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Abstract 

The fatigue design of Offshore Wind Turbines (OWT) is one of the most resource demanding tasks in the OWT design process. 

Techniques have been developed recently to simplify the amount of effort needed to design to structural fatigue. This is the example 

of the usage of Kriging surrogate models. These may be used in OWTs design not only, to reduce the computational effort needed 

to analyse an OWT, but also to allow their design to be robust.   

Due to the stress variability and its non-linear character, the short-term fatigue damage variability is high, and converging the 

stochastic field approached by the surrogate model in relation to the real observations is challenging.  

A thorough analysis of the different components that load an OWT and are more critical for the tower component fatigue life is 

required, and therefore, presented and discussed in the current paper. 

The tower, jointly with the foundation, are particular components of the OWT regarding the fatigue analysis process.  

Statistical assessments of the extrapolation of fatigue loads for the tower and the influence of the environmental parameters in the 

short-term damage are presented in this paper. This sets a support analysis for the creation of the Kriging response surfaces for 

fatigue analysis. NREL’s 5MW monopile turbine is used due to its state of the art character.  Five environmental variables are 

considered in the analysis. A sensitivity analysis is conducted to identify which variables are most prominent in the quantification 

of the short-term damage uncertainty in the tower. The decoupling of the different external contributions for the fatigue life is a 

major contribution of the work presented. Preliminary guidelines are drawn for the creation of surrogate models to analyse fatigue 

of OWT towers and the most relevant conclusions are presented in an industry-oriented design outline regarding the most critical 

random variables that influence OWT short-term fatigue calculation.  
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1. Introduction 

The calculation of fatigue of OWT is a resource demanding process. The design lifetime of an OWT is quite long, 

and can be expected to be as high  as 20 years. It is straightforward to perceive that reproducing in the design phase 

to the full extent this period of time of operation of such a complex system without some simplifying assumptions is 

an unfeasible task. 

In this context the IEC guidelines to design OWT, (IEC, 2005) and (IEC, 2009), set fatigue to be analyzed with a 

semi probabilistic framework. Assuming that the high load ranges will contribute the most for the fatigue damage, the 

load range is recommended to be extrapolated from a load set referring to a time t to the whole lifetime period T 

considered. The extrapolation considers fitting the exceedances over a pre-specified quantile (A Q95% is 

recommended for extrapolation purposes in (IEC, 2005)) and taking the cycles below the specified quantile to repeat 

deterministically over the OWT lifetime T. To assess the loading ranges, means and number of cycles a rainflow 

counting scheme should be implemented. 

The full lifetime damage level is then assessed with the widely known Palmgren-Miner rule of linear damage sum.  

𝐷𝑇 = ∑ 𝐷𝑆𝐻 𝑖

𝑁𝑇

𝑖=1

 

 

where 𝐷𝑆𝐻  is the damage accumulated in the reference period of time t (usually 10 minutes), 𝐷𝑇  is the damage 

accumulated during the considered lifetime T, 𝑁𝑇  is the number of 𝐷𝑆𝐻  cycles that occur during the considered 

lifetime period T.  

Even considering that extrapolation techniques are used, a high computational effort is still demanded to produce 

accurate results. Reliability based optimization techniques are then difficult to apply to these systems.  

A good example of the effort needed in the analysis is found in (Moriarty, Holley, & Butter, 2004), where the 

probabilistic analysis of OWT and extrapolation of loads are analyzed for both, the extreme loading and the fatigue 

design. For extrapolation purposes, and considering two variables as the main design variables, wind velocity (𝑈) and 

turbulence intensity (𝐼), 4725 simulations were needed for the full integration technique and to fully characterize the 

tail region of the load distribution. Important to highlight that even considering this large number of simulations and  

large computational effort needed (for reference; considering that each FAST software 10 minutes simulation may 

take a average time of 20 minutes in a i7-4790 CPU supported by 16GB of RAM) to complete these simulations,  only 

approximately a single month of fully continuous operation is covered by these. The results are then compared with 

the extrapolation based on 197 simulations without the binning of I.  

Additionally, (Moriarty, Holley, & Butter, 2004) highlight that using very high quantiles for extrapolation may not 

be adequate for low slope of the S-N curve, which is the case of the tower materials. This fact motivates the 

development of alternative methodologies to assess the reliability of the tower.  

The complexity of the coupled codes to model OWTs is related to the many variables that influence the operation 

of these, and that make a probabilistic framework very complex to develop. One of the most relevant works on the 

probabilistic analysis of wind turbine fatigue is presented in (Veldkamp, 2008). In this work a very extensive review 

of the uncertainties and random variables that affect the fatigue design of wind turbines and their effect is discussed 

in detail and a methodology for probabilistic fatigue analysis is proposed. To notice that it is of particular interest 

when dealing with OWT design to know which variables may be more prominent in the turbine fatigue behavior. 
The current paper addresses then, in the framework of applying Kriging surrogate models for reliability, the 

influence of the different random variables that are expected to contribute the most to the fatigue of the tower 

component of OWTs. When implementing a Kriging surrogate model is then important to assess which will be the 

variables that contribute the most to 𝐷𝑆𝐻  in order not to introduce complexity in the Kriging that does not comprise 

relevant information, and additionally to optimize the computational effort spent in the process of defining the most 

accurate response surface. To achieve this, the remaining of Section 1 presents some works of reliability with Kriging 

surfaces. Section 2 introduces then these models, their theoretical background, and the motivation for their application 

in the context of OWT tower fatigue analysis. Section 3 discusses the influence of the different variables on short term 

damage, presenting also some initial conclusions. Finally, the main conclusions are drawn in the final Section.    
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1.1. Probabilistic design of OWT with Kriging surrogate models 

The Kriging models or Gaussian process models are of interest for the topic of reliability analysis due to their 

interpolation capacity, the flexibility to approximate arbitrary functions with a high level of accuracy and the capability 

of accounting for a local uncertainty measure. 

Several examples of application and discussion of Kriging surrogate models as a tool for reliability and probabilistic 

structural analysis are found in (Bichon, Eldred, Swiler, Mahadevan, & McFarland, 2008) , (Echard, Gayton, & 

Lemaire, 2011), (Echard, Gayton, Lemaire, & Relun, 2013), (Gaspar, Teixeira, & Guedes Soares, 2014), and (Zhang, 

Lu, & Wang, 2015).  

For OWT analysis the Kriging surrogate models gained particular attention with the work developed in (Yang, 

Zhu, Lu, & Zhang, 2015) where a tripod structure is optimized supported by results from the Kriging surrogate models. 

In this work a Finite Element model is used to generate very accurate Design of Experiments (DoE) points and then 

the Kriging is used to extend the responses calculated to the full response of the system. A methodology of reliability 

based design optimization is then developed to optimize the support structure to extreme responses from Normal 

operating conditions and Seismic conditions.    

Later, in (Morató, Sriramula, & Krishnan, 2016), the support structure probability of failure under extreme events 

is computed using a Kriging surrogate model to simulate the loading response of the system. Two limit state function 

are considered in the analysis. In a similar way than the previous work, the support points are picked using a Latin 

Hypercube Sampling technique.  

It was mentioned that, when dealing with complex models it is important to not compromise efficiency by 

introducing additional complexity in the surrogate model that does not accomplish improved stochastic accuracy. In 

(Gaspar, Teixeira, & Guedes Soares, 2014) it was shown that the usage of higher order polynomials do not improve 

the accuracy of the reliability predictions in the particular case of the structural reliability.      

In the case of OWT towers the quantity of external variables that will influence the loads in the tower is high due 

to the complex behavior of the turbine on its own but mainly due to the number of environmental loading variables.  

(Echard, and Gayton, & Bignonnet, 2014) analyse the specific case of fatigue failure in a probabilistic basis using 

Kriging surrogate models. The surrogate model is used to approach directly the limit state equation of fatigue and then 

to estimate the probability of failure.  (Teixeira, O'Connor, Nogal, Nichols, & Spring, 2017) applies these in the 

analysis of OWT towers fatigue, using the Kriging surrogate model to approximate the OWT model. Samples 

generated from the surrogate model represent therefore short term operation of the OWT.        

2. Probabilistic damage calculation of OWT with Kriging surrogate models  

The probabilistic calculation of fatigue damage relying on Kriging surrogate models uses the capacity of these 

surrogate models to interpolate a Gaussian field. Assuming that 𝑔(𝑥) represents a real function of 𝐷𝑆𝐻(𝜑𝑝) which is 

function of p 𝜑𝑝input parameters, a Kriging surrogate model G(𝑥)  that approximates g(𝑥) can be written as follows:  

𝐺(𝑥) = 𝑓(𝛽; 𝑥) + 𝑧(𝑥), 
 

𝑓(𝛽; 𝑥) = 𝛽1 𝑓1(𝑥) + ⋯ + 𝛽𝑝 𝑓𝑝(𝑥), 

 

where 𝑓(𝛽; 𝑥) is a deterministic component determined by a regression model defined by 𝑝 basis functions 𝑓𝑝(𝑥) and 

𝛽𝑝  regression coefficients. The Gaussian stochastic uncertainty of the model is introduced by 𝑧(𝑥) , which is a 

stochastic Gaussian process with mean 0 and covariance between two points i, and j in space given by:  

 

𝑐𝑜𝑣(𝑧(𝑥𝑖), 𝑧(𝑥𝑗) = 𝜎𝑧
2 𝛺(𝜃; 𝑥𝑖 , 𝑥𝑗), 

 

𝑤𝑖𝑡ℎ 𝑖, 𝑗 = 1,2,3, … , 𝑚 
 

with 𝜎𝑧
2 as the constant process variance and 𝛺 a correlation function that represents the correlation between two 

arbitrary points in space 𝑥𝑖  and 𝑥𝑗 . A wide application of an exponential correlation function can be identified in 

previous works for structural reliability, producing efficient results.  



4 Teixeira,R.; O’Connor,A.;  Nogal, M.; Krishnan, N.; Nichols J./ Structural Integrity Procedia  00 (2017) 000–000 

The process of creating the Kriging metamodel requires a sample of M support points. This sample is frequently 

called DoE; 𝐷𝑜𝐸 = [𝑥𝑘 , == 𝑔(𝑥𝑘)] for 𝑘 = 1,2, . . , 𝑀; and has the particularity of being the exact prediction of the 

real function g(x) in the respective DoE point. 

A more extensive description of the theory that backs the usage of Kriging surrogate models in the context of 

reliability analysis,  with further discussion of the different parameters involved in the calculation of these surrogate 

models (e.g. regression models; autocorrelation functions), is presented in (Dubourg, 2011).  

3. Influence of random variables in short-term (SH) fatigue on OWT tower 

To analyse the influence of the different variables that may be considered in the DoE a one-factor-at-time (OFAT) 

approach is used. The OFAT approach involves setting a reference point, changing then one parameter at the time and 

evaluating the output results.  

A very common local method for sensitivity analysis involves calculating the partial derivatives of the output 

variable 𝐷𝑆𝐻  in relation to an input variable 𝑋𝑖  of the 𝐷𝑜𝐸 in a reference fixed point of the space of input variables 

𝑋0. The sensitivity in this case is then defined as:    

𝑆𝐷𝑆𝐻𝑖
=

𝜕𝐷𝑆𝐻

𝜕𝑋𝑖

|
𝑋0

 

 

where 𝑆𝐷𝑆𝐻𝑖
 is the sensitivity of the short term damage to a variation in the variable 𝑋𝑖. Eight reference states (𝑋0) 

represented by a combination of environmental variables were considered for the OFAT analysis. These consider four 

different states of operation of the OWT and are set to ensure more robust results. Complementing hence potential 

limitations introduced by the OFAT methodology and the way it covers the space of the variables.  

3.1. Setting the Reference Cases 

When developing a sensitivity analysis of such complex systems, which depend on many variables, the 

computational effort needed to cover the entire space of possible events can become unreasonably high. This is the 

case of OWT towers, where the structural behavior depend on many external variables. These computational 

requirements complicate even further when a probabilistic analysis is being developed and many simulations are 

needed to characterize the statistical moments of the variables.  

In the present case five are considered, the mean wind speed (𝑈𝑤), the significant wave height (𝐻𝑠), the wave peak 

period (𝑇𝑝), the turbulence intensity (𝐼) and wind misalignement (𝜃𝑤). To address these five variables, a global and a 

local analysis to the system’s behavior is implemented. This allows a general overview over the system to be analysed 

and then to work locally in some specific points. In the present case the methodology implemented follows the 

approach developed in (Martinez-Pastor, Nogal, & O’Connor, 2016) and (Martinez-Pastor, Nogal, O’Connor, & 

Caulfield, 2016), where a hybrid global-local approach was applied for transport networks.  

It is noted that the effort needed for the analysis is highly reduced, comparatively to what would be expected to 

cover a full analysis of five variables, by the fact that in this case the variables are highly correlated between them. 

The waves are correlated with the period, and the wind with the turbulence intensity and the direction. In this way, a 

problem that involves five dimensions can be reduced to two main dimensions of analysis, one related to the wind 

variables and another related to the wave variables. The wind and the waves are on their own correlated. Assuming 

that wind and wave occur with coherence, these two main dimensions of analysis are then separated in states of high 

energy and low energy, or high and low wind speed and turbulence intensity and high and low significant wave heights 

and peak periods, as depicted in Figure 1. Even attending to the high non-linearity of a fatigue analysis, and attending 

to the fact that a real system is being considered where no discontinuities in 𝐷𝑆𝐻  are expected and that most 

environmental variables have vary less inside an energy state, it is assumed that within the combinations of 

environmental states of energy the system will experience similar statistical loads and damage.  
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High energy states are not very frequent but they represent a higher number of combinations of variables. Low energy 

states, which occur more often, represent much smaller intervals of occurrences among the variables considered. To 

cover the most of the space of variables and having as reference the data from (Fischer, de Vries, & Schmidt, 2010), 

the energetic states of wind and waves are divided between high and low energy. For the wind, the high energy 

threshold represents approximately 10% of the whole data, with 𝑈𝑤 bigger than 15.5m/s, and with turbulence intensity 

depending on this value. For the waves, it corresponds to the wave states with higher energy than the combination of 

 𝐻𝑠 bigger than 2.5m and 𝑇𝑝 bigger than 9s, which also represents approximately a bit more than 10% of the total 

occurrences.  

  The global reference points 𝑋0 are sampled in Figure 1. These are analysed globally in order to understand global 

trends in the data. Local analysis is conducted in each reference point.  

NREL’s Baseline 5MW monopile OWT was used in the analysis (Jonkman, Butterfield, Musial, & Scott, 2009). 

A total of 15 simulations for each reference case were run to analyse the OFAT results, performing a total of 720 

simulations. Variations of 20% were implemented for 𝐻𝑠 , 𝑇𝑝 , 𝑈𝑤  and 𝐼. For the case of 𝜃𝑤 , misalignments of 5° 

relative to the rotor horizontal axis were considered to study the sensitivity in all the reference cases. The misalignment 

is particular in the sense that in practice variations in wind directions are compensated by the control system. In this 

case the control system is neglected and the interest is to infer if small misalignments influence the OWT tower 

damage.  

The value of 20% can be considered quite significant in a sensitivity analysis. In the presented case the aim of the 

analysis was to have a description of the operational  𝐷𝑆𝐻  depending on the DoE within a Kriging surface framework 

with a reasonable amount of computational effort. Considering very small changes of the parameters would demand 

an ever higher number of simulations due to the fact that for most of the cases a change smaller than 20% is not 

significant enough to introduce a relevant change in the environmental state. This is more prominent in the case of 

environmental states that are located in the Low-Low region. The final goal was then to analyse the variations of the 

damage considering that it would behave like a surface, and covering most of its surface.   

3.2. Results of OFAT analysis 

Figure 2 shows the results for the changes of environmental variables in the DoE. The wind velocity 𝑈𝑤 and the  

turbulence intensity 𝐼 are the most influent variables in the short term damage 𝐷𝑆𝐻  in seven of the eight cases 

analysed. 𝐷𝑆𝐻  is not significantly influenced by changes in 𝐻𝑠 and 𝑇𝑝. The waves do not interact directly with the 

tower, only with the foundation, and their influence is deeply connected with damping effects from the tower 

interaction with the air. These did not prove, on operating conditions, of major importance for the tower fatigue mean 

values when compared with the variables associated with the wind. 

Figure 1 – Space of variables and reference cases for local sensitivity analysis. 
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Figure 2 - Results of the OFAT for the environmental variables. 

In Table 1 are presented the results for the statistical variations in the mean and standard deviation of the samples 

modeled. 𝑈𝑤 and 𝐼 dominate the major global statistical variations in the tower damage and cause the major variations 

in the sample statistical moments relatively to 𝑋0 . Regarding the wind speed, the results indicate that two local 

maximums of averaged damage should then be expected in operation, one near the rated wind power and another near 

the shut-down wind speed. (Cheng, van Bussel, van Kuik, & Vugts, 2003) showed that extreme loading of OWT 

occurs close to the rated power, therefore, the same may occur for fatigue damage as the biggest load range has major 

contribution to decrease the fatigue life. For operating speeds over the rated power 𝐼 seems to influence the most the 

short term damage sensitivity in the tower. The maximum values of  𝐷𝑆𝐻 are obtained for the highest values of 𝐼 within 

operating conditions. Despite not being a common occurrence, this finding is relevant when designing the OWT as 

the current Design Load Cases (DLC) of OWT do not consider the effect of the occurrence of high 𝐼 values during 

operation for fatigue calculations. It is common during the design phase to use the Normal Turbulence Model (NTM).   

In the sample of Case 1,  𝑑𝑈𝑤 causes a variation of 820% in 𝜇𝐷𝑆𝐻  while 𝑑𝐼 causes a variation of 𝜇𝐷𝑆𝐻  of 124%. 

In this case the damage was already expected to increase closer to the rated 𝑈𝑤. For the simulated Case 2 the influence 

of the 𝑈𝑤 diminishes significantly, indicating that above the rated power the sensitivity of  𝐷𝑆𝐻  to the mean wind 

speed decreases. The variation in the mean of the damage is mainly influenced in this case by 𝐼. For the cases 3 and 4 

this pattern in 𝑑𝜇𝐷𝑆𝐻
 repeats, although a relevant local sensitivity to 𝑈𝑤 can be identified also in Case 4. This indicates 

that near the shut-down 𝑈𝑤 an increase in the average damage should be expected as 𝑑𝑈𝑤 in Case 4 approaches the 

shut-down wind speed of 25 m/s.  The Cases 5 and 6 share similar environmental variables, but in the Case 5, the 
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wind is already over the rated-speed, and therefore the local sensitivity is lower. The Case 7 and 8 confirms the trends 

identified before.  

Table 1 – Variation of the sample mean and standard deviation properties function of the parameter modified in the DoE. 

 

The sample standard deviation 𝜎 is a statistical moment that converges slower than the sample mean 𝜇. The precise 

analysis of results is then more difficult when the variation of the standard deviation is not very substantial. In this 

case it is difficult to weight the contribution from the sensitivity itself and from the stochastic convergence of the 

standard deviation. 𝜎𝐷𝑆𝐻 converges significantly more slowly than the 𝜇𝐷𝑆𝐻 . This convergence depends highly on 

the sample. In all the case the major variations of standard deviation occur in the same case where the variation of 

𝜇𝐷𝑆𝐻is higher, indicating that an offset of 𝜇𝐷𝑆𝐻  is very likely to be accompanied by a change of the whole population 

distribution moments. As recommendations from the indicators obtained in the results, when building a Kriging 

surface, are:  

 Uncertainty of the short-term damage is quite significant, and standard deviations are in average between 

25-30% of the mean over the rated speed. For lower wind speeds, below rated power, where the damage 

generated is less important for the structure, this value ascends to almost 50%.  

 𝑈𝑤 and 𝐼 should always be considered in the DoE of a Kriging surrogate surface to assess the reliability of 

an OWT tower. Making this the dimension of the Kriging surface at least 2.  

 As the variation of statistical parameters is quite high for low number of simulations, assessing the 

uncertainty introduced by the wave parameters can be taken as redundant in comparison to the intrinsic 

uncertainty of the 𝐷𝑆𝐻. For severe sea states and states where the wind is not prominent in the 𝐷𝑆𝐻  results 

these can be important. Therefore it may be reasonable to model these variables in the DoE or to truncate 

the Kriging to account for the uncertainty in the regions of interest in the cases where the wave parameters 

show influence on 𝐷𝑆𝐻 .  

 The 𝜃𝑤 influence over 𝐷𝑆𝐻  is limited. The yaw control system was not modeled, still the results obtained 

indicate that for small wind directions the damage the change in  𝐷𝑆𝐻  are not relevant.  

It is important to emphasize that the complexity that affects the OWT is high and other parameters (e.g. structural 

model, tower diameter or thickness, among others) may be included in the analysis. Nevertheless, these are not the 

main focus of the Kriging surface as a tool for reliability because they are usually seen as design variables to be set in 

order to comply with the environmental loading requirements. In particular, the OWT tower thickness and diameter 

are expected to have a relevant influence in the fatigue life.  

𝜇𝐷𝑆𝐻𝑋0
 

𝑑𝜇𝐷𝑆𝐻𝑋0

𝑑𝑈𝑤
 

𝑑𝜇𝐷𝑆𝐻𝑋0

𝑑𝐻𝑠
 

𝑑𝜇𝐷𝑆𝐻𝑋0

𝑑𝑇𝑝
 

𝑑𝜇𝐷𝑆𝐻𝑋0

𝑑𝐼 
 

𝑑𝜇𝐷𝑆𝐻𝑋0

𝑑𝜃𝑤 
 

Case 1 1.16 × 10−6(820%) 0.11 × 10−7(7.9%) −0.18 × 10−7(−12%) 0.12 × 10−6(124%) 0.05 × 10−7(3.7%) 

Case 2 −0.17 × 10−6(−8.5%) 0.28 × 10−6(13.8%) 0.85 × 10−7(4.18%) 2.93 × 10−6(143%) 0.12 × 10−6(5.7%) 

Case 3 9.63 × 10−8(1138%) −0.21 × 10−8(−24%) −0.34 × 10−8(−40%) 1.07 × 10−8(218%) −0.15 × 10−8(−18.7%) 

Case 4 2.3 × 10−6(84.3%) −1.1 × 10−7(−4%) −5.3 × 10−7(−19%) 3.98 × 10−6(146%) −3.9 × 10−7 (−14.3%) 

Case 5 2.52 × 10−7(18.3%) 1.75 × 10−7(12.7%) 1.66 × 10−7(12.1%) 6.19 × 10−7(45.1%) 1.82 × 10−7 (13.3%) 

Case 6 1.26 × 10−6(370%) −6.2 × 10−8(−18.4%) −0.11 × 10−7(−3.2%) 2.42 × 10−7(71.3%) −0.73 × 10−7 (−21.5%) 

Case 7 2.39 × 10−7(107%) 1.60 × 10−8(7.2%) 0.5 × 10−8(2.2%) 3.63 × 10−7(163%) 2.74 × 10−8 (12.3%) 

Case 8 8.4 × 10−8(−9.2%) 3.2 × 10−8(3.5%) 9.7 × 10−8(10.6%) 1.00 × 10−6(110%) 2.4 × 10−8 (2.6%) 

𝜎𝐷𝑆𝐻𝑋0
 

𝑑𝜎𝐷𝑆𝐻𝑋0

𝑑𝑈𝑤
 

𝑑𝜎𝐷𝑆𝐻𝑋0

𝑑𝐻𝑠
 

𝑑𝜎𝐷𝑆𝐻𝑋0

𝑑𝑇𝑝
 

𝑑𝜎𝐷𝑆𝐻𝑋0

𝑑𝐼 
 

𝑑𝜎𝐷𝑆𝐻𝑋0

𝑑𝜃𝑤 
 

Case 1 2.41 × 10−7(495%) 1.79 × 10−8(36.6%) −7.4 × 10−9(−15.2%) 7.69 × 10−8(158%) 1.32 × 10−8(27.15%) 

Case 2 1.9 × 10−9(0.40%) 1.55 × 10−7(31.8%) 8.88 × 10−8(18.2%) 5.35 × 10−7(110%) 4.85 × 10−8 (9.96%) 

Case 3 3.79 × 10−8(483%) −4.4 × 10−9(−55.9%) −5.2 × 10−9(−66.6%) 6.9 × 10−8(88.3%) −5.1 × 10−9 (−65.1%) 

Case 4 2.20 × 10−7(29.2%) −2.62 × 10−7(−34.7%) −3.43 × 10−7(−45.5%) 9.89 × 10−7(130%) −2.78 × 10−7 (−36.9%) 

Case 5 1.29 × 10−8(4.42%) 5.56 × 10−8(19%) 5.84 × 10−8(20%) 6.4 × 10−9(2.17%) 8.2 × 10−8 (28%) 

Case 6 1.94 × 10−7(156%) −6.66 × 10−8(−53.3%) −3.4 × 10−9(−2.7%) 2.97 × 10−8(23.8%) −8.21 × 10−8 (−65.7%) 

Case 7 6.41 × 10−8(137%) 1.31 × 10−8(27.9%) 0.97 × 10−9(2.1%) 8.11 × 10−8(1.73%) 3.25 × 10−8 (69.3%) 

Case 8 −6.97 × 10−8(−20.6%) −3.40 × 10−8(−10.1%) 2.85 × 10−7(8.4%) 2.34 × 10−7(69.4%) −9.4 × 10−8 (−27.8%) 
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4. Conclusions 

Motivated by the fact that the current methodologies implemented tend to inaccurately extrapolate the damage for the 

OWT life-time, a methodology involving Kriging surrogate models was proposed to account for the uncertainty that 

affects these type of structures.  

The current paper discusses then, within the framework of underpinning the development of Kriging surrogate models 

for the reliability analysis of OWT towers, the influence of environmental variables on the short term damage 

generated in the tower when a rainflow counting analysis is applied together with the Palmgren-Miner rule.  

For the case of the monopile OWT, which is a fixed foundation, the variables associated with the wind dominate the 

short term damage sensitivity in the tower component. Among the variables analysed, the wind speed and turbulence 

intensity stand out as the most relevant. The wind direction is the least influent parameter, if small wind directions are 

considered. The waves, despite carrying high amount of energy, are significantly less influent in the short-term damage 

generated in the tower.  Recommendations were presented based on the indicatons found to create Kriging surfaces 

to model fatigue. Depending on the context of application, the balance between the number of variables to consider 

in the DoE and the amount of information carried by each variable should be equated. If very low computational time 

is pursued, the wave variables should not be accounted in the Kriging surface DoE and the focus should be set in the 

wind variables, speed and turbulence. This may be the case of optimization problem during OWT operation.  

Nevertheless, in the future the analysis of the coupled influence of variables needs to be addressed in order to guarantee 

full robustness of the results.   
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