
 I

A Toolkit for the Visualisation of CORBA
Applications

Robert Miller B.Sc.,
Department of Computer Science,

Trinity College Dublin.

A dissertation submitted to the University of Dublin,
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

September 2000

 II

Declaration

I declare that the work described in this dissertation is, except where

otherwise stated, entirely my own work and has not been submitted as

an exercise for a degree at this or any other university.

Signed:___________________

 Robert Miller

 September 2000

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation

upon request.

Signed:___________________

Robert Miller

Septrmber 2000

 III

Abstract

VEDA is a visualisation environment that allows the operation of distributed applications to

be visualised graphically for the purposes of testing and education. It contains a visualisation

package which enables distributed processes to present their flow of control to the user in a

graphical manner. With VEDA's visualisation capabilities as a platform it is the aim of this

dissertation to develop a toolkit which will support the automatic visualisation of CORBA

applications. The toolkit will be designed with a pedagogical function in mind and with

undergraduates as the target audience. Essentially the dissertation can be broken up into two

distinct tasks:

The first phase of the dissertation will involve the modification an IDL compiler to enable the

automatic generation of visualisation events. IDL specifies interfaces between CORBA

objects. The IDL compiler generates small pieces of code known as client stubs and server

skeletons which allow client processes to access remote server objects. The IDL compiler

will be modified so as to produce instrumented stubs and skeletons. By instrumentation I

mean the annotation of code with visualisation event calls. The event calls will convey

pertinent information about the distributed object system to the visualisation engine. The

visualisation engine in turn generates a graphical representation of application state and

execution.

The second phase of this dissertation involves extending VEDA’s visualisation capabilities to

accommodate the complexities of distributed object systems.

The dissertation will be evaluated under the following criteria: ease of use, generality,

transparency, intuitiveness and performance.

 IV

Acknowledgements

Thank you Jane for everything.

Thanks to my family and friends for their support and encouragement
throughout the year.

Thanks to my classmates and peers for their camaraderie through the

tough times.

Finally, Thanks to my supervisor Dr. Vinny Cahill for his guidance
throughout the course of this dissertation.

 V

Contents

1. Introduction.. 1
1.1 Distributed objects. .. 2
1.2 VEDA .. 2
1.3 Objectives .. 3
1.4 Achievements... 3
1.5 RoadMap.. 3

2. Literature Review .. 5
2.1 Overview of software visualisation as a research area... 5

2.1.1 Defining software visualisation... 6
2.1.2 Taxonomies of software visualisation systems. .. 7

2.2 Visualisation Systems .. 9
2.2.1 Educational Systems ... 9
2.2.2 Visualisation Systems for Parallel/Distributed Programs ... 11
2.2.3 Visualisation Systems for object- oriented programs.. 13

2.4 VEDA .. 14
2.5 Empirical testing of visualisations ... 15
2.6 Summary.. 16

3. Design.. 17
3.1 Introduction.. 17
3.2 What Aspect of CORBA should be represented? .. 17

3.2.1 CORBA Overview.. 17
3.2.2 CORBA Implementation Overview.. 19
3.2.3 Level of abstraction for visualisation.. 20

3.3 Visual Design of CORBAvis ... 21
3.3.1 Visual Design Concerns.. 21
3.3.2 Visual Vocabulary Design .. 23
3.3.3 Graphical User Interface Design... 25

3.4 Design of VEDA.. 27
3.4.1 Veda Design.. 27

3.5 The limitations of VEDA... 30
3.6 Overview of CORBAvis architecture. ... 31
3.7 CORBAvis component design ... 34

3.7.1 back-end component interaction ... 34
3.7.2 Front-End component interaction ... 36

3.8 Swing and AWT .. 39
3.8.1 The rational for converting VEDA to Swing. ... 39
3.8.2 Swing Components ... 40

4. Implementation .. 42
4.1 ORBacus and JIDL .. 42
4.2 Modification of the IDL compiler.. 43
4.3 Modification of Compiler generated files .. 44

4.3.1 Skeleton modifications.. 44
4.3.2 Stub modifications .. 45
4.3.3 Helper Modifications .. 46

4.4 CORBAvis Back-end... 46
4.4.1 The VisManager class... 46

4.5 CORBAvis Front-end .. 47
4.5.1 The CorbaSystemView class .. 47
4.5.2 The NodeView class ... 49
4.5.3 The ProcessView class.. 49
4.5.4 The ObjView class .. 49
4.5.5 The Message Manager. ... 50
4.5.6 The InterfaceManager class .. 53
4.5.7 The EntityManager class... 53

 VI

5. Evaluation... 55
5.1 The bank example .. 55

5.1.1 Is it a good visualisation?.. 57
5.2 Empirical testing of CORBAvis .. 59

6. Conclusion .. 61
6.1 Dissertation review .. 61
6.2 Future Work... 62
6.3 Concluding remarks ... 63

Bibliography... 64

 1

1. Introduction

The visualisation of computer systems is a common phenomenon. Most computer

practitioners use visualisation as a tool to compose a coherent mental model of a system. In

this context a visualisation is constructed in each individual's minds eye, it is their abstract

understanding of a system with which they rationalise.

Software visualisation and it's various constituent parts attempts to tap into this innate mental

faculty by generating graphical representations of software systems. The developers of such

systems hope that their representation of a given system substrate, will help users to develop

more quickly a workable mental model. In general terms, it is hoped that visualisations will

aid understanding.

This project is concerned with designing and developing a software visualisation tool that will

aid students in the understanding of CORBA distributed objects. The motivation behind this

project is clear. Distributed object systems are extremely complex software entities and the

programming paradigms, which support them, have a very steep learning curve. A tool, which

would aid students in the understanding of these systems, would be very valuable. The

following sections give a synopsis of the constituent parts of this project.

 2

1.1 Distributed objects.

" Distributed object computing is a computing paradigm that allows objects to be distributed

across a heterogeneous network, and allows each of the components to inter-operate as a

unified whole. To an application built in a distributed object environment, and as expressed

in Sun Microsystems slogan, the network is the computer. Object orientation can radically

simplify systems development. Distributed object models and tools extend an object-oriented

programming system. The objects may be distributed on different computers throughout a

network, living within their own dynamic library outside of an application, and yet appear as

though they were local within the application." [29]

One of the leading technologies within distributed object computing is the Common Object

Request Broker Architecture (CORBA). CORBA is an open software standard, developed and

maintained by the Object Management Group (OMG). " It enables invocations of methods on

distributed objects residing anywhere on a network, just as if they were local objects. A

CORBA implementation employs Object Request Brokers (ORBs), located on both the client

and the server, to create and manage client/server communications between objects. ORBS

are the key to the CORBA distributed object architecture. They allow objects on the client

side to make requests of objects on the server side without any prior knowledge of where

those objects exist, what language they are in, or what operating system they are running

on."[29]

A major component of the CORBA standard, and a key element of this project, is the

Interface Definition Language. IDL is a language neutral, declarative language that is used to

define the interfaces which CORBA objects support. An IDL compiler is used to generate

files that enable client and server objects to communicate with the ORB.

1.2 VEDA

As a foundation this project uses work already carried out by a fellow student at Trinity

College Dublin. VEDA, the Visualization Environment for Distributed Algorithms,

developed by Andreas Ulbrich [1], is a comprehensive framework for distributed algorithm

visualization and network simulation. The algorithm visualization component of VEDA is an

integral part of this project and is described as follows: "The visualization toolkit was

developed in order to provide an easy to use tool for the Visualization of program behavior.

It's main focus is the animation of distributed algorithms. Thus, it provides mechanisms to

collect data from application processes, which might be scattered over network machines and

to interpret this data in order to create a graphical view of the visualized application". [1]

 3

Veda uses the generic visual metaphor of space-time diagrams to depict distributed

applications.

This project can be seen as an extension to VEDA to accommodate distributed object

systems. As we shall see in Chapter 3, VEDA has certain limitations with regards to

depicting CORBA applications. An analysis of these limitations resulted in the design of

CORBAvis. CORBAvis is the self-explanatory name given to the software toolkit developed

as part of this project.

1.3 Objectives

The central theme of this project is to develop, using VEDA as a foundation, a visualization

toolkit for CORBA applications. Sub-objectives can be outlined as follows:

• To devise a suitable visual representation for CORBA applications. The visual

representation should show the dynamic behavior of an executing CORBA application.

• It is hoped that the application programmer can produce visualizations with little or no

intervention. In other words the visualizations will be produced automatically

• To explore the relevance of software visualization in general and in particular as a means

of teaching complex software systems.

1.4 Achievements

The achievements of this project are threefold. Firstly a graphical representation for CORBA

applications was designed. Secondly, modifications were made to an IDL compiler so that it

could generate files that can produce VEDA based visualization events. Thirdly, an extension

to VEDA was developed to accommodate CORBA applications.

1.5 RoadMap

This chapter gives a general introduction to the CORBAVis project. Firstly, it introduces the

area of software visualization and secondly outlines the basics of CORBA and VEDA.

Thirdly, it outlines the objectives of this project and finally, the achievements of this project.

Below is a brief overview of the rest of this document and its structure:

 4

Chapter 2.

This chapter assesses the state of the art in the field. A number of software visualization

taxonomies are presented. A broad range of visualization systems are discussed and

evaluated. Some empirical testing which has been carried out on visualization systems is also

outlined.

Chapter 3.

This chapter examines every aspect of the design of CORBAvis. It explores which aspects of

CORBA we should represent, then a visual representation of the chosen aspect is designed

and VEDA's limitations are then explored with regards to the chosen design. Finally, there is

an overview of CORBAvis's architecture and the design of CORBAvis components.

Chapter 4.

This chapter explains why ORBacus and JIDL were chosen for this project. It details the

modifications made to the JIDL compiler and the files that the compiler generates. Lastly,

CORBAvis implementation issues are investigated.

Chapter 5

This chapter introduces a demonstration application and it evaluates the visualization that is

produced by CORBAvis under a number of criteria. An Empirical test for CORBAvis is also

proposed.

Chapter 6

This concluding chapter contains a review of this thesis, a guideline for future work in this

field, and finally some concluding remarks.

 5

2. Literature Review

Developing a toolkit that will generate graphical representations of distributed object system

behaviour is the central aim of this project (the distributed object system of choice is

CORBA)[29]. The VEDA system developed by Andreas Ulbrich [1] is the starting-point from

which this toolkit will be developed. VEDA provides a network simulator and visualisation

toolkit for distributed applications.

The purpose of this chapter is to establish a context for this project in relation to previous

work carried-out by researchers in the same area. Section 2 gives an overview of the software

visualisation research area. Section 3 is concerned with detailing various systems that have

been developed to date. The systems which have been studied can be divided into three

distinct sections 1) systems concerned with visualising parallel/distributed programs 2)

object-oriented program visualisations and 3) visualisation systems which where designed

from a teaching perspective. Section 4 describes VEDA and it's constituent components.

Section 5 outlines some empirical tests that have been carried out on visualisation systems.

Finally, Section 6 is a summary of the chapter.

2.1 Overview of software visualisation as a research area.

Visually representing the internal states and actions of a computer is not a new idea. In 1826

Charles Babbage devised a notation to represent the internal workings of his Difference

Engine.

"The difficulty of retaining in the mind all the contemporaneous and successive movements of

a complicated machine, and the still greater difficulty of properly timing movements which

has already been provided for, induced me to seek for some method by which I might at a

glance of the eye select any particular part, and find at any given time it's state of motion or

rest, it's relation to the motions of any part of the machine, and if necessary trace back the

sources of it's movement through all it's successive stages to the original moving power. I

soon felt the forms of ordinary language were far too diffuse to admit any expectation of

removing the difficulty, and being convinced from experience of the vast power which

analysis derives from the great condensation of meaning in the language it employs, I was not

long in deciding that that the most favourable path to pursue was to have recourse to the

language of signs." [2]

 6

Babbage was concerned with hardware and his notation was paper-based but the same ideas

apply to software. Software visualisation makes use of the fact that the human brain is more

suited to processing, manipulating and recognising visual images and structures. Reading of

source-code/text is a special case of this visual processing. However, the detail involved is too

great and the brain will abstract each character, word or sentence into an internal meaning or

representation. Software visualisation attempts to aid the comprehension process by providing

these abstractions in a visual form, thus reducing the interpretation load. In order to create a

research context for the project we must try to define software visualisation and then explore

the general characteristics of software visualisation systems.

2.1.1 Defining software visualisation

Software visualisation is an ambiguous term from which a number of interpretations can be

derived. We must attempt to find a suitable definition. Other terms used throughout the

literature include program visualisation, algorithm animation, program animation and visual

programming. There is a certain amount of overlap in meaning between these terms and this

can be illustrated by the following definitions found in the literature:

• “Software visualisation is the use of the crafts of typography, graphic design, animation

and cinematography to enhance the interface between the software engineer or the

computer science student and their programs”[3].

• “Software visualisation describes systems that use visual (and other) media to enhance one

programmer's understanding of another’s work”[4].

• “Program visualisation is a sub-set of the area known as software visualisation - the use of

graphics and animation to visually describe and illustrate software and it's function” [5].

• “Program visualisation deals with graphical presentation, monitoring and exploration of

programs expressed in textual form” [6].

• “Visualisation is the process of creating and manipulating a visual image that allows a

mental picture of some situation or phenomenon to be formed. These images can be either

static or dynamic and need be graphical in nature, this allows the possibility of images

comprising of symbolic constructs” [7].

After surveying the literature software visualization is essentially an umbrella term, which can

be broken down into the two distinct fields of program visualization and algorithm animation.

Algorithm animations are concerned with depicting the algorithmic level of a program

without any consideration for the underlying programming structures that are used to

 7

construct the algorithm. The animation aspect is significant; it implies depiction of an

algorithm using “smooth graphical transitions between algorithmic states”[8]. Historically,

animation systems have been designed and used as teaching aids. Program visualization

systems are primly concerned with the constructs that constitute a program lower, these

constructs could be processes, objects, records, structures, loops, variables etc. Program

visualization systems are primarily used in the areas of performance analysis and software

maintenance. This project is concerned with visualizing a distributed object system with

regard to the interaction of its objects so CORBAvis could be termed a program visualization

system.

2.1.2 Taxonomies of software visualisation systems.

Several taxonomies have been developed in an attempt to define standard terms and to give a

foundation to the research area; these taxonomies vary to a large extent. However, two

taxonomies that are predominant in the field are taxonomy by Myers [9] and a more recent

taxonomy by Price et al. [3].

Myers' classifies systems from two perspectives: the data that they are based on, such as code

or algorithm visualisations; and whether the visualisations are static or dynamic. This

taxonomy covers many important aspects of a software visualisation tool; however, it fails to

provide any scope for evaluating the effectiveness of systems [8].

The taxonomy presented by Price et al. categorise systems in a more formal manner and try to

incorporate a certain degree of flexibility into their taxonomy to allow for future expansion

and revision. Their taxonomy is divided into six sections. Each of these sections is then

further subdivided into sub-sections called characteristics:

Scope

Scope is concerned with the general characteristics of the system:

Class of program: What type of program has the visualisation system been designed for? The

class of program substrate can be described by attributes such as source language, operating

system, environment or application.

Scalability: Does the visualization tool support large programs? This is a very important

characterization as many visualization tools only support small test systems. The inability of

visualization systems to scale is seen as a major problem within the research area.

 8

Concurrency: Are concurrent programs supported by the system? Concurrent applications

require specialized support within the visualization tool. [3]

Content

The content section relates to with what is actually visualised by the system:

Program visualization: Does the system produce visualizations of algorithms or programs?

When the system is designed to inform the user about one particular implementation of an

algorithm, it is usually a program visualization. On the other hand, if the system is teaching

the user about a general algorithm, it is an algorithm visualization.

Compile/Run-Time: Does the system gather information for the visualisation at runtime or

compile time?

Fidelity and completeness: Is it true that the visual metaphors generated by the visualization

tool present a complete representation of the underlying system? Systems that are designed

for an industrial context pose stronger demands than systems that are designed for educational

purposes. Teaching systems may be simplified to produce more readily comprehendible

visual explanations. [3]

Form

This section is concerned with what elements the visualisation is composed of.

Graphical Elements: What is the graphical vocabulary of the system.

Colour: Is colour used in the systems visualisations?

Animation: Is the visualization animated or static? [3]

Method

Method relates to the specification of the visualisation.

Specification: Visualisations can be hand-coded or be produced automatically by analyzing

the program structure.

Batch/Live: Visualization can be generated from a trace file or produced live as the program

executes. [3]

 9

Interaction

Interaction refers to whether or not the user has control over the visualization.

Navigation: Does the system allow the user to navigate through the visualization of a large

program or dataset?

Elision: Is it possible to omit unwanted detail from the display?[3]

Effectiveness

Are the visualizations that are produced by the system effective?

Appropriateness and clarity: Does the visualization communicate information about the

software effectively? How long does it take the visualizations to facilitate understanding? [3]

The price et al. Taxonomy will be used as a framework within which the visualization toolkit

developed as part of this project will be defined. For completeness sake it must be mentioned

that other taxonomies exist, again using a different set of classifications. One such taxonomy

is by Stasko and Patterson [10], which introduces scaled dimensions into a four-category

taxonomy. These categories cover aspect, abstractness, animation and automation.

2.2 Visualisation Systems

A large number of visualisation systems have been developed, with the late-eighties and

early-nineties a particularly productive period. In this section, a number systems and studies

have been selected from the literature and are categorised under three headings in relation to

their design objectives and functionality.

2.2.1 Educational Systems

BALSA

BALSA was used at Brown University in the 1980s for pedagogical purposes in computer

science courses, and also for research into and analysis of algorithm. BALSA uses 2-D

graphics and text to illustrate the execution of algorithms. The user can control the animation

by using breakpoints while viewing the execution through a number of windows.

An important feature of BALSA is that is it is designed to accommodate a wide range of

algorithms using standard animations. The animations are hand coded by a programmer who

identifies special events in the source code and maps these to a standard animation library.

 10

While BALSA is recognised as a landmark system in algorithm animation and as an

important pedagogic tool, it has a number of drawbacks. Firstly, it is very programmer

intensive. Secondly, the algorithm being evaluated is affected by integration with the BALSA

system. [11]

Zeus

The first system to use colour and sound to impart information was the Zeus algorithm

animation system. Zeus can also animate parallel as well as sequential algorithms. Some of

the techniques incorporated into Zeus are important to the area of visualisation in general: 1)

multiple views are used to reduce screen clutter and make the animation easier to

comprehend. 2) A history of previous algorithm states is presented to the user in order to put

the current algorithm state in context. 3) A deeper understanding of an algorithm may be

obtained by contrasting it with a different algorithm that performs the same function.

Developing the use of sound in algorithm animations is an interesting element in the Zeus

system. However, it was found that sound is difficult to use but can be effective in

representing patterns of activity and signalling special cases [12].

Polka

The POLKA methodology is primarily concerned with the visualisation of object-oriented

software. POLKA, developed using the X window system and motif, incorporates 2-D

animation and colour. Different representations of the program being visualised can be

created by using individual windows called views. A mapping from program operation to

animation sequence is achieved by associating a POLKA graphical routine, called a "scene",

with a program event. A view consists of a set of scenes. POLKA provides an API to its

graphical capabilities allowing the easy construction of visualisations. An important

characteristic of POLKA is its ability to accommodate parallel programs. [14]

 11

2.2.2 Visualisation Systems for Parallel/Distributed Programs

PAVENE

PAVENE concentrates on concurrent computations and is used to explore concurrent program

behaviour. The system is comprised of three key components, which work concurrently. The

program that is being visualised is the first component. The second component of the

visualisation system, the visualisation component, extracts information from the first

component and translates it into a graphical form. The rendering component displays the

images produced by the visualisation component, adding user interaction facilities.

The developers of PAVNE identified a number of limitations with BALSA. A very

significant limitation is that interesting events need to be identified and the corresponding

points in the code have to be instrumented. This limitation is particularly apparent when the

visualisation is concerned with concurrent computations, as an arbitrary state change in a

number of processes could be considered an event.

The declarative visualisation model used by PAVENE involves the mapping of the

underlying program’s state to a visual image. The state of the underlying computation is

accessed by the visualisation component. It is the responsibility of the visualisation developer

to specify which elements of the computation's state are of interest to the visualisation.

Mapping the specified program states to a collection of four-dimensional graphical objects

then generates visualisations. An interesting aspect of PAVENE is its use of program

correctness properties in deciding what elements of a computation should be visualised [15].

ParaGraph

The goal of the Paragraph system is the visualisation of performance data from parallel

computer systems. Paragraph contains a number of predefined views for this purpose. The

system uses portable instrumentation code (PICL), which is available in several parallel

message-passing architectures, as a way of collecting data. This architecture independent

aspect of Paragraph is a major advantage. Trace files generated by PICL are used to show the

performance of a given architecture when executing a program. All visualisations produced

by ParaGraph are "post-mortem". In "post-mortem" visualisations the user has no control over

the program being visualised. Paragraph emphasises portability and ease of understanding. A

large number of predefined views allow the user to gain different perspectives of the program

under study. Paragraph has a very shallow learning curve, with very little instruction needed

for newcomers to the system. Even though Paragraph is not application specific it provides

 12

extensions to allow users to construct their own views which are specific to their applications.

Developing these views is non-trivial, but once constructed, the new views can be used along

with the original views [16].

Jewel

Jewel is a distributed measurement system developed at the German national research centre

for computer science. "Jewel consists of a flexible toolkit for low-interference on-line

performance measurement integrated with a powerful adaptable graphical presentation facility

and a generic interactive experiment control system ". Jewels design considerations include:

1) flexibility with regard to the application which can be monitored 2) a central point of

control for the experimenter 3) a high degree of precision with regards to the quantitative

results obtained. The property of interference has a direct impact on the precision of results.

Interference refers to the influence the measurement process has on measured quantities.

Low-interference is identified as being very important in a distributed system where

instrumented code may produce completely different execution behaviour compared to a non-

instrumented system. 4.) An accurate global time base with high-resolution. This global time

should be implemented using synchronised hardware clocks 5) on-line visualisation of the

System Under Test (SUT).

The jewel distributed measurement environment is composed of four functional blocks.

"Measurement data is extracted from the SUT, collected, filtered and processed by the Data

Collection and Reduction System (DCRS) and then passed to the Graphical Presentation

System (GPS) for visualisation". The experimenter can influence the system by issuing

experiment control requests through the Experiment Control System (ECS). The ECS and

GPS are fully generic and can be configured for any distributed application. The DCRS has to

be adapted per application and uses the combination of instrumented code and dedicated

hardware support to extract data from the SUT.

A paper [17] related to the Jewel system discusses the concept of automatic instrumentation.

The structural information of program sources is used as input to the instrumentation process.

A modified compiler uses the meta-data generated by the structural analysis of the code to

place software triggers. Other options for automatically adding sensors to software include:

instrumented interfaces (e.g. RPC stubs) and instrumented libraries [18].

PARADE

 13

PARADE is an environment that facilitates the generation of visualisations for concurrent

programs. This environment, which is designed for use by programmers, consists of three

major components. The first component of the environment is responsible for monitoring the

program that is being visualised. The second component maps the data gathered from the

program onto graphical entities in the display component. The third component supports the

animation system. PARADE uses the Polka animation system to generate its graphical

displays; this is because Polka supports the animation of concurrent programs.

PARADE requires the instrumentation of source code for the extraction of data. Hand-

annotation of source code is error-prone and labour intensive. The developers of PARADE

attempted to address this problem by annotating the resident parallel communication library.

PARADE uses the "post-mortem" mode of operation. This involves reading from a trace file,

which is produced by the instrumented code. Other interesting elements of PARADE

include: 1) the systems ability to visualise very large programs by using a concept called

semantic zooming [19] and 2) the different time perspectives from which an animation of a

program can be viewed i.e. logical clock ordering or global clock ordering.” [20]

2.2.3 Visualisation Systems for object- oriented programs

Jerding at al. State in their paper [5] " We believe that the object-oriented programming

paradigm is an especially natural foundation for visualisation because it fundamentally

involves the manipulation of concrete "things": instances, messages, methods and so on.

Undoubtedly, programmers will already have a mental model of their software in which

entities have visual manifestations. Building visualisation tools for object-oriented systems

follows naturally from their correspondence to a visual representation." They go on to specify

three main objectives that a framework for the visualisation of object -oriented software must

realise:

• Little or no programmer maintenance: The generation of visualisations must involve

the minimum amount of work for the programmer otherwise the visualisation tool will

not be utilised.

• Present the "right" things: Extraneous information should be omitted from the

visualisation. Only information relating to the dynamic execution of a program should be

portrayed.

• Handle real-world problems: Visualisations should be compatible with large systems

i.e. the visualisations should be scalable.

 14

The use of virtual reality to visualise object-oriented programs in an educational setting is

discussed in a recent paper [21]. A visualisation in a virtual environment offers four

dimensions, three spatial dimensions and time. The visualisations in this study where

concerned with object-oriented design patterns. Class, object and interaction diagrams were

identified as the most important paper-based diagrams, which could be represented in the

virtual environment. Text descriptions describing entities within the virtual world are

incorporated into the system to aid understanding. The paper also discusses the use of VR in

visualising Java programs.

2.4 VEDA

VEDA [1] - the Visualisation Environment for Distributed Applications - consists of two

major components, a network simulator and a visualisation toolkit. The visualisation toolkit,

which is of more interest to this project, was developed to provide an easy-to-use tool for the

visualisation of program behaviour. Its main focus is the visualisation of distributed

algorithms. It provides mechanisms for the collection of visualisation data from distributed

application processes dispersed over a number of network nodes. Hand-annotation of the

application source-code is the preferred method of instrumentation. VEDA visualisations and

the distributed applications that drive them execute concurrently. Visualisation data is

transferred via a UDP connection to a centralised visualisation process. The visualisation

process is responsible for generating graphical views of the visualised application. Graphical

views are constructed from a generic visualisation library. The library contains commonly

used graphical representations for distributed applications. The visualisation process operates

by sequentially processing the events/data received from application processes. By controlling

the processing of the event stream a user can control the visualisation. The event processing

can be in one of three modes: stopped, running and single step. In the running mode events

are processed as they arrive where as in the single-step mode the next event is only processed

at a users request.

The second major component of VEDA is the network simulator [1]. The simulator models a

TCP/IP network environment and can be used in tandem with the visualisation toolkit. The

main purpose of the network simulator is to test applications under failure conditions. The

application's source code must be changed so that it can run on the simulator; Communication

primitives used in the application are replaced with VEDA primitives. VEDA provides the

user with a point-and-click GUI to enable the construction of a model network. A model

 15

network may consist of the following components: nodes, broadcast networks, point-to-point

networks and routers. The user specifics the behaviour of the network by configuring

individual network components. For example, a router may be set-up to discard packets at

random intervals.

2.5 Empirical testing of visualisations

The majority of empirical testing that has been carried-out relates to the effectiveness of

algorithm animations. It has been discovered through a series of tests conducted by Badre et

al. [22] that algorithm animations were not successful because the algorithm representations

were based on an expert’s understanding, not a novice’s perspective. This is a common

feature of many visualisation systems. In their tests they used an interactive animation to

teach a complicated algorithm to computer science graduate students. They also pointed out

that students must understand the mapping from algorithm to visual representation. "For a

student to benefit from the animation the student must understand both [the] mapping [from

the algorithm to the graphics] and the underlying algorithm on which it is based...students just

learning about an algorithm do not have a foundation of understanding upon which to

construct the visualisation mapping"[23]. In other words the students must first understand

the visualisation system before getting any benefit from it [24].

Byrne [25] conducted a similar study concerning interactive animations and came to the

following conclusion "The result from the two experiments show an unreliable benefit of

animations and predictions on students' ability to solve procedural and conceptual problems

with algorithms. This weak effect of animations is inconsistent with the intuitions of many

algorithm teachers. It seems clear that the sheer use of algorithm animation does not

automatically enhance learning".

However, some algorithm animation studies have had encouraging results. In a recent paper,

Keogh [27] came to the following hypotheses: "Hypothesis 1: The pedagogical value of

algorithm animations will be more apparent in open, interactive learning situations (such as a

homework exercise) than in closed exam-style situation" and " Hypothesis 2: animations

enhance pedagogy by making an algorithm more accessible and less intimidating, thus

enhancing motivation". Lawerence [26] conducted an experiment that showed that in an

informal setting, where students have free reign over the visualisation system, positive

benefits could be accrued.[24]

 16

Empirical testing of visualisation systems concerned with performance analysis, software

debugging and software maintenance is virtually non-existent. Most systems developed to

date are small prototypes and have not been tested in industrial settings. The inability of

software visualisation systems to scale is a major problem. When the prototype systems move

out of the laboratory and into the real world an appropriate evaluation can take place.

 2.6 Summary

The primary aim of this chapter was to study the general research area of software

visualisation and ascertain if there was a gap in the literature in relation to the visualisation of

distributed object systems.

After an initial flurry of research and development in this area, the level of interest is now

quite modest. A quick glance at the bibliography will bear this out. Many prototype systems

have been developed and techniques discovered. However, these prototypes have not scaled

and now gather dust as fragile toys. Essentially, there has been a lack of research into how to

deal with the large amount of graphical data generated by industrial applications. There is

after all only a certain amount of screen real estate.

Another point that should be made is that useful pictures are inherently difficult to draw. This

problem is compounded by the fact that individual users of a system do not share common

mental models. A given visualisation may appeal to one person and confuse another. Initially

people believed the intuitive maxim that pictures are better than words. Visualisation systems

where developed and not empirically tested. Empirical tests that have been carried out are

nearly universally inconclusive. This is an obvious problem.

However, there have been some successes. The visualisation of small programs for use in the

educational arena has produced some good results. Scale is not a problem and visualisations

have been specifically tailored to suit student’s needs.

In conclusion, no system that I have studied as part of this literature review accommodated

the visualisation of distributed object systems. Whether or not distributed object systems pose

any new questions is explored in the remainder of this document. [28, 29]

 17

3. Design

3.1 Introduction

This chapter is broken up into the following sections. The first section examines what aspects

of CORBA should be represented. The second section explores the visual design of

CORBAvis. The third section details VEDA's design. The fourth section seeks to discover the

limitations of VEDA. The fifth section overviews CORBAvis architecture. The sixth section

considers the design of CORBAvis components. The last section relates to Swing and AWT.

3.2 What Aspect of CORBA should be represented?

At what level of abstraction should a CORBA application be graphically represented? To

facilitate the answering of this question a brief overview of CORBA is required.

3.2.1 CORBA Overview

The following figure shows the primary components in the architecture. Descriptions of the

components that are pertinent to this discussion are presented below the figure:

Fig 3.1 CORBA Overview

Object -- " This is a CORBA programming entity that consists of an identity, an interface,

and an implementation, which is known as a Servant." [29]

 18

Servant -- " This is an implementation programming language entity that defines the

operations that support a CORBA IDL interface. Servants can be written in a variety of

languages, including C, C++, Java, Smalltalk, and Ada."[29]

Client -- " This is the program entity that invokes an operation on an object implementation.

Accessing the services of a remote object should be transparent to the caller. Ideally, it

should be as simple as calling a method on an object, i.e., obj->op(args). The remaining

components in Figure 3.1 help to support this level of transparency. "[29]

Object Request Broker (ORB) --" The ORB provides a mechanism for transparently

communicating client requests to target object implementations. The ORB simplifies

distributed programming by decoupling the client from the details of the method invocations.

This makes client requests appear to be local procedure calls. When a client invokes an

operation, the ORB is responsible for finding the object implementation, transparently

activating it if necessary, delivering the request to the object, and returning any response to

the caller."[29]

CORBA IDL stubs and skeletons -- " CORBA IDL stubs and skeletons serve as the ``glue''

between the client and server applications, respectively, and the ORB. The transformation

between CORBA IDL definitions and the target programming language is automated by a

CORBA IDL compiler. The use of a compiler reduces the potential for inconsistencies

between client stubs and server skeletons and increases opportunities for automated compiler

optimizations. "[29]

Object Adapter -- " This assists the ORB with delivering requests to the object and with

activating the object. More importantly, an object adapter associates object implementations

with the ORB. Object adapters can be specialized to provide support for certain object

implementation styles (such as OODB object adapters for persistence and library object

adapters for non-remote objects)."[29]

It may be noted at this point that the dynamic invocation capabilities of CORBA were at the

outset removed from the scope of this project and so were not part of the overview above.

They support a method invocation technique that is rarely used.

 19

3.2.2 CORBA Implementation Overview

Given the infrastructure outlined above CORBA applications can be developed using a

number of different techniques. CORBAvis is designed for CORBA applications that use the

implementation-based approach to CORBA application development. What this means is that

server objects extend or inherit the skeleton class to avail of its functionality. The Tie

implementation approach is not within the scope of CORBAvis. The type of object adapter

which a CORBA application uses (Basic Object Adapter (BOA) or the Portable Object

Adapter (BOA)) has no bearing on the functionality of CORBAvis.

The implementation of a CORBA application starts by defining an interface in IDL and

placing it in a file. We can use a file named Hello.idl for the purposes of illustration. This

file contains an interface definition named Hello with a constituent method say_hello().

When the Implementation approach is specified an IDL compiler using the Hello.idl file will

generate the following files:

Hello.java: The IDLtoJava mapping specifies that IDL interfaces are mapped directly to Java

interfaces. The Hello.java interface extends org.omg.CORBA.Object, providing standard

CORBA object functionality.

HelloHelper.java: This class provides ancillary functionality, namely the narrow method,

which is required to convert CORBA object references to their correct types.

HelloHolder.java: This final class provides operations for OUT and INOUT interface

arguments, which CORBA has but do not map easily to Java’s pass-by-value semantics.

StubForHello.java: This class provides CORBA functionality for the client. It implements the

Hello.java interface

_HelloImplBase.java: This abstract class is the server Skeleton that provides basic CORBA

functionality to the server.

The application programmer uses the above classes to construct a CORBA application. As

with all distributed systems CORBA applications can be seen as a collection of client and

server process. A server is a process that instantiated one or more server objects. Extending

the _HelloImplBase.class creates a server object. As the _HelloImplBase class is an abstract

class, extending objects must provide their own implementations for each method defined

 20

within _HelloImplBase. Client processes wishing to avail of the services offered by a server

object must obtain a CORBA reference for the said object. This can be done in a number of

different ways. Briefly, object references can be obtained by 1) using the CORBA naming

service 2) using stringified references where object references are placed in a file which can

be accessed by both client and server processes 3) using URLs 4) using a vendor specific

binding mechanism. Once the client process obtains the reference a stub or proxy is created

with which to communicate with the server object. By calling a method on the proxy an

invocation is made to the remote server. Remote method invocations are thus transparent to

the application programmer.

3.2.3 Level of abstraction for visualisation

Given the outline above a key design decision of this project was to decide what aspect of the

CORBA infrastructure should be visualised. The author considered three different

alternatives:

• The visual representation of the underlying CORBA communication mechanism.

This would involve instrumenting the ORB core. By instrumenting the ORB core the

visualisation developer would be able to elicit and explore the complex workings of the

ORB. While this would be a useful debugging tool for ORB developers it would have

debatable benefits as a teaching aid. The ORB core is very much hidden from the

application developer and of little real interest.

• A high-level algorithm animation.

As was discussed in the previous chapter, algorithm animation ignores specific

implementation details and concentrates on representing the algorithm that is being used

to solve a problem. While this approach is beneficial in certain teaching contexts, it

ignores implementation details. The distributed object system that is used to construct the

algorithm would not be visualised.

• The CORBA Object Model.

In between the low-level communication infrastructure and the high-level algorithm lies the

CORBA object model. " The OMG Object Model defines common object semantics for

specifying the externally visible characteristics of objects in a standard and implementation-

 21

independent way. In this model clients request services from objects (which will also be

called servers) through a well-defined interface. This interface is specified in OMG IDL

(Interface Definition Language). A client accesses an object by issuing a request to the

object. The request is an event, and it carries information including an operation, the object

reference of the service provider, and actual parameters (if any). The object reference is an

object name that defines an object reliably. ". [29]

Essentially the object model can be broken down into the following components: Client

objects, Server objects and requests. Add to this list the processes which instantiated the

objects and the nodes on which the processes reside and we have a comprehensive model of a

CORBA application. This model was in fact chosen as the visualization model for CORBAvis

for the following reasons:

• It provides a simple yet comprehensive representation of a CORBA application.

• The visualisation model can be automatically driven using the instrumented files

generated by a modified IDL compiler. By instrumenting the stubs and skeletons with

visualisation events, object creation and method invocation can be depicted. Events

relating to nodes and processes can also be generated.

3.3 Visual Design of CORBAvis

This section of the design chapter examines the design considerations that went into designing

the visual capacities of CORBAvis. It then considers the design of a visual vocabulary that

complements the visualisation model. The visual vocabulary is the collection of visual

representations that match the visualisation model. Lastly it considers the design of

CORBAvis's graphical user interface.

3.3.1 Visual Design Concerns

The following design concerns where taken into account with regards to designing

CORBAvis's visual vocabulary:

 22

Simplicity

Simplicity in the context of a graphical model essentially means a reduction of screen clutter.

There is only a certain amount of screen real estate available. Graphical entities should be

designed to convey the underlying entities semantics in the simplest possible way.

Ease of implementation

The graphical engine that will be used to render the graphical entities is of key importance.

Certain constraints may be imposed on the design of the visual vocabulary due to the

limitations of the graphical engine. For instance, Java's Swing API cannot render 3-

Dimensional shapes. Another consideration (in the opinion of the author) is the fact that

graphics programming is a difficult and tedious task. Keeping the visual vocabulary simple

reduces the programming effort

Genericness

The visual vocabulary used in the visualisation system should be familiar to users. A learning

tool should have as shallow a learning curve as possible. For this reason CORBAvis's visual

vocabulary is loosely based on the Unified Modelling Language UML.

Closely match the users mental model.

As has been discussed in previous chapter it is important to develop a visual vocabulary that

is compatible with a user's mental model. This is a very difficult thing to do and would

perhaps be more suited to a Ph.D. thesis. However, it is hoped that keeping the visual

vocabulary as simple and generic as possible will go some way to achieving this aim.

Convey the dynamic aspect of system execution.

The visual vocabulary should be able to convey the dynamic nature of computer system

execution. In other words, the changing state of the system should be depicted in its visual

representation.

 23

3.3.2 Visual Vocabulary Design

The visual representation for each component in the visualisation model is examined below:

Nodes

Fig 3.2 Visual Representation of a Node

Nodes on which CORBA processes reside are depicted as solid quasi-3-Dimensional

rectangles. The colour of the node has no real significance except in the role of a visual aid.

Basically, colour is used to distinguish one node. There is a predefined set of colours that can

be ascribed to nodes. The name of the node together with its Internet address is placed at the

bottom of the rectangle.

Processes

Fig 3.3 Visual representation of a process

CORBA processes are represented by non-filled rounded rectangles. The colour red is

uniform for all processes. The name of the process is placed at the bottom left-hand corner of

the rectangle. The application programmer can specify the name of the process.

 24

Object

Fig. 3.4 Visual representation of an Object

Server objects are represented by a black square enclosed within a black circle. The

interfaces that a server supports are represented as a projection from the server object ending

in a filled circle. The colour of this circle represents the interface that is supported by the

server. Black was chosen as a uniform colour for server objects so that the interfaces that

they support may be highlighted. The black circle that surrounds the square is there for

aesthetic reasons only. The server name is placed in the bottom left-hand corner. The name

refers to the interface that the server supports.

Client objects have the same form as server objects except they do not have interface

projections. The colour of client objects represents the interfaces for which clients are

proxies. All client names are prefixed by the word "proxy-". Client proxy names can be

specified by the user or generated automatically by the visualisation system.

Method Invocations

Method invocations are depicted using an animated directed line. Animation is used to

convey the dynamic aspect of method invocation. The invocation line emanates from the

middle-left of client objects and is directed towards the appropriate server object's invocation

projection. The invocation line is retracted upon invocation return.

Object Creation

Object creation is represented by the object first appearing and then "growing" to it's specified

size. Growing means a smooth animation or transition. This attribute was added to objects in

order to attract the users attention.

 25

Annotation

The depictions of method invocations are accompanied with textual references called

annotations. Annotations are employed to highlight method invocations to the user.

Annotations are also used to give more detailed information about server objects. Clicking on

a server object will result in an annotation appearing, detailing the methods of the interface

that the server supports.

3.3.3 Graphical User Interface Design

The graphical user interface is mostly inherited from VEDA. The two most important

components of the GUI are examined below:

Toolbar

The visualiser toolbar is inherited from VEDA and has the following functionality:

Fig 3.5 screenshot of toolbar

Button 1: This button is responsible for running the visualisation, stopping the visualisation

and stepping through the visualisation.

Button 2: This button switches the visualisation into single step mode.

Button 3: This button is used to change the speed of the visualisation

Button 4: This button closes the visualisation.

Button 5: This button is redundant.

1 2 3 54

 26

The Invocation Display

Fig 3.6 screenshot of Invocation panel

The invocation panel provides detailed information about the method invocations that are

being and have been depicted in the visualiser. An entry in the invocation panel gives the

following information about an invocation:

• Invocation Requests

A typical entry in the invocation panel for an invocation request would look like this:

 Account.deposit(float [100.0])

The name of the client-object together with the name invocation is detailed. Any parameters

that the method may have are also represented with a parameter type and value.

• Invocation Return values

Invocation return values are added to the invocation list entry upon invocation return:

Account.deposit(float [100.0]) == >> 0.0()

The brackets contain the values of any INOUT parameters if they are present

 27

3.4 Design of VEDA

Before exploring the detailed design of CORBAvis it is necessary to take a look at VEDA’s

design and assess it’s suitability with regard to generating automatic visualisations of

CORBA applications and supporting the visual vocabulary described in the previous section.

Before assessing VEDA's suitability for the job at hand it is necessary to take a closer look at

VEDA's design.

3.4.1 Veda Design

The Veda visualization toolkit can be broken into two distinct components, the back-end and

the front-end.

Fig 3.8 VEDA architecture

 28

Veda Back-end Component

The VEDA back-end is responsible for gathering important events from the application that is

being visualized. An application must be manually instrumented or hand-annotated with

visualization event calls. There is a fixed set of twelve events that are defined within VEDA.

The event calls are placed at points within the application source code that are of interest to

the visualization developer. Events must be bound to entities within the application. An entity

can be any computing construct. When the application executes, the back-end controller

receives visualization events, adds some control information and passes them on to the

visualization application.

Veda Front-end Component

The visualization application or front-end may reside on the local host or may be on a remote

machine. Visualization events are passed to the visualization application from the back-end

controller via UDP.

Events arriving at the visualization application are queued. Alternatively, the events can be

placed in a trace file that can be used for post-mortem [1] execution. The visualization engine

is now presented with an unordered set of events to manipulate. Remember that these events

are bound to entities or components within the visualized application. Entities defined within

the visualized application have a graphical representation in the visualization application

known as an EntityView. Veda defines a hierarchy of views:

Fig. 3.9 Graphical View hierarchy

The hierarchy is described as follows:

EntityView: " An Entity view is used to depict a component such as a component such as a

process (or thread) or a machine in a network. These can be described as active components.

System View

EntityView EntityView EntityView

MessageView StateView StateView

 29

The major assumption for an entity is that at any time it must be in one state out of a finite set

of states, thus the entity view uses state views."[1]

StateView: "A state View is a representation of one particular state of an entity."

MessageView: "A message View is a representation of a message that was sent by one entity

to another entity." [1]

SystemView: " A system view is a container for a set of entity views (including their

associated state views and the message views bound to them). Visualization consists of at

least one system view. Entities can be represented by different entity views in different

system views". [1]

A very important component of the front-end design is the GUI controller. The GUI controller

is responsible for removing events from the event queue and passing them on to the

appropriate SystemView it also contains all the functionality for the Graphical User Interface.

Given the communication infrastructure which is responsible for transporting visualization

events from instrumented application to the visualization application and the standard set of

graphical views provided by VEDA it is now up to the visualization developer to configure

the visualization. VEDA provides the visualization developer with two alternative strategies:

1. VEDA provides a standard visualization application, which can be configured using a

configuration file. The configuration file details the names of the entities, which will be

annotated in the application that is to be visualized. A standard set of entity views is used

to represent these entities when events arrive at the visualization application. This method

of configuration is very restrictive, as the application programmer must use pre-defined

views.

2. VEDA provides visualization API that is built into the Java class that controls the

visualization application. By using this API a visualization developer can develop their

own EntityViews and add them to the visualization application.

 30

3.5 The limitations of VEDA.

The Veda visualisation toolkit was designed to visualise distributed algorithms. This project is

concerned with developing a framework for the automatic visualisation of CORBA

Applications. VEDA has a number of deficiencies in this regard:

• Manual instrumentation.

To produce visualisations the user must hand-annotate the source code that is to be

visualised. A prospective user must learn about VEDA and in particular the visualisation

events it supports. It is then assumed that the user knows where to place these events so

as to produce a meaningful visualisation. This approach is not suitable for non-expert

users.

• Space-time diagrams.

Veda uses space-time diagrams as a visual metaphor to depict the dynamic execution of

distributed algorithms. While this is a reasonably generic approach it is unsuitable for

CORBA applications. Veda provides a degree of configurability through the strategies

outlined in the section above. Representations of an entity's state, variables and messages

can be altered to suit a given application without modifying VEDA's source code.

However, the space-time diagram representation employed by VEDA cannot be re-

configured using either of the two strategies.

• Message Paradigm.

Veda is designed to represent a message-passing paradigm using send and receive

primitives. CORBA's synchronous method invocations have different semantics. A client

invoking a method on a remote server must wait for a reply. In the message passing

paradigm it is up to the programmer where and when to block for a receive. This

difference in messaging paradigms has consequences at implementation level.

• State and variables

Veda is designed to represent the state and variables of distributed entities. The

CORBAvis extension does not seek to represent these aspects of distributed objects

 31

• Animation

Veda does not have built-in animation capabilities. By animation I mean the smooth

transition of a graphical entity from one state to another.

3.6 Overview of CORBAvis architecture.

CORBAvis was designed as an extension to VEDA to overcome the limitations outlined

above and also adds some new functionality. The integration of CORBAvis into VEDA's

existing visualization framework is depicted below:

Fig. 3.10 CORBAvis architecture

 32

Client stubs and server skeletons use the VisManager as a visualisation utility. CORBA

objects use the VisManager for initialisation procedures and as a conduit for visualisation

events. The VisManager communicates with the EntityManager, which resides in the

Visualisation application, to obtain initialisation information. The existing VEDA

communication infrastructure is used to transport events to the visualisation application. The

GUI controller takes events off the event queue and passes them to the CorbaSystemView.

Fig. 3.11 Graphical view containment hierarchy

CorbaSystemView is one of a new set of views to been designed for CORBAvis. The new

views: CorbaSystemView, NodeView, ProceesView and ObjView are arranged in the

following containment hierarchy:

The CorbaSystemView can contain multiple NodeViews. NodeViews contain one or more

ProcessViews. ProcessesViews accommodate one or more objects.

A number of utility functions have also been integrated into the visualisation application to

help manage the CORBA visualisation. A quick synopsis of each of the new components is

given below.

 33

• VisManager

The VisManager acts as a CORBA wrapper for VEDA Back-end Functionality. It interacts

with CORBA client and server objects, providing them with visualisation information and

generating visualisation events on their behalf.

• CorbaSystemView.

CorbaSystemView extends the functionality of VEDA's front-end component SystemView.

CorbaSystemView acts as the parent graphical entity for the other visual entities within

CORBAvis, i.e. it acts as a container or canvas on which the other entities are placed. It also

acts as a switch for visualisation events.

• NodeView

This component is primarily concerned with visually representing nodes. It also keeps track

of the number of CORBA processes and objects that are contained within a given node

• ProcessView

The ProcessView component is responsible for rendering CORBA processes. It also

maintains a list of objects that are contained within a process. ProcessViews resize themselves

to accommodate additional objects.

• ObjView

As the name suggests this component embodies the functionality required to visually depict

and manage objects.

Utility functions

• MessageManager

The MessageManager is concerned with the management and depiction of method

invocations. It ensures that the stream of invocation events, which are in an arbitrary order,

are filtered and organised so that the correct sequence of invocations is depicted on screen.

• InterfaceManager

This component maintains a repository containing all the interfaces known to the

Visualisation Application.

• EntityManager

The entity manager keeps track of all the entities which are involved in the visualisation and

performs some administrative tasks for VisManagers

 34

3.7 CORBAvis component design

This section details how the different components in the CORBAvis architecture outlined

above interact with each other. Firstly, the back-end components are examined and then the

CORBAvis front-end components are examined.

3.7.1 back-end component interaction

C O R B A A P P : C li e nt O b j S e rver O b j V is M a n a g e r

s e t u p ()

c re a t e ()

c re a t e ()

re g is t e r()

in i t ia l is e ()

in i t i al is e ()

in te rfa c e ()

c o n ve rt ()

c o n ve rt

Fig. 3.12 back-end component interaction diagram

• Visualisation set-up.

The Set-up call specifies on which node and at which port the visualisation application is

running, it also specifies the name of the application. Upon receipt of a set-up call the

 35

VisManager registers with the EntityManager and receives a visualisation identifier, which is

used to uniquely identify the CORBA process that instigated the set-up call.

• Object Creation.

When a client or server object is instantiated it makes a request to the VisManager for a

visualisation identifier. The object uses this identifier in subsequent visualisation events.

• Interface recording

Server objects pass details about the interface they support to the VisManager.

• String Conversion

The VisManager provides a utility function to client and server objects for converting basic

data-types to a corresponding String representation. The reason for this will be discussed in

the implementation chapter.

 36

3.7.2 Front-End component interaction

C o rb a S y s te m V i
e w

N o d e V ie w P ro c V ie w O b jV ie wV is u a lis a t io n
A p p

a d d _ n o d e ()
s w itc h ()

c re a te ()

a d d _ a p p ()

s w itc h ()

c re a te ()

a d d _ e n tity ()

a d d _ o b j()
s w itc h ()

c re a te ()

a d d _ e n tity ()
in it_ o b j()

s e tu p ()

s ta r t_ o b j

a n im a te ()

a d d ()

a d d ()

a d d ()

Fig. 3.13 Visualization component interaction

CorbaSystemView, as was mentioned above, acts as a visualisation event switch. The

visualisation application passes events to the CorbaSystemView, which in turn switches them

internally so that the appropriate action is taken. The above figure deals with the addition of

the defined entities to the visualisation i.e., nodes, processes and objects.

1. If a node entity is to be added to the visualisation, CorbaSystemView creates a NodeView

object and adds it to its container.

2. If a process entity is to be added to the visualisation, CorbaSystemView creates a

ProcessView object and passes it to the appropriate NodeView. The NodeView object

then adds the ProcessView to its container.

3. ObjViews are created by CorbaSystemView are passed to the NodeView that contains

them. The NodeView determines which application the object belongs to and using the

init_obj method informs the appropriate ProcessView that a new object is to be added.

 37

The ProcessView prepares the object for rendering through a set-up method call and then

adds the ObjView to its container and then starts the object’s growth animation by

invoking the objects animate method.

Utility functions

CORBAvis contains a number of utility functions. Namely the MessageManager,

InterfaceManager and the EntityManager. The design of the MessageManager and

InterfaceManager is outlined below. A detailed description of the EntiyManager is examined

in the implementation chapter

• Message Manager

The Message manager deals with send and receive visualisation events in the following way:

vis u a lis a t io n
a p p lic a t io n

Co rb a S y s te m V i
e w

M e s s a g e M a n a
g e r

S e n d in g
O b jV ie w

C o rb a M es s a g eR ec i e vi n g
O b jV ie w

s e n d _ E ve n t ()

s w it c h ()

s e n d ()

s e n d ()

q u e u e ()

d ra w M e s s a g e ()

rec e ive _ e ve nt ()

c re a t e ()

s w it c h ()

re c ie ve ()

q u e u e ()

m es s a g e ()

re c ie ve ()

re t r ieve ()

d ra w M e s s a g e ()

 Fig. 3.14 Message manager component interaction

 38

Send_Event()

Send events are passed to the MessageManager from the CorbaSystemView. The

MessageManager queues the event if it is out of sync with other messages related to the

sending object. When the message is removed from the queue it is sent to the ObjView of the

sending object. This ObjView creates a new CorbaMessage and sends it to the receiving

ObjView, which stores the message. It then sends the message back to the MessageManager

via the drawMessage Method.

Receive_Event()

Receive events are also placed on the MessageManager’s queue. When the event is removed

from the queue it is passed to ObjView which represents the object that received the message.

This object retrieves the original sent message which corresponds to this receive event and

sends it to the messageManager for rendering

• The Interface Manager

GUI Controller CorbaSystemVi
ew()

InterfaceManag
er

ObjV iew

Interface_events()

visualise()

new_interace
get_interface()

Fig 3.15 InterfaceManager component interaction

Interface events are passed to the InterfaceManager from the CorbaSystemView. The

Interface manager stores the interface descriptions in an interface repository. When ObjViews

are instantiated they request an interface description from the InterfaceManager.

 39

3.8 Swing and AWT

Swing and AWT (Abstract Window Toolkit) allow the creation of Graphical User Interfaces

(GUIs) for Java Applications and Applets. AWT provides the GUI functionality for JDK v1.0

and JDKv1.1. VEDA uses AWT to produce its graphical representations. For a number of

reasons it was deemed necessary to convert elements of VEDA’s graphical components to

Swing so as to provide a suitable foundation for CORBAvis. The following section looks at

the reason for this design decision and this is followed by a look at the Swing components

that are used in CORBAvis.

3.8.1 The rational for converting VEDA to Swing.

Sun Microsystems provided a number of standard reasons for converting AWT-based

programs to Swing, the most salient being the fact that Swing components are implemented

with no native code. This means that Swing components provide a lot more functionality

because they do not have to be designed for a lowest common denominator platform i.e.

Swing components run on the JVM platform [28]. In the context of CORBAvis the

conversion was undertaken for three main reasons:

1. VEDA uses the AWT Canvas component to render visual entities. To implement the

containment hierarchy outlined above in Section 3.6 a number of overlapping

components have to be added to a containing Panel. In AWT this results in the initially

added component obscuring subsequent components preventing the containment

hierarchy from being rendered. Swings' JPanel provides a solution to this problem. The

JPanel can be used to render images but it is also a container. The containment hierarchy

can be implemented by adding contained components to a JPanel.

2. AWT does not provide an elegant or easy solution for rendering method invocations once

the containment hierarchy has been implemented. The rendering of method invocations

requires that a line be drawn across component boundaries. By using a JFrame for the

visualisation frame it's GlassPane can be used to draw a line free of component boundary

considerations.

3. All Swing components use double-buffering as a means of improving the appearance of

frequently changing components.

 40

For the reasons outlined above certain AWT-based VEDA components had to be converted to

Swing Components.

3.8.2 Swing Components

The JFC and Swing where introduced in JDK v1.2. JFC is short for Java Foundation Classes

and contains the following features: 1) The Swing Components 2) Pluggable Look & Feel

support 3) the accessibility API 3) the Java 2D API 4) Drag and Drop support. The Swing

Components are the only element of the JFC that is of interest to the CORBAvis project.

Swing components used in the CORBAvis project are described below:

[28]

Frame: “ Implemented as an instance of the JFrame class, a frame is a window that has

decorations such as a border, a title, and buttons for closing and iconifying the window.

Applications with a GUI typically use at least one frame. ” [28] A JFrame is used as the main

window for the visualization application. The GUI controller implements it.

[28]

Root Pane: “ In general, you don’t directly create a JRootPane object, you get a JRootPane

when you instantiate a JFrame..… as the figure above shows, a root pane has four parts”; two

of them are of interest to CORBAvis, the glass pane and the content pane.

 41

The glass pane: “Hidden, by default. If you make the glass pane visible, then it's like a sheet

of glass over all the other parts of the root pane. It's completely transparent unless you

implement the glass pane's paint method so that it does something.” [28]. The glass pane is

used to provide an elegant solution to the problem of depicting method invocations.

The content pane: “ The container of the root pane's visible components.” [28]

[28]

Panel: “The JPanel class provides general-purpose container for components. By default,

panels don't paint anything except for their background, however, you can easily add borders

to them and otherwise customise their painting.”[28] The JPanel is the most important

graphical component in the CORBAvis GUI. SystemViews, NodeViews, ProcessViews and

ObjViews are all implemented using a JPanel. This is because JPanels provide a customisable

surface area on which to draw.

[28]

ScrollPane: "A Scrollpane provides a scrollable view of a component. When screen real

estate is limited, use a scroll pane to display a component that is large or one whose size can

change dynamically. " [28] CORBAvis employs a ScrollPane to provide the visualization

application with a larger surface area on which to place graphical components.

[28]

Lists: "A List presents the user with a group of items to choose from. A list can have many

items or can grow to have many items, so lists are often used in a scroll pane"[28].

CORBAvis uses a list to provide detailed information on method invocations.

 42

4. Implementation
This chapter deals with the implementation issues involved in CORBAvis. The first section

investigates the reasons for selecting ORBacus as the ORB for this project. The second

section details the modifications that were made to ORBacus's IDL compiler. The third

section examines the resulting modifications made to the IDL compiler's generated files. The

fourth and fifth sections describe implementation details of CORBAvis.

4.1 ORBacus and JIDL

Once it had been decided to drive the visualisation from the stubs and skeletons generated by

the IDL compiler, it was necessary to find a free ORB and more importantly the source code

for a Java-to-IDL compiler. Initially I was interested in the ORB supplied as standard with

Sun's JDK v1.2. The reason for this was ease of integration with CORBAvis that is

implemented in Java. Source code for the JDK is freely available, however, the IdltoJava

compiler is not bundled with JDK v1.2 and the source code for the compiler is not available.

The latest version of the Java environment, JDK v1.3, incorporates the IdltoJava compiler

(now named idlj) into the standard release. For two reasons I decided to look for a different

solution: 1) The source code for the idlj compiler was uncommented and undocumented. 2)

The complexity involved in the build process outweighed any gain there might have been

from using the Java ORB.

Another possible technique that could have been used to instrument the stub and skeleton

code was to use a Pearl script. A Pearl script could parse the files generated by the IDL

compiler by looking for recognisable patterns such as method calls and then inserting the

visualisation event calls. This technique was discounted for two reasons:

1. The authors lack of experience with scripting languages.

2. A user of the visualisation toolkit would have to run the script every time the IDL

compiler re-generated files.

Modifying an IDL compiler provided the most elegant solution. Finally ORBacus was chosen

and its JAVA IDL compiler JIDL. ORBacus, developed by Object Oriented Concepts Inc, is

a fully CORBA compliant object request broker with published source code. ORBacus comes

in two flavours: ORBacus for Java and ORBacus for C++. JIDL is a C++ executable and is

shipped with ORBacus for C++. It was necessary to download both versions of ORBacus

because the JIDL binary is a utility that comes as part of ORBacus for C++. Orbacus 3,

 43

which was used in this project, is OOC's Basic Object Adapter based ORB product.

Orbacus3 was chosen for the following reasons:

1. The JIDL compiler's structure is very compact and although undocumented it is relatively

easy to understand.

2. The build process that uses Microsoft's nmake utility is reasonably straight foreword.

3. OOC offers a good support facility.

4.2 Modification of the IDL compiler

As was discussed in the previous section, JIDL is a C++ executable program that comes as

part of the ORBacus for C++ release. Modifications had to be made to the compiler so that it

would generate files instrumented with visualisation code. The necessary modifications

proved to be relatively modest once the compiler’s internal structure was understood. The

main modifications were:

1. An extra option was added to the compiler’s option list so that the user would have a

choice of whether or not to instrument the standard generated files with visualisation

code. The user must specify that they want the standard files without visualisation code

as the modified compiler generates visualisation enabled stubs and skeletons by default.

A typical command-line directive to produce standard files would look like this:

Jidl --package bank –no-vis bank.idl

2. The files produced by the JIDL compiler have a standard structure, which they adhere to

for every interface description. Deciding how to modify the compiler, once you

understand how the compiler generates the standard files, is a trivial task. The majority of

modifications involved placing extra output statements, containing the visualisation code,

at various strategic points within the genJava.cpp file. Some slight modifications were

also made to the compiler structure to include a list of supported method names inside the

skeleton constructor. The challenging aspect of this part of the project was deciding what

the instrumentation should be rather than how to instrument it. This will be discussed in

the following section.

 44

4.3 Modification of Compiler generated files

The stub and skeleton files required substantial modification while the helper class is only

modified slightly. The other files are left untouched. The following sections detail the

modifications that were made.

4.3.1 Skeleton modifications

The skeleton class that is output by the JIDL compiler is an abstract class. A server object

extends this class. In normal operation the skeleton class is not provided with a non-default

constructor. The modified visualisation compiler produces a non-default constructor to

provide the following functionality:

• A list of the methods supported by the server object and the name of the supported

interface are placed in the constructor. This list is passed to the static VisManager class

via the regInterface() method call. The VisManager prepares the list for transport and

sends it to the visualisation application. The visualisation application needs this

information so that it can annotate the visual representation of server objects with the

interface they support.

• The Server object must obtain a unique visualisation identifier for the visualisation events

that it generates. It also requires a VEDA back-end object to act as a conduit for

visualisation events. The VEDA back-end object and the visualisation identifier are

obtained by invoking the static VisManager method objInit().

• The skeleton constructor generates a VisSysAddEvent in order to inform the visualisation

application of the server's creation. The VisSysAddEvent represents the addition of an

entity to the visualisation. The description element of the VisSysAddEvent is used to

indicate the type of object being added to the visualisation.

Apart from object creation we are also interested in generating visualisation events when a

server object receives a method invocation. The VisRecvEvent event requires the

visualisation identifier of the sending entity. However, information about the client object is

hidden from the server skeleton. To overcome this problem a number of modifications had to

be made to both the client stub and server skeleton interface methods.

 45

When the ORB receives a request for a server object, it calls, via the object adapter, the

invoke method in the servers’ skeleton. A ServerRequest object is passed as a parameter.

The invoke method passes the ServerRequest object to the skeleton interface method it is

intended for. The interface method extracts any parameters that may be contained within the

ServerRequest object and passes them on to the corresponding method implementation in the

implementation class. The work-around that makes available the senders' visualisation

identifier to the server skeleton involves stuffing an extra INOUT argument into every

invocation. In this way a client object can pass it’s visualisation identifier to the server

skeleton and the server skeleton can pass its visualisation identifier back to the client. This

extra parameter is completely transparent to the user and has no impact on the IDL definition

or the implementation object. Extra code is added to each skeleton interface method to

handle the extraction and insertion of this extra parameter.

The skeleton interface method having extracted the visualisation identifier, sends a

VisRecvEvent to the visualisation application. The event is sent after the implementation

method call. The VisRecvEvent description field contains the name of the method, which has

been called together with the String representation the return value if there is one. The return

value is converted to a String via the polymorphic convert method in the VisManager class.

The value of INOUT parameters are also added to the decryption field if there are any

present.

4.3.2 Stub modifications

The Stub class is instantiated by the narrow and read methods in the helper class. In ORBacus

v.3.0 the proxy is not directly instantiated by the user. The visualisation compiler (modified

IDL compiler) generates a non-default constructor for the Stub class. This constructor has the

same purpose as was outlined above for the Skeleton except the interface information is

omitted. Another difference is that the Stub constructor takes a String that contains the

proxy’s name. This name is incorporated into the VisSysAddEvent.

The Stub interface methods are also modified so that the problem of visual entity

identification is overcome. As was discussed in the previous section, visualisation support

code is added to stuff an extra INOUT parameter into every method invocation. This

parameter contains the visualisation identifier for the proxy object. When an invoke returns

the extra INOUT parameter it contains the server object’s visual identifier. This identifier is

then used in the VisSendEvent that is fired to indicate a method invocation. The description

 46

field in the VisSendEvent lists the invocation’s parameters and their values. As with the

skeleton, the parameter values are converted to Strings using the VisManagers’ convert

method.

4.3.3 Helper Modifications

Modifications to the Helper class are very slight. The standard narrow method in the helper

class has only one parameter, namely a CORBA object reference. The visualisation compiler

adds an extra String to the parameter list. This allows the user to specify a name for the proxy

object.

4.4 CORBAvis Back-end

4.4.1 The VisManager class

The VisManager class, which acts as a wrapper for VEDA's back-end functionality, is

implemented as a static class. This reduces the number of modifications that have to be made

to the stub and skeleton code, as there is no necessity to instantiate the VisManager class. The

main implementation points of the VisManager class are discussed below.

Visualization Set-up

Each application process calls the static method setVisApp, which is responsible for

setting-up the visualization for each application. The set-up procedure involves:

1. Creating the VEDA back-end object MultiVisApp. This object is responsible for passing

visualization events to the visualization application. The MultiVisApp constructor takes

as parameters the host name and port number of the visualization application.

2. Registering with and obtaining a Visualization identifier from the visualization

application. This is achieved by opening a TCP connection with the entity manager,

which resides in the client application. The entity manager listens for connections on a

port number that is obtained by adding one to the specified visualization port number.

The VisManager sends a visualization identifier request to the EntityManager detailing

the hostname on which the process resides. The EntityManager generates a unique two-

digit identifier and returns it to the VisManager. The first digit of the number represents

the host and the second represents the process. If this is the first process to set-up on a

node a VisSysAddEvent is sent for both the node and the process, otherwise a

VisSysAddEvent is sent just for the process.

 47

Object Creation

When a client stub or server object is created it calls the objInit method of the

VisManager. This method generates a unique visualisation identifier for the object by adding

a digit to the two-digit number obtained during visualisation set-up. Thus, an object identifier

consists of node number + process number+ obj number that reflects the containment

hierarchy discussed in Section 3.6. This visualisation number is returned to the calling object

together with a reference to the MultiVisApp object also created during set-up. The

MultiVisApp object is then used by CORBA objects to pass events to the visualisation

application.

Interface recording

Server skeleton constructors pass information about the interface they support to the

ViaManager via the regInterface method call. The VisManager performs some

formatting of the information then generates and sends a VisCorbaInterfaceEvent, which is

the only visualization event specific to CORBAvis. The InterfaceManager in the visualization

application processes this event.

4.5 CORBAvis Front-end

The first section examines a number of new visualization classes that were incorporated into

CORBAvis with a view to improving VEDA’s graphical capabilities. CORBAvis also

includes a number of visualization front-end support classes.

4.5.1 The CorbaSystemView class

CorbaSystemView extends the VEDA class SystemView, which was changed for CORBAvis

so that it extends Swing’s JPanel rather than AWT’s Panel. The SystemView class provides

the following functionality: the GUI controller (visEventModule class) removes visualization

events from the event queue and passes them on to the appropriate SystemView, in the case of

CORBAvis, there is only one, an instance of CorbaSystemView. The SystemView class acts

as an event-handler and switch, The switching is carried out by passing the events to a private

polymorphic method named visualize. There is a visualize method for each even-type. The

visualize methods incorporate functionality which are specific to the different types of event.

 48

CorbaSystemView overrides some of the visualize methods to provide new functionality for

the following events:

• VisSysAddEvent

Three types of entities can be added to a CorbaSystemView: NodeViews, AppViews and

ObjViews. On receipt of a VisSysAddEvent an entity object is created to represent the new

entity. If the newly created object is a NodeView object, the NodeView object is sized,

positioned and added to the CorbaSystemView JPanel. Otherwise the new entity is passed

onto NodeView which contains the new entity. This information is obtained from the

visualisation identifier that is supplied in the VisSysAddEvent. The functionality incorporated

here reflects the containment hierarchy discussed above in Section 3.6.

• VisRecvEvent

VisRecvEvents are usually passed directly to the MessageManager. However, because of the

arbitrary ordering of visualization events it is possible that a VisSysAddEvent may not yet

have been received from the sending entity. In this case the VisRecvEvent is placed in a

holding queue awaiting the arrival of a VisSysAddEvent from the sender.

• VisSendEvent

VisSendEvents are also passed directly to the MessageManager and have the same holding

mechanism as receivers that have not yet sent a VisSysAddEvent.

• VisCorbaInterfaceEvent

The interface event is passed directly to the interface manager.

The CorbaSystemView class is also responsible for setting-up the MessageManager utility

function. As was mentioned above in Section 3.8 the application window’s glass pane

provides an elegant solution to the problem of rendering method invocations. By customizing

the glass panes paint method it is possible to render images anywhere within the

application window i.e. across component boundaries. CorbaSystemView’s getGlass

method obtains the application JFrame’s glass-pane, which is an AWT Component, and casts

it to the MessageManager class that extends Swing’s JComponent. The MessageManager

class can now implement its inherited paint method to render method invocations.

 49

4.5.2 The NodeView class

The NodeView class is responsible for graphically representing a node and acting as a logical

container for ProcessView and ObjView entities. The NodeView class extends the VEDA

EntityView class that was modified for CORBAvis so that it extends Swing’s JPanel. A

NodeView renders itself by customizing the paint method it inherits from JPanel. Initially the

NodeView is set to be a particular size but as process entities are added to the node’s JPanel it

resizes and repaints itself. This also causes a repaint of all the entities contained within the

node. The NodeView also resizes itself when additional objects are added to a contained

process.

4.5.3 The ProcessView class

The primary function of the ProcessView class is to render CORBA processes. The

ProcessView class extends VEDA’s EntityView class for ease of integration with VEDA.

ProcessView customises its superclasses’s paint method to depict CORBA application

processes as rounded non-filled rectangles. The ProcessView class is responsible for resizing

and repainting itself when additional objects are added to it.

4.5.4 The ObjView class

The ObjView class that also extends VEDA's EntityView class contains the functionality for

rendering and managing object entities. It performs the following tasks

Initialization

The ObjView class is implemented so that it can play the role a client object or a server

object. The description of the new entity, which is passed to the ObjView constructor, details

the name of the interface that the object supports together with the role to be played by the

ObjView. If the ObjView is to play the role of a server it retrieves information about the

interface it supports from the InterfaceManager. This information is used in the annotations

that accompany server objects. The role played by the ObjView also determines how the

ObjView is represented.

 50

Rendering

The addition of an object to the visualization is represented by the object first appearing and

then growing until it reaches a pre-defined size. The depiction of an entity in this way has no

functional reason and is purely for aesthetics. The ObjView class implements the Java

Runnable interface, which means the ObjView class can support a thread. The containing

ProcessView class starts the animation after adding the ObjView to it’s JPanel. The animation

is initiated by calling ObjView’s animate method. The animate method initializes and

starts the thread, then waits for the thread to die. ObjView’s run method now controls the

animation, resizing and repainting the ObjView a pre-defined set of times. ObjView’s paint

method must repaint its background every time it is called to produce a clean animation.

Messaging

The MessageManager passes VisSendEvents to the ObjView that represents the sending

object via the message method call. The message method gets the screen location of both

the source and destination entities and creates a CorbaMessage using this information. The

CorbaMessage is then passed to the MessageManager for rendering. The receiving entity also

gets passed the CorbaMessage, which it places, in a message repository.

When the MessageManager passes a VisRecvEvent to an ObjView the CorbaMessage which

represents the corresponding send event is removed from the message repository and sent to

the MesageManager.

4.5.5 The Message Manager.

The message manager that extents Swing's JComponent class has two areas of functionality.

Namely, message management and message rendering.

• Message management

Because an arbitrary sequence of send and receive messages can arrive at the visualization

application an algorithm had to be devised which could re-arrange the messages so that they

could be depicted correctly i.e. sends with matching receives. The message management

algorithm, which is described below, was only designed to cater for client-to-server

 51

invocations, one-way method calls and callbacks are excluded. The algorithm is based on the

observation that messages need to be balanced with regards to sending objects i.e. server

objects accept concurrent invocations, whereas client objects use synchronous method

invocations. The order of client-originated synchronous method calls must be preserved.

4.5.5.1 The message management algorithm.

The MessageManager class defines an inner class m_EntityRep to represent the client object

(sending object). This class has two queues one for send events and the other for receives

events. Instances of the m_EntityRep class are kept in a list named m_List. Given this

infrastructure, the following pseudocode outlines the message management algorithm that is

implemented in the MessageManager methods send and receive:

Receive events

Search m_list begin
 if sender found begin

if receive_queue equals zero begin
If send_queue > zero begin

Get first element in send queue
If status equals “sent” begin

receive
pop element off send queue

end
else if status equals “not sent “begin

pop element off send queue
send
recieve

end
end
else if send_queue equals zero begin

Push event onto receive queue
end

end
else begin

Push event onto receive queue
end

end
else begin

add new Element to List
Push event onto receive queue of new element

end
end

send events

 52

Search m_list begin
 if sender found begin

If send_queue > zero begin
Push event onto send queue
exit

end

send

if receive_queue > zero begin
pop event off recieve queue
receive

end
else begin

Push event onto send queue
end

end
else begin

add new Element to List
send
Push event onto send queue of new element

end
end

The pseudocode highlighted in bold represents the message manager passing on the message

events to the appropriate ObjView.

• Message rendering

As was mentioned above the MessageManager is created by casting the application JFrame’s

glass-pane to the MessageManager class. The implication of this is that by customizing its

inherited paint method the MessageManager can render method invocations. Method

Invocations are depicted using an animated directed line which emanates from the sending

entity. Retracting this line to the sender depicts invocation returns. A thread is created to

perform the animation

The MessageManager receives draw requests from ObjView entities. Because of the message

management process outlined in the previous section these requests are always in the correct

order. A typical method invocation is processed as follows:

1. An ObjView entity passes a CorbaMessage (marked send) via the drawMessage method

to the MessageManager. The MessageManager creates a DrawRep object to represent the new

message. The DrawRep class is defined within the MessageManager. The DrawRep class

takes into its constructor the two co-ordinates contained within CorbaMessage. These points

represent the screen locations of the sending and receiving objects.

 53

2. The DrawRep constructor is responsible for setting up the graphics involved in

representing method invocations. Because of the incremental nature of the invocation

animation some tricky mathematics need to be worked out. An extra complexity is the fact

that the send and receive co-ordinates can be anywhere in 2-D space. Briefly, the following

things need to be worked out:

- The slope of the line between the two points

- The distance between the two points

- The number of increments which will constitute the animation

- The points which form the arrowhead of the line. A particularly difficult problem

which involves the use of simultaneous equations.

After the DrawRep object has been instantiated it is passed to a thread for animation and

placed in a list.

The MessageManager now waits for the arrival of a CorbaMessage marked receive. When it

arrives it is used to retrieve the corresponding send message which is now embodied in a

DrawRep object. The DrawRep object is passed to the animating thread, which will depict the

invocation retraction.

4.5.6 The InterfaceManager class

The interface manager is responsible for maintaining a repository of all the CORBA

interfaces that are known to the visualization application. The CorbaSystemView passes the

description field of a VisCorbaInterfaceEvent to the InterfaceManager. The description is

parsed and stored in an InterfaceRep object, which is in turn stored in a list. ObjView entities

retrieve the appropriate InterfaceRep object when they are being instantiated.

4.5.7 The EntityManager class

The entity manager is responsible for managing the allocation of visualization identifiers. It is

implemented as a Thread that listens on a port (one up from the visualization port) for

connections from the VisManager. The VisManager passes the name of the node it resides on

as part of its identification request. The EntityManager keeps a list of all the nodes which are

known to the visualization application and the number of applications residing on each node

 54

that have made an identification request. When a request comes in The EntityManager

consults this information and issues a two-digit visualization identifier. The first digit

represents the node and the second represents the application.

 55

5. Evaluation

This chapter is concerned with evaluating the CORBAvis project. The first section looks at a

demonstration CORBA application and the corresponding visualization that CORBAvis

produces and assesses it under a number of criteria. The second section explores the idea of

empirically testing CORBAvis with a view to evaluating its pedagogic capabilities.

5.1 The bank example

A simple banking example was developed in order to test and evaluate CORBAvis. The bank

is represented by a bank-server that exports a number of services to the outside world. As you

would expect the BankServer also acts as a repository for customer accounts. Customers and

administrators interact with the bank through graphical user interfaces. The major

components of the application are detailed below.

• The Bank Server

The bank-server supports two interfaces, Bank and Admin, for customers and for bank

administrators respectively. Customer processes can create new accounts through the Bank

interface. The server object which implements the Bank interface assumes the role of a

factory object that creates new account objects on request. Account objects supports the

Account interface and are held in a repository that can be accessed by both the Bank and

Admin server-objects. The three interfaces mentioned above define the following methods:

• The Admin GUI

The Admin GUI is used by bank administrators to obtain inform

of the bank. The Java application that is responsible for creating

for the Admin server object.

Bank
find_Account()
create_Account()

Admin
getCustomers()
getWithdrawlTotal()
getDepositTotal()
getNumOfAccounts()
Account
getName()
getBalance()
deposit()
withDraw()
ation about the current state

 the GUI also creates a proxy

• The Client GUI

Customers to create and modify accounts use this component. The Java application

automatically creates a proxy for the Bank server-object. When a customer creates a new

account or retrieves an existing one an Account proxy is created.

Fig 5.1 Figure detailing the Bank demonstration application

Figu

direc

Bank

been

appl

both

acco

Bank-
Proxy

Adm
in-

Account
Proxy

BANK ADMIN

Account

Account Repository

Account

Customer GUI

Admin GUI

Account
Proxy

Customer GUI

Bank-
Proxy

Bank-
Proxy

Customer GUI

Node 1

Node 3 N de 2

o

re 5.1 above details a particular conf

tional lines link proxy objects with t

Server. Bank and Admin server- ob

 added to the repository. Node 2 is r

ications has created a new account o

 a client and an Admin application. T

unt.
BankServer
A Simple Bank
56

iguration or state of the bank application. The bi-

heir corresponding servers. Node 1 is running the

jects have been created and two new accounts have

unning two client applications, only one of the

r has retrieved an existing one. Node 3 is running

he client application has created or retrieved a new

 57

The state of the bank application detailed above will result in CORBAvis producing the

following visualization:

Fig. 5.2 Screenshot of CORBAvis

Note: In figure 5.2 the nodes have been moved from their original positions by the user and

the method invocation being depicted is extraneous to the state of the application outlined

above.

5.1.1 Is it a good visualisation?

Does the visualization help users to understand how the bank application works? Does it help

novice learners understand the fundamentals of CORBA? If there was a problem with the

bank application would a CORBAvis visualization aid in the debugging process? The author

cannot answer these questions, as his viewpoint would be extremely subjective. The

 58

following is concerned with the process of obtaining an objective opinion. In the mean time,

there are still a number of criteria under which the visualization can be evaluated:

• Ease of use

The visualization depicted in fig.5.2 was generated automatically by CORBAvis. The

application programmer who developed the banking example only had to add one line of

source code to their application to produce the visualization. The addition to the source code

involves a setup procedure and as setup will always be in some way the responsibility of the

user, it can be disregarded. The graphical user interface is very simple, providing a very

shallow learning curve for the user.

• Generality

Because CORBAvis uses the ORBacus IDL compiler applications intending to use

CORBAvis must also use the ORBacus ORB. CORBAvis is also restricted to CORBA

applications that are developed using the implementation-based approach. CORBAvis has

been designed for use as a teaching aid and is not suitable for medium to large CORBA

applications. Within the confines of these restrictions CORBAvis can accommodate any

CORBA application.

• Performance

The performance of CORBAvis varies a good deal depending on the type of machine the

application is running. The most noticeable degradation of performance occurs during

application setup. When CORBAvis is run on a Fujitsu lifebook the GUI may take up to two

seconds to initialize. Resizing of the GUI can also be affected by performance degradation.

Another performance problem may occur if the system on which CORBAvis is executing has

a heavy load. Threads, which are used by CORBAvis to control animation sequences, may be

continuously preempted thus affecting the smoothness of the animation.

• Configurability

Users of CORBAvis cannot add to the visual capabilities of the system unless they alter the

source code. The visualization model and the visualization vocabulary are hard-coded into

CORBAvis.

• Intuitiveness

 59

Whether or not CORBAvis provides an intuitive representation of a CORBA, application is

not for developer of the application to decide. An empirical test is needed. This brings us to

the next section.

5.2 Empirical testing of CORBAvis

Unfortunately, due to time constraints, no empirical testing has been carried out on

CORBAvis. Finding out whether or not it is an effective teaching tool will have to be left for

future work. However, in this section two proposed evaluation strategies are outlined. Each

strategy divides a given body of students into a test group and a control group:

• The debug test

Take a group of students who have a basic understanding of CORBA and it's programming

paradigm and divide them into a control group and a test group. Both groups are presented

with a CORBA application, which has a number of bugs in it. These bugs would be CORBA-

related semantic errors. Both groups attempt to fix the problems in the application within a

specific time period. The test group uses CORBAvis as a debugging aid while the Control

group are left to their own devices, probably using print statements. The time it takes the

individuals from both groups to debug the application is recorded. The users of CORBAvis

are requested to fill out a detailed questionnaire after they have completed the test. The

completion times of the individuals in the two groups can be assessed to see if CORBAvis

helped or hindered the debugging process. The completed questionnaire may be used as a

usability study. A serious flaw in this test is the fact that the ability of different students may

differ substantially, thus giving a biased result. A large sample would go some way to

offsetting this problem. However, if a large sample was not available the two groups could

swap roles and be given another application to debug. The statistics could then be matched

from both tests.

• The novice test.

This test is devised to evaluate CORBAvis with regard to novice users. A body of students

with no prior knowledge of CORBA or distributed object technology is broken into two

groups as outlined above. Both groups attend an introductory lecture or tutorial on CORBA.

The test group is then introduced to CORBAvis and allowed to play the event trace files of a

 60

number of simple CORBA applications. The members of the test group are not allowed to ask

the instructor any questions.

The control group does nothing. Both groups are then given a simple programming exercise

and evaluated using the same techniques as mentioned above.

 61

6. Conclusion

6.1 Dissertation review

The main goal of this dissertation was to design a toolkit for the visualization of CORBA

applications. This was achieved by extending an existing visualization framework called

VEDA so that it could accommodate the visualization of distributed object systems. A key

feature of this toolkit is the automatic generation of CORBA visualizations. This is achieved

by modifying an IDL compiler so that it can generate visualization-enabled files. The work

involved in the dissertation was structured as follows.

Chapter 2 documents the state of the art in a literature review. The term software visualization

was defined and a number of software visualization taxonomies were introduced. Individual

visualization systems were then analyzed and categorized under the following headings:

educational systems, object-oriented systems and visualization systems for distributed

programs.

Chapter 3 was concerned with the design of CORBAvis, the visualization toolkit that was

developed as part of this project. Firstly, a level of abstraction at which to visually represent a

CORBA application was chosen and a visualization model defined. A visual vocabulary was

then designed to represent this model. VEDA was studied with regards to its ability to support

the new visualization model and certain limitations were found. Compensating for these

limitations formed the basis of the CORBAvis design together with a number of other

considerations. This chapter concluded with the decisions to covert VEDA's graphical engine

to Swing and to use Swing components in the implementation of CORBAvis.

Chapter 4 documented the implementation details of CORBAvis. In particular the chapter

dealt with the choice of ORB and IDL compiler for the project, the modifications that were

made to the compiler, and the resulting modifications to the generated files. The functionality

incorporated into CORBAvis's main classes was then described.

Chapter 5 introduced a demonstration CORBA application and its visualization that is

automatically produced using CORBAvis. CORBAvis was then evaluated under a number of

criteria. The chapter concluded with the description of two proposed empirical tests for

CORBAvis.

 62

6.2 Future Work

As with all projects that must be completed within a limited time frame there remains

questions unanswered and work which could still be done. Outlined below are a number of

interesting tasks that could be seen as an extension to this work.

Integration with a Java visualiser

By integrating CORBAvis with a Java program visualiser a more complete visualizations of

CORBA applications would be produced. Integration would mean CORBAvis being extended

so that it would be able to process and visually represent events being generated by the Java

visualiser.

Visualizing CORBA communication infrastructure

CORBAvis is primarily concerned with visually representing the CORBA object model. This

is a somewhat limited perspective. It would perhaps give a fuller understanding of CORBA

applications if certain other aspects of the CORBA architecture were visualized. In particular

the techniques used by client processes to obtain object references and the operation of the

object adapter.

The use of Virtual Reality

The visual metaphors CORBAvis uses to depict CORBA applications are rather limited. A

challenging extension to this work would be to use virtual reality as a means of

representation. Users would be able to perform walk throughs of CORBA applications. In

reality this would be more than a mere extension to CORBAvis.

Managing complexity

As with most software visualization systems CORBAvis is only suitable for use with small

applications. For visualization techniques to be useful in an industrial setting a way must be

found to successfully manage the visualization of medium to large applications.

Empirical testing

Software visualization systems must be empirically tested There is very little hard evidence to

support the assumption that software visualizations improve the understanding of software

systems. A framework for the empirical testing of visualization systems would be of great

 63

benefit in this area. If there was a standard set of tests which could be applied to a wide range

of visualization systems, objective evaluations could be achieved and comparisons between

different systems could be made.

6.3 Concluding remarks

This dissertation has presented the research, design, implementation and evaluation of a

toolkit, which enables the automatic visualization of CORBA applications. More importantly

it has achieved what it had set out to do.

 64

Bibliography

1. Ulbrich, a., VEDA - The visualisation environment for distributed applications.

Project Report, Computer Science Department, TCD. 1999.

2. Ford, L., Automatic Software Visualisation using Visual Arts Techniques. Research

Report 278, Department of Computer Science, University of Exeter, 1993.

3. Price Blaine A., B.R.M.S.I.S., A principled taxonomy of software visualisation.

Journal of visual languages, 1993. 4(3): p. 211-266.

4. Domingue, J., Price, B.A & Eisenstadt, M., A framework for describing and

Implementing software visualisation systems. In proceedings of graphics Interface'92,

1992: p. 53-60.

5. Jerding, D.F., Using visualisation to foster Object-oriented Program understanding.

Technical Report GIT-GVU-94-33, College of Computing, Georgia Institute of

Technology, 1994.

6. Cox, K., Experiences with the Pavene Program Visualisation Environment. Technical

Report WUCS-92-40, University of Washington in St. Louis., 1992.

7. Watson, A., B, Towards supporting software maintenace with visualisation

techniques. University of Strathclyde, 1995.

8. Roman, G.-C., A Taxonomy of program visualisation systems. Technical report

WUCS-93-22, Washington University in St. Louis, 1993.

9. Myers, B.A., Taxonomies of visual programming and Program Visualisation. Journal

of Visual Languages of Computing, 1990. p. 97-123.

10. Stasko, j., Understanding and characterizing program visualisation systems.

Technical Report GIT-GVU-91-17, Georgia Institute of Technology, 1993.

11. Brown, M.H., Exploring algorithms using BALSA-II. IEEE Computer, 1988. 21(5): p.

14-36.

 65

12. Brown, M.H.H., John, Colour and sound in algorithm animation. Computer, 1992.

25(12): p. 52-63.

13. Stasko, J., Tango: A Framework for system and algorithm animation. IEEE

Computer, 1990. 23(9): p. 27-40.

14. Stasko, J.T., A methodology for building application specific visualisations of

parallel programs. Technical Report GIT-GVU-92-10, Georgia Institute of

Technology, 1992.

15. Gruia-Catalin, R., Pavene: A system for declarative visualisations of concurrent

programs. Journal of Visual Languages and Computing, 1992. 3(2): p. 161-193.

16. Heath, M.T., Visualising the performance of parallel programs. IEEE Software,

1991. 8(5): p. 29-39.

17. Gergeleit, M., Automatic instrumentation of Object-Oriented Programs. German

National Research Centre for Computer Science, 1995.

18. Lange, F., Kroeger, R. & Gergeleit, JEWEL: Design and Implementation of a

Distributed Measurement System. IEEE Transactions on Parallel and Distributed

Systems, 1992. 3(6): p. 657-672.

19. Muthukumarasamy, J., Visualising program execution on large data sets using

semantic zooming. Technical Report GIT-GVU-92-10, College of computing ,

Georgia Institute of Technology, 1995.

20. Stasko, J.T., The PARADE Environment for visualizing Parallel Program Executions.

Technical Report GIT-GVU-95-03, Georgia Institute of Technology, 1995.

21. Callaghan, M.H., Heiko, 3-D Visualisation of Design Patterns and Java Programs in

Computer Science Education. ACM Proceedings of ITiCSE'98, 1998.

22. Badre, A.L., C., Do algorithm animations assist learning? an empirical study and

analysis. In proceedings of the INTERCHI'93 Conference on Human Factors in

Computing Systems. 1993(61-66).

 66

23. Kehoe, C.M., Using Animations to Learn about Algorithms: An Ethnographic Case

Study. Technical Report GIT-GVU-96-20, College of Computing, Georgia institute of

Technology. 1996.

24. Stasko, j., Rethinking the evaluation of algorithm animations. Technical Report GIT-

GVU-99-10, Georgia Institute of Technology, 1999.

25. Byrne, M.D., Do Algorithm animations Aid Learning? Technical Report GIT-GVU-

96-18, College of Computing, Georgia Institute of Technology, 1996.

26. Lawerance, A.W., Empirically evaluating the use of animations to teach algorithms.

In Proceedings of the 1994 IEEE Symposium on Visual Languages, 1994: p. 48-54.

27. Kehoe, C., Rethinking the Evaluation of Algorithm animations as learning Aids: An

Observational Study. Technical Report GIT-GVU-99-10, College of Computing,

Georgia Institute of Technology. 1999.

28. The swing tutorial..

29. Keahey, K., A brief tutorial on CORBA.

	A Toolkit for the Visualisation of CORBA Applications
	Declaration
	Permission to lend and/or copy

	1. Introduction	1
	1. Introduction
	1.1 Distributed objects.
	1.2 VEDA
	1.3 Objectives
	1.4 Achievements
	1.5 RoadMap

	2. Literature Review
	2.1 Overview of software visualisation as a research area.
	2.1.1 Defining software visualisation
	2.1.2 Taxonomies of software visualisation systems.

	2.2 Visualisation Systems
	2.2.1 Educational Systems
	2.2.2 Visualisation Systems for Parallel/Distributed Programs
	2.2.3 Visualisation Systems for object- oriented programs

	2.4 VEDA
	2.5 Empirical testing of visualisations
	2.6 Summary

	3. Design
	3.1 Introduction
	3.2 What Aspect of CORBA should be represented?
	3.2.1 CORBA Overview
	3.2.2 CORBA Implementation Overview
	3.2.3 Level of abstraction for visualisation

	3.3 Visual Design of CORBAvis
	3.3.1 Visual Design Concerns
	3.3.2 Visual Vocabulary Design
	3.3.3 Graphical User Interface Design

	3.4 Design of VEDA
	3.4.1 Veda Design

	3.5 The limitations of VEDA.
	3.6 Overview of CORBAvis architecture.
	3.7 CORBAvis component design
	3.7.1 back-end component interaction
	3.7.2 Front-End component interaction
	Utility functions

	3.8 Swing and AWT
	3.8.1 The rational for converting VEDA to Swing.
	3.8.2 Swing Components

	4. Implementation
	4.1 ORBacus and JIDL
	4.2 Modification of the IDL compiler
	
	
	
	
	Jidl --package bank –no-vis bank.idl

	4.3 Modification of Compiler generated files
	4.3.1 Skeleton modifications
	4.3.2 Stub modifications
	4.3.3 Helper Modifications

	4.4 CORBAvis Back-end
	4.4.1 The VisManager class
	
	
	Server skeleton constructors pass information about the interface they support to the ViaManager via the regInterface method call. The VisManager performs some formatting of the information then generates and sends a VisCorbaInterfaceEvent, which is the

	4.5 CORBAvis Front-end
	4.5.1 The CorbaSystemView class
	VisSysAddEvent
	The interface event is passed directly to the interface manager.

	4.5.2 The NodeView class
	4.5.3 The ProcessView class
	The primary function of the ProcessView class is to render CORBA processes. The ProcessView class extends VEDA’s EntityView class for ease of integration with VEDA. ProcessView customises its superclasses’s paint method to depict CORBA application proces

	4.5.4 The ObjView class
	4.5.5 The Message Manager.
	4.5.5.1 The message management algorithm.

	4.5.6 The InterfaceManager class
	4.5.7 The EntityManager class

	5. Evaluation
	5.1 The bank example
	5.1.1 Is it a good visualisation?

	5.2 Empirical testing of CORBAvis

	6. Conclusion
	6.1 Dissertation review
	6.2 Future Work
	6.3 Concluding remarks

	Bibliography

