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Abstract. The only known way to achieve Attribute-based Fully Homomorphic Encryption (ABFHE)
is through indistinguishability obfsucation. The best we can do at the moment without obfuscation is
Attribute-Based Leveled FHE which allows circuits of an a priori bounded depth to be evaluated. This
has been achieved from the Learning with Errors (LWE) assumption. However we know of no other
way without obfuscation of constructing a scheme that can evaluate circuits of unbounded depth. In
this paper, we present an ABFHE scheme that can evaluate circuits of unbounded depth but with one
limitation: there is a bound N on the number of inputs that can be used in a circuit evaluation. The
bound N could be thought of as a bound on the number of independent senders. Our scheme allows N
to be exponentially large so we can set the parameters so that there is no limitation on the number of
inputs in practice. Our construction relies on multi-key FHE and leveled ABFHE, both of which have
been realized from LWE, and therefore we obtain a concrete scheme that is secure under LWE.

1 Introduction

Attribute Based Encryption (ABE) is a cryptographic primitive that realizes the notion of cryptographic
access control. ABE owes its roots to a simpler primitive called Identity Based Encryption (IBE), proposed in
1985 by Shamir [1] and first realized in 2001 by Boneh and Franklin [2] and Cocks [3]. IBE is centered around
the notion that a user’s public key can be efficiently derived from an identity string and a system-wide public
parameters.

The identity string may be a person’s email address, IP address or staff number, depending on the applica-
tion. The public parameters along with a secret trapdoor (master secret key) are generated by a trusted third
party referred to as the Trusted Authority (TA). The primary purpose of the TA is to issue a secret key to a
user that corresponds to her identity string (we abbreviate this to identity) over a secure channel. The means
by which the users authenticate to the TA or establish a secure channel are outside the scope of IBE. The TA
uses the master secret key to derive the secret keys for identities. It is assumed that all parties have a priori
access to the public parameters. For instance, the public parameters may be hard-coded in the software used
by the participants, or made available on a public website.

ABE was proposed in 2005 by Sahai and Waters [4]. ABE can be viewed as a generalization of IBE. In
ABE, the TA generates secret keys instead for access policies (an access policy prescribes the types of data a
user is authorized to access). An encryptor Alice can use the public parameters to encrypt data, and embed
within the ciphertext a descriptor of her choice that suitably describes her data. The descriptor is referred to
as an attribute. We caution the reader that although the term attribute is used here in its singular form, it
may in fact incorporate a collection of descriptive elements (which we call “subattributes”). To illustrate this,
an example of an attribute is {“CS”, “CRYPTO”}; it consists of the subattributes “CS” and “CRYPTO”. Let
us assume that this is the attribute chosen by Alice. Suppose the TA has issued a user Bob a secret key for his
access policy. Keeping with the above example, suppose his access policy “accepts” an attribute if it contains
both the subattributes “CS” and “CRYPTO”. It follows that Alice’s chosen attribute satisfies Bob’s access
policy. As such, Bob can use his secret key to decrypt Alice’s ciphertext. Notice that IBE is a special case of
ABE. One way of looking at an IBE scheme is that each attribute corresponds to a unique identity string such
as an email address or phone number. In IBE, there is a one-to-one mapping between attributes and access
policies, so Alice is given a secret key for a policy that is singularly satisfied by her identity string.

We will return to identity/attribute-based encryption momentarily. First we need to introduce the notion of
fully homomorphic encryption (FHE). An FHE scheme can evaluate all polynomial-time computable functions.
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Strikingly, it achieves this without expanding the ciphertext size. For many applications, we need only the
capability to evaluate circuits of some limited depth. Leveled FHE is a relaxation of FHE that can evaluate
circuits of depth at most some positive integer d.

FHE was first constructed in 2009 in a breakthrough work by Gentry [5]. Most work on FHE has focused on
the public-key setting but there has been some work in recent years in achieving FHE in the identity/attribute-
based setting. Gentry, Sahai and Waters [6] constructed the first leveled Identity-Based Fully Homomorphic
Encryption (IBFHE) scheme and the first leveled Attribute-Based Fully Homomorphic Encryption (ABFHE)
scheme from the Learning with Errors (LWE) problem. Clear and McGoldrick [7] extended the former to
achieve “multi-identity” leveled IBFHE where evaluation can be performed on ciphertexts associated with
different identities. These schemes are leveled; that is, they are not “pure” FHE schemes insofar as all circuits
cannot be evaluated, only those of limited depth.

The only known way to achieve “pure” ABFHE (i.e. where all circuits can be evaluted) is through indis-
tinguishability obfsucation [8], namely the construction in [9]. The best we can do at the moment without
obfuscation is Attribute-Based Leveled FHE which allows circuits of an a priori bounded depth to be eval-
uated. However we know of no other way in the identity/attribute-based setting (without obfuscation) of
constructing a scheme that can evaluate circuits of unbounded depth. This has particular significance in the
attribute-based setting because the public parameters are generated once and the chosen bound on the circuit
may not cater for all applications where deeper circuits are needed, and it would be unwieldly to generate new
public parameteres.

The technique of bootstrapping is currently the only known way to evaluate circuits of unbounded depth.
Obtaining ABFHE for circuits of unbounded depth has been impeded by the fact that employing bootstrap-
ping in the attribute-based setting (non-interactively) is particularly challenging since bootstrapping requires
encryptions of the secret key bits to be available as part of the public key. Even in the identity-based set-
ting this is a difficult challenge because one has to non-interactively derive encryptions of the secret key bits
for any identity string from the public parameters alone. The only known way of doing bootstrapping is via
indistinguishability obfuscation [9]. Without obfuscation, we have not been able to achieve “pure” ABFHE.

In this work we construct an almost “pure” ABFHE with one catch, namely, there is a pre-established
bound N on the number of inputs to the circuits that can be evaluated where each input is a bitstring of
arbitrary size. Another way of looking at it is that there is a limit on the number of independent senders who
can contribute inputs to the circuit. Our construction allows N to be exponentially large because the paramater
sizes grow logarithmically in N so it can be set large enough to accomodate most reasonable applications.
For example by setting N = 232, the parameter sizes do not grow much and over 4 billion inputs can be
accomodated, which is more than one would expect in reasonable applications, since each input (contributed
by an independent sender) can be of arbitrary size.

1.1 Our Construction

Our construction relies on multi-key FHE and leveled ABFHE. Our use of multi-key FHE is similar to that
of [10] which uses it to a achieve a non-compact form of ABFHE. If we have a leveled ABFHE with a class of
access policies F, then we get a (“pure”) ABFHE for the class of policies F with a bound N on the number of
inputs. The main idea behind our approach is that an encryptor generates a key-pair (pk, sk) for the multi-key
FHE scheme and it encrypts the secret key sk with the leveled ABFHE scheme to obtain ciphertext ψ. Then
the encryptor encrypts every bit of plaintext (say w bits) with the multi-key FHE scheme using pk to obtain
ciphertext c1, . . . , cw. It sends the ciphertext CT := (ψ, c1, . . . , cw). The evaluator evaluates the circuit on the
multi-key FHE ciphertexts and obtains an encrypted result c′. Then it evaluates with the leveled ABFHE
scheme the decryption circuit of the multi-key FHE scheme on c′ together with the encrypted secret keys
(the ψ ciphertexts). We obtain a ciphertext in the leveled ABFHE scheme that encrypts the result of the
computation (i.e. what c′ encrypts). The size of the resulting ciphertext is independent of N and the size of
the circuit. By using the multi-key FHE scheme of Clear and McGoldrick [7], we only need the leveled ABFHE
scheme to have L = O(logN) levels where N is the bound on the number of inputs.

We say a scheme is single-attribute if it only allows homomorphic evlauation on ciphertexts with the same
attribute. Otherwise, if it allows evaluation on ciphertexts with different attributes, we refer to the scheme
as multi-attribute. Whether our construction is single-attribute or multi-attribute depends on the underlying
leveled ABFHE scheme that is used. Single-attribute leveled ABFHE has been achieved from LWE as has
multi-identity leveled IBFHE. However multi-attribute leveled ABFHE is an open problem. Hence we cannot



obtain “pure” multi-attribute ABFHE with a bounded number of inputs because there are no multi-attribute
leveled schemes. The closest we have is multi-identity leveled IBFHE. The only known way of achieving “pure”
multi-attribute ABFHE is via indistinguishability obfuscation.

1.2 Organization

This paper is organized as follows. In Section 2, we introduce definitions that we use throughout the paper
including a definition of Attribute-Based Homomorphic Encryption. In Section 3, we provide security defi-
nitions and introduce a new security notion which we call EVAL-SIM security. In Section 4, we present our
construction of ABFHE with a bounded number of inputs. We prove security of the construction in Section 5.
We review our main result and its corollaries in Section 6.

2 Definitions

Let us briefly recall the definition of key-policy attribute based encryption (KP-ABE). A trusted authority
(TA) generates public parameters and a master secret key. It uses its master secret key to generate secret keys
for access policies. Alice encrypts her data, using the public parameters, under an “attribute” of her choice
in some designated set of “attributes”. An “attribute” serves as a descriptor for the data she is encrypting.
Suppose the TA issues a secret key for some access policy to Bob. This access policy essentially describes which
attributes he is authorized to access. Bob can decrypt Alice’s ciphertext if its associated “attribute” satisfies
his access policy.

We refer to the result of an evaluation on a set of ciphertexts as an evaluated ciphertext.

2.1 Models of Access Control for Decryption

A model of access control for decryption specifies how decryption of an evaluated ciphertext is to be performed.
Consider an evaluated ciphertext c′ associated with d attributes a1, . . . , ad ∈ A. There are two primary models
of decryption, each with different strengths and weaknesses. Both models will be considered in turn.

Atomic Access The intended semantics of this model is that a user should only be able to decrypt an
evaluated ciphertext c′ if she has a secret key for a policy f that satisfies all d attributes a1, . . . , ad . In
other words, policies are enforced in an “all or nothing” manner. So in order to decrypt a ciphertext c′, the
decryptor needs a secret key for a policy f with f(a1) = · · · = f(ad ) = 1. Furthermore, it captures the natural
requirement that a decryptor be authorized completely to access data associated with a particular attribute.

Non-Atomic Access - Collaborative Decryption The interpretation in this model is that a group of
users can pool together their secret keys to decrypt a ciphertext c′. In other words, there may not be a single
f ∈ F that satisfies all d attributes (or no user holds a secret key for such an f), but the users may share
secret keys for a set of policies that “covers all” d attributes. In other words, suppose the group of users have
(between them) secret keys for policies f1, . . . , fk ∈ F. In this model, they can decrypt c′ if and only if for
every i ∈ [d ], there exists a j ∈ [k ] such that fj(ai) = 1.

How is decryption performed? There are a few possible approaches:

1. Every user in the group shares their secret keys with each other, and all users can decrypt. However, this
violates the principle of least privilege and gives users in the group access to data they might not have
been explicitly authorized to access.

2. Perform decryption collaboratively using a multi-party computation (MPC) protocol. This approach has
been suggested in other works including [11]. The advantage of this approach is that it does not leak any
party’s secret key to the other parties.

3. It is possible that a user has been issued secret keys for several policies. For example: ABE for disjunctive
policies can be achieved with an IBE scheme where the TA issues secret keys for different identities (treated
as “attributes”) to the same user.

4. Collaborative decryption subsumes the functionality of the atomic model i.e. a user with a single policy f
satisfying all d attributes can still decrypt on her own.



Our syntax for attribute based homomomorphic encryption (ABHE) presented in the next section gener-
alizes both models. We do this by parameterizing an ABHE scheme with an integer K ∈ [D], which specifies
the maximum number of keys that can be passed to the decryption algorithm. The setting K = 1 specifies the
atomic model whereas the setting K = D specifies the collaborative model. Note that this is only a syntactic
rule, it does not pertain to enforcing the security property of either model. Our “default” model, assumed
implicitly without further qualification, is the collaborative model. This is for several reasons, which we will
enumerate now:

• In the identity-based setting, collaborative decryption is necessary. In this context, a single f is satisfied
by only one attribute (i.e. identity). Suppose an evaluation is performed on ciphertexts with different
identities to yield an evaluated ciphertext c′. Clearly, there is no single secret key that is sufficient to
decrypt c′, since each secret key corresponds to exactly one identity. Because IBE is a special case of ABE,
and very important in its own right, we want to ensure we allow multi-identity evaluation.

• As noted above, the collaborative model subsumes the functionality of the atomic model. The greater flex-
ibility of permitting multiple users to collaboratively decrypt (such as via MPC) invites more applications.

2.2 Definition of Attribute-Based Homomorphic Encryption

Recall the definition of ABE from the introduction. An ABE scheme with message space M, attribute space
A and class of supported access policies F is a tuple of probabilistic polynomial time (PPT) algorithms
(Setup,KeyGen,Encrypt,Decrypt).

Definition 1 (Degree of composition). Let c1, . . . , c` be input ciphertexts to an evaluation. Each ciphertext
ci is associated with an attribute ai ∈ A. The degree of composition of the evaluation is the number of
distinct attributes among the ai; that is, the cardinality of the set |{a1, . . . , a`}|.

We use the symbol d to denote the degree of composition. When the context is unambiguous, the term is
abbreviated to degree. We use the symbol D to denote the maximum degree of composition supported by a
particular system.

Definition 2. A (Key-Policy) Attribute-Based Homomorphic Encryption (ABHE) scheme E(D,K ) for an in-
teger D > 0 and an integer K ∈ [D] is defined with respect to a message space M, an attribute space A, a
class of access policies F ⊆ A→ {0, 1}, and a class of circuits C ⊆M∗ →M. An ABHE scheme is a tuple of
PPT algorithms (Setup,KeyGen,Encrypt,Decrypt,Eval) where Setup, KeyGen, Encrypt are defined equivalently
to KP-ABE. We denote by C the ciphertext space. The decryption algorithm Decrypt and evaluation algorithm
Eval are defined as follows:

• Decrypt(skf1 , . . . , skfk , c): On input a sequence of k ≤ K secret keys for policies f1, . . . , fk ∈ F and a
ciphertext c, output a plaintext µ′ ∈ M iff every attribute associated with c is satisfied by at least one of
the fi; output ⊥ otherwise.

• Eval(PP, C, c1, . . . , c`): On input public parameters PP, a circuit C ∈ C and ciphertexts c1, . . . , c` ∈ C,
output an evaluated ciphertext c′ ∈ C.

More precisely, Eval is required to satisfy the following properties:

• Over all choices of (PP,MSK)← Setup(1λ), C :M` →M ∈ C, every d ≤ D, a1, . . . , a` ∈ A s.t |{a1, . . . , a`}| =
d , µ1, . . . , µ` ∈M, ci ← Encrypt(PP, ai, µi) for i ∈ [`], and c′ ← Eval(PP, C, c1, . . . , c`):

• Correctness

Decrypt(skf1 , . . . , skfk , c
′) = C(µ1, . . . , µ`) iff ∀i ∈ [d ] ∃j ∈ [k ] fj(ai) = 1 (2.1)

for any k ∈ [K ], any f1, . . . , fk ∈ F, and any skfj ← KeyGen(MSK, fj) for j ∈ [k ].

• Compactness There exists a fixed polynomial s(·, ·) for the scheme such that

|c′| ≤ s(λ, d ). (2.2)



The complexity of all algorithms may depend on D. Furthermore, the size of freshly encrypted ciphertexts,
the size of the public parameters and the size of secret keys may depend on D. On the other hand, the size
of the evaluated ciphertext c′ must remain independent of D (along with the size of the circuit C), but it
may depend on the actual number of distinct attributes, d , used in the evaluation. Note that single-attribute
ABHE is the special case where D = 1 i.e. evaluation is correct only for ciphertexts associated with the same
attribute. As mentioned earlier, K = 1 represents the atomic model of decryption whereas K = D represents
the collaborative model. When the parameter K is omitted, it can be assumed that K = D; that is, the
notation E(D) is shorthand for E(D,D).

Definition 3. Multi-Attribute ABHE (MA-ABHE) is a primitive with the same syntax as ABHE except that
its Setup algorithm takes an additional input D > 0, which is the maximum degree of composition to support. An
instance of MA-ABHE can be viewed as a family of ABHE schemes {E(D) = (Setup,KeyGen,Encrypt,Decrypt,Eval)}D>0.

Remark 1. In the constructions considered in this work, A consists of attributes of fixed length. However the
above definition is easily generalized to capture variable-length attributes, by letting |c′| grow with the total
length of the d distinct attributes.

A concrete ABHE scheme is characterized by three facets: 1). its supported computations (i.e. the class of
circuits C); 2). its supported access policies (the class of access policies F); and 3). its supported composition
defined by its maximum degree of composition, D.

3 Security Definitions

3.1 Semantic Security

The semantic security definition for ABHE is the same as that for ABE, except that the adversary has access
to the Eval algorithm as well. There are two definitions of semantic security for ABE: selective and adaptive
security. In the selective security game, the adversary chooses the attribute to attack before receiving the public
parameters whereas in the adaptive game, the adversary chooses its target attribute after receiving the public
parameters. We denote the selective definition by IND-sel-CPA and the adaptive definition by IND-AD-CPA.

3.2 Simulation Model of Evaluation

Let D and K ≤ D be fixed parameters denoting the maximum degree of composition and the maximum
number of keys passed to the decryption algorithm respectively. Consider ciphertexts c1, . . . , c` encrypted under
attributes a1, . . . , a` respectively. We expect that a ciphertext c′ resulting from an evaluation on c1, . . . , c` be
decryptable by a set of policies {fi}i∈[k ] with k ∈ [K ] if the following two conditions are satisfied: (1). the
degree of composition d is less than D (i.e. d := |{a1, . . . , a`}| ≤ D) - for convenience we re-label the d distinct
attributes as a1, . . . , ad ; and (2). for every i ∈ [d ], there exists a j ∈ [k ] with fj(ai) = 1.

Ideally a user who does not have keys for such a set of policies {fi}i∈[k ] should not learn anything about c′

except that it is associated with the attributes a1, . . . , ad . This implies that such a user should not be able to
efficiently decide whether c′ was produced from c1, . . . , c` or an alternative sequence of ciphertexts d1, . . . , d`′

with the same collection of distinct attributes a1, . . . , ad . We now give a definition of security that captures
the fact that an adversary learns nothing from an evaluated ciphertext other than that it was generated from
a particular circuit and is associated with the attributes a1, . . . , ad .

Definition 4 (EVAL-SIM Security). Let F ⊆ F be a set of policies, and let A ⊆ A be a set of attributes. For
convenience, we define the predicate

compat(F,A) =

{
1 if ∃a ∈ A ∀f ∈ F f(a) = 0

0 otherwise .

Let E be an ABHE scheme with parameters D and K . We define the following experiments for a pair of
PPT adversarial algorithms A = (A1,A2) and a PPT algorithm S.

• ExpREAL
E,A (λ) (Real World):



1. (PP,MSK)← E .Setup(1λ).

2. (C, (a1, µ1), . . . , (a`, µ`), st)← AE.KeyGen(MSK,·)
1 (PP).

3. Let F be the set of policies queried by A1.
4. Let A := {a1, . . . , ad } be the distinct attributes in the collection a1, . . . , a`.
5. Assert d ≤ D and compat(F,A) = 1; otherwise output a random bit and abort.
6. cj ← E .Encrypt(PP, aj , µj) for j ∈ [`].
7. c′ ← E .Eval(PP, C, c1, . . . , c`).

8. b← AO(MSK,·)
2 (st, c′, c1, . . . , c`)

9. Output b.
• ExpIDEAL

E,A,S(λ) (Ideal World):

1. (PP,MSK)← E .Setup(1λ).

2. (C, (a1, µ1), . . . , (a`, µ`), st)← AE.KeyGen(MSK,·)
1 (PP).

3. Let F be the set of policies queried by A1.
4. Let A := {a1, . . . , ad } be the distinct attributes in the collection a1, . . . , a`.
5. Assert d ≤ D and compat(F,A) = 1; otherwise output a random bit and abort.
6. cj ← E .Encrypt(PP, aj , µj) for j ∈ [`].
7. c′ ← S(PP, C,A).

8. b← AO(MSK,·)
2 (st, c′, c1, . . . , c`)

9. Output b.

where O(MSK, ·) is defined as:

• O(MSK, f) :
1. If compat(F ∪ {f}, A) = 1: set F ← F ∪ {f} and output E .KeyGen(MSK, f).
2. Else output ⊥.

Then E is said to be EVAL-SIM-secure if there exists a PPT simulator S such that for every pair of PPT
algorithms A := (A1,A2), it holds that

|Pr[ExpREAL
E,A → 1]− Pr[ExpIDEAL

E,A,S → 1]| < negl(λ).

Note that the above definition relates to adaptive security. For selective security, the adversary must choose
the attributes before receiving the public parameters. As a result, in the modified definition, A consists of
three PPT algorithms (A1,A2,A3). Furthermore, A1 outputs a set of d ≤ D attributes A := {a1, . . . , ad }; A2

receives PP and outputs a circuit C along with a sequence of ` pairs (µi, ai) for i ∈ [`] where µi ∈ M and
ai ∈ A. Finally, A3 is defined equivalently to A2 in the above definition. We denote the selective variant by
sel-EVAL-SIM.

4 Construction

4.1 Building Blocks

Multi-Key FHE Multi-Key FHE allows multiple independently-generated keys to be used together in a
homomorphic evaluation. The syntax of multi-key FHE imposes a limit N on the number of such keys that
can be supported. Furthermore, the size of the evaluated ciphertext does not depend on the size of the circuit
(or number of inputs), but instead on the number of independent keys N that is supported. In order to decrypt,
the parties who have the corresponding secret keys must collaborate such as in an MPC protocol.

Definition 5 (Based on Definition 2.1 in [11]). A multi-key C-homomorphic scheme family for a class
of circuits C and message space M is a family of PPT algorithms {E(N) := (Gen,Encrypt,Decrypt,Eval)}N>0

where E(N) is defined as follows:

• MKFHE.Gen takes as input the security parameter 1λ and outputs a tuple (pk, sk, vk) where pk is a public
key, sk is a secret key and vk is an evaluation key.
• MKFHE.Encrypt takes as input a public key pk and a message m ∈ M, and outputs an encryption of m

under pk.



• MKFHE.Decrypt takes as input 1 ≤ k ≤ N secret keys sk1, . . . , skk and a ciphertext c, and outputs a
message m′ ∈M.
• MKFHE.Eval takes as input a circuit C ∈ C, and ` pairs (c1, vk1), . . . , (c`, vk`) and outputs a ciphertext c′.

Informally, evaluation is only required to be correct if at most N keys are used in MKFHE.Eval; that is,
|{vk1, . . . , vk`}| ≤ N . Furthermore, the size of an evaluated ciphertext c′ must only depend polynomially on
the security parameter λ and the number of keys N , and not on the size of the circuit.

The IND-CPA security game for multi-key homomorphic encryption is the same as that for standard
public-key encryption; note that the adversary is given the evaluation key vk.

There are two multi-key FHE schemes in the literature: the scheme of López-Alt, Tromer and Vaikun-
tanathan [11] based on NTRU and the scheme of Clear and McGoldrick [7] based on Learning wtih Errors
(LWE). Although our construction can work with any multi-key FHE, we obtain better efficiency if we use
the multi-key FHE scheme of Clear and McGoldrick, which we call CM. More precisely, the depth of the
decryption circuit of CM is O(logN) (as opposed to O(log2N) in the case of the multi-key FHE from [11])
which results in fewer levels needed for the leveled ABFHE.

For the remainder of the paper, we will denote an instance of a multi-key FHE by EMKFHE.

Leveled ABFHE Our approach uses a leveled ABFHE scheme in an essential way. A leveled ABFHE scheme
allows one to evaluate a circuit of bounded depth. The bound on the depth L is chosen in advance of generating
the public parameters. Gentry, Sahai and Waters [6] presented the first leveled ABFHE where the class of
access policies consists of bounded-depth circuits. They based security on LWE. A leveled Identity-Based
FHE (IBFHE) scheme from LWE is also presented in [6]. Furthermore a leveled IBFHE that is multi-identity
(supports evaluation on ciphertexts with different identities) was constructed in [7] from LWE.

Any of the above schemes can be used to instantiate our construction and its properties are inherited by
our construction. Therefore if we use an identity-based scheme, our resulting construction is identity-based
etc.

For the rest of the paper, we will denote a leveled ABFHE scheme by ElABFHE with message spaceMElABFHE ,
attribute space AElABFHE

and class of predicates FElABFHE .

4.2 Overview of Our Approach

The main idea behind our approach is to exploit multi-key FHE and leveled ABFHE to construct a new
ABFHE scheme that can evaluate circuits with up to N inputs, where N is chosen before generating the
public parameters. Let EMKFHE be a multi-key FHE scheme whose decryption circuit has depth δ(λ,N) where
N is the number of independent keys tolerated and λ is the security parameter. Let ElABFHE be a leveled
ABFHE scheme as described in Section 4.1 that can compactly evaluate circuits of depth δ(λ,N).

Let w be a positive integer. The supported message space of our scheme is M , {0, 1}w. The supported
attribute space is A , AElABFHE

and the supported class of access policies is F , FElABFHE . In other words, the
attribute space and class of access policies is the same as the underlying leveled ABFHE scheme. Finally, the
class of supported circuits is C ,MN →M.

Roughly speaking, to encrypt a message µ ∈ M under attribute a ∈ A in our scheme, (1) a key triple
(pk, sk, vk) is generated for EMKFHE; (2) µ is encrypted with EMKFHE under pk; (3) sk is encrypted with ElABFHE
under attribute a; (4) the two previous ciphertexts along with vk constitute the ciphertext that is produced.
Therefore, EMKFHE is used for hiding the message and for homomorphic computation, whereas ElABFHE enforces
access control by appropriately hiding the secret keys for EMKFHE.

The evaluator performs homomorphic evaluation on the multi-key FHE ciphertexts and obtains a result
c′. It then homomorphically decrypts c′ with the leveled ABFHE scheme using the encryptions of the secret
keys for EMKFHE. As a result we obtain a ciphertext whose length is independent of N and the circuit size,
which satisfies our compactness condition.

In more concrete terms, we assume without loss of generality that the message space of EMKFHE is {0, 1},
and we encrypt a w-bit message µ = (µ1, . . . , µw) ∈ {0, 1}w one bit at a time using EMKFHE. Furthermore, let
N be the maximum number of keys supported by EMKFHE. Our construction can therefore support the class of
circuits C = {({0, 1}w)N → {0, 1}w}. We remind the reader that w can be arbitrarily large, and in practice,
the length of plaintexts may be shorter than w. In practice, each sender’s input may be of arbitrary size.
However, there is a limit, N , on the number of independent senders i.e. the number of inputs to the circuit
where the inputs are taken from the domain {0, 1}w.



4.3 Construction

We now present our construction, which we call bABFHE.

Setup On input a security parameter λ and a bound N on the number of inputs to support, the following
steps are performed:

1. Choose integer w.

2. Generate (PPElABFHE
,MSKElABFHE

) ← ElABFHE.Setup(1λ, 1L) where L = O(log λ ·N) is the depth of the de-
cryption circuit of ElABFHE for parameters λ and N .

3. Output (PP := (PPElABFHE
, λ,N,w),MSK := (PP,MSKElABFHE)).

Secret Key Generation Given the master secret key MSK := (PP,MSKElABFHE) and a policy f ∈ F, a secret
key skf for f is generated as skf ← ElABFHE.KeyGen(MSKElABFHE , f). The secret key SKf := (PP, skf ) is issued
to the user.

Encryption On input public parameters PP := (PPElABFHE , λ,N,w), a binary string µ = (µ1, . . . , µw) ∈ {0, 1}w
and an attribute a ∈ A: the sender first generates a key triple for EMKFHE; that is, she computes (pk, sk, vk)←
EMKFHE.Gen(1λ, 1N ). Then she runs ψ ← ElABFHE.Encrypt(PPElABFHE , a, sk). Subsequently she uses pk to encrypt
each bit µi ∈ {0, 1} in turn using EMKFHE for i ∈ [w]; that is, she computes ci ← EMKFHE.Encrypt(pk, µi). Finally
she outputs the ciphertext CT := (type := 0, enc := (ψ, vk, (c1, . . . , cw))).

Remark 2. A ciphertext CT in our scheme has two components: the first is labeled with type and the second
is labeled with enc. The former has two valid values: 0 and 1; 0 indicates that the ciphertext is “fresh” while
1 indicates that the ciphertext is the result of an evaluation. The value of the type component specifies how
the enc component is to be parsed.

Evaluation On input public parameters PP := (PPElABFHE , λ,N,w), a circuit C ∈ C, and ciphertexts CT1, . . . ,CT`
with ` ≤ N , the evaluator performs the following steps. Firstly, the ciphertexts are assumed to be “fresh”
ciphertexts generated with the encryption algorithm. In other words, their type components are all 0. Otherwise

the evaluator outputs⊥. Consequently, the evaluator can parse CTi as (type := 0, enc := (ψi, vki, (c
(i)
1 , . . . , c

(i)
w )))

for every i ∈ [`]. We denote by ai the attribute associated with the ElABFHE ciphertext ψi. The maximum degree
of composition of our construction is inherited from that of the underlying leveled ABFHE scheme ElABFHE.
We denote this as usual by D. The evaluator derives the degree of composition as d ← |{a1, . . . , a`}|, and
outputs ⊥ and aborts unless d ≤ D.

Next the evaluator computes

c′ ← EMKFHE.Eval(C, (c
(1)
1 , vk1), . . . , (c(1)w , vk1), . . . , (c

(`)
1 , vk`), . . . , (c

(`)
w , vk`))

and encrypts this ciphertext with the leveled ABFHE scheme under any arbitrary ai, say a1; that is, the
evaluator computes ψc′ ← ElABFHE.Encrypt(PPElABFHE , a1, c′). The final step is to evaluate using ElABFHE the
decryption circuit D〈N,λ〉

∗ of EMKFHE:

ψ ← ElABFHE.Eval
(
PPElABFHE , D〈N,λ〉, ψc′ , ψ1, . . . , ψ`

)
.

The evaluator outputs the evaluated ciphertext CT′ := (type := 1, enc := ψ).

Remark 3. Observe that a “fresh” ciphertext has a different form to an evaluated ciphertext. Further evaluation
with evaluated ciphertexts is not guaranteed by our construction. Hence it is a 1-hop homomorphic scheme
using the terminology of Gentry, Halevi and Vaikuntanathan [12].

∗for the specific case of parameters N and λ



Decryption To decrypt a ciphertext CT := (type, enc) with a sequence of secret keys SKf1 := (PP, skf1), . . . ,SKfk :=
(PP, skfk ) for respective policies f1, . . . , fk ∈ F, a decryptor performs the following steps.

If CT is a “fresh” ciphertext (i.e. type = 0), then enc is parsed as (ψ, vk, (c1, . . . , cw)) and the decryptor
computes sk← ElABFHE.Decrypt(sk1, . . . , skk , ψ). If sk = ⊥, then the decryptor outputs⊥ and aborts. Otherwise,
she computes

µj ← EMKFHE.Decrypt(sk, cj) for every j ∈ [w]

and outputs the plaintext µ := (µ1, . . . , µw) ∈ {0, 1}w.
If CT is an evaluated ciphertext (i.e. type = 1), then the decryptor parses enc as ψ and computes x ←

ElABFHE.Decrypt(sk1, . . . , skk , ψ). If x = ⊥ the decryptor outputs ⊥ and aborts; otherwise the plaintext µ :=
x ∈ {0, 1}w is outputted.

4.4 Formal Description

A formal description of the construction bABFHE is given in Figure 1. As mentioned previously, the parameters
D (maximum degree of composition) and K (maximum number of decryption keys passed to Decrypt) are
inherited directly from the underlying leveled ABFHE scheme ElABFHE. Although circuits in the supported
class send a sequence of elements in the message spaceM := {0, 1}w to another element in the message space
M, we simplify the description here and assume that each circuit C outputs a single bit. A circuit Ĉ in our
supported class can then be modelled as w such circuits.

4.5 Correctness

In the evaluation algorithm, the desired N -ary circuit C whose N inputs are over the domain {0, 1}w is
evaluated using the multi-key FHE scheme. Observe that C can be of arbitrary depth since the size of the
resultant multi-key FHE ciphertext only depends on λ and N . We then encrypt this resulting ciphertext with
ElABFHE in order to homomorphically evaluate the decryption circuit of EMKFHE using ElABFHE. Consequently,
we obtain a ciphertext whose size is independent of N as required by the compactness condition for ABHE.

5 Security

5.1 Semantic Security

Without loss of generality we assume that the message space MElABFHE of ElABFHE is big enough to represent
secret keys in EMKFHE and binary strings in M.

Lemma 1. If ElABFHE is an IND-X-CPA-secure leveled ABFHE scheme and EMKFHE is an IND-CPA-secure
multi-key FHE scheme, then bABFHE is IND-X-CPA where X ∈ {sel,AD}.

Proof. We prove the lemma by means of a hybrid argument.
Hybrid 0 IND-X-CPA game for bABFHE.

Hybrid 1 Same as Hybrid 0 except with one difference. Let a? ∈ A be the target attribute chosen by the
adversary A. The challenger uses a modified Encrypt algorithm to compute the leveled ABFHE ciphertext
corresponding to a∗ by replacing Step 4 with ψ ← ElABFHE.Encrypt(PPElABFHE , a∗, 0|sk|) where 0|sk| is a string of
zeros whose length is the same as the multi-key FHE secret key generated in Step 3 of Encrypt. The algorithm
is otherwise unchanged.

We claim that any poly-time A that can distinguish between Hybrid 0 and Hybrid 1 with a non-negligible
advantage can break the IND-X-CPA security of ElABFHE. An adversary B that uses A proceeds as follows.
When A chooses a target attribute a?, B generates a key-triple for EMKFHE i.e. it computes

(pk, sk, vk)← EMKFHE.Gen(1λ, 1N ).

Then it gives a∗ to its challenger along with two messages x0 := sk and x1 := 0|sk|. Note that we assume for
simplicity that both messages are in MElABFHE ; if multiple messages (say k) are required then the usual hybrid
argument can be applied which loses a factor of k. Subsequently, B embeds the challenge leveled ABFHE
ciphertext as the ψ component of its own challenge ciphertext CT∗. It computes the remaining components of



Fig. 1: Formal Description of scheme bABFHE.

Setup(1λ, 1N ) :

1. Choose integer w.

2. Let g(·, ·) be a polynomial associated with EMKFHE

that gives the number of inputs to the decryption
circuit for N keys and security parameter λ. Let
L = g(λ,N).

3. Generate (PPElABFHE ,MSKElABFHE) ←
ElABFHE.Setup(1λ, 1L).

4. Output
(PP := (PPElABFHE , λ,N,w),MSK := MSKElABFHE).

Encrypt(PP, a, µ) :

1. Parse PP as (PPElABFHE , λ,N,w).

2. Parse µ as (µ1, . . . , µw) ∈ {0, 1}w.

3. (pk, sk, vk)← EMKFHE.Gen(1λ, 1N )

4. ψ ← ElABFHE.Encrypt(PPElABFHE , a, sk).

5. ci ← EMKFHE.Encrypt(pk, µi) for i ∈ [w].

6. Output CT := (type := 0, enc :=
(ψ, vk, (c1, . . . , cw))).

KeyGen(MSK, f) :

1. Parse MSK as (PP,MSKElABFHE).

2. skf ← ElABFHE.KeyGen(MSKElABFHE , f).

3. Output SKf := (PP, skf ).

Decrypt(SKf1 , . . . , SKfk ,CT) :

1. If k > K : output ⊥ and abort.

2. Parse SKfi as (PP, skfi) for i ∈ [k ].

3. Parse PP as (PPElABFHE , λ,N,w).

4. Parse CT as (type, enc).

5. If type = 0:
(a) Parse enc as (ψ, vk, (c1, . . . , cw))

(b) Compute sk ←
ElABFHE.Decrypt(sk1, . . . , skk , ψ).

(c) If sk = ⊥: output ⊥ and abort.

(d) µi ← EMKFHE.Decrypt(sk, ci) for i ∈ [w].

(e) Output µ := (µ1, . . . , µw) ∈ {0, 1}w.

6. Else If type = 1:
(a) Parse enc as ψ.

(b) Compute x ←
ElABFHE.Decrypt(sk1, . . . , skk , ψ).

(c) If x = ⊥: output ⊥ and abort.

(d) Output µ := x ∈ {0, 1}w.

7. Else output ⊥.

Eval(PP, C,CT1, . . . ,CT`) :

1. If ` > N : output ⊥ and abort.

2. Parse PP as (PPElABFHE , λ,N,w).

3. For i ∈ [`]:

(a) Parse CTi as (type := 0, enc := (ψi, vki, (c
(i)
1 , . . . , c

(i)
w ))).

(b) Set ai as the attribute associated with ψi.

4. Set d ← |{a1, . . . , a`}| (degree of composition).

5. If d > D: output ⊥ and abort.

6. c′ ← EMKFHE.Eval(C, (c
(1)
1 , vk1), . . . , (c

(1)
w , vk1), . . . , (c

(`)
1 , vk`), . . . , (c

(`)
w , vk`)).

7. ψc′ ← ElABFHE.Encrypt(PPElABFHE , a1, c
′).

8. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.

9. ψ ← ElABFHE.Eval
(
PPElABFHE , D〈N,λ〉, ψc′ , ψ1, . . . , ψ`

)
.

10. Output CT′ := (type := 1, enc := ψ).



CT∗ as in the Encrypt algorithm. If ψ encrypts x0, then B perfectly simulates Hybrid 0. Otherwise, B perfectly
simulates Hybrid 1. Note that secret key queries made by A can be perfectly simulated by B. Thus, if A has a
non-negligible advantage distinguishing between the hybrids, then B has a non-negligible advantage attacking
the IND-X-CPA security of ElABFHE.

For i ∈ [w]:
Hybrid 1 + i Same as Hybrid 1 + (i− 1) with the exception that the challenger does not encrypt message

bit µ
(0)
i or µ

(1)
i (using EMKFHE) chosen by A. Instead it encrypts some fixed message bit β ∈ {0, 1}.

We now show that if A can efficiently distinguish between Hybrid 1 + i and Hybrid 1 + (i− 1), then there
is a PPT algorithm G that can use A to attack the IND-CPA security of EMKFHE. Let pk and vk be the public
key and evaluation key that G receives from its challenger. When A chooses µ(0) ∈ {0, 1}w and µ(1) ∈ {0, 1},
G simply gives µ

(b)
i and β to its IND-CPA challenger where b is the bit it uniformly samples in its simulation

of the IND-X-CPA challenger. Let c? be the challenge ciphertext it receives from the IND-CPA challenger. It

sets ci ← c∗ in the challenge ciphertext CT∗. If c? encrypts µ
(b)
i , then the view of A is identical to Hybrid 1 +

(i−1). Otherwise, the view of A is identical to Hybrid 1 + i. Therefore, a non-negligible advantage obtained by
A implies a non-negligible advantage for G in the IND-CPA game, and thus contradicts the IND-CPA security
of EMKFHE.

Finally observe that the adversary has a zero advantage in Hybrid 1 +w because the challenge ciphertext
contains no information about the challenger’s bit. ut

5.2 EVAL-SIM Security

Recall the simulation-based security definition from Section 3.2, which we called EVAL-SIM security. In the
following lemma, we show that bABFHE inherits EVAL-SIM security from ElABFHE.

Lemma 2. Let EMKFHE be an IND-CPA secure multi-key FHE scheme. Let ElABFHE be an X-EVAL-SIM secure
ABHE scheme with X ∈ {sel,AD}. Then bABFHE is X-EVAL-SIM secure.

Proof. By the hypothesized X-EVAL-SIM security of ElABFHE, there exists a PPT simulator SElABFHE such that
for all PPT adversaries AElABFHE

:= (AElABFHE,1,AElABFHE,2) we have

|Pr[ExpREAL
ElABFHE,AElABFHE

→ 1]− Pr[ExpIDEAL
ElABFHE,AElABFHE

,SElABFHE
→ 1]| < negl(λ). (5.1)

Remark 4. Note that in this proof we use the definition for adaptive EVAL-SIM security, which is slightly
different to that for sel-EVAL-SIM security, but the argument holds analogously for the latter.

A simulator S can be constructed using SElABFHE in order to achieve X-EVAL-SIM security for bABFHE. The
simulator S runs as follows:

• S(PP, C, {a1, . . . , ad }) with d ≤ D, a1, . . . , ad ∈ A and C ∈ C:
1. Parse PP as (PPElABFHE

, λ,N,w).
2. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.
3. Output SElABFHE

(PPElABFHE
, D〈N,λ〉, {a1, . . . , ad }).

We claim that if there exists a PPT adversary A := (A1,A2) with a non-negligible advantage distinguishing
the real distribution and ideal distribution for bABFHE (with respect to S), then there exists a PPT adversary
AElABFHE

:= (AElABFHE,1,AElABFHE,2) with a non-negligible advantage distinguishing the real distribution and ideal
distribution for ElABFHE (with respect to SElABFHE). If this claim were to hold it would contradict the hypothesized
X-EVAL-SIM security of ElABFHE, which seals the lemma. To prove the claim, we show how to construct
(AElABFHE,1,AElABFHE,2) from (A1,A2). The algorithm AElABFHE,1 is given as input the public parameters PPElABFHE
for ElABFHE. We denote its key generation oracle by O1. It runs as follows.

1. Set PP := (PPElABFHE
, λ,N,w) (the parameters N and w are fixed elsewhere).

2. Run (C, (a1, µ1), . . . , (a`, µ`), st)← AO1
1 (PP).

3. For i ∈ [`]:

(a) Parse µi as (µ
(i)
1 , . . . , µ

(i)
w ) ∈ {0, 1}w.

(b) (pki, ski, vki)← EMKFHE.Gen(1λ, 1N )



(c) c
(i)
j ← EMKFHE.Encrypt(pk, µ

(i)
j ) for j ∈ [w].

4. Set d ← |{a1, . . . , a`}| (degree of composition).

5. c′ ← EMKFHE.Eval(C, (c
(1)
1 , vk1), . . . , (c

(1)
w , vk1), . . . , (c

(`)
1 , vk`), . . . , (c

(`)
w , vk`)).

6. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.

7. Set state← (st,PP, (vk1, (c
(1)
1 , . . . , c

(1)
w )), . . . , (vk`, (c

(`)
1 , . . . , c

(`)
w ))).

8. Output (D〈N,λ〉, (a1, c
′), (a1, sk1), . . . , (a`, sk`), state).

The algorithm AElABFHE,2 is given as input the state state (generated in AElABFHE,1), the evaluated ciphertext ψ′

along with the `+ 1 “input ciphertexts” (which we denote by ψc′ , ψ1, . . . , ψ`) and attributes {a1, . . . , ad }. We
denote its key generation oracle by O2. It runs as follows.

1. Parse state as (st,PP, (vk1, (c
(1)
1 , . . . , c

(1)
w )), . . . , (vk`, (c

(`)
1 , . . . , c

(`)
w ))).

2. Parse PP as (PPElABFHE
, λ,N,w).

3. Generate bABFHE input ciphertext CTi ← (type := 0, enc := (ψi, vki, (c
(i)
1 , . . . , c

(i)
w ))) for i ∈ [`].

4. Generate bABFHE evaluated ciphertext CT′ ← (type := 1, enc := ψ′).
5. Run b← AO2

2 (st,CT′,CT1, . . . ,CT`).
6. Output b.

If ψ′ is generated with ElABFHE.Eval (i.e. the real distribution) then CT′ is distributed identically to the output
of bABFHE.Eval. On the other hand, if ψ′ is generated with SElABFHE (i.e. the ideal distribution), then CT′ is
distributed identically to S. Therefore, a non-negligible advantage against bABFHE implies a non-negligible
advantage against ElABFHE. ut

6 Main Result

Theorem 1. Let N be a positive integer. Let w be a positive integer. Let λ be a security parameter. Suppose
there exists an IND-CPA secure multi-key FHE scheme EMKFHE whose decryption circuit has depth δ(N,λ).
Suppose there exists a leveled ABFHE scheme ElABFHE that can compactly evaluate circuits of depth δ. Then
there exists an ABHE scheme E (whose parameters D and K are the same as ElABFHE) that can compactly
evaluate all Boolean circuits in {({0, 1}w)N → {0, 1}w} i.e. the class of Boolean circuits of unbounded depth
with N inputs over the domain {0, 1}w, such that

1. E is IND-X-CPA secure if ElABFHE is IND-X-CPA secure.
2. E is X-EVAL-SIM secure if ElABFHE is X-EVAL-SIM secure.

for X ∈ {sel,AD}.

Proof. Instantiating our scheme bABFHE from Section 4.3 with the multi-key FHE scheme EMKFHE and the
ABHE scheme ElABFHE, the theorem follows by appealing to Lemma 1 (IND-X-CPA security) and Lemma 2
(X-EVAL-SIM security). ut

Corollary 1. Let N be a positive integer. Assuming the hardness of LWE, there exists a IND-sel-CPA secure
ABFHE that can compactly evaluate circuits with N inputs.

Proof. We can instantiate the multi-key FHE scheme in our construction with the CM multi-key FHE from [7],
whose security is based on LWE. Furthermore we can instantiate the leveled ABFHE in our construction with
the leveled ABFHE of Gentry, Sahai and Waters [6], which is shown to be selectively secure under LWE. ut

6.1 Discussion

We could instantiate EMKFHE with the multi-key FHE scheme of López-Alt, Tromer and Vaikuntanathan [11].
However its decryption circuit has depth O(log2 (N · λ)) as opposed to O(log (N · λ)) for CM, which means
that the leveled ABFHE scheme must be set up to accomodate more levels, which in turn causes the parameters
to blow up. Suppose we set N to be a large value so as not to practically limit the number of inputs to a
circuit. As a result, N dominates λ. Therefore we need the leveled ABFHE to evaluate roughly O(logN) levels.
Concretely, suppose we were to pick a very large value of N , say N = 232, then we need a leveled ABFHE
that can evaluate on the order of 32 levels.
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