
Riccardo Bresciani

Probabilistic Program Verification

in the Style of the

Unifying Theories of Programming

Ph.D. 2013

School of Computer Science and Statistics

Trinity College Dublin

Submitted on October 29th, 2012

This thesis has not been submitted as an exercise for a degree at

this or any other university. It is entirely the candidate’s own work.

The candidate agrees that the Library may lend or copy the thesis

upon request. This permission covers only single copies made for

study purposes, subject to normal conditions of acknowledgement.

Riccardo Bresciani

i

ii

To my wife, Chiara.

iii

iv

Summary

We present a novel framework to reason on programs based on probability distributions on the

state space of a program: they are functions from program states to real numbers in the range

[0..1], which can be used to represent the probability of a program being in that state.

Such framework can be used to provide an elegant semantics in the style of UTP to a variety

of programming languages using both probabilistic and nondeterministic constructs: the use of

probability distributions allows us to give programs a semantics which is based on homogeneous

relations.

The behaviour of probabilistic nondeterministic programs is treated algebraically via this frame-

work, and as a result it is straightforward to derive algebraic expressions for the probability of

some properties to hold for a given program.

Moreover our framework unifies all of the different kinds of choice under a single “generic

choice” construct, and the usual choice constructs (disjunction, conditional choice, probabilis-

tic choice, and nondeterministic choice) can be viewed as some of its specific instances. Later on

we will discuss also other possible specific instances (namely conditional probabilistic choice,

switching probabilistic choice, conditional nondeterministic choice, nondeterministic proba-

bilistic choice, and fair nondeterministic choice).

The use of probability allows us to introduce the notion of probabilistic refinement, which

generalises the traditional one: this is important in view of formal verification of probabilistic

properties of programs via refinement-based techniques.

v

vi

Acknowledgements

I wish to thank Andrew Butterfield and all of the guys from the FMG, without whom this work

would not have been possible.

Obviously my friends and family have played a big part in this. Not long ago it took me a while

to write up the acknowledgements for my master thesis, and now I would probably repeat the

same things to the same people: for this reason allow me to simply condense my gratitude in a

big thanks to you all.

The present work has emanated from research supported by Science Foundation Ireland grant

08/RFP/CMS1277 and, in part, by Science Foundation Ireland grant 03/CE2/I303_1 to Lero —

the Irish Software Engineering Research Centre.

vii

viii

Contents

1 Introduction 1

1.1 Our approach . 4

1.1.1 Key contributions . 4

1.1.2 Organization of this thesis . 5

2 Background and related work 7

2.1 Kozen’s framework . 7

2.2 pGCL . 11

2.3 pCSP . 17

2.4 UTP . 18

2.4.1 Theory of Designs . 19

2.4.2 Probabilistic UTP . 21

3 A framework to deal with probability distributions over the state space 23

3.1 States and distributions, informally . 23

3.2 Definitions . 26

3.3 Programs . 27

3.3.1 Deterministic programs . 28

3.4 Nondeterminism . 30

3.4.1 A generic choice construct . 32

3.4.2 Program structure . 34

3.5 Healthiness conditions . 34

3.6 The program lattice . 35

3.7 Refinement . 36

3.7.1 Probabilistic refinement . 38

3.8 Summary . 38

4 pGCL 41

4.1 Interaction of probabilistic and nondeterministic choice 44

5 A probabilistic theory of designs 47

5.1 Healthiness conditions . 49

5.2 Recasting total correctness . 50

5.3 Link with the standard model . 51

5.3.1 Weakening the link . 51

5.4 Considerations on a pCSP theory . 52

5.4.1 R1 . 53

5.4.2 R2 . 54

5.4.3 R3 . 54

5.4.4 CSP1 and CSP2 . 55

ix

x Contents

6 Conclusion 57

A States and distributions 59

A.1 Variables, types and expressions . 59

A.2 States . 59

A.2.1 Evaluation of an expression . 60

A.2.2 Abstract states . 62

A.2.3 Assignments . 63

A.3 Distributions . 64

A.3.1 Operations on distributions . 66

A.3.2 Specific types of distributions . 67

A.3.3 A simpler notation . 68

A.3.4 The remap operator . 68

B Distributions as vectors 71

B.1 Operations on vectors . 71

B.1.1 The set Dp . 73

B.2 Programs as matrices . 73

B.2.1 Interpretation of the columns of the program matrix 74

B.2.2 Random Variables and pGCL Expectations 75

B.2.3 Interpretation of the rows of the program matrix 75

B.2.4 Probability of an event . 76

B.3 Deterministic Programs . 77

B.3.1 Some considerations on loops . 78

B.3.2 Healthiness conditions . 79

B.4 Nondeterministic choice . 83

C Proofs 91

D Other case studies 109

D.1 Monty Hall . 109

D.2 Rabin’s choice coordination algorithm . 134

D.3 Protocol verification . 140

D.3.1 The Dolev-Yao Model . 141

D.3.2 A strategy to evaluate the probability of successful attacks by means of

standard protocol verifiers . 144

D.3.3 An example: using ProVerif to verify the Yahalom protocol 145

D.3.4 Protocol runs as predicates . 148

D.3.5 An example: key-guessing on the Yahalom protocol 150

D.3.6 Towards a UTP -style protocol verification technique 151

E Notation 153

F Mathematical Background 157

F.1 General Notions . 157

F.2 Vector spaces . 157

F.2.1 The vector space RN . 160

F.2.2 The vector space RN×N . 160

Contents xi

F.3 Boolean algebra . 160

F.4 Measure Theory . 161

F.5 Probability Theory . 161

xii Contents

CHAPTER 1

Introduction

Formal verification is now mainstream in computer science: the task of establishing if a given

program behaves according to its specification is now a routine step, because of its higher

reliability compared to tests, coupled with time- and money-saving possibilities deriving from a

development approach based on formal methods.

The research community has played an important role in the development of current formal

methods, and its effort has not stopped. As a result of all the different approaches adopted

towards formal verification, nowadays we have a variety of available techniques: the advan-

tage is that for each of the many verification scenarios a particular technique may prove more

efficient than others.

On the other hand the disadvantage is interoperability of these techniques, which would be

quite a desirable feature — it is absolutely standard to use several different techniques towards

the verification of different parts of the same system.

Being able to use different models together is the aim of the Unifying Theories of Program-
ming (UTP), which rely on predicate logic to give a semantics to different languages, so that

unification can happen at the level of the common underlying semantics.

The focus of our work is UTP, in particular we want to come up with an approach that allows

us to treat probabilistic programs in an analogous way as standard nondeterministic programs

are treated in UTP.

There are several reasons for wanting probability in the picture.

A model including probability can offer a more precise description of a system, allowing the

verification procedure to assert that a given property is verified with probability p rather than

simply asserting that the property may be verified.

An example is a system with two alternative behavioursA and B: if we knew nothing more than

this, the only way we would be able to formalise is by merely saying that the system may show

behaviours A and B but we cannot make any other kind of forecasts on the actual observable

behaviour — we could write this using Dijkstra’s nondeterministic choice operator ⊓ as A ⊓ B.

What if we had also some kind of statistical characterization of the system, for example that A

and B happen randomly half of the time? It would be an unnecessary and detrimental waste

of information not to take this into account and model the system again with nondeterministic

choice: a more desirable option is something saying that both A and B happen with probability

0.5 — we could write something in the style of A 0.5⊕ B.

Sometimes a good statistical behaviour is what makes things usable. Actually, that is always the

real-world case: any appliance or machine that we use is not guaranteed to work every time

we want it to, it is just very likely that it will work.

Statistical observations are what draws a line between good appliances and bad ones: from

1

2 Chapter 1. Introduction

an observer’s perspective the functional difference between a Trabant and a BMW is based on

statistics, one car being probabilistically less reliable than the other.

If we want to describe what happens when the driver turns the ignition key, simply saying that

the engine may (or may not) start running is not a good enough description, a probabilistic

information saying how likely it is that the car turns on is highly desirable.

We obviously have some expectations when we compare a Trabant with a BMW, as we assume

that the components in one car are more reliable than the ones in the other car: we know that

if we assemble correctly reliable components we will obtain a reliable car.

We have no numerical idea about the failure rate for the components used in each car, but an

engineer does: from his perspective the observations on the behaviour of the car can be made

at a lower level, directly on the parts, and this would allow him to infer the probability of some

behaviour (assuming that there are no other design flaws).

This is another reason why it is interesting to talk about probability: the rules for deriving

the probability of composite events from those of the single events are well established and

understood. As a result the overall probability that a certain property holds in a system can be

inferred bottom-up, starting from the probability of the relevant events.

An analogous perspective is that of the interaction between software and hardware: when we

model the behaviour of a program the implicit underlying assumption is that the hardware

is working properly. It would be interesting to integrate in the model also some information

concerning possible hardware failures, which are to be characterised statistically.

An example is the use of flash memories: the physical principles they are based on are quite

brutal (informally speaking, electrons are kicked through a barrier to store information, which

can be then erased by a strong current flow that resets the whole memory block) so failures are

of usual occurrence.

Having a framework which is capable to handle probabilistic information would be of great

value here, for example each write operation to a flash memory could be rendered as:

write(x) ≙ successful_write(x) p⊕ write_error

for an appropriate p, which can vary depending on number of previous writes and time.

From a different point of view, sometimes probability is the very reason why things do work.

Miller-Rabin primality test is an example, and plenty of other examples of interest can be found

in Computer Science, but also in everyday’s situations we rely on this: imperfect systems can be

made more reliable through redundancy, both in terms of physical duplication of components

and/or repetition of measures and experiments.

There are several pitfalls when dealing with probability, as sometimes the solution to some

problems is quite confusing and counter-intuitive. Here are a few examples.

Think of a man who is the father of two children:

• what is the probability that both of them are girls?

• knowing that one of them is a girl, what is the probability that both of them are girls?

• knowing that the older is a girl, what is the probability that both of them are girls?

The difference between the first question and the following two is apparent, but it may be not

3

so obvious what the difference between the last two. Assuming that there is a 50% probability

for each child to be male or female, the answers are:

• 1/4;

• 1/3;

• 1/2.

The middle one is probably the most surprising answer.

This example highlights the subjective component of probability, as it varies depending on how

well we know a situation we are talking about.

Another example is the (in)famous Monty Hall game: the setting is a TV show, where a par-

ticipant in front of three closed doors is given the chance to win a car if he guesses the door,

which the car has been hidden behind. Behind the doors there are two goats and a car, so the

probability to choose the “right” door is 1/3.

But what if Monty Hall (the host) opens one of the remaining doors, thus revealing where one

of the goat has been hidden, and offers the participant the possibility to change is mind and

switch his choice to the other closed door? Should he do it?

The answer is yes, because in this way he will double his chances to win, jumping to a nice 2/3.
This might sound a bit surprising at a first glance.

When trying to model a situation involving probability, the first and most important issue is the

decomposition of such situation into events, distinguishing atomic events from composite ones.

Atomic events are mutually independent, whereas composite events are a combination/union

of atomic events.

For example if we pick a random natural number in the range [1..10] we can say that:

• the probability of x = 2 is 1/10;

• the probability of x being even is 1/2;

• the probability of x = 2 and x being even is 1/10 ⋅ 1/2 = 1/20.

Or is it?!

The answer 1/20 is wrong, because we have considered the two events “x = 2” and “x being

even” as independent: in fact “x being even” is a composite event which can be rewritten in this

case as “x = 2 or x = 4 or x = 6 or x = 8 or x = 10” — after this observation it is clear that x being

even is always true when x = 2 (i.e. the conditional probability of x being even when x = 2 is 1),

so the correct answer is 1/10.

Sometimes two events appear to be independent, but in reality there is a (possibly hidden)

relation. A trivial example is a simple program that picks a random number for x (say either 0

or 1) and then assigns the new value of x to y.

Clearly the probability of x = y is 1, but would we be able to tell it if we were simply given

separately the probability distribution for each value for each variable, like:

P(x = 0) = 1/2 P(x = 1) = 1/2 P(y = 0) = 1/2 P(y = 1) = 1/2 .

4 Chapter 1. Introduction

In this case our answer would be probably that the probability is

P(x = 0) ⋅P(y = 0) +P(x = 1) ⋅P(y = 1) = 1/2 .

This is because we lost the “entanglement” between the variables that was created by the pro-

gram.

1.1 Our approach

We want to give a brief overview of our approach, in order to give the reader an intuition

without getting bogged down in details — which will be presented extensively in §3.

With the last example in mind, it is clear that if we want to give a probabilistic description of

a program, we cannot deal with variables separately, but rather treat them as bundled into a

single entity, which we call “state”.

Although the concept of state is very general, it can be thought of as a snapshot of the current

memory content (what is in the RAM, in the processor registries, in the hard drive, and so on).

Each state can be assigned a probability, which corresponds to the probability of the program

being in that state: in this way we create a probability mass distribution, or shortly a proba-
bility distribution, on the state space of a program, so that we can reason on the probability

distribution (and its evolution) to understand the program behaviour.

Lumping variables together poses some serious challenges to track the evolution of a system:

when a state evolves to another state, the associated probability (or a part thereof) has to be

“transferred” to the new state. This is nontrivial in the case of several states evolving into the

same state, so that the associated probabilities (or a part thereof) have to be summed together

and “transferred” to the new state.

This is quite a common occurrence, for example this happens when there is an assignment

operation.

This framework has interesting algebraic properties, as the set of probability distributions is a

precise part of a vector space made of more general distributions (i.e. those distributions that

map states to real numbers, but that are not necessary a probability mass distribution), which

is isomorphic to Rn, with n equal to the number of states.

Programs can consequently be seen as distribution transformers: they take an initial distribution

(before-distribution) and transform it into a final distribution (after-distribution) that accounts

for the changes made by the program.

In the case of deterministic programs, the corresponding space has interesting properties as

well, as it is isomorphic to a portion of Rn ×Rn.

Nondeterminism arises when a program is entitled to choose internally between different al-

ternative behaviours: as a result a single before-distribution can evolve to different possible

after-distributions, all of which are equally valid and no forecasts on the actual outcome is

possible.

As a result a nondeterministic program relates a single before-distribution to a set of after-

distributions.

1.1. Our approach 5

This allows us to see programs as predicates in the style of UTP, which are based on homo-

geneous relations among distributions: we are going to give a predicate semantics to a set of

common constructs, and use this to reason on programs with the rules of predicate logic.

1.1.1 Key contributions

The key contributions of this work are:

• a novel framework to reason on programs based on probability distributions on the state

space of a program: they are functions from program states to real numbers in the range

[0..1], which can be used to represent the probability of a program being in that state;

• such framework can be used to provide an elegant semantics in the style of UTP to a vari-

ety of programming languages using both probabilistic and nondeterministic constructs:

the use of probability distributions allows us to give programs a semantics which is based

on homogeneous relations. For this reason we believe that we took important steps to-

wards. . .

. . . the so-far-unachieved goal of unifying probabilism with other program-

ming constructs in the style of Unifying Theories of Programming.

Chen and Sanders [CS09]

• such framework allows us to treat algebraically the behaviour of probabilistic nondeter-

ministic programs, and as a result it is straightforward to derive algebraic expressions for

the probability of some properties to hold for a given program;

• moreover our framework unifies all of the different kinds of choice under a single “generic

choice” construct, and the usual choice constructs (disjunction, conditional choice, prob-

abilistic choice, and nondeterministic choice) can be viewed as some of its specific in-

stances. Later on we will discuss also other possible specific instances, namely:

– conditional probabilistic choice;

– switching probabilistic choice;

– conditional nondeterministic choice;

– nondeterministic probabilistic choice;

– fair nondeterministic choice.

• the use of probability allows us to introduce the notion of probabilistic refinement, which

generalises the traditional one: this is important in view of formal verification of proba-

bilistic properties of programs via refinement-based techniques.

1.1.2 Organization of this thesis

We are going to present the core background material which constitutes the foundations and

main references for this thesis in §2.

Chapter 3 and Appendices A and B are dedicated to a detailed presentation of our framework,

and some case studies are presented in Chapters 4 and 5 and Appendix D; some of the material

6 Chapter 1. Introduction

from these chapters has been previously published as part of the work emanated from this

research [BB09; BB11; BPB11; BB12a; BB12b; BB12c].

We conclude in §6 and include other appendices on mathematical background, proofs and

notation, which the reader can refer to when necessary.

CHAPTER 2

Background and related work

In this chapter we are going to present the background material relevant to this thesis and the

related work; we assume familiarity with all of the underlying mathematics (linear algebra,

measure theory and probability theory), which is anyway briefly presented in Appendix F.

The topic of probability in computer science has been addressed within different scopes in a

variety of different ways, including the Dempster-Shafer belief theory [Dem68; Sha76; Jøs01;

Koh03], Bayesian networks [Pea88; FHM90], probabilistic argumentation [Hae+01], logical/relational

Markov models [DK03; JKB07], and probabilistic powerdomain techniques [JP89; Jon90].

Our approach to probability builds on higher-level work relying on Markov models and prob-

abilistic powerdomains, and in particular the main references are Dexter Kozen’s framework

[Koz81; Koz85] and the pGCL framework [MM04]; such an approach yields a UTP-style frame-

work where nondeterminism and probabilism coexist.

Kozen’s framework, pGCL and UTP are our three main reference areas: although the notation

used in the different references varies, we will try to uniform it for the sake of understandability

— refer to Appendix E for the notation used.

2.1 Kozen’s framework

In the early 1980s Dexter Kozen proposed a formalism to reason about probabilistic programs

[Koz81; Koz85], with an approach which is very different from conventional logic:

Unfortunately, almost all of our logical apparatus belongs to the nondeter-

ministic form. The usual logical connectives and the existential quantifier

are clearly nondeterministic in nature. We must therefore be prepared to de-

part radically from conventional logic in order to accommodate probability

in a satisfactory way.
Kozen [Koz85]

Dijkstra’s nondeterministic choice is therefore left out in Kozen’s approach, and replaced by

probabilistic choice: as we will see later on, this has profound implications.

The motivation for Kozen’s work was providing a common framework to unify the two main-

stream approaches of the late 1970s, i.e. the distributional approach and the randomized ap-
proach, and to analyse probabilistic programs, which had been previously analysed exclusively

by ad hoc methods.

The distributional approach sees a program as being deterministic, and probabilism emerges

from a probability distribution on the input; the randomized approach allows a program to

7

8 Chapter 2. Background and related work

take probabilistic steps, but the input is fixed. Yao proved the equivalence of these approaches.

[Yao77]

The roots of Kozen’s approach go down to the theory of linear operators in Banach spaces: a

probabilistic program is in fact interpreted as a continuous linear operator on a Banach space

of (probability) distributions.

Kozen deals with probabilistic while programs in [Koz81], which act over the variables v1,v2, . . . ,vn
(all of the same type W for the sake of simplicity) and use the following constructs:

• assignment: vi ∶= e(v1,v2, . . . ,vn), where the expression e, which is a function of the

program variables, is evaluated in the current state and the resulting value is assigned to

vi;

• random assignment: vi ∶= random , where random is a function returning a random variate

from some random variable of the appropriate type1;

• sequential composition: A;B, which executes the program B after A has terminated;

• conditional choice: A◁ c▷ B, which executes A or B depending on the evaluation of the

condition c, which is a boolean expression2;

• (while) loop: c ∗A, which executes the body of the loop A as long as c holds true.

In semantics 1 of [Koz81] program variables are seen as random variables on the probability

space (S , ΣS , µS), all of which have the same value space (W , ΣW), where:

• ΣS = {α1, α2, . . .} ⊆ ℘S and ΣW ⊆ ℘W are σ-algebras defined on the state space S and

on the variable type W ;

• µS ∶ ΣS → [0..1] is a probability measure on the measurable space (S , ΣS).

We have that the functional composition of the probability measure µS after the random vari-

able vi defines a probability measure on (W , ΣW):

µW ≙ µS ○ v−1
i .

The random vector v ∶ (S , ΣS , µS)↛ (W , ΣW), where W = W n and ΣW = {β
1
, β
2
, . . .} ⊆ ℘W ,

is a vectorial function whose i-th component is the i-th random variable; we can show that v
induces an isomorphism between the measurable spaces (S , ΣS) and (W , ΣW).
Similarly as above, the functional composition of the probability measure µS after the random

vector v defines the joint distribution for input variables:

µW ≙ µS ○ v−1.

1Kozen’s view of things in semantics 1 of [Koz81] is actually based on an infinite stack of random numbers, that
serves as a random generator such that “each time vi ∶= random is executed, the next random number is popped from
the stack and assigned to vi”. The presentation of semantics 1 here is amended in order to avoid this complication:
it is possible to remove this by choosing to identify random vectors with the same distribution, according to Kozen’s
observation at the end of the presentation of this semantics.

2A boolean expression c will evaluate to true or false when v is mapped to the to elements of a subset β
c

of W or

to β
c̄
= W ∖ βc, respectively.

2.1. Kozen’s framework 9

A program A can be seen as a partial measurable linear function LA ∶ W ↛ W on the value

space, which accounts for the changes made by A to the configuration of variables; it is there-

fore possible to express the joint distribution for the output we obtain after running program A

as:

µ′W ≙ µS ○ v−1 ○L −1
A = µW ○L −1

A .

In view of a slightly different semantics that appeared later in [Koz85] (and which is going to

be presented below), it is useful to define now the probability measure

µ′S ≙ µS ○ InvA ,

where InvA ≙ v−1 ○L −1
A ○ v : the function InvA on (S , ΣS) corresponds to the function L −1

A

on (W , ΣW) under the isomorphism induced by v , and this implies that

µ′W = µ′S ○ v−1.

Semantics 2 from [Koz81] sees a program A as a homeomorphism on the set of all possible joint

distributions of the program variables (including all linear combinations), or equivalently as a

homeomorphism HA on the set MW of all possible probability measures on the measurable

space (W , ΣW): therefore a program transforms a measure µW accounting for the initial vari-

able distribution into a measure µ′W = HA(µW) accounting for the final variable distribution

after the execution of A — the notation A is used both for the program .

(MW , ∥ ∥,≤), where ∥∥ is the total variation norm and ≤ is the complete partial order induced

by the positive cone M+

W of MW , is a conditionally complete Banach lattice, where the internal

operations are defined as follows:

(µW ,i + µW ,j)(β) = µW ,i(β) + µW ,j(β)

(aµW)(β) = a(µW (β)) .

The space P of programs, with addition and scalar multiplication extended point-wise, forms

also a Banach space together with the uniform norm, which is defined ∥HA∥∞ ≙ sup∥µW ∥≤1{∥HA(µW)∥}.

10 Chapter 2. Background and related work

The intuition behind this approach is as follows. The program variables

v1, . . . ,vn satisfy some joint distribution µW on input. We will forget the

variables themselves and concentrate on the distribution µW . We can think

of µW as a fluid mass distributed throughout W . This mass is concentrated

more densely in some areas than others, depending on which inputs are more

likely to occur. Execution of a simple or random assignment redistributes the

mass in W . Conditional tests cause the mass to split apart, and the two sides

of the conditional are executed on the two pieces. In the while loop, the

mass goes around and around the loop; at each cycle, the part of the mass

which occupies β
c̄

breaks off and exits the loop, and the rest goes around

again. Part of the mass may go around infinitely often. Thus, at any point in

time, there are different pieces of the mass that occupy different parts of the

program, and each piece is spread throughout the domain according to the

simple and random assignments that have occurred in its history. Different

pieces that have come to occupy the same parts of the program through dif-

ferent paths are accumulated. At certain points in time, parts of the mass find

their way out of the program. The output distribution HA(µW) is the sum

of all the pieces that eventually find their way out. Thus the probability that

program A halts on input distribution µ is HA(µW)(W), the probability of

the universal event W upon output.

adapted from Kozen [Koz81]

Subprobability measures are all those positive ones whose norm does not exceed 1, which are

those belonging to the set P ≙M+

W ∩ B0[1].
It shall be noted that, as probability measures are those with unitary norm, viz. belonging to the

boundary ∂B0(1) of the unit ball, the set of all positive probability measures is P̃ ≙M+

W ∩∂B0[1].

A program A can therefore be seen as a function HA ∶→ P ↛ P, which maps a probability

measure to a subprobability measure3. This function can be extended to be applicable on the

whole MW : such extension is a ∥∥-bounded continuous linear transformation MW →MW .

As mentioned above, the space P is a Banach one: its subset P + of monotone elements induces

an order ⊑ on P — which is the point-wise lifting of the order ≤ on measures.

The semantics for the program constructs is the following:

• in the case of the assignment vi ∶= e(v1,v2, . . . ,vn), the corresponding transformation is:

He(µW) = µ ○L −1
e ,

where Le ∶ W ↛W is the function

Le(v1,v2, . . . ,vn) = (v1,v2, . . . ,vi−1, e(v1,v2, . . . ,vn),vi+1, . . . ,vn) ;

3Nevertheless more in general we can see them as a homeomorphism on the set of subprobability measures, as
when the function representing the program is applied to a subprobability measure it returns a subprobability measure
whose norm is no larger than that of the function argument.

2.1. Kozen’s framework 11

• the random assignment vi ∶= random

Hrandom(µW)(β1 ×β2 × ⋅ ⋅ ⋅ ×βn) = µW (β1 ×β2 × ⋅ ⋅ ⋅ ×βi−1 ×W ×βi+1 × ⋅ ⋅ ⋅ ×βn)ρ(βi) ;

where β1, β2, . . . , βn ∈ ΣW and ρ is the probability distribution for the random number

generator — the random assignment alters the measure βi used to have before its execu-

tion, as the distribution of the i-th variable changes causing ρ(βi) to be the new measure

of βi;

• the sequential composition A;B yields the functional composition HB ○HA;

• the conditional choice A◁ c▷ B is:

Hif(µW)(β) = HA ○ µW (β
c
∩β) +HB ○ µW (β

c̄
∩β) ,

where βc and βc̄ are a partition of W : in these sets the condition c evaluates to true and

false respectively — it is therefore clear how the measure is transformed via HA on the

part of β where c is true and via HB on the part of β where c is false;

• the loop c ∗A can be interpreted using the least fixed point operator:

Hwhile(µW)(β) = lfp X (µW)(β) ● (X ○HA ○ µW (β
c
∩β) + µW (β

c̄
∩β)) ,

where, in the right-hand side, a construct similar to the conditional choice is clearly recog-

nisable: this is because the bracketed term was obtained by unfolding the loop once —

the existence of the least fixed point is guaranteed by the fact that the space of programs

P is a Banach lattice.

These ideas lead to the presentation in [Koz85], where programs are seen as Markov transitions
(or measurable kernels), which are functions p ∶ S × ΣS → R satisfying the properties:

1. fα′(σ) ≙ p(σ,α′) is a bounded measurable function fα′ ∶ S → R on the measurable space

(S , ΣS) — let F denote the space of all such functions;

2. µσ(α′) ≙ p(σ,α′) is a finite measure µσ ∶ ΣS → R on (S , ΣS) — let M denote the space of

all such functions.

The Markov transition p(σ,α′) maps a pair, formed by a state and a set of states, to a real num-

ber: with an appropriate choice of p, we can use a Markov transition to express the probability

pA(σ,α′) that a program A ends up in some state σ′ ∈ α′ when starting in state σ .

With this in mind it is easy to relate this semantics to the measure-transformer semantics of

[Koz81], by expressing the relation of a measure on the set of after-states S ′ to that on the set

of before-states S as:

µ′S (α′) = ∑
σ∈S
pA(σ,α′)µS({σ}) .

It is also possible to use this to express the expected value ⟨f⟩ of a function f ∶ S ′ → R on

after-states after running a program A from a before-state σ — therefore it is ⟨f⟩ ∶ S → R:

⟨f⟩(σ) = ∑
σ′∈S ′

pA(σ,{σ′})f(σ′) .

12 Chapter 2. Background and related work

If f is the characteristic function of a set of states α′, then ⟨f⟩ is the probability that σ′ ∈ α′; if

f is the function describing the probability of an event happening when a program halts in a

given after-state, then ⟨f⟩ is the probability that this event happens when terminating in a state

belonging to α′.

A technique by Jones and Plotkin [JP89] can be used to build what they term the probabilistic
powerdomain of evaluations: they introduce probability into a semantic domain, and thus the

behaviour described by Kozen’s framework can be reproduced in that setting [Jon90] — this is

the basis for the probabilistic predicate-transformer model presented in §2.2 [MMS96; MM04].

2.2 pGCL

The choice operator is the key ingredient of probabilistic systems, and it can be instantiated in

three different ways:

• demonic choice, that picks the “worst-case” scenario for that choice;

• angelic choice, that picks the “best-case” scenario for that choice;

• probabilistic choice, that picks one of the two options with a given probability.

Probabilistic choice is a desirable feature in a language, as it is doubtless that a quantitative

formal analysis offers great advantages compared to a qualitative one: the challenge is to find

a computationally feasible way of dealing with this.

Interactions among demonic, angelic and probabilistic choices may be subtle. In fact a deter-

ministic (although probabilistic) program is characterised by monotonicity, conjunctivity and

disjunctivity:

Monotonicity (P⇒Q) ⇒ (P (P)⇒ P (Q))

Conjunctivity P (P ∧Q) ≡ (P (P) ∧P (Q))

Disjunctivity P (P ∨Q) ≡ (P (P) ∨P (Q))

where P and Q are predicates and P is a predicate transformer.

When introducing demonic choice we drop disjunctivity; if demonic choice and angelic choice

coexist in the same program, we lose also conjunctivity and we remain only with monotonicity.

[MM98]

When composing processes one must be careful about the issue of duplication, which in pres-

ence of probabilistic and nondeterministic choice may lead to incorrect results. [Mor+95]

An example is given by the idempotency of the demonic choice operator, which depends on its

definition: if the demonic choice operator can distribute through probabilistic choice operators

we can have the following behaviour[Mis00]:

(A 1
2

⊕ B) ⊓ (A 1
2

⊕ B) = A 1
4

⊕ ((A ⊓ B) 1
3

⊕ B)

The reason for this is that two instances of the same program containing a demonic choice are

actually two different programs because of it, as every demonic choice is a unique element.

2.2. pGCL 13

Another way of seeing this is that it is crucial to know when a choice is made, thus we have to

be very careful when we distribute choice operators.

The main shortcoming of Kozen’s approach is that he chooses not to retain nondeterministic

choice, which — although being undoubtedly a source of complication — turns out to be a

necessary and desirable feature of a programming language:

Dijkstra’s demonic ⊓ was not so easily discarded, however. Far from being

“an unnecessary and confusing complication,” it is the very basis of what is

now known as refinement and abstraction of programs.

McIver and Morgan [MM04]

In fact refinement and abstraction are the core of formal techniques for software specification

and development, and are necessary to derive an implementation from a given specification via

the refinement calculus.

Before going further on, let us take a step back and present the concept of guarded commands,
which was introduced by Dijkstra in the 1970s [Dij75; Dij76]: a guard is a condition that pre-

cedes a command and is evaluated before the command is executed — obviously this happens

only in case the guard is true.

The Guarded Command Language (GCL) uses the following constructs:

• abort is the aborting program;

• skip is the program which does nothing and terminates;

• assignment: vi ∶= e(v1,v2, . . . ,vn), where the expression e is evaluated in the current

state and the resulting value is assigned to vi;

• sequential composition: A;B, which executes the program B after A has terminated;

• conditional choice: A◁ c▷ B, which executes A or B depending on the evaluation of the

condition c;

• nondeterministic choice: A⊓B, which executes A or B nondeterministically, depending on

the desired outcome — in the case of demonic nondeterminism the executed program is

that leading to the less desirable outcome, the one leading to the most desirable outcome

in the case of angelic nondeterminism;

• (while) loop: c ∗A, which executes the body of the loop A as long as c holds true.

In Dijkstra’s work, GCL is given a semantics via the so-called weakest precondition, which is a

predicate wp.A.Post that is true in those initial states that guarantee that the postcondition

Post will be reached after running A4.

The work by Morgan, McIver et al. leads to a probabilistic version of GCL , namely pGCL [MM97;

MM04; MM05].

Our simple programming language will be Dijkstra’s, but with p⊕ added and

— crucially — demonic choice ⊓ retained: we call it pGCL .
4It is possible to use a Hoare triple to express the same concept: {Pre}A{Post}.

14 Chapter 2. Background and related work

McIver and Morgan [MM04]

Their approach to probabilistic systems is based on what they term expectations, which are used

in place of standard predicates: informally, an expectation is a function that assigns a weight (a

non-negative real number) to program states, thus describing how much each state is “worth”

in relation to some desired outcome. This is nothing but a non-negative real-valued random
variable5.

There is a natural way of embedding the usual boolean predicates in this approach, as an

expectation corresponding to a predicate Pred can be defined as a random variable [Pred]
that maps a state to 1 if it satisfies the predicate and to 0 otherwise.

Arithmetic operators and relations are extended point-wise to expectations, as is multiplication

by a scalar: the space of all expectations over the state space S is

E = (S → R+,≤) ;

functions modifying an expectation are referred to as expectation transformers.

pGCL is given a semantics based on expectations, which generalises the concept of weakest

precondition to that of weakest pre-expectation: for this reason this semantics is usually referred

to as the weakest pre-expectation semantics — one expectation is weaker than another if for all

states it returns at most the same weight (it is the ≤ relation lifted point-wise).

A pre-expectation is an expectation whose domain is that of initial states, whereas a post-
expectation is an expectation whose domain is that of final states; given a post-expectation

PostE and a program A, informally wp.A.PostE is the weakest pre-expectation which de-

scribes the expected “worth” of each initial state: the operator wp can be thought of a function

wp ∶ P → T returning the expectation transformer corresponding to each program, where T is

the space of expectation transformers.

So we have that PostE ∈ E and wp.A ∈ T , and therefore wp.A.PostE ∈ E .

The syntax of pGCL comprises the following constructs:

• abort is the aborting program;

• skip is the program which does nothing and terminates;

• assignment: vi ∶= e(v1,v2, . . . ,vn), where the expression e is evaluated in the current

state and the resulting value is assigned to vi;

• sequential composition: A;B, which executes the program B after A has terminated;

• probabilistic choice: A p⊕ B, which executes A with probability p and B with probability

(1 − p) — this is the novelty with respect to GCL;

• conditional choice: A◁ c▷ B, which executes A or B depending on the evaluation of the

condition c — this is syntactic sugar for A
[c]⊕ B;

• nondeterministic choice: A ⊓ B, which executes A or B nondeterministically;

5Attention must be paid to the terminology, which may be utterly misleading: many people refer to the expected
value of a random variable X as “expectation of X”, but we will refrain from doing this to try to minimize confusion
and use systematically “expected value of X”.

2.2. pGCL 15

wp.abort .PostE ≙ 0
wp.skip.PostE ≙ PostE

wp.(x ∶= e).PostE ≙ PostE{e/x}
wp.(A;B).PostE ≙ wp.A.(wp.B.PostE)

wp.(A ⊓ B).PostE ≙ min{wp.A.PostE ,wp.B.PostE}
wp.(A p⊕ B).PostE ≙ p ⋅wp.A.PostE + (1 − p) ⋅wp.B.PostE

wp.(c ∗A).PostE ≙ lfpX ●wp.((A;X)◁ c▷ skip)

Figure 2.1: wp-semantics of pGCL, adapted from [MM04, p. 26].

• (while) loop: c ∗A, which executes the body of the loop A as long as c holds true.

Given a post-expectation PostE , the weakest pre-expectation semantics corresponding to the

constructs listed above is as follows:

• the weakest pre-expectation with respect to the aborting program is 0 regardless of PostE :

wp.abort .PostE = 0 ;

• the program skip does not alter the weight of each state, so the weakest pre-expectation

is unchanged and therefore it is still PostE :

wp.skip.PostE = PostE ;

• in the case of assignment the weight of each state is changed according to the evaluation

of the expression e:

wp.(x ∶= e).PostE = PostE{e/x} ,

where the notation PostE{e/x} denotes the expression describing PostE with all free

occurrences of x replaced by e. From this we can see that in some sense it is necessary to

go backwards in order to give a meaning to the assignment construct, as PostE needs to

be “translated” in terms of the states we have before it;

• sequential composition is rendered by functional composition, as the weakest pre-expectation

relative to PostE with respect to B acts as the post-expectation when deriving the weakest

pre-expectation with respect to A:

wp.(A;B).PostE = wp.A.(wp.B.PostE) ;

• the weakest pre-expectation with respect to the probabilistic choice A p⊕ B is a linear

combination of the two alternative weakest pre-expectations with respect to A and B,

where the coefficients p and (1 − p) respectively:

wp.(A p⊕ B).PostE = p ⋅wp.A.PostE + (1 − p) ⋅wp.B.PostE

16 Chapter 2. Background and related work

• the nondeterministic model underlying pGCL is the demonic one, and therefore nonde-

terministic choice picks in each case the option yielding the worst-case behaviour. This

is rendered by taking the point-wise minimum between the two alternative weakest pre-

expectations:

wp.(A ⊓ B).PostE = min{wp.A.PostE ,wp.B.PostE} ;

• in the case of the loop, the weakest pre-expectation can be determined via the least fix

point operator in a standard way:

wp.(c ∗A).PostE = lfpX ●wp.((A;X)◁ c▷ skip) .

This is also shown in Figure 2.1.

Having retained nondeterminism, it is possible to define a sensible refinement relation using

this semantics:

S ⊑ A ≙ ∀PostE ●wp.S.PostE ≤ wp.A.PostE ,

where A is some program and S is its specification.

In other words a program A refines a specification S if the minimum expected weight for each

state after A has run is at least as much as we would get after S has run.

An alternative is the probabilistic relational model [HSM97; MM04], which sees a program as a

relation from states to up-, convex- and Cauchy-closed sets of probability distributions δ over the

state space — the characteristics of these sets correspond to some healthiness conditions on the

probability distributions they contain, which will be discussed — ; the space of all probability

distributions is

Dp = {δ ∶ S → [0, 1] ∣ ∑σ∈S δ(σ) ≤ 1} .

It is possible to see programs as relations from probability distributions to sets of probability dis-

tributions via the Kleisli composition of programs[MM04, Chp. 5] — incidentally, this is similar

to our approach to give pGCL a UTP semantics based on distributions.

From this perspective a probabilistic program is seen as a function that maps an initial state to

a fixed final probability distribution over S ; the space of all deterministic programs is

PD = (S →Dp,⊑) .

Because of nondeterminism each initial state can be mapped to different final probability distri-

butions: it is therefore possible to see a demonic probabilistic program as taking an initial state

to a set of fixed final probability distributions.

Such a set cannot be any subset of Dp, as the distributions it contains must comply with some

healthiness criteria, as mentioned above: this results in the set being up-, convex- and Cauchy-

closed.

The space of all demonic probabilistic programs is therefore

P = (S →H,⊑) ,

2.2. pGCL 17

The probabilistic predicate-transformer model takes a program and turns it
into an expectation transformer. This can be applied to a post-expectation to
derive the corresponding pre-expectation.

pre-expectation

E

expectation transformer

T

post-expectation

E

program
wp

The probabilistic relational model relates a state to an up-, convex- and
Cauchy-closed set of probability sub-distributions.

state

S
program

P
up-, convex- and Cauchy-closed set of probability sub-distributions

C

Figure 2.2: The two semantic models of pGCL from [MM04].

whereH ⊆ ℘Dp is the set of all up-, convex- and Cauchy-closed sets of probability distributions;

these three set properties descend from healthiness conditions that are satisfied only by those

distributions that result from sensible probabilistic programs:

Probabilistic programs are now modelled as the set of functions from ini-

tial state in S to sets of final distributions over S , where the result sets are

restricted by so-called healthiness conditions characterising viable proba-

bilistic behaviour, motivated in detail elsewhere [MM04]. By doing so the

semantics accounts for specific features of probabilistic programs. In this

case we impose up-closure (the inclusion of all ⊑-dominating distributions),

convex closure (the inclusion of all convex combinations of distributions),

and Cauchy closure (the inclusion of all limits of distributions according to

the standard Cauchy metric on real-valued functions [MMS96]). Thus, by

construction, viable computations are those in which miracles dominate (re-

fine) all other behaviours (implied by up-closure), nondeterministic choice

is refined by probabilistic choice (implied by convex closure), and classic

limiting behaviour of probabilistic events (such as so-called “zero-one laws”)

is also accounted for (implied by Cauchy closure). A further bonus is that

(as usual) program refinement is simply defined as reverse set inclusion. We

observe that probabilistic properties are preserved with increase in this order.

adapted from McIver, Cohen, and Morgan [MCM06]

The visual synthesis of the semantic models is presented in Figure 2.2.

Some work by Hehner [Heh04; Heh11] revisits what has been done on pGCL, with a focus on

predicative semantics.

18 Chapter 2. Background and related work

To conclude this brief presentation of pGCL, here is a representative sample of laws about

probabilistic programs, that it is possible to prove in this framework:

A ⊓ B ⊑ A p⊕ B
(A ⊓ B) p⊕C = (A p⊕C) ⊓ (B p⊕C)

(A ⊓C) p⊕ (B ⊓C) ⊑ (A p⊕ B) ⊓C
(A ⊓ B);C = (A;C) ⊓ (B;C)
A;(B ⊓C) ⊑ (A;B) ⊓ (A;C)

2.3 pCSP

On the side of process algebras, probabilistic CSP is obtained by adding probability to Hoare’s

CSP [Hoa85b].

In [Mor+96] we can find one of the possible definitions, where probability is defined in such a

way that it distributes through all operators: this leads to a surprising behaviour in the demonic

choice operator, which is not idempotent.

In this paper they define a refinement operator and discuss the ideas of an associated probabilis-

tic refinement calculus, where an implementation satisfies a specification with null probability:

this shows that it is not reasonable to expect an absolute specification in this setting, but it is

wiser to have a sort of “timed” specification. This is in line with real-world systems, as they

cannot possibly work forever (we simply have to wait long enough for their failure probability

to raise), and for this reason we can specify a time limit for which a specification has to be

satisfied.

A different presentation is given in [Mor04], where pCSP is built on top of probabilistic action

systems written in pGCL and is linked back to the relational semantics of pGCL.

This view of the subject highlights how compositionality of probabilistic CSP is not straight-

forward, because of the introduction of probability: in a way probability splits the deterministic

scenario into several possible different scenarios, and one has to take this into account when

composing probabilistic programs.

They explain this using the metaphor of the colour of a child’s eye, knowing the colour of the

parents’ — too much information has to be brought forward if we want accurate information,

but simply a phenotypical description is unreliable and not sufficient, as what is enough is to

know colour and whether the allele is predominant or recessive. This same kind of information

is the one that has to be sought to have an accurate probabilistic compositionality: in fact if we

observe an event, we would want to be able to identify the facts that have led to that event.

For example if we observe a failure (i.e. a composite event) during the run of a program, we

want to track down the reasons of this failure and to identify what factors (i.e. base events)

have been responsible for the happening.

2.4 UTP

The Unifying Theories of Programming (UTP) research activity seeks to bring models of a wide

range of programming and specification languages under a single semantic framework in order

to be able to reason formally about their integration [HH98; DS06; But10; Qin10].

2.4. UTP 19

Computing science is a new subject, and we have not yet achieved the unifi-

cation of theories that should support a proper understanding of its structure.

[. . .] we face the challenge of building a coherent structure for the intel-

lectual discipline of computing science, and in particular for the theory of

programming. Such a comprehensive theory must include a convincing ap-

proach to the study of the range of languages in which computer programs

may be expressed. It must introduce basic concepts and properties which are

common to the whole range of programming methods and languages. Then

it must deal separately with the additions and variations which are particular

to specific groups of related programming languages.
Hoare and He [HH98]

A success in this area has been the development of the Circus language [OCW09], which is a

fusion of Z and CSP, with a UTP semantics, providing specifications using a “state-rich” process

algebra along with a refinement calculus; recent extensions to Circus have included timed

[SH03] and synchronous [GB09] variants. Recent interest in aspects of the POSIX filestore case

study in the Verification Grand Challenge [FWB08] has led us to consider integrating probability

into UTP, with a view to eventually having a probabilistic variant of Circus.

UTP follows the key principle that “programs are predicates” [Heh84; Hoa85a] and so does not

distinguish between the syntax of some language and its semantics as alphabetised predicates;

theories in UTP are expressed as second-order predicates6 over a pre-defined collection of free

observation variables, referred to as the alphabet of the theory. The predicates are generally used

to describe a relation between a before-state and an after-state, the latter typically characterised

by dashed versions of the observation variables. For example, a program using two variables x

and y might be characterised by having the set {x, x′, y, y′} as an alphabet, and the meaning of

the assignment x ∶= y + 4 would be described by the predicate

x′ = y + 4 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational calculus for

reasoning about programs.

In addition to observations of the values of program variables, often we need to introduce

observations of other aspects of program execution via so-called auxiliary variables. So, for

example, in order to reason about total correctness, we need to introduce boolean observa-

tions that record the starting (ok) and termination (ok ′
) of a program, resulting in the above

assignment having the following semantics:

ok ⇒ ok ′ ∧ x′ = y + 4 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value of y plus four,

with y unchanged).

As an example of a UTP theory using both observation and auxiliary variables, we have shown

in Figure 2.3 the UTP semantics of a variant of Dikstra’s GCL [Dij76] according to the so-

called theory of “designs”, which characterises total correctness for imperative programs. x is a
6 Most definitions are in fact first-order, but we need second-order in order to handle the notion of “healthiness”,

and recursion.

20 Chapter 2. Background and related work

abort ≙ true
skip ≙ ok ⇒ ok ′ ∧ v ′ = v
x ∶= e ≙ ok ∧ e is defined⇒ ok ′ ∧ x′ = e ∧ v ′ = v
P1;P2 ≙ ∃ok m,vm ● P1[ok m,vm/ok ′

,v ′] ∧ P2[ok m,vm/ok ,v]
P1◁ c▷ P2 ≙ c ∧ P1 ∨ ¬c ∧ P2

P1 ⊓ P2 ≙ P1 ∨ P2
c ∗ P ≙ νX ● (P;X)◁ c▷ skip

Figure 2.3: UTP Design semantics of simplified GCL

program variable and v is the list of all other program variables, and thus these are observation

variables, and ok is an auxiliary variable.

A problem with allowing arbitrary predicate calculus statements to give semantics is that it is

possible to write unhelpful predicates such as ¬ok ⇒ ok′, which describes a “program” that

must terminate when not started. In order to avoid assertions that are either nonsense or

infeasible, UTP adopts the notion of healthiness conditions which are monotonic idempotent

predicate transformers whose fixpoints characterise sensible (healthy) predicates. Collections

of healthy predicates typically form a sub-lattice of the original predicate lattice under the

reverse implication ordering [HH98, Chapter 3].

Key in UTP is a general notion of program refinement as the universal closure of reverse impli-

cation7:

S ⊑ P ≙ [P⇒ S]

Program P refines S if for all observations (free variables), S holds whenever P does.

The UTP framework also uses Galois connections to link different languages/theories with dif-

ferent alphabets [HH98, Chapter 4], and often these manifest themselves as further modes of

refinement.

2.4.1 Theory of Designs

The theory of designs patches the relational theory, in the sense that predicates from the rela-

tional theory fail to satisfy the following equality:

true;P = true

In fact according to the relational theory true is a left identity of the sequential composition

operator:

true;P ≡∃vm ● true{v
m/v ′} ∧ P{v

m/v}
≡∃vm ● true ∧ P{v

m/v}
≡∃vm ●P{v

m/v}

7Square brackets denote universal closure — [P] asserts that P is true for all values of its free variables.

2.4. UTP 21

Which reduces to true if v ∈ fv(P), or to P otherwise.

This has disastrous consequences, as this enables us to show that a program can recover from

a never-ending loop:

true ∗ skip ≡ lfpX ●X ≡ � ≡ true

. . . which is surprising, to say the least.

The theory of designs uses an additional auxiliary variable ok (along with its dashed version

ok ′
) to record start (and termination) of a program.

A design (specification) is made of a precondition Pre that has to be met when the program

starts, and if so the program establishes Post upon termination, which is guaranteed:

ok ∧Pre ⇒ ok ′ ∧Post

for which we use the following shorthand:

Pre ⊢ Post

The semantics of the assignment x ∶= y + 3 in this theory is the following:

true ⊢ x′ = y + 3 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value of y plus three,

with y unchanged).

The behaviour of true with respect to sequential composition is the desirable one, as now we

have:

true;(Pre ⊢ Post) ≡true;ok ∧Pre ⇒ ok ′ ∧Post
≡∃ok m,vm ● true{okm/ok ′}{v

m/v ′} ∧ (ok m ∧Pre{v
m/v}⇒ ok ′ ∧Post)

≡∃ok m,vm ● true ∧ (ok m ∧Pre{v
m/v}⇒ ok ′ ∧Post)

≡∃ok m,vm ● ok m ∧Pre{v
m/v}⇒ ok ′ ∧Post

≡true

and therefore true is a left zero for sequential composition.

Designs form a lattice, whose bottom and top elements are respectively:

abort ≙ false ⊢ false ≡ false ⊢ true

and

miracle ≙ true ⊢ false ≡ ¬ok

It should be noted that miracle is a (infeasible) program that cannot be started.

Valid designs are predicates R which comply with four healthiness conditions [HH98]. The first

one (unpredictability, H1) excludes from observation all programs that have not started, and

therefore restricts valid relations to those such that:

R = (ok ⇒ R)

22 Chapter 2. Background and related work

All H1-healthy predicates satisfy the left zero and left unit laws:

true;R = true and skip;R = R

The second one (possible termination, H2) states that a valid relation cannot require nontermi-

nation:

R{false/ok ′}⇒ R{true/ok ′}

The third one (dischargeable assumptions, H3) states that preconditions cannot use dashed vari-

ables. All H3-healthy predicates satisfy the right unit law:

R;skip = R

The fourth one (feasibility or excluded miracle, H4) requires the existence of final values for the

dashed variables that satisfy the relation:

∃ok ′
,v ′ ● R = true

H4 excludes miracle from the valid designs, and this implies that all H4-healthy predicates satisfy

the right zero law:

R;true = true

This condition cannot be expressed as an idempotent healthiness transformer, and does not

preserve the predicate lattice structure. It serves solely to identify and/or eliminate predicates

that characterise infeasible behaviour.

2.4.2 Probabilistic UTP

There has already been a certain amount of work looking at encoding probability in a UTP
setting. He and Sanders have presented an approach unifying probabilistic choice with stan-

dard constructs [HS06], and this work provides an example of how the laws of pGCL could be

captured in UTP as predicates about program equivalence and refinement. However only an

axiomatic semantics was presented, and the laws were justified via a Galois connection to an

expectation-based semantic model.

Sanders and Chen then explored an approach that decomposed demonic choice into a combi-

nation of pure probabilistic choice and a unary operator that accounted for demonic behaviour

[CS09]. There they commented on the lack of a satisfactory UTP theory which could prove

effective towards. . .

. . . the so-far-unachieved goal of unifying probabilism with other program-

ming constructs in the style of Unifying Theories of Programming.

Chen and Sanders [CS09]

A probabilistic BPEL-like language has recently been described by He [He10] that gives a UTP
-style semantics for a web-based business semantics language. This language is GCL with ex-

tra constructs to handle probabilistic choice and compensations and coordination operators,

including exception handling. The UTP model that is developed does not relate before- and

after-variables of the same type, but instead uses predicates to encode a relationship between

2.4. UTP 23

an initial state and a final probability distribution over states.

In relatively recent times a paper by Jun Sun et al.[SSL10] has described a probabilistic anal-

ysis of the likelihood of a program in a medical device satisfying a safety specification, given

that random, but hopefully unlikely events, can prevent the correct behaviour, even if the pro-

gram is the best one possible. Their probabilistic model checking directly corresponds to the

probabilistic refinement we are going to present in §3.7.1.

What all the treatments above have in common is that the UTP predicates relate an initial

program variable state (σ) to a final probability distribution (δ′) over states, so the relation

is not homogeneous. This complicates the definition of sequential composition (which has to

involve some form of Kleisli composition) and also makes building links to homogeneous UTP
theories more difficult.

What is still missing is a UTP theory that is defined in terms of predicates based on before/after

relations over the same observation space.

Several UTP theories are based on homogeneous relations: this means that all of these theories

have uniform definitions of many common language features, such as sequential composition.

For example the collection of theories surrounding Circus are all uniform, so the development

of a homogeneous probabilistic UTP theory would open way towards a reasonably easy devel-

opment of a probabilistic theory of Circus .

We believe the ideal such theory would use observations that corresponded to program variables

and to other aspects of behaviour such as termination, in a manner analogous to the UTP theory

of designs: here we present a framework based on probability distributions over the set of

possible states, relating a before-distribution (δ) to an after-one (δ′), effectively making use

of one observation. Key contributions here are the facts that we provide a means by which

reasoning can still be carried out at program variable level, and we have uncovered a generic

notion of choice that subsumes probabilistic, demonic and conditional choices.

24 Chapter 2. Background and related work

CHAPTER 3

A framework to deal with
probability distributions over the

state space

This chapter is dedicated to a quite detailed presentation of the framework we have developed:

we have decided to privilege clarity of the exposition over pedantic details, which are therefore

presented in the appendices along with many of the proofs for properties and theorems.

The fundamental reason why we felt the need of a different framework is that the existing ones

do not integrate very well in the UTP framework, in the sense that dealing with probability is

dealing with a great amount of information and complex constructs at a very low level.

In particular one of the key strengths of our framework is the use of homogeneous relations

among distributions on the state space to model programs: in previous work the approach

was to relate a single state to a distribution on the state space, which contains information on

the probability of the different resulting states. The non-homogeneity of this relation makes

sequential composition a non-trivial matter.

Also, in order not to get bogged down in unnecessary details, much of the complexity under is

hidden under the hood, so that we can reason (quite) smoothly on probabilistic programs at a

higher level.

These features together allow us to deal in a straightforward way with both nondeterminis-

tic and probabilistic choice: we deem this to be an important step towards the development

of general probabilistic theories of a variety of languages already treatable in UTP in their

non-probabilistic version, such as CSP or Circus, as we believe it helps overcome the current

unsatisfactory approaches bringing probabilism and nondeterminism together [CS09].

Coherently with the UTP approach, programs are captured as predicates with a suitable alpha-

bet.

Hehner and Hoare wrote that “programs are predicates” [Heh84; Hoa85a], we affirm that

probabilistic programs are predicates too.

3.1 States and distributions, informally

Before presenting formally the foundations of our framework, we find it useful to give a gen-

eral and intuitive overview, where we sacrifice formality and rigour in favour of a more relaxed

introduction of the basic concepts: this should allow the reader to have an intuitive under-

standing of the key points, which we are going to introduce formally in the remainder of the

chapter.

25

26 Chapter 3. A framework to deal with probability distributions over the state space

UTP predicates usually involve relations between variables from the predicate alphabet and the

corresponding values: some people feel that a tempting approach may be to try a naïve (and

quite straightforward) generalization of this standard situation by relating a variable to a pair

containing its possible value and the corresponding probability.

In this case the idea is to deal with objects with the following shape1:

V → (W → [0..1]) ,

where V and W are appropriate sets of program variables and corresponding values, respec-

tively.

It should be quite evident that this is not a satisfactory approach. At the risk of stating the

obvious, the reason is that this approach takes each variable individually, so it assumes the

independence of the value assumed by each variable from that of any other — and this is

clearly an assumption which is wrong in general.

To see this let us consider an example, where a program with variables x,y starts in a state

where x and y are each independently initialized to 0 with probability 1/2 and to 1 with prob-

ability 1/2. This program consists simply in the assignment x ∶= y and so the situation after the

program has run can be described as follows, with obvious meaning of the notation:

x↦
⎛
⎝
0↦ 1/2
1↦ 1/2

⎞
⎠
, y↦

⎛
⎝
0↦ 1/2
1↦ 1/2

⎞
⎠
.

The information contained in this description is incomplete, as it does not tell us anything about

the relation between the variables; in this case it seems we are able to make predictions on the

expected value of each variable taken separately2 (e.g. the probability of x = 1 is 1/2), but as

soon as we try to reason on a more complex event, such as the probability of x = y, things go

terribly wrong. If we crudely look at the numbers, the probability we are looking for is:

P(x = y) = P(x = 0) ⋅P(y = 0) +P(x = 1) ⋅P(y = 1) = 1/2 .

This is quite an upsetting “I-told-you-so” result, as all the program did was to assign the value

of y to x, so we would have expected P(x = y) = 1.
So, although such an easy generalization may (?) look appealing, this example clearly shows

how this is not a viable approach, as it loses the entanglement among the variables.

A better approach should rather use objects with this other shape:

(V →W)→ [0..1] .

The example above with this different approach gives the following description:

⎛
⎝
x↦ 0
y↦ 0

⎞
⎠
↦ 1/2,

⎛
⎝
x↦ 1
y↦ 1

⎞
⎠
↦ 1/2 .

This approach assigns different probability to the different mappings σ ∶ V → W that relate

1We underline whenever we talk about vectors or sets of vectors: A stands for a n-th dimensional vectorial space
A ×A × ⋅ ⋅ ⋅ ×A, for an appropriate n.

2But only because the program is that easy, in general we cannot even do this!

3.1. States and distributions, informally 27

each variable to its corresponding value in the different situations — these are the different

program states — , so the objects we are using have this shape:

S → [0..1] ,

where S is the set of all program states (state space).

With the position σij ≙ {x↦ i, y↦ j} we can rewrite the output of the example above as:

σ00 ↦ 1/2, σ11 ↦ 1/2 .

This mapping from program states to probability is what we term probability distribution, a

function δ ∶ S → [0..1] which has the additional property that the sum of the probabilities of all

program states in S (the weight of the distribution, ∥δ∥) cannot exceed 1.

If we define the distributions

δ ≙ {σ00 ↦ 1/4, σ01 ↦ 1/4, σ10 ↦ 1/4, σ11 ↦ 1/4}
δ′ ≙ {σ00 ↦ 1/2, σ11 ↦ 1/2} ,

we can describe the full behaviour of the program in the example by saying that it has trans-

formed the (before-)distribution δ into the (after-)distribution δ′ — in UTP we usually use a

dash to mark a variable, in order to refer to the new value v ′ it contains: the same convention

is adopted here, where we use dashes in a similar way to denote after-distributions (δ′) and

after-states (σ′).

This transformation has been done by changing the probability associated to each state: the

assignment modifies the variable mapping so that each before-state σ becomes the after-state

σ′, therefore probability associated to σ has to be “transferred” to σ′.

More in general, given an assignment v ∶= e, where e is a vector of expressions, if we perform

this operation on every state of a distribution δ we obtain the distribution δ{∣e/v ∣}: the postfix

operator {∣e/v ∣} modifies δ to reflect the modifications introduced by the assignment — the

intuition behind this, roughly speaking, is that all states σ where the expression e evaluates

σ00

σ01

σ10

σ11

1/4

1/4

1/4

1/4

{∣y/x∣}

δ′ = δ{∣y/x∣}δ

σ00

σ01

σ10

σ11

1/2

0

0

1/2

Figure 3.1: The assignment in the example.

28 Chapter 3. A framework to deal with probability distributions over the state space

to the same value w = evalσ(e) are replaced by a single state σ′ = (v ↦ w) that maps to a

probability that is the sum of the probabilities of the states it replaces.

δ{∣e/v ∣} ≙ {σ′ ↦ ∑σ δ(σ) ∣ σ ∈ dom(δ) ∧ evalσ(e) = σ′(v)} .

Using the postfix notation, we have that the program in the example returns the after-distribution

δ′ = δ{∣y/x∣}, as shown in Figure 3.1.

It is also possible to operate on distributions by point-wise lifting in an obvious way operators

such as addition, product and multiplication by a scalar number.

An interesting case is the one when we multiply a probability distribution by what we term a

weighting distribution, which is a distribution π mapping states to real numbers in the interval

[0..1], without the constraint ∥π∥ ≤ 1. The resulting probability distribution, noted δjπo, has

the property of being point-wise smaller than δ, and will have an important role when defining

choice constructs:

δjπo ≙ {σ↦ π(σ) ⋅ δ(σ) ∣ σ ∈ dom(δ)} .

Another example is when we want to select the subset of a distribution δ, which comprises only

states where a condition c (which is a boolean expression) is satisfied; for reasons that will

become clear later on, we have chosen to overload the above notation and note this as δjco:

δjco ≙ {σ↦ δ(σ) ∣ σ ∈ dom(δ) satisfies c} .

As the probability of a condition c to be true on a distribution δ can be calculated by adding up

the probabilities relative to all states that satisfy such a condition, we can express this probabil-

ity using the notation introduced so far as ∥δjco∥.

This concludes our informal introduction of the foundational elements of our framework; the

following §3.2 gives the main definitions, whereas Appendix A is dedicated to a more rigor-

ous and pedantic presentation of the framework (as a result it is rather dense and filled with

technicalities).

3.2 Definitions

A state σ is a map σ ∶ V →W that maps each program variable to the corresponding value.

A distribution χ is a function χ ∶ S → R that assigns a weight to each state.

The weight of a distribution is defined as follows:

∥χ∥ ≙ ∑
σ∈dom(χ)

χ(σ)

Among distributions, there are two notable kinds:

• a weighting distribution π is a distribution such that img(π) = [0..1];

• a probability distribution δ is a weighting distribution with the additional property

that ∥δ∥ = 1.

3.3. Programs 29

We can perform on distributions the following operations:

• point-wise addition:

(χ1 + χ2)(σ) ≙ χ1(σ) + χ2(σ) ;

• point-wise multiplication:

(χ1 ○ χ2)(σ) ≙ χ1(σ) ⋅ χ2(σ) ;

• multiplication by a scalar a ∈ R:

(a ⋅ χ)(σ) ≙ a ⋅ χ(σ) ;

• restriction through a condition:

(χjco)(σ) ≙ { χ(σ) if evalσ(c) is true
0 otherwise;

• sometimes it is useful to see a point-wise multiplication as a restriction through a distribu-
tion:

χ1jχ2o ≙ χ1 ○ χ2 ;

• remap:

δ{∣e/v ∣} ≙ {σ′ ↦ ∥δkInv(v ∶= e,{σ′})p∥ ∣ alph(σ′) ∈ alph(δ)}

3.3 Programs

We see programs as predicates relating a before- and after-distribution pair: the body of the

program is a distribution-transformer, which acts on an initial before-distribution δ and returns

a final after-distribution δ′ that accounts for the modifications it caused.

We capture this relation as a predicate A(δ, δ′), which is true if and only if δ′ is a possible

resulting distribution of program A when the initial distribution is δ. When it is clear from the

context, we can simply write A.

In case of nondeterministic programs there are potentially many possible resulting distributions:

we define the program image of δ as the set of all possible after-distributions δ′ that can result

from running the program from an initial distribution δ. Clearly in the case of a deterministic

program, the corresponding program image is a singleton set: we will discuss deterministic

program first (§3.3.1) and postpone the discussion of nondeterminism till §3.4

With a bit of notation overload, for the image of δ after a program A we would write the

following:

A(δ) ≙ {δ′ ∣ A(δ, δ′)} .

We can extend the notion of program image to the case of a set of probability distributions X
with the following definition:

A(X) ≙ ⋃
δ∈X

A(δ) .

In the case of a program A returning always the same program image regardless of the initial

distribution, viz. when ∀δ1, δ2 ● A(δ1) = A(δ2), we may simply write A instead of A(δ) or

A(X).

30 Chapter 3. A framework to deal with probability distributions over the state space

In order to help the reader remember this notation, we give the rationale behind it. For a

program A, the possible notations involving its name are:

• A(δ, δ′), which is the predicate associated with the program. This is a function A ∶ Dp ×
Dp → B that returns true if the before- and after-distributions passed as arguments are

compatible: it is the relational view of “programs as predicates”;

• A(δ), which is the program image of δ. This is a function A ∶ Dp → ℘Dp that returns the

set of after-distributions compatible with δ as before-distribution: it is the functional view

of “programs as distribution-transformers”;

• A(X), which is the program image of X . This is a function A ∶ ℘Dp → ℘Dp that returns

the set of after-distributions compatible with at least one of the elements of X as before-

distribution: it is again the functional view of “programs as distribution-transformers”,

though they actually act on sets of distributions;

• A could stand either for A(δ, δ′), A(δ) or A(X). In the first case it is the standard

convention of UTP to omit input and output variables to make formulas more readable,

whereas in the second and third cases it is the standard omission of the argument for

constant functions. The context allows us to tell the difference between the two uses and

no confusion should arise, as A(δ, δ′) ∈ B while A(δ),A(X) ∈ ℘Dp.

The evaluation of the weight of the program image restricted by a condition c returns informa-

tion on the probability of the condition c being satisfied by program A when starting from the

distribution δ:

∥A(X)jco∥ = {∥δ′jco∥ ∣ δ′ ∈ A(X)} .

This is a set of probabilities and the effective probability of c is nondeterministically chosen

from here: it is therefore possible to extract information on the minimum and the maximum

probability of c (a precise value in the case of a singleton set).

We refer to this set as the weight of the program A with respect to the condition c.

3.3.1 Deterministic programs

Initially we look at deterministic programs, where the relation from a before-distribution δ to

the corresponding after-distribution δ′ is injective, viz. for each δ there is one and only one

corresponding δ′ which is compatible with the possible outcome of a program:

∀δ∃!δ′ ●A(δ, δ′) .

We are now going to define a set of deterministic constructs, which can remind of those from

pGCL , and give them a semantics based on the distributional framework introduced so far:

• the program skip does not produce any modification to the original distribution, therefore

the after-distribution δ′ equals the before-distribution δ:

skip ≙ δ′ = δ ;

3.3. Programs 31

• an assignment v ∶= e transforms the before-distribution δ by application of the corre-

sponding remap operation, as described in §A.3.4:

v ∶= e ≙ δ′ = δ{∣e/v ∣} ;

• the sequential composition of two programs returns the after-distribution δ′ output by the

second program when it operates on the after-distribution δm resulting from the operation

of the first program on the initial before-distribution δ:

A;B ≙ ∃δm ●A(δ, δm) ∧ B(δm, δ′) ;

• the conditional choice between two programs depending on the evaluation of a condi-

tion effectively splits the before-distribution into two disjoint parts and operates on them

according to the instructions of the two programs, before finally merging them together

into a single after-distribution:

A◁ c▷ B ≙ ∃δA, δB ●A(δjco, δA) ∧ B(δj¬co, δB) ∧ δ′ = δA + δB

• the probabilistic choice between two programs also splits the before-distribution into two

parts, which are nothing but the original before-distribution scaled down by factors p and

(1 − p) respectively:

A p⊕ B ≙ ∃δA, δB ●A(p ⋅ δ, δA) ∧ B((1 − p) ⋅ δ, δB) ∧ δ′ = δA + δB

• the loop construct has a standard definition based on Tarski’s fixed point theorem [Tar55]

and is, in particular, the weakest fixpoint, with respect to the refinement ordering dis-

cussed in the following §§3.6,3.7, of the function below:

c ∗A ≙ lfpX ● (A;X)◁ c▷ skip

More on probabilistic choice

We want to make a few remarks on probabilistic choice.

First of all it is worth noticing that, from the above definition of probabilistic choice, we have

the following equivalence:
A p⊕ B ≡ B (1−p)⊕A

In fact:
A p⊕ B

≡ [d:P:Ch:Prb] — §B.3

∃δA, δB ●A(p ⋅ δ, δA) ∧ B((1 − p)δ, δB) ∧ δ′ = δA + δB
≡ Arithmetic

∃δA, δB ●A((1 − (1 − p)) ⋅ δ, δA) ∧ B((1 − p)δ, δB) ∧ δ′ = δA + δB

≡ [d:P:Ch:Prb]

B (1−p)⊕A

This is a special case of Proof C.28.

32 Chapter 3. A framework to deal with probability distributions over the state space

Moreover we have the following property:

A p⊕ (B q⊕C) ≡ (A r⊕ B) s⊕C ∧ p = rs ∧ (1 − s) = (1 − p)(1 − q)

In fact:

A p⊕ (B q⊕C)
≡ [d:P:Ch:Prb] — §B.3

∃δA, δBC ●A(p ⋅ δ, δA) ∧ (B q⊕C)((1 − p) ⋅ δ, δBC) ∧ δ′ = δA + δBC
≡ [d:P:Ch:Prb] ∧ δBC = δB + δC (One-point rule)

∃δA, δB, δC ●A(p ⋅ δ, δA) ∧ B(q(1 − p) ⋅ δ, δB) ∧C((1 − q)(1 − p) ⋅ δ, δC) ∧ δ′ = δA + δB + δC
≡ (1 − p)(1 − q) = (1 − s) ∧ p = rs⇒ q(1 − p) = (1 − r)s

∃δA, δB, δC ●A(rs ⋅ δ, δA) ∧ B((1 − r)s ⋅ δ, δB) ∧C((1 − s) ⋅ δ, δC) ∧ δ′ = δA + δB + δC
≡ [d:P:Ch:Prb] ∧ δAB = δA + δB (One-point rule)

∃δAB, δC ● (A r⊕ B)(s ⋅ δ, δAB) ∧C((1 − s) ⋅ δ, δC) ∧ δ′ = δAB + δC
≡ [d:P:Ch:Prb]

(A r⊕ B) s⊕C

A few words on the probability p, that parametrises this operator: this may be a number in the

range [0, 1] in the simplest setting, but in a more general case it is one of the possible values of a

stochastic variable P that follows a probability distribution, whose probability density function

fP has the property of being compact in the range [0, 1]:

∫
+∞

−∞
fP(p)dp = ∫

1

0
fP(p)dp = 1

The distribution of this stochastic variable need not depend on the program variables, but in an

even more general case may depend on other parameters q1, q2, . . . , qn:

∫
+∞

−∞
fPQ(p,q1, q2, . . . , qn)dp = ∫

1

0
fPQ(p,q1, q2, . . . , qn)dp = fQ(q1, q2, . . . , qn)

3.4 Nondeterminism

All deterministic programs presented in §3.3.1 are characterised by the fact that their pro-

gram image for any before-distribution is always a singleton set, viz. any before-distribution is

uniquely transformed into a precise after-distribution.

When we introduce nondeterminism this does not hold true anymore as for some before-

distribution there are more than one possible after-distributions that can satisfy the predicate

representing a nondeterministic program.

The most nondeterministic program is the aborting program, which poses (almost) no restric-

tions on the possible relations between before- and after-distributions:

abort ≙ ∥δ′∥ ≤ ∥δ∥ ,

so that the only restriction given by abort is that the distribution weight cannot be increased.

3.4. Nondeterminism 33

A different way for nondeterminism to arise is when a program has the possibility to choose

internally between alternative execution paths:

A ⊓ B ≙ ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB .

Nondeterministic choice allows picking any weighting distribution π to alter the weight of each

state before applying the alternative programs and summing the results.

This definition is different than the one one might expect: according to the relational semantics

of pGCL from [HSM97; MM04], which sees programs as relations from a state σ to a probability

distribution, we have that3

(A ⊓ B).σ = ∪p∈[0..1](A p⊕ B).σ

If a demonic choice is performed on a state, the set of resulting distributions is that containing

all possible distributions resulting from a probabilistic choice with probability p varying in the

range [0..1].
Seeing this, one could (reasonably?) expect the following definition for nondeterministic choice

in our framework:

A ⊓ B ?= ∃p ●A p⊕ B

However this definition does not work. In particular, with the above definition, we can prove

the following (which is most definitely not a law of pGCL):

(A ⊓ B); (C p⊕D) = (C p⊕D); (A ⊓ B) (!?)

It describes a demonic choice that is both history-aware, and prescient, and this latter ability to

look into the future is undesirable, and infeasible.

The key point to note is that the first statement is talking about the possible resulting distribu-

tions starting from one single state, whereas this last definition considers all possible starting

states. As a result the set of after-distributions that satisfy this definition of demonic choice (for

a given before-distribution) is strictly smaller then the set of after-distributions satisfying the

first statement.

The solution that led to our definition is therefore that of taking a weighting distribution π,

use it with its complementary distribution π̄ = ι − π) to weight the distributions resulting from

the left- and right-hand side respectively, and existentially quantify it: we obtain some after-

distributions which are the result of composing programs where p is not constrained to be

constant over all states, and these cases were all ruled out in the proposed definition by the

single quantification of p valid for all states.

Usually we talk about demonic nondeterminism when we are expecting the worst-case be-

haviour, to model something that behaves as bad as it can for any desired outcome.

Our definition of nondeterministic choice per se has no such behaviour, but it will show up with

the definition of refinement that we give in §3.7 or, more in general, whenever we explicitly

choose to focus on the worst-case scenario: for this reason we refer to it as to the nondetermin-

istic choice, rather than to the demonic choice.

The nondeterministic choice operator is idempotent according to the above definition, as cus-

3Here we are using the point notation for function application, as in [MM04].

34 Chapter 3. A framework to deal with probability distributions over the state space

tomary in pGCL and UTP.

There are some frameworks where nondeterministic choice is not idempotent, for example

the probabilistic CSP from [Mor+96]. This happens when on both sides we have the same

program containing a probabilistic choice and this choice is resolved independently on each side

before the nondeterministic choice is performed, then idempotency does not hold. Nonetheless

idempotency would hold if the probabilistic choice is resolved after the nondeterministic choice

is made — this is the behaviour that we can find in our framework.

We can reproduce the other behaviour if we run the program twice with probabilistic choice on

local variables, and then we merge the outputs by means of a nondeterministic choice: this is

a behaviour that has nothing to do with idempotency — we keep the actions of one program

separate from the other’s, so we are actually dealing with two different programs that share the

same specification.

3.4.1 A generic choice construct

We can see how all choice constructs look quite similar, or at least they follow a common

pattern. The reason is that all choice constructs can be seen as a specific instance of a generic

choice construct:

choice(A,B,X) ≙ ∃π, δA, δB ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB

where X ⊆ Dw and Dw is the set of all weighting distributions.

This construct covers conditional, probabilistic and nondeterministic choice (and more), in fact

we have that:

• for X = {ιjco} we have conditional choice:

A◁ c▷ B = choice(A,B,{ιjco})

• for X = {p ⋅ ι} we have probabilistic choice:

A p⊕ B = choice(A,B,{p ⋅ ι})

• for X = Dw we have nondeterministic choice:

A ⊓ B = choice(A,B,Dw)

Moreover we can see the disjunction of two programs as another kind of choice, where X =
{ε, ι}:

A ∨ B = choice(A,B,{ε, ι})

This is the “usual” definition of nondeterministic choice in standard UTP: we can see the differ-

ence with the definition of nondeterministic choice we have given, because the possible after-

distribution after a disjunction are those obtained by running the two programs separately,

whereas with nondeterministic choice we obtain after-distributions which are superpositions of

those obtained by the disjunction.

3.4. Nondeterminism 35

Finally we can also use this generic construct to create new kinds of choices, other than the

more traditional ones:

• for X = {p ⋅ ιjco} we have the conditional probabilistic choice, which behaves like A with

probability p and like B with probability (1 − p) in the case when c holds, but it behaves

like B if c does not hold:

A◁ pc▷ B = choice(A,B,{p ⋅ ιjco})

• for X = {p ⋅ ιjco + q ⋅ ιj¬co} we have the switching probabilistic choice, which is equivalent

to a probabilistic choice with parameter p if c holds, with parameter q if c does not hold:

A p◁c▷q⊕ B = choice(A,B,{p ⋅ ιjco + q ⋅ ιj¬co})

• for X = Dwjco we have the conditional nondeterministic choice, which behaves like A ⊓ B
if c holds, but it behaves like B if c does not hold:

Ac⊓ B = choice(A,B,Dwjco)

• for X = {π ∣ ∀σ ● p ≤ π(σ) ≤ 1 − q}, where p + q ≤ 1, we have the nondeterministic
probabilistic choice, which guarantees a probability p to behave like A and a probability q

to behave like B:

Ap⊕qB = choice(A,B,{π ∣ ∀σ ● p ≤ π(σ) ≤ 1 − q})

• for X = {p ⋅ ι ∣ p ∈ [0..1]} we have the fair nondeterministic choice, which reweighs by p

or (1 − p) the entire before-distributions — and therefore multiplies the weight of each

state in the before-distribution by the same number p or (1 − p) — as opposed to the

nondeterministic choice which can change individually the weight of each state:

A
fair⊓ B = choice(A,B,X = {p ⋅ ι ∣ p ∈ [0..1]}) = ∃p ●A p⊕ B

It is worth noticing that this kind of choice is different from nondeterministic choice (we can

view it as a less general form of it), in fact from this definition we have that:

∀ δ ● (A fair⊓ B)(δ) ⊂ (A ⊓ B)(δ)

A few laws on choice operators

Here is a non-comprehensive list of interesting laws on choice operators, that hold in our frame-

work and that can also be found in pGCL:

Idempotency of choice operators : ∀X ● choice(A,A,X) ≡ A

Discarding right-hand option : choice(A,B,{ι}) ≡ A

Distributivity of choice operators :

choice(A, (choice(B,C,X2)),X1) ≡ choice((choice(A,B,X1)), (choice(A,C,X1)),X2)

36 Chapter 3. A framework to deal with probability distributions over the state space

Sequential composition : choice(A,B,X);C ≡ choice(A;C,B;C,X)

Choice flipping : ∀X ● choice(A,B,X) ≡ choice(B,A, X̄) ∧ X̄ = ⋃π∈X π̄

Monotonicity of generic choice : ∀δ ●X1 ⊆ X2 ⇒ choice(A,B,X1)(δ) ⊆ choice(A,B,X2)(δ)

These properties are proven in Appendix C.

3.4.2 Program structure

We can see that all of the program encountered so far can be written as a predicate of the

following shape4:

∃QuantOf(A) ● δ′ = BodyOf(A) ○ δ ∧ OtherCndOf(A)

where:

• BodyOf(A) is a sequence of modifications (i.e. interleaved restrictions and remapping

operations) that are applied to δ in order to obtain the corresponding δ′;

• QuantOf(A) is a list of weighting distributions — all of the quantified probability distribu-

tions can be eliminated via the one-point rule, so that δ′ can be expressed as BodyOf(A)○δ;

• OtherCndOf(A) is a list of any other conditions that are asserted by the program — for

example in the generic choice operator.

3.5 Healthiness conditions

In UTP we have the key notion of “healthiness condition”, which is a property that characterises

all healthy predicates, i.e. all those predicates that “make sense”; before moving further on, we

are going to list quickly the healthiness conditions that characterise this framework.

The first one (feasibility, Dist1) assures that for any program P (δ, δ′) the probability of termina-

tion cannot be greater than that of having started:

∥δ′∥ ≤ ∥δ∥

It is worth noticing that abort is often defined as true: the definition we gave in this framework

is the weakest one that is healthy (and feasible) as well.

Another healthiness condition (monotonicity, Dist2), states that, for any deterministic program

P , increasing δ implies that the resulting δ′ increases as well:

P (δ1, δ′1) ∧P (δ2, δ′2) ∧ δ2 > δ1 ⇒ δ′2 ≥ δ′1

A third healthiness conditions is that multiplication by a (not too large and non-negative5)

constant distributes through commands (scaling, Dist3):

∀a ∈ R+ ∧ ∥a ⋅ δ∥ ≤ 1 ●P (δ, δ′)⇔ P (a ⋅ δ,a ⋅ δ′)
4We can prove this by structural induction of the language syntax.
5 Mathematically the relation holds also if this is not met, but in that case a ⋅ δ is not a probability distribution.

3.6. The program lattice 37

∅

. . .

{δ′A} {δ′B} . . .

{δ′A, δ′B}

.

. . .

Dp

false

. . .

A B . . .

A ⊓ B

.

. . .

true

Figure 3.2: Program image lattice (⊆ relation) and program lattice (⇒ relation), represented in
the case when δ ≠ ε.

Proofs of these healthiness conditions are straightforward to be derived if we see the space of

distributions as a vector space and can be found in §B.3.2.

Finally the purely random nondeterministic model adopted in the distributional framework

yields a fourth healthiness condition Dist4 (convexity):

(P1 ⊓P2)(δ, δ′)⇒ δ′ ≥ min(P1(δ) ∪P2(δ))

This poses restrictions on the space of possible program images, which is strictly a subset of

℘D: this is analogous to the He set H [MM04] as it is the set of all up-closed, Cauchy-closed,

convex-closed sets of distributions.

3.6 The program lattice

Programs in standard UTP form a complete lattice with respect to the partial order induced by

the implication relation [HH98].

Here we have a similar situation, as program images (parametric in δ) form a lattice with

respect to the partial order induced by the set-inclusion relation: this relation among program

images is isomorphic to the implication relation among programs:

A(δ) ⊆ B(δ) ⇔ A(δ, δ′)⇒ B(δ, δ′)

38 Chapter 3. A framework to deal with probability distributions over the state space

In the case of δ = ε, the lattice collapses to a single element {ε}. Otherwise the bottom element

is clearly the set Dp of all probability distributions, which is nothing but the program image of

the aborting program abort , and a top element which is the empty set ∅.

In standard UTP the program lattice is completed by the top element miracle, which is false:

we can see that we have a similar situation here, as a program which is satisfied by no after-

distribution (viz. for which the corresponding program image is empty) is false.

Nevertheless we cannot define miracle in this way, because for any A we would have:

A ⊓miracle = false = miracle

whereas, according to the standard theory:

A ⊓miracle = A.

We obtain this same behaviour with the following definition:

miracle(δ, δ′) ≙ (δ = ε) ∧ (δ′ = ε) .

Which means that miracles can happen, but only with null probability.

The program image miracle(δ) is the empty set ∅ if δ ≠ ε and {ε} otherwise: this shows that

miracle is the top element of the program lattice.

3.7 Refinement

In standard UTP the refinement relation is the universal closure of the reverse implication, but

when probability comes into play this is not enough any longer.

We want to capture as refinement the concept of a program being at least “as good” as an-

other for all conditions, when it comes to the probability of satisfying them: this can be for-

malized by saying that a program A is refined by a program B when for all conditions and

(before-)distributions, the minimal probability that an (after-)distribution from A(δ) satisfies a

condition is less than that for B(δ).
We are going to give a definition for this in terms of a relation between the corresponding

program images:

A ⊑ B ≙ ∀z, δ ●min(∥A(δ)jzo∥) ≤ min(∥B(δ)jzo∥)

The use of min here mimics the way it is used in pGCL to define demonic choice.

This notion of refinement creates an order relation that is exactly the one created by the refine-

ment relation used for pGCL [MM04]: the sets ∥A(δ)jzo∥ and ∥B(δ)jzo∥ contain the probabilities

that the condition z is verified according to the possible after-distributions, and this definition

requires that for any before-distributions the minimal probability for program A to satisfy z

must be lower or equal than the minimal probability for program B to satisfy z — this is the

definition given for pGCL.

The whole point of defining refinement this way was to show the similarity with pGCL; moving

further and taking advantage of the structure of our framework, we can give an alternative

3.7. Refinement 39

definition:

A ⊑ B ≙ ∀δ ● B(δ) ⊆ (A(δ))△

where the refinement set (A(δ))△ is the (up-, convex- and Cauchy-closed) set defined as:

(A(δ))△ ≙ {δ△ ∣ δ′ ≤ δ△ ≤ ι ∧ δ′ = ∑
δ′
i
∈A(δjπio)

δ′i ∧ ∑πi = ι}

This set includes all after-distributions that are at least as great as those obtainable because of

the nondeterminism in the behaviour of A: a program whose image lies in this set for all δ is a

refinement of A, and hence the term “refinement set”.

From the above definition(s) we can easily demonstrate familiar refinement relations — the

proofs boil down to expressing the refinement set of the left-hand side and the program images

of the right-hand side:
A ⊑ miracle

A ⊓ B ⊑ A
A ⊓ B ⊑ B

And also:
A ⊓ B ⊑ A p⊕ B
A ⊓ B ⊑ A◁ c▷ B

This comes as no surprise, in fact:

A p⊕ B = ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB ∧ π = p ⋅ ι
A◁ c▷ B = ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB ∧ π = ιjco

Concerning disjunction, we have that refinement fails to distinguish it from nondeterministic

choice.

In fact we clearly have that:

A ⊓ B ⊑ A ∨ B

because

A ∨ B = ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB ∧ π ∈ {ε, ι} ,

but we also have that

A ∨ B ⊑ A ⊓ B

as their refinement sets are the same:

∀δ ● ((A ∨ B)(δ))△ = (A ⊓ B)(δ) = ((A ⊓ B)(δ))△

We can use mutual refinement as a notion of equivalence:

A ⊓ B⇔ A ∨ B.

This result is due to the definition we have used for refinement, as we have used the traditional

view of nondeterminism as demonic nondeterminism, i.e. that returning the worst possible re-

sult for any desired outcome: this is in line with the traditional use of disjunction as a definition

40 Chapter 3. A framework to deal with probability distributions over the state space

for demonic choice.

Alternative definitions of refinement may take advantage of the possibility to distinguish be-

tween the operators ⊓ and ∨ — this is left for future work.

In general, from the definition of refinement and the monotonicity of generic choice, we can

show that:

X2 ⊆ X1 ⇒ choice(A,B,X1) ⊑ choice(A,B,X2)

It is worth stressing that the reverse implication is false — a counterexample is given by the

case of the disjunction operator, where we have that:

A ∨ B ⊑ A p⊕ B
A ∨ B ⊑ A◁ c▷ B

This can be explained by comparing the lattice induced by refinement with that induced by

the implication ordering: the latter is a sublattice of the former, in fact elements that were not

comparable before are now related by refinement.

3.7.1 Probabilistic refinement

We want to generalise things even further, and introduce a notion of probabilistic refinement:

A
p

⊑ B ≙ ∀z, δ ● p ⋅min(∥A(δ)jzo∥) ≤ min(∥B(δ)jzo∥)

We call this a p-accurate refinement, meaning that the refinement relation ⊑ is true in a fraction

p of the possible cases.

We can give this alternative definition as well, similarly as we did above:

A
p

⊑ B ≙ ∀δ ● B(δ) ⊆ (p ⋅A(δ))△

where p ⋅A(δ) is the set made of all elements of A(δ) multiplied by p.

Let p∗ be the highest positive real number such that A
p∗

⊑ B: this is the accuracy with which B

refines A and is a measure of how “better” B is when compared to A in any possible case —

and of course p < 1 implies that B is not as “good” as A.

It is immediate to see that the refinement relation we have defined before is a special case of

this more generic operator for p = 1, i.e. it is a 1-accurate refinement6:

A ⊑ B = A
1

⊑ B

This definition makes it much more meaningful to have a deterministic program on the left-

hand side of the refinement relation7: the utility of such a thing is for example that a deter-

ministic specification can be refined probabilistically by a (potentially) nondeterministic imple-

6Or a 100%-accurate refinement, in case we prefer expressing p as a percentage.
7It is immediate to prove that a deterministic program A can be refined only by another program B, which has to be

equivalent to A, i.e. such that A ⊑ B⇔ B ⊑ A.

3.8. Summary 41

mentation, and the implementation accuracy is a piece of information of great value.

This notion of refinement may seem like generalisation for its own sake, but it has useful real-

world applications — an example on medical devices can be found in [SSL10].

3.8 Summary

In this chapter we have introduced a framework which is suitable to model the state space of a

program by means of probability distributions.

By using predicates on homogeneous relations among probability distributions, we can give a

UTP semantics to programs, which include both probabilism and nondeterminism.

All programs satisfy certain healthiness conditions and form a complete lattice.

The next chapters present some case studies where we have fruitfully applied this framework

towards their treatment in the style of UTP.

In §4 and §5 we are going to present two quite general ones, namely that of pGCL followed by

a probabilistic version of the UTP design theory: our aim is to show how different probabilistic

frameworks can be given a UTP semantics by means of predicates on distributions.

Other examples (two well-known problems, namely the Monty-Hall one and Rabin’s coordina-

tion algorithm) and a discussion on the applicability of this methodology to protocol verification

(as a representative example of other domains where probability plays an important role) are

collected in Appendix D.

42 Chapter 3. A framework to deal with probability distributions over the state space

CHAPTER 4

pGCL

The first case study we have addressed is that of giving a UTP semantics to pGCL .

The result is very similar to the semantics for the programs in §3.3.1 and §3.4:

abort ≙ ∥δ′∥ ≤ ∥δ∥
miracle ≙ (δ = ε) ∧ (δ′ = ε)

skip ≙ δ′ = δ
v ∶= e ≙ δ′ = δ{∣e/v ∣}
A;B ≙ ∃δm ●A(δ, δm) ∧ B(δm, δ′)

A◁ c▷ B ≙ ∃δA, δB ●A(δjco, δA) ∧ B(δj¬co, δB) ∧ δ′ = δA + δB
A p⊕ B ≙ ∃δA, δB ●A(p ⋅ δ, δA) ∧ B((1 − p) ⋅ δ, δB) ∧ δ′ = δA + δB
A ⊓ B ≙ ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB
c ∗A ≙ lfpX ● (A;X)◁ c▷ skip

Figure 4.1: UTP semantics of pGCL.

To be noted that conditional, probabilistic and nondeterministic choice are all instances of the

generic choice introduced in §3.4.1.

It is quite straightforward to link the relational semantics model from [HSM97; MM04]: in

fact it is like pGCL restricts its scope to working only with point distributions, thus relating

a before-state to an after-distribution, whereas we are combining different point distributions

into a single probability distribution and provide an after-distribution given by the same com-

bination of the after-distributions corresponding to each point distributions, thus relating a

before-distribution to an after-distribution.

If we note the program space (S → ℘D ,⊑) from the relational semantics model as PR, and use

PD for the program space (D → ℘D ,⊑) from our distributional model, the elements represent-

ing a program A in each of the two program spaces will be noted AR and AD respectively:

PR ≙ (S → ℘D ,⊑)
PD ≙ (D → ℘D ,⊑)
AR ∈ PR
AD ∈ PD .

For example:

skip
D
(δ, δ′) = (δ′ = δ)

and

skip
R
(σ, δ′) = (δ′ = ησ) .

43

44 Chapter 4. pGCL

For the sake of clarity, in the following Figure 4.2 we will compare the relational semantics

model of pGCL with the distributional semantics model of pGCL presented in Figure 4.1.

Let f ∶ PR → PD be the function such that AD = f(AR) and g ∶ PD → PR the function such that

AR = g(AD):

AR AD

f

g

If we take a point distribution ησ ≙ ε † {σ→ 1} we have that:

AR(σ) = AD(ησ).

In the case of deterministic programs these are singleton sets:

AR(σ) = AD(ησ) = {δ′(A,σ)},

where δ′
(A,σ) denotes the after-distribution reached by program A when it starts in the state σ;

We can write these functions explicitly in the case of deterministic programs as:

AR(σ) = g(AD) (σ) = AD(ησ) = {δ′(A,σ)}
AD(δ) = f(AR) (δ) = ∑

ζ∈S
δ(ζ) ⋅AR(ζ) = ∑

ζ∈S
δ(ζ) ⋅ {δ′(A,ζ)} .

We have that f = g−1:

g(f(AR)) (σ)
= Definition of f

g(∑
ζ∈S
δ(ζ) ⋅AR(ζ)) (σ)

= Definition of g

∑
ζ∈S
ησ(ζ) ⋅AR(ζ)

= By definition, σ ≠ ζ⇔ ησ(ζ) = 0
ησ(σ) ⋅AR(σ)

= By definition, ησ(σ) = 1
AR(σ)

45

Pr
og

ra
m

R
el

at
io

na
ls

em
an

ti
cs

D
is

tr
ib

ut
io

na
ls

em
an

ti
cs

A
A
R
(σ
,δ

′)
A
D
(δ
,δ

′)

ab
or

t
∥δ

′ ∥
<
1

∥δ
′ ∥
≤
∥δ

∥

m
ira

cle
fa

lse
(δ

=
ε
)∧

(δ
′
=
ε
)

sk
ip

δ
′
=
η
σ

δ
′
=
δ

v
∶=
e

∃σ
′
●σ

′
=
σ
{e
/v
}∧
δ
′
=
η
σ
′

δ
′
=
δ
{∣e

/v
∣}

A
;
B

∃δ
m
,δ
1
,δ
2
,.
..
,δ
n
●A

(σ
,δ
m
)∧

(⋀
#

do
m
(
δ
m

)

i=
1

B
(σ
i
,δ
i
))
∧
δ
′
=
∑

#
do

m
(
δ
m

)

i=
1

δ
m
(σ
i
)⋅
δ
i

∃δ
m
●A

(δ
,δ
m
)∧
B
(δ
m
,δ

′)

A
◁
c
▷
B

σ
(c

)∧
A
(σ
,δ

′)
∨
¬σ

(c
)∧
B
(σ
,δ

′)
∃δ
A
,δ
B
●A

(δ
jc

o,
δ
A
)∧
B
(δ

j¬
c
o,
δ
B
)∧
δ
′
=
δ
A
+
δ
B

A
p
⊕
B

∃δ
A
,δ
B
●A

(σ
,δ
A
) ∧
B
(σ
,δ
B
) ∧
δ
′
=
p
⋅δ
A
+
(1
−
p
)⋅
δ
B

∃δ
A
,δ
B
●A

(p
⋅δ
,δ
A
) ∧
B
((
1
−
p
)⋅
δ
,δ
B
) ∧
δ
′
=
δ
A
+
δ
B

A
⊓
B

A
(σ
,δ

′)
∨
B
(σ
,δ

′)
∃π
,δ
A
,δ
B
●A

(δ
jπ

o,
δ
A
)∧
B
(δ

jπ̄
o,
δ
B
)∧
δ
′
=
δ
A
+
δ
B

c
∗
A

lf
p
X
●(
A
;
X
)◁

c
▷

sk
ip

lf
p
X
●(
A
;
X
)◁

c
▷

sk
ip

Figure 4.2: pGCL in the relational and distributional semantics model. It is worth to notice that
we can recognise the Kleisli composition in the expression of sequential composition.

46 Chapter 4. pGCL

and

f(g(AD)) (δ)
= Definition of g

f(AR(ζ)) (δ)
= Definition of f

∑
ζ∈S
δ(ζ) ⋅AR(ζ)

= Definition of g

AD(δ).

The generalization to the case of nondeterministic programs is trivial: in fact instead of dealing

with singleton sets we have larger sets whose elements are related to the before-distribution by

(at least) one deterministic execution path among the different alternatives made available by

nondeterminism:

AR(σ) = g(AD) (σ) = AD(ησ) = {δ′ ∣ AD(ησ, δ′)}
AD(δ) = f(AR) (δ) = ∑

ζ∈S
δ(ζ) ⋅AR(ζ) = ∑

ζ∈S
δ(ζ) ⋅ {δ′ ∣ AD(ηζ, δ′)} .

It is straightforward to relate the concept of equivalence from the relational semantics to equiv-

alence according to the distributional framework: two programs are equivalent in the relational

semantics when they map each state to the same set of distributions (i.e. they are the same func-

tion on PR), and similarly two programs are equivalent in the distributional framework when

they map each before-distribution to the same set of after-distributions (i.e. they are the same

function on PD).

If two programs are equivalent according to the relational semantics, the corresponding pro-

grams identified via the above link in the distributional framework (by application of the func-

tion f) are equivalent as well, as a result of the link being an isomorphism; clearly the converse

is also true.

Things are slightly more complicated if we want to relate the wp-semantics from [MM04] to

our semantic model. The way to do this is to observe that an expectation is a random variable

(with non-negative real values), and as such it can be represented as a distribution χ in our

framework. Then if χ′ represents a post-expectation and A is a program, we can define the

corresponding pre-expectation χ by computing the expected final weight of each state before A

is run:

χ(σ) = min({∥χ′ ⋅ δ′∥ ∣ δ′ ∈ A(ησ)})

It shall be noted that this set is a singleton set for all deterministic constructs, and its cardinality

can be larger only in the case that nondeterminism is present: in this semantics the model

adopted is the demonic one and this results in the extraction of the (point-wise) minimum from

that set.

4.1. Interaction of probabilistic and nondeterministic choice 47

4.1 Interaction of probabilistic and nondeterministic choice

In [MM04] the authors present a brief, well-known example on the interaction of probabilistic

and nondeterministic choice: we are going to present it here as well, and solve it by means

of our framework and compare the outcome and procedure with those presented in [MM04],

where they use pGCL .

Let us take these two simple programs:

A ≙ x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2

⊕ y ∶= 1

B ≙ x ∶= 0 1
2

⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

We evaluate what is the probability that after each program has run we have x = 1, as well as

the probability of having x = y.

We start by examining A:

x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2

⊕ y ∶= 1

≡ Translation: A

∃π ● δ′ = δjπo{∣0/x∣} + δjπ̄o{∣1/x∣} ; δ′ = 1/2 ⋅ δ{∣0/y∣} + 1/2 ⋅ δ{∣1/y∣}
≡ [d:P:Seq]

∃π, δm ● δm = δjπo{∣0/x∣} + δjπ̄o{∣1/x∣} ∧ δ′ = 1/2 ⋅ δm{∣0/y∣} + 1/2 ⋅ δm{∣1/y∣}
≡ One-point rule

∃π ● δ′ = 1/2 ⋅ (δjπo{∣0/x∣} + δjπ̄o{∣1/x∣}){∣0/y∣} + 1/2 ⋅ (δjπo{∣0/x∣} + δjπo{∣1/x∣}){∣1/y∣}
≡ [p:D:Rmp:Lin]

∃π ● δ′ = 1/2 ⋅ δjπo{∣0/x∣}{∣0/y∣} + 1/2 ⋅ δjπ̄o{∣1/x∣}{∣0/y∣} + 1/2 ⋅ δjπo{∣0/x∣}{∣1/y∣} + 1/2 ⋅ δjπ̄o{∣1/x∣}{∣1/y∣}

The final distribution δ′(π) is parametric in the weighting distribution π: let us try to use this

to perform a worst-case analysis.

We can show that ∀π●∥δ′(π)jx = yo∥ = 1/2, which implies that We can show that ∀π●∥δ′(π)jx =
yo∥ = 1/2, which implies that ∀δ ●min(∥A(δ)jx = yo∥) = 1/2:

∥δ′(π)jx = yo∥ = ∥(1/2 ⋅ δjπo{∣0/x∣}{∣0/y∣} + 1/2 ⋅ δjπ̄o{∣1/x∣}{∣1/y∣})∥

= ∥(1/2 ⋅ δjπo + 1/2 ⋅ δjπ̄o)∥ = ∥1/2 ⋅ δ∥ = 1/2

But if we choose π = ιδ′ , we have δ′(ιδ′) = 1/2 ⋅ δ{∣0/x∣}{∣0/y∣} + 1/2 ⋅ δ{∣0/x∣}{∣1/y∣} and therefore

∥δ′(ιδ′)jx = 1o∥ = 0 — so the minimum of the weight of program A is 0.

48 Chapter 4. pGCL

Likewise, we examine B:

x ∶= 0 1
2

⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

≡ Translation: B

δ′ = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ; ∃π ● δ′ = δjπo{∣0/y∣} + δjπ̄o{∣1/y∣}
≡ [d:P:Seq]

∃π, δm ● δm = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ∧ δ′ = δmjπo{∣0/y∣} + δmjπ̄o{∣1/y∣}
≡ One-point rule

∃π ● δ′ = (1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})jπo{∣0/y∣} + (1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})jπ̄o{∣1/y∣}
≡ [p:D:Rmp:Lin]

∃π ● δ′ = 1/2 ⋅ δ{∣0/x∣}jπo{∣0/y∣} + 1/2 ⋅ δ{∣1/x∣}jπo{∣0/y∣} + 1/2 ⋅ δ{∣0/x∣}jπ̄o{∣1/y∣} + 1/2 ⋅ δ{∣1/x∣}jπ̄o{∣1/y∣}

The final distribution δ′(π) is parametric in a weighting distribution π and very similar to the

resulting distribution afterA, but with one crucial difference: jπo is put after the first occurrence

of the remap operator.

We can show that ∥δ′(π)jx = 1o∥ = 1/2.

But if we choose π = ιδ′jx = 1o, we have δ′(ιδ′jx = 1o) = 1/2 ⋅ δ{∣0/x∣}{∣1/y∣} + 1/2 ⋅ δ{∣1/x∣}{∣0/y∣} and

therefore ∥δ′(ιδ′jx = 1o)jx = yo∥ = 0

We have translated the programs and worked them out to express a predicate that links before-

distributions with after-distributions: with this we can easily compute the minimum guaranteed

probability that a condition will hold after the run of the program.

This is the same result we can achieve with pGCL, but:

• the notation is quite handy if we want to calculate the probability that some conditions

holds, in the sense that we first derive the after-distribution and then we compute the

probability that one of the conditions is true on that after-distribution, and then we go

ahead by evaluating the other conditions on the same after-distribution. From the ex-

amples in [MM04] we can see how it is customary in pGCL to “proceed backwards” and

derive preconditions step by step, so for each condition we would have to do the whole

procedure from the start (or work with a parametric condition all along, which does not

really make things simple);

• we are not forced to stick with the minimum probability (“hard-linked” in the pGCL defi-

nition of demonic choice), but we have a set containing the probabilities of every branch

of the execution tree;

• it is straightforward to refine the demonic choice with any other kind of choice — we

simply have to constrain the existentially quantified π.

CHAPTER 5

A probabilistic theory of designs

In §2.4 we have given a general overview of the UTP framework, and in particular we have

presented the theory of designs in §2.4.1.

Here we are going to introduce a probabilistic version of this theory: through our distribu-

tional framework we obtain a richer theory where corresponding healthiness conditions hold

(§5.1), even without the introduction of the auxiliary variables ok ,ok ′
. Moreover the use of

distributions enables us to evaluate the probability both of termination and of meeting a set of

arbitrary postconditions as a function of the initial distribution (which determines the proba-

bility of meeting any required precondition).

A distinguishing characteristic of designs is the use of the auxiliary variables ok and ok ′
. They

are not sufficient in a probabilistic setting, as we need to be able to express quantitative in-

formation about the program also in terms of it having started or finished. We argue that this

information is embedded in the distributions used to express programming constructs.

In fact the variable δ records implicitly if the program has started, as for each state σ it gives a

precise probability that the program is in that initial state.

If δ is a full distribution (i.e. ∥δ∥ = 1), then the program has started with probability 1: in some

sense we can equate the predicate ok = true with the predicate ∥δ∥ = 1. Conversely, a program

for which δ = ε has not started. Obviously there are all situations in between, where the fact of

δ being a sub-distribution accounts for the program having started with probability ∥δ∥ < 1.

Similarly if δ′ is a full distribution, then the program terminates with probability 1: coherently

we can equate the predicate ok ′ = true with the predicate ∥δ′∥ = 1. In general the weight of δ′

is the probability of termination: if the program reaches an after-distribution whose weight is

strictly less than 1, then termination is not guaranteed (and in particular if δ′ = ε it is certain

that it will not terminate).

Given a standard design Pre ⊢ Post we can easily derive the corresponding probabilistic design

by using the observation above:

Pre ⊢ Post ≡ok ∧Pre ⇒ ok ′ ∧Post
≡∥δ∥ = 1 ∧Pre ⇒ ∥δ′∥ = 1 ∧Post
≡∥δjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1

This expression tells us that we have a valid design if whenever the before-distribution δ is a full

distribution which is null everywhere Pre is not satisfied (and therefore δ = δjPreo), then the

resulting after-distribution δ′ is a full distribution which is null everywhere Post is not satisfied

(and therefore δ′ = δ′jPost o).

49

50 Chapter 5. A probabilistic theory of designs

This gives us a theory of pGCL programs that always terminate.

We can easily redefine assignment, in the same style as it has been redefined to make it a valid

construct according to the theory of designs:

v ∶= e ≙true ⊢ δ′ = δ{∣e/v ∣}
≡ok ∧ true ⇒ ok ′ ∧ δ{∣e/v ∣}
≡∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ{∣e/v ∣}

This states that an assignment is a valid design only if the expression e is defined everywhere in

the state space: in fact undefinedness of e causes δ{∣e/v ∣} to be a sub-distribution and therefore

v ∶= e reduces to false.

We can redefine skip in a similar way:

skip ≙ true ⊢ δ′ = δ
≡ ok ∧ true ⇒ ok ′ ∧ δ
≡ ∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ
≡ ∥δ∥ = 1⇒ δ′ = δ

This new version of skip states that the after-distribution is the same as the before-distribution

(and therefore it does not alter the weight, so this can be left implicit), but as any other design

it reduces to true if δ is not a full distribution.

The bottom of the lattice is abort , which is again true as in the standard theory:

abort ≙ false ⊢ false
≡ ok ∧ false ⇒ ok ′ ∧ false
≡ false ⇒ false
≡ true
≡ false ⇒ true
≡ ok ∧ false ⇒ ok ′ ∧ true
≡ false ⊢ true

The standard definition of the construct chaos is

chaos ≙ true ⊢ true
≡ ok ∧ true ⇒ ok ′ ∧ true
≡ ok ⇒ ok ′

≡ ∥δ∥ = 1⇒ ∥δ′∥ = 1

This is a program that guarantees termination, but in an unspecified state. It is equivalent to:

chaos ≡ true ⊢ abortR ,

5.1. Healthiness conditions 51

where the subscript R indicates that we are talking of the relational version of abort , from §3.4.

The top of the lattice is miracle:

miracle ≙ true ⊢ false
≡ ok ∧ true ⇒ ok ′ ∧ false
≡ ok ⇒ false
≡ ¬ok
≡ ¬(∥δ∥ = 1)
≡ ∥δ∥ < 1

This is equivalent to

miracle ≡ true ⊢ miracleR .

5.1 Healthiness conditions

These new definitions relying on the distributional framework satisfy the healthiness conditions

H1–H4 as well (§2.4.1).

We can in fact prove that the following laws hold:

• left unit law:

skip;Pre ⊢ Post ≡ ∥δ∥ = 1⇒ δ′ = δ;∥δjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1
≡ ∃δm ● ∥δ∥ = 1⇒ δm = δ ∧ ∥δmjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1
≡ ∥δjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1
≡ Pre ⊢ Post

• right unit law:

Pre ⊢ Post;skip ≡ ∥δjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1;∥δ∥ = 1⇒ δ′ = δ
≡ ∃δm ● ∥δjPreo∥ = 1⇒ ∥δmjPost o∥ = 1 ∧ ∥δm∥ = 1⇒ δ′ = δm
≡ ∥δjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1
≡ Pre ⊢ Post

• left zero law:

true;Pre ⊢ Post ≡ true;∥δjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1
≡ ∃δm ● true ∧ ∥δmjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1
≡ ∃δm ● ∥δmjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1
≡ true

52 Chapter 5. A probabilistic theory of designs

• right zero law:

Pre ⊢ Post;true ≡ ∥δjPreo∥ = 1⇒ ∥δ′jPost o∥ = 1;true
≡ ∃δm ● ∥δjPreo∥ = 1⇒ ∥δmjPost o∥ = 1 ∧ true
≡ ∃δm ● ∥δjPreo∥ = 1⇒ ∥δmjPost o∥ = 1
≡ true

5.2 Recasting total correctness

The reason that led to the standard theory of designs was that programs fail to satisfy the left

zero law in the relational theory.

In the distributional framework programming constructs do satisfy this law, as for any program-

ming construct P other than abort or miracle it is never the case that δ ∉ fv(P).
For this reason we have:

true;P (δ, δ′) ≡ ∃δm ● true ∧ P (δm, δ′)
≡ ∃δm ●P (δm, δ′)
≡ true

Similarly the right zero law is satisfied as well, along with the left and right unit laws: healthi-

ness conditions equivalent to H1–H4 hold here as well.

Following this observation it appears that restricting the reasoning to programs with guaranteed

termination is somehow limiting, as guaranteed termination is not an actual real-world feature

of programs: programs must be reasonably reliable, but failure is always a possibility.

The reason for this may be inherent to the fact that programs are run on hardware which is

susceptible of failure, as well as being a consequence of the way a program is designed (for

example the implementation of a probabilistic algorithm where termination is probabilistic as

well).

We can fully exploit the potential of the distributional framework towards modelling these

situations by removing the constraints on the weights of the before- and after-distributions —

so we use the programming constructs in Figure 4.1 exactly with the semantics presented there.

The role of preconditions and postconditions is that of restricting the range of acceptable before-

and after-distributions (and therefore act as restrictions to be applied to δ and δ′ respectively)

— this allows us to express desirable characteristics of a program in great detail, for example:

• P ∧ ∥δ′∥ = 1 requires P to guarantee termination;

• P ∧ ∥δ′∥ > 0.95 requires P to terminate with at least 95% probability;

• P ∧ ∥δ′jPost o∥ > 0.95 requires P to terminate with at least 95% probability in a state

satisfying Post ;

• Pre ⇒ P ∧ ∥δ′jPost o∥ > 0.95 requires P to terminate with at least 95% probability in a

state satisfying Post whenever it starts in a state satisfying Pre;

• ∥δjPreo∥ > 0.98 ⇒ P ∧ ∥δ′jPost o∥ > 0.95 requires P to terminate with at least 95% prob-

ability in a state satisfying Post whenever the probability of Pre being satisfied at the

beginning is at least 0.98;

5.3. Link with the standard model 53

• . . .

All healthiness conditions deriving from the distributional framework (Dist1–Dist4) obviously

hold here as well; with a small modification we can recast the notion of total correctness by

restricting Dist1 to a variant Dist1-TC (which implies Dist1), stating that:

∥δ∥ = ∥δ′∥

This requires a program to terminate with the same probability p with which it has started:

∥δ∥ = p ∧Pre ⇒ ∥δ′∥ = p ∧Post

5.3 Link with the standard model

Standard designs have observations ok ,ok ′ ∈ B and σ,σ′ ∈ S : a standard design is a predicate

PS(σ,σ′,ok ,ok ′) that states that a program started (if ok is true) in the state σ ends (if ok ′
is

true) in the state σ′.

Probabilistic designs have observations δ, δ′ ∈ D: a probabilistic design is a predicate PD(δ, δ′)
stating that a before-distribution δ will be transformed into the after-distribution δ′.

Informally we require the two approaches to yield the same results when we are dealing with

point distributions, i.e. when the probability of being in a given state is 1.

In order to formalise the link between these two worlds, we define the linking predicate L as:

L((δ, δ′), (σ,σ′,ok ,ok ′)) ≙ ok ⇔ (∥δ∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1)
∧δ = ησ ∧ δ′ = ησ′

This linking predicate allows us to introduce the following Galois connections; first we define

the weakest probabilistic design corresponding to a standard design PS:

∀σ,σ′,ok ,ok ′ ● L((δ, δ′), (σ,σ′,ok ,ok ′))⇒ PS(σ,σ′,ok ,ok ′)

Analogously, the strongest standard design corresponding to a probabilistic design PD is:

∃δ, δ′ ● L((δ, δ′), (σ,σ′,ok ,ok ′)) ∧PD(δ, δ′)

It is easy to see that all programming constructs from the probabilistic theory that have homo-

logue ones in the standard theory are linked to them, with the restriction of operating only on

point distributions, otherwise they reduce to abort .

5.3.1 Weakening the link

This linking predicate is a bit too strong, as it maps many interesting program constructs to

the aborting program: an example is that of generic choice, which has no homologue in the

standard theory. Ideally a better option would be to relax some constraints and to map generic

choice to nondeterministic choice rather than to abort .

In other words we are aiming at a link that loses all probabilistic information about the possible

after-states and flattens it to a mere list of them.

54 Chapter 5. A probabilistic theory of designs

This is not straightforward, as the linking predicate L in some sense verifies consistency of δ

with respect to σ,ok and of δ′ with respect to σ′,ok ′
: when the support1 of the distribution

has more than one element, the relation between δ and a state from its domain is too weak to

be useful.

The situation is similar to that of a 3D-space, where dots are characterised by their x,y, z

coordinates: a transformation creates a space with coordinates x′, y′, z′, whose relation with

the undashed coordinates cannot in general be captured by a relation that mentions only one

undashed and one dashed coordinate.

So far we have seen standard designs as relations:

PS ∶ S ×B→ S ×B

but in order to build a more useful link we turn to this other interpretation:

P℘S ∶ S ×B→ ℘S ×B

which maps a state to what we may term its program image P (σ) (as it is a similar concept

to that of program image introduced in §A.2.3), which contains all of the possible after-states

reachable from a given before-state:

P (σ) = {σ′ ∣ PS(σ,σ′)}

All deterministic standard constructs map a state to a singleton set, whereas nondeterministic

choice maps it to larger sets.

The interpretation of the predicate P℘S(σ,α′,ok ,ok ′) is therefore that P has started (if ok is

true) in the state σ and has ended (if ok ′
is true) in a state σ′ ∈ α′:

P℘S(σ,α′,ok ,ok ′) ≡ ⋁
σ′∈α′

PS(σ,σ′,ok ,ok ′)

With this in mind we can define the following linking predicate:

L℘((δ, δ′), (σ,α′,ok ,ok ′)) ≙ ok ⇔ (∥δ∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1)
∧δ = ησ ∧ supp(δ′) = α′

We can state the variants of the Galois connections above as:

∀σ,α′,ok ,ok ′●L℘((δ, δ′), (σ,α′,ok ,ok ′))⇒ P℘S(σ,α′,ok ,ok ′)
∃δ, δ′●L℘((δ, δ′), (σ,α′,ok ,ok ′)) ∧PD(δ, δ′)

5.4 Considerations on a pCSP theory

We have seen that the UTP theory of CSP is built on that of designs, with the introduction of

three other pairs of auxiliary variables, notably wait , tr , ref and their dashed counterparts.

We recall their roles in the theory:

• wait ,wait ′ are boolean variables recording if the program is waiting for interaction with
1We remind the reader that the support of a function is the set of points where the function is not zero-valued:

supp(δ) ≙ dom(δ) ∖ ker(δ).

5.4. Considerations on a pCSP theory 55

the environment;

• tr , tr ′ record the list of events happened during the program run;

• ref , ref ′
are sets containing the event refused by the program.

They are in addition to ok ,ok ′
, already added when going from the relational theory towards

the concept of designs: the distributional framework presented in §3 spared us from having to

add these variables when creating the concept of probabilistic designs, as we do not need to use

them — we have in fact argued that this information is contained implicitly in the distributions

δ, δ′, as their weight corresponds exactly to the probability that a particular program step has

started or finished, respectively.

Information about divergent states remains implicit in the distributions: the probability of being

in such a situation is precisely (1 − ∥δ′∥).
In some sense the “ok” part of a distribution is mapped to the support of δ′, whereas the “not-ok”

part gets disregarded.

We can therefore build on the theory of probabilistic designs presented in §5 to get to a proba-

bilistic theory of CSP only by adding the remaining three pairs of auxiliary variables.

Their meaning will be the same as in the standard theory. The question is: what is the best way

to embed them in the probabilistic theory of designs? We may be tempted to introduce them

as auxiliary variables alongside with the program distribution, but the same reasons that were

brought up to decide in favour of an approach that lumps all of the variables together into a

single composite observation variable, require us to work on states with the following shape:

σ ∶ (v ,wait , tr , ref)→W ×B × Event-seq × Event-set ,

where W is the set of possible values for the program variables.

This allows us to embed all of the remaining auxiliary variables in the state domain, and there-

fore this simplifies the definitions of the different programming constructs and healthiness con-

ditions, compared to the traditional reactive definitions that use ok ,wait , tr , ref as auxiliary

variables — this is a novel approach.

5.4.1 R1

For example let us take the traditional R1, which states:

P = P ∧ (tr ≤ tr ′)

In a probabilistic world this must hold point-wise for each couple of states (σ,σ′) from the

before- and after-distributions that are related by the program.

If we write this in the case of a single state σ (i.e. we take a point distribution ησ as the before-

distribution), the trace in the before-state σ must be a prefix of the trace in all of the possible

after-states σ′ from the support2 of the resulting after-distribution δ′.

This must hold true for all states in the state space, so the formulation of the probabilistic R1 is:

P(δ, δ′) = P(δ, δ′) ∧ (∀σ ● P(ησ, δ′) Ô⇒ (∀σ′ ∈ supp(δ′) ● σ(tr) ≤ σ′(tr)))

where we have used the functional notation σ(tr) to stand for the evaluation of tr on σ.
2The support of a function is the subset of its domain where the function is non-null.

56 Chapter 5. A probabilistic theory of designs

From this formulation we can clearly see that divergent states do not take part in the verification

of the condition R1; in addition, it is worth pointing out that, according to this definition, a

totally divergent program (which yields δ′ = ε for any initial δ) is R1-healthy.

5.4.2 R2

Healthiness condition R2 states that the initial value of tr cannot have any influence on the

evolution of the program, which determines only the tail (tr ′ − tr):

P(tr , tr ′) = ∃s ● P(s, s ⌢ (tr ′ − tr))

As we did above we first look at the case of point distributions, where a possible formulation is

the following:

P(ησ, δ′) = ∃s ● P(ησ{∣s/tr ∣}, δ′{∣s⌢(tr−σ(tr))/tr ∣})

Here we have used the remap operator to “change” the value of the trace in the spirit of R2 over

all states.

This gives a sort of “substitution rule” that allows us to replace a state σ with another state ζ

that differs only for the value of tr in the before-distribution, whereas in the after-distribution

a part δ′σ (accounting for the contribution of σ) is replaced by a new part δ′ζ (accounting for

the contribution of ζ):

P(δ, δ′) = ∀σ∃s ● (ζ = σ{s/tr}) ∧ P((δ − δσ + δζ), (δ′ − δ′σ + δ′ζ))

where δσ and δζ are point distributions scaled down by the probability of σ, i.e. δσ = δ(σ) ⋅ ησ
and δζ = δ(σ) ⋅ ηζ.

5.4.3 R3

Before getting to R3 we have to define the probabilistic version of the reactive skip, denoted

skip.

According to the standard theory of reactive designs [HH98], skip is defined as:

skip ≙ (¬ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)

This definition has to distinguish the case of divergence (when it does not enforce anything

other than trace elongation) from the case of non-divergence (when it states that all variables

are left unchanged), and as a result it is much more complicated than the pure relational skip

which is simply:

v ′ = v

The choice of embedding the auxiliary variables in the state function σ (and having left all

information about divergence implicit in δ, δ′) starts to pay out here, as it enables us to keep

such an easy definition as well:

skip ≙ δ′ = δ

In other words all non-divergent states are preserved as they are, whereas now there is no

statement on divergent states — other than the implicit one that the overall probability of

divergence must be left unchanged.

5.4. Considerations on a pCSP theory 57

R3 does not mention tr , tr ′:
P = skip ◁wait ▷ P

As a result this is pretty straightforward to express in a probabilistic setting, as we can use

directly the semantics of the conditional construct presented in §3.3:

skip ◁wait ▷ P
≡ definition of conditional

∃δA, δB ● skip(δjwait o, δA) ∧ P(δj¬wait o, δB) ∧ δ′ = δA + δB
≡ definition of skip

∃δA, δB ● skip(δjwait o, δA) ∧ δA = δjwait o ∧ P(δj¬wait o, δB) ∧ δ′ = δA + δB
≡ one-point rule on δA

∃δB ● skip(δjwait o, δjwait o) ∧ P(δj¬wait o, δB) ∧ δB = δ′ − δjwait o
≡ one-point rule on δB

skip(δjwait o, δjwait o) ∧ P(δj¬wait o, δ′ − δjwait o)

And therefore.

P(δ, δ′) = skip(δjwait o, δjwait o) ∧ P(δj¬wait o, δ′ − δjwait o)

We split the before-distribution into two parts, one where wait is true and that equals the

corresponding after-distribution, and one where it is not and that has evolved into the difference

of the total after-distribution δ′ and the part δjwait o that did not evolve.

This can be simplified down to:

P(δ, δ′) = P(δj¬wait o, δ′ − δjwait o) .

5.4.4 CSP1 and CSP2

Another advantage of the distributional framework is that compliance with the remaining two

healthiness conditions, namely CSP1 and CSP2, is subsumed by other conditions, as we are now

going to show.

In standard CSP, CSP1 states that:

P = P ∨ (¬ok ∧ tr ≤ tr ′)

As all information about divergent states is kept implicit in distributions, we can argue that this

healthiness condition is stripped down to the identity P = P.

In some sense, all states which are “ok” evolve from the support of the before-distribution

towards a state in the support of the after-distribution, which is “ok′”, or diverge to a state,

which is “not-ok′” and is not part of the support of the after-distribution, effectively getting out

of the game; on the other hand all states which are “not-ok” are not part of the support of the

before-distribution and have no means to get back in the game.

Probabilistic reactive programs are therefore CSP1-healthy by design, as P(δ, δ′) already states

58 Chapter 5. A probabilistic theory of designs

that either a state evolves according to what is described by δ, δ′ or diverges.

Our formalism does not allow us to express the trace-elongation property for divergent states,

but after all it is not crucial information — they diverge, that’s already bad enough!

The other healthiness condition, CSP2, states that:

P;J = P

where

J ≙ v ′ = v ∧ (ok ⇒ ok ′) ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref

In the probabilistic world based on distribution this reduces to:

P;skip = P

which is nothing but H3. In fact:

J ≙ (v ′ = v ∧ (ok ⇒ ok ′) ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)
≡ (v ′ = v ∧ ok ′ ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)∨

∨ (v ′ = v ∧ ¬ok ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)
≡ skip ∨ (v ′ = v ∧ ¬ok ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)

And again the part with ¬ok gets disregarded, thus the reactive program J in the probabilistic

world coincides with skip — and there we have that CSP2 collapses to H3.

These brief considerations on a pCSP theory based on distributions are preliminary work, that

indicates possible directions of future research.

CHAPTER 6

Conclusion

In the previous chapters we have presented in detail a framework specifically conceived to deal

with programs featuring both probabilism and nondeterminism in the style of UTP.

The novelty in our framework is its approach to probability, which arises from a distributional

model of the state space of a program: thanks to this view of the world we are able to express

concisely the relations between the situation before and after the execution of a program.

The algebraic properties of the distributional model allow us to reason on distributions and

programs using theories and tools borrowed from the domain of vector spaces.

According to the programs-are-predicates view of the world shared by the UTP research com-

munity, we use relations among distributions to give a predicate semantics to several program

constructs: as a result this has enabled us to treat efficiently different cases, all collected in §D.

From these case studies we can see the key strengths of this framework, as well as understand-

ing what the inevitable weaknesses are.

On the plus side the notation is very compact: all probabilistic information is hidden within the

distributions used in the predicates representing the different programs, and side conditions

are kept to a minimum; ordinary logic and algebraic rules make it straightforward to reason on

the semantics of a program.

The algebraic properties of the framework make it suitable for mechanization of several steps in

a verification procedure (left for future work): an example is the use of vectors and matrices as

an elegant formalism to deal with boring and error-prone computations, which can be handled

by a computer.

Moreover several program properties can be inferred by inspection of the corresponding matri-

ces in the vector formalism.

Our framework is very flexible, as some features are not “hard-wired” within. An example is

nondeterminism: we have adopted a neutral view of it, because it shows no demonic behaviour

per se, as instead it is customary in several other frameworks. The demonic behaviour is a con-

sequence of a particular definition of refinement, but nothing forbids us from using a different

definition to look at programs from a different perspective.

Last, but not least, our framework integrates well with UTP: this was a central requirement for

us, as one of the goal of our research was the integration of probability into the UTP framework

— as we have discussed in §2.4 the different approaches used so far were not deemed totally

satisfactory by many people.

What perhaps we feel as the main shortcoming of our approach is highlighted by §5.4: the

treatment of traces is quite complicated and far from being intuitive. As a result we feel that

59

60 Chapter 6. Conclusion

our framework may not be the most efficient approach to pCSP and, consequently, the approach

to a probabilistic version of Circus should take this into account.

This is one of the reasons why finding a slightly different approach to model pCSP would be an

interesting direction for future work.

Another interesting line of research would involve probability and security, as they are two sides

of the same medal. We have shown a possible application of our framework in the domain

of protocol verification, but we can probably go beyond that and this would probably yield

interesting results in the field of security.

All of this would benefit greatly from the presence of some tool support, as on one hand it would

make the framework more effective and easy to use, on the other hand a mechanized approach

could take advantage of the different mathematical properties of the framework towards an

efficient implementation.

APPENDIX A

States and distributions

A.1 Variables, types and expressions

Variables are the elements of a program that we can use to observe and model the behaviour of

a program.

In UTP it is customary to distinguish between observational and auxiliary variables: the former

directly correspond to the variables that a program can access and modify, whereas the lat-

ter are an abstraction which records some particular behaviour of the program, for example

termination or being in a waiting state.

We use the notation V to stand for the set of all variables of a program.

UTP offers constructs to introduce new variables within a given scope, nevertheless we will

not take this possibility into account: the framework we are going to present can be modified

to support this construct in a conceptually easy and straightforward way, but in spite of the

conceptual simplicity this requires the introduction of complicated machinery to handle this —

we will get back to this point to clarify what we mean in §A.2 and §A.3.

We assume therefore that V is fixed and cannot change dynamically as the program runs.

Variables of a given type can assume a value from a set characteristic of that type; for the

variable vi ∈ V we note the set of its possible values as Wi:

Wi ≙ type(vi) .

Having a possibly different type for each variable adds unnecessary complexity to the frame-

work we are going to introduce; this is easily manageable and does not require a big deal of

effort, but we believe that it shifts attention away from more delicate matters: for this reason

we assume that there is no type distinction among the different variables, whose possible values

will therefore lie in the set of all types W :

∀i ●Wi ⊂ W .

For the sake of simplicity, let us assume that W contains integers and booleans only.

An expression on variables is a combination of constants and variables, combined by operators;

the set of all expressions is E .

A notable subset of E is that of boolean expressions, which we will refer to as conditions.

61

62 Appendix A. States and distributions

A.2 States

Program states define the mapping that associates each variable to its corresponding value, in

other words they are functions from the set of all variables to the set of their possible values:

σ ∶ V →W .

We do not allow for the case of a variable not being associated to any value (and hence σ is a

total function): as in the real world a variable points to a location in the memory, in the worst

case that location contains garbage, but still the operation of retrieving the value of a variable

returns a result, which will be interpreted as a value of the appropriate type.

The domain of σ, which is V , is defined as its alphabet:

alph(σ) ≙ dom(σ) = V .

So the choice we made in §A.1, which disallows for dynamic changes in V , results in dealing

with states with the same alphabet.

The set of all states is the state space S .

It is handy to lump all the variables of V together into a single vector of variables v :

v =

⎛
⎜⎜⎜⎜⎜
⎝

v1
v2
⋮

vn

⎞
⎟⎟⎟⎟⎟
⎠

.

so that we can give an alternative definition of state as

σ ∶ {v}→W ,

where W is the cartesian product of n copies of W .

As a result each state σ maps the variable vector v to the corresponding vector of values w :

σ = v ↦w

where

w =

⎛
⎜⎜⎜⎜⎜
⎝

w1
w2
⋮

wn

⎞
⎟⎟⎟⎟⎟
⎠

∈ W

and the map operator has been lifted to operate element-wise on vectors:

v ↦w ≙ {vi ↦wi ∣ 1 ≤ i ≤ n} .

A.2. States 63

A.2.1 Evaluation of an expression

An expression e can be evaluated in a state σ by replacing each variable vi it mentions with the

value σ(vi) that is contained by that variable in that state: doing the calculations with these

values returns the evaluation of the expression e on the state σ, which is the value evalσ(e).

Here is a recursive definition, where k is a constant, F a n-ary function and ei an expression:

evalσ(k) ≙ k
evalσ(vi) ≙ σ(vi)

evalσ(F (e1, e2, . . . , en)) ≙ F (evalσ(e1), evalσ(e2), . . . , evalσ(en))

As a shorthand notation for the evaluation function, we overload the function state:

σ(e) ≙ evalσ(e)

When an expression e contains only values and operators, we have that its evaluation is the

same on any state, thus when the notation is clear from the context we will simply write e

instead of evalσ(e) (or σ(e), using the shorthand notation).

Using this, we can write that:

σ(e) = evalσ(e{σ(vi)/vi}) = σ(e{σ(vi)/vi}) = e{σ(vi)/vi}

In the case of a boolean expression (condition), we say that a state satisfies a condition c when

it evaluates to true in that state.

As with variables and values, it is useful (in view of the §A.2.3 on assignments) to introduce

some vector notation for expressions as well:

σ(e) ≙

⎛
⎜⎜⎜⎜⎜
⎝

σ(e1)
σ(e2)
⋮

σ(en)

⎞
⎟⎟⎟⎟⎟
⎠

,

where obviously

e =

⎛
⎜⎜⎜⎜⎜
⎝

e1

e2

⋮
en

⎞
⎟⎟⎟⎟⎟
⎠

∈ E .

We use the following notation for simultaneous substitutions1 {f1/g1}{f2/g2}⋯{fn/gn}:

{f/g} ≙ {f1/g1}{f2/g2}⋯{fn/gn} ,

1For this to make sense, it must be the case that ∀i ≠ j ● gi ≠ gj.

64 Appendix A. States and distributions

where

f =

⎛
⎜⎜⎜⎜⎜
⎝

f1

f2

⋮
fn

⎞
⎟⎟⎟⎟⎟
⎠

and g =

⎛
⎜⎜⎜⎜⎜
⎝

g1

g2

⋮
gn

⎞
⎟⎟⎟⎟⎟
⎠

When the substitution {f/g} is applied to a vector of expressions e, the meaning is the following:

e{f/g} ≙

⎛
⎜⎜⎜⎜⎜
⎝

e1{f/g}
e2{f/g}

⋮
en{f/g}

⎞
⎟⎟⎟⎟⎟
⎠

The composition of two expression vectors f and e is defined as a particular substitution that

involves the variable vector v :

f ○ e ≙ f{e/v} =

⎛
⎜⎜⎜⎜⎜
⎝

f1{e/v}
f2{e/v}

⋮
fn{e/v}

⎞
⎟⎟⎟⎟⎟
⎠

We can read the notation f ○ e as f after e.

Concerning the evaluation of this vector we have

σ(f ○ e) = σ(f{e/v}) = σ(f{σ(e)/v}) = f{σ(e)/v}

This is equivalent to evaluating f in a state ζ such that ζ(v) = σ(e).

Now it should be clear why we intentionally use a symbol like ○ and the word “after”, which

both remind of functional composition: if for every expression and variable vectors e and v we

define an associated function ev ∶ W ↛W as:

ev(w) = evalv↦w (e)

then for any state σ = v ↦w , we have that σ(f ○ e) = fv(ev(w)):

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(f ○ e) = fv(w ′)

w ′ = ev(w)

When composing the same expression for k ≥ 1 times, we use the following notation:

ek ≙ e ○ e ○ ⋅ ⋅ ⋅ ○ e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

We define that for k = 0 this notation has the following meaning:

e0 ≙ v

A.2. States 65

A.2.2 Abstract states

An abstract state α ⊆ S is a set of states:

α ≙ {σ1, σ2, . . . , σn, . . .}

The alphabet of an abstract state is defined as the set of all the different alphabets that appear

in the abstract state:

alph(α) ≙ {A ∣ A = alph(σ) ∧ σ ∈ α}

So in the case of an abstract state containing all states having the same alphabet A , its alphabet

is the singleton set {A}; when alphabets may in general vary from state to state, the largest

such abstract state is noted SA :

SA ≙ {σ ∣ alph(σ) = A}

We write it this way as it is the largest subset of S , whose elements are all those states with

alphabet A : our assumption of all states having the same alphabet simplifies the presentation

of our framework, as the state space S we are dealing with is actually SA .

We say that an abstract state satisfies a condition c when all its elements do.

We define the restriction of an abstract state through a condition c as a total function _j_o ∶
(℘S ×E)→ ℘S , defined as follows:

αjco ≙ {σ ∣ σ ∈ α ∧ σ(c) = true}

We have that:

αjco = S jco ∩α

Clearly if the condition is true we have:

αjtrueo = α

And obviously if the condition is false we have:

αjfalseo = ∅

A.2.3 Assignments

An assignment performed in a state σ is an operation vi ∶= ei, that updates the value contained

in vi with σ(ei).

We use the following notation for n simultaneous assignments of the expressions e1, e2, . . . , en
to the variables v1,v2, . . .vn ∈ V :

v ∶= e ≙
n

⋀
i=1

(vi ∶= ei) ,

66 Appendix A. States and distributions

where we remind that:

v =

⎛
⎜⎜⎜⎜⎜
⎝

v1
v2
⋮

vn

⎞
⎟⎟⎟⎟⎟
⎠

and e =

⎛
⎜⎜⎜⎜⎜
⎝

e1

e2

⋮
en

⎞
⎟⎟⎟⎟⎟
⎠

.

Let us now define the inverse-image set for a generic assignment v ∶= e, after which the new

state σ′ describes the new mapping for the updated vector of variables v :

Inv(v ∶= e,σ′) ≙ {σ ∣ σ′(v) = σ(e) ∧ σ ∈ Salph(σ′)} .

Clearly the above definition is simplified by the assumption that all states σ have the same

alphabet, as per assumption in §A.1.

We can generalize this to an abstract state α′:

Inv(v ∶= e,α′) ≙ ⋃
σ′∈α′

Inv(v ∶= e,σ′) .

The abstract state Inv(v ∶= e,α′) is the set of all the possible states before the assignment that

are compatible with the result of the new mapping being in the abstract state α′.

Due to the fact that the evaluation of an expression is an injective function we have that:

Inv(v ∶= e,σ1) ∩ Inv(v ∶= e,σ2) = ∅⇔ σ1 ≠ σ2 .

Thanks to this property, if the evaluation of an expression e is defined on all of the states

belonging to an abstract state α, we have that it is possible to partition α through e.

In fact if we have a relation Re defined as:

σ1Re σ2 ⇔ σ1(e) = σ2(e) .

This is an equivalence relation among states belonging to an abstract state α, that is partitioned

into equivalence classes corresponding to inverse-image sets α′:

α = ⋃
σ′∈α′

Inv(v ∶= e,σ′) ,

where each class is represented by a state σ such that σ(e) = σ′(v).
Nested inverse-image set : Inv(v ∶= e, Inv(v ∶= f,{σ})) = Inv(v ∶= f{e/v},{σ})

The inverse-image set will play an important role, as the remap operator (which is to be intro-

duced in §A.3.4) will be defined in terms of it and is a crucial component of our framework, as

it is needed to give semantics to assignment statements.

A.3 Distributions

In §3.1 we have informally introduced the concept of probability distribution over the state

space, as a means of assigning a probability to each state in S : this is a particular instance of a

A.3. Distributions 67

more general concept.

A distribution χ is in general a partial function χ, that maps some states from S to real numbers:

χ ∶ S ↛ R .

We refer to each real number xi as the weight of the corresponding state σi; we use D to note

the set of all possible distributions.

The partiality of χ is a technical device that allows us to treat efficiently cases when it is assumed

implicitly that some states are mapped to the value 0, but the corresponding pair does not

belong to χ: the whole framework is built in such a way that the operators do not distinguish

between a given distribution and another one, which differs only for the addition of some

otherwise undefined states that are mapped to a null weight.

For many application we need to have a measure the collective weight of all states of a distribu-

tion χ: we refer to this as to the distribution weight, and it is trivially the sum over its domain

of all the state weights:

∥χ∥ ≙ ∑
σ∈dom(χ)

χ(σ)

This operation can be lifted to a set X ⊆ D of distributions in an obvious way:

∥X ∥ ≙ {∥χ∥ ∣ χ ∈ X }

In general the alphabet of a distribution is defined as the set of all the different alphabets that

appear in the distribution domain:

alph(χ) ≙ alph(dom(χ)) .

Clearly in the case of a fixed alphabet A shared by all states, this reduces to the singleton set

{A}.

A particular distribution is the empty distribution εα ∶ S ↛ R, which is a distribution such that

dom(εα) = α and img(εα) = {0}, viz. it maps each state in the abstract state α to 0:

εα ≙ {σ↦ 0 ∣ σ ∈ α}

Another particular distribution is the unity distribution ια ∶ S ↛ R, which is a distribution such

that dom(ια) = α and img(ια) = {1}, viz. it maps each state in the abstract state α to 1:

ια ≙ {σ↦ 1 ∣ σ ∈ α}

We define the following shortcuts:

εA ≙ εSA ιA ≙ ιSA

εχ ≙ εdom(χ) ιχ ≙ ιdom(χ)

ε ≙ ∅ ι ≙ ιS

68 Appendix A. States and distributions

We define the restriction of a distribution through a condition c as follows:

χjco ≙ {σ↦ χ(σ) ∣ σ ∈ dom(χ)jco}

This is a distribution where all states satisfying the condition c are mapped to the same weight

as in the original distribution χ, whereas those on which c evaluates to false are remapped to

the null weight.

The following properties hold for a restricted distribution, some of which are immediately in-

ferable from the definition and some others which are proven in Appendix C:

Restriction through conjunction of conditions : χjc1 ∧ c2o = χjc1ojc2o = χjc2ojc1o
Restriction through equivalent condition : (c1⇔ c2) ⇒ χjc1o = χjc2o
Restriction through implied condition (I) : (c2 ⇒ c1) ⇔ χjc1ojc2o = χjc2o
Restriction through implied condition (II) : (c1 ⇒ ¬c2) ⇒ χjc1ojc2o = ε

In case we have conditions cσ and cα selecting (i.e. evaluating true only on) a single state σ

and an abstract state α respectively , we simplify the notation as follows:

δjσo ≙ δjcσo δjαo ≙ δjcαo

The expression of the distribution weight, in the case of restricted distributions, can be simpli-

fied by excluding from the sum all states which are mapped to 0 by the restriction and therefore

we obtain the following:

• ∥δjco∥ = ∑σ∈dom(χ)jco δ(σ)

• ∥δjσo∥ = δ(σ)

• ∥δjαo∥ = ∑σ∈α δ(σ) .

We define the point distribution (with domain α) as the restriction of a unity distribution to a

single state, viz. all the distribution weight is concentrated in a single state which maps to 1:

ησ,α ≙ ιαjσo

And clearly we have that:

∥ησ,α∥ = 1

We also define the restriction of a distribution through another distribution as follows:

χ1jχ2o ≙ {σ↦ χ1(σ) ⋅ χ2(σ) ∣ σ ∈ dom(χ1) ∩ dom(χ2)}

Commutativity of this operation derives directly from the definition:

χ1jχ2o = χ2jχ1o .

The reason why we call these operations in a similar way is that if we can see that the restriction

of a distribution through a condition as a generalization to distributions of the restriction of

abstract states through a condition, the restriction of a distribution through a distribution can

be seen as a further generalization:

χjco = χkιχjcop

A.3. Distributions 69

All of this can be lifted to a set X ⊆ D of distributions in an obvious way:

• X jco ≙ {χjco ∣ χ ∈ X }

• X jχo ≙ {ξjχo ∣ ξ ∈ X }

A.3.1 Operations on distributions

Arithmetical operations can intuitively be lifted point-wise to operate on distributions2.

The sum of distributions χ1 and χ2 is a mapping where each state is mapped to the sum of the

weights from the two distributions:

χ1 + χ2 ≙ {σ↦ (χ1(σ) + χ2(σ))}

From this definition we can derive that:

• ∥χ1 + χ2∥ = ∥χ1∥ + ∥χ2∥

• (χ1 + χ2)jπo = χ1jπo + χ2jπo

This can be lifted elementwise to the case of two sets of distributions X ,Y ⊆ D:

X +Y ≙ {χ + ξ ∣ χ ∈ X , ξ ∈ Y } .

Thanks to the latter property we can split a distribution into two other distributions, where all

the elements of one satisfy a given condition c, while the elements of the other do not:

χ = χjco + χj¬co

This is a key property as whenever a program working on some distribution behaves differently

according to the state it is acting on, it is necessary to be able to split the distribution in this

way.

Distributions can be scaled through point-wise multiplication by a real number. This is the

multiplication by a scalar number, which is then defined as:

n ⋅ χ ≙ {σ↦ (n ⋅ χ(σ)) }

We have previously the restriction of a distribution through another distribution in terms of a

point-wise product: depending on the situation it is useful to think of this alternatively as a

restriction or as a product of distributions, so we define the product of two distribution as:

χ1 ⋅ χ2 ≙ χ1jχ2o

As this is just a make-up for the restriction of a distribution through another distribution, com-

mutativity of the product of distributions derives directly from its definition:

χ1 ⋅ χ2 = χ2 ⋅ χ1
2We are assuming that we are dealing with distributions on the same state space — a trivial generalization can be

used if this is not the case, by adding all states that are missing from either distribution and have them mapped to 0.

70 Appendix A. States and distributions

All of this can be lifted to a set X ⊆ D of distributions in an obvious way:

• X ⋅ χ ≙ {ξ ⋅ χ ∣ ξ ∈ X }

• n ⋅X ≙ {n ⋅ ξ ∣ ξ ∈ X }

It is possible to introduce a partial order among distributions:

χ1 ≤ χ2 ≙ ∀σ ∈ dom(χ1) ∪ dom(χ2) ● χ1(σ) ≤ χ2(σ)

A.3.2 Specific types of distributions

Some specific types of distributions play special roles in our framework, so we are going to term

them accordingly.

A weighting distribution π is a distribution mapping states from its domain to real values in the

range [0..1]:
π ∶ S ↛ [0..1]

We use Dw to note the subset of D of all weighting distributions; the partial order defined

above results in a complete partial order on the Dw, where the top element is ι and the bottom

element is ε.

Given a weighting distribution π, we define its complementary weighting distribution π̄ as:

π̄ ≙ ιπ − π

Restriction : π1jπ2o ∈ Dw

A probability distribution δ is a weighting distribution such that ∥δ∥ ≤ 1.
We can further specify by using the term full probability distribution when ∥δ∥ = 1 and the term

probability subdistribution3 when ∥δ∥ < 1
We use Dp to note the subset of Dw of all probability distributions.

Restriction : δjπo ∈ Dp

In the case of probability distributions we can recognise that δ(σ) is the function of σ which

is usually referred to as the probability mass function: it represents the way the probability is

distributed depending on σ.

So for a pair (σi ↦ pi) ∈ δ we will refer to the weight pi as to the probability of the state σi.

Likewise we will talk of the probability of an abstract state rather than of its weight: in fact if

we see a state as an outcome, we can see an abstract state as an event (i.e. a set of outcomes).

A.3.3 A simpler notation

It is apparent that having to deal with distributions with different domains requires the use of

a lot of different subscripts and side-conditions, which are conceptually void and are rather an

exercise of patience and due diligence.

3A small caveat here: when Morgan et al.talk about “probability subdistributions”, they refer to the case of the
cumulative probability being less or equal to 1; we chose to use a stricter connotation of the term “subdistribution”, as
we found it less confusing.

A.3. Distributions 71

For this reason in some cases, for example when the state space is finite, it is helpful to think of

a distribution as a total function χ ∶ S → R, where the undefined mappings are replaced by the

null mapping; in this case it is handy to use the vector notation, so that:

χ =

⎛
⎜⎜⎜⎜⎜
⎝

σ1

σ2

⋮
σn

⎞
⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜
⎝

x1

x2

⋮
xn

⎞
⎟⎟⎟⎟⎟
⎠

.

This is justified by the fact that we can see a distribution as an element of a vector space: we

will explore later on (§B) in more detail the concept of distributions as vectors along with its

implications.

In order to be able to better focus on more important matters, we are going to work under this

assumption from now on — and coherently we will omit any subscript carrying information on

the distribution domain.

Moreover, in this work we will be talking mostly of probability distributions, so we will usually

be referring to them simply as “distributions”, eventually distinguishing between the case of a

“full distribution” and that of a “subdistribution”.

Whenever we want to use this term in the more general meaning we have used so far, we will

rather use “general distributions”.

A.3.4 The remap operator

We have previously hinted at the importance of the remap operator within our framework.

The reason for its importance is that it is a technical device to deal with all the complicated

machinery that is responsible for the correct modelling of assignments.

When states distributed according to a probability distribution are modified by an assignment

v ∶= e, the original before-distribution δ is transformed into the after-distribution δ′ = δ{∣e/v ∣},

where the postfix operator {∣e/v ∣} is the remap operator: it is therefore an effective way of keep-

ing track of the changes affecting a distribution δ as it “evolves” assignment after assignment

towards a final distribution δ′.

The remap operator is defined in terms of the weight of the inverse-image set for the corre-

sponding assignment:

δ{∣e/v ∣} ≙ {σ′ ↦ ∥δkInv(v ∶= e,{σ′})p∥ ∣ alph(σ′) ∈ alph(δ)}

In other words, for each after-state σ′ from the domain of the resulting distribution δ{∣e/v ∣}, we

have that the corresponding weight is made up of the original weight of all before-states σ that

have been transformed into σ′ because of the assignment v ∶= e :

(δ{∣e/v ∣})(σ′) = {∑ δ(σ) ∣ σ′ = σ † {v ↦ evalσ(e)}

From the definition we can see that after applying the remap operator the alphabet of the

resulting distribution is the same as the alphabet of the original distribution:

alph(δ{∣e/v ∣}) = alph(δ)

72 Appendix A. States and distributions

Quite often it is the case that we are dealing with an assignment ei to a single variable vi from

V : in this case we overload the notation adopted so far and use the postfix operator {∣ei/vi∣}.

Sometimes the same assignment is repeated several times, one after the other, so we define a

compact notation for this case:

δ{∣e/v ∣}k ≙ δ{∣e/v ∣}{∣e/v ∣} . . .{∣e/v ∣}
´¹¹¸¹¹¶

k times

Properties

From the definitions of sum and multiplication, we have that the remap operator is a linear

one:
(x ⋅ δ{∣e/v ∣} + y ⋅ δ{∣f/v ∣}){∣g/v ∣} = x ⋅ δ{∣e/v ∣}{∣g/v ∣} + y ⋅ δ{∣f/v ∣}{∣g/v ∣}

Here are some other properties:

Composition (I) : δ{∣e/v ∣}{∣f/v ∣} = δ{∣f{e/v}/v ∣}
Composition (II) : δ{∣e/v ∣}{∣f/v ∣} = δ{∣f ○e/v ∣}
Composition (III) : δ{∣e/vi∣}{∣f/vj∣} = δ{∣(e,f{e/vi})/(vi,vj)∣}
Composition (IV) : δ{∣e/vi∣}{∣f/vi∣} = δ{∣f{e/vi}/vi∣}
Iteration : δ{∣e/v ∣}k = δ{∣ek/v ∣}
Commutativity (I) : δ{∣e/vi∣}{∣f/vj∣} = δ{∣f{e/vi}/vj∣}{∣e/vi∣} iff vj ∉ fv(e)
Commutativity (II) : δ{∣e/vi∣}{∣f/vj∣} = δ{∣f/vj∣}{∣e/vi∣} iff vi ∉ fv(f) ∧ vj ∉ fv(e)
Expression substitution : δjf = go{∣e/v ∣} = δjf = go{∣e{f/g}/v ∣}
Contradiction : ∀σ ∈ dom(δ) ● σ(c{e/v}) = false ∧ δ ≠ ε ⇔ δ{∣e/v ∣}jco = ε
Assertion : ∀σ ∈ dom(δ) ● σ(c{e/v}) = true ⇔ δ{∣e/v ∣}jco = δ{∣e/v ∣}
Remapping a condition : δ{∣e/v ∣}jco = δjc{e/v}o{∣e/v ∣}
Weight of a distribution after remapping : ∥δ{∣e/v ∣}∥ = ∥δ∥ iff σ(e) is defined in dom(δ)

APPENDIX B

Distributions as vectors

When we are working with distributions, we are in effect dealing with a vector space with size

equal to the cardinality of the state space S : a distribution χ over the (finite1) state space S can

be seen as a linear combination of point distributions ησ with coefficients xσ ranging in R:

χ = ∑
σ∈S
xσ ⋅ ησ

Similarly a weighting distribution π can be seen as the same linear combination, but with

coefficients wσ ranging over [0..1]:
π = ∑

σ∈S
wσ ⋅ ησ

Finally a probability distribution δ can be seen as the same linear combination, with coefficients

pσ ranging in [0..1] (as for weighting distributions), which have the additional property of being

(at most) one-summing:

δ = ∑
σ∈S
pσ ⋅ ησ ∧ ∑

σ∈S
pσ ≤ 1

When writing the distributions as a linear combination of point distributions, we have implicitly

chosen the set of all point distribution as a basis of the vector space. In particular it is an

orthonormal basis, which we refer to as the canonical basis (made of the canonical generators).

We can therefore represent all distributions as vectors of the coefficients from the corresponding

linear combinations:

χ ≙

⎛
⎜⎜⎜⎜⎜
⎝

x1

x2

⋮
xn

⎞
⎟⎟⎟⎟⎟
⎠

π ≙

⎛
⎜⎜⎜⎜⎜
⎝

w1

w2

⋮
wn

⎞
⎟⎟⎟⎟⎟
⎠

δ ≙

⎛
⎜⎜⎜⎜⎜
⎝

p1

p2

⋮
pn

⎞
⎟⎟⎟⎟⎟
⎠

For the sake of clarity we assume that states are numbered from 1 to n and use the subscript i

instead of σi; nevertheless we will be very pedantic regarding the vector notation and underline

a distribution whenever we refer to its vector representation.

B.1 Operations on vectors

First of all we can introduce a partial order among these vectors by overloading the ≤ operator:

χ
1
≤ χ

2
≙ ∀i ● xi1 ≤ xi2

1We assume the state space S to be finite and with cardinality n, but we can deal also with an infinite state space;
moreover we assume that the domain of all distributions coincides with the state space — in other words we are taking
the trivial completion, that maps to 0 all states in S ∖ dom(χ).

73

74 Appendix B. Distributions as vectors

This definition matches that given in A.3.1; analogously this results in a complete partial order

on the subset of weighting distributions, where we have a top element ι, i.e. the unit vector,

and a bottom element ε, i.e. the zero vector:

⎛
⎜⎜⎜⎜⎜
⎝

0

0

⋮
0

⎞
⎟⎟⎟⎟⎟
⎠

≤

⎛
⎜⎜⎜⎜⎜
⎝

w1

w2

⋮
wn

⎞
⎟⎟⎟⎟⎟
⎠

≤

⎛
⎜⎜⎜⎜⎜
⎝

1

1

⋮
1

⎞
⎟⎟⎟⎟⎟
⎠

We use the L1-norm (also known as Manhattan norm) as the norm of choice for this space2:

∥χ∥ ≙ ∥χ∥1 =∑ ∣xi∣

In the case of distributions from the positive cone of D , noted D+, this coincides with the

notion of distribution weight given in A.3.

Occasionally we will use also the L∞-norm (also known as Chebyshev norm), which we will use

later on:

∥χ∥∞ = max
i

{∣xi∣}

D with the Manhattan norm can therefore be seen as a metric space, where the distance function

is defined as:

d(χ
1
, χ
2
) ≙ ∥χ

1
− χ

2
∥

We use the conventional definition of the scalar product of two vectors:

χ
1
⋅ χ
2
≙∑xi1xi2 = χT1 χ2

With this definition we have that ∥χ∥ = ι⋅χ for all distributions from the positive cone D+ (which

includes weighting and probability distributions).

We use the conventional definition of the entry-wise product3 of two vectors:

χ
1
○ χ
2
≙ χH where xiH = xi1 ⋅ xi2

If we use the notation diag(v) to denote the diagonal matrix whose element (i, i) is the i-th

component of v, we can write the following equality:

χ
1
○ χ
2
= diag(χ

1
)χ
2

Addition and multiplication by a scalar have the usual definitions as well.

2From now on we will systematically omit the indication of the sum index whenever it is obvious from the context
and it ranges from 1 to n.

3Also known as Hadamard product.

B.2. Programs as matrices 75

B.1.1 The set Dp

Using the above definition of norm we can express the property that probability distributions

are at most 1-summing:

∥δ∥ ≤ 1

The set Dp of all probability distributions is therefore the intersection of the positive cone of D
and the (closed) n-ball of radius 1, centred in ε: Dp = D+ ∩ B1[ε].

B.2 Programs as matrices

We have already stated that a deterministic programA can be seen as a distribution-transformer,
as it “turns” a probability distribution δ into a post-distribution δ′.

From a different angle we can see this as a homeomorphism in the vector space of distributions4,

and as such it can be described as a square matrix A of size n × n (so that it is conformable

to the product of a vector with n elements, i.e. a n × 1 matrix), which we will refer to as the

program matrix:

δ′ = Aδ

which is, explicitly:

⎛
⎜⎜⎜⎜⎜
⎝

p′1

p′2

⋮
p′n

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

⋮ ⋮ ⋱ ⋮
an1 an2 . . . ann

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

p1

p2

⋮
pn

⎞
⎟⎟⎟⎟⎟
⎠

We use the notations ai∗ and a∗j to refer respectively to the i-th row (transposed) and to the

j-th column of A.

Coherently with the adoption of the L1-norm for vectors, we use it also as the norm of choice

for matrices:

∥A∥ ≙ ∥A∥1 = max
j

{∥a∗j∥}

The L∞-norm for matrices is the following:

∥A∥∞ = max
i

{∥ai∗∥1}

Therefore we have that:

∥A∥ ≙ ∥AT ∥∞

We define a partial order among matrices by extending column-wise (or, equivalently, row-wise)

the ≤-order on vectors:

A ≤ B ≙ ∀j ● a∗j ≤ b∗j ≡ ∀i ● ai∗ ≤ bi∗

We use this to define a partial order among programs:

A ≼ B ≙ A ≤ B

4In particular, we will show that this homeomorphism maps probability distributions to probability distributions.

76 Appendix B. Distributions as vectors

We can notice in passing that A ≼ B implies that A ⊑ B, as for any δ, A ≼ B implies that

B(δ) ⊆ (A(δ))△ — graphically, the refinement set comprises all of the distributions contained

between the hyperplane (with the smallest dimension) containing all distributions of A(δ) and

the hyperplane of all distributions with unitary weight — ; we cannot give a sensible definition

for A ≼ B in the case of nondeterministic programs, so the reverse implication is false.

B.2.1 Interpretation of the columns of the program matrix

We can see that δ′ is a linear combination of the columns of A, with coefficients in the range

[0..1] that sum up to 1 at most.

If δ = η
i

we have that δ′ = δ′Ai, defined as:

δ′Ai ≙ Aηi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a11 . . . a1i . . . a1n

⋮ ⋱ ⋮ ⋱ ⋮
ai1 . . . aii . . . ain

⋮ ⋱ ⋮ ⋱ ⋮
an1 . . . ani . . . ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

⋮
1

⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1i

⋮
aii

⋮
ani

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= a∗i

is the probability distribution we obtain if program A is run from state σi — in other words δ′Ai
is the vector representation of the post-distribution δ′

(A,σi)
= A(ησi).

We can therefore derive a healthiness condition for the elements in each column of A, which is

that they are all positive and cannot sum up to more than 1 — and when the sum is exactly 1

this means that A is guaranteed to terminate whenever starting in state σi.

From this healthiness condition we can derive that probability distributions are indeed mapped

to probability distributions.

Thus we can see δ′ as a linear combination of the probability distributions accounting for all of

the possible outcomes of A, where the coefficient of the i-th possible outcome relative to state

σi is the probability that A starts running in that state.

In other words the columns of A are the generators of a vector space, which has the property

that the representation of the before-distribution δ in that space coincides with the representa-

tion of δ′ in D: for this reason we will refer to δ′Ai as to the i-th generator of A; therefore the

canonical generators are those of the identity program I.

We can relate this to how deterministic programs are viewed in [MM04, §5.1], where the space

Pd of deterministic programs is defined as:

Pd ≙ (S →Dp,⊑)

A program A is therefore seen as the following relation:

A = {(σi, δ′Ai) ∣ σi ∈ S}

The matrix A is a complete description of program A, as it contains all of the information

B.2. Programs as matrices 77

provided in the above relation:

A = (δ′A1 δ′A2 . . . δ′An)

B.2.2 Random Variables and pGCL Expectations

If we have a random variable X′ ∶ S → R which assigns a real value to every state in S , we can

compute its expected value5 Eδ′(X′) by summing over all states the value assigned to each state

weighted by the probability of that state:

∑
σ∈S
pσ ⋅X′(σ)

We are interested in the case when the probability distribution over the state space is repre-

sented by δ′, as if we represent X′ as a generic distribution χ′, then we can express its expected

value as:

Eδ′(X′) = χ′ ⋅ δ′ = (χ′)T δ′

In [MM04] expectations are defined as functions that map each state to the expected value that

a non-negative random variable will have at the end of the program.

This expectation, written for final states, specialises to a post-expectation:

Eδ′(X′ ∣δ′ = ηi) = xi

So this is actually the random variable X′ itself seen as an expectation — in this way we can see

programs as expectation transformers.

It is more interesting to write the corresponding pre-expectation, which gives the expected value

of X when the program A has started in state σi, i.e. when the final distribution of program

states is δ′Ai:

Eδ′(X′ ∣δ = ηi) = Eδ′(X′ ∣δ′ = δ′Ai) = χ′ ⋅ δ′Ai = (χ′)Tδ′Ai = (χ′)TAη
i

We can therefore express this pre-expectation as a generic distribution χ:

χT = (χ′)TA (η
1
η
2
. . . η

n
) = (χ′)TAI = (χ′)TA

The pre-expectation is a random variable X that has the property of having the same expected

value as X′ if the initial and final probability distribution over the state space are represented

by δ and δ′ respectively:

(χ′)T δ′ = (χ′)TAδ = χT δ

Because of the way they operate on expectations, these random variables are constrained to

having non-negative values in [MM04]: here we can relax this constraint, as we are using

random variables in a slightly different way, that allows more flexibility.

5Usually it is customary to refer to the expected value of a random variable as to its expectation: we will refrain from
doing so, as this same term is used with a different (although not totally unrelated) meaning in the context of pGCL.

78 Appendix B. Distributions as vectors

B.2.3 Interpretation of the rows of the program matrix

We can see that we are able to relate the above random variables using the transposition of

program matrix A:

χ = ((χ′)TA)T = ATχ′

Similarly as above, we can see χ as a linear combination of the columns of AT , i.e. as a linear

combination of the (transposed) rows of A.

Let us remember that it is possible to express any generic distribution as a linear combination of

point distributions; for χ′ we have that the coefficients in the linear combination are the values

xi that X′ has in each state σi:

χ′ =∑xiηi

If we define ωAi in the following way:

ωAi ≙ A
T η
i
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a11 . . . ai1 . . . an1

⋮ ⋱ ⋮ ⋱ ⋮
a1i . . . aii . . . ani

⋮ ⋱ ⋮ ⋱ ⋮
a1n . . . ain . . . ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

⋮
1

⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ai1

⋮
aii

⋮
ain

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ai∗

we can write that:

χ = ATχ′ = AT (∑xiηi) =∑xiA
Tη
i
=∑xiωAi

As the columns of A are at most 1-summing, these vectors have the property of summing to no

more than the unit vector ι:

∑ωAi ≤ ι

We can compute the expected value of X on δ (which is also the expected value of X′ on δ′) in

the following way:

Eδ(X) = χTδ =∑xiω
T
Ai δ =∑xip

′
i = Eδ′(X′)

We see that we have expressed the probability p′i in terms of δ , i.e. in terms of all the probabil-

ities p1, p2, . . . , pn, and ωAi defines the weight of each probability in the sum: its j-th element

can be seen as the probability that the program will end in state σi when starting in state σj.

B.2.4 Probability of an event

It is interesting to consider the case when we have a random variable Z′ that assigns real values

in the range [0..1] to each state in S : if this variable describes the probability that a certain

event happens depending on each state (i.e. the conditional probability), then we can compute

its expected value to evaluate the overall probability of that event:

P(event) = Eδ′(Z′) = Eδ(Z)

If we represent Z′ with a weighting distribution ω′, we can write that:

ω = ATω′ =∑ ziωAi

B.3. Deterministic Programs 79

ω represents a random variable that describes the probability that the event happens depending

on the initial states, and is a linear combination of the (transposed) rows of A with coefficients

in the range [0..1].

We can then see a program as a random-variable transformer.

B.3 Deterministic Programs

We can take advantage of the matrix approach to rewrite the predicates corresponding to de-

terministic programs in a different way:

• the program skip can be represented by the identity matrix I, as the after-distribution

equals the before-distribution:

skip ≙ δ′ = I δ ;

• an assignment takes the weight assigned to a state σi and reassigns it to a state σ′j: this is

represented by a matrix E whose (i, j)-th element eij is 1 for all states σj being remapped

to σ′i, and 0 otherwise. In other words, the element in j-th position in the i-th row is the

value of characteristic function of the inverse-image set Inv(v ∶= e,σ′i) for the argument

σj:

v ∶= e ≙ δ′ = Eδ ;

• it is quite trivial to render sequential composition, as this can be easily done by means of

the usual matrix composition:

A;B ≙ δ′ = BAδ ;

• for conditional constructs we use the diagonal matrices C and C̄ to “select” respectively

the states which satisfy the condition c and those that don’t: the (i, j)-th element cij in

matrix C is cii = σi(c) (i.e. the boolean value 1 if c is satisfied by σi, and 0 otherwise) in

case i = j, whereas cij = 0 if i ≠ j; the matrix C̄ is defined as I − C. If we compose these

matrices with those representing the programs A and B and sum the results, what we

obtain is the representation of the conditional construct, i.e. AC +BC̄: it is interesting to

notice that the i-th column in this matrix is a∗i if cii = 1 and b∗i otherwise:

A◁ c▷ B ≙ δ′ = ACδ + BC̄δ ;

• the conditional choice construct scales the matrices representing the programs A and B

by p and (1 − p) respectively and sums the results:

A p⊕ B ≙ δ′ = p ⋅Aδ + (1 − p) ⋅ Bδ ;

80 Appendix B. Distributions as vectors

• in a loop the body, represented byA, is executed over and over again as long as a condition

c is satisfied (C “selects” all states satisfying the condition, whereas C̄ accounts for those

satisfying the complementary exit condition):

c ∗A ≙ νX ● (XAC + IC̄) .

B.3.1 Some considerations on loops

We can write that:

νX ● (XAC + IC̄) ≡ δ′ = (C̄ + C̄AC + C̄(AC)2 + C̄(AC)3 + . . .)δ

≡ δ′ = (C̄
∞

∑
i=0

(AC)i)δ

If the series converges than we have that ∑∞
i=0(AC)i = (I −AC)−1 and thus:

νX ● (XAC + IC̄) ≡ δ′ = C̄(I −AC)−1 δ

We have convergence if:

• AC is nilpotent of some order N — and in that case the loop is guaranteed to terminate

at most after N loops;

• (AC)i → 0 — and in that case termination is probabilistic, as the probability of non-

termination tends to 0.

It is interesting to notice that if the element c̄ii of C̄ is 1, then the probability of exiting the loop

by reaching the state σi depends on the i-th row of the matrix AC. Conversely if the element c̄jj

of C̄ is 0, then the probability of continuing the loop because the intermediate state σj depends

on the j-th row of the matrix AC.

This observation allows us to derive decision procedures to establish if a loop is (probabilis-

tically) guaranteed to terminate6: the basic requirement is that all columns of A are one-

summing (if this is not fulfilled then there is some intrinsic non-termination probability in A).

We say that a column is terminal of order 0 if it is null; a column is terminal of order i + 1 if

the only non-null elements have row index equal to the column index of a terminal column of

order i; provided that A is terminating, we have that:

• a loop is guaranteed to terminate if all columns of AC are terminal of some order, i.e. the

null elements are disposed according to an appropriate pattern;

• a loop is probabilistically guaranteed to terminate if at least one of the non-terminal

columns havs at least one non-null element with row index equal to the column index of

a terminating column.

6This procedure is always applicable in the case of matrices of finite rank, i.e. when the state space is finite. In the
case of matrices of non-finite rank it may be possible to apply the algorithm depending on the properties of the matrices
— they must have a finite set of terminal columns of order greater than 0.

B.3. Deterministic Programs 81

In order to present an agile decision criterion we introduce the concept of reduction MR of a

non-null matrixM, as the matrix obtained by individuating the null columnsm∗j and removing

them along with the rows mj∗.

If we subsequently reduce M, we arrive to what we term the everlooping matrix ME, which is

not further reducible (i.e. the null matrix or a matrix with no null columns).

The properties of the everlooping matrix (AC)E allow us to conclude that:

• if (AC)E = 0 then we have guaranteed termination;

• if (AC)E → 0 then we have probabilistically guaranteed termination;

• otherwise there is the possibility of being caught in an infinite loop.

More details and a proof for this can be found in [BPB11].

B.3.2 Healthiness conditions

If we look at the first three healthiness conditions from §3.5 from this different angle, we can

restate them in a slightly different fashion:

• as δ′ is a linear combination of a matrix whose columns are at most one-summing with

the elements of δ as coefficients, we have that the norm of δ′ cannot exceed that of δ

(feasibility,Dist1/D);

• if we increase δ, the corresponding δ′ = Aδ is increasing as well: similarly as above, this

is implied by the non-negativity of all matrix elements (monotonicity,Dist2/D);

• multiplication by a non-negative constant distributes through matrices (scaling,Dist3/D).

In the case of random variables we obtain something closer to the presentation of the healthi-

ness conditions for pGCL expectations from [MM04]:

• as χ is a linear combination of a matrix whose rows are at most one-summing with the

elements of χ′ as coefficients, we have that the norm of χ cannot exceed that of χ′. As a

consequence the weight of a distribution ξ from the positive cone D+ cannot exceed that

of ξ′ (feasibility,Dist1/RV);

• if we increase χ′, the corresponding χ = ATχ′ increases as well: this is implied by the

non-negativity of all matrix elements (monotonicity,Dist2/RV);

• multiplication by a non-negative constant distributes through matrices (scaling,Dist3/RV).

Some examples in a two-element space

Before proceeding any further, we think it is useful to present the reader with a few examples,

to help visualize the concepts presented so far.

Let us consider a state space with only two elements:

S = {σ1, σ2}

The possible probability distributions on this state space can be graphically presented as in

82 Appendix B. Distributions as vectors

p1

p2

η
2

η
1

φ

ψ

Figure B.1: Representation of probability distributions on a 2-element space.

figure B.1:

We have drawn the vectors representing the point distributions η1 and η2, the 1-summing

probability distribution φ and the probability distribution ψ, which sums up to 0.9 instead:

η
1
=
⎛
⎝
1

0

⎞
⎠

η
2
=
⎛
⎝
0

1

⎞
⎠

φ =
⎛
⎝
0.5

0.5

⎞
⎠
= 0.5η

1
+ 0.5η

2
ψ =

⎛
⎝
0.8

0.1

⎞
⎠
= 0.8η

1
+ 0.1η

2

We use the following naming conventions to refer to points in the plane:

• the point (0, 0) is O;

• the point ψi is that connected to O by ψi;

• the point Xi is that connected to O by ψXi.

1-summing probability distributions as φ are represented by points on the thicker line limiting

the shaded area, all other probability distributions as ψ are represented by points in the shaded

area.

A program is then represented by a 2 × 2 matrix; let A be the always-terminating program

characterised by the following matrix:

A =
⎛
⎝
0.25 0.625

0.75 0.375

⎞
⎠
= (δ′A1 δ′A2)

The probability distributions that can possibly result from running this program can be repre-

sented as the darker area in figure B.2a.

We can see that the vector space generated by η1 and η2 has been transformed through a

homeomorphism to the vector space generated by δ′A1 and δ′A2, and all vectors have undergone

the same transformation:

φ′ = A
⎛
⎝
0.5

0.5

⎞
⎠
= 0.5 δ′A1 + 0.5 δ

′
A2 =

⎛
⎝
0.4375

0.5625

⎞
⎠

ψ′ = A
⎛
⎝
0.8

0.1

⎞
⎠
= 0.8 δ′A1 + 0.1 δ

′
A2 =

⎛
⎝
0.2625

0.6375

⎞
⎠

B.3. Deterministic Programs 83

We can verify that ∥φ∥ = ∥φ′∥ = 1 and ∥ψ∥ = ∥ψ′∥ = 0.9: as A is always terminating the after-

distribution has always the same weight as the before-distribution.

Let us now consider the program B, which is almost like A with the difference that it has

probability 0.1 of non-terminating when starting from state σ1:

B = A −
⎛
⎝
0.1 0

0 0

⎞
⎠
=
⎛
⎝
0.15 0.625

0.75 0.375

⎞
⎠
= (δ′B1 δ′A2)

We see that the second column of B is the same as in A.

The situation for program B is represented in figure B.2b.

The thicker line denotes maximal elements, which are mostly probability subdistributions (the

only probability distribution is represented by the right end point, which we obtain in case we

run the program from the state σ2, that guarantees termination).

φ′ and ψ′ have changed in the following way:

φ′ = B
⎛
⎝
0.5

0.5

⎞
⎠
= 0.5 δ′B1 + 0.5 δ

′
A2 =

⎛
⎝
0.3875

0.5625

⎞
⎠

ψ′ = B
⎛
⎝
0.8

0.1

⎞
⎠
= 0.8 δ′B1 + 0.1 δ

′
A2 =

⎛
⎝
0.1825

0.6375

⎞
⎠

Their weights have decreased, as ∥φ′∥ = 0.95 and ∥ψ′∥ = 0.82. If we compare the two programs

we can analyse where this difference comes from:

Bφ −Aφ =
⎛
⎝
0.1 0

0 0

⎞
⎠
⎛
⎝
0.5

0.5

⎞
⎠
=
⎛
⎝
0.05

0

⎞
⎠

Bψ −Aψ =
⎛
⎝
0.1 0

0 0

⎞
⎠
⎛
⎝
0.8

0.1

⎞
⎠
=
⎛
⎝
0.08

0

⎞
⎠

Now let us introduce a random variable Z′, describing for example the probability that the

result given by a program is correct, as follows:

Z′ = {(σ1, 0.8), (σ2, 0.9)}

p1

p2

η
2

η
1

δ′A1

δ′A2

φ
φ′

ψ

ψ′

p1

p2

η
2

η
1

δ′B1

δ′A2

φ
φ′

ψ

ψ′

(a) (b)

Figure B.2: Representation of probability after-distributions: (a) after the application of pro-
gram A; (b) after the application of program B.

84 Appendix B. Distributions as vectors

This can be represented by the weighting distribution ω′:

ω′ =
⎛
⎝
0.8

0.9

⎞
⎠

The space of all random variables like Z′, i.e. with values in [0..1], can be represented as in

figure B.3:

z1

z2

η
2

η
1

ω′

Figure B.3: Representation of random variables with values in [0..1] on a 2-element space.

If we take program A, we can relate ω′ to ω through the homeomorphism described by the

matrix AT :

ω = AT
⎛
⎝
0.8

0.9

⎞
⎠
= 0.8ωA1 + 0.9ωA2 =

⎛
⎝
0.875

0.8375

⎞
⎠

This is represented in figure B.4a.

We can compute the expected value of Z′ after program A has run, in the cases when the

before-distribution is respectively φ and ψ.

Eφ(Z′) =ωTφ = (0.875 0.8375)
⎛
⎝
0.5

0.5

⎞
⎠
= 0.85625

Eψ(Z′) =ωTψ = (0.875 0.8375)
⎛
⎝
0.8

0.1

⎞
⎠
= 0.78375

We can easily verify that these are the same results we would have obtained if we had calculated

the after-distributions and then computed the expected value:

Eφ(Z′) = (ω′)Tφ′ = (0.8 0.9)
⎛
⎝
0.4375

0.5625

⎞
⎠
= 0.85625

Eψ(Z′) = (ω′)Tψ′ = (0.8 0.9)
⎛
⎝
0.2625

0.6375

⎞
⎠
= 0.78375

In the case of program B we have that:

ω = BT
⎛
⎝
0.8

0.9

⎞
⎠
= 0.8ωB1 + 0.9ωA2 =

⎛
⎝
0.6825

0.8375

⎞
⎠

B.4. Nondeterministic choice 85

z1

z2

η
2

η
1

ωA1

ωA2

ω′

ω

z1

z2

η
2

η
1

ωB1

ωA2

ω′ω

(a) (b)

Figure B.4: Representation of random variables with values in [0..1]: (a) after the application
of program A; (b) after the application of program B.

This is represented in figure B.4b.

We can compute the expected value of Z′ after program B has run:

Eφ(Z′) =ωTφ = (0.6825 0.8375)
⎛
⎝
0.5

0.5

⎞
⎠
= 0.76

Eψ(Z′) =ωTψ = (0.6825 0.8375)
⎛
⎝
0.8

0.1

⎞
⎠
= 0.62975

B.4 Nondeterministic choice

Here we discuss briefly nondeterminism in the case of nondeterministic choice (the case of

generic choice is a sub-case of this).

When we use the matrix notation, the re-weighting operation can conveniently be represented

by the matrices diag(π) and diag(π̄).

A ⊓ B ≙ ∃π ● δ′ = A diag(π)δ + B diag(π̄)δ .

Let us go on with the examples to see how this works; we pick a nondeterministic program

C ⊓D, where:

C =
⎛
⎝
0.7 0.15

0.3 0.85

⎞
⎠
= (δ′C1 δ′C2) D =

⎛
⎝
0.6 0.1

0.4 0.9

⎞
⎠
= (δ′D1 δ′D2)

Let us focus on one of the possible after-distributions, parametric in π:

δ′π = C (π ○ δ) +D (π̄ ○ δ) = (C diag(π))δ + (D diag(π̄))δ

If π = (w1 w2)T , we can write that:

C diag(π) +D diag(π̄) =
⎛
⎝
w1 ⋅ 0.7 + w̄1 ⋅ 0.6 w2 ⋅ 0.15 + w̄2 ⋅ 0.1
w1 ⋅ 0.3 + w̄1 ⋅ 0.4 w2 ⋅ 0.85 + w̄2 ⋅ 0.9

⎞
⎠

86 Appendix B. Distributions as vectors

p1

p2

η
2

η
1

δ′C1

δ′C2

δ′D1

δ′D2

p1

p2

η
2

η
1

δ′C1

δ′C2

δ′E1

δ′E2

(a) (b)

p1

p2

η
2

η
1

δ′C1

δ′C2
δ′A1

δ′A2

p1

p2

η
2

η
1

δ′C1

δ′C2
δ′B1

δ′B2

(c) (d)

Figure B.5: Representation of probability after-distributions: (a) after the application of pro-
gram C ⊓D; (b) after the application of program C ⊓ E; (c) after the application of program
C ⊓A; (d) after the application of program C ⊓ B.

In this way we can clearly see that it is a linear combination of the columns of the two matrices:

C diag(π)δ +D diag(π̄) = (w1 ⋅ δ′C1 + w̄1 ⋅ δ
′
D1 w2 ⋅ δ′C2 + w̄2 ⋅ δ

′
D2)

The situation is represented in figure B.5a: the i-th generator of the program is an elements of

DiCi and is determined by the i-th component of π.

Full probability before-distributions are mapped to after-distributions lying on the segment

connecting the two generators, which is a part of the segment containing the maximal elements

of Dp (that connecting the canonical generators): this is because both programs are guaranteed

to terminate, and therefore if we start with a full probability before-distribution we get to

a full probability after-distribution, as distribution weight is preserved in case of terminating

programs.

The space of all possible outcomes varies depending on π, but for sure we have that:

• it can be no wider than the area D2OC1;

• regardless of π it has to contain the area C2OD1, i.e. contiguous parts from the shaded

B.4. Nondeterministic choice 87

p1

p2

η
2

η
1

δ′C1

δ′C2

δ′E1

δ′E2

δ′B1

δ′B2

Figure B.6: Representation of probability after-distributions after the application of program
(C ⊓ E) ⊓A.

areas D2OC2 and D1OC1 may or may not belong to this space;

• it is limited by a segment containing C2D1 and contained by D2C1.

Let us pick a case where the nondeterministic choice includes also a program which is not

always guaranteed to terminate, i.e. C ⊓ E where:

E =D −
⎛
⎝
0.3 0

0 0

⎞
⎠
=
⎛
⎝
0.3 0.1

0.4 0.9

⎞
⎠
= (δ′E1 δ′E2)

From figure B.5b we can see that in this case one of the generators lies on a segment which is not

part of the segment containing the maximal elements of Dp: this is because of non-termination

and its impact varies depending on π.

Full probability before-distributions are therefore mapped to after-distributions belonging to the

area E2E1C1 and we can clearly see that even starting with a full probability before-distribution

cannot guarantee that we obtain a full probability after-distribution (in this particular case, this

happens only if the before-distribution is η
2

as δA2 and δC2 are 1-summing and thus account

for certain termination when starting in state σ2).

The space of all possible outcomes varies depending on π, but for sure we have that:

• it can be no wider than the area E2OC1;

• regardless of π it has to contain the area XOE1, where X is the intersection of the E1E2
and OC2;

• it is limited by a segment whose vertices are respectively on E2C2 and E1C1.

If the nondeterministic choice were C ⊓A we would have had:

C diag(π) +A diag(π̄) =
⎛
⎝
w1 ⋅ 0.7 + w̄1 ⋅ 0.25 w2 ⋅ 0.15 + w̄2 ⋅ 0.625
w1 ⋅ 0.3 + w̄1 ⋅ 0.75 w2 ⋅ 0.85 + w̄2 ⋅ 0.375

⎞
⎠

This is the situation of figure B.5c, where we can immediately see that the segments AiCi
containing the i − th generator overlap: as a result the area which belongs to the space of

88 Appendix B. Distributions as vectors

z1

z2

z1

z2

(a) (b)

z1

z2

z1

z2

(c) (d)

Figure B.7: Representation of random variables with values in [0..1]: (a) after the application of
program C⊓D; (b) after the application of program C⊓E; (c) after the application of program
C ⊓A; (d) after the application of program C ⊓ B.

possible after-distributions collapses to a segment individuated by the condition w1 ⋅ δ′A1 +w2 ⋅
δ′C1 = w1 ⋅ δ

′
A2 +w2 ⋅ δ

′
C2.

Likewise the segment of possible full distributions (both A and C are terminating programs) is

a part of C1C2, which has to contain the end point of the above segment.

Similarly if the nondeterministic choice were C ⊓ B we would have had:

C diag(π) + B diag(π̄) =
⎛
⎝
w1 ⋅ 0.7 + w̄1 ⋅ 0.15 w2 ⋅ 0.15 + w̄2 ⋅ 0.625
w1 ⋅ 0.3 + w̄1 ⋅ 0.75 w2 ⋅ 0.85 + w̄2 ⋅ 0.375

⎞
⎠

In this case we can see that figure B.5d has elements of similarity both with C⊓A and C⊓E, so

similar considerations apply.

Generally speaking, in the case of nondeterministic choice between two deterministic programs,

we can say that the maximal elements in the space of possible after-distributions lie on a seg-

ment whose end points belong to the segment connecting homologue program generators.

If we have nondeterminism on either side of the nondeterministic choice, homologue program

generators define an area that contains all of them: the maximal elements in the space of

possible after-distributions lie on a segment whose end points belong to these areas — we can

see this in figure B.6, representing the situation for (C ⊓ E) ⊓A.

B.4. Nondeterministic choice 89

If we look at the transposed matrix in the case of C ⊓D, we have that:

ωπ = (C diag(π)+D diag(π̄))T ω′ = (diag(π)ωC1 + diag(π̄)ωD1 diag(π)ωC2 + diag(π̄)ωD2) ω
′

(C diag(π) +D diag(π̄))T =
⎛
⎝
w1 ⋅ 0.7 + w̄1 ⋅ 0.6 w1 ⋅ 0.3 + w̄1 ⋅ 0.4
w2 ⋅ 0.15 + w̄2 ⋅ 0.1 w2 ⋅ 0.85 + w̄2 ⋅ 0.9

⎞
⎠

We can notice that the j-th component of the i-th generator of the program C⊓D is the weighted

average of the j-th components of the i-th generators of C and D, where the weights wi and

w̄i are the same for all i.

In figure B.7a we can see that the representation of the two programs are deformed in comple-

mentary ways (i.e. , if the zi component is scaled by wi for C, the zi components is being scaled

w̄i for D) and then composed together to form the representation of C ⊓D.

The shaded rectangles represent the areas where the generators lie and the dotted lines connect

corresponding generators (picking one generator determines the other, as the scaling factors are

the same for all generators of each program).

Figures B.7b, B.7c and B.7d show the representations in the cases of all other programs we have

taken as examples in this section — to be noted the effect of non-termination in figures B.7b

and B.7d.

Additional figures on nondeterminism

In the next pages there are additional figures which (may) give a clearer view of some parts of

the presentation relating to nondeterminism.

90 Appendix B. Distributions as vectors

π ○ δ′Ci
δ′Ci

π̄ ○ δ′Di
δ′Di

δ′wi = wiδ
′
Ci + w̄iδ

′
Di

η
i

p1

p2

p1

p2

p1

p2

Figure B.8: Representation of probability after-distributions after the application of program
C ⊓D, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

π ○ δ′Ci
δ′Ci

π̄ ○ δ′Ei
δ′Ei

δ′wi = wiδ
′
Ci + w̄iδ

′
Ei

η
i

p1

p2

p1

p2

p1

p2

Figure B.9: Representation of probability after-distributions after the application of program
C ⊓ E, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

π ○ δ′Ci
δ′Ci

π̄ ○ δ′Ai
δ′Ai

δ′wi = wiδ
′
Ci + w̄iδ

′
Ai

η
i

p1

p2

p1

p2

p1

p2

Figure B.10: Representation of probability after-distributions after the application of program
C ⊓A, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

B.4. Nondeterministic choice 91

π ○ δ′Ci
δ′Ci

π̄ ○ δ′Bi
δ′Bi

δ′wi = wiδ
′
Ci + w̄iδ

′
Bi

η
i

p1

p2

p1

p2

p1

p2

Figure B.11: Representation of probability after-distributions after the application of program
C ⊓ B, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

π ○ωCi
ωCi

−π̄ ○ωDi
−ωDi

ωπi = π ○ωCi + π̄ ○ωDi
η
i

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

(a) (b) (c)

Figure B.12: Representation of random variables with values in [0..1] after the application of
program C ⊓D, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

π ○ωCi
ωCi

−π̄ ○ωEi
−ωEi

ωπi = π ○ωCi + π̄ ○ωEi
η
i

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

(a) (b) (c)

Figure B.13: Representation of random variables with values in [0..1] after the application of
program C ⊓ E, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

92 Appendix B. Distributions as vectors

π ○ωCi
ωCi

−π̄ ○ωAi
−ωAi

ωπi = π ○ωCi + π̄ ○ωAi
η
i

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

(a) (b) (c)

Figure B.14: Representation of random variables with values in [0..1] after the application of
program C ⊓A, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

π ○ωCi
ωCi

−π̄ ○ωBi
−ωBi

ωπi = π ○ωCi + π̄ ○ωBi
η
i

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

z1

z2

w1w̄1

w2

w̄2

(a) (b) (c)

Figure B.15: Representation of random variables with values in [0..1] after the application of
program C ⊓ B, in case that: (a) π = (0.2, 0.3); (b) π = (0.4, 0.3); (c) π = (0.9, 0.9).

APPENDIX C

Proofs

C.1 Restriction of the state space

αjco = S jco ∩α
Proof:

αjco
= [d:A:Rst] — §A.2.2

{σ ∣ σ ∈ α ∧ σ(c) = true}
= [d:S] — §A.2

{σ ∣ σ ∈ S ∧ σ ∈ α ∧ σ(c) = true}
= Set theory

{σ ∣ σ ∈ S ∧ σ(c) = true} ∩ {σ ∣ σ ∈ α}
= [d:A:Rst]

S jco ∩α
◻

C.2 Restriction through equivalent condition

(c1⇔ c2) ⇒ χjc1o = χjc2o
Proof:

dom(χ)jc1o = dom(χ)jc2o

◻

C.3 Restriction through implied condition (I)

(c2 ⇒ c1) ⇔ χjc1ojc2o = χjc2o
Proof:

χjc1ojc2o
= [p:D:Rst:Cnj] — §A.3

χjc1 ∧ c2o
= [p:D:Rst:EqC] — §C.2 ∶ (c2 ⇒ c1) ∧ (c1 ∧ c2)⇔ c2

χjc2o

◻

93

94 Appendix C. Proofs

C.4 Restriction through implied condition (II)

(c1 ⇒ ¬c2) ⇒ χjc1ojc2o = ε
Proof:

χjc1ojc2o
= [p:D:Rst:Cnj] — §A.3

χjc1 ∧ c2o
= [p:D:Rst:EqC] — §C.2 ∶ (c1 ⇒ ¬c2) ∧ (c1 ∧ c2)⇔ false

χjfalseo = ε

◻

C.5 Restriction through a restricted unitary distribution

χjco = χkιχjcop
Proof:

χkιχjcop
= [d:D:RstD] — §A.3

{σ↦ χ(σ) ⋅ ιχ(σ) ∣ σ ∈ dom(χ) ∩ dom(ιχjco)}
= Set theory: dom(ιχjco) = dom(χjco) ⊆ dom(χ)

{σ↦ χ(σ) ⋅ ιχ(σ) ∣ σ ∈ dom(χjco)}
= [d:D:UD] — §A.3

{σ↦ χ(σ) ∣ σ ∈ dom(χjco)}
= [d:D:Rst] — §A.3

χjco
◻

C.6. Case Split 95

C.6 Case Split

χ = χjco + χj¬co
Proof:

χjco + χj¬co
= [d:D:Sum] — §A.3.1

{σ↦ (χjco(σ) + χj¬co(σ)) ∣ σ ∈ dom(χjco) ∪ dom(χj¬co)}
= Set theory

{σ↦ (χjco(σ) + 0) ∣ σ ∈ dom(χjco)} ∪ {σ↦ (0 + χj¬co(σ)) ∣ σ ∈ dom(χj¬co)}
= [d:D:Rst] — §A.3

{σ↦ χ(σ) ∣ σ ∈ dom(χjco)} ∪ {σ↦ χ(σ) ∣ σ ∈ dom(χj¬co)}
= Set theory

{σ↦ χ(σ) ∣ σ ∈ dom(χjco) ∪ dom(χj¬co)}
= Set theory

{σ↦ χ(σ) ∣ σ ∈ dom(χ)}
= [d:D] — §A.3

χ

◻

C.7 Restriction

π1jπ2o ∈ Dw

Proof:

π1jπ2o(σ) = π1(σ) ⋅ π2(σ) ≤ π1(σ)

◻

C.8 Restriction

δjπo ∈ Dp

Proof:

δjπo(σ) = δ(σ) ⋅ π(σ) ≤ δ(σ)

◻

96 Appendix C. Proofs

C.9 Nested inverse-image set

Inv(v ∶= e, Inv(v ∶= f,{σ})) = Inv(v ∶= f{e/v},{σ})
Proof:

Inv(v ∶= e, Inv(v ∶= f,{σ′}))
= [d:S:Inv] — §A.2.3

Inv(v ∶= e,{σ ∣ σ′(v) = σ(f) ∧ σ ∈ Salph(σ′)})
= [d:S:Inv]

⋃
ζ′∈{σ ∣ σ′(v)=σ(f)∧σ∈Salph(σ′)}

{ζ ∣ ζ′(v) = ζ(e) ∧ ζ ∈ Salph(ζ′)}

= Property of distributed union

{ζ ∣ σ(v) = ζ(e) ∧ σ′(v) = σ(f) ∧ σ, ζ ∈ Salph(σ′)}
= [p:E:Ev:Comp] — §A.2.1

{ζ ∣ σ′(v) = ζ(f ○ e) ∧ ζ ∈ Salph(σ′)}
= [d:E:Comp] — §A.2.1

{ζ ∣ σ′(v) = ζ(f{e/v}) ∧ ζ ∈ Salph(σ′)}
= [d:S:Inv]

Inv(v ∶= f{e/v},{σ′})

◻

C.10 Linearity of the remap operator

(x ⋅ δ{∣e/v ∣} + y ⋅ δ{∣f/v ∣}){∣g/v ∣} = x ⋅ δ{∣e/v ∣}{∣g/v ∣} + y ⋅ δ{∣f/v ∣}{∣g/v ∣}
Proof:

(x ⋅ δ{∣e/v ∣} + y ⋅ δ{∣f/v ∣}){∣g/v ∣}(σ)
= [d:D:Rmp] — §A.3.4

∥(x ⋅ δ{∣e/v ∣} + y ⋅ δ{∣f/v ∣})kInv(v ∶= g,{σ})p∥
= [p:D:Sum:Wt] — §A.3.1

∥x ⋅ δ{∣e/v ∣}kInv(v ∶= g,{σ})p + y ⋅ δ{∣f/v ∣}kInv(v ∶= g,{σ})p∥
= [d:D:Rmp]

x ⋅ δ{∣e/v ∣}{∣g/v ∣}jσo + y ⋅ δ{∣f/v ∣}{∣g/v ∣}(σ)
= [d:D:Sum]

(x ⋅ δ{∣e/v ∣}{∣g/v ∣} + y ⋅ δ{∣f/v ∣}{∣g/v ∣})(σ)

◻

C.11. Composition (I) 97

C.11 Composition (I)

δ{∣e/v ∣}{∣f/v ∣} = δ{∣f{e/v}/v ∣}
Proof:

δ{∣e/v ∣}{∣f/v ∣}(σ)
= [d:D:Rmp] — §A.3.4

∥δ{∣e/v ∣}kInv(v ∶= f,{σ})p∥
= [p:D:RstA:Wt] — §A.3

∑
ζ∈Inv(v ∶=f,{σ})

δ{∣e/v ∣}(ζ)

= [d:D:Rmp]

∑
ζ∈Inv(v ∶=f,{σ})

∥δkInv(v ∶= e,{ζ})p∥

= [d:A:Inv] ∶ ⋃
ζ∈Inv(v ∶=f,{σ})

Inv(v ∶= e,{ζ}) = Inv(v ∶= e, Inv(v ∶= f,{σ}))

∥δkInv(v ∶= e, Inv(v ∶= f,{σ}))p∥

= [p:S:Inv:Nest] — §C.9

∥δkInv(v ∶= f{e/v},{σ})p∥

= [d:D:Rmp]

δ{∣f{e/v}/v ∣}(σ)

◻

C.12 Composition (II)

δ{∣e/v ∣}{∣f/v ∣} = δ{∣f ○e/v ∣}
Proof:

δ{∣e/v ∣}{∣f/v ∣}
= [p:D:Rmp:Comp1] — §C.11

δ{∣f{e/v}/v ∣}
= [d:E:Comp] — §A.2.1

δ{∣f ○e/v ∣}

◻

C.13 Composition (III)

δ{∣e/vi∣}{∣f/vj∣} = δ{∣(e,f{e/vi})/(vi,vj)∣}

Proof: Special case of C.11, where v =
⎛
⎝

vi
vj

⎞
⎠

, e =
⎛
⎝
e

vj
⎞
⎠

and f =
⎛
⎝

vi
f

⎞
⎠

.

◻

98 Appendix C. Proofs

C.14 Composition (IV)

δ{∣e/vi∣}{∣f/vi∣} = δ{∣f{e/vi}/vi∣}
Proof: Special case of C.11, where v = (vi), e = (e) and f = (f).

◻

C.15 Iteration

δ{∣e/v ∣}k = δ{∣ek/v ∣}
Proof: By induction, the base case is trivial for k = {0, 1}.

Inductive hypothesis: δ{∣e/v ∣}n = δ{∣en/v ∣}

δ{∣e/v ∣}n+1

= [d:D:Rmp:Iter] — §A.3.4

δ{∣e/v ∣}n{∣e/v ∣}
= Inductive hypothesis

δ{∣en/v ∣}{∣e/v ∣}
= [p:D:Rmp:Comp1] — §C.11

δ{∣e{en/v}/v ∣}
= [d:E:Comp] — §A.2.1

δ{∣e ○en/v ∣}
= [d:E:Comp:Iter] — §A.2.1

δ{∣en+1/v ∣}

◻

C.16 Commutativity (I)

δ{∣e/vi∣}{∣f/vj∣} = δ{∣f{e/vi}/vj∣}{∣e/vi∣} iff vj ∉ fv(e)
Proof:

δ{∣e/vi∣}{∣f/vj∣}
= [p:D:Rmp:Comp3] — §C.13

δ{∣(e,f{e/vi})/(vi,vj)∣}
= Substitution: vj ∉ fv(e)⇒ e{x/vj} = e

δ{∣(e{f{e/vi}/vj},f{e/vi})/(vi,vj)∣}
= Substitution: x = y{x/y}

δ{∣(e{f{e/vi}/vj},vj{f{e/vi}/vj})/(vi,vj)∣}
= [p:D:Rmp:Comp3]

δ{∣f{e/vi}/vj∣}{∣e/vi∣}
◻

C.17. Commutativity (II) 99

C.17 Commutativity (II)

δ{∣e/vi∣}{∣f/vj∣} = δ{∣f/vj∣}{∣e/vi∣} iff vi ∉ fv(f) ∧ vj ∉ fv(e)
Proof:

δ{∣e/vi∣}{∣f/vj∣}
= [p:D:Rmp:Cmm1] — §C.16

δ{∣f{e/vi}/vj∣}{∣e/vi∣}
= Substitution: vi ∉ fv(f)⇒ f{e/vi} = f

δ{∣f/vj∣}{∣e/vi∣}
◻

C.18 Expression substitution

δjf = go{∣e/v ∣} = δjf = go{∣e{f/g}/v ∣}
Proof:

δjf = go{∣e{f/g}/v ∣}
= [d:E:Ev] — §A.2.1

δjf = go{∣e/v ∣}

◻

C.19 Contradiction

∀σ ∈ dom(δ) ● σ(c{e/v}) = false ∧ δ ≠ ε ⇔ δ{∣e/v ∣}jco = ε
Proof:

∀σ ∈ dom(δ) ● σ(c{e/v}) = false ∧ δ ≠ ε
≡ [d:D:Rmp] — §A.3.4

∀σ′ ∈ dom(δ{∣e/v ∣}) ● σ′(c) = false ∧ δ ≠ ε
≡ [d:D:Rst] — §A.3

δ{∣e/v ∣}jco = ε
◻

C.20 Assertion

∀σ ∈ dom(δ) ● σ(c{e/v}) = true ⇔ δ{∣e/v ∣}jco = δ{∣e/v ∣}
Proof:

∀σ ∈ dom(δ) ● σ(c{e/v}) = true
≡ [d:D:Rmp] — §A.3.4

∀σ′ ∈ dom(δ{∣e/v ∣}) ● σ′(c) = true
≡ [d:D:Rst] — §A.3

δ{∣e/v ∣}jco = δ{∣e/v ∣}
◻

100 Appendix C. Proofs

C.21 Remapping a condition

δ{∣e/v ∣}jco = δjc{e/v}o{∣e/v ∣}
Proof:

δ{∣e/v ∣}jco
= [p:D:Sum:CS] — §C.6

δjc{e/v}o{∣e/v ∣}jco + δj¬c{e/v}o{∣e/v ∣}jco
= [p:D:Rmp:Rst1] — §C.19

δjc{e/v}o{∣e/v ∣}jco + ε
= [p:D:Rmp:Rst2] — §C.20

δjc{e/v}o{∣e/v ∣}

◻

C.22 Weight of a distribution after remapping

∥δ{∣e/v ∣}∥ = ∥δ∥ iff σ(e) is defined in dom(δ)
Proof:

∥δ{∣e/v ∣}∥
= [d:D:Wt] — §A.3

∑
σ′∈domδ{∣e/v ∣}

δ{∣e/v ∣}(σ′)

= [d:D:Rmp] — §A.3.4

∑
σ′∈domδ{∣e/v ∣}

∥δkInv(v ∶= e,{σ′})p∥

= [p:D:RstA:Wt] — §A.3

∑
σ′∈domδ{∣e/v ∣}

(∑
σ∈Inv(v ∶=e,{σ′})

δ(σ))

= [p:A:Inv:EqR] — §A.2.3 ∶ ⋃
σ′∈domδ{∣e/v ∣}

Inv(v ∶= e,{σ′}) = domδ iff σ(e) is defined in dom(δ)

∑
σ∈domδ

δ(σ)

= [d:D:Wt]

∥δ∥

◻

C.23. Pseudo-associativity of probabilistic choice 101

C.23 Pseudo-associativity of probabilistic choice

A p⊕ (B q⊕C) ≡ (A r⊕ B) s⊕C ∧ p = rs ∧ (1 − s) = (1 − p)(1 − q)
Proof:A p⊕ (B q⊕C)

≡ [d:P:Ch:Prb] — §B.3

∃δA, δBC ●A(p ⋅ δ, δA) ∧ (B q⊕C)((1 − p) ⋅ δ, δBC) ∧ δ′ = δA + δBC
≡ [d:P:Ch:Prb] ∧ δBC = δB + δC (One-point rule)

∃δA, δB, δC ●A(p ⋅ δ, δA) ∧ B(q(1 − p) ⋅ δ, δB) ∧C((1 − q)(1 − p) ⋅ δ, δC) ∧ δ′ = δA + δB + δC
≡ (1 − p)(1 − q) = (1 − s) ∧ p = rs⇒ q(1 − p) = (1 − r)s

∃δA, δB, δC ●A(rs ⋅ δ, δA) ∧ B((1 − r)s ⋅ δ, δB) ∧C((1 − s) ⋅ δ, δC) ∧ δ′ = δA + δB + δC
≡ [d:P:Ch:Prb] ∧ δAB = δA + δB (One-point rule)

∃δAB, δC ● (A r⊕ B)(s ⋅ δ, δAB) ∧C((1 − s) ⋅ δ, δC) ∧ δ′ = δAB + δC
≡ [d:P:Ch:Prb]

(A r⊕ B) s⊕C

◻

C.24 Idempotency of choice operators

∀X ● choice(A,A,X) ≡ A
Proof:

choice(A,A,X)
≡ [d:P:Ch] — §3.4.1

∃π, δA, δĀ ● π ∈ X ∧A(δjπo, δA) ∧A(δjπ̄o, δĀ) ∧ δ′ = δA + δĀ
≡ [d:P:Structure] — §3.4.2

∃π, δA, δĀ,QuantOf(A) ● π ∈ X ∧ δA = BodyOf(A) ○ δjπo ∧ δĀ = BodyOf(A) ○ δjπ̄o ∧ δ′ = δA + δĀ
≡ One-point rule

∃π,QuantOf(A) ● π ∈ X ∧ δ′ = BodyOf(A) ○ δjπo + BodyOf(A) ○ δjπ̄o
≡ [p:D:Sum:CS] — §C.6

∃π,QuantOf(A) ● π ∈ X ∧ δ′ = BodyOf(A) ○ δ
≡ [d:P] — §3.3

A

◻

102 Appendix C. Proofs

C.25 Discarding right-hand option

choice(A,B,{ι}) ≡ A
Proof:

choice(A,B,{ι})
≡ [d:P:Ch] — §3.4.1

∃π, δA, δB ● π ∈ {ι} ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB
≡ One-point rule

∃δA, δB ∧A(δjιo, δA) ∧ B(δjεo, δB) ∧ δ′ = δA + δB
≡ [d:D:Rst] — §A.3

∃δA, δB ∧A(δ, δA) ∧ B(ε, δB) ∧ δ′ = δA + δB
≡ One-point rule

A

◻

C.26 Distributivity of choice operators

choice(A, (choice(B,C,X2)),X1) ≡ choice((choice(A,B,X1)), (choice(A,C,X1)),X2)
Proof:

choice(A, (choice(B,C,X2)),X1)
≡ [d:P:Ch] — §3.4.1

∃π1, δA, δBC ● πi ∈ Xi ∧A(δjπ1o, δA) ∧ (choice(B,C,X2))(δjπ̄1o, δBC) ∧ δ′ = δA + δBC
≡ [d:P:Ch] ∧ δBC = δB + δC (One-point rule)

∃π1, π2, δA, δB, δC ● πi ∈ Xi ∧A(δjπ1o, δA) ∧ B(δjπ̄1ojπ2o, δB) ∧C(δjπ̄1ojπ̄2o, δC)
∧ δ′ = δA + δB + δC

≡ [p:D:Sum:CS] — §C.6

∃π1, π2, δA, δB, δC ● πi ∈ Xi ∧A(δjπ1ojπ2o + δjπ1ojπ̄2o, δA) ∧ B(δjπ̄1ojπ2o, δB)∧
∧C(δjπ̄1ojπ̄2o, δC) ∧ δ′ = δA + δB + δC

≡ Linearity

∃π1, π2, δA, δĀ, δB, δC ● πi ∈ Xi ∧A(δjπ1ojπ2o, δA) ∧A(δjπ1ojπ̄2o, δĀ)∧
∧ B(δjπ̄1ojπ2o, δB) ∧C(δjπ̄1ojπ̄2o, δC) ∧ δ′ = δA + δĀ + δB + δC

≡ [d:P:Ch] ∧ δAB = δA + δB ∧ δĀC = δĀ + δC (One-point rule)

∃π2, δAB, δĀC ● π2 ∈ Xi ∧ (choice(A,B,X1))(δjπ2o, δAB) ∧ (choice(Ā,C,X1))(δjπ̄2o, δĀC)
∧ δ′ = δAB + δĀC

≡ [d:P:Ch]

choice((choice(A,B,X1)), (choice(A,C,X1)),X2)

◻

C.27. Sequential composition 103

C.27 Sequential composition

choice(A,B,X);C ≡ choice((A;C), (B;C),X)
Proof:

choice(A,B,X);C
≡ [d:P:Seq] — §B.3

∃δm ● choice(A,B,X)(δ, δm) ∧C(δm, δ′)
≡ [d:P:Ch] — §3.4.1

∃π, δA, δB, δm ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δm = δA + δB ∧C(δm, δ′)
≡ One-point rule

∃π, δA, δB ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧C(δA + δB, δ′)
≡ Linearity

∃π, δA, δB, δC, δC̄ ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧C(δA, δC) ∧C(δB, δC̄) ∧ δ′ = δC + δC̄
≡ [d:P:Seq]

∃π, δC, δC̄ ● π ∈ X ∧ (A;C)(δjπo, δC) ∧ (B;C)(δjπ̄o, δC̄) ∧ δ′ = δC + δC̄
≡ [d:P:Ch]

choice((A;C), (B;C),X)

◻

C.28 Choice flipping

∀X ● choice(A,B,X) ≡ choice(B,A, X̄) ∧ X̄ = ⋃π∈X π̄
Proof:

choice(A,B,X)
≡ [d:P:Ch] — §3.4.1

∃π, δA, δB ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB
≡ X̄ = ⋃

π∈X
π̄

∃π̄, δA, δB ● π̄ ∈ X̄ ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB
≡ [d:P:Ch]

choice(B,A, X̄)

◻

104 Appendix C. Proofs

C.29 Monotonicity of generic choice

∀δ ●X1 ⊆ X2 ⇒ choice(A,B,X1)(δ) ⊆ choice(A,B,X2)(δ)
Proof:

choice(A,B,X2)(δ)
= [d:P:Ch] — §3.4.1

(∃π, δA, δB ● π ∈ X2 ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB)(δ)
= Set theory ∧X1 ⊆ X2

(∃π, δA, δB ● π ∈ X1 ∪ (X2 ∖X1) ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ′ = δA + δB)(δ)
= [d:P:Ch]

choice(A,B,X1)(δ) ∪ choice(A,B,X2 ∖X1)(δ)

◻

C.30 Refinement relation for choices involving X2 ⊆ X1
X2 ⊆ X1 ⇒ choice(A,B,X1) ⊑ choice(A,B,X2)

Proof:

choice(A,B,X1) ⊑ choice(A,B,X2)
≡ [d:P:Rfn:Alt] — §3.7

∀δ ● choice(A,B,X2)(δ) ⊆ (choice(A,B,X1)(δ))
△

≡ [p:P:Ch:Mntn] — §C.29 ∧ ∀X ●X ⊆ (X)△

∀δ ● true
◻

C.31 Refinement of the disjunction of two programs

A ∨ B ⊑ A p⊕ B
Proof:

A ∨ B ⊑ A p⊕ B
≡ [d:P:Rfn:Alt] — §3.7

∀δ ● (A p⊕ B)(δ) ⊆ ((A ∨ B)(δ))△

≡ Set theory

∀δ, δ′ ● δ′ ∈ (A p⊕ B)(δ) ∧ δ′ ∈ ((A ∨ B)(δ))△

≡ [d:P:Ch:Prb] — §B.3

∀δ, δ′, δ′A, δ′B ● δ′A ∈ A(δ), δ′B ∈ B(δ) ∧ δ′ = (p ⋅ δ′A + (1 − p) ⋅ δ′B) ∧ δ′ ∈ ((A ∨ B)(δ))△

≡ [d:P:RfnSet] — §3.7

∀δ ● true
◻

C.32. Refinement of the disjunction of two programs 105

C.32 Refinement of the disjunction of two programs

A ∨ B ⊑ A◁ c▷ B
Proof:

A ∨ B ⊑ A◁ c▷ B
≡ [d:P:Rfn:Alt] — §3.7

∀δ ● (A◁ c▷ B)(δ) ⊆ ((A ∨ B)(δ))△

≡ Set theory

∀δ, δ′ ● δ′ ∈ (A◁ c▷ B)(δ) ∧ δ′ ∈ ((A ∨ B)(δ))△

≡ [d:P:Ch:Cnd] — §B.3

∀δ, δ′, δ′A, δ′B ● δ′A ∈ A(δjco), δ′B ∈ B(δj¬co) ∧ δ′ = δ′A + δ′B ∧ δ′ ∈ ((A ∨ B)(δ))△

≡ [d:P:RfnSet] — §3.7

∀δ ● true

◻

C.33 Linking functions

f = g−1

Proof:

AD(δ) = f(AR) (δ) =∑
ζ∈S
δ(ζ) ⋅AR(ζ) = ∑

ζ∈S
δ(ζ) ⋅ δ′(A,ζ)

AR(σ) = g(AD) (σ) =AD(ησ) = δ′(A,σ) .

g(f(AR)) (σ)
= Definition of f

g(∑
ζ∈S
δ(ζ) ⋅AR(ζ)) (σ)

= Definition of g

∑
ζ∈S
ησ(ζ) ⋅AR(ζ)

= By definition, σ ≠ ζ⇔ ησ(ζ) = 0
ησ(σ) ⋅AR(σ)

= By definition, ησ(σ) = 1
AR(σ)

and

106 Appendix C. Proofs

f(g(AD)) (δ)
= Definition of g

f(AR(ζ)) (δ)
= Definition of f

∑
ζ∈S
δ(ζ) ⋅AR(ζ)

= Definition of g

AD(δ).

◻

C.34 Feasibility

See B.3.2

Proof: As χ is a linear combination of a matrix whose rows are at most one-summing

with the elements of χ′ as coefficients, we have that the norm of χ cannot exceed that of

χ′:

∥χ∥
=

n

∑
i=0

∣xi∣

=
n

∑
i=0

∣
n

∑
j=0

ajix
′
j∣

≤ ∀i, j ● aji ≥ 0
n

∑
i=0

n

∑
j=0

aji∣x′j∣

≤ ∀i ●
n

∑
j=0

aji ≤ 1

n

∑
i=0

∣x′i∣

=
∥χ′∥

◻

C.35. Feasibility 107

C.35 Feasibility

See B.3.2

Proof: As δ′ is a linear combination of a matrix whose columns are at most one-

summing with the elements of δ as coefficients, we have that the norm of δ′ cannot

exceed that of δ:

∥δ′∥
=

n

∑
i=0

∣p′i∣

=
n

∑
i=0

∣
n

∑
j=0

aijpj∣

≤ ∀i, j ● aij ≥ 0
n

∑
i=0

n

∑
j=0

aij∣pj∣

≤ ∀j ●
n

∑
i=0

aij ≤ 1

n

∑
j=0

∣pj∣

=
∥δ∥

◻

108 Appendix C. Proofs

C.36 Monotonicity of A

See B.3.2

Proof: If we increase χ′, the corresponding χ = ATχ′ is increasing as well:

χ′x ≥ χ′y
≡

⎛
⎜⎜⎜⎜⎜
⎝

x′1

x′2

⋮
x′n

⎞
⎟⎟⎟⎟⎟
⎠

≥

⎛
⎜⎜⎜⎜⎜
⎝

y′1

y′2

⋮
y′n

⎞
⎟⎟⎟⎟⎟
⎠

⇒
∃i ● x′i ≥ y′i

⇒ ∀j, k ● ajk ≥ 0
n

∑
j=0

x′ja
T
j∗ ≤

n

∑
j=0

y′ja
T
j∗

≡
ATχ′

x
≥ ATχ′

y

≡
χx ≥ χy

◻

C.37. Monotonicity of A 109

C.37 Monotonicity of A

See B.3.2

Proof: If we increase δ, the corresponding δ′ = Aδ is increasing as well:

δ′p ≥ δq
≡

⎛
⎜⎜⎜⎜⎜
⎝

p1

p2

⋮
pn

⎞
⎟⎟⎟⎟⎟
⎠

≥

⎛
⎜⎜⎜⎜⎜
⎝

q1

q2

⋮
qn

⎞
⎟⎟⎟⎟⎟
⎠

⇒
∃i ● pi ≥ qi

⇒ ∀j, k ● ajk ≥ 0
n

∑
k=0

pka∗k ≤
n

∑
k=0

qja∗k

≡
Aδp ≥ Aδq

≡
δ′p ≥ δ′q

◻

C.38 Scaling

See B.3.2

Proof:

All definitions of the different program constructs contain the application of a matrix

to a vector, when we see distributions as elements of a vector space: as this operation is

linear, we can see that the constant can be placed anywhere in the a matrix composition.
◻

C.39 Convexity

(A ⊓ B)(δ, δ′)⇒ δ′ ≥ min(A(δ) ∪ B(δ))
Proof:

δ′ ∈ (A ⊓ B)(δ)
≡ Definition of program image

δ′ ∈ ⋃
π∈Dw

(A(δjπo) + B(δjπ̄o))

⇒
δ′ ≥ min(A(δ) ∪ B(δ))

110 Appendix C. Proofs

◻

APPENDIX D

Other case studies

D.1 Monty Hall

In the Monty Hall game a player is challenged to guess behind which of the three doors in front

of him hides a car.

i j k

After having chosen a door among the three possible options, Monty Hall will open one of the

remaining two doors. Monty Hall knows where the car is, so he is going to open one of the

other two.

The player is given the chance to change his guess at this point.

It is known from the literature1 that the player will maximize the probability of finding the car

if now he changes the door he has chosen (the probability will be 2/3).

In fact the player can lose only if his first choice — indicated with +— was the i-th door, which

is hiding the car (and this happens with probability 1/3) so after Monty Hall has opened the k-th

door, that is one of the two hiding a goat, the switching strategy leads the player’s final choice

— indicated with +— to be the j-th door, which is hiding a goat:

i j k

+ +

Nevertheless this is a winning strategy with probability 2/3, as the chances of winning equal the

chances of choosing a door hiding a goat, when all doors are closed. In fact choosing the j-th

door forces Monty Hall to open the k-th door, and switching makes the player choose the i-th

door:
1Also back in 1935, it was known as Bertrand’s box paradox (1889). This problem is oftem used as an example:

among the papers cited as references, we can find it in McIver and Morgan [MM04] as well as in the more recent Chen
and Sanders [CS09].

111

112 Appendix D. Other case studies

i j k

+ +
A short program, which uses the program constructs defined in §3, to implement the game is

the following:

P ≙ setup;player;host;guess

Let us use three variables a, b and c with the following meaning:

a ≙ the position of the car

b ≙ the player’s guess

c ≙ Monty Hall’s hint

we can then define each instruction as follows:

setup ≙ a ∶= 1 ⊓ (a ∶= 2 ⊓ a ∶= 3) [1]

player ≙ b ∶= 1 1
3

⊕ (b ∶= 2 1
2

⊕ b ∶= 3) [2]

host ≙ c ∶= S (a,b)◁ (a ≠ b)▷ (c ∶= Hm(a) ⊓ c ∶= HM(a)) [3]

guess ≙ b ∶= S (b, c) [4]

Here is the definition of the functions mentioned in the program:

S (x,y) ≙ min({1, 2, 3} ∖ {x,y})
Hm(x) ≙ min({1, 2, 3} ∖ {x})
HM(x) ≙ max({1, 2, 3} ∖ {x})

Let v = (a,b, c) and type(a) = type(b) = type(c) = {1, 2, 3}: the state space is

S = {σ ∣ σ = v ↦w ∧w ∈ type(a) × type(b) × type(c)}

For convenience we use σijk to identify the state where a = i, b = j and c = k; we represent

the state distribution δ with a 27-element vector δ, whose components refer to the 27 possible

states (in lexicographic order, i.e. the first element refers to σ111, the second to σ112 and so

on, till the 27th referring to σ333) — and we use this notation to index the elements of all

distributions and matrices.

The initial distribution is a parameter of the problem: we assume its weight is 1, but make no

further assumptions on the individual weight of each state.

D.1. Monty Hall 113

Let us now go through the first instruction:

a ∶= i = δ′ = δ{∣i/a∣}
setup = ∃π1, π2 ● δ′ = δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjι − π1 − π2o{∣3/a∣}

We leave implicit the condition that π1, π2 and π3 are weighting distributions, i.e. ∀i●ε ≤ πi ≤ ι.

After the second instruction we have:

b ∶= i = δ′j = δ{∣i/b∣}
player = δ′ = 1/3 ⋅ δ{∣1/b∣} + 1/3 ⋅ δ{∣2/b∣} + 1/3 ⋅ δ{∣3/b∣}

We have an if-statement in the third instruction, so we have:

c ∶= S (a,b) = δ′ = δ{∣S (a,b)/c∣}
c ∶= Hm(a) = δ′ = δ{∣Hm(a)/c∣}
c ∶= HM(a) = δ′ = δ{∣HM(a)/c∣}

c ∶= Hm(a) ⊓ c ∶= HM(a) = ∃πH ● δ′ = δjπH o{∣Hm(a)/c∣} + δjι − πH o{∣HM(a)/c∣}
host = ∃πH ● δ′ = δja ≠ bo{∣S (a,b)/c∣}+

+ δja = bojπH o{∣Hm(a)/c∣} + δja = bojι − πH o{∣HM(a)/c∣}

Finally the fourth instruction gives

b ∶= S (b, c) = δ′ = δ{∣S (b,c)/b∣}

114 Appendix D. Other case studies

Let us now compose sequentially these constructs:

setup;player;host;guess
≡ Translation: setup;player — with the position π̄12 = ι − π1 − π2

∃π1, π2 ● δ′ = δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣} ;

; δ′ = 1/3 ⋅ δ{∣1/b∣} + 1/3 ⋅ δ{∣2/b∣} + 1/3 ⋅ δ{∣3/b∣} ;host;guess
≡ [d:P:Seq]

∃π1, π2, δm ● δm = δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣} ∧
∧ δ′ = 1/3 ⋅ δm{∣1/b∣} + 1/3 ⋅ δm{∣2/b∣} + 1/3 ⋅ δm{∣3/b∣} ;host;guess

≡ One-point rule

∃π1, π2 ● δ′ = 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+
+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+
+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣} ;host;guess

≡ Translation: host
∃π1, π2 ● δ′ = 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+
+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+
+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣} ;

; ∃πH ● δ′ = δja ≠ bo{∣S (a,b)/c∣}+
+ δja = bojπH o{∣Hm(a)/c∣} + δja = bojπ̄H o{∣HM(a)/c∣};guess

D.1. Monty Hall 115

≡ [d:P:Seq]

∃π1, π2, πH , δm ● δm = 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+
+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+
+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣} ∧
∧ δ′ = δmja ≠ bo{∣S (a,b)/c∣}+
+ δmja = bojπH o{∣Hm(a)/c∣} + δmja = bojπ̄H o{∣HM(a)/c∣};guess

≡ One-point rule

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja ≠ bo{∣S (a,b)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπH o{∣Hm(a)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπ̄H o{∣HM(a)/c∣};guess

≡ [p:D:Rmp:Rst1] — §C.19

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja ≠ bo{∣S (a,b)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπH o{∣Hm(a)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπ̄H o{∣HM(a)/c∣};guess

≡ [p:D:Rmp:Rst1] — Rewrite

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S (a,b)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπH o{∣Hm(a)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄H o{∣HM(a)/c∣};guess

116 Appendix D. Other case studies

≡ Translation: guess

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S (a,b)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπH o{∣Hm(a)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄H o{∣HM(a)/c∣} ;

; δ′ = δ{∣S (b,c)/b∣}
≡ [d:P:Seq]

∃π1, π2, πH , δm ● δm = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S (a,b)/c∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπH o{∣Hm(a)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄H o{∣HM(a)/c∣} ∧

∧ δ′ = δm{∣S (b,c)/b∣}
≡ One-point rule

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπH o{∣Hm(a)/c∣}{∣S (b,c)/b∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄H o{∣HM(a)/c∣}{∣S (b,c)/b∣}

D.1. Monty Hall 117

≡ [p:D:Rmp:Lin]

∃π1, π2, πH ● δ′ = 1/3 ⋅ δjπ2o{∣2/a∣}{∣1/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣1/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣2/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣2/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣3/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ2o{∣2/a∣}{∣3/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣}ja = bojπH o{∣Hm(a)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}ja = bojπH o{∣Hm(a)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣}ja = bojπH o{∣Hm(a)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣}ja = bojπ̄H o{∣HM(a)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}ja = bojπ̄H o{∣HM(a)/c∣}{∣S (b,c)/b∣}+
+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣}ja = bojπ̄H o{∣HM(a)/c∣}{∣S (b,c)/b∣}

Now that we have a statement describing the final distribution that results after the execution

of the program, we can recognize two kind of terms:

• δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}

• δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H (a)/c∣}{∣S (b,c)/b∣}

where i ≠ j.

We can see that the ones of the first kind account for cases when the player wins, while those

of the second kind account for the cases when the player loses — let us see this by working out

these terms, under the winning condition, i.e. a = b.

For terms of the first kind we have:

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S (a,b)/c∣}{∣S (b,c)/b∣}ja = bo
= [p:D:Rmp:Comp1]

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S (a,b),S (b,c){S (a,b)/c}/c,b∣}ja = bo
= Substitution: c = S (a,b)

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S (a,b),S (b,S (a,b))/c,b∣}ja = bo
= [p:D:Sum:CS]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS (b,S (a,b)) = ao{∣S (a,b),S (b,S (a,b))/c,b∣}ja = bo+
+ δ{∣i/a∣}{∣j/b∣}ja ≠ bojS (b,S (a,b)) ≠ ao{∣S (a,b),S (b,S (a,b))/c,b∣}ja = bo

= [p:D:Rmp:Rst1]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS (b,S (a,b)) = ao{∣S (a,b),S (b,S (a,b))/c,b∣}ja = bo + ε
= [d:D:Sum]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS (b,S (a,b)) = ao{∣S (a,b),S (b,S (a,b))/c,b∣}ja = bo
= [p:D:Rst:Rmp]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS (b,S (a,b)) = ao{∣S (a,b),a/c,b∣}ja = bo
= [p:D:Rmp:Rst2]

118 Appendix D. Other case studies

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS (b,S (a,b)) = ao{∣S (a,b),a/c,b∣}
= [p:D:Rst:ImC1]

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S (a,b),a/c,b∣}
= [p:D:Rmp:Comp1]

δ{∣i,j/a,b∣}ja ≠ bo{∣S (a,b),a/c,b∣}
= [p:D:Rmp:Rst2]

δ{∣i,j/a,b∣}{∣S (a,b),a/c,b∣}

As both remapping operations use expressions defined everywhere, thanks to [p:D:Rmp:Wt]

we have that:

∥δ{∣i,j/a,b∣}{∣S (a,b),a/c,b∣}∥ = ∥δ∥

For terms of the second kind we have:

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H (a)/c∣}{∣S (b,c)/b∣}ja = bo
= [p:D:Rmp:Comp1]

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H (a),S (b,c){H (a)/c}/c,b∣}ja = bo
= Substitution: c = H (a)

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H (a),S (b,H (a))/c,b∣}ja = bo
= [p:D:Rst:ES]

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H (a),S (a,H (a))/c,b∣}ja = bo
= [p:D:Rst:Wt]

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H (a),S (a,H (a))/c,b∣}ja = bo
= [p:D:Rmp:Rst1]

ε

Therefore we have:

∥δ′ja = bo∥ = ∥2 ⋅ (1/3 ⋅ δjπ1o + 1/3 ⋅ δjπ2o + 1/3 ⋅ δjπ3o)∥ = 2/3 ⋅ ∥δ∥

We have assumed that the weight of the initial distribution is 1, so the weight of all winning

states is 2/3 — it is now clear why we did not need to make any other assumption, as this is all

that matters, as all the variables undergo at least an assignment during the run of the program.
2/3 is also the expected value for each of the initial states, so the pre-expectation assigning this

weight to every state corresponds to the post-expectation of the predicate ιja = bo.

We are now going to use the vector notation to solve this problem in a slightly different way.

The predicate for the first instruction

setup = ∃π1, π2, π3 ● δ′ = δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ3o{∣3/a∣} ∧ π1 + π2 + π3 = ι

can be rewritten as:

∃π1, π2, π3 ● δ
′ = A1 π1 ○ δ +A2 π2 ○ δ +A3 π3 ○ δ ∧ π1 + π2 + π3 = ι ,

D.1. Monty Hall 119

where:

A1 =
⎛
⎜⎜⎜⎜
⎝

I I I

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

A2 =
⎛
⎜⎜⎜⎜
⎝

0 0 0

I I I

0 0 0

⎞
⎟⎟⎟⎟
⎠

A3 =
⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

I I I

⎞
⎟⎟⎟⎟
⎠
.

The matrices above are 27 × 27, and are made of blocks which are 9 × 9.

For convenience we can rewrite this as:

∃π1, π2 ● δ = S1 δ ∧ S1 = A1 diag(π1) +A2 diag(π2) +A3 diag(π3) ∧ π1 + π2 + π3 = ι

Therefore, if we use π(l,ijk) to note the element of πl with index ijk, we have that S1 has the

following shape:

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π(1,111) 0 ⋯ π(1,211) 0 ⋯ 0 π(1,311) 0 ⋯
0 π(1,112) ⋯ 0 π(1,212) ⋯ 0 0 π(1,312) ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

π(2,111) 0 ⋯ π(2,211) 0 ⋯ 0 π(2,311) 0 ⋯
0 π(2,112) ⋯ 0 π(2,212) ⋯ 0 0 π(2,312) ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

π(3,111) 0 ⋯ π(3,211) 0 ⋯ 0 π(3,311) 0 ⋯
0 π(3,112) ⋯ 0 π(3,212) ⋯ 0 0 π(3,312) ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

With the position:

Pli =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π(l,i11) 0 ⋯ 0

0 π(l,i12) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ π(l,i33)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

we can write that:

diag(πl) =

⎛
⎜⎜⎜⎜⎜
⎝

Pl1 0 0

0 Pl2 0

0 0 Pl3

⎞
⎟⎟⎟⎟⎟
⎠

and therefore:

S1 =

⎛
⎜⎜⎜⎜⎜
⎝

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞
⎟⎟⎟⎟⎟
⎠

120 Appendix D. Other case studies

We should note that:

∀i ● P1i + P2i + P3i = I

After the second instruction we have:

player = δ′ = 1/3 ⋅ δ{∣1/b∣} + 1/3 ⋅ δ{∣2/b∣} + 1/3 ⋅ δ{∣3/b∣} .

This corresponds to the predicate:

δ = 1/3B1 δ + 1/3B2 δ + 1/3B3 δ

where:

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

I I I

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜
⎝

I I I

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜
⎝

I I I

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

0 0 0

I I I

0 0 0

⎞
⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜
⎝

0 0 0

I I I

0 0 0

⎞
⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜
⎝

0 0 0

I I I

0 0 0

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

I I I

⎞
⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

I I I

⎞
⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

I I I

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The matrices above are 27 × 27, and are made of blocks which are 9 × 9.

D.1. Monty Hall 121

For convenience we can rewrite this as:

δ = S2 δ

where:

S2 = 1/3(B1 + B2 + B3) = 1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

I I I

I I I

I I I

⎞
⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜
⎝

I I I

I I I

I I I

⎞
⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜
⎝

I I I

I I I

I I I

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The predicate for the third instruction

host = ∃πH ● δ′ = δja ≠ bo{∣S (a,b)/c∣}+
+ δja = bojπH o{∣Hm(a)/c∣} + δja = bojι − πH o{∣HM(a)/c∣}

corresponds to the predicate:

∃πH ● δ = SCδ +Hm πH ○ C̄δ +HM π̄H ○ C̄δ

The conditional is rendered through the diagonal matrix C:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c111 0 0 ⋯ 0

0 c112 0 ⋯ 0

0 0 c113 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ c333

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where cijk equals 0 if i = j and 1 otherwise, and therefore:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 I 0

0 0 I

⎞
⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜
⎝

I 0 0

0 0 0

0 0 I

⎞
⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜
⎝

I 0 0

0 I 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

122 Appendix D. Other case studies

The assignments are represented by the following matrices:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

0 0 ⋯ 0

0

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

0 ⋯ 0

0 0

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯
⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This accounts for the operation c ∶= S (a,b), therefore the blocks Qc on the diagonal have 1s

in the c-th row:

Q1 =
⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠

Q2 =
⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

Q3 =
⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

and therefore:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

Q2 0 0

0 Q3 0

0 0 Q2

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

Q3 0 0

0 Q1 0

0 0 Q1

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

Q2 0 0

0 Q1 0

0 0 Q1

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

D.1. Monty Hall 123

Hm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

Q2 0 0

0 Q2 0

0 0 Q2

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

Q1 0 0

0 Q1 0

0 0 Q1

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

Q1 0 0

0 Q1 0

0 0 Q1

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

HM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

Q3 0 0

0 Q3 0

0 0 Q3

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

Q3 0 0

0 Q3 0

0 0 Q3

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

Q2 0 0

0 Q2 0

0 0 Q2

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We can rewrite the predicate as:

∃πH ● δ = S3 δ ∧ S3 = SC +Hm diag(πH)C̄ +HM diag(π̄H)C̄

Therefore we have that S3 has the following shape:

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

0 0 0

π(H ,111) π(H ,112) π(H ,113)

π̄(H ,111) π̄(H ,112) π̄(H ,113)

⎞
⎟⎟⎟
⎠

0 0 ⋯ 0

0

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

0 ⋯ 0

0 0

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯
⎛
⎜⎜⎜
⎝

π(H ,331) π(H ,332) π(H ,333)

π̄(H ,331) π̄(H ,332) π̄(H ,333)

0 0 0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

124 Appendix D. Other case studies

We can clearly recognize the blocks operating on states where the condition a ≠ b is verified

from those operating on states where a = b.

With the position:

Rij =
⎛
⎜⎜⎜
⎝

π(H ,ij1) 0 0

0 π(H ,ij2) 0

0 0 π(H ,ij3)

⎞
⎟⎟⎟
⎠

we can write that:

diag(πH) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

R11 0 0

0 R12 0

0 0 R13

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

R21 0 0

0 R22 0

0 0 R23

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

R31 0 0

0 R32 0

0 0 R33

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and therefore:

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

(Q2R11 +Q3R̄11) 0 0

0 Q3 0

0 0 Q2

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

Q3 0 0

0 (Q1R22 +Q3R̄22) 0

0 0 Q1

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

Q2 0 0

0 Q1 0

0 0 (Q1R33 +Q2R̄33)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Finally the fourth instruction gives

b ∶= S (b, c) = δ′ = δ{∣S (b,c)/b∣} ,

and this corresponds to the predicate:

δ′ = S4 δ

D.1. Monty Hall 125

where:

S4 =

⎛
⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

With the positions:

Z1 =
⎛
⎜⎜⎜
⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟
⎠

Z2 =
⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟
⎠

Z3 =
⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠

Z4 =
⎛
⎜⎜⎜
⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎟⎟
⎠

we have:

S4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1 Z1

Z2 0 Z3

Z4 Z3 0

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1 Z1

Z2 0 Z3

Z4 Z3 0

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1 Z1

Z2 0 Z3

Z4 Z3 0

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

126 Appendix D. Other case studies

Putting all of it together, we have that the program can be represented by the following predi-

cate:

∃π1, π2, πH ● δ = S4 S3 S2 S1 δ ∧ conditions relating S1 and S3 to π1, π2, πH

Let us do the maths now: we will take advantage of the matrices being sparse and with easily

recognisable blocks2.

S4 S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1 Z1

Z2 0 Z3

Z4 Z3 0

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1 Z1

Z2 0 Z3

Z4 Z3 0

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1 Z1

Z2 0 Z3

Z4 Z3 0

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

(Q2R11 +Q3R̄11) 0 0

0 Q3 0

0 0 Q2

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

Q3 0 0

0 (Q1R22 +Q3R̄22) 0

0 0 Q1

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

Q2 0 0

0 Q1 0

0 0 (Q1R33 +Q2R̄33)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

which is:

S4 S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1Q3 Z1Q2

Z2(Q2R11 +Q3R̄11) 0 Z3Q2

Z4(Q2R11 +Q3R̄11) Z3Q3 0

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1(Q1R22 +Q3R̄22) Z1Q1

Z2Q3 0 Z3Q1

Z4Q3 Z3(Q1R22 +Q3R̄22) 0

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1Q1 Z1(Q1R33 +Q2R̄33)

Z2Q2 0 Z3(Q1R33 +Q2R̄33)

Z4Q2 Z3Q1 0

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

As we have that:

Z1Q1 =
⎛
⎜⎜⎜
⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠
= 0 Z2Q2 =

⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠
= 0

Z3Q2 =
⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠
= 0 Z3Q3 =

⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠
= 0

Z4Q3 =
⎛
⎜⎜⎜
⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠
= 0

and therefore:
Z2Q2R11 = 0 Z4Q3R̄11 = 0 Z1Q1R22 = 0

Z3Q3R̄22 = 0 Z1Q1R33 = 0 Z3R̄33Q3 = 0

2I did try to do a good part of the calculation on my HP49g+ with actual values and variables, but given the size of
the matrices it is quite painful and error-prone.

D.1. Monty Hall 127

we can further simplify this expression as:

S4 S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1Q3 Z1Q2

Z2Q3R̄11 0 0

Z4Q2R11 0 0

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

0 Z1Q3R̄22 0

Z2Q3 0 Z3Q1

0 Z3Q1R22 0

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

0 0 Z1Q2R̄33

0 0 Z3Q1R33

Z4Q2 Z3Q1 0

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We can also notice that:

Z1Q2 =
⎛
⎜⎜⎜
⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠
=Q2 Z1Q3 =

⎛
⎜⎜⎜
⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠
=Q3

Z2Q1 =
⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠
=Q1 Z2Q3 =

⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠
=Q3

Z3Q1 =
⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠
=Q1 Z4Q2 =

⎛
⎜⎜⎜
⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠
=Q2

and therefore:

S4 S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

0 Q3 Q2

Q3R̄11 0 0

Q2R11 0 0

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

0 Q3R̄22 0

Q3 0 Q1

0 Q1R22 0

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

0 0 Q2R̄33

0 0 Q1R33

Q2 Q1 0

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Then we add S2:

128 Appendix D. Other case studies

S4 S3 S2 =1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

0 Q3 Q2

Q3R̄11 0 0

Q2R11 0 0

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

0 Q3R̄22 0

Q3 0 Q1

0 Q1R22 0

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

0 0 Q2R̄33

0 0 Q1R33

Q2 Q1 0

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

I I I

I I I

I I I

⎞
⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜
⎝

I I I

I I I

I I I

⎞
⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜
⎝

I I I

I I I

I I I

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and finally we multiply by S1:

S4 S3 S2 S1 =1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞
⎟⎟⎟⎟⎟
⎠

=1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P11

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P12

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P13

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P21

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P22

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P23

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P31

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P32

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Thus we have obtained that:

D.1. Monty Hall 129

∃π1, π2, πH ● δ′ = 1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P11

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P12

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P13

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P21

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P22

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P23

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P31

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P32

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

δ

with side conditions relating Rii and Pij to π1, π2, πH .

We can infer the program properties by analysing this matrix, here are a few examples:

• the rows with index iii are null everywhere, so the program will never terminate in a

state σiii where a = b = c;

• more in general, the rows with index iji and ijj are null everywhere, so the program will

never terminate in a state σiii where a = c or b = c;

• all of the columns are one-summing, so the program is always terminating.

We now want to focus on the probability ∥δ′ja = bo∥ of the program ending in a winning state

σiij, where a = b, so let us extract the submatrix G from the one above, by selecting the rows

relative to winning states:

130 Appendix D. Other case studies

G =1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

I 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

0 0

0

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 I 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

0

0 0

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

0 0 I

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P11

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P12

⎛
⎜⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

Q3R̄11 Q3R̄11 Q3R̄11

Q2R11 Q2R11 Q2R11

⎞
⎟⎟⎟⎟⎟
⎠

P13

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P21

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P22

⎛
⎜⎜⎜⎜⎜
⎝

Q3R̄22 Q3R̄22 Q3R̄22

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

Q1R22 Q1R22 Q1R22

⎞
⎟⎟⎟⎟⎟
⎠

P23

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P31

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P32

⎛
⎜⎜⎜⎜⎜
⎝

Q2R̄33 Q2R̄33 Q2R̄33

Q1R33 Q1R33 Q1R33

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟⎟
⎠

P33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠
P11

⎛
⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠
P12

⎛
⎜⎜⎜⎜
⎝

(Q2 +Q3) (Q2 +Q3) (Q2 +Q3)

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠
P13

⎛
⎜⎜⎜⎜
⎝

0 0 0

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

0 0 0

⎞
⎟⎟⎟⎟
⎠
P21

⎛
⎜⎜⎜⎜
⎝

0 0 0

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

0 0 0

⎞
⎟⎟⎟⎟
⎠
P22

⎛
⎜⎜⎜⎜
⎝

0 0 0

(Q1 +Q3) (Q1 +Q3) (Q1 +Q3)

0 0 0

⎞
⎟⎟⎟⎟
⎠
P23

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟
⎠
P31

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟
⎠
P32

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 0

(Q1 +Q2) (Q1 +Q2) (Q1 +Q2)

⎞
⎟⎟⎟⎟
⎠
P33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=1/3

⎛
⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P11

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

1 1 1

1 1 1

⎞
⎟⎟⎟
⎠

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P13

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P21

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P22

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P23

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P31

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P32

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 1 1

1 1 1

0 0 0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

P33

⎞
⎟⎟
⎠

D.1. Monty Hall 131

If we do all of the multiplications by Pij we obtain:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g
∗111

g
∗112

g
∗113

g
∗121

⋮
g
∗133

g
∗221

g
∗222

g
∗223

g
∗231

⋮
g
∗323

g
∗331

g
∗332

g
∗333

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 ⋯ 0
π(1,111)
3

π(1,112)
3

π(1,113)
3

⋯ π(1,333)
3

π(1,111)
3

π(1,112)
3

π(1,113)
3

⋯ π(1,333)
3

0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

π(2,111)
3

π(2,112)
3

π(2,113)
3

⋯ π(2,333)
3

0 0 0 ⋯ 0
π(2,111)
3

π(2,112)
3

π(2,113)
3

⋯ π(2,333)
3

0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

π(3,111)
3

π(3,112)
3

π(3,113)
3

⋯ π(3,333)
3

π(3,111)
3

π(3,112)
3

π(3,113)
3

⋯ π(3,333)
3

0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We can see that all of the generators of matrix G have norm 2/3 as π(1,ijk)+π(2,ijk)+π(3,ijk) = 1
for all i, j, k:

∀i, j, k ● 2 ⋅
π(1,ijk)

3
+ 2 ⋅

π(2,ijk)

3
+ 2 ⋅

π(3,ijk)

3
= 2
3

We can conclude that this is the probability of the program ending in a winning state, and it does

not depend on the starting state (and therefore it does not depend on the initial distribution,

as long as it is one-summing) as all of the generators have the same norm.

We would definitely like to work on smaller matrices: when is it possible and what is the price

we pay for that?

To see this let us approach the problem from a different angle; first of all we partition the state

space into 5 abstract states as in figure D.1:

α0 = {σiii ∣ σiii ∈ S} = {σ111, σ222, σ333}
α1 = {σiij ∣ σiij ∈ S ∧ i ≠ j} = {σ112, σ113, σ221, σ223, σ331, σ332}
α2 = {σiji ∣ σiji ∈ S ∧ i ≠ j} = {σ121, σ131, σ212, σ232, σ313, σ323}
α3 = {σjii ∣ σjii ∈ S ∧ i ≠ j} = {σ122, σ133, σ211, σ233, σ311, σ322}
α4 = {σijk ∣ σijk ∈ S ∧ i ≠ j ∧ i ≠ k ∧ j ≠ k} = {σ123, σ132, σ213, σ231, σ312, σ321}

Let ξ be a distribution over the set {α0, α1, α2, α3, α4}: the vector ξ representing the distribu-

tion is a 5-element one.

The instruction setup = a ∶= 1 ⊓ (a ∶= 2 ⊓ a ∶= 3) can do the following:

• remap a state σiii to itself or to σjii, i.e. remap the abstract state α0 to α0 or α3;

• remap a state σiij to itself, to σjij or to σkij, i.e. remap the abstract state α1 to α1, α2 or

α4;

132 Appendix D. Other case studies

S

α1

α0

α2

α3

α4

σ111

σ112

σ113

σ121

σ122

σ123

σ131

σ132

σ133

σ211

σ212

σ213

σ221

σ222 σ223

σ231

σ232

σ233

σ311

σ312

σ313

σ321

σ322

σ323

σ331

σ332

σ333

Figure D.1: The partition of the state space of program MH

• remap a state σiji to itself, to σiij or to σkji, i.e. remap the abstract state α2 to α2, α1 or

α4;

• remap a state σjii to itself or to σiii, i.e. remap the abstract state α3 to α0 or α3;

• remap a state σijk to itself, to σkjk or to σjjk, i.e. remap the abstract state α4 to α4, α2 or

α1.

The choice among the different possibilities is done nondeterministically; the probability πij of

remapping αi to αj can therefore vary arbitrarily with the following constraints:

π00 + π03 = 1
π11 + π12 + π14 = 1
π21 + π22 + π24 = 1

π30 + π33 = 1
π41 + π42 + π44 = 1

This operation can be expressed by the predicate3:

∃πij, πkl ● ξ′ = T1ξ ∧ i, j ∈ {1, 2, 4} ∧ k, l ∈ {0, 3} ∧ conditions on πij, πkl above

3The quantification on the different πij is equivalent to the usual quantification on weighting distributions.

D.1. Monty Hall 133

where

T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π00 0 0 π30 0

0 π11 π21 0 π41

0 π12 π22 0 π42

π03 0 0 π33 0

0 π13 π12 0 π44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The instruction player = b ∶= 1 1
3

⊕ (b ∶= 2 1
2

⊕ b ∶= 3) can do the following:

• remap with probability 1/3 a state σiii to itself, to σiji or to state σiki, i.e. remap the

abstract state α0 to α0 with probability 1/3 or to α2 with probability 2/3;

• remap with probability 1/3 a state σiij to itself, to σijj or to σikj, i.e. remap the abstract

state α1 to α1, α4 or α3, with probability 1/3 each;

• remap with probability 1/3 a state σiji to itself, to σiki or to σiii, i.e. remap the abstract

state α2 to α2 with probability 2/3 or to α0 with probability 1/3;

• remap with probability 1/3 a state σjii to itself to σjji or to σjki, i.e. remap the abstract

state α3 to α3, α1 or α3, with probability 1/3 each;

• remap with probability 1/3 a state σijk to itself, to σiik or to σikk, i.e. remap the abstract

state α4 to α4, α1 or α3, with probability 1/3 each.

This operation can be expressed by the predicate:

ξ′ = T2ξ

where

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/3 0 1/3 0 0

0 1/3 0 1/3 1/3
2/3 0 2/3 0 0

0 1/3 0 1/3 1/3
0 1/3 0 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The instruction host = c ∶= S (a,b)◁(a ≠ b)▷(c ∶= Hm(a)⊓c ∶= HM(a)) can do the following:

• remap a state σiii or a state σiij to the state σiij or σiik, i.e. remap the abstract states α0
and α1 to α1;

• remap a state σiji, a state σijj or a state σijk to the state σijk, i.e. remap the abstract

states α2, α3 and α4 to α4;

This operation can be expressed by the predicate:

ξ′ = T3ξ

where

T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

134 Appendix D. Other case studies

Finally the instruction guess = b ∶= S (b, c) can do the following:

• remap a state σiii or a state σiji or a state to the state σili, where j ≤ l, i.e. remap the

abstract states α0 and α2 to α2;

• remap a state σiij to the state σijk, i.e. remap the abstract state α1 to α4;

• remap a state σjii to the state σjli, where j ≤ l, i.e. remap the abstract state α3 to α1 or

α4 depending on j;

• remap a state σijk to the state σiik, i.e. remap the abstract state α4 to α2.

This operation can be expressed by the predicate:

ξ′ = T4ξ

where

T4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 0 p 1

1 0 1 0 0

0 0 0 0 0

0 1 0 p̄ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let us compute T4 T3 T2 T1 now:

T4 T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 0 p 1

1 0 1 0 0

0 0 0 0 0

0 1 0 p̄ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T4 T3 T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/3 0 1/3 0 0

0 1/3 0 1/3 1/3
2/3 0 2/3 0 0

0 1/3 0 1/3 1/3
0 1/3 0 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

2/3 2/3 2/3 2/3 2/3
0 0 0 0 0

0 0 0 0 0

1/3 1/3 1/3 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T4 T3 T2 T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

2/3 2/3 2/3 2/3 2/3
0 0 0 0 0

0 0 0 0 0

1/3 1/3 1/3 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π00 0 0 π30 0

0 π11 π21 0 π41

0 π12 π22 0 π42

π03 0 0 π33 0

0 π13 π12 0 π44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

2/3 2/3 2/3 2/3 2/3
0 0 0 0 0

0 0 0 0 0

1/3 1/3 1/3 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

So we have that we can describe the program MH with the following predicate:

ξ′ = T4 T3 T2 T1ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

2/3 2/3 2/3 2/3 2/3
0 0 0 0 0

0 0 0 0 0

1/3 1/3 1/3 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ξ

D.1. Monty Hall 135

S

αW

αL

σ111

σ112

σ113

σ121

σ122

σ123

σ131

σ132

σ133

σ211

σ212

σ213

σ221

σ222

σ223

σ231

σ232

σ233

σ311

σ312

σ313

σ321

σ322

σ323

σ331

σ332

σ333

Figure D.2: A different partition of the state space of program MH

If ξ is one-summing, then we can simply conclude that:

ξ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

2/3
0

0

1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Needless to say that we did not have to sweat as much as we did with the 27 × 27 matrices:

we pay this by losing some details in the description, nevertheless if we are only interested in

evaluating conditions that have the same truth value within every abstract state, then it is a

perfectly reasonable approach.

Depending on the applications, we may be happy with this approach also if it introduces “false

negatives”, i.e. we include some states where a condition evaluates to true in an abstract state

where the condition is false, as the probability we estimate for a given condition is going to be

lower than the actual probability.

Let us give it a try with a different partition of the state space (figure D.2), in order to show

how to go from a description with a certain level of detail to a less precise one:

αW = α0 ∪α1 = {σiij ∣ σiij ∈ S}
αL = α2 ∪α3 ∪α4 = {σijk ∣ σijk ∈ S ∧ i ≠ j}

136 Appendix D. Other case studies

Let ζ be a distribution on the set {αW , αL}, we want to express the program behaviour with the

predicate:

∃ variables due to demonic choice ● ζ′U4U3U2U1 ζ

We can write immediately the matrices Ui:

• setup picks one random abstract state, and therefore U1 =
⎛
⎝
πWW πWL

πLW πLL

⎞
⎠

,

where πWW + πLW = πWL + πLL = 1;

• player maps any abstract state to αW with probability 1/3 and to αL with probability 2/3,

and therefore U2 =
⎛
⎝
1/3 1/3
2/3 2/3

⎞
⎠

;

• host does not change the current situation, and therefore U3 = I

• inverts the current situation, mapping αL to αW and vice versa, and therefore U4 =

⎛
⎝
0 1

1 0

⎞
⎠

.

If we do the maths we obtain:

ζ′ =
⎛
⎝
2/3 2/3
1/3 1/3

⎞
⎠
ζ

Which means that the probability of ending in the abstract state αW is 2/3.

Now, what is the relation between the matrices Ui and Ti?

We always want that:

ζ(αW) = ξ(α0) + ξ(α1) ∧ ζ(αL) = ξ(α2) + ξ(α3) + ξ(α4)

and therefore, if we partition the matrices Ti as follows:

Ti =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎝
ti11 ti12

ti21 ti22

⎞
⎠

⎛
⎝
ti13 ti14 ti15

ti23 ti24 ti25

⎞
⎠

⎛
⎜⎜⎜
⎝

ti31 ti32

ti41 ti42

ti51 ti52

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

ti33 ti34 ti35

ti43 ti44 ti45

ti53 ti54 ti55

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

(t(1,iWW) t(2,iWW)
) (t(1,iLW) t(2,iLW) t(3,iLW)

)

(t(1,iWL) t(2,iWL)) (t(1,iLL) t(2,iLL) t(3,iLL))

⎞
⎟⎟⎟
⎠
=
⎛
⎜
⎝

TiWW TiLW

TiWL TiLL

⎞
⎟
⎠

we can reduce the problem to that of relating the matrices TiJK, where J,K ∈ {W,L}, to the

elements uiJK of the matrices Ui.

We have no problems in picking a value for uiJK whenever the columns of TiJK have the same

norm:

uiJK = ∥t(l,iJK)∥

D.1. Monty Hall 137

This is for example the case of U2 w.r.t. T2:

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎝
1/3 0

0 1/3
⎞
⎠

⎛
⎝
1/3 0 0

0 1/3 1/3
⎞
⎠

⎛
⎜⎜⎜
⎝

2/3 0

0 1/3
0 1/3

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

2/3 0 0

0 1/3 1/3
0 1/3 1/3

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝ U2 =
⎛
⎝
1/3 1/3
2/3 2/3

⎞
⎠

and that of U3 w.r.t. T3:

T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎝
0 0

1 1

⎞
⎠

⎛
⎝
0 0 0

0 0 0

⎞
⎠

⎛
⎜⎜⎜
⎝

0 0

0 0

0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝ U3 =
⎛
⎝
1 0

0 1

⎞
⎠

In the case of U4 w.r.t. T4 things are not so trivial, as the columns in the submatrices T4JK do

not have the same norm, so we have to find an appropriate criterion to pick a value for u4JK,

with the constraint that:

uiJK = ∥some linear combination of t(l,iJK)∥

The coefficients of the linear combination have to be one-summing and must not vary for the

same l and J; it is not certain that we can find appropriate coefficients in all cases, but in this

case we are happy with the following solution:

u4WW = ∥t(1,4WW)∥ = ∥t(2,4WW)∥
u4LW = ∥t(1,4LW)∥ = ∥t(2,4LW)∥
u4WL = ∥t(3,4WL)∥
u4LL = ∥t(3,4LL)∥

T4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎝
0 0

0 0

⎞
⎠

⎛
⎝
0 0 0

0 p 1

⎞
⎠

⎛
⎜⎜⎜
⎝

1 0

0 0

0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

1 p̄ 0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝ U4 =
⎛
⎝
0 1

1 0

⎞
⎠

138 Appendix D. Other case studies

This is a good choice, as we can justify it by observing that we could easily extract U4U3 = U4
from T4T3:

T4T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎝
0 0

0 0

⎞
⎠

⎛
⎝
0 0 0

1 1 1

⎞
⎠

⎛
⎜⎜⎜
⎝

0 0

0 0

1 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↝ U4U3 = U4 =
⎛
⎝
0 1

1 0

⎞
⎠

In case of U1 w.r.t. T1, we can see that the elements u1JK are simply combinations of existen-

tially quantified variables, so we can simply quantify over them, and therefore:

∃πWW , πLW , πWL, πLL ● ζ′U4U3U2U1 ζ ∧ πWW + πLW = πWL + πLL = 1

D.2 Rabin’s choice coordination algorithm

The scenario which is customarily used to present Rabin’s choice coordination algorithm is

the following: N tourists have to gather in the same (indoor) place and have no means to

communicate and agree where to meet among two alternatives.

The tourists have one notebook each and there is a blackboard in front of each of the two

meeting points: at the beginning all tourists write a 0 on their notebooks and there is a 0

written on both blackboards.

Each tourist picks arbitrarily one of the possible meeting points to be visited first, and adopt

the following strategy that has to be repeated until a final meeting point is elected (i.e. when

he finds “HERE” on the blackboard in front of the meeting point):

• if the number on the blackboard is larger than that on his notebook, he erases the number

on his notebook, notes down that on the blackboard and goes to the other meeting point;

• if the number on the blackboard is equal to that on his notebook, he replaces the number

on the blackboard with the next even number and then he flips a (fair) coin: if it is head

he increments the number on the blackboard by 1 and does nothing otherwise. Finally

he replaces the number on his notebook with the one on the blackboard and heads to the

other meeting point;

• if the number on his notebook is larger than that on the blackboard, he writes “HERE” on

the blackboard and goes inside;

• obviously if he finds “HERE” on the blackboard, he simply goes inside.

The events happen symmetrically in both meeting places until the tourists flipping the coins

obtain a different result: breaking the symmetry allows the election of a meeting place. Infor-

mally we can say that the probability that symmetry is not broken after K repetitions is 1/2K, so

we probabilistically the whole process is going to terminate.

Let us write a program that simulates the tourists’ behaviour. We use the following variables:

ti ≙ the position of the i-th tourist

ai ≙ the number on the i-th tourist’s notebook

bj ≙ the number on the blackboard in the j-th meeting point

D.2. Rabin’s choice coordination algorithm 139

where
ti ∈ B = {0, 1}
ai ∈ N
bj ∈ N ∪ {HERE} ∧ HERE ≙ −1

Let v = (b0, b1, t1, a1, t2, a2, . . . , tN, aN): the state space is

S = {σ ∣ σ = v ↦w ∧w ∈ (B ×N)N × (N ∪ {HERE})2}

As in the Monty Hall example, we choose the lexicographic order to sort the states and define

the order in which they will appear in the vector representing the corresponding distribution.

The first problem we immediately see is that the state base is infinite: for this reason we will

not be able to write explicitly the matrices accounting for the different operations, but we will

simply write down their characteristics.

The basic step can then be formalized as follows:

tourist i ≙ δ′ = δjti = zo(jai < bzo{∣bz/ai∣}{∣t̄i/ti∣}+
+ jai = bzo(1/2{∣b̃z/bz∣} + 1/2{∣b̃z+1/bz∣}){∣bz/ai∣}{∣t̄i/ti∣}+
+ jai > bzo{∣HERE/bz∣})

where

t̄ ≙ ¬t

b̃z ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩

bz + 1 if bz is odd

bz + 2 if bz is even

Using the matrix notation, we get:

δ′ =(CiNSi +CiNFEi +HGi)Wiz δ

where

• the matrixWiz (W as in “Where”) selects the states where ti = z: this is a diagonal matrix

where the diagonal element wjj = 1 if the j-th state satisfies the condition ti = z. Clearly

we have that Wi0 +Wi1 = I;

• the matrix Si (S as in “Smaller”) selects the states where ai < bz, the matrix Ei (E as in

“Equal”) selects the states where ai = bz and the matrix Gi (G as in “Greater”) selects the

states where ai > bz: clearly we have that Si + Ei +Gi = I;

• the matrix N (N as in “Note”) is responsible for the assignment ai ∶= bz: the columns of

N are null everywhere with the exception of a single value equal to 1 — it is so because

this assignment is defined everywhere;

• the matrix F (F as in “Flip”) is F = FH + FT , i.e. the weighted sum of the two matrices

FH and FT responsible for the assignments bz ∶= b̃z and bz ∶= b̃z + 1, respectively: these

matrices have columns that are null everywhere, with the exception of one value which

140 Appendix D. Other case studies

equals 1 (in a different position for each matrix), and as a result the columns of matrix F

are null everywhere, with the exception of two values which are equal to 1/2;

• the matrix H (H as in “Here”) is responsible for the assignment bz ∶= HERE, whereas the

matrix Ci (C as in “Change”) is responsible for the assignment ti ∶= t̄i: this matrices

account for assignments defined everywhere, so they have a 1 in some position in each

column, exactly as in the previous cases.

We initially work with the assumption that all of the tourists visit, in any sequence, the n-th

place before a tourist can visit the (n+ 1)-th one. The i-th tourist is the first one to arrive at the

meeting place z and he finds on the blackboard the same number he has on his notebook, so he

behaves as follows:

δ′ = δjti = zojai = bzo(1/2{∣b̃z/bz∣} + 1/2{∣b̃z+1/bz∣}){∣bz/ai∣}{∣t̄i/ti∣}

The first three operations can be expressed as (we use ξ1 instead of δ and add a tilde ∼ on top

of the matrix symbol to stress that the vector elements are sorted in a different order):

ξ′
1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
p′SS

⋮
p′S−

p′S

p′E

⋮
p′GG

⋮
p′z̄

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= F̃ẼiW̃iz ξ1

where the upper part of the vector ξ
1

contains all states where ti = z̄ (and the lower part all

others), and in particular:

• pSS is the weight relative to some state where ai < bz − 3 and ti = z;

• pS− is the weight relative to some state σ where ai = bz − 2;

• pS is the weight relative to some state where ai = bz − 1 and all other variables map to

the same value as in σ;

• pE is the weight relative to some state where ai = bz and all other variables map to the

same value as in σ;

• pG is the weight relative to some state where ai > bz + 2;

• pz̄ is the weight relative to the first state where ti = z̄;

D.2. Rabin’s choice coordination algorithm 141

and:

W̃iz =

⎛
⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I
⋮
0

0

⋯ 0 1 0 ⋯

0
0

⋮
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

0 0 0

0

⎛
⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟
⎠

0 0

0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I
⋮
0

0

⋯ 0 1 0 ⋯

0
0

⋮
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

0

0 0 0

⎛
⎜⎜⎜
⎝

0 0 ⋯
0

⋮
0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟
⎠

Ẽi =

⎛
⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0

0

⋯ 0 0 0 ⋯

0
0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

0 0 0

0

⎛
⎜⎜⎜
⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎟
⎠

0 0

0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0

0

⋯ 0 0 0 ⋯

0
0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

0

0 0 0

⎛
⎜⎜⎜
⎝

− 0 ⋯
0

⋮
diag(−)

⎞
⎟⎟⎟
⎠

⎞
⎟⎟
⎠

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

− − −
− − −
− − −

⎞
⎟⎟⎟
⎠

− − −

0

⎛
⎜⎜⎜
⎝

0 1/2 1/2
0 0 1/2
0 0 0

⎞
⎟⎟⎟
⎠

0 0

− −
⎛
⎜⎜⎜
⎝

− − −
− − −
− − −

⎞
⎟⎟⎟
⎠

−

− − −
⎛
⎝
− −
− −

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

142 Appendix D. Other case studies

The two final operations can be expressed as (we use ξ2 instead of δ or ξ1 and add a hat̂on

top of the matrix symbol to stress that the vector elements are sorted in a different order):

ξ′
2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮
p′zSS

⋮
p′zE

⋮
p′zGG

⋮
p′z̄SS

⋮
p′z̄E

⋮
p′z̄GG

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ĈiN̂ ξ2

where the upper part of the vector ξ
1

contains all states where ti = z̄ (and the lower part all

others), and in particular:

• pzSS is the weight relative to some state σ where ai < bz − 2 and ti = z;

• pzE is the weight relative to some state where ai = bz and all other variables map to the

same value as in σ;

• pzGG is the weight relative to some state where ai = bz + 2 and all other variables map to

the same value as in σ;

• pz̄SS is the weight relative to some state ζ where ti = z̄ and all other variables map to the

same value as in σ;

• pz̄E is the weight relative to some state where ai = bz and all other variables map to the

same value as in ζ;

• pz̄GG is the weight relative to some state where ai = bz + 2 and all other variables map to

the same value as in ζ;

and:

N̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 0 − 0 −

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0
. . .

1 ⋯ 1
. . .

0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

− 0 −

− 0 − 0 −

− 0 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0
. . .

1 ⋯ 1
. . .

0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−

− 0 − 0 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

D.2. Rabin’s choice coordination algorithm 143

Ĉi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 0 − 0 −
− 0 − I −
− 0 − 0 −
− I − 0 −
− 0 − 0 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We can express all of this in terms of δ by using suitable permutation matrices:

δ′ = (P−12 ĈiN̂P2) (P−11 F̃ẼiW̃iz P1)δ

where:

P−11 ξ1 = δ P−12 ξ2 = δ

Moreover we have that:

P−11 W̃izP1 =Wiz

P−11 ẼiP1 = Ei

P−11 F̃P1 = F

P−12 N̂P2 =N

P−12 ĈiP2 = Ci

Although this shows how things are in line of principle, this is an example where it is not

practical to work with matrices, so we will rely on the other formalism to verify (probabilistic)

termination properties.

Going on with the description of the program, we look at the j-th tourist, who is the first to

arrive at the meeting place z̄, behaves as follows:

δ′ = δjtj = z̄ojaj = bz̄o(1/2{∣b̃z̄/bz̄∣} + 1/2{∣b̃z̄+1/bz̄∣}){∣bz̄/ai∣}{∣t̄j/tj∣}

All other tourists find a number which is larger than the one they have on their notebook, as

the numbers on the blackboards have been modified by the i-th and the j-th tourists, so they

simply update what’s written on their notebook:

δ′ = δjtk = yojak < byo{∣by/ak∣}{∣t̄k/tk∣} ∧ (y = z ∨ y = z̄)

If we sequentially compose the behaviours of all tourists, we have an expression where two

terms stand out:

δ′ = δ . . . (1/2{∣b̃z/bz∣} + 1/2{∣b̃z+1/bz∣}) . . . (1/2{∣b̃z̄/bz̄∣} + 1/2{∣b̃z̄+1/bz̄∣}) . . .

144 Appendix D. Other case studies

and this can be rewritten as:

δ′ = 1/4 ⋅ δ . . .{∣b̃z/bz∣} . . .{∣b̃z̄/bz̄∣} ⋅ ⋅ ⋅ + 1/4 ⋅ δ . . .{∣b̃z/bz∣} . . .{∣b̃z̄+1/bz̄∣} ⋅ ⋅ ⋅ +
+ 1/4 ⋅ δ . . .{∣b̃z+1/bz∣} . . .{∣b̃z̄/bz̄∣} ⋅ ⋅ ⋅ + 1/4 ⋅ δ . . .{∣b̃z+1/bz∣} . . .{∣b̃z̄+1/bz̄∣} . . .

Therefore all tourists that have visited the meeting point z have bz on their notebook, whereas

all others have bz̄. If the i-th and the j-th tourists have obtained the same result when flipping

the coin, we have that bz = bz̄, so everything is repeated again — and this happens each time

with probability 1/2, as we are dealing with full distributions.

If they obtained a different result — and this happens with probability for each coin flipping 1/2
—, then we have bz ≠ bz̄, which leads to termination: let us consider the case when bz < bz̄ —

the complementary case is symmetrical.

The first tourist arriving to location z has bz̄ on his notebook and so behaves as follows:

δ′ = δjai > bzo{∣HERE/bz∣}

The following tourists arriving there will “find” bz = HERE, so they have the same behaviour.

All other tourists will arrive at location z̄, which displays on the blackboard the value bz̄, which

larger than that on their notebook (which is bz), so their behaviour is:

δ′ = δjtk = z̄o(jak < bz̄o{∣bz̄/ak∣}{∣t̄k/tk∣}

They will finally head to location z, where they will find the other tourists.

The initialization of the program is a demonic choice, that sets the initial values of ai, i.e. the

first location to visit; then the whole program is a while-loop, where the guard is the condition

c ≙ ∃z∀i ● ai = z:
init;c ∗ sync

where

sync ≙ any permutation of the N different tourist i

We have that:

c ∗ sync = δ′ = 1/4 ⋅ δ . . .{∣b̃z+1/bz∣} . . .{∣b̃z̄/bz̄∣} ⋅ ⋅ ⋅ + 1/4 ⋅ δ . . .{∣b̃z/bz∣} . . .{∣b̃z̄+1/bz̄∣} ⋅ ⋅ ⋅ +
+ 1/16 ⋅ δ . . .{∣b̃z/bz∣} . . .{∣b̃z̄/bz̄∣} . . .{∣b̃z+1/bz∣} . . .{∣b̃z̄/bz̄∣} ⋅ ⋅ ⋅ +
+ 1/16 ⋅ δ . . .{∣b̃z/bz∣} . . .{∣b̃z̄/bz̄∣} . . .{∣b̃z/bz∣} . . .{∣b̃z̄+1/bz̄∣} ⋅ ⋅ ⋅ +
+ 1/16 ⋅ δ . . .{∣b̃z+1/bz∣} . . .{∣b̃z̄+1/bz̄∣} . . .{∣b̃z+1/bz∣} . . .{∣b̃z̄/bz̄∣} ⋅ ⋅ ⋅ +
+ 1/16 ⋅ δ . . .{∣b̃z+1/bz∣} . . .{∣b̃z̄+1/bz̄∣} . . .{∣b̃z/bz∣} . . .{∣b̃z̄+1/bz̄∣} ⋅ ⋅ ⋅ +
+ . . .

As we have full distribution, the probability of termination of each path is the initial coefficient,

and therefore the overall probability p(K) of termination after K steps is:

p(K) =
K

∑
i=1

1

2i

D.3. Protocol verification 145

and therefore:

lim
K→+∞

p(K) = 1

Removing the assumption that they all visit the n-th location before a tourist can visit the

(n + 1)-th one does not compromise the algorithm, as any tourist that stays behind will update

the content of his notebook with the current value he finds on the first blackboard he visits

when he starts moving again, and this will lead him either to the elected meeting place (if one

has already been picked) or in the same situation as all other tourists — to have probabilistic

termination we have to make sure that no tourist can stay idle forever.

D.3 Protocol verification

In the last years research has strongly focused on proofs of security: the verification step to

ensure that a computer program or a protocol have certain requested properties is a crucial

one, and this task has to be done preferentially by formal reasoning, rather than by tests and

simulations, as the latter approach is not as exhaustive as the formal one.

For a quite recent survey on the state of the art, one can refer to [ABCL09].

There are two possible approaches to protocol verification: the formal model and the computa-

tional model.

In the first model, we are in a highly idealized setting, whose properties can be expressed

through logic and manipulated with formal techniques (for example rewriting rules or theorem

proving), and therefore this can be effectively implemented in fully-automated protocol veri-

fiers. A popular model is that described by Dolev and Yao in 1983 [DY83], which is presented

in §D.3.1.

In this model we can reason about an idealized version of the protocol, so we can abstract

from the implementation issues: for example a flaw in an implementation of a protocol due to

overflow will not be detected in the formal model, but an error due to misconception of the

protocol will be found by a protocol verifier.

The second approach adopts a computational perspective, focusing on the actual computations

underlying a protocol, and borrows ideas from complexity theory. The goal is to provide a

more accurate analysis, in terms of providing quantitative considerations on the security of a

protocol, by extimating the number and the kind of operations required to break a protocol

when using a certain attack. It requires much more human intervention in proofs, and is only

recently being automated. [Bla08]

Bridging the gap between proofs in the formal model and in the computational model is one

of the issues in protocol verification: in [AR02] the authors present a computational-soundness

theorem, that relates the two views. Through this theorem it is possible to relate formally

equivalent terms with computationally indistinguishable terms.

These verification techniques allow us to uncover design faults that may remain hidden for

years. There are several successful episodes that can be recalled on this topic, and probably

one of the best-known example is the formal verification of the popular Needham-Schroeder

protocol by Gavin Lowe [Low95; Low96]: this protocol dates back to 1978, but it was just in

1995 that it was shown that a Man-in-the-Middle attack can effectively be mounted against this

protocol — now the corrected version of the protocol is known as Needham-Schroeder-Lowe

146 Appendix D. Other case studies

protocol. To achieve this goal Gavin Lowe used the FDR tool [Fdr], which is a model checker

for CSP.

Besides generic model checkers, there are tools which have been conceived specifically with

communication protocols in mind. An example is Bruno Blanchet’s ProVerif [Bla01; AB05;

Bla08], which is the tool we will be using.

Having an adequate tool support has been a key aspect that has made protocol verification a

mainstream activity in computer science, as it made protocol verification techniques available

to the protocol development community.

To model cryptographic protocols we use ad hoc languages. In [AG97] the spi-calculus is for-

malised as an extension of Miller’s π-calculus [Mil99], where the authors add cryptographic

primitives.

This is a first step towards the applied π-calculus [AF01]: here functions and equations are

added to the standard π-calculus, as well as the possibility of sending more complicated terms

through channels. For this reason the authors felt the need of adding also a way to declare a

short name for a more complicate expression (a kind of substitution).

Destructors and error handling are embedded in the applied π-calculus in [AB05].

D.3.1 The Dolev-Yao Model

The Dolev-Yao model (sketched in figure D.3) dates back to 1983 and it is still widely used in

protocol verification [DY83]. In this model the net is seen as a star, where the attacker is in the

central node and can act on every communication:

• the net is under the intruder’s control: messages can be intercepted and altered. New

messages can be injected to the net;

• the cryptographic primitives are perfect;

• the protocol admits any number or participants and any number of parallel sessions;

• the protocol messages can be of any size.

What the attacker cannot do is to break cryptographic functions, as they are assumed to be

perfect. This means that a cyphered message can be decrypted only with the appropriate key

or that a hashing function is collision-free.

The size of messages, keys and of any other term is irrelevant: this allows us to reason about

the protocol abstracting from the actual implementations, as issues like overflows, different

strength of keys, channel capacity and so on are not taken into account. This is useful, because

the flaws that may eventually be found depend on the protocol, and not on the particular

implementation of it.

Finally in the run of the protocol any number of participants is admitted: this means that there

can be any number of parallel sessions that may interact.

Probabilistic variations on the Model

The scenario depicted in the Dolev-Yao model is a highly idealized one: it can be effectively

implemented in protocol verifiers, but it is somehow far from the reality of things, as it relies

on strong assumptions.

D.3. Protocol verification 147

The idea of using a probabilistic calculus for cryptographic protocols has been investigated in a

variety of paper, such as [Mit+01], where the authors present a calculus, which is a variation of

CCS that focuses on probabilistic polynomial time.

The calculus is very similar to the π-calculus by Milner [Mil99] and to the spi-calculus [AG97],

and bases the verification of security properties on observational equivalences on processes.

In this calculus polynomials are associated with terms: as the aim of this process calculus is

to account for probabilistic polynomial-time adversaries, this calculus must be able to express

some information about the width of a channel or about the number of feasible replications of

a process. This results in a complicated semantics.

Similar ideas are expressed in [ZD04; ZD05], where the authors discuss the setting that re-

sults from having a probabilistic Dolev-Yao attacker who is able to guess a key with a given

probability, and the related transition system. Generally speaking, the inference rules that an

attacker can use are weighed by the probability that their application will be successful: the

rules that characterise a classic Dolev-Yao attacker are weighed by probability p = 1, while the

rules characterising a probabilistic Dolev-Yao attacker are weighed by a probability p ≤ 1.
This preliminary work does not account for private channels or other operations normally for-

bidden to a Dolev-Yao attacker, such as decryption without key, signature forge, and so on —

and the authors have now abandoned this line of research.

Nonetheless we can find a generalization of this in [Bau06]: here the Dolev-Yao model is seen

Figure D.3: The Dolev-Yao model.

148 Appendix D. Other case studies

as a transition system, probabilities and computational times are added by labelling the transi-

tions.

In this transition system each transition stands for a computation and is labeled with a function

that relates the computation with its cost: the weight function returns a non-negative real

number or infinity (in case of impossible computations). The use of this framework allows us

to evaluate the feasibility of an attack.

Later on in the paper the assumption that computation times are deterministic is removed and

there are probabilistic computation times that label the transitions. Thanks to this a low prob-

ability can be used to label transitions accounting for a forbidden operation, such as breaking

encryption without having the key: in this way what should not happen can be given the ap-

propriate weight, and one can try to reason in the unlikely case that it does happen.

A technique for evaluating the probability of an attack in the case of a more powerful DY-

attacker (that can guess keys and break some encryptions with a given probability) is presented

in [Adã+06]: when building an attack trace it is possible to build a tree of it and by adding

labels to the transitions among the states in the tree it is possible to evaluate the probability of

such an attack by multiplication of these probabilities.

The authors of [DMV04] focus in particular on off-line guessing, which is a kind of attack that

does not need to interact with the protocol. An attacker has got to be able to verify if a guess

he has made makes sense or not — for example when decrypting messages with a guessed key,

there must be at least a portion of them which is known and that can confirm that the key is

the right one. The model proposed accounts for the intermediate computations done by an

attacker, by means of maps.

Lately part of the research community has started to look to secure refinement calculus as to a

new technique to be applied to security problems and this could extend the range of security

applications that can be verified. [MM09; MMM09]

We are also moving in this direction, as we aim at using a probabilistic UTP framework, which

bears the concept of refinement, to reason about protocols: in a probabilistic setting this will

enable us to compare different protocols, in terms of the probability they may be broken.

D.3.2 A strategy to evaluate the probability of successful attacks by means
of standard protocol verifiers

We relax the hypotheses underlying the Dolev-Yao model, in particular we aim at reasoning in

a setting where the perfect cryptography assumption is weakened.

To remove the hypothesis that cryptographic primitives are perfect means that it is possible for

a one-way function to be inverted, thus revealing its argument.

If we are dealing with a sound cryptosystem, the probability of this to happen is negligible,

though non-zero. It is useful to evaluate this probability: a trivial application is to estimate the

security which is gained by using larger keys. An evaluation of the strength of these functions

implicitly carries information about the channel width, which the calculus proposed in [Mit+01]

explicitly accounts for.

We can think of two extreme cases when having to violate a cryptosystem: one option is a

completely random guess, the other is collecting enough data that can be used to break cryp-

D.3. Protocol verification 149

tography. The general case is somewhere in between, ranging between these extremes.

Protocol verifiers such as ProVerif apply inference rules to derive terms from the data exchanged

among the agents. The hypothesis of perfect cryptography may be instantiated in a protocol

model by providing a constructor function, but no destructor function: once a constructor

function is applied to some arguments it will not be possible to reverse it and find their values.

This is the case for example of hashing functions: from the cryptographic hash of a string it is

not possible to recover the original string.

In the case of public key cryptography the perfect cryptography assumption is rendered as a

couple of constructor-destructor functions: the destructor function will return a result only if

the appropriate key is provided.

When testing the model of a safe protocol, the protocol verifier will state that no attack on the

protocol is possible. Conversely if the protocol was not safe, the protocol verifier will return the

trace of a possible attack.

Introducing new destructors

Starting from a safe model of the protocol, what we are aiming at is a suitable modification of

the model, that accounts for a possible break in the cryptography.

We do so by inserting new destructors: if the security of the protocol was relying on the perfect

cryptography assumption, this will enable the protocol verifier to find an attack on the protocol.

The naive destructors that can be added are the ones accounting for random guesses: they sim-

ply behave as oracles that invert the one-way function. For example we can provide the attacker

with a destructor returning the key that is used to encrypt a message, as well as providing him

with a destructor that recovers the plain text from an encrypted message.

Finer destructors can be added, which take more than one argument. For example this may

be used to take into account cryptoanalysis attacks: we can imagine a destructor enabling

the attacker to recover a key after having collected a certain number of messages cyphered

under that key. More in general we can model different information leaks and add destructor

exploiting those leaks.

Examining the trace of the attack

We can think of these new destructors as functions that can be used by paying a price, and the

price is that the probability of success of an attack is diminished accordingly to the probability

that the functions used to perform that attack will return a correct value.

For example if an attack has been found and it does not use those destructors, it will succeed

with probability p = 1: each inference rule which is applied gives a result with that probability,

so the product of all those probabilities is p = 1.

Conversely an attack which uses once only one of such destructors will succeed with the proba-

bility that the destructor works properly: only one inference rule will succeed with probability

p ≤ 1, so the final probability of a successful attack coincides with that value.

Obviously in the case that an attack needs to use more destructors, its probability of success

will be the probability that all the destructors return a correct result.

150 Appendix D. Other case studies

Considerations on the most successful attack

Unluckily once we have evaluated the probability for the discovered attack to succeed, still

we cannot trivially be sure that there is not another attack that can succeed with a higher

probability. But at least it is possible to give upper and lower bounds for the success probability,

as well as an upper bound to the number of times when the attacker will have to rely on the

new destructors.

The success probability p of breaking a protocol with the most successful attack is greater or

equal to the success probability p̂ of the discovered attack.

p ≥ p̂

Similarly we can also see that the success probability p cannot be greater than the probability

pmed of the most effective destructor to succeed, i.e. the one which most likely will return a

correct result: as the protocol was safe before adding the new destructors, the most favourable

situation for the attacker is when he needs to apply once only the most effective destructor, as

the success probability of the attack coincides with the success probability of the destructor.

p ≤ pmed

If this is not the case, we can at least estimate what the maximum number of application

of these destructors is: this is the number of times that the most effective destructor can be

applied before the probability of success drops below the success probability of the discovered

attack.

These considerations can be used to guide the research for a more successful attack.

D.3.3 An example: using ProVerif to verify the Yahalom protocol

To illustrate the propose methodology, we will reason about the Yahalom protocol: the protocol

verifier that will be used is ProVerif. It comes along with some examples files, among which

there is a model of the Yahalom protocol (coded as a sequence of Horn clauses), which will be

modified to suit our needs.

ProVerif

First of all a brief description of the tool used in this example, ProVerif: it is a protocol verifier

written by Bruno Blanchet [AB05; Bla01].

The tool processes input files formatted as a sequence of Horn clauses or as a process in the ap-

plied π-calculus (a cryptographically-oriented variation of the π-calculus), which will be trans-

lated into Horn clauses before being run.

In particular, by means of ProVerif it is possible to verify secrecy properties, i.e. whether a

Dolev-Yao attacker is able to derive a term from the messages exchanged among the agents: for

example this can be used to prove the correctness of a key agreement protocol, by proving that

a term, encrypted under the negotiated key and sent on a public channel, is not derivable by

an attacker. This is the way we will use ProVerif to test the Yahalom protocol.

D.3. Protocol verification 151

1:id(A),NA 4:{id(A), KAB}KBS ,{NB}KAB

2:id(B),{id(A),NA,NB}KBS

3:{id(B), KAB,NA,NB}KAS ,{id(A), KAB}KBS

Figure D.4: The Yahalom protocol.

Protocol Description

During the protocol flow (see figure D.4) a total of 4 messages are exchanged among two

agents, A and B, and a server, S. Both agents share a key with the server and can generate

fresh nonces and keys. The server knows the identity of the agents and its own identity is

publicly known. One agent knows the identity of the other agent (the one he wants to send a

message to), but not viceversa.

Here are the contents of the exchanged messages:

A→ B the identity of A, together with a fresh nonce NA, is sent to B;

B → S the identity of B and a triplet (made of a fresh nonce NB, the nonce NA and the

identity of A) encrypted under the key KBS is sent to S;

S → A the fresh key KAB, the identity of B and the nonces NA and NB, all encrypted under

the key KAS , along with the couple made by the identity of A and the key KAB, encrypted

under the key KBS , are sent to A;

A→ B the couple made by the identity of A and the key KAB, encrypted under the key KBS ,

and the nonce NB, encrypted under the key KAB, are sent to B.

Adding Destructors to Break the Protocol

When analysing the protocol, ProVerif proves that it is safe in the classical Dolev-Yao model.

Let us now weaken the model by providing the attacker with some useful destructors, that will

enable him to break the protocol: ProVerif will find that the protocol is not safe anymore.

The challenge for the adversary is to be able to decrypt the first message MKAB , which is sent

encrypted under the fresh key KAB.

152 Appendix D. Other case studies

A Destructor to Guess the Key As a first option we can imagine that the attacker can guess

the key K used to encrypt a message with probability pG. If no other knowledge about the key

is available, we have that pG = 2−`K , where `K is the length of the key K.

The attack is trivial:

• the attacker can decrypt the message MKAB if he knows KAB;

• the key KAB can be guessed with probability pG.

ProVerif gives the following attack trace instead:

• the attacker can decrypt the message MKAB if he knows KAB;

• the key KAB is sent from S to A in a message which is encrypted under the key KAS ;

• the key KAS can be guessed with probability pG.

In both cases the probability of this attack to succeed is therefore pG, as the new destructor is

used only once.

A Destructor to Decrypt a Message without Knowing the Key As another option we can

imagine that the attacker can decrypt an encrypted message MK without knowing the key K

with probability pD. If no other knowledge about the contents M of the message is available,

we have that pD = 2−`M , where `M is the length of the plaintext of the message.

The attack is trivial and is the one found by ProVerif:

• the attacker can decrypt the message MKAB with probability pD.

The probability of this attack to succeed is therefore pD, as also in this case the new destructor

is used only once.

A Destructor to Spoof the Server Identity Yet another possible scenario is the one when the

attacker can successfully pretend to be the server: this means that he is able to recreate the

server authentication credentials. The probability of being able to do this is pS. If no other

knowledge about the private key P used to generate the server credentials is available, we have

that pS = 2−`P , where `P is the length of the key P.

ProVerif gives the following attack trace:

• the attacker breaks the server credentials with probability pS;

• the attacker can successfully mount a Man-in-the-Middle attack.

The probability of this attack to succeed is therefore pS, as again the new destructor is used

only once.

D.3. Protocol verification 153

Considerations on the Attack Traces

The attack traces found by ProVerif show that the Yahalom protocol is not fully safe anymore if

we weaken the perfect encryption hypothesis, but it can be broken with probability

p = max{pG, pD, pS}

If the attacker can use all of the three destructors described above, instead of only one of them

at once, ProVerif will output a trace which is similar to one of the attacks described above

(actually the one using the message decryption without knowing the key), as in each one of

them the new destructor is used only once, so there can be no more effective combination of

using the destructors.

It must be noted that the trace given by ProVerif in this case may not correspond to the trace of

the most successful attack — ProVerif knows nothing about probabilities, as this is something

that we add a posteriori.

It must also be noted that the traces given by ProVerif are not always the most trivial ones.

D.3.4 Protocol runs as predicates

We intend to use the framework presented in §3 to reason about protocols, and we aim at

doing so by writing predicates that account for the evolution of an attacker’s knowledge, when

interacting with the protocol.

The attacker’s knowledge can be described by a state σ, where the observation variables are

boolean variables: the variable vt assumes the boolean value 1 when the attacker knows the

term t, and vice-versa it assumes the value 0 when the attacker does not know t; the state space

K is formed by all such states accounting for all possible attacker’s knowledge patterns.

The inference rules that describe the possible steps to be taken in a run of the protocol deter-

mine the possible assignments that transform a state σ into a σ′, to account for the knowledge

gathered by the attacker after that step was taken: the only assignments we will have to deal

with are those assigning the boolean value 1 to vt upon discovery of term t by the attacker.

An assignment can account for the application of a single rule, as well as for the application of

a concatenation of inference rules.

In a setting such as that one of ProVerif, we deal with two kinds of predicates:

• message(c,m) — the message m is sent on channel c;

• attacker(t) — the attacker may have the term t.

We aim at keeping track of what the attacker knows, without really caring of the messages he

has had to exchange to gather that knowledge: when we have subsequent applications of rules

involving the predicate message (in the antecedent or in the subsequent), we can work them

out to infer a rule involving only the predicate attacker, that is equivalent to the original rules

for what concerns the attacker’s knowledge.

154 Appendix D. Other case studies

This means that we will be working with predicates of the following shape:

N

⋀
i=0

attacker(ti)⇒ attacker(t(N+1))

Here is an example of how easily we can “purge” the protocol rules from all message predicates

(this means that we are not focusing on the message flow but only on the evolution of the

attacker’s knowledge).

Let us take the following set of rules:

1 ∶ attacker(c)
2 ∶ attacker(c)⇒ message(c, r)
3 ∶ message(c, r)⇒ message(c,m)
4 ∶ attacker(c) ∧ message(c,m)⇒ attacker(m)

Using rules (1), (2), (3) and (4) we can derive attacker(m) from the axiom attacker(c). We

can do this also if the set is reduced to:

5 ∶ attacker(c)
6 ∶ attacker(c)⇒ attacker(m)

We can see that rule (6) can be derived from rules (2), (3) and (4).

In this way we have a set of rules giving an equivalent protocol model limited to the aspects

concerning the attacker’s knowledge pool.

Finally we are ready to add probability to the picture: we can do so by taking advantage of our

framework and monitor the possible lines of evolution of the attacker’s knowledge by using a

probability distribution on the state space K of all possible knowledge patterns.

The initial distribution δ0 evolves as the protocol runs; the evolution of δ0 has the interesting

property that any state can evolve only towards a state where the attacker’s knowledge has

increased, i.e. the attacker does not forget acquired knowledge; consequently state probability

is “being transferred” as the protocol runs, from states where the attacker knows some terms to

states accounting for a wider knowledge pool.

If we are given an attack trace, this formalism allows us to keep track of the evolution of the

intruder’s knowledge as the attack is being carried out.

In the case of a non-probabilistic i-th step, we have that it is responsible for the assignment of

the expression ei to v , causing the distribution δ to become the distribution δ′ = δ{∣ei/v ∣}.

For example if such a step is the inference of the term t̂ by application of the following rule:

⋀
t ∈ knowledge

attacker(t)⇒ attacker(t̂)

D.3. Protocol verification 155

the assignment will be:

δ′ = δ{∣1/vt̂∣}

We can generalise this to the case of a probabilistic j-th step, say with N possible outcomes. In

that case we have that the expression describing the distribution δ′ is the linear combination of

the different outcomes of the distribution δ undergoing the N different assignments v ∶= ejk:

δ′ =
N

∑
k=1

pk ⋅ δ{∣ejk/v ∣}

where we have that ∑Nk=1 pk ≤ 1.

What we obtain by sequentially composing all of the different steps is a predicate that describes

the relation between the distribution δ of the attacker’s initial knowledge and the distribution

δ′ of the knowledge he can gain, which has the following shape:

δ′ =∑p ⋅ δ{∣e/v ∣}{∣f/v ∣}⋯{∣g/v ∣}

For an attack trace T — which we assume to be deterministic — and an initial distribution δ

we note the final distribution δ′ as4:

T (δ) ≙ δ′

We are particularly interested in the case where an attacker starts with zero knowledge, and so

when δ = η0 — we are using η0 to note the distribution where there is a single state mapping

to probability 1, i.e. that having all variables vt mapping to 0, whereas all other states have

probability 0.

Finally if we evaluate the probability of the attacker reaching his goal G, which is a boolean

expression that assumes the value true on the states where the attacker has enough knowl-

edge to violate the protocol, on the final distribution T (δ), we have also the probability of the

corresponding attack to be performed successfully:

p ≙ T (δ)jGo

The same considerations on the probability of a successful attack from §D.3.2 apply to this case,

with the opportune generalisations.

D.3.5 An example: key-guessing on the Yahalom protocol

As in §D.3.3 we take the Yahalom protocol as an example to illustrate the proposed methodol-

ogy, and we will focus in particular on the case when the attacker tries to guess a key — the

other two cases from the example in [BB09] (the attacker spoofing the server’s identity or being

able to decrypt a message without knowing the key) are other examples of similar complexity.

For the protocol description one should go back to §D.3.3.

4If we wanted to be more formal, this should be the program image for T , which is a singleton set because of the
deterministic nature of T .

156 Appendix D. Other case studies

Adding a destructor to account for key-guessing

The challenge for the adversary is to be able to decrypt the first message MKAB , which is sent

encrypted under the fresh key KAB: let vm be the boolean variable accounting for the attacker

knowing the plaintext M, the security goal to be broken is expressed by the condition vm = 1
(all states satisfying this condition are states where the attacker has successfully compromised

the protocol).

One of the possible destructors we can add to the model is that accounting for the attacker

guessing the key K used to encrypt a message with probability pG. If no other knowledge about

the key is available, we have that pG = 2−`K , where `K is the length of the key K.

The attack is trivial:

• the attacker can decrypt the message MKAB if he knows KAB;

• the key KAB can be guessed with probability pG.

Let vkab and vmkab be the boolean variables accounting for the attacker knowing the terms KAB
andMKAB respectively, the attack trace seen as a predicate can be written as (when the attacker

starts with zero knowledge):

TG(η0) =pG ⋅ η0{∣1/vmkab∣}{∣1/vkab∣}{∣1/vm∣}+
+ (1 − pG) ⋅ η0{∣1/vmkab∣}

The first term accounts for the attacker acquiring the term MKAB (which flows on a public

channel), then correctly guessing KAB and thus being able to obtain M (breaching the security

goal), whereas the second term describes the case when the attacker acquiresMKAB but cannot

guess the right key.

The probability of this attack succeeding is therefore:

p = TG(η0)jvm = 1o = pG

The attack trace found by ProVerif is slightly different:

• the attacker can decrypt the message MKAB if he knows KAB;

• the key KAB is sent from S to A in a message which is encrypted under the key KAS —

let us note it as Z;

• the key KAS can be guessed with probability pG.

Let vz and vkas be the boolean variable accounting for the attacker knowing the terms Z and

KAS , similarly has above we have that the predicate for the attack trace can be written as:

TG(η0) =pG ⋅ η0{∣1/vmkab∣}{∣1/vz∣}{∣1/vkas∣}{∣1/vkab∣}{∣1/vm∣}+
+ (1 − pG) ⋅ η0{∣1/vmkab∣}{∣1/vz∣}

Therefore in both cases the probability of an attack based on guessing is pG.

D.3.6 Towards a UTP -style protocol verification technique

Now that we have defined how to turn attack traces into predicates, it is interesting to address

the concept of refinement: this is a key concept in the UTP framework, and in §3.7 we have

D.3. Protocol verification 157

introduced this notion in our framework as well.

In the case of attack traces we are interested in a more specific definition, which takes into

account a specific security goal G to be broken, so a reasonable informal definition could be

that an attack trace TA refines another attack trace TB (with respect to G) whenever the success

probability is greater when mounting the attack A than with attack B.

If we want to capture this definition formally, we can write:

TA ⊒G TB ≙ ∀δ ● TA(δ)jGo ≥ TB(δ)jGo

This relation induces a partial order over the set of possible traces. We can observe that a safe

protocol run is an attack trace with success probability 0, i.e. interacting with the protocol in

this way does not compromise the security goal G.

All those traces yielding a non-zero success probability are attack traces, and they can be ranked

by effectiveness by the refinement relation: here we are dealing with a lattice, where the bottom

elements are the safest traces and the top elements are those where the attacker can violate the

protocol with the highest probability.

At the very bottom of the lattice we find the empty trace (i.e. the safest trace), which is the

trace of a protocol which has not started; the exploration of the lattice is going to provide

useful information to determine the most successful attack.

158 Appendix D. Other case studies

APPENDIX E

Notation

E.1 Logic
¬ : logical negation

∧ : logical conjunction

∨ : logical disjunction

⇒ : implication

⇔ : double implication

true : logical true

false : logical false

E.2 Relations and functions

↦ : maps to

† : override

→ : total function

↛ : partial function

R : relation

dom : domain operator

codom : codomain operator

img : image operator

E.3 Probability
p,q, r, s : probability

P,Q : stochastic variable

fP : probability density function

FP : cumulative density function

159

160 Appendix E. Notation

E.4 Variables, values and expressions

∶= : assignment

v : variable

w : value

e, f, g : expression

c, d, z : boolean expression

v : vector of variables

w : vector of values

e, f, g : vector of expressions

V : set of variables

W : set of values

E : set of expressions

eval : expression evaluation operator

type : variable type operator

fv : free variable operator

bv : bound variable operator

E.5. States and distributions 161

E.5 States and distributions

σ, ζ : state

α : abstract state

S : set of all states (state space)

A : alphabet

alph : alphabet operator

χ, ξ : distribution

ε : empty distribution

ι : unitary distribution

π : weighting distribution

π̄ : complementary weighting distribution

δ : probability distribution

X ,Y : set of distributions

D : set of all distributions

Dw : set of all weighting distributions

Dp : set of all probability distributions

∥_∥ : weight

_j_o : restriction

Inv(_,_) : inverse-image set

{∣/_∣} : remap

E.6 Programs
skip : skip

abort : abort

miracle : miracle

∗ : iteration

_◁ _▷ _ : conditional choice

⊔ : angelic choice

⊓ : demonic choice

p⊕, p⊕(1−p) : probabilistic choice

choice(_,_,_) : choice

⊑ : refinement

(_)△ : refinement set

162 Appendix E. Notation

APPENDIX F

Mathematical Background

This appendix revisits and expands the presentation given in [Koz81], in order to provide a very

concise reference for the mathematical foundations of this work, assuming a basic knowledge

of topology; we try to keep the notation as similar as possible to the one used throughout the

present work.

F.1 General Notions

The characteristic function of a set B ⊆ A is the function χB ∶ A→ {0, 1} defined as follows:

χB(a) ≙ { 1 if a ∈ B
0 if a ∉ B.

A binary operation op on a set A is a total function op ∶ A ×A → A: it should be noted that the

totality of the function implies the closure property of the set A with respect to op.

F.2 Vector spaces

A commutative group (or abelian group) is a pair (A,+), where A is a set with a unique distin-

guished element 0 and + is a binary operator, such that for any elements a,b, c ∈ A:

a + b = b + a [commutativity]

(a + b) + c = a + (b + c) [associativity]

a + 0 = a [identity]

a + (−a) = 0 [inverse],

where −a denotes the element of A called the additive inverse of a (unique for each a).

A vector space (V,+, ⋅) over a field F is a set V, equipped with two binary operators + and ⋅,
such that (V,+) is a commutative group, and for which the following axioms hold for a unique

distinguished element 1 ∈ F, any elements a,b ∈ F and t,u, v ∈ V:

a(u + v) = au + av [distributivity]

(a + b)v = av + bv [distributivity]

a(bv) = (ab)v [associativity]

1v = v [identity].

The elements of V are called vectors, whereas the elements of F are scalars.

163

164 Appendix F. Mathematical Background

An example of this is the vector space where V = RN, where the vectors are columns of N real

numbers, the scalars are real numbers and the binary operators + and ⋅ correspond respectively

to the element-wise sum and multiplication of each element by a scalar.

A positive cone V+ is a subset of V such that:

u, v ∈ V+ ∧ a,b ∈ F+ ⇒ au + bv ∈ V+

v ∈ V+ ∧ −v ∈ V+⇔ v = 0,

where F+ denotes the set of all non-negative elements of the field F.

A distance on V is a function d ∶ V × V → R+ such that:

d(v, v) = 0
d(u, v) = d(v,u)
d(u, v) ≤ d(u, t) + d(t, v).

A metric space is a pair (V,d), where d is a distance on V.

A sequence v1, v2, . . . is a Cauchy sequence if for every positive real number ε there is a positive

integer n such that:

∀p,q > n ● d(vp, vq) ≤ ε.

A metric space is complete if every Cauchy sequence has a limit in V.

A norm on a vector space V is a function ∥∥ ∶ V → R+ such that:

∥v∥ = 0 ⇔ v = 0
∀a ∈ F ● ∥av∥ = ∣a∣ ⋅ ∥v∥
∥u + v∥ ≤ ∥u∥ + ∥v∥.

A norm induces a metric on V, as it is possible to define a distance function as:

d(u, v) ≙ ∥u − v∥.

If the metric space (V, ∥∥) is complete, then it is a Banach space.

It is possible to define a partial order ≤ on V by using its positive cone V+:

u ≤ v ≙ (v − u) ∈ V+

Addition and scalar multiplication enjoy the following properties:

v + sup
u∈U

(u) = sup
u∈U

(v + u)

sup
u∈U

(au) = a sup
u∈U

(u).

where U ⊆ V and a ∈ F+, and therefore we say that they are order-continuous with respect to the

order ≤.

F.2. Vector spaces 165

A set U ⊆ V is a directed set if there is a ≤-upper bound in U for each pair u, v ∈ U.

An interval is a set [u, v] ≙ {t ∣ u ≤ t ≤ v}; if a set is contained in an interval, then it is said to

be order-bounded.

A vector lattice is a pair (V,≤), where every pair u, v ∈ U has a ≤-least upper bound (or join)

u ⊓ v, or equivalently every pair u, v ∈ U has a ≤-greatest lower bound (or meet) u ⊔ v.
A vector lattice is conditionally complete if every set of elements of V with a ≤-upper bound has

a least upper bound.

Both addition and scalar multiplication distribute over ⊓ and ⊔; moreover u + v = u ⊓ v + u ⊔ v.

The Jordan decomposition of a vector v returns two unique positive vectors v+ and v−, whose

meet is 0 and such that v = v+ − v−. We have that:

v+ = v ⊓ 0
v− = −v ⊓ 0

u ⊓ v = (u − v)+ + v
u ⊔ v = −(−u ⊓ −v).

The absolute value of a vector v is ∣v∣ ≙ v+ + v− = v+ ⊓ v−. We have that:

∣v∣ ≥ 0
∣v∣ = 0⇔ v = 0
∣u − v∣ = (u ⊓ v) − (u ⊔ v)
u ⊓ v = 1/2(u + v + ∣u − v∣).

If (V, ∥∥,≤) is a Banach lattice if it is both a Banach space and a vector lattice and the following

holds:

∥∣v∣∥ = ∥v∥
0 ≤ u ≤ v⇒ ∥u∥ ≤ ∥v∥

Given a linear transformation T ∶ U→ V, where U and V are two normed vector spaces, we say

that T is ∥∥-bounded if:

sup
B1[0]

∥T(u)∥ < +∞,

where B1[0] = {u ∣ ∥u∥ ≤ 1} is the (closed) ball of radius 1; the property of being ∥∥-bounded

is equivalent to that of being continuous with respect to the metric induced by ∥∥.

The space of all such ∥∥-bounded linear transformations is a normed vector space under point-

wise addition and scalar multiplication, with the uniform norm defined as:

∥T∥ = sup
B1(0)

∥T(u)∥.

166 Appendix F. Mathematical Background

We say that T is monotone if

u ≤ v⇔ T(u) ≤ T(v).

We say that T is order-bounded if it maps order-bounded sets to order-bounded sets.

The set of order-bounded linear transformations from a vector lattice to a conditionally com-

plete vector lattice is itself a vector lattice, where:

(S ⊓ T)(v) = sup
0≤u≤v

S(u) + T(v − u).

A linear operator on V is an endomorphism op ∶ V → V which is also ∥∥-bounded linear trans-

formation; the space of all linear operators on V is a Banach space if V is a Banach space.

F.2.1 The vector space RN

The elements of the vector space RN are vectors made of N real numbers, viz. linear combina-

tions of the canonical generators ei (which are null vectors with a 1 in the i-th position) with

coefficients in R.

The total variation norm (also known as taxicab norm or Manhattan norm) in RN is the norm

defined as:

∥v∥1 ≙
N

∑
i=1

∣vi∣.

The uniform norm (also known as supremum norm or Chebyshev norm) in RN is the norm

defined as:

∥v∥∞ ≙ max
i∈[1..N]

∣vi∣.

F.2.2 The vector space RN×N

The elements of the vector space RN×N are matrices made with N elements from RN.

The total variation norm in RN×N is the norm defined as:

∥A∥1 ≙ max
j∈[1,N]

∥a∗j∥1.

The uniform norm in RN×N is the norm defined as:

∥A∥∞ ≙ max
i∈[1..N]

∥ai∗∥1.

F.3 Boolean algebra

A boolean algebra is a structure made of a set A, with two unique distinguished elements 0 and

1, equipped with two binary operators ∧ and ∨ and the unary operator ¬, and for which the

F.4. Measure Theory 167

following axioms hold for any elements a,b, c ∈ A:

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c [associativity]

a ∨ b = b ∨ a a ∧ b = b ∧ a [commutativity]

a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a [absorption]

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) [distributivity]

a ∨ ¬a = 1 a ∧ ¬a = 0 [complement].

An example of this is the two-element boolean algebra, where A = {0, 1} and ∧, ∨, ¬ are respec-

tively the logical conjunction, disjunction, negation.

Another example is the case where A = ℘S for any set S, 0 and 1 are respectively the empty set

and S itself, and ∧, ∨, ¬ are respectively the set intersection, union, complement.

A σ-algebra is a boolean algebra which is closed with respect to countable union.

F.4 Measure Theory

A measurable space is a pair (S , ΣS), where S is a set and ΣS ⊆ ℘S is a σ-algebra of subsets of

S .

A function f ∶ (S , ΣS)→ (W , ΣW) is measurable if

∀β ●α = f−1(β) ∧ α ∈ ΣS ⇔ β ∈ ΣW .

A function is countably additive if, given finitely many pairwise disjoint sets α1, α2, . . . αN ∈ ΣS ,

the following relation holds:

µ(
N

⋃
i=1

αi) =
N

∑
i=1

µ(αi).

A measure (or distribution) on (S , ΣS) is a countably additive function µ ∶ ΣS → R; a measure is

said to be positive if µ(α) ≥ 0 for every α ∈ ΣS .

A measure is discrete if all its weight is distributed on countably many elements; a special case

is when all the weight is distributed on a single element, which is called point mass; a measure

is continuous if µ(α) = 0 for all countable α.

Every measure can be uniquely represented as the sum of a continuous measure and a discrete

one.

The Jordan decomposition of a measure µ returns two unique positive measures µ+ (positive
variation) and µ− (negative variation) such that:

µ+ = µ(α) ∧ µ− = −µ(ᾱ),

for some α ∈ ΣS , where ᾱ = S ∖α.

The total variation of µ is defined as the measure ∣µ∣ = µ+ + µ−.

The total variation norm here can be defined as ∥µ∥ ≙ ∣µ∣: the set of measures on (S , ΣS),
together with this norm and with addition, scalar multiplication and ≤ relation all lifted point-

wise, forms a Banach lattice.

168 Appendix F. Mathematical Background

A measure space (S , ΣS , µ) is a measurable space equipped with a measure.

F.5 Probability Theory

A subprobability measure is a positive measure such that µ(S) ≤ 1; in case µ(S) = 1 we talk of

a probability measure.

A probability space is a measure space (S , ΣS , µ) where µ is a probability measure: S can be

thought as the set of all possible outcomes σ, whereas ΣS is the set of all possible events α.

A random variable is a partial measurable function v ∶ (S , ΣS , µ) ↛ (W , ΣW); its domain is a

probability space and is usually referred to as the sample space, whereas its range is referred to

as the value space.

A random variable induces a subprobability measure µ ○ v−1 on (W , ΣW) (this is a probability

measure in case v is a total function):

µ ○ v−1(α) = µ(v−1(α)).

The probability of an event α ∈ ΣS is therefore:

P(σ ∈ α) ≙ µ ○ v−1(α).

A random variate is a particular outcome of a random variable.

A random vector is a random variable v where the value space is the cartesian product (W , ΣW) =
∏(Wi, ΣWi

): v is a list of the random variables v1,v2, . . . and induces a subprobability measure

µ ○ v−1 on (W , ΣW), referred to as the joint distribution of v1,v2,
Two random variables vi and vj are independent if their joint distribution is (µ○v−1

i) ⋅(µ○v−1
j).

References

[AB05] Martín Abadi and Bruno Blanchet. “Analyzing Security Protocols with Secrecy Types

and Logic Programs”. In: Journal of the ACM 52.1 (Jan. 2005), pp. 102–146.

[ABCL09] Martín Abadi, Bruno Blanchet, and Hubert Comon-Lundh. “Models and Proofs of

Protocol Security: A Progress Report”. In: 21st International Conference on Com-
puter Aided Verification (CAV’09). Lecture Notes on Computer Science. Grenoble,

France: Springer Verlag, July 2009.

[Adã+06] Pedro Adão et al. “Towards a Quantitative Analysis of Security Protocols”. In: Electr.
Notes Theor. Comput. Sci. 164.3 (2006), pp. 3–25.

[AF01] Martín Abadi and Cédric Fournet. “Mobile values, new names, and secure commu-

nication”. In: POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. London, United Kingdom: ACM, 2001,

pp. 104–115.

[AG97] Martín Abadi and Andrew D. Gordon. “A Calculus for Cryptographic Protocols:

The Spi Calculus”. In: Fourth ACM Conference on Computer and Communications
Security. ACM Press, 1997, pp. 36–47.

[AR02] Martín Abadi and Phillip Rogaway. “Reconciling Two Views of Cryptography (The

Computational Soundness of Formal Encryption)”. In: J. Cryptology 15.2 (2002),

pp. 103–127.

[Bau06] Mathieu Baudet. “Random Polynomial-Time Attacks and Dolev-Yao Models”. In:

Journal of Automata, Languages and Combinatorics 11.1 (2006), pp. 7–21.

[BB09] Riccardo Bresciani and Andrew Butterfield. “Weakening the Dolev-Yao model through

probability”. In: SIN ’09: Proceedings of the 2nd international conference on Security
of information and networks. North Cyprus: ACM, 2009, pp. 293–297.

[BB11] Riccardo Bresciani and Andrew Butterfield. Towards a UTP-style framework to deal
with probabilities. Tech. rep. TCD-CS-2011-09. FMG, Trinity College Dublin, Ire-

land, Aug. 2011.

[BB12a] Riccardo Bresciani and Andrew Butterfield. “A probabilistic theory of designs based

on distributions”. In: UTP 2012. 2012.

[BB12b] Riccardo Bresciani and Andrew Butterfield. “A UTP approach towards probabilistic

protocol verification”. In: Security and Communication Networks (2012).

[BB12c] Riccardo Bresciani and Andrew Butterfield. “A UTP semantics of pGCL as a homo-

geneous relation”. In: iFM 2012. 2012.

[Bla01] Bruno Blanchet. “An efficient cryptographic protocol verifier based on Prolog rules”.

In: 14th IEEE Computer Security Foundations Workshop. 2001, pp. 86–100.

169

170 References

[Bla08] Bruno Blanchet. “"Vérification automatique de protocoles cryptographiques : mod-

èle formel et modèle calculatoire”. En frana̧is avec publications en anglais en an-

nexe. In French with publications in English in appendix. Mémoire d’habilitation à

diriger des recherches. Université Paris-Dauphine, Nov. 2008.

[BPB11] Riccardo Bresciani, Mario Poletti, and Andrew Butterfield. Nilpotency of square ma-
trices with non-negative elements. Tech. rep. TCD-CS-2011-17. FMG, Trinity College

Dublin, Ireland, Dec. 2011.

[But10] Andrew Butterfield, ed. Unifying Theories of Programming, Second International
Symposium, UTP 2008, Dublin, Ireland, September 8-10, 2008, Revised Selected Pa-
pers. Vol. 5713. Lecture Notes in Computer Science. Springer, 2010.

[CS09] Yifeng Chen and Jeff W. Sanders. “Unifying Probability with Nondeterminism”. In:

FM 2009, LNCS 5850. 2009, pp. 467–482.

[Dem68] A. P. Dempster. “A generalization of Bayesian inference”. In: Journal of the Royal
Statistical Society 30.B (1968), pp. 205–247.

[Dij75] Edsger W. Dijkstra. “Guarded commands, nondeterminacy and formal derivation

of programs”. In: Commun. ACM 18.8 (1975), pp. 453–457.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DK03] L. De Raedt and K. Kersting. “Probabilistic Logic Learning”. In: ACM-SIGKDD Explo-
rations: Special issue on Multi-Relational Data Mining 5.1 (2003). Ed. by S. Džeroski

and L. De Raedt, pp. 31–48.

[DMV04] Paul Hankes Drielsma, Sebastian Mödersheim, and Luca Viganò. “A Formalization

of Off-Line Guessing for Security Protocol Analysis”. In: LPAR. 2004, pp. 363–379.

[DS06] Steve Dunne and Bill Stoddart, eds. Unifying Theories of Programming, First Inter-
national Symposium, UTP 2006, Walworth Castle, County Durham, UK, February
5-7, 2006, Revised Selected Papers. Vol. 4010. Lecture Notes in Computer Science.

Springer, 2006.

[DY83] Danny Dolev and Andrew C. Yao. “On the security of public-key protocols”. In:

IEEE Transaction on Information Theory 2.29 (Mar. 1983), pp. 198–208.

[Fdr] Failures-Divergence Refinement, FDR2 User Manual. 9th. Accessed on April 19th,

2012. Formal Systems (Europe) Ltd. and Oxford University Computing Laboratory.

2010.

[FHM90] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. “A Logic for Reasoning

about Probabilities”. In: Information and Computation 87 (1990), pp. 78–128.

[FWB08] L. Freitas, J. Woodcock, and A. Butterfield. “POSIX and the Verification Grand Chal-

lenge: A Roadmap”. In: Engineering of Complex Computer Systems, 2008. ICECCS
2008. 13th IEEE International Conference on (2008), pp. 153–162.

[GB09] Paweł Gancarski and Andrew Butterfield. “The Denotational Semantics of slotted-

Circus”. In: FM2009: Formal Methods. Ed. by Ana Cavalcanti and Dennis Dams.

Vol. 5850. LNCS. Springer, 2009, pp. 451–466.

[Hae+01] R. Haenni et al. “A Survey on Probabilistic Argumentation”. In: ECSQARU’01,
Toulouse. Workshop: Adventures in Argumentation. 2001, pp. 19–25.

References 171

[Hae+08] Rolf Haenni et al. “Possible Semantics for a Common Framework of Probabilis-

tic Logics”. In: Interval / Probabilistic Uncertainty and Non-Classical Logics. 2008,

pp. 268–279.

[He10] Jifeng He. “A Probabilistic BPEL-Like Language”. In: UTP. Ed. by Shengchao Qin.

Vol. 6445. Lecture Notes in Computer Science. Springer, 2010, pp. 74–100.

[Heh04] Eric C. R. Hehner. “Probabilistic Predicative Programming”. In: MPC. 2004, pp. 169–

185.

[Heh11] Eric C. R. Hehner. “A probability perspective”. In: Formal Asp. Comput. 23.4 (2011),

pp. 391–419.

[Heh84] Eric C. R. Hehner. “Predicative programming Part I & II”. In: Commun. ACM 27.2

(Feb. 1984), pp. 134–151.

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice Hall

International Series in Computer Science, 1998.

[HMM05] Joe Hurd, Annabelle McIver, and Carroll Morgan. “Probabilistic guarded com-

mands mechanized in HOL”. In: Theor. Comput. Sci 346.1 (2005), pp. 96–112.

[Hoa85a] C. A. R. Hoare. “Programs are predicates”. In: Proceedings of a discussion meeting
of the Royal Society of London on Mathematical logic and programming languages.
Upper Saddle River, NJ, USA: Prentice-Hall, 1985, pp. 141–155.

[Hoa85b] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HP07] Joseph Y. Halpern and Riccardo Pucella. “Characterizing and reasoning about

probabilistic and non-probabilistic expectation”. In: J. ACM 54.3 (2007), p. 15.

[HS06] Jifeng He and Jeff W. Sanders. “Unifying Probability”. In: UTP 2006, LNCS 4010.

Ed. by Steve Dunne and Bill Stoddart. Vol. 4010. Lecture Notes in Computer Sci-

ence. Springer, 2006, pp. 173–199.

[HSM97] Jifeng He, K. Seidel, and A. McIver. “Probabilistic models for the guarded com-

mand language”. In: Science of Computer Programming 28.2-3 (1997). Formal Spec-

ifications: Foundations, Methods, Tools and Applications, pp. 171–192.

[JKB07] Dominik Jain, Bernhard Kirchlechner, and Michael Beetz. “Extending Markov Logic

to Model Probability Distributions in Relational Domains”. In: KI ’07: Proceedings of
the 30th annual German conference on Advances in Artificial Intelligence. Osnabrück,

Germany: Springer-Verlag, 2007, pp. 129–143.

[Jon90] C. Jones. “Probabilistic Non-determinism”. PhD Thesis — also published as Tech-

nical Report ECS-LFCS-90-105 or CST-63-90. University of Edinburgh, 1990.

[JP89] C. Jones and Gordon D. Plotkin. “A Probabilistic Powerdomain of Evaluations”. In:

LICS. 1989, pp. 186–195.

[Jøs01] Audun Jøsang. “A logic for uncertain probabilities”. In: Int. J. Uncertain. Fuzziness
Knowl.-Based Syst. 9.3 (2001), pp. 279–311.

[KJH08] R. Kohlas, J. Jonczy, and R. Haenni. “A Trust Evaluation Method Based on Logic

and Probability Theory”. In: IFIPTM’08, 2nd Joint iTrust and PST Conferences on
Privacy Trust Management and Security. Ed. by Y. Karabulut et al. Vol. II. Trust

Management. Trondheim, Norway, 2008, pp. 17–32.

172 References

[Koh03] J. Kohlas. “Probabilistic Argumentation Systems: A New Way to Combine Logic

With Probability”. In: Journal of Applied Logic 1.3-4 (2003), pp. 225–253.

[Koz81] Dexter Kozen. “Semantics of Probabilistic Programs”. In: J. Comput. Syst. Sci. 22.3

(1981), pp. 328–350.

[Koz85] Dexter Kozen. “A Probabilistic PDL”. In: J. Comput. Syst. Sci. 30.2 (1985), pp. 162–

178.

[Kra+95] Paul Krause et al. “A Logic of Argumentation for Reasoning under Uncertainty.” In:

Computational Intelligence 11 (1995), pp. 113–131.

[Low95] Gavin Lowe. “An attack on the Needham-Schroeder public-key authentication pro-

tocol”. In: Inf. Process. Lett. 56.3 (1995), pp. 131–133.

[Low96] Gavin Lowe. “Breaking and Fixing the Needham-Schroeder Public-Key Protocol Us-

ing FDR”. In: TACAs ’96: Proceedings of the Second International Workshop on Tools
and Algorithms for Construction and Analysis of Systems. London, UK: Springer-

Verlag, 1996, pp. 147–166.

[McI06] Annabelle McIver. “Quantitative Refinement and Model Checking for the Analysis

of Probabilistic Systems”. In: UTP 2006, LNCS 4010. 2006, pp. 131–146.

[MCM06] Annabelle McIver, E. Cohen, and Carroll Morgan. “Using Probabilistic Kleene Al-

gebra for Protocol Verification”. In: RelMiCS. 2006, pp. 296–310.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, June 1999.

[Mis00] Michael W. Mislove. “Nondeterminism and Probabilistic Choice: Obeying the Laws”.

In: CONCUR 2000, LNCS 1877. 2000, pp. 350–364.

[Mit+01] John C. Mitchell et al. “A probabilistic polynomial-time calculus for analysis of

cryptographic protocols”. In: Electronic Notes in Theoretical Computer Science. 2001.

[MM02] Annabelle McIver and Carroll Morgan. “Games, Probability and the Quantitative

µ-calculus qMµ”. In: LPAR. 2002, pp. 292–310.

[MM04] Annabelle McIver and Carroll Morgan. Abstraction, Refinement And Proof For Prob-
abilistic Systems (Monographs in Computer Science). SpringerVerlag, 2004.

[MM05] Annabelle McIver and Carroll Morgan. “Abstraction and refinement in probabilistic

systems”. In: SIGMETRICS Performance Evaluation Review 32.4 (2005), pp. 41–47.

[MM09] Annabelle McIver and Carroll C. Morgan. “ums and Lovers: Case Studies in Secu-

rity, Compositionality and Refinement”. In: FM 2009, LNCS 5850. 2009, pp. 289–

304.

[MM97] Carroll Morgan and Annabelle McIver. A Probabilistic Temporal Calculus Based on
Expectations. Tech. rep. PRG-TR-13-97. Oxford University Computing Laboratory,

1997.

[MM98] A.K. McIver and Carroll Morgan. “Demonic, Angelic and Unbounded Probabilistic

Choices in Sequential Programs”. In: Acta Informatica 37 (1998), p. 2001.

[MMM09] Annabelle McIver, Larissa Meinicke, and Carroll Morgan. “Security, Probability and

Nearly Fair Coins in the Cryptographers’ Café”. In: FM 2009, LNCS 5850. 2009,

pp. 41–71.

References 173

[MMS96] Carroll Morgan, Annabelle McIver, and Karen Seidel. “Probabilistic predicate trans-

formers”. In: ACM Transactions on Programming Languages and Systems 18.3 (1996),

pp. 325–353.

[Mor04] Carroll Morgan. “Of Probabilistic Wp and SP-and Compositionality”. In: Commu-
nicating Sequential Processes: The First 25 Years, Symposium on the Occasion of 25
Years of CSP, in LNCS 3525. Springer, 2004, pp. 220–241.

[Mor+95] Carrol Morgan et al. Argument Duplication in Probabilistic CSP. Tech. rep. PRG-TR-

11-95. Oxford University, 1995.

[Mor+96] Carroll Morgan et al. “Refinement-Oriented Probability for CSP”. In: Formal Asp.
Comput. 8.6 (1996), pp. 617–647.

[MV04] Pedro R. D’Argenio Miguel Vï£¡squez Nicolï£¡s Wolovick. Probabilistic Hoare-like
Logics in Comparison. Tech. rep. Universidad Nacional de Córdoba, 2004.

[MW05] Annabelle McIver and Tjark Weber. “Towards Automated Proof Support for Proba-

bilistic Distributed Systems”. In: LPAR. 2005, pp. 534–548.

[NM10] Ukachukwu Ndukwu and Annabelle McIver. “An expectation transformer approach

to predicate abstraction and data independence for probabilistic programs”. In:

CoRR (2010).

[NS09] Ukachukwu Ndukwu and J. W. Sanders. “Reasoning about a Distributed Probabilis-

tic System”. In: Fifteenth Computing: The Australasian Theory Symposium (CATS
2009). Ed. by Rod Downey and Prabhu Manyem. Vol. 94. CRPIT. Wellington, New

Zealand: ACS, 2009, pp. 35–42.

[OCW09] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. “A UTP semantics for Circus”.

In: Formal Asp. Comput 21.1-2 (2009), pp. 3–32.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems. San Francisco, CA: Mor-

gan Kaufmann, 1988.

[Pol05] Mario Poletti. Distribuzioni. Plus, 2005.

[Qin10] Shengchao Qin, ed. Unifying Theories of Programming - Third International Sympo-
sium, UTP 2010, Shanghai, China, November 15-16, 2010. Proceedings. Vol. 6445.

Lecture Notes in Computer Science. Springer, 2010.

[SH03] Adnan Sherif and Jifeng He. “Towards a Time Model for Circus”. In: Lecture Notes
in Computer Science 2495 (2003), pp. 613–624.

[Sha76] Glenn Shafer. A Mathematical Theory of Evidence. Princeton, 1976.

[SSL10] Jun Sun, Songzheng Song, and Yang Liu. “Model Checking Hierarchical Probabilis-

tic Systems”. In: ICFEM. Ed. by Jin Song Dong and Huibiao Zhu. Vol. 6447. Lecture

Notes in Computer Science. Springer, 2010, pp. 388–403.

[SZ99] J. W. Sanders and P. Zuliani. “Quantum Programming”. In: In Mathematics of Pro-
gram Construction. Springer-Verlag, 1999, pp. 80–99.

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications”. In: Pa-
cific J. Math. 5.2 (1955), pp. 285–309.

[Whe+11] Gregory Wheeler et al. Probabilistic logic and probabilistic networks. Springer, 2011.

174 References

[WIl02] Jon WIlliamson. “Handbook of the Logic of Argument and Inference: the Turn

Toward the Practical”. In: ed. by H. J. Ohlbach D. Gabbay R. Johnson and J. Woods.

Elsevier, 2002. Chap. Probability Logic, pp. 397–424.

[Yao77] Andrew Chi-Chih Yao. “Probabilistic Computations: Toward a Unified Measure of

Complexity (Extended Abstract)”. In: FOCS. 1977.

[Yin03] Mingsheng Ying. “Reasoning about probabilistic sequential programs in a proba-

bilistic logic”. In: Acta Inf. 39.5 (2003), pp. 315–389.

[ZD04] Roberto Zunino and Pierpaolo Degano. “A Note on the Perfect Encryption Assump-

tion in a Process Calculus”. In: FoSSaCS. 2004, pp. 514–528.

[ZD05] Roberto Zunino and Pierpaolo Degano. “Weakening the perfect encryption assump-

tion in Dolev-Yao adversaries”. In: Theor. Comput. Sci. 340.1 (2005), pp. 154–178.

	Title page
	Dedication
	Summary
	Acknowledgements
	Introduction
	Our approach
	Key contributions
	Organization of this thesis

	Background and related work
	Kozen's framework
	
	pCSP
	UTP
	Theory of Designs
	Probabilistic

	A framework to deal with probability distributions over the state space
	States and distributions, informally
	Definitions
	Programs
	— d:P
	— d:P:Img
	— d:P:Wt
	Deterministic programs
	— d:P:Det
	— d:P:Skip
	— d:P:A
	— d:P:Seq
	— d:P:Ch:Cnd
	— d:P:Ch:Prb
	— d:P:Loop
	More on probabilistic choice
	— p:P:Ch:Prb:Comm
	— p:P:Ch:Prb:Assoc

	Nondeterminism
	— d:P:Abrt
	— d:P:Ch:Dmn
	A generic choice construct
	— d:P:Ch
	— p:P:Ch:Cnd:Alt
	— p:P:Ch:Prb:Alt
	— p:P:Ch:Dmn:Alt
	— p:P:Ch:Or:Alt
	— d:P:Ch:CndPrb
	— p:P:Ch:SwPrb
	— d:P:Ch:CndDmn
	— p:P:Ch:DmnPrb
	— p:P:Ch:FDmn
	A few laws on choice operators
	— p:P:Ch:Idem
	— p:P:Ch:Dscrd
	— p:P:Ch:Dst
	— p:P:Ch:Seq
	— p:P:Ch:Flip
	— p:P:Ch:Mntn

	Program structure
	— d:P:Structure

	Healthiness conditions
	— Convexity

	The program lattice
	Refinement
	— d:P:Rfn
	— d:P:Rfn:Alt
	— d:P:RfnSet
	— p:P:Rfn:Ch
	— p:P:Rfn:Dsj
	— p:P:Rfn:Dsj2
	Probabilistic refinement
	— d:P:PRfn
	— d:P:PRfn:Alt

	Summary

	
	— Link
	Interaction of probabilistic and nondeterministic choice

	A probabilistic theory of designs
	Healthiness conditions
	Recasting total correctness
	Link with the standard model
	Weakening the link

	Considerations on a theory
	R1
	R2
	R3
	CSP1 and CSP2

	Conclusion
	States and distributions
	Variables, types and expressions
	— d:V
	— d:T
	— d:E
	— d:C

	States
	— d:S
	— d:S:Alph
	— d:S:SSpace
	— p:S:Alt
	— d:S:VMap
	Evaluation of an expression
	— d:E:Ev
	— d:E:Ev:SH
	— p:E:Ev:VS
	— d:S:Sat
	— d:E:Sub
	— d:E:Sub2
	— d:E:Comp
	— p:E:Ev:Comp
	— d:E:Comp:Iter

	Abstract states
	— d:A
	— d:A:Alph
	— d:A:LAA
	— d:A:Sat
	— d:A:Rst
	— p:A:Rst:Alt
	— p:A:Rst:T
	— p:A:Rst:F

	Assignments
	— d:S:SA
	— d:S:Inv
	— d:A:Inv
	— p:A:Inv:Dsj
	— p:A:Inv:EqR
	— p:S:Inv:Nest

	Distributions
	— d:D
	— d:D:Wt
	— d:D:Wt:Lift
	— d:D:Alph
	— d:D:ED
	— d:D:UD
	— d:D:E:SH / d:D:U:SH
	— d:D:Rst
	— p:D:Rst:Cnj
	— p:D:Rst:EqC
	— p:D:Rst:ImC1
	— p:D:Rst:ImC2
	— d:D:Rst:SH
	— p:D:Rst:Wt
	— p:D:RstS:Wt
	— p:D:RstA:Wt
	— d:D:Pnt
	— p:D:Pnt:Wt
	— d:D:RstD
	— p:D:RstD:Cmm
	— p:D:Rst:Alt
	— d:D:Rst:Lift
	— d:D:RstD:Lift
	Operations on distributions
	— d:D:Sum
	— p:D:Sum:Wt
	— p:D:Sum:Rst
	— d:D:Sum:Lift
	— p:D:Sum:CS
	— d:D:Mul
	— d:D:Prod
	— p:D:Prod:Cmm
	— d:D:Prod:Lift
	— d:D:Mul:Lift
	— d:D:PO

	Specific types of distributions
	— d:D:WD
	— d:D:WD:Cmp
	— p:D:WD:Rst
	— d:D:PD
	— p:D:PD:Rst

	A simpler notation
	The remap operator
	— d:D:Rmp
	— p:D:Rmp:Alt
	— p:D:Rmp:Alph
	— d:D:Rmp:Sng
	— d:D:Rmp:Iter
	Properties
	— p:D:Rmp:Lin
	— p:D:Rmp:Comp1
	— p:D:Rmp:Comp2
	— p:D:Rmp:Comp3
	— p:D:Rmp:Comp4
	— p:D:Rmp:Iter
	— p:D:Rmp:Cmm1
	— p:D:Rmp:Cmm2
	— p:D:Rst:ES
	— p:D:Rmp:Rst1
	— p:D:Rmp:Rst2
	— p:D:Rst:Rmp
	— p:D:Rmp:Wt

	Distributions as vectors
	— Generic distributions
	— Weighting distributions
	— Probability distributions
	— Vector Representation
	Operations on vectors
	— Partial Order
	— L1-norm
	— Linfty-norm
	— Scalar product
	— Entry-wise product
	The set Dp

	Programs as matrices
	— Programs
	— Columns and rows
	— Norm
	— PO Matrices
	— PO Programs
	Interpretation of the columns of the program matrix
	Random Variables and Expectations
	— Random Variables

	Interpretation of the rows of the program matrix
	Probability of an event

	Deterministic Programs
	— d:P:Skip
	— d:P:A
	— d:P:Seq
	— d:P:Ch:Cnd
	— d:P:Ch:Prb
	— d:P:Loop
	Some considerations on loops
	— Certain termination
	— Probabilistic termination
	— Matrix reduction
	— Everlooping matrix
	— Certain termination
	— Probabilistic termination
	— Infinite loop

	Healthiness conditions
	— Feasibility/D
	— Monotonicity/D
	— Scaling
	— Feasibility/RV
	— Monotonicity/RV
	— Scaling
	Some examples in a two-element space
	— Distribution Space
	— Terminating program
	— Non-terminating program
	— Evaluating a probability
	— Terminating program
	— Non-terminating program

	Nondeterministic choice
	— Nondeterminism
	Additional figures on nondeterminism

	Proofs
	Restriction of the state space
	— p:A:Rst:Alt

	Restriction through equivalent condition
	— p:D:Rst:EqC

	Restriction through implied condition (I)
	— p:D:Rst:ImC1

	Restriction through implied condition (II)
	— p:D:Rst:ImC2

	Restriction through a restricted unitary distribution
	— p:D:Rst:Alt

	Case Split
	— p:D:Sum:CS

	Restriction
	— p:D:WD:Rst

	Restriction
	— p:D:PD:Rst

	Nested inverse-image set
	— p:S:Inv:Nest

	Linearity of the remap operator
	— p:D:Rmp:Lin

	Composition (I)
	— p:D:Rmp:Comp1

	Composition (II)
	— p:D:Rmp:Comp2

	Composition (III)
	— p:D:Rmp:Comp3

	Composition (IV)
	— p:D:Rmp:Comp4

	Iteration
	— p:D:Rmp:Iter

	Commutativity (I)
	— p:D:Rmp:Cmm1

	Commutativity (II)
	— p:D:Rmp:Cmm2

	Expression substitution
	— p:D:Rst:ES

	Contradiction
	— p:D:Rmp:Rst1

	Assertion
	— p:D:Rmp:Rst2

	Remapping a condition
	— p:D:Rst:Rmp

	Weight of a distribution after remapping
	— p:D:Rmp:Wt

	Pseudo-associativity of probabilistic choice
	— p:P:Ch:Prb:Assoc

	Idempotency of choice operators
	— p:P:Ch:Idem

	Discarding right-hand option
	— p:P:Ch:Dscrd

	Distributivity of choice operators
	— p:P:Ch:Dst

	Sequential composition
	— p:P:Ch:Seq

	Choice flipping
	— p:P:Ch:Flip

	Monotonicity of generic choice
	— p:P:Ch:Mntn

	Refinement relation for choices involving X2 subset of X1
	— p:P:Rfn:Ch

	Refinement of the disjunction of two programs
	— p:P:Rfn:Dsj

	Refinement of the disjunction of two programs
	— p:P:Rfn:Dsj2

	Linking functions
	— Link

	Feasibility
	— Feasibility/1

	Feasibility
	— Feasibility/2

	Monotonicity of A
	— Monotonicity/1

	Monotonicity of A
	— Monotonicity/2

	Scaling
	— Scaling

	Convexity
	— Convexity

	Other case studies
	Monty Hall
	Rabin's choice coordination algorithm
	Protocol verification
	The Dolev-Yao Model
	Probabilistic variations on the Model

	A strategy to evaluate the probability of successful attacks by means of standard protocol verifiers
	Introducing new destructors
	Examining the trace of the attack
	Considerations on the most successful attack

	An example: using ProVerif to verify the Yahalom protocol
	ProVerif
	Protocol Description
	Adding Destructors to Break the Protocol
	A Destructor to Guess the Key
	A Destructor to Decrypt a Message without Knowing the Key
	A Destructor to Spoof the Server Identity

	Considerations on the Attack Traces

	Protocol runs as predicates
	An example: key-guessing on the Yahalom protocol
	Adding a destructor to account for key-guessing

	Towards a -style protocol verification technique

	Notation
	Logic
	Relations and functions
	Probability
	Variables, values and expressions
	States and distributions
	Programs

	Mathematical Background
	General Notions
	Vector spaces
	The vector space R^N
	The vector space R^(NxN)

	Boolean algebra
	Measure Theory
	Probability Theory

	Index
	References

