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Abstract: Malignant pleural mesothelioma (MPM) is a rare malignancy, with extremely poor survival
rates. At present, treatment options are limited, with no second line chemotherapy for those who
fail first line therapy. Extensive efforts are ongoing in a bid to characterise the underlying molecular
mechanisms of mesothelioma. Recent research has determined that between 70–90% of our genome
is transcribed. As only 2% of our genome is protein coding, the roles of the remaining proportion of
non-coding RNA in biological processes has many applications, including roles in carcinogenesis
and epithelial–mesenchymal transition (EMT), a process thought to play important roles in MPM
pathogenesis. Non-coding RNAs can be separated loosely into two subtypes, short non-coding RNAs
(<200 nucleotides) or long (>200 nucleotides). A significant body of evidence has emerged for the
roles of short non-coding RNAs in MPM. Less is known about the roles of long non-coding RNAs
(lncRNAs) in this disease setting. LncRNAs have been shown to play diverse roles in EMT, and it
has been suggested that EMT may play a role in the aggressiveness of MPM histological subsets.
In this report, using both in vitro analyses on mesothelioma patient material and in silico analyses of
existing RNA datasets, we posit that various lncRNAs may play important roles in EMT within MPM,
and we review the current literature regarding these lncRNAs with respect to both EMT and MPM.

Keywords: malignant pleural mesothelioma; long non-coding RNAs (lncRNAs); epithelial-
mesenchymal transition

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare, but aggressive form of cancer, predominantly
associated with prior exposure to asbestos [1]. Whilst many countries have banned the use of
asbestos [2], it is still used in developing countries. A recent report based on extrapolations for
asbestos use estimated global mesothelioma deaths at 38,400 per annum [3], and while there have been
some recent advances in this disease, particularly with respect to immune-oncology [4,5], the current
standard of care (a combination of pemetrexed/raltitrexed and cisplatin chemotherapy) [6,7] is
non-curative, and results in a response rate of approximately 40% [8].

Epithelial–mesenchymal transition (EMT) is a process by which epithelial cells shed many of their
epithelial traits and acquire various features observed in mesenchymal cells. During this transition,
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epithelial cells lose their polarity and many of their intercellular contacts, such as desmosomes,
adherens junctions, and tight junctions, resulting in their disassociation from epithelial sheets. At the
end of this process, cells undergoing EMT assume a variety of mesenchymal-like properties: enhanced
migratory capacity, invasiveness, heightened resistance to apoptosis, and greatly increased production
of extracellular matrix components [9].

Most MPMs have three main histologic subtypes, divided into epithelioid, sarcomatoid, or mixed
(biphasic) [10,11]. However, multiple morphological patterns have also been described within these
subtypes, and similarities in clinical presentation and histological appearance of MPM, primary
lung carcinoma, pleural metastases, reactive pleural diseases, and rare pleural malignancies can
pose challenges to MPM diagnosis [12]. Indeed, “The current gold standard of MPM diagnosis is
a combination of two positive and two negative immune-histochemical markers in the epithelioid
and biphasic type, but sarcomatous type do not have specific markers, making diagnosis more
difficult.” [12]. Because MPM has a partial fibroblastic phenotype in the context of EMT, it has been
postulated that this may, in part, explain the aggressiveness of this cancer conferring both high
invasiveness and chemoresistance [13], and in this regard, it may be applied to the epithelioid versus
sarcomatoid histotype of MPM [13]. In this regard, the epithelioid and sarcomatoid histologic variants
of MPM can be considered as E- and M-parts of the EMT axis, with the biphasic histotype considered
an intermediate [14]. In support of this, hierarchical clustering of transcriptomic data from MPM
separates this cancer into two distinct molecular subgroups, and one subgroup (C2) with an associated
EMT molecular signature has worse overall survival (OS) [15].

A significant body of work has examined the roles of other forms of non-coding RNA such as
microRNAs in both EMT [16,17] and MPM [18,19], and there is some evidence that miRNAs and
lncRNAs interact or cross-talk to orchestrate EMT [20]. Despite the known roles of lncRNAs in the
establishment of EMT in cancer, a topic recently reviewed in detail by us and others [21,22], very few
studies have specifically examined the functional roles of lncRNAs in MPM [23–26].

With the advent of high-throughput sequencing technology, transcriptomic data for MPM is
emerging. Using unsupervised consensus clustering of RNA-seq-derived expression data from
211 MPM samples, Bueno et al. [27] identified four major clusters: sarcomatoid, epithelioid,
biphasic-epithelioid (biphasic-E), and biphasic-sarcomatoid (biphasic-S). Of these, differential
expression analysis of the sarcomatoid and epithelioid consensus clusters identified a significant
number of lncRNAs which could distinguish between these, as shown in Table 1.

A discussion of the putative roles for these and other lncRNAs in EMT will be presented in
subsequent sections.

Table 1. Differentially expressed long non-coding RNAs (lncRNAs) between sarcomatoid versus
epithelioid samples as identified by Bueno et al. [27], and discussed in this article.

Name log2 Fold
Change

Unadjusted
p-Value Comments

PCAT1 −1.227580845 0.000168412
HOTAIR 4.342211972 1.09 × 10−10 Associates with chromatin remodelling complexes to regulate EMT [21]
MALAT1 −0.902533139 2.72 × 10−7

NEAT1 −0.534058107 0.012990525 Identified as an lncRNA with altered
(−2.8 fold) expression in MPM [26]

GAS5 0.053707959 0.785538121 GAS5 shown to have altered expression in MPM
HULC −0.724711448 0.03946186 Known roles in EMT in other cancers [28–30]

H19 2.155715056 1.09 × 10−9 Promotes EMT in NSCLC [31], and various other cancers [21]
ZFAS1 −0.443662478 0.018761094 Known regulator of EMT in other cancer settings [32–36]
PVT1 −0.64835701 7.75 × 10−5 Previously identified as an lncRNA with altered expression in MPM [24]

CASC2 −1.434979397 5.64 × 10−12
Overexpression shown to inhibit EMT in lung adenocarcinoma [37].
Associated with Epithelioid and Biphasic samples and high expression
associated with better OS in The Cancer Genome Atlas (TCGA) dataset
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In this manuscript, we examined the expression of a novel series of lncRNAs (Epidermal Growth
Factor Receptor- antisense RNA 1 EGFR-AS1, prostate cancer associated transcript 6 PCAT6 and zinc
finger E-box binding homeobox 2 antisense RNA 1 ZEB2-AS1) for altered expression in MPM. We show
that all three of these lncRNAs are overexpressed in MPM, and that one of them, PCAT6, is significantly
altered across all of the histological subtypes.

Subsequently, using in silico meta-analysis of existing The Cancer Genome Atlas (TCGA) and
other datasets (www.cbioportal.org; http://watson.compbio.iupui.edu/chirayu/proggene/database/
?url=proggene; www.oncomine.org), we review the known lncRNAs previously described by us and
others in MPM (PVT1, NEAT1, PAX8-AS1, and GAS5). Finally, using in silico analyses, combined with
a review of the current literature, we examine additional lncRNAs with known roles in EMT for the
dysregulated expression in MPM, and show that for many of these, this dysregulated expression is
often associated with the biphasic histological subtype. These results suggest that many lncRNAs
may be a factor in the transition from the epithelioid to the more aggressive sarcomatoid histotype of
malignant pleural mesothelioma.

2. Results

2.1. Novel LncRNAs with Altered Expression in MPM

Several lncRNAs have recently been identified by our unit as having potentially significant roles in
MPM. In the following sections we describe their expression and putative roles in both EMT and MPM.

2.1.1. EGFR-AS1

High expression of EGFR is associated with MPM [38]. However, clinical trials of EGFR tyrosine
kinase inhibitors (TKIs) as single agents in MPM failed [39–41]. However, more recently, expression of
EGFR on MPM has been used for the targeted delivery of microRNA mimics delivered by targeted
bacterial minicells (TargomiRs) in a recent clinical trial in MPM [42], while most recently a patient
harbouring mutations in EGFR (G719C and S768I) was successfully treated with Afatinib an EGFR
TKI [43]; an lncRNA associated with EGFR called EGFR-AS1 has been identified. This lncRNA was
shown to regulate EGFR expression in liver cancer [44], and most recently, expression of this lncRNA
has been shown to be associated with sensitivity to EGFR TKIs in patients with head and neck SCC
(HNSCC) [45]. Strikingly, knockdown of EGFR-AS1 in vitro and in vivo lead to increased sensitivity,
whereas overexpression is sufficient to induce resistance to EGFR TKIs [45]. In this regard, preliminary
data from our group has shown that EGFR-AS1 is significantly overexpressed in MPM (Figure 1); this
may explain in part why EGFR TKIs failed as single agents in clinical trials of MPM. The role of EGFR-AS1
in EMT has as yet to be determined. However, the known role of EMT in bypassing EGFR dependence [46]
suggests that this lncRNA may indeed play a role in orchestrating EMT transitions in MPM.

Figure 1. Overexpression of EGFR-AS1 in primary malignant pleural mesothelioma (MPM). EGFR-AS1
lncRNA expression was examined by RT-PCR in a series of primary MPM (n = 17) versus benign pleura
(n = 5). Semi-quantitative densitometric analysis of the results determined that EGFR-AS1 lncRNA was
significantly elevated in the tumours compared to benign pleura. Statistical significance was assessed
using a 1-tailed unpaired Students t-test (* p = 0.0445).

www.cbioportal.org
http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene
http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene
www.oncomine.org
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2.1.2. PCAT6

PCAT6 is a lncRNA linked to KDM5B (also known as JARID1B). This lysine demethylase has
been shown to induce EMT in various cancers, including lung cancer [47–49]. Expression of PCAT6
has also been shown to be altered in NSCLC [50,51], and circulating levels of this lncRNA in patient
blood has potential as both a diagnostic and prognostic biomarker in NSCLC [51].

Preliminary data from our group indicates that expression of KDM5B is significantly upregulated
in primary MPM (Figure 2A), remaining significant across all histological subtypes (Figure 2B). Similar
significant overexpression of KDM5B is also observed in MPM samples in the Gordon et al. [52]
mesothelioma dataset (Figure 2C). Across the TCGA dataset, KDM5B appears to have significant
alterations in about 14% of MPM cases, including amplification of its genomic region, overexpression,
or indeed downregulation of its mRNA (Figure 2D), all of which are found in either the epithelioid or
biphasic subtypes (Figure 2E).

Moreover, we have also shown that PCAT6 itself is upregulated in MPM (Figure 2F). However,
when examined across histological subtypes, the upregulation observed was significant only in the
biphasic subset (Figure 2G). In the TCGA dataset, expression of this lncRNA does not appear to
be upregulated, although amplification of its genomic location occurs in 3% of MPM specimens
(Figure 2H), again, similar to KDM5B, these are spread over the epithelioid and biphasic subsets.
(Figure 2I).The functional role of this lncRNA in EMT is as yet unknown, but knockdown of this
lncRNA in lung cancer is associated with inhibited cellular proliferation and metastasis [50].

Figure 2. Cont.
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Figure 2. An examination of KDM5B and PCAT6 expression/alterations in MPM. (A) KDM5B
mRNA is significantly elevated in tumours (n = 17) compared to benign pleura (n = 5), (B) the same
samples stratified by histological subtype, (C) Oncomine analysis of the Gordon mesothelioma dataset
confirming significant overexpression of KDM5B, (D) in silico examination using cBioPortal reveals
that 14% of samples had alterations to KDM5B, (E) when stratified by histotype, these alterations
were restricted to epithelioid or biphasic subtypes, (F) total PCAT6 lncRNA is significantly elevated in
tumours (n = 16(red) compared to benign pleura (n = 4—green), (G) when stratified by histological
subtype (Benign = green; Epithelioid = yellow; Biphasic = blue; Sarcomatoid = red), elevated expression
of total PCAT6 is significant only in the biphasic subset. Statistical significance was assessed using
a Mann–Whitney t-test (* p < 0.05), or by an ANOVA using Dunnett’s Multiple Comparison Test
(* p < 0.05; ** p < 0.01; *** p < 0.001), (H) in silico examination using cBioPortal reveals that 3% of
samples had amplification of PCAT6, (I) when stratified by histotype, these alterations were restricted
to biphasic or epithelioid subtypes.



Int. J. Mol. Sci. 2018, 19, 1297 6 of 28

2.1.3. ZEB2-AS1

ZEB2 is a known regulator of EMT [21]. Originally called ZEB2NAT, but now more often described
as ZEB2-AS1, this natural anti-sense lncRNA of ZEB2 was shown to regulate ZEB2 during the process
of EMT [53]. This lncRNA has been found to be upregulated in both urinary bladder cancer [54] and
hepatocellular carcinoma [55], and in bladder cancer cells is partly responsible for activation of ZEB2
during EMT induction by Transforming growth factor beta (TGF-β) [54]. Furthermore, knockdown
of this lncRNA in Hepatocellular Carcinoma (HCC) cells results in reduced vimentin and N-caherin
expression with restoration of E-cadherin expression [55], further supporting a role for this lncRNA in
the regulation of EMT.

ZEB2 was found to be a significantly altered gene between the sarcomatoid vs. epithelioid clusters
(unadjusted p-value: p < 2.03 × 10−26) in the analysis by Bueno et al. [27], but this has not been
supported by earlier analysis in the Gordon dataset [52]. There is some suggestion that in the larger
dataset by Lopez-Rios that higher expression of ZEB2 is associated with the sarcomatoid subtype
(p = 0.065) [56]. Very little is known about the expression of ZEB2-AS1 in MPM. Our preliminary
analysis suggests that expression of this lncRNA is potentially dysregulated in MPM (Figure 3),
but further studies will be required to validate these observations.

Figure 3. Altered expression of ZEB2-AS1 in primary MPM. ZEB2-AS1 lncRNA expression was
examined by RT-PCR in a series of primary MPM (n = 16—red) vs. benign pleura (n = 4—green).
Semi-quantitative densitometric analysis of the results suggests that ZEB2-AS1 lncRNA was elevated in
the tumours compared to benign pleura. Statistical significance was assessed using a 1-tailed unpaired
Students t-test (p = 0.0769).

2.2. Previously Published lncRNAs with Known Links to MPM

A significant body of research has shown that many short non-coding RNAs, such as microRNAs
(miRNAs), have extensive alterations and diverse roles in MPM, and have been discussed by us in
depth in a previous review [18]. The evidence for altered expression or roles of lncRNAs in MPM
has not as yet been exhaustively analysed in MPM. In the following sections we review the current
knowledge of the known lncRNAs associated with MPM, and whether or not these lncRNAs can be
linked to EMT processes.

2.2.1. PVT1 and c-Myc

PVT1 is an lncRNA which has been shown to be associated with poor prognosis in many
cancers [57]. Its expression has also been linked to EMT in various cancers. For example, in breast
cancer, PVT1 is significantly upregulated, and directly interacts with SOX2 to drive EMT [58].
In pancreatic cancer, PVT1 has been found to promote EMT by downregulation of the cyclin-dependent
kinase p21 [59]. The other ways PVT1 has been shown to elicit responses include by acting as a



Int. J. Mol. Sci. 2018, 19, 1297 7 of 28

competitive endogenous RNA (ceRNA) for various miRNAs [60–67], or by interactions with EZH2 to
epigenetically regulate genes associated with EMT [68–75].

Both PVT1 and c-Myc are located at the same chromosomal location (8q24.21) and an increase in
PVT1 expression is required for high MYC protein levels in 8q24-amplified human cancer cells [76].
In this regard, frequent coamplification and cooperation between c-MYC and PVT1 oncogenes have
been observed to promote malignant pleural mesothelioma [24]. Next Generation Sequencing (NGS)
demonstrated a downregulation of PVT1 in a sarcomatoid subset compared to epithelioid (Table 1) [27].

In silico analysis of the TCGA provisional dataset demonstrated that amplification occurred only
in epithelioid samples (Figure 4A,B), which is somewhat in agreement with the observations made
by Riquelme et al., where copy number gains were seen in the biphasic (6 of 26, 23%) and epithelioid
(5 of 37, 13%) histotypes but not in the sarcomatoid cases [24]. In samples where PVT1 overexpression
is observed it is either associated with the epithelioid or biphasic histology (Figure 4B).

Figure 4. An examination of PVT1 expression/alterations in the TCGA dataset. (A) In silico
examination using cBioPortal reveals that 5% of samples had overexpression of PVT1 RNA; (B) when
stratified by histotype, only the epithelioid subtype had amplification of PVT1, whereas some patients
with epithelioid and biphasic but not sarcomatoid subtypes had overexpression of this lncRNA.

2.2.2. NEAT1

Neat1 was identified by our group as an lncRNA altered in MPM [26]. It is now well-established
that this lncRNA promotes EMT [21,77], and one of the means by which it affects EMT is through
regulation of EZH2 [78,79]. Most recently, the expression of NEAT1 has been shown to be BAP1
dependent [80]. Given that it is estimated that approximately 65% of mesotheliomas harbour mutations
inactivating BAP1 [81], this may have implications with respect to the role of this lncRNA in MPM
pathogenesis. Both our data, and that of Bueno et al. (Table 1) [27], showed an overall downregulation
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of this lncRNA in MPM. Further analysis of the TCGA dataset shows that a proportion of samples have
upregulation of this lncRNA (Figure 5A), which when stratified by histology, is found mostly in the
Epithelioid subset, with a smaller proportion in the Biphasic subset also showing elevated expression
(Figure 5B).

Figure 5. An examination of Neat1 expression/alterations in the TCGA dataset. (A) In silico
examination using cBioPortal reveals that 6% of samples had overexpression of Neat1 lncRNA.
(B) When stratified by histotype, the majority of samples with elevated Neat1 are found in the
epithelioid subset, followed by a proportion in the biphasic subset.

2.2.3. PAX8-AS1

This lncRNA was also identified [26] as being significantly altered in MPM. The gene associated
with this lncRNA, PAX8, has been shown to play important roles in the development of ovarian
cancer [82], and may do this through upregulation of markers of EMT [83]; although conflicting results
have emerged [84]. Interestingly, PAX8 expression is observed in peritoneal mesotheliomas [85,86],
but not in pleural mesotheliomas [86]. In MPM, no significant changes in expression of PAX8 were seen
in the Gordon dataset [52], whereas high expression of PAX8 was observed in 4 of 87 MPM samples
(5%) in the TCGA dataset (data not shown).

Whilst our previous publication found that PAX8-AS1 was significantly altered in MPM [26],
analysis of the TCGA dataset using cBioPortal found no alterations in this lncRNAs expression,
suggesting that perhaps this lncRNA may not play a direct role in the regulation of EMT and/or the
pathogenesis of MPM.
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2.2.4. GAS5

A link between GAS5 and EGFR TKI sensitivity has also been identified. Levels of GAS5 were
downregulated in the EGFR TKI resistant lung adenocarcinoma cell line A549 compared to sensitive
cell lines. Moreover, restoration of GAS5 expression could greatly sensitise these cells to gefitinib
treatment in xenograft mouse models [87]. In a separate study relating to prostate cancer, increased
expression of GAS5 was associated with decreased Akt signalling [88]. Therefore, it could be suggested
that lncRNA mediated regulation of Akt signalling seems to highly important in determining the
sensitivity of NSCLC cells to EGFR TKI, such as gefitinib.

In MPM, Felley-Bosco and colleagues have shown that this lncRNA is overexpressed in malignant
tumours compared to non-tumoural tissue, (* p < 0.0001 expression, Mann–Whitney test) [25]. While
loss of this lncRNA is associated with a shortening of the cell-cycle in MPM cell lines, the role of
this lncRNA in regulating EMT in MPM is unknown, however, studies in other cancers, such as
osteosarcoma, have shown that expression of this lncRNA decreased in tumours compared to adjacent
normal tissue. Furthermore, overexpression of GAS5 suppressed cellular proliferation, migration,
and EMT in osteosarcoma cell lines [89].

2.3. Previously Published lncRNAs with Known Links to EMT

It is now well established that various lncRNAs play essential roles in the regulation of EMT,
a subject we recently reviewed in depth [21]. Despite this, several of these key lncRNAs have not been
studied in depth in MPM. In the following sections we discuss the known roles of several of these key
lncRNAs, and using in silico analyses to describe the current evidence for their altered expression in
mesothelioma histological subtypes.

2.3.1. HOTAIR

HOTAIR is a lncRNA transcribed from the HOXC gene cluster that promotes epigenetic
silencing of target genes, including the HOXD gene cluster, through the recruitment of the PRC2 and
LSD1/CoREST/REST chromatin remodelling complexes [90,91]. It is well established that HOTAIR
is overexpressed in a wide variety of solid malignancies, and moreover, that this overexpression is
associated with metastasis and tumour recurrence [21]. Critically, HOTAIR has been linked extensively
to the promotion of EMT in solid tumours [21]. In this regard, HOTAIR has been found to regulate
EMT through recruitment of PRC2 to the CDH1 promoter [92]. HOTAIR also forms a tripartite complex
with Snail and EZH2, facilitating the recruitment of EZH2 to Snail binding sites at the promoters of
the epithelial genes E-cadherin, Hepatocyte nuclear factor (HNF), HNF1α, and HNF4α, resulting in
their epigenetic silencing [93]. HOTAIR also positively regulates the expression of JMJD3 and Snail to
regulate EMT [94]. In addition, this lncRNA plays roles in the silencing of many anti-EMT regulators,
such as the miRNAs miR-7, miR-34a, and miR-568 [95–97].

In MPM, overexpression of HOTAIR was found in the sarcomatoid subset of the Bueno NGS
dataset (Table 1) [27], suggesting that HOTAIR is a lncRNA associated with the progression of MPM
from the epithelioid to the sarcomatoid subtype. In silico analysis of an existing TCGA dataset shows
that for those samples showing overexpression of this lncRNA the majority were biphasic (Figure 6A,B),
and further analysis reveals that higher expression of HOTAIR in mesothelioma is associated with an
poorer overall survival (Figure 6C).
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Figure 6. An examination of HOTAIR expression/alterations in the TCGA dataset. (A) In silico
examination using cBioPortal reveals that 8% of samples had overexpression of HOTAIR RNA; (B) when
stratified, the majority of these samples were associated with the Biphasic subtype; (C) when examined
using ProGeneV2 (http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene),
higher expression of HOTAIR was associated with a worse overall survival.

2.3.2. MALAT1

MALAT-1 (metastasis-associated lung adenocarcinoma transcript 1 also called NEAT2 or nuclear
enriched abundant transcript 2) was first identified in NSCLC as a predictive marker associated with
metastatic disease and shorter survival in early stage lung adenocarcinoma [98]. Since its initial
discovery, MALAT-1 has been shown to be overexpressed and linked to the promotion of EMT in

http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene
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many cancers [21,99,100]. However, there are conflicting results which suggest that this lncRNA can
either promote or inhibit EMT [77,101,102]. This may be in part because MALAT-1 can regulate EMT
and other processes in various ways. For example, MALAT-1 can act as a competing endogenous RNA
(ceRNA) for various miRNAs including miR-1, miR-200c, miRNA-204, and miR-205 resulting in the
subsequent promotion of EMT [103–106]. Another mechanism by which MALAT-1 induces EMT is
via the recruitment of the PRC2 components Suz12 and EZH2 to regulate E-Cadherin [105,107] and
β-catenin [108,109].

MALAT-1 has been shown to activate EMT through either MAPK/ERK or PI3K/Akt signalling.
MALAT-1 knockdown significantly reduced MAPK/ERK signalling in gallbladder cancer cells [110],
and in glioma, MALAT-1 acts as a tumour suppressor by attenuating ERK/MAPK mediated
signalling [111]. In osteosarcoma cells, downregulation of MALAT-1 inhibits PI3K/Akt signalling [112],
whereas in breast and ovarian cancer cells, knockdown of MALAT-1 knockdown results in
increased PI3K/Akt signalling and induction of EMT [102,113]. In this regard, in amodel of
silica induced pulmonary fibrosis, MALAT-1 acts as a ceRNA for miR-503, one of whose targets
is PI3K p85. By “sponging” this miRNA, MALAT-1 allows stimulation of EMT through a
MALAT-1-miR-503-PI3K/Akt/mTOR/Snail pathway [114].

MALAT-1 is induced by TGF-β and plays a critical role during the promotion of EMT by TGF-β
in bladder cancer cells [107]. TGF-β often elicits its effect through the Wnt signalling pathway,
and significant evidence now suggests that lncRNAs play a major role in this process [115]. For example,
MALAT-1 induces EMT in various cancers via the Wnt/β-catenin signalling pathway [116–118], while
loss of WIF1 enhances the migratory potential of glioblastoma cells through WNT5A activation
mediated by MALAT1 [119]. Intriguingly, MALAT1 expression was found to be overexpressed in the
sarcomatoid subset of the Bueno NGS dataset (Table 1) [27]. In silico analysis of an existing TCGA
dataset also shows that for MPM samples with overexpression of this lncRNA, the majority were
epithelioid with some in the biphasic category (Figure 7A,B).

In renal cell carcinoma, a link between MALAT-1 and c-MYC, a downstream effector of
Wnt/β-Catenin signalling, was found to be an element in the regulation of β-catenin and transcription
factor c-Myc [116]; other lncRNAs have now been shown to play additional roles in regulating EMT
via either c-Myc or n-Myc.

Figure 7. An examination of MALAT1 expression/alterations in the TCGA dataset. (A) In silico
examination using cBioPortal reveals that 5% of samples had overexpression of MALAT1 RNA; (B) when
stratified by histotype, the majority of these samples were associated with the epithelioid subtype.
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2.3.3. MYCNOS and N-MYC

N-Myc (MYCN) belongs to the MYC family and was originally identified as being amplified
in 20–30% of neuroblastoma tumours, but it is now well established that dysregulation of this
transcription factor is common in many non-neuronal tumours [120]. N-Myc has also been shown to
play roles in driving EMT in cancer [121]. In this regard, an lncRNA called MYCNOS has been shown
to regulate the expression of N-Myc [122–124].

While a role for this lncRNA has not yet been identified in MPM, MYCNOS is upregulated in a
proportion of MPM (5%—Figure 8A), and is mostly upregulated in the biphasic subset—Figure 8B.
N-Myc also shows overexpression in a subset of MPM samples, but the majority of the samples do not
fall into a defined histotype (Figure 8C). In these samples only two patients have co-overexpression of
both MYCNOS and MYCN.

Figure 8. An examination of MYCNOS and N-Myc expression/alterations in the TCGA dataset. (A) In
silico examination using cBioPortal reveals that 5% of samples had overexpression of MYCNOS RNA,
while 6% had overexpression of N-Myc, (B) when stratified by histotype, the majority of samples with
elevated MYCNOS were found in the biphasic subset, (C) N-Myc stratification does not fall into any
defined histotype.

2.3.4. H19

H19 is an imprinted lncRNA, and has long been identified as an aberrantly expressed non-coding
RNA in a great number of cancers, and has been shown to play multi-faceted roles during the
tumourigenic process [125]; and is considered to be a critical element in EMT [126]. Indeed,
overexpression of this lncRNA is associated with the activation of EMT in numerous cancers,
including pancreatic cancer, CRC, nasopharyngeal carcinoma, bladder cancer, gallbladder cancer,
and oesophageal cancer4 [21], where it has been shown to silence E-cadherin through recruitment of
EZH2 to its promoter, or functions as a ceRNA for several pro-EMT miRNAs [21].

Upregulation of this lncRNA is found in the differential analysis between the epithelioid versus
sarcomatoid clusters in the analysis by Bueno et al. (Table 1) [27]. In silico analysis of the TCGA
dataset suggests that a small number of samples have higher expression of H19 (Figure 9A), which are
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distributed between the epithelioid (n = 1) and biphasic (n = 2) (Figure 9B). However, higher median
expression of H19 is associated with a worse overall survival in this dataset (Figure 9C).

Figure 9. An examination of H19 in MPM. (A) H19 lncRNA is altered/overexpressed in a small
proportion of MPM patients, as assessed using cBioPortal; (B) when separated by histology these
samples fall into either the biphasic or epithelioid subsets; (C) when overall survival is assessed in this
dataset, high median expression is associated with a significantly worse OS (p = 0.0016).
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2.3.5. HULC

The lncRNA Highly Upregulated in Liver Cancer (HULC) was originally identified as one of
the most upregulated genes in hepatocellular carcinoma (HCC) [127]; this lncRNA has now been
shown to be aberrantly upregulated in several cancers [128]. Some evidence has also been reported
suggesting that HULC can also act to inhibit c-Myc expression and PI3K/Akt signalling [129,130],
and HULC has also been shown to cooperate with MALAT1 to promote liver cancer stem cell
growth/aggressiveness [131]. Moreover, HULC has been shown to affect transcription through
interaction with EZH2 [132].

A role for HULC in the regulation of EMT has been observed in HCC where it functions as a
ceRNA for miRNAs (miR-122, miR-200a-3p, miR-372, and miR-488) [29,30,133,134] to mediate EMT
via upregulation of Snail [135], ZEB1 [29], or ADAM9 [30], and this lncRNA has also been reported to
induce EMT in gastric cancer [28].

A functional role for this lncRNA in MPM has not yet been identified. However, it was observed to
be significantly downregulated in the sarcomatoid compared to the epithelioid subgroup (Table 1) [27].
cBioPortal analysis of the current TCGA mesothelioma dataset finds that 7% of samples have either
amplifications or deletions in HULC, or overexpress this lncRNA (Figure 10A). When separated
according to histology, the majority of alterations observed were found to be of the biphasic subtype
(Figure 10B).

Figure 10. An examination of HULC in MPM. (A) HULC is either amplified/deleted or overexpressed
in a small proportion (7%) of MPM patients, as assessed using cBioPortal, (B) when separated by
histology the majority of these samples fall into the biphasic subgroup.

2.3.6. CASC2

In a study of NSCLC, expression of this lncRNA in the adenocarcinoma subtype was associated
with inhibition of EMT through regulation of SOX4 [37]. A similar role for this lncRNA in regulating
EMT in HCC has been identified, where this lncRNA has been shown to act as a ceRNA for miR-367
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via a CASC2/miR-367/FBXW7 axis [136]. Furthermore, CASC2 has been shown to inhibit HCC by
acting as a ceRNA for miR-362-5p, which resulted in the inhibition of the Nuclear Factor Kappa Beta
(NF-κB) pathway [137].

A functional role for this lncRNA in MPM has not yet been defined, but decreased expression of
this lncRNA is significantly associated with the sarcomatoid subtype in the Bueno NGS samples [27]
(Table 1). Moreover, analysis of the TCGA dataset in cBioPortal reveals that those samples showing
high expression of this lncRNA are associated with more with epithelial and biphasic subtypes, with the
majority of the overexpression being observed in the epithelioid subset, while amplifications/deletions
of this lncRNA were observed in biphasic samples (Figure 11A,B). When expression of this lncRNA was
examined for Overall Survival (OS) benefit using ProGeneV2, high median expression was associated
with better overall survival (Figure 11C).

As CASC2 is downregulated in human HCC samples, it may therefore be of interest to examine the
levels of this lncRNA in MPM to see if loss of CASC is associated with a more aggressive histological
phenotype as observed in Table 1.

Figure 11. Cont.
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Figure 11. An examination of CASC alterations and expression in MPM. (A) CASC2 mRNA is
altered/overexpressed in a small proportion of MPM patients as assessed using cBioPortal, (B) when
separated by histology these samples fall into either the biphasic or epithelioid subsets, (C) when
overall survival is assessed in this dataset, high median expression is associated with a significantly
better OS (p = 0.000203).

2.3.7. ZFAS1

ZFAS1 is a lncRNA transcribed antisense to the ZNFX1 protein-coding gene, first identified as
an lncRNA involved in mammary development and subsequently found to have altered expression
in breast cancer [138]. Since this initial finding, ZFAS1 has been shown to be pro-tumourigenic
and promote EMT in a number of other cancers, including colon cancer, gastric carcinoma, and
glioma [33–36,139–148].

The role of this lncRNA has not yet been identified in MPM, but this lncRNA was found to be
significantly altered between epithelioid versus sarcomatoid samples (Table 1) [27]. In the TCGA
dataset, ZFAS1 shows overexpression in 5% of the samples; this was associated in samples with
epithelioid or biphasic histologies (Figure 12A,B).

3. Materials and Methods

3.1. Primary Tumor Samples

Surgical specimens were obtained as discarded tumour samples from patients who had undergone
an extended pleuropneumonectomy at Glenfield Hospital, Leicester, UK. Benign specimens were
acquired from patients never diagnosed with MPM. Informed consent was obtained from each patient,
and the study was conducted after formal approval from the relevant Hospital Ethics Committee
(Leicestershire Research Ethics Committee (REC) references 6742 and 6948). Samples consisted of 5



Int. J. Mol. Sci. 2018, 19, 1297 17 of 28

benign lesions and 17 MPM samples (epithelioid: n = 7; sarcomatoid: n = 4; biphasic: n = 6), details of
which are provided in Table 2.

Figure 12. ZFAS1 is altered in a subset of MPM. (A) ZFAS1 is overexpressed in a small proportion (5%)
of MPM patients as assessed using cBioPortal; (B) when separated by histology the majority of these
samples fall into epithelioid or biphasic subgroups.

Table 2. Details of pleura/mesothelioma samples used in this study.

Sample Pathology (Benign, Epithelial, Biphasic, Sarcomatoid) Age Gender

JE29 Benign—pleural plaque 55 Male
JE30 Benign—pleural plaque 55 Male
JE32 Benign—pneumothorax 30 Male
JE41 Benign—empyema 68 Male
JE48 Benign—pleural plaque 55 Male
JE31 Epithelioid 62 Male
JE139 Epithelioid 73 Male
JE149 Epithelioid 66 Male
JE155 Epithelioid 56 Female
JE157 Epithelioid 52 Male
JE162 Epithelioid 56 Male
JE173 Epithelioid 54 Male
JE86 Biphasic 54 Male
JE89 Biphasic 54 Female
JE136 Biphasic 41 Male
JE150 Biphasic 58 Male
JE151 Biphasic N/A Male
JE160 Biphasic 60 Female
JE106 Sarcomatoid 74 Male
JE125 Sarcomatoid 64 Male
JE133 Sarcomatoid 59 Male
JE145 Sarcomatoid (desmoplastic) 64 Male

N/A—not available.
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3.2. Ethics Statement

Investigations were conducted in accordance with the relevant ethical standards, the Declaration of
Helsinki, national, and international guidelines, and were approved by the relevant institutional review
board (041018/8804, 13 October 2004, St James’s Hospital/The Adelaide and Meath incorporating the
National Childrens Hospital (SJH/AMNCH) REC).

Ethics Approval and Consent to Participate

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki.

Fresh Frozen Samples: The study was conducted after formal approval from the relevant Hospital
Ethics Committee (Leicestershire REC references 6742 and 6948).

3.3. RNA Isolation and RT-PCR Amplification

Total RNA was extracted from fresh frozen patient samples using TRI reagent® (Cincinnati, OH,
USA) according to manufacturer’s instructions. Prior to first strand cDNA synthesis, 200 ng of total
RNA was pre-treated by digestion with amplification grade DNase (Sigma-Aldrich, St. Louis, MO,
USA) according to the manufacturer’s instructions. cDNA was then generated using an all-in-one
cDNA Synthesis Supermix (Bimake, Houston, TX, USA) according to the manufacturer’s instructions.
Patient samples were examined for the expression of various lncRNAs and 18S rRNA at the end point
of PCR, using primers and annealing temperatures as outlined in Table 3. Each analysis was carried
out once.

Table 3. Primers and associated annealing temperatures.

Gene/lncRNA Primer Sequence Temp Source

EGFR-AS1 F: 5′-CTTTGCGATCTGCACACACC-3′
62 This study

R: 5′-GAAGCCTACGTGATGGCCAG-3′

PCAT6
F: 5′-CCCTAGATACACCCGCCTGGT-3′

64 This study
R: 5′-ACATTCCAGGGCACCGAGAG-3′

ZEB2-AS1
F: 5′-GAGAGAGACGAGAGACCCTGAA-3′

60 This Study
R: 5′-AAATTCATCATGCACACACCC-3′

KDM5B (JARID1B)
F: 5′-GCTACCCCCTCCAGCTACTCAGA-3′

62 This study
R: 5′-TCCTCCTCGACTTCCTCCTCATC-3′

18S rRNA
F: 5′-GATGGGCGGCGGAAAATAG-3′

60 [149]R: 5′-GCGTGGATTCTGCATAATGGT-3′

PCR cycling conditions were 1 min at 95 ◦C, 1 min at the appropriate annealing temperature as
per Table 2, 1 min at 72 ◦C for 35 cycles, with a final extension of 72 ◦C for 10 min. RT-PCR products
for each experimental gene and appropriate housekeeping genes (18S rRNA) were run on 2% agarose
gels. Following image capture, product quantification was performed using TINA 2.09c (Raytest,
Isotopenmeßgeräte GmbH, Straubenhardt, Germany) densitometry software. The mRNA expression
was normalised to loading controls, and was expressed as a ratio of target mRNA expression: loading
control expression.

3.4. Statistical Analysis

All data are expressed as mean ± SEM unless stated otherwise. Statistical analysis was performed
with Prism 5.01 (GraphPad, La Jolla, CA, USA) using either t-tests or one-way analysis of variance
(ANOVA) where groups in the experiment were three or more. Following ANOVA, post-test analyses
utilised the Dunnett’s Multiple comparison test.
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3.5. In Silico Analysis

In silico analysis was conducted on three additional mesothelioma datasets as follows:
(a) The dataset previously published by Gordon et al. [52], which was interrogated using

Oncomine, (b) and an existing TCGA data set (TCGA Mesothelioma; raw data at the NCI; the dataset
consists of n = 87 samples: epithelioid (57), biphasic (23), sarcomatoid (2), other mesothelioma (5).

Data-mining of the available mesothelioma datasets was conducted using Oncomine [150,151]
cBioportal [152–154], or PROGgeneV2 [155,156], using their respective default settings.

4. Conclusions

Despite intensive efforts, the range of treatment options available to clinicians for the treatment
of patients with MPM remains low. The current mainstay of treatment is a combination of cisplatin
and pemetrexed (or alternatively raltitrexed), and only approximately 40% of patients will respond
to this regimen. At present, no second-line strategy has been approved to date, except rechallenging
the patients with long-lasting tumour control after first-line treatment with pemetrexed-based
chemotherapy [157].

Across the histological subtypes of MPM, patients who have an epithelioid histology generally
have the best OS. Because MPM has a partial fibroblastic phenotype in the context of EMT, it has
been postulated that this may, in part, explain the aggressiveness of this cancer by conferring both its
high invasiveness and chemoresistance [13]; in particular, with regard to the epithelioid rather than
sarcomatoid histotype of MPM [13]. In this regard, the epithelioid and sarcomatoid histologic variants
of MPM can be considered as E- and M-parts of the EMT axis, with the biphasic histotype considered
an intermediate [14].

In this report, we have shown that many lncRNAs associated with EMT have predominantly
altered expression, associated for the most part with the sarcomatoid histologies. Therefore, a greater
understanding of the molecular mechanisms governing EMT remains imperative for the development
of novel therapies that can slow or prevent metastasis, the current great unmet need of cancer therapy.

In a previous review, we discussed the role of many lncRNAs as elements associated with
resistance mechanisms to cisplatin [21], and many of the lncRNAs discussed in this article such as
HOTAIR or MALAT1 have well defined roles in cisplatin resistance [21].

If these lncRNAs are both associated with driving MPM from the epithelioid subtype to the
more aggressive forms with poorer OS (biphasic and sarcomatoid) with resistance to cisplatin, then
potentially targeting these may have therapeutic applicability. Methodologies to restore ncRNAs in
MPM, such as the recently completed Phase I MesomiR 1 clinical trial [42], suggest that this technology
could also be utilised or adapted to specifically target lncRNAs in MPM.

In conclusion, a large body of evidence suggests that lncRNAs associated with EMT are
dysregulated in MPM, and their alteration may be associated with the more aggressive histological
subtypes. More work remains to delineate how we may be able to take advantage of this clinically.
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Abbreviations

ceRNA competitive endogenous RNA
EMT Epithelial Mesenchymal Transition
lncRNA long non-coding RNA
NSCLC Non-Small Cell Lung Cancer
miRNA microRNA
MPM Malignant Pleural Mesothelioma
NGS Next Generation Sequencing
OS Overall Survival
TCGA The Cancer Genome Atlas
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