 into a post-distribution &’.

From a different angle we can see this as a homeomorphism in the vector space of distributions*,
and as such it can be described as a square matrix A of size n x n (so that it is conformable
to the product of a vector with n elements, i.e. a n x 1 matrix), which we will refer to as the
program matrix:

=A%
which is, explicitly:
!
Pi ar a1z ... Qi (P1
P'z |21 a2 ... Qzn || P2
A
Pn an1 an2 ... Qnn Pn

We use the notations a;, and a,; to refer respectively to the i-th row (transposed) and to the
j-th column of A.

Coherently with the adoption of the L;-norm for vectors, we use it also as the norm of choice
for matrices:
la] = Al =max{|a,;]}

The L..-norm for matrices is the following:
|A]le = max{|as, |1}

Therefore we have that:
|A] 2 AT ]o

We define a partial order among matrices by extending column-wise (or, equivalently, row-wise)
the <-order on vectors:

11>

ASE vj.g*jsb*jEVi.a' <hi>(—

1% —

We use this to define a partial order among programs:

(13

A<B=2A<B

“4In particular, we will show that this homeomorphism maps probability distributions to probability distributions.
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We can notice in passing that A < B implies that A c B, as for any 5, A < B implies that
B(d) ¢ (A(ZS))A — graphically, the refinement set comprises all of the distributions contained
between the hyperplane (with the smallest dimension) containing all distributions of A($) and
the hyperplane of all distributions with unitary weight — ; we cannot give a sensible definition
for A < B in the case of nondeterministic programs, so the reverse implication is false.

B.2.1 Interpretation of the columns of the program matrix

We can see that ' is a linear combination of the columns of A, with coefficients in the range

[0..1] that sum up to 1 at most.

If  =n, we have that &' =8ly;, defined as:

a ayi ... A1n 0 ari
! ~
piAn . =lan ... ai ... an||T|=]ai|=a4
anl ... Qni ... Qann/\O ni

is the probability distribution we obtain if program A is run from state o; — in other words 8’y ;
is the vector representation of the post-distribution &/, ;) =AMo,).

We can therefore derive a healthiness condition for the elements in each column of A, which is
that they are all positive and cannot sum up to more than 1 — and when the sum is exactly 1
this means that A is guaranteed to terminate whenever starting in state o;.

From this healthiness condition we can derive that probability distributions are indeed mapped

to probability distributions.

Thus we can see &’ as a linear combination of the probability distributions accounting for all of
the possible outcomes of A, where the coefficient of the i-th possible outcome relative to state
o; is the probability that A starts running in that state.

In other words the columns of A are the generators of a vector space, which has the property
that the representation of the before-distribution & in that space coincides with the representa-
tion of 8’ in D: for this reason we will refer to &8y, as to the i-th generator of A; therefore the
canonical generators are those of the identity program I.

We can relate this to how deterministic programs are viewed in [MMO04, §5.1], where the space
P4 of deterministic programs is defined as:

Py 2 (S - Dyt
A program A is therefore seen as the following relation:

A ={(01,83) | 01 €S}

The matrix A is a complete description of program A, as it contains all of the information
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provided in the above relation:

é:(f;u Sp2 e J\n)

B.2.2 Random Variables and pGCL Expectations

If we have a random variable X’ : § — R which assigns a real value to every state in .S, we can
compute its expected value® Es:(X') by summing over all states the value assigned to each state
weighted by the probability of that state:

Z Po- X,(G)
oeS
We are interested in the case when the probability distribution over the state space is repre-
sented by &', as if we represent X’ as a generic distribution x’, then we can express its expected
value as:
Eo(X)=x"8'=(x)'¢

In [MMO4] expectations are defined as functions that map each state to the expected value that
a non-negative random variable will have at the end of the program.
This expectation, written for final states, specialises to a post-expectation:

55!(X, | 5, = T]i) =Xi
So this is actually the random variable X’ itself seen as an expectation — in this way we can see
programs as expectation transformers.

It is more interesting to write the corresponding pre-expectation, which gives the expected value
of X when the program A has started in state oy, i.e. when the final distribution of program
states is 0’y ;:

56’(X, [6=m1) = 55'(X, | 8 = ,/-\i) = X’ 'éf'\i = (X,)Tg\i = (X,)Téﬂi
We can therefore express this pre-expectation as a generic distribution x:

X' =) TAm, n, ... on)=&)TAI=()TA

The pre-expectation is a random variable X that has the property of having the same expected
value as X' if the initial and final probability distribution over the state space are represented
by & and &' respectively:

(x)78 = (x)'As=x"58

Because of the way they operate on expectations, these random variables are constrained to
having non-negative values in [MMO04]: here we can relax this constraint, as we are using
random variables in a slightly different way, that allows more flexibility.

5Usually it is customary to refer to the expected value of a random variable as to its expectation: we will refrain from
doing so, as this same term is used with a different (although not totally unrelated) meaning in the context of pGCL.
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B.2.3 Interpretation of the rows of the program matrix

We can see that we are able to relate the above random variables using the transposition of
program matrix A:

x=(x)Ta) =aTy

Similarly as above, we can see x as a linear combination of the columns of AT, i.e. as a linear
combination of the (transposed) rows of A.

Let us remember that it is possible to express any generic distribution as a linear combination of
point distributions; for x’ we have that the coefficients in the linear combination are the values
x; that X’ has in each state oj:

X' =%,
If we define w ,; in the following way:
a ail an1 0 ai
wp 2AT n=lai ... @i .. ani 1= ai|=au
Ain ... Qin ... ann/\O Ain

we can write that:
x=ATX =AT (X xm) = YA, = Y xiwa;

As the columns of A are at most 1-summing, these vectors have the property of summing to no
more than the unit vector t:

D Wai <L

We can compute the expected value of X on & (which is also the expected value of X’ on §") in
the following way:

Es(X)=x"8=Y xiwp; 8= xipi = Es(X')

We see that we have expressed the probability p} in terms of 3, i.e. in terms of all the probabil-
ities p1,Pp2,...,Pn, and w »; defines the weight of each probability in the sum: its j-th element
can be seen as the probability that the program will end in state o; when starting in state oj.

B.2.4 Probability of an event

It is interesting to consider the case when we have a random variable Z’ that assigns real values
in the range [0..1] to each state in S: if this variable describes the probability that a certain
event happens depending on each state (i.e. the conditional probability), then we can compute
its expected value to evaluate the overall probability of that event:

P(event) = Es(Z') = E5(Z)
If we represent Z’ with a weighting distribution w’, we can write that:

w=ATw' =Y ziwy;
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w represents a random variable that describes the probability that the event happens depending
on the initial states, and is a linear combination of the (transposed) rows of A with coefficients

in the range [0..1].

We can then see a program as a random-variable transformer.

B.3 Deterministic Programs

We can take advantage of the matrix approach to rewrite the predicates corresponding to de-
terministic programs in a different way:

* the program sKip can be represented by the identity matrix I, as the after-distribution
equals the before-distribution:
skip = §' =18;

* an assignment takes the weight assigned to a state oy and reassigns it to a state o;: this is
represented by a matrix E whose (i,j)-th element ey; is 1 for all states o; being remapped
to o}, and 0 otherwise. In other words, the element in j-th position in the i-th row is the
value of characteristic function of the inverse-image set Inv(v := e, 0}) for the argument

0j:

1>

&' =E9;

vi=e

* it is quite trivial to render sequential composition, as this can be easily done by means of
the usual matrix composition:
A;B=23 =BAS;

 for conditional constructs we use the diagonal matrices C and C to “select” respectively
the states which satisfy the condition ¢ and those that don’t: the (i,j)-th element cy; in
matrix C is ¢i; = 0;(c) (i.e. the boolean value 1 if ¢ is satisfied by o;, and 0 otherwise) in
case i = j, whereas cy; = 0 if i # j; the matrix C is defined as I - C. If we compose these
matrices with those representing the programs A and B and sum the results, what we
obtain is the representation of the conditional construct, i.e. AC + BC: it is interesting to
notice that the i-th column in this matrix is a,; if ci; = 1 and b,; otherwise:

Adcp>B28=AC+BCS;

* the conditional choice construct scales the matrices representing the programs A and B

by p and (1 - p) respectively and sums the results:

A @B28=p-Ad+(1-p)-BS;
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* inaloop the body, represented by A, is executed over and over again as long as a condition

c is satisfied (C “selects” all states satisfying the condition, whereas C accounts for those
satisfying the complementary exit condition):

cxAz2vXe(XAC+IC).

B.3.1 Some considerations on loops

We can write that:

vXe (XAC+ IC)

8= (C+CAC+C(AC)? +C(AC) +...)

|on

5/

Nagk

(€ 0(&?)@

If the series converges than we have that ¥7° (AC)' = (I- AC)~! and thus:

vX e (XAC + IC) 8 =C(1-AC)"s

We have convergence if:

* AC is nilpotent of some order N — and in that case the loop is guaranteed to terminate
at most after N loops;

e (AC)' - 0 — and in that case termination is probabilistic, as the probability of non-
termination tends to 0.

It is interesting to notice that if the element ¢;; of C is 1, then the probability of exiting the loop
by reaching the state o; depends on the i-th row of the matrix AC. Conversely if the element ¢;;
of C is 0, then the probability of continuing the loop because the intermediate state o; depends
on the j-th row of the matrix AC.

This observation allows us to derive decision procedures to establish if a loop is (probabilis-
tically) guaranteed to terminate®: the basic requirement is that all columns of A are one-
summing (if this is not fulfilled then there is some intrinsic non-termination probability in A).
We say that a column is terminal of order O if it is null; a column is terminal of order i+ 1 if
the only non-null elements have row index equal to the column index of a terminal column of
order i; provided that A is terminating, we have that:

* aloop is guaranteed to terminate if all columns of AC are terminal of some order i.e. the
null elements are disposed according to an appropriate pattern;

* a loop is probabilistically guaranteed to terminate if at least one of the non-terminal
columns havs at least one non-null element with row index equal to the column index of
a terminating column.

%This procedure is always applicable in the case of matrices of finite rank, i.e. when the state space is finite. In the
case of matrices of non-finite rank it may be possible to apply the algorithm depending on the properties of the matrices
— they must have a finite set of terminal columns of order greater than 0.
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In order to present an agile decision criterion we introduce the concept of reduction MR of a
non-null matrix M, as the matrix obtained by individuating the null columns m.; and removing
them along with the rows m...

If we subsequently reduce M, we arrive to what we term the everlooping matrix M¥, which is
not further reducible (i.e. the null matrix or a matrix with no null columns).

The properties of the everlooping matrix (AC)F allow us to conclude that:

* if (AC)F = 0 then we have guaranteed termination;

e if (AC)F — 0 then we have probabilistically guaranteed termination;

* otherwise there is the possibility of being caught in an infinite loop.

More details and a proof for this can be found in [BPB11].

B.3.2 Healthiness conditions

If we look at the first three healthiness conditions from §3.5 from this different angle, we can
restate them in a slightly different fashion:

e as d’ is a linear combination of a matrix whose columns are at most one-summing with
the elements of & as coefficients, we have that the norm of & cannot exceed that of §
(feasibility,Distl /D);

* if we increase 9, the corresponding &’ = A § is increasing as well: similarly as above, this
is implied by the non-negativity of all matrix elements (monotonicity,Dist2/D);

* multiplication by a non-negative constant distributes through matrices (scaling,Dist3/D).

In the case of random variables we obtain something closer to the presentation of the healthi-
ness conditions for pGCL expectations from [MMO04]:

e as x is a linear combination of a matrix whose rows are at most one-summing with the
elements of x’ as coefficients, we have that the norm of x cannot exceed that of x'. As a
consequence the weight of a distribution & from the positive cone D* cannot exceed that
of & (feasibility,Distl /RV);

+ if we increase x’, the corresponding x = A'x’ increases as well: this is implied by the
non-negativity of all matrix elements (monotonicity,Dist2/RV);

* multiplication by a non-negative constant distributes through matrices (scaling,Dist3/RV).

Some examples in a two-element space

Before proceeding any further, we think it is useful to present the reader with a few examples,
to help visualize the concepts presented so far.
Let us consider a state space with only two elements:

S={01,02}

The possible probability distributions on this state space can be graphically presented as in
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P2

P1

0,

Figure B.1: Representation of probability distributions on a 2-element space.

figure B.1:
We have drawn the vectors representing the point distributions n; and n,, the 1-summing
probability distribution ¢ and the probability distribution 1, which sums up to 0.9 instead:

1 0 0.5 0.8
n, :(0) 112:(1) Q:(O.S):O.Sn1 +O.51J2 1£=(0.1):0.81_]1+0.11_]2

We use the following naming conventions to refer to points in the plane:
* the point (0,0) is O;
* the point 1, is that connected to O by ;

* the point X; is that connected to O by Px;.

1-summing probability distributions as ¢ are represented by points on the thicker line limiting
the shaded area, all other probability distributions as 1 are represented by points in the shaded

area.

A program is then represented by a 2 x 2 matrix; let A be the always-terminating program
characterised by the following matrix:

0.25 0.625
A= _ 5, 5/
= (0.75 0.375) (51 %)

The probability distributions that can possibly result from running this program can be repre-
sented as the darker area in figure B.2a.

We can see that the vector space generated by n; and n, has been transformed through a
homeomorphism to the vector space generated by §',; and &' ,, and all vectors have undergone

the same transformation:

0.5 0.4375 0.8 0.2625
T=A[ T =058, +0.58), = A 7] =0.880, +0.18), =
¢ —(0.5) AT TTAL (0.5625) L —(0.1) AT T A2 (0.6375)



B.3. Deterministic Programs 83

We can verify that [¢| = [¢'| = 1 and || = '] = 0.9: as A is always terminating the after-
distribution has always the same weight as the before-distribution.

Let us now consider the program B, which is almost like A with the difference that it has
probability 0.1 of non-terminating when starting from state oy:

0.1 0 0.15 0.625
B=A- = =(85; &
i ( 0 o) (0.75 0.375) (81 o)
We see that the second column of B is the same as in A.

The situation for program B is represented in figure B.2b.

The thicker line denotes maximal elements, which are mostly probability subdistributions (the
only probability distribution is represented by the right end point, which we obtain in case we
run the program from the state o, that guarantees termination).

¢’ and V' have changed in the following way:

0.5 0.3875
¢’:§(05):0.55;31+0.55’A2:( )

0.5625

0.8 0.1825
=B( | =0.88% +0.18%, =
¥ '(0.1) SRl A (0.6375)

Their weights have decreased, as |¢'| = 0.95 and ['|| = 0.82. If we compare the two programs
we can analyse where this difference comes from:

0.1 0\[0.5 0.05 0.1 0\/[0.8 0.08
Bo-Ad = = By -Ay = =
so-ae- (% o) 02)-(%) memae (S0 (00)- ()
Now let us introduce a random variable Z’, describing for example the probability that the

result given by a program is correct, as follows:

Z' = {(0—1)0'8)) (0230'9)}

(a (b)

Figure B.2: Representation of probability after-distributions: (a) after the application of pro-
gram A; (b) after the application of program B.
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This can be represented by the weighting distribution w’:

. (08
w =
- \0.9

The space of all random variables like Z’, i.e. with values in [0..1], can be represented as in
figure B.3:

Z2

z1
n]

Figure B.3: Representation of random variables with values in [0..1] on a 2-element space.

If we take program A, we can relate w’ to w through the homeomorphism described by the
matrix AT:

0.9

0.8375

0.8 0.875
g:éT( ):o.s%u +o.9gA2=( )

This is represented in figure B.4a.

We can compute the expected value of Z’ after program A has run, in the cases when the
before-distribution is respectively ¢ and .

0.5
Ep(Z) =" (0.875 0.8375) o5 | =0-85625

0.8
Ep(Z) =wb=(0.875 0.8375) o1] 7078375

We can easily verify that these are the same results we would have obtained if we had calculated
the after-distributions and then computed the expected value:

0.4375

Eo(Z) = (@) =(08 09) (o 5625) = 0.85625

0.2625
Ep(Z') =(w)TY = (0.8 0.9) (0 6375) =0.78375

In the case of program B we have that:

038 0.6825
-B' =0.8wpy +0.9w,, =
il (0.9) S RIS (0.8375)
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z2 z2

Z1

> Z1

(a) (b)
Figure B.4: Representation of random variables with values in [0..1]: (a) after the application
of program A; (b) after the application of program B.
This is represented in figure B.4b.

We can compute the expected value of Z’ after program B has run:

0.5
Ep(Z) == (0.6825 0.8375) (o 5) =0.76

Ep(Z")

0.8
w"p = (0.6825 0.8375) (o 1) - 0.62975

B.4 Nondeterministic choice

Here we discuss briefly nondeterminism in the case of nondeterministic choice (the case of
generic choice is a sub-case of this).

When we use the matrix notation, the re-weighting operation can conveniently be represented
by the matrices diag(z) and diag(m).

AnB=3mes = A diag(m) 5 + B diag() 5.

Let us go on with the examples to see how this works; we pick a nondeterministic program
CnD, where:

A S I W R CA

Let us focus on one of the possible after-distributions, parametric in 7t:
8, =C(mod) +D(@od) = (C diag(m)) & + (D diag(rr)) §

T

Ift=(w; w3)', we can write that:

0.7 +%1-0.6 Wa-0.15+ 403 -0.1
Qdiag(z)+1;<iliag(ﬁ)=(W1 o W o )

W1 -0.3 +V_V1 -0.4 W) -0.85 +V_\)2 -0.9
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P2 P2
n, Akébz , n, As§'E2 ,
§C2 §C2
Sp 8;
¢ 8¢
> P1 >
n, 04
(a) (b)
P2 P2
n
LI N §/C7_
!
Op 1
B2
S
> P1 >
n, b
(© (d)

Figure B.5: Representation of probability after-distributions: (a) after the application of pro-
gram C n D; (b) after the application of program C nE; (c) after the application of program
Cn A; (d) after the application of program C rn B.

In this way we can clearly see that it is a linear combination of the columns of the two matrices:
C diag(m) 8 + D diag(f) = (w1 -8y +W1-8hy W -8, + W28, )

The situation is represented in figure B.5a: the i-th generator of the program is an elements of

D;C; and is determined by the i-th component of 7.

Full probability before-distributions are mapped to after-distributions lying on the segment
connecting the two generators, which is a part of the segment containing the maximal elements
of D, (that connecting the canonical generators): this is because both programs are guaranteed
to terminate, and therefore if we start with a full probability before-distribution we get to
a full probability after-distribution, as distribution weight is preserved in case of terminating

programs.

The space of all possible outcomes varies depending on 7, but for sure we have that:

¢ it can be no wider than the area D,0Cj;

* regardless of 7t it has to contain the area C,0D;, i.e. contiguous parts from the shaded

P1

P1
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Figure B.6: Representation of probability after-distributions after the application of program
(CnE)nA.
areas D,0C; and D;0C; may or may not belong to this space;
* it is limited by a segment containing C,D; and contained by D,C;.

Let us pick a case where the nondeterministic choice includes also a program which is not
always guaranteed to terminate, i.e. C 1 E where:

03 0 0.3 0.1 , ,
S ( 0 o) ) (0.4 0.9) -(8k1 8k2)
From figure B.5b we can see that in this case one of the generators lies on a segment which is not

part of the segment containing the maximal elements of D, this is because of non-termination
and its impact varies depending on 7.

Full probability before-distributions are therefore mapped to after-distributions belonging to the
area E>E;C; and we can clearly see that even starting with a full probability before-distribution
cannot guarantee that we obtain a full probability after-distribution (in this particular case, this
happens only if the before-distribution is n, as 8, and 8., are 1-summing and thus account
for certain termination when starting in state o,).

The space of all possible outcomes varies depending on 7, but for sure we have that:
e it can be no wider than the area E;0Cy;

* regardless of 7t it has to contain the area XOE;, where X is the intersection of the E;E,
and OC;;

* it is limited by a segment whose vertices are respectively on E;C, and E; C;.

If the nondeterministic choice were C m A we would have had:

C dia (7[)+Adia (7:[)_ W1-0.7+V_\)1-0.25 W2-0.15+V_\)2~0.625
== CIABII) + o dlagid) = W1 -03+W71-0.75 w;-0.85+W,-0.375

This is the situation of figure B.5c, where we can immediately see that the segments A;C;
containing the i — th generator overlap: as a result the area which belongs to the space of



88 Appendix B. Distributions as vectors

V%) Z

Z1 Z1

(a) (b)

V%) Z

Z1

(] (d)

Figure B.7: Representation of random variables with values in [0..1]: (a) after the application of
program C nD; (b) after the application of program CnE; (c) after the application of program
CnA; (d) after the application of program C n B.

possible after-distributions collapses to a segment individuated by the condition wy - 8’5 ; + w2 -
dc1 =wWi - 8ap + W28,

Likewise the segment of possible full distributions (both A and C are terminating programs) is
a part of C;C;, which has to contain the end point of the above segment.

Similarly if the nondeterministic choice were C n B we would have had:

-0.7 +wq-0.15 -0.15+w, - 0.625
gdiag(rc)+§diag<ﬁ>:(w‘ e w2t )

wi-03+w;-0.75 w,-0.85+w;,-0.375

In this case we can see that figure B.5d has elements of similarity both with Cn A and CnE, so
similar considerations apply.

Generally speaking, in the case of nondeterministic choice between two deterministic programs,
we can say that the maximal elements in the space of possible after-distributions lie on a seg-
ment whose end points belong to the segment connecting homologue program generators.

If we have nondeterminism on either side of the nondeterministic choice, homologue program
generators define an area that contains all of them: the maximal elements in the space of
possible after-distributions lie on a segment whose end points belong to these areas — we can
see this in figure B.6, representing the situation for (CnE) mA.
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If we look at the transposed matrix in the case of C 1 D, we have that:

W, = (C diag(m)+D diag(i))Tg’ = (diag(g) Wy +diag(m) wp;  diag(m) we, + diag(7) QDZ) o’

(Q diag(m) +Qdiag(ﬁ))T _ (w1 -0.7+wq-0.6  wi-0.3+w, ~0.4)

W2015+V_\/201 W2085+V_\1209

We can notice that the j-th component of the i-th generator of the program CnD is the weighted
average of the j-th components of the i-th generators of C and D, where the weights w; and
w; are the same for all 1.

In figure B.7a we can see that the representation of the two programs are deformed in comple-
mentary ways (i.e. , if the z; component is scaled by w; for C, the z; components is being scaled
w; for D) and then composed together to form the representation of Cn D.

The shaded rectangles represent the areas where the generators lie and the dotted lines connect
corresponding generators (picking one generator determines the other, as the scaling factors are
the same for all generators of each program).

Figures B.7b, B.7c and B.7d show the representations in the cases of all other programs we have
taken as examples in this section — to be noted the effect of non-termination in figures B.7b
and B.7d.

Additional figures on nondeterminism

In the next pages there are additional figures which (may) give a clearer view of some parts of
the presentation relating to nondeterminism.



90

Appendix B. Distributions as vectors

! - !
Sy +Widp;

’ - / ’
_)7—-[06(:1 _)EoéDl éwi:Wi
/ !
- 8y - 8 -2 Ty
P2 P2 P2
AN AN AN

4 A

' 0 (¥}

n L] n

0 0 ]

1] 7] n

[ ] [

[ ] [

" " [l

" P " 4 l/’ 271\

u P ’—? P ’—? v Pid R

i o . st L] L

BV ot ¥ &

I/’/’f \ ‘/’/’f \ “‘e/// \

- 7 P1 B 7 P1 ’ 7 P

— mo ¢y — 7o 8, i =Widey + Wil
! A
=== d¢y === O -0
P2 P2 P2
AN AN
4 4
A A
L1 o
11} 0
1] [/}
) 1
- -
! [/
u' '/' - u' ,/ -
,,,,I ‘4“ ',',1 ,«“
I \ p1 s \ p] \
? ™ ? ?

! A - !
Oy = Widii + Wida;

Figure B.8: Representation of probability after-distributions after the application of program

CnD, in case that: (a) = (0.2,0.3); (b) == (0.4,0.3); (c) ™= (0.9,0.9).
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Cn A, in case that: (a) = (0.2,0.3); (b) m=(0.4,0.3); (c) = (0.9,0.9).

]’_
Figure B.9: Representation of probability after-distributions after the application of program
CnE, in case that: (a) = (0.2,0.3); (b) m=(0.4,0.3); (c) m=(0.9,0.9).

P1

Figure B.10: Representation of probability after-distributions after the application of program
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Figure B.11: Representation of probability after-distributions after the application of program

CnB, in case that: (a) = (0.2,0.3); (b) m=(0.4,0.3); (c) ™= (0.9,0.9).

— TTo Wy
Seep W

(a)
Figure B.12: Representation of random variables with values in [0..1] after the application of
program Cn D, in case that: (a) m = (0.2,0.3); (b) ™= (0.4,0.3); (c) == (0.9,0.9).
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Figure B.13: Representation of random variables with values in [0..1] after the application of
program Cn E, in case that: (a) 7t = (0.2,0.3); (b) 7t = (0.4,0.3); (c) = (0.9,0.9).
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Figure B.14: Representation of random variables with values in [0..1] after the application of

(a)
program C A, in case that: (a) 7t = (0.2,0.3); (b) = (0.4,0.3); (c) = (0.9,0.9).
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Figure B.15: Representation of random variables with values in [0..1] after the application of
program C n B, in case that: (a) 7t = (0.2,0.3); (b) ™= (0.4,0.3); (c) == (0.9,0.9).



APPENDIX C

Proofs

C.1 Restriction of the state space

’oc{c}zﬁ{c}noc‘

Proof:
afc)
= [d:A:Rst] — §A.2.2
{o|oea A o(c) = true}
= [d:S] — §A.2
{o]oeS A oea A o(c) = true}
= Set theory
{o|oeS A o(c)=true}n{c|oeca}
[d:A:Rst]
S(c)na

C.2 Restriction through equivalent condition

[(c1 = c2) = x{e1) =xie2)|

Proof:

dom(x)(c1) = dom(x)(c2)

C.3 Restriction through implied condition (I)

[(c2=c1) = x{er)ea) =x{e2) |

Proof:

x{e1){e2)
= [p:D:Rst:Cnj] — §A.3
x{er Aez)

= [p:D:Rst:EQC] — §C.2: (c2 = c¢1) A (c1AC2) <2
x{c2)

93
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C.4 Restriction through implied condition (II)

(1= -¢2) = x{e1Mea) = €]

Proof:
x{c1)c2)
= [p:D:Rst:Cnj] — §A.3
x{c1 Aca)
= [p:D:Rst:EqC] — §C.2: (c1 = —~c2) A (c1Ac2) < false
x{false) = €

C.5 Restriction through a restricted unitary distribution

x{e) = x{u{c))

Proof:

x{ux(c))

= [d:D:RstD] — §A.3
{0 X(0) - 1((0) | o € dom(x) N dom(iy (c))}

= Set theory: dom(1y(c)) = dom(x(c)) < dom(x)
{0 X(0) - (o) | o € dom(x(c))}

= [d:D:UD] — §A.3
{oX(0) | o e dom(xe))}

= [d:D:Rst] — §A.3
x{c)
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C.6 Case Split

[x = x{e) +x{~¢) |

Proof:

x{c) +x{-c)
[d:D:Sum] — §A.3.1
{0~ (x{c)(0) +x{=c}(0)) | o € dom(x(c})) Udom(x{-c))}
= Set theory
{0~ (x{c)(0) +0) [ o e dom(x{c))} u{o = (0+x{=c}(0)) | o e dom(x(~c))}
= [d:D:Rst] — §A.3

{o~x(0) | o edom(x(c))} u {0~ x(0) | o e dom(x(-c))}

= Set theory
{o~x(0) | o edom(x({c)) udom(x{-c))}
= Set theory
{orx(0) | o0 edom(x)}
= [d:D] — §A.3
X
O
C.7 Restriction
mi{m2) € Dy
Proof:
m{n2)(0) = (0) - m2(0) <1 (0)
(|

C.8 Restriction

d(m) € Dy,
Proof:

&{(mt)(0) =8(0)-7(0) <d5(0)
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C.9 Nested inverse-image set

Inv(v :=e, Inv(v:=1,{0})) = Inv(v = f{¢/z},{0})

Proof:

Inv(v:=¢, Inv(v:=1,{0'}))
= [d:S:Inv] — §A.2.3
Inv(v:=e,{0| 0’ (v) = o(f) A 0€Sapn(or})
= [d:S:Inv]
U {¢1d(v)=0e) A CeSapncer}

'e{o | o/ (2)=0(f) A O€S,ph(ory }
= Property of distributed union
{¢lo(m)=C(e)rd’(w) =0(f) A 0,(c¢ 5a1ph(g')}
= [p:E:Ev:Comp] — §A.2.1
{C | o’(2)=C(foe) A Ce 5a1ph(cf)}
= [d:E:Comp] — §A.2.1
{clo'(@) = c(t{efa}) A CeSupncon |
= [d:S:Inv]
Inv(v = f{e/o},{0"})

C.10 Linearity of the remap operator

(x - 8{¢/elt +y - 8{7/oh ) {o/ol} = x - 8{e/ult{9/ol +y - 5{t/xl} {o/ol}

Proof:

(x-o{e/al) +y - 8{/o] ){l9/2} (o)
= [d:D:Rmp] — §A.3.4
| (- 84e/elt +y - {5/} ) (Inv(2 = g, {0}))|
= [p:D:Sum:Wt] — §A.3.1
|x- 8{e/ol{Inv(w = g,{0})) +y - 8{/ol}{ Inv(w := g, {0})) |
= [d:D:Rmp]
x - 8{¢/ofH {9/t (o) +y - 8{f/=]{9/2]} (o)
= [d:D:Sum]
(x- 8{¢/2l{9/ol +y - 8{t/z}{9/})(0)
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C.11 Composition (I)

| 8{¢/u] {5/oly = 5{(/2)/o} |

Proof:

o{¢fol {t/2l} (o)
= [d:D:Rmp] — §A.3.4
|84e/el{ Inv(w = f,{c})}]
= [p:D:RstA:Wt] — §A.3

> b0

Celnv(v:=f,{c})
- [d:D:Rmp]
Y [s(Ino(w = e {2))]

CeInv(v:=f,{c})

- [d:A:Inv] : U Inv(v = ¢,{¢}) = Inv(v:=¢, Inv(v =1, {0}))
Celnv(v:=f,{c})

[s(1n0(z = ¢, Inv(v:=1,{0})))|
- [p:S:Inv:Nest] — §C.9
Jo{ tno(2 = £1/2}, {o}))

= [d:D:Rmp]
St/ /o) (o)
O
C.12 Composition (II)
|84/l {1/} = 84toc/o]
Proof:
S{e/ol {1/l
= [p:D:Rmp:Compl] — §C.11
§{tte/o)/o]
= [d:E:Comp] — §A.2.1
8{foe/o]
O

C.13 Composition (III)

’ 5{Ie/yi|}{|f/y,-l} = 6{I(e,f{e/vi})/(yi,y,-)|} ‘
. [z e [z
Proof:  Special case of C.11, where v = ( ), e= ( ) and f = ( . )
Y

4
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C.14 Composition (IV)

Proof:  Special case of C.11, where v = (¢;), e = (e) and f = (f).

C.15 Iteration

| 80e/o} {1/l = 871}

[8{5/s)* = 84<"/o)

Proof: By induction, the base case is trivial for k = {0, 1}.

Inductive hypothesis: 5{¢/v}™ = §{e" /v]}

5{|%/zﬂ“+1

[d:D:Rmp:Iter] — §A.3.4
5{¢/2)™ {/2)

Inductive hypothesis
8{e" /2 ¢/

[p:D:Rmp:Comp1] — §C.11
o{ele" 2} /o]t

[d:E:Comp] — §A.2.1
5{eoe"fo}

[d:E:Comp:Iter] — §A.2.1
5o

C.16 Commutativity (I)

Sefoi - wl} = STl wyH {e/o.} iff v ¢ fo(e)

Proof:

S{e/uiH{ /=l
[p:D:Rmp:Comp3] — §C.13
Y CC e
Substitution: vj ¢ fv(e) = e{x/v;} = e
S (e oy} () on )}
Substitution: x = Yy{x/y}
d{Cedt e midfu; o {3 ) [ (0 w) [
[p:D:Rmp:Comp3]
7oy e/
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C.17 Commutativity (II)
8/l o b = 807w He/wil} iff 1 ¢ fo(f) A o5 ¢ fo(e)
Proof:
S{e/wulH{/wlf
= [p:D:Rmp:Cmm1] — §C.16
d{fteled o H{¢/w ]}
= Substitution: T ¢fv(f) = f{efo,} = f
o{t/v [t e/w: [t
O
C.18 Expression substitution
8(f = g){e/oft = 8(f = g){|etHal/o]
Proof:
3(f = g){et/a}/o]}
= [d:E:Ev] — §A.2.1
S(f = g){¢/l}
O
C.19 Contradiction
Vo edom(d) e o(c{e/o}) = false A 5+ € < 8{¢/s]{c)=¢
Proof:
Vo edom(d) e o(c{¢/o}) = false A 5+ ¢
= [d:D:Rmp] — §A.3.4
Vo' e dom(8{e/s]}) @ 0'(c) = false A 5+ €
= [d:D:Rst] — §A.3
s{fublc) - e
O

C.20 Assertion

Proof:

| Vo e dom(s) e o(c{e/o}) = true < 8{efu}(c) = 5{</s] |

Vo edom(d) e o(c{¢/v}) = true
[d:D:Rmp] — §A.3.4

Vo' e dom(8{¢/of}) e 0'(c) = true
[d:D:Rst] — §A.3

5{¢/ofH(c) = d{¢/o];
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C.21 Remapping a condition

|3l5/olH(c) = S{e (/oM ic/ol |

Proof:

&{/zl(c)

= [p:D:Sum:CS] — §C.6
S(c{e/v}){e/zlHc) + d{-c{¢/z}){e/z](c)

= [p:D:Rmp:Rst1] — §C.19
S(c{e/u}){e/eli{c) + €

= [p:D:Rmp:Rst2] — §C.20
S(c{e/u}){e/zlt

C.22 Weight of a distribution after remapping

|54¢/2lt| = ||8] iff o(e) is defined in dom(5)

Proof:

I8/} |
[d:D:Wt] — §A.3

> e (0)

o’edom &{e/v]}
[d:D:Rmp] — §A.3.4

> |{mv(zi=e {o'}))]

o’edom &{¢/s]}

[p:D:RstA:Wt] — §A.3
5(0))

o’edom &{e/v}} oelnv(v:=e,{0’})

[p:A:Inv:EQR] — §A.2.3: U Inv(v :=e,{0'}) = dom$ iff o(e) is defined in dom(§)

o’edom &{e/v]}
>, 3(0)

oedom &
[d:D:Wt]
18]
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C.23 Pseudo-associativity of probabilistic choice

ASB@C)=(A@B)@CAp=1s A (1-5)=(1-p)(1-q)
A e C)
[d:P:Ch:Prb] — §B.3
354,08c ¢ A(p-8,04) A (B @C)((1-p)-8,08c) A8 =84 +dBC
[d:P:Ch:Prb] A 6 = 0 + d¢c (One-point rule)
38A,08,5c ¢ A(p-8,84) AB(q(1-p)-8,88) AC((1-q)(1-p)-5,8c)Ad =8a+0p+dc
(-p)(A-q)=(0-s) rp=rs=q(1-p)=(1-71)s
35A,88,0c ¢ A(Ts-8,8A) AB((1-71)s-8,68) AC((1-5)-8,5¢c) A8 =8x+8p +dc
[d:P:Ch:Prb] A b5 = 64 + 6 (One-point rule)
35a8,0c ¢ (A ®B)(s-8,8a8) AC((1-5)-8,8c) A8 =dap +5c
[d:P:Ch:Prb]
(A@®B)@aC

C.24 Idempotency of choice operators

VX o choice(A, A, X) = A

Proof:

choice(A, A, X)
[d:P:Ch] — §3.4.1

I, 60,85 @me X AA(S(TT), 04) AA(S(7T),05) NS =8a +04
[d:P:Structure] — §3.4.2

I, 84,04, Quant0f(A) e we X A8 = BodyOf(A) o 8(mt) A S5 = BodyOFf(A) o 8{7t) A& =0a +83
One-point rule

37, Quant0f(A) e € X A8 = BodyOf(A) o §{mt) + BodyOf(A) o &(7)
[p:D:Sum:CS] — §C.6

37, Quant0f(A) et e X A8’ = Body0f(A) o
[d:P] — §3.3

A
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C.25 Discarding right-hand option

choice(A,B,{1}) = A

Proof:

choice(A, B, {1})
[d:P:Ch] — §3.4.1
E|7T, 5A,5B e Tl E {L} AA(&{W},&A) A B(é{f(},ég) A 5’ = 5A + 5]3

One-point rule

I8A,88 AA(S{L),04) AB(8(€),88) NS =0a +0p
[d:D:Rst] — §A.3

354,08 AA(8,64) AB(e,85) Ad' =84 + 0B

One-point rule

A

C.26 Distributivity of choice operators

choice(A, (choice(B,C, X)), X7 ) = cﬁaice((cﬁoice(A, B, X )), (cﬁoice(A, C, X )), X)

Proof:
choice(A, (choice(B,C, X3)), X1)
[d:P:Ch] — §3.4.1
31,84, 08c @ i € Xi A A(8(m1),84) A (choice(B,C,X5))(8(t1),08c) Ad =8a +OBC
[d:P:Ch] A b = b + 6¢c (One-point rule)
Ay, 72,84, 88,0c o 7T € Xy A A(8{m1),84) A B(8(7t1 {{72), 88 ) A C(8(7t1 ){72),8¢)
A8 =87 +8g +0¢
[p:D:Sum:CS] — §C.6
311, 72,64,88,0c @1 € Xi A A(S{1 ){72) + S{mti [{7t2), 54 ) A B(&{7t1 ){m2),88)A
A C(8(7t1 )(7t2),8¢c) A8 =8a +8p + ¢
Linearity
371, m2,0A,84,08,0c T € Xy A A(S{m1 ){m2),0A) A A(S(m1 )(TT2), 55 )A
AB(8(7t1 ){m2), 88) A C(8{7t1 ){72),8¢c) Ad =84 +84 + 88 + 8¢
[d:P:Ch] A daR =0A +08 A Oz =04 +Oc (One-point rule)
312,858,045 ® T2 € Xi A (choice(A, B, X7))(8{m2),8a8) A (choice(A, C,X1))(8(72),54c)
A =8aB +84¢
[d:P:Ch]
cﬁoice((cﬁoice(A,B,)G)), (cﬁoice(A,C,)G )),Xz)



C.27. Sequential composition 103

C.27 Sequential composition

choice(A,B, X);C = choice((A;C), (B;C), X)

Proof:

choice(A,B, X);C
[d:P:Seq] — §B.3

38w @ choice(A, B, X)(8,8m) A C(8m,d")
[d:P:Ch] — §3.4.1

371, 04,08,0m e me X AA(8{m),04) AB(8{7),08) ASm =84 +0p A C(8m,d")
One-point rule

37, 84,08 e me X AA(8(7t),84) AB(8(7t),85) A C(8a +85,8")
Linearity

37,50, 68,5¢,0c e e X AA(S(r),54) A B(5(7K),58) A C(5a,8¢) AC(5p,5c) A8 =8¢ + 8¢
[d:P:Seq]

Im, 8¢, 0aeme X A (A;C)(8(m),d¢c) A (B;C)(8(m),8a) A8 =8¢ +d¢
[d:P:Ch]

choice((A;C), (B;C),X)

C.28 Choice flipping

VX o choice(A, B, X) = choice(B,A, X) A X = Upex 7@

Proof:

choice(A,B, X)
[d:P:Ch] — §3.4.1

I, 64,85 e we X AA(8(7t),84) AB(8(7),88) A8 =8 + 58
X=Un

X

37, 5,08 e e X A A(8(rr),54) AB(8(7T),068) AS =56 + 08
[d:P:Ch]

choice(B, A, X)
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C.29 Monotonicity of generic choice

V5 e Xy € Xo = choice(A,B, X;)(8) c choice(A,B, X;)(3)

Proof:

choice(A, B, X;)(8)
= [d:P:Ch] — §3.4.1

(3n, Sa,55 e e Xo AA(S(m),54) AB(8(7),65) A8 =84 + 53)(5)
= Set theory A X7 € X5

(37,50, 85 0 7€ X1 U (X~ Xi) AA(B(7), 84) A B(8{), 85) A8 =5 +85)(5)
= [d:P:Ch]

choice(A,B, X1)(8) u choice(A, B, X5 \ X;)(5)

C.30 Refinement relation for choices involving X, c .X;

Xo € Xq = choice(A,B,Xq) & choice(A, B, X)

Proof:

choice(A, B, X7) c choice(A,B, X3)
[d:P:Rfn:Alt] — §3.7

V5 e choice(A, B, X;)(8) c (choice(A, B, X )(6))A
[p:P:Ch:Mntn] — §C.29 A VX e X C ()C)A

Vo e true

C.31 Refinement of the disjunction of two programs

AvBEAp@B

Proof:

AVBEA @B
[d:P:Rfn:Alt] — §3.7
V5e (A @B)(5) < ((AVB)(5))”
Set theory
V5,508 € (A ®B)(8) A & ¢ ((AVB)())”
[d:P:Ch:Prb] — §B.3
V5,8, 8%, 5l @ 8% € A(5),85 € B(8) A 8= (p-8h +(1-p)-85) A & € ((AvB)(5))"
[d:P:RfnSet] — §3.7

Vo e true
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C.32 Refinement of the disjunction of two programs

[AvBcAdc>B]

Proof:

AvVvBCALcD>B
[d:P:Rfn:Alt] — §3.7
Vse (A< c>B)(5)c((AVB)(5))”

Set theory
V5,8’ 08 € (A<l c >B)(8) A 8 ¢ ((AvB)(3))”
[d:P:Ch:Cnd] — §B.3

V5,8, 8%, 515 # 8% € A(5(c)), 85 € B(8(~c)) A &' =8h +8 A 8 e ((AvB)(&))”
[d:P:RfnSet] — §3.7

Vo e true

C.33 Linking functions

Proof:

Ap(8) = f(AR) (8) = ), 8(¢) - Ar(C) = X 8(C) - 8(a,¢)
CeS CeS

Ar(0) =g(Ap) (0) =Ap(No) = (A, o) -

g(f(ARr)) (0)

= Definition of f

9(2 8(0) - Ar(0)) (0)

CeS
= Definition of g

Z ﬂa(C) 'AR(C)

ceS
- By definition, 0 # ( <> M (() =0

TIG(O-) . AR(G)
= By definition, T]G(O‘) =1
Ar(0)

and
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C.34 Feasibility

Proof:

f(9(Ap)) ()
Definition of g
f(AR(C)) (8)

Definition of f

>, 8(¢) - Ar(Q)

CeS
Definition of g

Ap (5).

As x is a linear combination of a matrix whose rows are at most one-summing

with the elements of x' as coefficients, we have that the norm of X cannot exceed that of

!

X -

IA

IN

IxI

i=0 j=0

n
Vie Y a;i <1

j=0

n

> Ixi

i=0

X
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C.35 Feasibility

Proof: As &' is a linear combination of a matrix whose columns are at most one-

summing with the elements of 6 as coefficients, we have that the norm of §' cannot
exceed that of b:

18°]
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C.36 Monotonicity of A

Proof:  If we increase ', the corresponding x = A"’ is increasing as well:
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C.37 Monotonicity of A

Proof:  If we increase 6, the corresponding &' = A b is increasing as well:

5, 2 84

Jiepi>(;
= Vj,k'(lijO

n

n
Z Prl.x < z qjg*k
k=0 k=0

A5, >A8

6]’926’(1

C.38 Scaling

Proof:

All definitions of the different program constructs contain the application of a matrix

to a vector, when we see distributions as elements of a vector space: as this operation is

linear, we can see that the constant can be placed anywhere in the a matrix composition.

C.39 Convexity

(AnB)(8,0") =¢8> min(A(é) uB(%))

Proof:

8" e (AnB)(d)

Definition of program image

e J (A({m)) + B(3(7}))

€D,

&' > min(A(8) UB(3))

O
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O



APPENDIX D

Other case studies

D.1 Monty Hall

In the Monty Hall game a player is challenged to guess behind which of the three doors in front
of him hides a car.

After having chosen a door among the three possible options, Monty Hall will open one of the
remaining two doors. Monty Hall knows where the car is, so he is going to open one of the
other two.

The player is given the chance to change his guess at this point.

It is known from the literature! that the player will maximize the probability of finding the car
if now he changes the door he has chosen (the probability will be 2/3).

In fact the player can lose only if his first choice — indicated with Z— was the i-th door, which
is hiding the car (and this happens with probability 1/3) so after Monty Hall has opened the k-th
door, that is one of the two hiding a goat, the switching strategy leads the player’s final choice
— indicated with &— to be the j-th door, which is hiding a goat:

g

Nevertheless this is a winning strategy with probability 2/3, as the chances of winning equal the
chances of choosing a door hiding a goat, when all doors are closed. In fact choosing the j-th
door forces Monty Hall to open the k-th door, and switching makes the player choose the i-th
door:

1Also back in 1935, it was known as Bertrand’s box paradox (1889). This problem is oftem used as an example:
among the papers cited as references, we can find it in McIver and Morgan [MMO04] as well as in the more recent Chen
and Sanders [CS09].

111
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N = N
LB N
i

A short program, which uses the program constructs defined in §3, to implement the game is
the following:

P = setup; player ; host ; guess

Let us use three variables a, b and c with the following meaning:

a = the position of the car
b = the player’s guess
¢ = Monty Hall’s hint

we can then define each instruction as follows:

setupza:=1n(a:=2na:=3) [1]
player =b:=1,0 (b:=2 ,0b:=3) [21
host 2 ¢ :=.7(a,b) < (a#b) > (c:=Hn(a)nc:=u(a)) [3]
guess =b:=.%(b,c) [4]

Here is the definition of the functions mentioned in the program:

7 (x,y) 2 min({1,2,3} ~ {x,y})
M (x) 2min({1,2,3} \ {x})
Fon(x) 2 max({1,2,3} N {x})

Let 7 = (a,b,c) and type(a) = type(b) = type(c) = {1,2,3}: the state space is

S={o]o=v~ wnwetype(a) x type(b) x type(c) }

For convenience we use oyjx to identify the state where a = i, b = j and c = k; we represent
the state distribution & with a 27-element vector §, whose components refer to the 27 possible
states (in lexicographic order, i.e. the first element refers to o777, the second to o772 and so
on, till the 27th referring to 0333) — and we use this notation to index the elements of all
distributions and matrices.

The initial distribution is a parameter of the problem: we assume its weight is 1, but make no
further assumptions on the individual weight of each state.
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Let us now go through the first instruction:

5 = 5{i/al
setup = E|7I1,7T2 oy = 5{7‘[1 }{P/a[} + 5{7‘(2}{]2/(1[} + 5{L— m — ﬂz}{]3/a[}

a:=1

We leave implicit the condition that 711, 71, and 73 are weighting distributions, i.e. Viee < 713 < .
After the second instruction we have:

5 = 8{i/o}
& =13 5ol + 13 S ul + /35

b:==1

player

We have an if-statement in the third instruction, so we have:

c:=.(a,b) = & =8{7(ab)c]}
ci=Hn(a) = & =5{"m ()}
ci=4n(a) = & =58{m(a)/c|
ci=Hm(a)nc:=m(a) = Iy ed = 5{mup){m(Dfc] + 8{L— T )7 (D]
host = Iy e =8(a#b){7(ab)c]+

+8{a = b7 ) {7m ()] + 8(a = b){L — e ) {7 (@)/c]}

Finally the fourth instruction gives

b:i=.7(b,c) = & =8{7®e)p]
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Let us now compose sequentially these constructs:

setup; player ; host ; guess
Translation: setup; player — with the position 7, = 1 — 11 - 712
31,700 08" = 8 ) {1/a] + S{ra){al) + 8(712) 13/a] 5
5 8 =1/3-8{1/o]} + 1/3-8{2/v] +1/3-8{3/v]} ; host; guess
[d:P:Seq]
701,702, Oy @ &y = 8{mt1 )/ al} + O{m2){%/al} + 8{712){3/a]} A
A S =1[3-8m {16l +1/3- 8m{2/ol +1/3- 8m{3/v]} ; host; guess
One-point rule
Iy, iy 8" =1/3- (8 ){V/al + 8(m2) {2/ alt + S(Fr2){3/a} ) {1/0}+
+1/3 (8(rra ) { /al + 8(re2){2/al + 8(7tr12) {3/als ) {¥/ol}+
+1/3- (8(my )/ alt + 8{r2) {2/ alt + 8(7t12){3/al} ) {3/0]} ; host;guess
Translation: fost
3y, 72 08" = 1/3- (e M /al} + S{rea M Y al} + {712 {3/al ) {1/6 )+
+ 13- (8(rma ) V/alt + 82 ) { Yol + 8(712){3/aly) {2/0] +
+1/3- (8(mma ) /al + 8(m2){Zal + 8(712){3/al ) {3/0] 5
; I @8 = 8(a + b){(@b)fc)+
+ 8{a = D) i @fc] + 8(a = b) ()7 (@)l guess
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[d:P:Seq]
T, T2, Ty O @ O = 1/3 - (6{7‘[1 M/ /alb + 8{ma){2/al} + 6{7’[12}{]3/aﬂ){]‘/b[}+
+1/3- (8{m M "/al + 8(ma Y alt + 8(7r2) {3/als ) {20 ]+
+1/3- (S{rm M V/al + 8(re2){Zal} + 4123/l ) {3/0] A
A 8 =bdm{a# b} (@b)/c}+
+0m(a = b1 ) {7 ()]} + o {a = b) (T ){7m(D)/c| 5 guess

One-point rule
3y, o 08 = (13- (8{maal + S(ma) {2l + 8(Fa2){3/al ) 11 /ol +
13- (8(mi){1/aly + 8(ma){2al} + 8(Rr2)3/al}) {20+
13- (84 M al + 8 () {2/aly + 8471203/} ) {370l ) (@ # DI (ar0)/clp+
+ (13- (81 M1 /al + 8(r2}{2al} + 8(r 213/l ) {1 /ol +
13- (8(mi){1/aly + 8(ra){2/al} + 8(Fr2) {3/al}) {20l +
13- (84 M al + 8(ra)2/aly + 87 2)3/al) 1370 ) (@ = b) s} om (@) cly+
+ (13- (84mma )1/ ah + (2} {al} + 8(F12) 3fal ) /ol +
13- (8(mi){1/aly + 8(ma){2/al} + 8(Fr2)3/al}) {20+
13- (8(ra M /als + (2} 2/ aly + (72} {3/al {30l ) (@ = D) )8 (@l 3 guess
[p:D:Rmp:Rst1] — §C.19
3y, o 08 = (13- (8miHal + S(ma){2fal + 8(Fa2){3/al ) 11 /ol +
13- (8(mi){1/aly + 8(ma) {2/al} + 8(Fr2){3/al}) {20+
13- (84 M al + 8(ra) {2/aly + 84712} 3/l ) I3/0l ) (@ # DI (ar0)/cly+
+ (13- (8mma) {1/ a + S¢ma){2/al} + 8(F12) {3fal ) /ol +
13- (84 M al + 8(r2){2/aly + 8712 M3/l ) {20+
13- (84 M al + 8(ma) 42/aly + 871203/l ) 1370l ) (@ = b)) (@)fcly+
+ (13- (8ma ) fah + {2} {2al) + 8(F12) {3fal ) /ol +
13- (8 ){1/aly + 8(ma) {2/al} + 8(r2) {3/al}) {20l +
13- (84 {al + 8(ma)2/aly + 84712003/l ) 43/0l ) (@ = DM} )0 (@] 5 guess
[p:D:Rmp:Rst1] — Rewrite
3,y o 08 = (13- (8{ma){2fal + 8(Fi2) 3/l ) {1 /o+
+1/3- (8(rai M /aly + 8¢7tr2){3/al} ) { /o] +
13- (8 ){1/aly + 82} {2/al ) 13/0} (@ # b7 (@0 e]+
+ (13- 8m M al 4ol +1/3- S{r2} (e} {2/o] -+
)
)
)

+1/3- 8( 2 3 al 4370l ) (@ = b ree )} #m (@)fely+
+ (13- S /b 1o + 13- S(rea) {2l {20} +
+1/3-8(Fr2) 3 al {30 )@ = bY T WA @)cly s guess
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= Translation: guess

3, o, o o 8 = (13- (8(ma){2al) + 84712} {3/ab ) {16+
+1/3- (8{mi){V/al} + 54712} {3/a ) {20+

13- (S¢ma ) {Valy + 8(ma){ah ) {3/o] )@ % D) (0)fcl

+ (3-8 /a1 fol + s - Sma) Y al {2oly+

)

)

)

+

+1/3- 8(F2 ) Pfal 436l ) (@ = ) {m (@cly+
+ (13- 84 M1 /al 1o} +1/3- 8 (o) {2/ al 2ol +
#1153 8{7 ) /el 3o} (@ = D) e (@el 5
; 8/ =807 (®,0)b]
[d:P:Seq]
31, 72, Ty S @ 8 = (13- (842} e} + 8 (R ) 3fal ) { /ol +
13- (8(r )1 /el + 841 2) 3/} ) {20l +
13+ (84 Mol + 8(ra){/ah ) 13/o} ) (@ # DY (@be]+
)
)

+1/3- 8(72 ) Pfal 436l ) (@ = ) {m (@fcly+
+ (13- S {al 41 fol} +1/3- (2} {2/ al} {20} +
113 8{712) /el {3/o} ) (@ = D) e Hm (@)ely A
A =87 ®0) ]

= One-point rule
3y, 72, T 0 8' = (13 (8(ma) 2l + (12} 3/al ) {1 /o) +
13- (8(r}{1/als + 8412} 3/} ) 12/0l+
13+ (84 M al + 8(ra)12/ah ) 13/0} ) (@ # DY (@ bYfel {00l +
+ (13- 84 1 al 1ol +1/3- (e} 2/ el 2o+
13- 8( 2} {3 fal- 436l ) (@ = DY) {#m @) {7 (0r0)oly+
+ (13- 84 M fal 1o} +1/3- 8 (o) {2/l 2ol +
#1113 8{7 ) /el 3o} ) (@ = D) W @ | 0e)fo]
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[p:D:Rmp:Lin]

370y, 2, T @ &' = 1/3- 8{m2){2/a} { /o {a # b){ (a;b)/c[} { (bse) b} +
+1/3- (2 {3/ al{1/off (@ # b){7 (@ 0)/e| {7 (®0) /o] +
+1/3-8{ri {'/a[H{2/[} (@ # b) {7 (0.0)c[t{ (®re)/b]}+
+1/3-8{mt2){3/a {Z/o{a # b){7 (@ 0)/c} {7 (0re)fu]+
+1/3- 3{rmi 1"/} {3/b[} (@ # D) {7 (0,0t (®re)/bf}+
+1/3- (12 ) {%/af}{3/6] {a # D (0.0 e[t {7 (Or0)/uf}+
+1/3- 8 M{1/alH{ /el {a = )7 ){7m (@)} {1 (0s0) b+
+1/3- 8{ra {2/ ai{2/b[} (@ = b) (70 | 7 (D[ {7 (0r0) o+

(m

{

{

d(m

T2

A

1

)
)
)
2)

2

+1/3-8(7
+1/3-8
+1/3-8

+1/3-

(

(
120{3/alH 36l (@ = D) rese ) #m (e} {7 Bre)fo ]+
{1/l {1/l {a = DT ) {7 (Df e {7 ©se)of+
T ) {2/ alH2/ ol (@ = N7 {7 (@7 (0re)ol}+
12){3/alH 36l (@ = D)7 ) { 7M@)} {7 (0 e)/oly

Now that we have a statement describing the final distribution that results after the execution

of the program, we can recognize two kind of terms:
* 8{Y/al{i/elt{a # D){ (a.L)c[ {7 (®e)fb]}
* 8fYal{vli{a = DU {7 (@} {7 ()]}

where i #j.

We can see that the ones of the first kind account for cases when the player wins, while those

of the second kind account for the cases when the player loses — let us see this by working out

these terms, under the winning condition, i.e. a = b.

For terms of the first kind we have:

5{i/al /ol (a % DI @Pel-{7 Yo fa = b)
[p:D:Rmp:Comp1]

51/l {i/ob{a # b){ (@07 (0,00 @2/l fc b a = b)
Substitution: ¢ = .%(a, b)

3{/al i/l {a # b}{(a,b),7 (b, (a,b))/c b} {a = b)
[p:D:Sum:CS]

3ol /o {a # b (b, L (a,b)) = a){7(a,b),7(b,7(a;b))/c b[}{a = b)+

+8{Yal{ifo(a = b)(-#(b,.L(a,b)) # a){~(a,b),7 (b, (a,b))/c b[}{a = b)

[p:D:Rmp:Rst1]

3o i/olH{a # (L (b, S (a,b)) = a){7(a,0),7(b,7(a,b))/c,bH{a =b) + €
[d:D:Sum]

/ol i/olH{a + b (b, L (a,b)) = a){7(,b),(b,#(a,b))/c b[}{a = b)
[p:D:Rst:Rmp]

8{/all{ifv{a D). (b, 7 (a, b)) = a}{#(a.P)a/c,b]}(a = b)
[p:D:Rmp:Rst2]
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{i/al{i/oll(a # D). (b, (a, b)) = a}{#(a.P).afc,b]}
= [p:D:Rst:ImC1]

80Y/aly {/oh{a # b} (@ 0)a/e,b]
= [p:D:Rmp:Comp1]

d{bifa,bl{a # b){ (a,0)a/c v}
= [p:D:Rmp:Rst2]

d{1i/a,b[}{ (a:b),a/c b}

As both remapping operations use expressions defined everywhere, thanks to [p:D:Rmp:Wt]
we have that:
[0t3/a,b] - (a.P) 0/ b = [3]

For terms of the second kind we have:
o{H/al /ol {a = bUm) {7 (D)/c] {7 (0:)/b]H{a = b)
[p:D:Rmp:Comp1]
d{i/a[{ /ot {a = b){m){#(a),7 (b,e){#(D/c}[c b} {a = b)
= Substitution: ¢ = 7 (a)
8V a[{/o}{a = b){m){# (), (0, (a))/c,b]{a = b)
= [p:D:Rst:ES]
8{i/alt{i/o}}{a = b)(m}{# (), (a,#(a))/c,b[}{a = b)
= [p:D:Rst:Wt]
8 a[{/oH{a = b){m) {7 (), (a,7(a))/c b[}{a = b)
[p:D:Rmp:Rst1]

Therefore we have:
[8¢a =D} =[2-("/3-8(m1) +1/3-8{m2) + /3 &(m3)) | = 2/3-||&]

We have assumed that the weight of the initial distribution is 1, so the weight of all winning
states is 2/3 — it is now clear why we did not need to make any other assumption, as this is all
that matters, as all the variables undergo at least an assignment during the run of the program.
2/3 is also the expected value for each of the initial states, so the pre-expectation assigning this
weight to every state corresponds to the post-expectation of the predicate ({a = b).

We are now going to use the vector notation to solve this problem in a slightly different way.
The predicate for the first instruction

setup = E|7T1,7Tz,7'[305,:6{711}{]1/11[}+5{7T2}{]2/a[}+5{7't3}ﬂ3/a[} AN T +T +73 =1
can be rewritten as:

Iy, 7, ;08 = A1y 08+ As T, 08+ A3 T3 08 A T T, + 15 =L,

g
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where:

=
o o i

o o i

o I i

g

Il
e - I
e = I
o = I

g
— e I

— o I

The matrices above are 27 x 27, and are made of blocks which are 9 x 9.

For convenience we can rewrite this as:

— o I

Iy, 7, ¢0=518 A S1=A; diag(m,) + A, diag(m,) + Az diag(mz) A 7y +7, +13 =1L

Therefore, if we use 7t( i5i) to note the element of 7, with index ijk, we have that S; has the

following shape:

TT(1,111)
0
TT(2,111)
0
S’—J;:
71(3,111)
0

With the position:

we can write that:

and therefore:

T1(1,112)

71(2,112)

7(3,112)

F°

T(1,211) 0 0 ma311)
0 7'[(1’212) 0 0
T(2,211) 0 0 m2.311)
0 T1(2,212) 0 0
7(3,211) 0 0 73,311y
0 7'[(3‘2]2) 0 0
T(L,i11) 0 0
0 T(1,i12) 0

0 0 Tt(1,i33)
Pu 0 0
diag(m) =] & P 0
0 0 Pu
Piu P Pis
Si=|Pa1 P22 Pos
Par Pap Pas

Tt(1,312)

T1(2,312)

0

71(3,312)
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We should note that:
ViePyi +Pai+Psi=1

After the second instruction we have:
player = & =1/3-8{1/o]} + 1/3-8{2/v] +1/3-5{3/v]}.
This corresponds to the predicate:

8=1/3B15+1/3B25+1/3B36

where:
I 11
000 Q 0
000
I 11
Bi=[ o 000 0
000
I 11
Q Q 0 00
000
000
I 11 Q 0
000
000
B,=| 0 111 0
000
000
Q Q I 11
000
000
0 00 0 0
I 11
000
Bi=| 0 000 0
I 11
000
Q Q 0 00
I 11

The matrices above are 27 x 27, and are made of blocks which are 9 x 9.
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For convenience we can rewrite this as:

where:

= =
= =

=

/3(BL+Ba+B3)=/3

"

The predicate for the third instruction

host = 3my 08 =06(a=b){7(ab)/c}+
+8(a = {1 ) {7m (a)/c]} + 8{a = b){L — o ) {7 ()/c]}

corresponds to the predicate:

A,y 08 = LCS+ S o 0 CO + Hag 7y 0 GO

= =

= =

The conditional is rendered through the diagonal matrix C:

ciim O 0
0 ci12 O
=10 0 on

0 0 0

3

where cyj¢ equals 0 if i = j and 1 otherwise, and therefore:

0 00
010 0
0 0 1I
I
C= 0 00
00
0 0

= o I

C333

o I i

=

I =

o

o

- O

=3 [=

e = I

= =

o P o

— =

= =

[ L I ]

[ L I ]
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The assignments are represented by the following matrices:

000
T 0 0 0
000
000
0 000 0 0
1 1
000
L= 0 0 1 0
000
T 11
0 0 0 0 00
000

This accounts for the operation ¢ := .#(a,b), therefore the blocks Q. on the diagonal have 1s

in the c-th row:

1T 11 0 0 O 0 0 0
Q1=|0 0 0 Q=1 1 1 Qz=|0 0 0
0 00 0 00 111
and therefore:
Q 0 0
0 Qi 0 0 0
0 0 @
Q 0 0
L= 0 0 U 0 0
0 0 O
Q 0 0
0 Q 2 & 2
0 0 O
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Q 0 0
0 Q 2@ 0 0
0 0 Q
Q 0 0
Hon = 0 0 O 0 Q
0 0 O
Q 0 0
0 0 0 & 0
0 0 O
Q 0 0
0 Qs 0 0 0
0 0 Qs
Q 0 @
S = 0 0 Q3 0 0
0 0 Qs
Q 0 ¢
0 0 0 Q 0
0 0 Q

We can rewrite the predicate as:
Ir,, e8=538 A S3=ZLC+ A, diag(n,,)C + oy diag(7,,)C

Therefore we have that S3 has the following shape:

0 0 0
T, 111y T(#,112)  T(#,113) a Q 0
To11)  T(112)  T(,113)
0 0 0
Q 0 00 Q Q
1
0 0 0
S3 = 0 0 1 0
0 0 0
T(#,331) T(#,332) TY#,333)
0 0 Q U331 T (#,332) T(#,333)
0 0 0
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We can clearly recognize the blocks operating on states where the condition a # b is verified
from those operating on states where a = b.

With the position:

T ,151) 0 0
Rij = 0 T(,ij2) 0
0 0 T #,1j3)
we can write that:
Ry 0 0
0 Ry O 0 0
0 0 Ry
Ry 0 0
diag(m,,) = a 0 Ryp 0 Q
0 0 Ry
Ra 0 0
0 0 0 Ry 0
0 0 Ra
and therefore:
(QR11+QaRi1) 0 0
a Q 0 0 0
Q 0 Q)
Qs Q 0
Sa= 0 0 (QuR2+QsRy) 0 0
Q Q Q1
Q 0 Q
0 0 8 Q
0 0 (QiRsz+QoRs3)

Finally the fourth instruction gives
b:=(byc) = & =5{7®:) o],

and this corresponds to the predicate:
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where:
000000000
000010010
000001001
100000100
000000000 0 0
001000000
000100000
010000000
000000000
000000000
000010010
000001001
100000100
Sy = 0] 000000000 0
001000000
000100000
010000000
000000000
000000000
000010010
000001001
100000100
0 0 000000000
001000000
000100000
010000000
000000000
With the positions:
0 0 0 100 100 0 00
Z1=10 1 0 Z=10 0 O Z3=10 0 O Zs=10 1 0
0 0 1 0 0 1 0 0 0 0 00
we have:
0 41 4
L 0 43 0 0
Zs Lz 0
0z
S - 0 Z 0z 0
Zs L3 Q
Q0 41 4
0 0 L 0 43
Zs Lz Q
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Putting all of it together, we have that the program can be represented by the following predi-

cate:

Iy, m,, 7, 8 =54535,510 A conditions relating S; and S3 to 7y, m,, 7,

Let us do the maths now: we will take advantage of the matrices being sparse and with easily

recognisable blocks?.

0 Z1 4
L 0 L4 0 0
Zs L3 Q
Q0 Z1 L1
S48:- 0 0oz 0
Zs Zz 0
0 Z1 Zs
0 0 L 0 L4
Zs L3 Q
which is:
0 Z1Q: L1Q,
Z(QRu +QsRi) 0 ZaQs
Za(QoR1 +Q3R11) Z3Qs 0
S483- 0
0
As we have that:
0 0 1 1
Z£:Q1=10 1 0 0
0 0 0 0
1 0 0 0
£:Q,=10 0 0 0
0 0 1 1
0 0 o0\(Oo O
Z:Q3=10 1 0|0 ©
0 0 ofJ\1 1
and therefore:
£2QoR11 =0
Z:Q3R» =0

(Q2R11 +Q3R11) 0 0
0 Q 0
0 0 Q2
0
0
Q
0 Z1(QiRaz +Q3R2))
2.0, 0
Z4Q3  Z3(QiRyy + Q3Ry)
Q
1
0l=0 Z:Q2
0
0
o[-0 z0s
1
0
ol=0
1
Z4Q3R11 =0
£1Q1R33 =0

Q
Qs 0
0 (QuRa+QuRa)
0 0

Q
Pl
L
0

¢ 2y

2 o

2Q: 0
1.0 0)(0
0o o0 off1
00 1J\0
1.0 0)(0
0 0 offo
0 0 0f\T
£1Q1R5p =0
Z3R33Q3=0

0
0
Q1
QL 0
0
0 0
0
Z1(Q1Ra3 + QoR33)
Z3(Q1Ra3 + QoR33)
0
0 0
1T 1]1=Q
0 0
0
0]=0

21 did try to do a good part of the calculation on my HP49g+ with actual values and variables, but given the size of

the matrices it is quite painful and error-prone.
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we can further simplify this expression as:

| —

dl &~ al
4 4

I D I
g

~—~———

———

2:Q,

~Q. gl

e . .
E

43

N ——

A
Al

We can also notice that:

S

S O -

O O -

O O -

O O -

O O -
O — O
o O O

NI

O O -
O — O
o O O

£

O O - o — O
O O - S — O
O O O — O
Il Il
o O - O — O
O O - o — O
O O O — O
O O o O O
o O O O — O
— O O o O O
Il Il
4 3
Ni N
3l 3l
Il Il
— O O — O O
— O O — O O
— O O — O O
Il Il
— O O — O O
— O O — O O
— O O — O O
O O - o O O
o O O o O O
— O O — O O

3

4301

and therefore:

I .
SIS

dal dl an
dl dl &H

gl dl

Then we add S;:
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e & Q@ 111
QR 00 0 0 111 0 0
QRL 0 0 11
0 QRy 0 i
a Q0 & 0 0 111
0 QRyn 0 111
0 0 QiRy L1l
0 o 0 0 QRu 0 0 111
%o o 111
(Q+Qs) (Q+Qy) (Q+Qa)
QiR QiR QaRu 0 0
QRu QR QuRu
QaRzz QiR QiRp
Qi+Qs) (Q+Qs) (Q+Qs) 0
QiR QiR QiRyp
QoRsz  QoRzz QoRas
0 QiRs3 QiRs3 QiRs3
Q+Q) (Q+Q2) (Q+Q2)
and finally we multiply by S;:

Q+Qs) (Q+Qa) (Q+Qa
QR QiR QiR 0
QRu QR QR

QRp  QaRn QiR Pu Pu Py
5483828, =3 0 (Qi+Q3) (Qu+Qs) (Qu+Qs 0 Po1 P Paa
QiR QiR QiR2 Pu Py Pa

QaRsz  QoRaz  QoRas

0 0 QiRs3 QiRs3 QiRs3

@Q+Q2) (Q+Q2) (Qu+Q2)

(Q2+Qs) (Q+Qa) (Q+Qa) (Q2+Qs) (Q+Qa) (Q+Qa) (Q2+Qs) (Q+Qa) (Q2+Qa)
QsRyy R 3R |Py | QsRu 3R 3R |Pp | QsRu 3R QR Py
2R QR QoRpy 2R QaRiy QoRpy 2R QR QoRpy
QRp QiR QiR QRp QiR QiR QR QiR QiR

=5[] (Qu+Qa) (Qu+Qa) (Qu+Qa) Py |(Qu+Qa) (Qu+Qa) (Qu+Qa) [Py [(Qu+Qs) (Q+Qs) (Qu+Qa)|Py

QiR QiRyy QiRy» QiR QiRyy QiRyy QiR QiRyy QiRyy
QaRaz QoRaz  QoRas QaRaz  QaRaz QoRas QaRiz QoRiz  QoRas
QiRss QiR QiRss Py | QuRss QiRss  QuRss [Py, | QiR QiRss QuRss [Py

(Q+Q2) (Q+Q2) (Qu+Q2) Q+Q2) (QU+Q) (Qu+Q2) (Q+Q2) (Q+Q2) (Qu+Q2)

Thus we have obtained that:
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(Qa+Qs) (Q2+Qs) (Q2+Qa3) (Qa+Qs) (Q2+Qs) (Q2+Qa3) (Qa+Qs) (Q2+Qs) (Q2+Qa3)
QaR1y QaR11 QoR11 QaR1y QoR11 QaR1y QaR1y QoR11 QaR1y
QsRap QsRp QsR2 QsRay QsRp QsRp Q3Ray QsRp Q3R
Sy o8 | [(Q4Q0) (QrQ) (Qu+Q0) [Py [(QrQ) (@u+Q) (Q+Q)[Pa [(@+Q) (Q+Q) (@u+Q)|pw s
QiRoy QiRyy QiRyy QiRoy QiRy QiR QiRoy QiRy QiR
QiRas QiRas QiRsz [Py QiRas QiRas QiRsz [Py QiRas QiRas QiRsz [Py
Qi+Q2) (Q+Q2) (Q+Q2) Qi+Q2) (Q+Q2) (Qu+Q2) Qi+Q2) (Q+Q2) (Qu+Q2)

with side conditions relating Ri; and Pij to 71,715, 70 .

We can infer the program properties by analysing this matrix, here are a few examples:

* the rows with index iii are null everywhere, so the program will never terminate in a
state 031 where a=b =c¢;

* more in general, the rows with index iji and ijj are null everywhere, so the program will
never terminate in a state oj;; where a=corb =g¢;

¢ all of the columns are one-summing, so the program is always terminating.

We now want to focus on the probability |5'(a = b)| of the program ending in a winning state

0iij, where a = b, so let us extract the submatrix G from the one above, by selecting the rows
relative to winning states:
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£

4

A

.z
3
Iz
3
.z
£

3
3
3

3
2
m

(Q+Q2)

(Q1+Q2)

(Q+Q2)

<]

A

.z
3
Iz
3
.z
£

3
3
3

3
2
-

(Qu+Q2)

(Q+Q2)

—

3
g

4

4

.z
3
Iz
E
.z
£

3
3
3

3
2
m

(Q+Q2)

(Q1+Q2)

3
J

gl o=
<l <l dl <l gl
<l gl
d < Ql
<l ol = gl <l
<< gl
d g gl
d g gl <l <l
= < gl
=

4

Pas

£l

4

A

—_— —_— —_—
— — — o - — - o ~— - - o
&7 &7 &7 o — — al al al — o — al al g — — o
+ oa al STRRSST al a o+ o - — - o - - -
3 3 g == == —=
© — — — o — [e———
\&/7 \&/7 \O.ﬁ o - = a al ol — o — al o o - - o
+ oa al a + al aa o+ o - — — o - -
d g g - — —
~ ~ ~ —_— —_— —_—
° — — - o — - o
Sl dl gl o - — a al o - o — al o o -~ o

+ oa al a + ol aa +
d 3 d == — —

3 1 4 4 2 4

— - =~ — —=
&7 &7 nmi o — — < d al — o — dal d g — — o
+ oa al a o+ ol al o+ - o .
g E g === zeo - -
— —_— —
—_ —_ — S - - - o — — - o
4 4 S o - — a al gl - o~ al al o~ — o
nwio,o, Q,W:Q, Q,Q,W: - e .
- = Nallciial - =
—_—— —_——— —_—
— — _ S - - - o ~ - - o
&7 &7 &7 o — — Jdl dal g — o — dl g d - - o

+oa al a + ol aa o+
d d d <-—- e - -2

4 A A £l 5| |
—_— —_—
—~ - -~ o - - - o - - - o
mzﬁ al al al &7 al ol al &7 S - - o d == o
d d d =e-- == -2
— —~ —~ [ — — o — - — o
nmﬁ a al =] nmﬁ al a al Oui e - — a d - o — da o g - - o
@i Qi Qi o~ — — o — -~ - o
— — — —_— —_— —_—
d dl d =7 -e -
+oa al a + ol aa + o - — o al o - o — al a o — — o
g 3 5 oiC g oo
= =
I
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If we do all of the multiplications by P;; we obtain:

9111 0 0 0 0
T(1,111) TT(1,112) 7T(1,113) 7T(1,333)
2*112 3 3
TT(1,111) T(1,112) 7T(1,113) 7T(1,333)
EMTE 3 3 3
9,101 0 0 0 0
9133 0 0 0 0
TT(2,111) 7T(2,112) 7(2,113) 7T(2,333)
9,221 3
=19, 0 0 0 0
T(2,111) T(2,112) 7(2,113) 71(2,333)
9,223 3 3 3 3
9,531 0 0 0 0
9,323 0 0 0 0
TT(3,111) 7(3,112) 7(3,113) 77(3,333)
9,331 3 3
T(3,111) 7T(3,112) 7t(3,113) 77(3,333)
9,332 3 3 3 3
0 0 0 0
9,333

We can see that all of the generators of matrix G have norm 2/3 as 71y iji) +70(2,ijk) +7(3,ijk) = |
for all 1,j, k:

LK) 5 TRGR 5 TGk _ 2

Vi ke2-
b, ke 3 3 3 3

We can conclude that this is the probability of the program ending in a winning state, and it does
not depend on the starting state (and therefore it does not depend on the initial distribution,

as long as it is one-summing) as all of the generators have the same norm.

We would definitely like to work on smaller matrices: when is it possible and what is the price
we pay for that?

To see this let us approach the problem from a different angle; first of all we partition the state
space into 5 abstract states as in figure D.1:

oo = {011 | 011 €S} ={0111,0222,0333}
o1 ={0iij | oiij€S A i#j}={0112,0113,0221,0223,0331,0332}
o2 ={04i | oyj1€S A 1#j}={0121,0131,0212,0232,0313,0323}
a3 ={0jii | o5i1€S5 A 1#j}={0122,0133,0211,0233,0311,0322}

og = {0k | oy eS A iFjAlEkAj#K} ={0123,0132,0213,0231,0312,0321}

Let & be a distribution over the set {xo, x1, %2, x3,x4}: the vector & representing the distribu-
tion is a 5-element one.

The instruction setup = a:= 11 (a:=2na:=3) can do the following:

* remap a state oy to itself or to ojis, i.e. remap the abstract state oo to & or «3;

* remap a state o0yy; to itself, to 0jij or to oy , i.e. remap the abstract state oty to oy, &, or

X4;
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p %)
y 03.13 01.21
0212 \
{ | (0,6
\ 03.23 01.31 ]
0232 0221
) o
01012 03031
0222 0223
(@] o
0311 0122 0111 0113 0332
(<) @ o (@] (@]
0211 (73033
0322 0133
° X3
0233
A )
) R y < N
/0312 01.23 \
0213
) | X4
0321 0132 /
®
0231
®

Figure D.1: The partition of the state space of program MH

e remap a state oy;; to itself, to oyi; or to oy;i, i.e. remap the abstract state o, to «y, o7 or
j > j jis >

K4,

* remap a state oji; to itself or to o33, i.e. remap the abstract state o3 to & or «3;

* remap a state oyj) to itself, to oy i or to ojj, i.e. remap the abstract state o4 t0 x4, x> Or

x7.

The choice among the different possibilities is done nondeterministically; the probability 7t;; of
remapping «; to «; can therefore vary arbitrarily with the following constraints:

7Too+7'[03:]
1 + T + T4 = 1
T2 + T2 + T24 = 1
T30 + 733 = 1

041 + Tap + Tla4 = |
This operation can be expressed by the predicate®:

Iy, M 0 & = & A ije{1,2,4} Ak, 1€{0,3} A conditions on 7j, 7,1 above

3The quantification on the different 7t is equivalent to the usual quantification on weighting distributions.
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where
o0 0 0 T30 0

0 m m 0 7y
0 m2 mp 0 7y

i

703 0 0 733 0
0 m3 m2 0 744

The instruction player =b:=1 ,@ (b:=2 ,& b := 3) can do the following:
3 2

* remap with probability /3 a state oy; to itself, to oy;; or to state oy, i.e. remap the
abstract state o to «o with probability /3 or to «, with probability 2/3;

* remap with probability 1/3 a state o0yi; to itself, to oyj; or to oyyj, i.e. remap the abstract
state oy to o1, 4 or o3, with probability /3 each;

* remap with probability /3 a state o0y;; to itself, to oy or to oyi4, i.e. remap the abstract
state «, to o, with probability 2/3 or to oy with probability V/3;

* remap with probability /3 a state oj;; to itself to oj;; or to ojyi, i.e. remap the abstract
state o3 to a3, 1 or oz, with probability 1/3 each;

* remap with probability /3 a state oyjy to itself, to oy Or to Oy, i.e. remap the abstract
state oy to oy, 7 OF o3, with probability /3 each.

This operation can be expressed by the predicate:

&=0¢
where
30 13 0 O
o0 3 0 13 13
L=1% 0 2,5 0 0
0 13 0 13 13
0 13 0 13 13

The instruction fost = ¢ := . (a,b)< (a # b) >(c := Hn (a)rc = #u(a)) can do the following:

* remap a state oyi; Or a state oyij to the state oyy; or oy, i.e. remap the abstract states xg
and o to q;

* remap a state oiji, a state oyj; Or a state oyji to the state oyjy, i.e. remap the abstract

states o, &z and oy to o4;

This operation can be expressed by the predicate:

&g =158

where

=
Il
S © © —= O
S ©O © —= O
—_ O O O© O
— O O O O
— O O O O
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Finally the instruction guess = b := .#(b, c) can do the following:

* remap a state oyj; Or a state Oyji Or a state to the state oy, where j < 1, i.e. remap the

abstract states oy and o, to o}

* remap a state oy to the state oyjy, i.e. remap the abstract state oy to o4

* remap a state oji; to the sta