
Dublin Bus Tracking Service

Design and implementation of a device independent

passenger information system

Eamonn Fallon

A dissertation submitted to the University of Dublin,

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

September 2000

2

DECLARATION

I declare that the work described in this dissertation is, except

where otherwise stated, entirely my own work and has not been

submitted as an exercise for a degree at this or any other

university.

Signed: ___________________

Eamonn Fallon

September 2000

3

 PERMISSION TO LEND AND/OR COPY

I agree that Trinity College Library may lend or copy this

dissertation upon request.

Signed: ___________________

Eamonn Fallon

September 2000

4

ACKNOWLEGEMENTS

I would like to thank my supervisor Alexis Donnelly for all his advice, support and patience

throughout the year

I would also like to thank my family and friends for all their support throughout the year

5

SUMMARY

Traditionally public transport has been perceived as the less desirable alternative to the car.

The environmental argument of using public transport has not led to a significant increase in

the usage of public transport. In order to convince people to leave their car at home, public

transport must be at least as, if not more desirable than driving a car. There are a number of

ways of achieving this, among them reducing fares, introducing quality bus corridors etc.

However the most effective strategy to do this must be to reduce the perceived unreliability of

public transport. The most effective way of doing this is through a real-time passenger

information system

Passenger information systems are large-scale capital intensive projects, which means only

large organisations and governments can implement them. The most expensive component of

the system is the automatic vehicle location (AVL) system. This thesis proposes a new type of

AVL system based on third generation mobile positioning technology that significantly

reduces the cost of implementing a passenger information system.

A best-of-breed architecture for implementing passenger information systems is described. It

uses a service chain architecture to aggregate content and services from multiple sources to

provide a coherent interface to the end user. The interface can be delivered to multiple devices

with different display characteristics. A prototype implementation of this architecture is

implemented in Java.

6

CONTENTS

1 INTRODUCTION ... 10

1.1 THESIS CONTRIBUTION .. 11

1.2 THESIS ROADMAP ... 11

2 POSITIONING & COMMUNICATIONS INFRASTRUCTURE ... 13

2.1 GPS POSITIONING ... 16

2.1.1 GPS .. 16

2.1.2 Differential GPS.. 16

2.2 TERMINAL BASED POSITIONING TECHNIQUES... 17

2.2.1 Network assisted GPS - AGPS ... 17

Fixed Reference Receiver..18

User Terminal ...19

The Location Server ..19

2.2.2 Enhanced Observed Time Difference (E-OTD)... 20

2.3 NETWORK BASED POSITIONING TECHNIQUES ... 22

2.3.1 Cell Global Identity & Timing Advance (CGI +TA).. 22

2.3.2 Time Difference of Arrival (TDOA).. 23

2.3.3 Angle of Arrival (AOA) .. 24

2.4 AUTOMATIC VEHICLE LOCATION (AVL) SYSTEMS... 25

2.4.1 Signpost and Odometer.. 26

2.4.2 Dead Reckoning .. 27

2.4.3 Radio navigation/location.. 27

2.5 MANUAL POSITIONING TECHNIQUES .. 28

2.6 SUMMARY OF POSITIONING TECHNIQUES ... 29

3 PASSENGER INFORMATION SYSTEMS... 30

3.1 TELEMATICS APPLICATION PROGRAMME ... 32

3.2 INFOPOLIS 2 .. 32

3.2.1 Passenger Information System Families... 33

Public interactive terminals..33

Electronic bus stop display ..33

On-board information..34

Enquiry office terminal..34

At home/office information ...34

Hand-held terminal ...34

Website ..34

3.3 THE PROMISE PROJECT ... 35

7

3.3.1 User needs analysis ... 36

3.3.2 Service Definition.. 37

3.3.3 Core Service 1: Trip Planning ... 38

3.3.4 Core Service 2: Information Services ... 40

Public Transport Information...40

Yellow Pages Information ...41

Point-of-Interest Information ...41

Reservation Service...42

3.3.5 Generic PROMISE System Architecture... 43

3.3.6 Level 3 Reference Model.. 46

User Terminal Manufacturer..46

Value Added Service Provider (VASP)..46

Content Provider Centre (CPC)..46

3.3.7 Level 2 Reference Model.. 46

User Terminal Layered Reference Model ...47

Value Added Service Provider (VASP) Layered Reference Model..47

Content Provider Centre (CPC) Layered Reference Model ...48

3.3.8 Level 1 Reference Model (Functional Architecture).. 49

Content Provider Center (CPC) functionality..49

Value added service provider (VASP) functionality..50

User Terminal functionality ...52

3.4 EXISTING PASSENGER INFORMATION SYSTEMS... 52

3.4.1 Superoute 66 ... 52

3.4.2 Project 423.. 54

3.5 PROPOSED AVL SYSTEMS FRAMEWORK .. 55

4 DESIGN... 58

4.1 SERVICE CHAIN ARCHITECTURE .. 60

4.1.1 Value Added by Tracking Service... 61

4.1.2 Value Added by Document Server .. 61

4.2 MODEL VIEW CONTROLLER ARCHITECTURE .. 62

4.3 FUNCTIONAL ARCHITECTURE .. 63

4.3.1 GIS Service ... 63

4.3.2 Simulator .. 64

4.3.3 Tracking Service.. 65

4.3.4 HTTP Document Server... 66

4.4 VOICEXML .. 67

4.5 COMMUNICATIONS ARCHITECTURE.. 68

5 IMPLEMENTATION ... 71

5.1 GIS SERVICE IMPLEMENTATION .. 72

5.1.1 Map Digitising & Geocoding... 72

8

5.1.2 Java Implementation.. 74

5.2 SIMULATOR IMPLEMENTATION .. 75

5.2.1 The Bus Thread ... 75

5.3 TRACKING SERVICE IMPLEMENTATION... 77

5.3.1 The Bus Tracker .. 77

5.3.2 Tracking Service as the Model in the MVC pattern... 78

5.4 HTTP DOCUMENT SERVER IMPLEMENTATION.. 79

5.4.1 Device Independence... 79

5.4.2 HTML View... 80

5.4.3 WML View... 82

5.4.4 Applet View ... 84

6 EVALUATION & FUTURE WORK.. 87

6.1 EVALUATION OF DUBLIN BUS TRACKING SERVICE ... 88

6.1.1 DBTS versus Project 423 & Superoute 66 .. 88

6.1.2 Issues not addressed .. 88

Scalability...89

Voice Interface..89

XML data exchange format ...89

6.2 FUTURE WORK .. 89

6.2.1 Scalability ... 89

6.2.2 Implementation of M-AVL.. 91

BIBLIOGRAPHY .. 92

APPENDIX A: DATABASE DDL ... 94

APPENDIX B: BUS CONFIGURATION FILE.. 96

APPENDIX C: USER-AGENT PATTERNS... 98

APPENDIX D: TOMCAT CONFIGURATION FILES.. 99

9

TABLE OF FIGURES

FIGURE 2.1: NETWORK ASSISTED GPS POSITIONING .. 18

FIGURE 2.2: ENHANCED OBSERVED TIME DIFFERENCE POSITIONING... 21

FIGURE 2.3: CELL GLOBAL IDENTITY & TIMING ADVANCE POSITIONING .. 22

FIGURE 2.4: TIME DIFFERENCE OF ARRIVAL POSITIONING .. 24

FIGURE 3.1: THE PROMISE SERVICE CONCEPT .. 38

FIGURE 3.2: THE PROMISE TRIP PLANNING PROCESS .. 39

FIGURE 3.3: PROMISE SYSTEM OVERVIEW ... 44

FIGURE 3.4: CPC FUNCTIONALITY DIAGRAM.. 50

FIGURE 3.5: VASP FUNCTIONALITY DIAGRAM ... 51

FIGURE 3.6: SUPEROUTE 66 SYSTEMS ARCHITECTURE.. 53

FIGURE 3.7: PROPOSED AVL SYSTEMS FRAMEWORK ... 56

FIGURE 4.1: SERVICE CHAIN ARCHITECTURE ... 60

FIGURE 4.5: ADAPTED MODEL-VIEW-CONTROL PATTERN .. 63

FIGURE 4.2: GIS SERVICE FUNCTIONAL ARCHITECTURE... 64

FIGURE 4.3: SIMULATOR FUNCTIONAL ARCHITECTURE... 65

FIGURE 4.4: TRACKING SERVICE ARCHITECTURE ... 66

FIGURE 4.5: HTTP DOCUMENT SERVER ARCHITECTURE .. 66

FIGURE 4.5: VOICEXML ARCHITECTURAL MODEL ... 67

FIGURE 4.6: PROPOSED COMMUNICATIONS ARCHITECTURE .. 69

FIGURE 5.1: MAPINFO PROFESSIONAL 6.0 SHOWING THE DUBLIN RASTER MAP................................... 73

FIGURE 5.2: PASSENGER BOARDING AND DE-BOARDING ENVELOPES.. 76

FIGURE 5.3: ROOT DOCUMENT IN THE HTML USER INTERFACE TREE .. 80

FIGURE 5.4: HTML FORM FOR QUERYING TRACKING SERVICE ... 81

FIGURE 5.5: ROOT DOCUMENT IN WML USER INTERFACE TREE... 82

FIGURE 5.6: WML PAGE FOR SELECTING BUS ROUTE .. 82

FIGURE 5.7: WML PAGE FOR SELECTING BUS STOP... 83

FIGURE 5.8: APPLET SHOWING REAL-TIME LOCATION OF ALL BUSES .. 84

FIGURE 5.9: APPLET UPDATE FREQUENCY DIALOG .. 85

FIGURE 5.10: QUERYING THE ATTRIBUTES OF A SINGLE BUS.. 85

FIGURE 5.11: QUERYING THE ATTRIBUTES OF A BUS STOP ... 86

FIGURE 6.1: ENHANCED SCALABLE SYSTEMS ARCHITECTURE .. 90

10

CHAPTER 1

Introduction

A typical scenario in any city; a group of people waiting at a bus stop, many of

them are noticeably impatient, some are pacing. Everyone is staring into the

distance anticipating the bus that will eventually turn the corner.

Public transport networks involving buses are inherently unreliable due to traffic. The only

way to make them predictable would be to give the buses dedicated roads with no traffic on

them. This unreliability makes using public transport frustrating, illustrated by the scenario

above. However if you can’t increase the reliability, you can at least inform the passengers

how unreliable the bus is. If passengers knew exactly where the next bus was at all times,

waiting at a bus stop would not be frustrating. This is the problem that this thesis attempts to

solve.

This thesis develops a framework for building cost-effective automatic vehicle location

(AVL) tracking systems using third generation mobile technology. A generic systems

architecture is proposed which incorporates the AVL framework. The architecture proposes a

service chain model, to aggregate services and content from multiple providers into one

coherent user interface.

A prototype implementation of a passenger information system is developed based on the

service chain architecture. The prototype provides device independent access to a simulation

11

of the Dublin bus transport network. The system can be accessed via web browser or WAP-

enabled mobile phone.

1.1 Thesis Contribution

This thesis makes a contribution to the state of the art in passenger information systems, by

tackling the problem from a different angle. Although none of the technologies described in

this thesis are new, the mix of technologies used and architecture proposed are unique.

Traditionally passenger information systems have been large-scale capital intensive projects.

The most expensive component of the system is the AVL system. By using the M-AVL

system proposed by this thesis, public transport operators and other transport companies can

significantly reduce the capital costs involved in implementing passenger information

systems.

This thesis also proposes a best-of-breed architecture for implementing passenger information

systems. This builds upon the research covered by the PROMISE project and also

incorporates the M-AVL system.

1.2 Thesis Roadmap

Chapter 2 reviews the state of the art in mobile positioning techniques. The architectures of

traditional automatic vehicle location (AVL) systems are presented

Chapter 3 reviews the state of the art in passenger information systems. Two European

research projects – PROMISE and Infopolis 2 - are examined, the major findings and

recommendations of these projects are presented. Two existing passenger information

systems are presented, and contrasted with the proposed AVL systems framework (M-AVL)

Chapter 4 details the architecture of the Dublin bus tracking service. It is explained using a

number of different architectures: service chain architecture, functional architecture and

communications architecture.

Chapter 5 presents the implementation of the Dublin bus tracking service and highlights the

major characteristics.

12

Chapter 6 evaluates the architecture and implementation of the Dublin Bus Tracking Service

and contrasts them with the two passenger information systems in chapter 3. A modified

architecture is introduced that increases the scalability of the system.

13

CHAPTER 2

Positioning & Communications Infrastructure

The unique differentiating factor between mobile access to the Internet and fixed access is the

ability to provide services to the mobile user based on their physical location. The mobile

network operator can - with varying degrees of accuracy depending on the technology

employed - pinpoint the location of a user terminal. This ability - while not widely exploited

today – presents a myriad of possible applications and services that were not possible in the

domain of the fixed Internet.

Standardisation of positioning solutions is being carried out by the Third Generation

Partnership Project (3GPP). The 3GPP standards shall support location service features, to

allow new and innovative location based services to be developed. It shall be possible to

identify and report in a standard format (e.g. geographical co-ordinates) the current location

of the user’s terminal and to make the information available to the user, mobile equipment

(ME), network operator, service provider, value added service providers and for PLMN1

internal operations [1]. Mobile equipment – in this case - refers not only to mobile phones,

but any type of device/equipment that can access the mobile network.

1 Public Land Mobile Network

14

In Europe, consumer and corporate business opportunities are driving the adoption of mobile

positioning technologies. In the United States however, mobile positioning is being driven by

legal requirements. The Federal Communications Commission (FCC) issued the Enhanced

911 (E-911) mandate on June 12, 1996. It states that by October 1, 2001, mobile network

providers must be able to pinpoint the location of the calling telephone to within 125 meters

of the actual longitude, latitude location of the user. This location must be accurate at least

67% of the time. The mandate as since been updated (August 24, 2000) to provide certain

deadline extensions [2].

The 3GPP is entrusted with the production of globally applicable technical specifications for a

3rd Generation Mobile System based on the evolved GSM core networks and the radio access

technologies that the Organisational Partners2 support [3]. The 3GPP is developing standards

for GSM-based technologies - General Packet Radio System (GPRS) & EDGE - and third

generation UMTS (WCDMA) networks. The 3GPP standardisation process is on going, and is

far from complete. This is due in no small part to the large number of different technologies

that the 3GPP must support and the fact that its scope covers the entire range of next

generation mobile telephony services – of which positioning technologies are a small part.

Unlike the 3GPP, companies do not have to wait for standards to be finalised. Already, a

number of companies have developed position determination technologies. These companies

include:

• Cambridge Positioning Systems

• Cell-Loc

• Ericsson

• Grayson Wireless

• SigmaOne

• Qualcomm-owned SnapTrack

• True Position

• U S Wireless

Each of these systems uses a number of similar techniques and support different underlying

network standards. However the Ericsson Mobile Location Solution (MLS) looks the most

2 The 3GPP is a global collaborative initiative, consisting of 6 organisational partners: Japan-based Association of

Radio Industries and Businesses (ARIB), China Wireless Telecommunication Standard group (CWTS), European

Telecommunications Standards Institute (ETSI), US-based Committee T1, Korean-based Telecommunications

Technology Assocation (TTA) and Japan-based Telcommunication Technology Committee (TTC).

15

promising solution. It provides a standard API that shields the systems developer from the

underlying mobile positioning technology. This allows the systems developer create

applications that are future proof and standards compliant. When standards are ratified they

can be integrated into the MLS system without requiring modifications to the third-party

application. The major benefit of using API’s such as Ericsson’s is that location dependent

applications developed for GSM networks will also work on GPRS and UMTS networks. A

company called SignalSoft also provides a similar API that integrates with all the vendors

mentioned above, while still shielding the developer from the underlying positioning

technique.

All the companies mentioned previously, base their solutions on a number of different

underlying positioning technologies to track user handsets. These technologies fall into two

main categories:

1) Terminal based positioning: This solution requires modifications to be made to the

user terminal (user handset). There are 3 main terminal based positioning techniques:

a. Global Positioning System (GPS)

b. Network assisted GPS (AGPS)

c. Enhanced Observed Time Difference (E-OTD)

2) Network based positioning: This requires no modifications to be made to the user

terminal. This means that there is 100% market penetration as soon as the system is

deployed. There are 3 main network based positioning techniques:

a. Cell Global Identity & Timing Advance (CGI +TA)

b. Time Difference of Arrival (TDOA)

c. Angle of Arrival (AOA)

The following sections discuss and contrast the strengths and weaknesses of each of the

positioning techniques mentioned above.

16

2.1 GPS Positioning

2.1.1 GPS

The Global Positioning System (GPS) is a satellite-based radio-navigation system developed

and operated by the U.S. Department of Defence (DOD) [4]. GPS provides the user with their

3-dimensional position, their current velocity and the exact time. The GPS system consists of

24 satellites orbiting the earth in 6 circular orbits. The satellites are arranged, so that at any

one time there are 6 satellites within range of a GPS receiver.

The control segment of the GPS system consists of one master control station in Colorado

USA, with five ground control stations and three ground antennas located around the world.

The monitor stations passively track all the satellites in view. A sample of each of the

satellites broadcast signal is continuously taken. These samples are then forwarded on to the

master control station, which calculates extremely precise satellite orbits. The orbit

calculations are formatted into navigation instructions, which are uploaded to the individual

satellites via the ground antennae.

At the same time each of the satellites is continuously broadcasting an exact position and time

signal. The GPS receiver receives messages from at least 4 satellites and measures the time

delay for each signal. From these values the GPS unit can calculate the user position and

velocity. On May 1 2000 [5], the U.S. Government disabled the international degradation

(Selective Availability) of the GPS signal. This increases the location accuracy of GPS

receivers from approx. 100 metres to less than 20 metres.

2.1.2 Differential GPS

Differential GPS is a technique used to increase the accuracy of GPS receivers to between 1

to 3 metres. The technique involves placing a GPS receiver (a reference receiver) in a known

physical location. The reference receiver collects data from all the satellites in view and

performs error corrections on the signals checking the actual location against the broadcast

location. These corrections can be either recorded (used for post-processing of signals) or

broadcast in real-time via radio. In order to benefit from the broadcast of a DGPS signal, a

GPS receiver needs to be equipped with a data port connected to a radio receiver. Furthermore

17

the GPS unit must be within approx.150km of a DGPS signal transmitter. In Ireland we have

3 DGPS signal transmitters, operated as a free service by the Commissioner of Irish Lights3.

2.2 Terminal Based Positioning Techniques

2.2.1 Network assisted GPS - AGPS

A GPS receiver can be integrated into the circuitry of a mobile phone/device with minimal

price impact on the consumer. However there are problems with GPS that make it unsuitable

for mobile positioning:

- A high time-to-first-fix. A GPS unit can take between 30 seconds and several

minutes to initially acquire and track satellites.

- Low sensitivity to signal attenuation, blockage and multipath interference: A GPS

unit will not accurate results - if any - in many difficult environments when the

GPS signal is weak, e.g. In an urban canyon, inside a building or under dense

foliage. Multipath interference occurs when signals get refracted for some reason

(e.g. atmospheric layers, clouds, and buildings) and arrive out of phase with the

original signal, thus cancelling it [6]. Many GPS units have up to 12 parallel GPS

signal receivers to minimise these effects.

- Power inefficient: GPS keep a continuous track on the viewable satellites once a

first fix is got. There is also a high overhead - in terms of power - of running up to

12 parallel receivers. For many mobile phone/device users, this power drain may

outweigh the benefit of having terminal-based positioning.

- Accuracy: As mentioned before GPS is only accurate to 20 meters. Since a

mobile is always connected to the mobile network, there is no need for a separate

DGPS receiver. The DGPS signal can be sent via the mobile network.

3 For more details on the Irish DGPS service see http://www.cil.ie

18

- Network Assisted GPS (AGPS) attempts to solve these problems. Most AGPS

solutions do this by using the distributed architecture4 in Figure 2.1. Essentially

the GPS processing is distributed between the reference receiver, the location

server and the GPS enabled user terminal.

Figure 2.1: Network Assisted GPS Positioning

The architecture shown in Figure 2.1 consists of 3 main components – the Fixed Reference

Receiver, the User Terminal and the Location Server:

Fixed Reference Receiver

The fixed reference receiver acts like a DGPS beacon. It is a normal GPS receiver, but

because its physical location is known, it can calculate the differential corrections that need to

be applied to the signal sent from the user terminal to the location server. These corrections

along with an accurate time signal are continuously sent to the Location Server.

4 This system is a hypothetical architecture based heavily on the SnapTrack network assisted mobile
positioning solution. It is adapted to apply to digital networks and the existence of WAP.

Location
Server

+
Proxy

Gateway

Road/
Terrain

Database

Uses

Mobile Phone

GPS receiver

GPS Signal

Fixed
Reference
Receiver

GPS Signal

Assistance
Data

GPS Signal
‘snapshot’

Differential
corrections

(DGPS)
Accurate

Time Signal

GSM/GPRS/UTMS(WCDMA) Network

TCP/IP Network

3rd Party
Application

User Terminal
Location

19

User Terminal

The user terminal is a mobile device connected to a digital mobile network. The phone

contains a GPS receiver either integrated into its circuitry or as an external plug-in. When a

user terminal on the network needs to be located, the Location Server sends it assistance data.

The request for a user terminal location will come from either the user terminal itself or a 3rd

party application.

The assistance data consists of satellite information on the all the satellites in view in the

terminals approximate location and the Doppler offsets of each of the satellites. The Location

Sever uses the location of the base station as the approximate location of the user terminal.

The user terminal then takes a snapshot of the GPS signal, pre-processes it and returns basic

GPS measurements along with statistical values characterising the signal environment. This

GPS Signal ‘snapshot’ is then returned to the Location Server.

The Location Server

This snapshot signal received by the Location Server from the User Terminal is then further

processed to remove errors such as multipath interference and atmospheric delays. The DGPS

data from the fixed reference receiver is also applied at this point. The mobile terminal’s

precise latitude, longitude, altitude, speed, and bearing are returned either to the user terminal

or the application that requested it.

The Location Server can use a terrain database to further refine the position data. Possible

uses of the terrain database would be:

- Snapping location (longitude, latitude and altitude) to the nearest road. This

would be used for the bus tracking system implemented for this thesis.

- Snapping altitude to ground level if there are no building at the reported

longitude and latitude.

Arguably, in order to maintain modularly in the system, and to support the widest range of 3rd

party applications, the terrain database functionality should be a separate module. The module

may even reside on an IP network outside the domain of mobile network provider. However

these issues will be left to the Companies who implement network assisted GPS solutions.

20

The architecture described is based on a system developed by Qualcomm-owned SnapTrack

Inc. It is developed for the analogue-based AMPS (Advanced Mobile Phone System) mobile

network. In this system, a wireless modem must be built into the user terminal in order to

communicate with the Location Server. In Europe, we have digital based GSM, and will soon

have GPRS and UMTS to choose from. Since these networks are digital based, the

handshaking with Location Server can be integrated into the network protocol (possibly using

SMS for messaging). Currently AGPS has not yet been standardised by the 3GPP, which

means any solutions implemented will be proprietary. The 3GPP plan to agree on a standard

by the end of 2000. The accuracy of AGPS - while not quite as good as DGPS – is approx. 10

metres. For the moment while GSM is still the dominant mobile network this is the best (most

accurate) mobile positioning solution.

Ericsson is the only company to have implemented an AGPS system for GSM. They have

modified their GSM system software to report user location using either AGPS or CGI + TA.

If a mobile network operator is to provide AGPS mobile positioning internally and to 3rd party

developers they must upgrade the Ericsson software on all their base stations. They must also

place reference receivers every 300 kilometres of network. Third party application developers

wanting to access user terminal locations through AGPS, must communicate with Ericsson’s

Mobile Positioning Centre (MPC) server via the propriety Mobile Positioning Protocol

(MPP).

2.2.2 Enhanced Observed Time Difference (E-OTD)

E-OTD requires only a software modification to the user terminal. However in order to run

the E-OTD algorithms, E-OTD enabled terminals will need additional processing and

memory capacity. As shown in Figure 2.2 E-OTD consists of the following procedures:

- The user terminal measures control signals from at least 3 surrounding Base

Transceiver Stations (BTS).

- The user terminal measures the observed time difference (OTD) between

pairs of incoming control signals. This data is put in a message and sent to a

central server (called the Mobile Location Centre or MLC).

- When the MLC receives the message, it contacts the relevant location

measurement unit (LMU) and requests the OTDs of the control signal from

all the BTSs monitored by the LMU. An LMU is essentially a receive-only

GSM antennae and must be deployed for every 4 BTSs.

21

- The MLC knows the physical location of the BTSs and it’s the physical

location of the LMU. Using the calculating the difference in the OTDs of

LMU and the User Terminal, the MLC can calculate the physical location of

the user terminal. As in AGPS this location can be either sent back to the user

terminal or to a 3rd party application.

Figure 2.2: Enhanced Observed Time Difference Positioning

The accuracy of this system in GSM networks is between 60 metres in rural areas and 200

metres in bad urban areas (weak signal reception due to blockage and interference). However,

it is a mobile positioning technology with huge potential for 3G networks. Cambridge

Positioning Systems have managed to position the user terminal with an accuracy of 5 metres

using E-OTD in a UMTS network.

LMU

MLC
Server

1) OTD
Measurements

3) OTD
Measurements

2) Request OTD
Measurements

3rd Party
Application

User
Terminal
Location

BTS

22

2.3 Network Based Positioning Techniques

Network based positioning techniques, require no changes to be made to the user terminal in

order to find its location. Therefore the major benefit of network-based positioning systems is

backward compatibility. It may take up to five years to get everyone to upgrade his or her

phone. With network based positioning, all modifications are made to the network, with no

impact on the end user. However this is also a major disadvantage – the user has no control

over when their terminals are being positioned and by whom. With terminal based

positioning, the user will always have the option of switching it off.

2.3.1 Cell Global Identity & Timing Advance (CGI +TA)

The CGI + TA technique works by measuring two existing parameters in the GSM system.

The Cell Global Identifier (CGI) is a unique identifier for each cell sector in the network. The

Timing Advance (TA) parameter is the based on the access delay between the beginning of a

time slot and the arrival of bursts from the mobile terminal. Since the access delay is

proportional to the distance from the Base Transceiver Station (BTS) an estimate of the user

radius about the BTS can be calculated. The TA value can only be calculated in increments of

550 metres. By combining the CGI and TA parameters a user terminal position can be

estimated as an arc 550 metres wide within a particular cell sector.

Figure 2.3: Cell Global Identity & Timing Advance Positioning

550 metres

Cell SectorActual User
Terminal Location

23

As can be seen in figure 2.3 the phone can be located to an arc 550 metres wide. The accuracy

for this technique depends on three factors:

1) The distance the user terminal is from the BTS: When the user terminal the radius

of the arc is smaller, thus more accurate estimate is given

2) The radius of the cell

3) The size of the sector

In a typical GSM system cell radii vary from 100 metres to 30 km. This technique is the least

accurate of all the positioning techniques, but requires no modifications to the systems

hardware or software.

2.3.2 Time Difference of Arrival (TDOA)

The Time Difference of Arrival (TDOA) technique firstly developed by Turin in 1972 [7] is

essentially the same technique as E-OTD except it is done in the opposite direction. That is,

the observed time difference (OTD) calculations are done at least 4 different base stations

instead of at the user terminal. Each LMU is equipped with a GPS receiver in order to receive

the time signal, which is broadcast continuously by the GPS satellites. Alternative timing

references such as rubidium oscillators could be used, clock drift will arise but can be solved

using a distributed time synchronisation algorithm [8]. Each LMU measures the Uplink Time

of Arrival (UL-TOA) of a continuous stream of data from the user terminal. This value along

with a precise timestamp is sent to the MLC server. The MLC calculates the time difference

of arrival between pairs of UL-TOA values, taking into account the timestamps of each of the

UL-TOA values. Since the geographical location of each Base Transceiver Station is known,

an estimate of the location of user terminal can be calculated.

24

Figure 2.4: Time Difference of Arrival Positioning

The TDOA technique is quite costly from the network provider’s point of view, since an

LMU + GPS receiver must be installed in practically every base transceiver station. Each of

the LMUs must also be connected via a landline to the MLC server. The system will not be

able to give an estimate – or at least give an inaccurate estimate - if the user terminal cannot

be tracked by at least four individual base transceiver stations. However for a network based

solution the accuracy is relatively quite good – approx. 50 metres in rural location and 150

metres in bad urban areas. In the U.S., companies such as True Position, SigmaOne and

Grayson Wireless have developed TDOA systems. They support the analogue AMPS network

and the various digital based cellular networks: GSM 1900, CDMA IS-95, and TDMA IS-

136.

2.3.3 Angle of Arrival (AOA)

The Angle of Arrival positioning technique requires only two base transceiver stations with

antennae arrays installed to position a user terminal. An antennae array is a arrangement of

antennae in a precise, fixed pattern. Given a known operating frequency, and known antenna

spacing, by measuring the phase or phase difference on a number of antennas, the angle of

arrival of a plane wave can be deduced [9]. By measuring the angle of arrival at a two or more

BTSs, the intersection point of the bearing vectors can be calculated. This intersection is the

estimated location of the user terminal.

LMU
+

GPS

MLC
Server

Receives UL-TOA
values with timestamp

3rd Party
Application

User
Terminal
Location

LMU
+

GPS

LMU
+

GPS

LMU
+

GPS

25

AOA is very sensitive to multipath interference and accuracy reduces the further the user

terminal from the BTS. Typically AOA is used in conjunction with the TDOA technique to

improve accuracy, but due to its sensitivity to multipath interference it is not robust enough to

use on its own. SigmaOne have reported an accuracy of 125 metres 90% of the time using

TDOA and AOA techniques.

2.4 Automatic Vehicle Location (AVL) Systems

AVL or Fleet Management systems – of which bus tracking is a part – traditionally solve the

problem of real-time vehicle tracking using a variety of techniques involving proprietary radio

networks. In general the systems consist of two components:

- Measurement of the real-time location of the vehicle

- Relay of the position data to a central source

The actual real-time location of the vehicle is measured using one of the following

techniques:

- Signpost and odometer

- Global Positioning System (GPS)

- Radio navigation/location

- Dead-reckoning

This location data is stored on board the vehicle for periods ranging from seconds to minutes.

The amount of time the position information is stored on-board can depend on external

factors, such as being polled or passing a specific location.

Once the real-time position is measured, the location data must be relayed back to a central

point. The two most common methods of relaying are polling and exception reporting. With

polling, the central server polls each of the vehicles in turn asking for its location. Polling is

done over a proprietary radio network, that is, a portion of the available radio spectrum is

reserved exclusively for tracking the network of vehicles in the system. This solution requires

each of the vehicles to have a radio modem installed.

Polling is usually a continuous process – all the vehicles in the network are polled starting at

the first vehicle, ending at the last and then beginning at the first again. The time taken to poll

26

the vehicles is proportional to the number of vehicles in the network, and the number of

parallel radio channels available to poll on.

Since many cities have limited radio spectrum available, and long polling times add

unacceptable errors to the system, many AVL systems use exception reporting as a relay

technique. With exception reporting, the bus only reports its location at specified points or

when bus is running off schedule beyond a specified tolerance (i.e. 1 min early, 15 minutes

late). If the central server receives no report, it assumes the vehicle is on schedule. The reports

are sent via radio modem to a central server. This technique reduces radio traffic, however it

has disadvantages:

- The vehicle must have knowledge of its schedule, which can be complicated

by changing traffic flows. This requires extra hardware/software on vehicle,

which is not only more expensive, but difficult to maintain.

- Transmission errors may result in the central system inferring that the vehicle

is on schedule, which in fact it may not.

Out of all the AVL real-time tracking solutions signpost and odometer is the oldest and most

widely implemented vehicle tracking technique, in the public transport arena. It is currently

being tested in Dublin by Bus Átha Cliath, Dublin’s bus service provider. The next section

examines this technique and highlights some of its major flaws and looks at alternative

techniques. Although GPS is increasingly becoming more popular in AVL systems, it has

already been covered adequately in previous sections, so there is no need to discuss it here

again.

2.4.1 Signpost and Odometer

The Signpost and odometer system consists of a series of beacons placed along the route of a

vehicle. Each of the beacons emits a low powered radio signal with a unique id. The passing

vehicle has a special receiver build in, which can decode the id of the beacon. When the

vehicle has to report its location (either by polling or exception reporting) the location of the

last visited beacon is sent along with the odometer reading. The odometer reading is the

distance travelled since the last beacon. Signpost and odometer systems have been in use in

various cities around the world since the early eighties. They are now falling out of favour

due to a number of reasons:

- There is a high maintenance cost in keeping the signpost (beacon) network

operational.

27

- If the vehicle strays off the predefined route, it cannot be tracked.

- There are many points of failure: the odometer, the beacon and the radio

modem.

2.4.2 Dead Reckoning

The dead reckoning positioning technique stems from the dead reckoning navigation

technique developed in Europe at the end of the 15th century. Columbus and many of his

sailing peers used it to navigate their sailing ships. Columbus managed to navigate to North

America using the technique. The technique works by having a fixed known location, and

extrapolates a future location at a given time, using the current speed and direction. Dead

reckoning in AVL systems works by positioning a series of beacons around the city. The last

known location is derived from the time difference between passing through consecutive

beacons. The actual location is calculated by using the time passed since the last known

location was found. This system is only ever implemented as a backup system. It is usually

used in conjunction with GPS tracking and takes over only when the GPS signal is weak (e.g.

inside tunnel or in an urban canyon).

2.4.3 Radio navigation/location

This system is very similar to the E-OTD mobile positioning technique. Strategically placed

towers emit 900Mhz signals across the city. The vehicles can infer their location using the

TDOA technique.

28

2.5 Manual Positioning Techniques

Manual positioning, while often overlooked, can yield high accuracy and requires minimal

technical infrastructure. Even though we may not realise that we are doing it, this is the

method we use to position someone on the other end of a mobile phone conversation. In this

case, manual positioning is essentially a positioning technique, using verbal handshaking.

Typically the caller or callee, will start the handshaking sequence by asking, “Where are

you”. A sequence of questions will follow, until both parties have knowledge of the others

location. Obviously both parties must have knowledge of the terrain for this handshaking to

be successful. Voice positioning is also the dominant form of positioning used by taxis over a

push-to-talk radio network.

Manual positioning can be assisted, through the use of a graphical or textual computer-

generated interface. This to some extent compensates for a lack of terrain knowledge by the

user. The fact that tourists can - without any previous terrain knowledge - successfully

navigate around a new city using a street map, reinforces this. Using a graphical map, users

can find their location by comparing place names and street names on the map with their

surrounding environment. In an urban environment this technique is usually quite accurate. If

the location pinpointed by the user can be inputted into a computer system – possibly using a

WAP-enabled phone – accuracy’s can be achieved that are better than some the network

based mobile positioning techniques.

The WML user interface implemented for this thesis uses manual positioning to pinpoint

which bus stop the user is at. Given that a user knows which route they are travelling on, the

system presents them with a list of possible bus stops they can be at. By examining their

environment (street names and landmarks), the user can accurately choose the exact bus stop

they are at. Errors are only introduced, if the user chooses an incorrect bus stop. Therefore

assuming the user is correct, the accuracy of the location is only dependent on the method use

to geocode the bus stop in the initial design of the system. Geocoding will be covered in more

detail in chapter 5.

29

2.6 Summary of Positioning Techniques

This chapter discussed the different techniques that can be used in a mobile network, to

pinpoint the location of a user terminal (phone). The techniques were classified as either

network based positioning, each having their advantages and disadvantages. Network

Assisted GPS provides the best accuracy of the all the mobile positioning techniques. CGI +

TA requires no modifications to be made to the network or terminal, but provides poor

accuracy. The best network based positioning techniques provide accuracies of about 125

metres while AGPS is accurate to about 10 metres. DGPS is better still, providing at least

three-metre accuracy, but it requires strong signal strength and has a long time-to-first-fix.

Traditional AVL positioning techniques were also looked at. They all require heavy capital

investment in communications infrastructure and on-vehicle computer systems. This thesis

argues that with mobile positioning techniques being as good as - and in some cases better

than – AVL positioning systems, there is no need for the transport company to invest in the

propriety systems and communications infrastructure. Mobile positioning, provides a low cost

means of both tracking real-time position and relaying data to a central source for no up-front

capital investment. Leaving the infrastructure problem to a third party achieves economies of

scale, and lets the transport company focus on maintaining the transport infrastructure. Since

mobile positioning technology is only going to get better with the advent of GPRS, EDGS and

WCDMA, it is a natural choice for a 21st century real-time passenger information system.

30

CHAPTER 3

Passenger Information Systems

Increasingly in urban centres, passengers are confronted with multiple modes of transport.

Passengers can take trains, buses, taxis, trams etc. Recently - through the Telematics

Application Programme (TAP) Transport Sector initiative - the EU has heavily funded a new

area of research called intermodality. Intermodality involves the complementary use of

multiple types of transport to get assets from one point to another efficiently. Intermodality

was first made popular by the logistics industry, and is now being applied to public transport

systems to make them more effective. The goal of intermodality in a public transport context

is to get more passengers to their destinations faster without increasing the number of

transport vehicles.

Traditionally Passenger Information Systems have been developed from the ground up as

monolithic systems, the most capital-intensive part of the system being the communications

and tracking infrastructure, i.e. the Automatic Vehicle Location (AVL) system. The choice of

AVL system heavily influenced the design of the software systems built on top of it. Since

there is no standard interfaces for integrating with AVL systems, passenger information

systems developed upon one AVL system need extensive rewriting when applied to another.

31

Intermodal passenger information systems, by their nature, require an information feed from

many different transport providers. These providers will range in size from small taxi

companies to large public transport companies. Unless the AVL systems are homogenised

and require relatively little capital investment, many transport companies will not implement

them which results the goal of intermodality not being realised. This thesis proposes an AVL

systems framework that is designed to maximise the transport network providers budget and

to reduce vendor tie-in by using standardised communications and systems technologies. It

allows the underlying AVL system to be de-coupled from the information systems upon it, by

exploiting the standardisation work being done for 3G mobile networks. This AVL systems

framework is described in section 3.4 and also in chapter 4.

While there is not much standardisation work being done in the area of AVL systems for

public transport networks, passenger information systems is an area that is being heavily

researched. The state of the art in the area of intermodal passenger information systems is

covered by two TAP funded projects: Infopolis 2 and PROMISE. Infopolis 2 covers the

ergonomics of passenger information systems and suggests guidelines for system

implementers. The PROMISE (Personal Mobile Traveller and Traffic Information Service)

project proposes a service-chain-based architecture for a real-time, position-dependent, and

multimodal5 traveller and traffic information service.

The rest of this chapter will summarise the most important finding of the Infopolis 2 and

PROMISE projects. An AVL system framework is proposed and contrasted against three

existing passenger information systems in use today around Europe.

5 A multimodal passenger information system provides information about the different modes of
transport but does not provide facilities for the complementary use of the different modes to get from
an origin to a destination (i.e. an intermodal passenger information system).

32

3.1 Telematics Application Programme

Telematics is a branch of engineering research that involves the complementary use of both

computer and communications technology to provide information. The Telematics

Application Programme6 (TAP) is an applied research programme funded under the EU forth

framework programme. It is a user driven research programme, focusing on the societal

applications of information and/or communication technologies. Its activities are closely

related to the Information Technologies programme and the ACTS programme. Together, the

three programmes represent 28% of the total EU research budget. The two research projects

that this thesis focuses on (Infopolis 2 and PROMISE) are funded by sector two of the

Telematics Application Programme – Telematics for Transport.

3.2 Infopolis 2

Infopolis 2 (1998-2000)7 was a research project funded by the EU Telematics Application

Programme (Transport Sector) which finished in July 2000. It built upon the work covered in

the earlier – year long – Infopolis project. The original Infopolis project focused primarily on

the effectiveness of Human Computer Interfaces (HCI) to passenger information systems.

Infopolis 2 extended the scope of the original Infopolis project to include intermodality (the

use of different types of transport for the same trip).

The primary goal of Infopolis 2 was to improve user access to electronic intermodal traveller

information. In order to achieve this goal, three sub-goals were identified:

1 The compilation of a database of existing passenger information systems

2 The development of concrete guidelines for system designers

3 The analysis of passenger needs i.e. what information do passengers want, when

do they want it and how do they want it presented.

Many of the guidelines proposed by Infopolis 2 were implemented by the Helsinki 423

system, which is described in section 3.5.

6 For more details see http://158.169.50.95:10080/telematics/transp/transport.html
7 For more details see http://www.ul.ie/~infopolis/index.html

33

3.2.1 Passenger Information System Families

The Infopolis 2 project examined over 600 telematic based passenger information systems in

use in Europe. It categorises these passenger information systems into seven system families:

1 Public interactive terminals

2 Electronic bus stop display

3 On-board information

4 Enquiry office terminal

5 At home/office information

6 Hand-held terminal

7 Website

In general these systems build on information that is already available in existing media

(timetables and network maps), to provide more reliable (near real-time) data. Each system

family has its own particular presentation characteristics and input mechanisms (if any). It is

important to note at this stage that neither Infopolis 2 nor PROMISE look at the underlying

mechanism or infrastructure for the provision of the realtime data, they just assume that it can

be provided.

Public interactive terminals

Public Interactive Terminals (PIT) are passenger information systems that mainly provide

information to travellers before their trip to enable them to make informed decisions about

modes (type of transport to choose), routes and departure times. Terminals also help travellers

during their journey at connections. PITs are very often located near public transport network

facilities, in stations or at stops.

Electronic bus stop display

Real time at-stop information is probably one of the best ways to meet user expectations. At-

stop displays usually display waiting times. Also, the location of the arriving vehicle can be

shown. The knowledge of waiting time greatly improves the conditions of a journey in two

main ways:

- By removing uncertainty (When will the bus arrive? Has the bus already passed?)

- By minimising waiting time (e.g. passenger can do last minute shopping).

34

On-board information

On-board (in-vehicle) displays have two main roles:

- To enable the passenger to get information on his/her bearing when the vehicle is

moving. Systems can give information, for example, on the destination of the vehicle,

the next stop and connections.

- To entertain and to inform about the transport network and city activities.

Enquiry office terminal

Enquiry office terminals differ from other systems studied by the Infopolis 2 project because

the users are not passengers but information personnel from transport companies. Their main

purpose is to help personnel to answer user requests. The systems have to be flexible,

dialogues have to be compact and answers have to be received quickly. The information

usually includes trip planning, timetables, fares and tourist information.

At home/office information

This area covers systems such the French Minitel system. The information is presented

similar to a website. However the quality of the graphics is much lower on the Minitel system.

Hand-held terminal

Hand-held systems studied included intelligent mobile phones (ie Nokia Communicator),

SMS based information systems and pager based information. Most of the research data for

this area was taken from the PROMISE project, which focuses on passenger information for

the mobile user. The PROMISE research was completed before WAP was standardised, but

the same principles apply to WAP based mobile phones and indeed any personal handheld

mobile device that has some degree of interactivity and can send/receive data over a wireless

network.

Website

This area is has the largest growth out of all the information system families. It is largely

confined to route planning activities, advertising, and fare information.

Chapter four describes a device independent architecture that allows data be delivered to each

of these system families.

35

3.3 The PROMISE Project

The PROMISE (Personal Mobile Traveller and Traffic Information Service) project is

primarily concerned with the development of a personalised traveller and traffic information

service that can be viewed on a personal mobile terminal. Its objective is to provide travellers

with a range of easy-to-use multimodal traveller and traffic information services. The project

is heavily user-focused, in the hope that it will produce commercially viable services that

consumers will want and will pay for. While the PROMISE project focuses on both traffic

information systems and passenger/public transport information systems only the research

results relevant to passenger/public transport information systems presented here.

The project, which ran from January 1996 to February 1999, was partially funded by the EU

TAP Programme. The PROMISE Consortium consists of a diverse range of

telecommunications providers, electronic equipment manufacturers, car manufacturers and

public authorities. The key project participants were Nokia (Project leader), Volvo

Technological Development, BT Laboratories, Rijkswaterstaat, IBM Deutschland, Renault

Research, Eutelis and BMW.

The project was conducted in a series of phases; each phase produced one or more project

deliverable documents. The first phase involved extensive user-needs analysis. The user-

needs analysis was conducted in 6 EU countries, its goal was to identify services that would:

1) Satisfy user needs

2) Be commercially attractive to service providers, information providers and

infrastructure providers.

Phase 2 built upon the user needs analysis research results to develop what is called the

PROMISE service concept. This consists of two core services aimed at the mobile traveller:

1) Trip planning service: This covers pre-trip and on-trip planning and the

corresponding guidance support to make this possible.

2) Traveller and traffic related information services: This covers miscellaneous

information such as yellow pages data, places of interest, weather data, parking data

etc.

A formal service specification is described in detail in project deliverable D3.1 [1]. Using the

service specification, the PROMISE consortium developed a generic system architecture [2]

that supports the delivery of traveller and traffic information services to portable and in-

36

vehicle terminals. The systems architecture described in chapter 4, incorporates many of the

aspects of both the PROMISE service concept and the PROMISE generic system architecture.

3.3.1 User needs analysis

The main drive behind the definition of the PROMISE services was to take the user as the

starting point. The idea was that if all the attention were focused on the users needs, the

resultant services would match those needs and deliver usable products. Usability is the extent

to which a product can be used to achieve specific goals with effectiveness, efficiency and

satisfaction in a specified context of use8. The objective of the PROMISE user needs analysis

was to identify highly user friendly, usable solutions and to define a clear strategy for the

provision of multimodal traffic and travel information for the mobile user.

The first step in the analysis was to include actual and representative potential users of the

system. This was done through focus groups in each of the six countries. Then, by using

interviews, questionnaires and scenario analyses, the users’ needs for information in real

traffic and travel situations were investigated. Although many of the six EU countries

involved in the project (Britain, Holland, France, Finland, Germany and Sweden) approached

the user needs analyses in different ways, the results from each country are quite similar. The

most important conclusions of the studies are summarised below:

- Travellers emphasised the need for a wide and diverse range of information/services.

They want more than just pre-trip and on-trip planning and guidance information. They

want weather data, parking availability and points of interest.

- There is a need for dynamic services, not only those that provide access to real-time

information, but also those that warn of any changes and/or react to those changes.

- Travellers would like personalised information. Services should be customisable, based

on a user profile.

- People wanted to access the mobile information services through a small personal device

similar to a mobile phone or PDA. This research was conducted in 1996, since then, a

whole infrastructure with corresponding protocols has been developed to enable the

8 The formal ISO definition of usability

37

mobile user access web-based information services. A WAP enabled mobile phone

operating over a GSM network matches very closely the requirements of the conceptual

PROMISE terminal specified in the user analyses studies.

- People were interested in accessing the PROMISE information services at home, at work

(on a PC) and through a fixed terminal on the public transport vehicle.

- People were prepared to buy a dedicated (propriety) PROMISE user terminal and pay for

the service. This point highlights how desirable this sort of information service is if

people are willing to pay for a dedicated terminal. With recent innovations in mobile

technology i.e. WAP, users will not have to buy a dedicated terminal. Also with the

advent of GPRS, EDGE and WCDMA, users will pay less for accessing the service

because they will only pay for the data transmitted.

3.3.2 Service Definition

Using the results from the user needs analyses, the PROMISE consortium identified services

that would satisfy user needs and be commercially attractive to service providers. The basic

PROMISE service concept is to provide two core services:

1) Pre-trip and on-trip planning

2) Travel related information services

Other peripheral services that users wanted, but did not fall into the two core categories were

grouped into

1) Additional services: emergency, payment, advertising, bookings and mobility agenda

services.

2) Horizontal applications: fax services, email, web browsing, SMS, telnet, FTP. With

the advent of WAP, these services are already available.

The PROMISE service concept is best viewed according to how the end user will use the

services. This is shown in Figure 3.1

38

Figure 3.1: The PROMISE service concept

3.3.3 Core Service 1: Trip Planning

The Trip-Planning Service is closely modelled on the process the traveller undergoes when

he/she actually makes a journey (Fig 3.2). When a user makes a trip, they do so for a non-

travel reason such as a business meeting, shopping, cinema etc. Therefore the starting point

for a trip is when the user selects a Service Location (SLOC) that will fulfil his/her non-travel

criteria. The SLOC can be inputted in a number of ways

- The SLOC could be an address in a personal address book

- The SLOC could be an address that the user knows and manually enters.

- The user may not know the address and select the destination from a Points-of-

Interest (POI) list. The POI list contains locations such as tourist attractions,

User

Pre- & On-
Trip

Planning

Travel
Related

Information
Services

PROMISE Terminal

Road Transport

Public Transport

Flight Data

Train Data

Ferries Data

etc.

Yellow Pages Data

Parking Data

POI Data

Weather Data

etc.

Additional
Services

Horizontal
Applications

Travel Data

39

entertainment complexes and shopping centres. Similarly the user can find a business

address from a yellow pages facility.

Once the user has selected an SLOC the pre-trip planning process begins. The user must enter

an origin (this can be either the current position or another specified location). A pre-trip plan

is created. Once the user starts the trip this plan becomes the on-trip plan. Throughout the trip,

the on-trip plan gives feedback to the user. The feedback is dependent on the actual position

of the user. The user’s position can be captured in a number of different ways:

1. GPS positioning: The PROMISE terminal may have a GPS unit installed in it.

Alternatively one of the mobile positioning techniques mentioned in chapter 2 could

be used to track the location of the phone.

2. User positioning: The user can manually enter their position.

3. Timetable positioning: The system can guess where the user is based on time. This

assumes that the vehicle is closely following the times in the timetable. This would be

only suitable for trams, trains etc. (vehicles with high probability of conforming to the

times in the timetable)

Figure 3.2: The PROMISE trip planning process

defining
transport

mix

service
location

transport
modes

defining
service
location

origin

pre-trip
planning

dynamic
travel

pre-trip
plan

on-trip
planning

on-trip
 plan

position trippositioning

change
of mind

trip

?

origin destination

legend

end of
trip

process
output/input
state

40

The Trip Planning service provides the user with dynamic multimodal travel planning. The

system supports the user both before the trip is made and during the trip. The system

facilitates the selection of origin and destination points using a number of different

mechanisms. The user can select the mode of transport (bus, train, car, walk). The system

provides guidance to the user through the use of real-time travel and traffic information

3.3.4 Core Service 2: Information Services

Information services cover both static and dynamic information for users of public transport

and cars. Many of these services are used to support the trip-planning process. The most

important information services relating to public transport are detailed below:

Public Transport Information

This information service provides the user with real-time and non-real-time public transport

information that supports both pre-trip and on-trip planning. This information comes directly

from individual transport operators. The service provides the following information:

- Taxi Services: this service gives information based on the location of the user. It

provides contact info, fares, taxi data (no of seats, disabled facilities). The user can

book the nearest taxi or search for a special taxi matching his/her needs. The user can

also book a taxi in advance.

- Stations and Stops information: Gives locations of stations and stops both the street

address and displayed on a map. Provides the distance and time between

stations/stops. Provides guidance to the users travelling between stations/stops

- General Public Transport (PT) information: Provides timetable and route information.

Provides a description of tariffs used on each route. Provides locations where tickets

can be purchased, and locations of lost-property offices etc.

- Real-time event information: This is possibly the most useful PT information, it

provides the user with information about delays, cancellations, extra departures, or

any other sudden changes in the public transport system.

41

Yellow Pages Information

The PROMISE yellow pages information service provides enhanced access to the business

listings in the standard yellow pages directory. The user can query the yellow pages database

based on where the user currently is through the use of a mobile positioning technique. The

system can show the position of the business on a graphical map. The route planning service

can then be used to plan a trip to this location.

Typical user queries would be “find me an Italian restaurant with 5 minutes (walking) of

where I am where the price of the meal will not be greater than 15 pounds” or “the nearest

ATM”

Point-of-Interest Information

The Point of Interest (POI) information service provides the user with up-to-date information

about his/her area of interest. It provides access to a wide range of entertainment/event related

information such as current events, concerts, exhibitions, museums, films etc. It also can act

in tandem with other PROMISE services such as the Trip Planning/Route Guidance service

and the Reservation Service.

The POI service differs to the Yellow Pages service in terms of focus. Instead of searching for

the nearest cinema, you would search for the nearest cinema showing the latest film. Instead

of searching for the nearest bar, you would search for the nearest bar with a salsa band

currently playing. In short the POI takes into account real-time event data, which the yellow

page service does not. The POI service also limits the locations the user can search for by

focusing on locations that have entertainment/interest value (i.e. taxis ranks, banks, petrol

stations etc. would not be listed).

The user can enter what he/she is interested in, in three different ways:

1) Event Category: Allows the user to enter a search for a location by browsing event

lists. The user can choose from a range of different event categories: film, concert, art

exhibition, business show etc.

2) POI category: Allows the user to enter a search based on actual physical locations that

have an entertainment focus, i.e. cinema, theatre, concert hall, nightclub, leisure park

etc

42

3) Object name: Allows the user to obtain the latest programme listings from a

previously known location, i.e. the films currently being shown in the local cinema.

Additionally the user can add constraints to focus the results of the search:

1) Attributes: This returns locations with specified attributes e.g. support for parents

with young children (changing facilities, special children’s activities etc.)

2) Nearest: This returns the nearest location that matches the search criteria. This is

calculated relative to the users current location or another specified location.

3) Radius: Allows the user to specify a maximum distance from their current location or

specified location.

4) Area: The user can specify a town, city or country. For example the user could search

for any business exhibitions in the next two months happening in Dublin.

The results of the search are returned as a list of locations and can be sorted alphabetically or

by distance. The user can get detailed information about each location such as admission

prices, opening times, telephone number, address, location on a map etc. The user can also

automatically phone the location (they do not have to manually type in the telephone

number).

Using other PROMISE services the user can also:

• Plan a trip to the location and receive on-route guidance (using Multimodal Trip

Planning service).

• Book and pay for admission using the Reservation Service

Reservation Service

This service allows the user reserve entities such as a public transport ticket, a taxi, a car

parking space etc. The PROMISE service specification only allows for reservation (i.e. the

reserved ticket must be purchased at the train station, car park etc.). Billing and electronic

payment systems are beyond the scope of the PROMISE project.

The ticket reservation service can be used as either a stand-alone service or embedded in

another service (e.g. the multimodal trip planning service). When used, as a standalone

service the user must enter details such as the route, the origin, the destination, seat number

43

etc. However when embedded in the trip planning service, the trip plan is inputted

automatically.

When the details of the reservation have been entered, the user presses a Make Reservation

button and will receive either a confirmation of success or failure. If the reservation is

successful, the user will be quoted a unique reservation number. If the reservation is not

successful the user will be given an error message stating why the reservation failed (e.g. not

enough seats available, or could not contact reservation system etc.).

3.3.5 Generic PROMISE System Architecture

The mission statement used in the design of the PROMISE system architecture is:

To develop a Personal Travel and Traffic Information Service (PROMISE) which uses

portable and in-vehicle terminals in order to provide users with quick and easy access to a

number of useful services using mobile communication. These services are packaged and

offered by a Value Added Service Provider who has reached agreements with a number of

Content Provider Centres for accessing their value added content.

There are five actors in the PROMISE system:

- Travellers: There are different types of travellers (e.g. business travellers, commuters,

tourists etc.)

- Value Added Service Providers (VASPs): Establish services in order to make profit

- Content Providers: Own value added content which is used in service provision

- Terminal Manufacturers: Sell user terminals to travellers

- Network Operators: Operate the communications network used to transport data to

terminals

The PROMISE system architecture defines interfaces or high-level protocols for the

communication between the different actors in the system. It also identifies the role of each

actor in the realisation of the PROMISE service concept. The system is also described from a

functional, informational and data communications viewpoint. Figure 3.3 gives an overall

view of the PROMISE system architecture.

The PROMISE system architecture is based on an integrated value chain model, which is

described in chapter 4.

44

Figure 3.3: PROMISE system overview

Content

This is the raw data stored in the database.

Content Provider (CP)

The owner of one or more databases, which are used as a basis for a content provision service

Content Provider Centre (CPC)

Acts as a central point for aggregating the content from the content providers, in order to

provide value added travel and/or traffic information service to the VASP.

Value Added Service Provider (VASP)

This entity packages the data from the different CPCs and delivers it to the end user. Performs

user billing and authorisation.

Network Operator

Operates the communications network used for the delivery of information to the user

terminals.

Content
Provider

Content
Provider

CP
Centre LAN/WAN

CP
Centre

Content
Provider Content

Provider

Local
VASP

Remote
VASP

LAN/WAN

Network
Operator User

Terminal

CP-Centre
Interface

Protocol (CIP)

Terminal Interface
Protocol (TIP)

VASP Interface
Protocol (VIP)

45

User Terminal

The piece of equipment used to access the PROMISE services. Can be portable (eg WAP

phone, PDA) or in-vehicle terminal.

User

The traveller who uses the terminal to access the service.

Content Provider Interface Protocol (CIP)

The protocol used to interface between the Content Provider Centre and the Value Added

Service Provider.

Terminal Interface Protocol (TIP)

The protocol used to interface between the Value Added Service Provider and the user

terminal.

Value Added Service Provider Interface Protocol (VIP)

The protocol used to interface between two or more Value Added Service Providers in order

to exchange information between service centres and geographical areas.

The PROMISE architecture defines a three level Reference Model: Level 3, Level 2 and

Level 1.

- The Level 3 Reference Model is defined at the highest level of abstraction. It defines

the authorities (institutional entities) involved in the system and what responsibilities

they undertake in the provision of the service

- Each authority defined in the Level 3 reference model has an associated Level 2

reference model. The Level 2 reference model uses a layered model – similar to the

OSI reference model – to describe the functionality to be provided by each of the

entities identified in the Level 3 reference model.

- The Level 1 reference model defines the functional, information and data

communications architecture of the PROMISE system. The model is described on a

conceptual level to avoid any implementation dependent issues.

46

3.3.6 Level 3 Reference Model

The Level 3 Reference Model identifies 3 separate authorities:

User Terminal Manufacturer

The User Terminal Manufacturers function in the model is to provide an attractive user

terminal and to sell as many as possible

Value Added Service Provider (VASP)

The function of the VASP is to optimise contracts with CPCs in order to provide attractive

services to the users and to be compatible with every terminal on the market

Content Provider Centre (CPC)

The function of the CPC is to supply value-added content to as many VASPs as possible.

The aim of the Level 3 Reference Model is to describe an open architecture that will provide a

healthy (competitive) market for the provision of mobile travel information services. Users

can choose terminals from many manufacturers. Information can be requested from many

different VASPs and VASPs can choose to get data from many different CPCs.

3.3.7 Level 2 Reference Model

The 3 authorities identified in the Level 3 reference model, have a layered (Level 2) reference

model associated with them. The layered approach is a common systems design pattern,

which is used heavily in the telecom/networking systems (eg TheOSI model, TCP/IP etc.).

The layers in this reference model refer more to system concepts rather than to actual system

function layers.

47

User Terminal Layered Reference Model

Layer Name Functions

5 User Interface Menu handling, Graphics and text display

4 Information Decoding Translation of sent/received data elements

3 Cache Storage of Data UI performance optimisation, Session data

2 User/Terminal Identification Storage of user profile and terminal

characteristics

1 Protocol Handling Interface Application Layer Protocol, Secure

transmission of data

0 External Devices Interface Interface to devices such as GPS, provide data

transfer capabilities

Value Added Service Provider (VASP) Layered Reference Model

Layer Name Functions

8 User Administration Registration, Account opening

7 Authorisation (System

Access)

Password validation (or other authentication

mechanism)

6 Mailbox Control Determination of pending/off-line requests

(Storing request, Showing result of

polling/regular request)

5 User Profiling Determination of user requests (Default profile

or request determination, Answer request,

Accounting associated with request)

4 Analysis of the request Determine action to be taken on requests

(Optimise request, Log request, Integrate

information and identify CPC)

3 CPC Profile Consolidate request and CPC profile (Access

CPC profile, Identification of execution/tasks,

Logging)

2 Router/Director Execute individual request,

reception/validation of information (Request

issuance/optimisation, Determine physical

location(s) of data, Integrate different

locations)

1 Execution Local reception of individual database access

request (Optimisation, Local interpretation,

Logging per access)

48

0 Database access Collection of data to answer request

The VASP layered reference model is layered in the way a user request is logically processed

and answered by the VASP.

Content Provider Centre (CPC) Layered Reference Model

Layer Name Functions

4 VASP Administration Registration, Account opening, Billing

3 VASP Communication Packaging of requested information,

Handshaking with VASP

2 Conversion according to

VASP profile

Access VASP profile, Convert information to

the required format

1 Content Integration Analyse request, Handle multiple requests to

Content Provider, Accounting

0 Proprietary API for each

Content Provider

Optimisation of dialogue, Logging

49

3.3.8 Level 1 Reference Model (Functional Architecture)

The functionality of the PROMISE system is delivered by the three main entities identified in

the Level 3 Reference Model (CPC, VASP & Terminal). The applications used to provide the

functionality run on both central servers and the user terminal. It is desirable to use standard

terminal software to access the services so that the services can grow and change. The client –

server model (Request/Response) is used to access most services, however client call-back is

used to alert the user of special events. The functionality of each of the three entities is

summarised below:

Content Provider Center (CPC) functionality

The role of the CPC is to provide value added content, which is produced by integrating

content from different content provider databases. For example a CPC could integrate

information from different databases containing bus, train and taxi data. The CPC would

provide this multimodal transport information to a VASP through a single access point. The

CPC communicates with the VASP using the CPC-VASP Interface Protocol (CIP). The basic

functions of a CPC can be summarised as follows:

- Acquire information from different content provider systems

- Create value added content by integrating information from different content provider

systems.

- Provide multilingual content

- Deliver value added content to the VASPs via the CIP interface. The content

delivered to each VASP is dependent on the VASPs profile i.e The format of the data

delivered will vary between VASPs

- Maintain databases containing VASP billing data and VASP profiles

50

Figure 3.4: CPC functionality diagram

Value added service provider (VASP) functionality

The role of the VASP is to provide Value Added Services from the value added content

provided by the CPC. VASPs communicate with CPCs via the CIP interface and with

Terminals via the TIP interface. Normally the VASPs services terminal requests by acquiring

the necessary information from the various CPCs and delivering it to the user in a format

specified by the user/terminal profile. The VASPs may also have to push service

announcements to the terminal without being requested (e.g. emergency announcements).

A major function of the VASP is to maintain customer databases for billing and user/terminal

profiles. The billing systems should be able to adapt to alternative electronic payment

methods (e.g. Digital Cash - eCash). User/Terminal profiling is required to provide

personalised services and to determine the format in which to deliver the data to the terminal.

Another requirement of the VASPs is to interface with other VASPs in order to provide

service roaming (i.e when the user is not in the area of the local VASP. This is similar to the

service roaming concept that mobile phone network operators use to allow customers make

phone calls abroad).

C
IP

 in
te

rf
ac

e
to

 th
e

V
A

S
P

s

Content
Provider 1

Content
Provider 2

Content
Provider n

VASP
1

VASP
2

VASP
n

Billing of
VASPs

Convert
data

according to
VASP
Profile

Content
Integration

Value
Added

Content

51

The basic functions of a VASP can be summarised as follows:

• Acquire value added content from the CPC via the CIP interface

• Create value added services from the value added content

• Convert data to necessary format

• Deliver value added service to users through the TIP interface

• Maintain database of user/terminal profiles, for personalisation and billing purposes

• Enable multiple devices access services through the conversion of data based on

terminal profiles

• Provide service roaming capabilities, communication will occur through VIP

interface

• Establish agreements with Content Provider Centres for accessing their databases

• Establish agreements with Network Operators for using their networks

• Market the services

• Calculate the User Terminal position using the data received

Figure 3.5: VASP functionality diagram

C
P

C
s

T
IP

 in
te

rf
ac

e
to

 th
e

te
rm

in
al

sCPC
1

CPC
2

CPC
n

Terminal
1

Terminal
2

Terminal
n

Billing of
Users

Convert data
according to

User/Terminal
Profile

Service
Creation

Value
Added
Service

V
IP

 in
te

rf
ac

e
to

ot
he

r
V

A
S

P
s

Other
VASPs Service

Roaming

52

User Terminal functionality

The role of the terminal is to provide the user interface to the promise services. This interface

can be provided by the terminal, or by the VASP (e.g. a WML interface). The basic functions

of the terminal can be summarised as follows:

• Communicate with the VASP via the TIP interface

• Render user interface

• Store secure user/terminal identification data

• Provide caching for reasonably fluid operation

• Interface with external devices e.g. GPS receiver

3.4 Existing Passenger Information Systems

Superoute 66 and Project 423 are two of the most advanced telematic-based passenger

information systems in Europe today. Superoute 66 was a BT-led research project based in

Ipswitch, Great Britain. While it is now discontinued, the system was installed on the 66

route, and was in use for a full year, ending November 1999. Project 423 is an ongoing

project based in Helsinki, Finland. Project 423 is called such because the system is installed

on the 4 bus route and the 23 tram line. The following sections examine these two systems

and contrast them against the AVL framework proposed by this thesis.

3.4.1 Superoute 66

The Superoute 66 AVL system used GPS positioning and Band 3 radio for communication.

LED or LCD displays at stops showed the estimated time of arrival of the next bus. Multiple

delivery channels for passenger information were developed, using a Band 3 RF signal as the

real-time location feed:

- Website: The HTML section presented static timetable information and real-time

predicted arrival times at stops. A Java applet presented predicted arrival times

and the real-time location of buses on a stylised map of the route.

- SMS/Pager: The SMS/Pager system allowed them – through the website –

register to have SMS messages sent to them as certain events occur e.g An SMS

53

could be sent to them, when the first bus after 5:30 is 10 minutes from their bus

stop.

- Smart SMS: This is essentially a WAP interface, but implemented using the

propriety smart messaging protocol of the Nokia 8110i phone. It allows the user

get the estimated time of arrival of a bus at a particular bus stop.

- Interactive Voice Response (IVR): Using a BT-developed voice recognition and

text-to-speech platform, real-time bus location information was given over a

standard telephone. Problems with large-scale deployment of IVR were

identified. The BT report [12] stated that it would be difficult to design an IVR

system capable of informing a traveller unfamiliar with an area, because there is

no definitive list of stop names and locations. Unless users know what to say to

the IVR system previously, it is difficult to navigate around, due to lack of

presentation of available options.

All these delivery mechanisms communicate with the central server via TCP/IP interfaces.

The architecture of the system is shown in figure 3.6

Figure 3.6: Superoute 66 Systems Architecture

Routes &
Timetables

User
Profiles

RF Decoder

Band 3 Radio
Signals Prediction

Algorithms
Real-Time
Locations

DATA LOGIC CHANNEL

Webserver

SMS/Pager

Smart SMS

IVR

ACCESS
DEVICE

Web
Browser

TCP/IP Network

Pager/
GSM

Nokia
8110i

PSTN

54

3.4.2 Project 423

Project 423 is a public transport telematic system that was launched in Helsinki, Finland in

1999. The system is installed on the 4 tram line and the 23 bus route. The 4 tram line carries

over 37,000 passengers daily, while the 23 bus route carries 5,000 passengers daily. Like the

Superoute 66 project, the AVL system is GPS based. The positioning technique is slightly

different to traditional GPS-based AVL systems:

- GPS is used to position a bus on a bus stop window – the immediate area

surrounding a bus stop.

- When a bus is within a bus stop window and the doors are opened, then it is

assumed to be at the bus stop.

- In between bus stops, the location is calculated from the odometer.

Another innovative feature of the 423 system is the use of traffic signal priority. A radio

modem on the bus transmits a message to the signal controller approximately 150 metres

before reaching a set of traffic lights. If the bus is behind schedule, the signal controller either

extends or calls the green signal. When the bus passes the lights, a second message is sent to

the signal controller to cancel the green signal.

The system communicates via a city-owned radio network on six different frequencies. Three

frequencies are used for polling of the buses (which is done every 10th second). One

frequency is allocated for signal priority, another is used to update the at-stop and on-board

displays. The sixth frequency is used during the night for data maintenance at depots. The

radio network consists on 3 base stations mounted on utility chimneys across the city. The

real-time information, is presented using the following channels:

- On-board driver display: A small LCD display unit is placed next to the steering

wheel. The unit displays, the next stop name, the distance to the next stop and a

schedule monitoring value. The schedule monitoring value is a positive or negative

time showing how much or how behind schedule the vehicle is. This allows the driver

to either increase or decrease speed so that the vehicle arrives at the bus stop exactly

according to schedule.

- At-Stop display: LED display units are placed at every stop in the route. Each unit

displays the route number of the next arriving bus, the name of the bus stop and the

estimated time of arrival at that stop. Arrival times are rounded to the nearest minute.

55

- In-vehicle display: LED display units are installed inside each vehicle. They display

in rotation:

§ The line number, the terminus

§ The next stop name

A speaker also announces the next stop when a vehicle leaves a stop.

- Website: A website is provided that shows estimated time of arrival at bus stops. The

system is queried through a HTML form. It is only accessible to staff.

The next section looks at how the AVL system for Project 423 and Superoute 66 could be

replaced with an inexpensive mobile positioning solution.

3.5 Proposed AVL Systems Framework

Public transport operators have a fixed budget for implementing passenger information

systems. In order to maximise this budget and achieve economies of scale, the operators need

to be able implement 3rd party off-the-shelf solutions. There is a need for a standard off-the-

shelf communications and tracking infrastructure, i.e. AVL systems. Off-the-shelf software

systems should be able to access the underlying AVL system in a standard fashion. These

software systems should have precisely defined roles. The transport operators should be able

to pick and choose which systems they want to use, based on their unique requirements.

There should be systems to provide:

§ Internal Network Management: These systems are developed for the network operator

to be used internally. They should provide functionality such as:

- The ability to visually track all vehicles in the network at a central control

location.

- Assist in future route planning by providing feedback about where the greatest

demand for transport is.

- On-board support systems to assist drivers.

- Integrated ticketing and possibly support for electronic payment systems

56

§ System Interfaces: These interfaces should provide standard APIs, which 3rd party

applications can use to provide value added information services. The 3rd party

application should be able to access information such as:

- The real-time location of vehicles.

- Real-time vehicle parameters such as speed, number of passengers on board,

current route.

- Static information such as Timetable/Scheduling and route information.

- Geographical data such as the location of bus stops and stations.

- Customer service data such as locations of where tickets can be purchased and

locations of lost property offices.

The proposed AVL system framework provides all the above software systems on a common

TCP/IP platform. Each vehicle in the network has a user terminal installed on it. The user

terminal can simply be a GSM chip with a SIM card attached, i.e. there is no need for a

keypad or user display on the user terminal. With mobile positioning, communications and

positioning are integrated, which means there is no need for a separate radio network and

hence no infrastructure to maintain. The position information of each of the buses is sent to

the transport network central server via a TCP/IP link from the mobile phone network

provider.

Figure 3.7: Proposed AVL Systems Framework

TCP/IP Network

 GSM/GPRS/
WCDMA
Network

Modified User
Terminal Installed

in Vehicle

Positioning
Server

Mobile Network
Operator Domain

Transport Network
Operator Domain

Routes,
Timetables
GIS data

Tracking Service
& Prediction
Algorithms

Internal Mgt.
Functions

HTTP
Document

Server

Real-Time
Locations

Direct Communication
With Mobile Devices

Signal
Controller

Gateway

57

A server in the transport network operator domain takes the incoming real-time location feed

and applies prediction algorithms to it. The internal management functions, control equipment

such as LCD stop signs, on-board passenger/driver information systems, and signalling

systems. Communications with the mobile equipment is done directly over TCP/IP via the

gateway. In a GSM environment, the gateway must establish a virtual circuit with the mobile

device, this will be billed per second. However newer mobile networks such as GPRS, are

packet switched, which means the gateway can just route the packets to the correct mobile

devices. Packet-switched networks can be billed per byte, whether this happens or not

depends on the network operator.

An HTTP document server provides the systems interface. Using a device independent

architecture described in chapter 4, the HTTP server detects what sort of content, the device

expects. It then hands off the interaction to an interface tree for that device. In this way, all

external access to the system can be controlled through simple HTTP access.

From now on the proposed AVL system framework shall be referred to as the Mobile-AVL or

M-AVL system.

58

CHAPTER 4

Design

The design of the passenger information system implemented for this thesis, borrows ideas

from a wide cross section of current technologies and reassembles them in a way that is quite

unique. The architecture borrows many aspects of the its architecture from the PROMISE

generic system architecture. Specifically it uses a service chain architecture to deliver

information to the end user. Service chains or integrated value chains as they are also known

allow multiple content and application service providers present a service to the user as if the

service was provided by just one entity. The entity at the end of the chain provides a unifying

interface to a multitude of service chains. Each service chain can consist of a number of links

each link in the chain adding value to the content and/or functionality provided by the

previous link. Service chains are essentially Porters value chain [13] applied to a loosely

coupled distributed system.

Another unique aspect of the systems architecture takes a tried and tested design pattern – the

Model View Controller pattern – and applies it to the problem of device independent

document delivery. This allows the document server to dynamically deliver different interface

trees to different devices e.g. web browsers are delivered a html interface tree and voice-only

telephones can be delivered a VoiceXML interface tree.

59

The system is designed to accept a real-time location feed from an AVL system as described

in section 3.5. However, given the uncertainty about which positioning technique will become

the dominant one, the overriding systems design assumption is to build the system flexible

enough to accept any position feed no matter how accurate or inaccurate it is.

The passenger information system implemented for this thesis – which from now on will be

called the Dublin Bus Tracking Service - consists of four main components:

- The Simulator: This component simulates a network of buses, which have

implemented the proposed AVL system framework discussed in chapter 3. The

main purpose of this component is to simulate the output of a Positioning server.

This simulated real-time location feed is continuously sent to the tracking service

- The Tracking Service: This component is the heart of the passenger information

system. It decodes the incoming location feed, figures out which message belongs

to which bus on which route, and then recalculates the buses location on a map.

At this point it predicts a new estimated time of arrival at the next bus stop.

- The GIS Service: This geographical information system component provides

road and route vector data to the tracking service. It also provides locations of bus

stops. The GIS service provides algorithms to overlay the bus stops on routes to

create what’s called a driving execution plan.

- The HTTP Document Server: This component serves the user interface to the

user agent. A user interface is chosen to match the characteristics of the user

agent on the first request of that user agent. After that, the chosen user interface

tree handles all interactions.

The rest of the chapter describes these components in terms of a service chain architecture, a

functional architecture and a communications architecture. Finally the Model View Controller

pattern is introduced and the device independent architecture used by the Dublin Bus

Tracking Service is explained.

60

4.1 Service Chain Architecture

Since no single organisation runs the entire transport infrastructure of a country, only an

independent 3rd party can provide a truly intermodal passenger information system. The role

of the 3rd party should be to aggregate the content feeds from the different transport network

providers and to deliver a unified information system to the end user. This sort of system is

best described using the service chain metaphor. The different entities in the service chain are

shown in figure 4.1

Figure 4.1: Service Chain Architecture

In terms of the PROMISE architecture the Content Providers in the system are the GIS

service and the Simulator. The Content Provider Centre (CPC) is the Tracking Service. The

Value Added Service Provider is the HTTP Document Server.

GIS
Service

Simulation

Tracking
Service InternetInternet

HTTP
Document

Server
Internet

User
1

User
2

User
N

Value Added Content and Services

. .
 .

61

4.1.1 Value Added by Tracking Service

The Tracking Service adds value to content and service in the following ways:

- Integrates content: Content is taken from two sources, the Simulation and the GIS

Service.

- Internal tracking tables: Tracking tables are used to keep track of the locations and

attributes of all buses currently on route. The tracking tables are grouped in a number of

different ways to enable fast lookup. Every time the location of a bus is updated the

tracking table for the bus is recalculated. This involves, calculating the bus’s position on

the route vector, calculating the direction the bus is travelling in, calculating the next and

last stops and calculating the estimated time of arrival at the next stop.

- Prediction algorithms: The tracking service provides prediction algorithms to predict

when a bus will arrive at a particular stop.

- Provides a simple VASP interface: The HTTP Document Server (VASP) can access the

tracking service through a simple interface.

4.1.2 Value Added by Document Server

The Document server adds value to content and service in the following ways:

- Provision of User Interface: A user interface tree is dynamically generated for a device

depending on its device type. Once the initial detection of a device occurs, the document

hands the request over to the relevant interface tree. The interface tree handles all

generation of content and interaction logic for a user session.

- Content Provider Centre: The HTTP document server can act as a Content Provider

Centre to other VASPs. It dynamically generates XML on request to describe the location

of all the buses on a particular route. It provides a very simple way for another VASP to

integrate into this VASP’s service chain. In terms of the PROMISE architecture this is

called the VIP interface.

62

4.2 Model View Controller Architecture

The HTTP Document Server uses a software design pattern called Model-View-Controller

(MVC) pattern to provide the appropriate user interface to the end-user. The MVC pattern

was first made popular by the programming language Smalltalk [14]. The MVC pattern is

enforced when designing user interfaces in Smalltalk. The advantage of the MVC pattern is

that it limits and defines the interaction between the interface components and the underlying

problem-domain classes. In Smalltalk the Model is the Problem domain class. The view is the

class that receives input from the user (e.g. mouse clicks, keyboard presses) and displays

output to the user. Finally the Controller class intercepts all events and sends the relevant ones

to the view when appropriate (e.g. a click within the bounds of a graphical object)

This pattern can quite easily be applied to device independent web architecture. In this model

the Controller is a servlet which listens for all or a subset of incoming requests. The controller

is configured to listen for subsets of incoming events, in this model the events that the

controller handles are the URLs it listens for. For example a controller servlet may be

configured to listen for the http://localhost/foo/ event and to ignore the

http://localhost/bar/ event. In the traditional MVC pattern the Controller passes the

event to the relevant view, in this model it is no different. The controller servlet queries the

HTTP accept and user-agent headers to find out what type of device is making the request. It

then passes the request to the appropriate view – or more accurately an interface tree.

The role of the View class in smalltalk is to present visually a representation of the underlying

model. In this case the view is a document-based user-interface tree, and the underlying

model is a list of bus tracker objects. The UI tree is actually a series of hyper-linked views.

When the controller intercepts the event it passes the event onto the root view in the UI tree.

After this all interactions now continue without the controller and are contained with in the UI

tree.

The user interface trees are document-based because they are written in a declarative user

interface language such as HTML, WML or VoiceXML and can be delivered to the end user

via an HTTP document server. Device independence is therefore achieved by delivering

different views to different devices while keeping the underlying problem domain class - the

Model - common.

63

Figure 4.5: Adapted Model-View-Control Pattern

4.3 Functional Architecture

The Dublin Bus Tracking service consists of four functional entities which work together to

provide a coherent service.

4.3.1 GIS Service

The GIS Service provides an interface to a database of geographical information consisting of

- Centre-line road vector data: This is a network of interconnected line segments.

Each line segment corresponds to a theoretical line running down the centre of an

actual physical road.

- Bus Route vector data: This is that subset of road vectors that make up one

particular bus route. It is different to road vector data in that the set of road vectors

that make up a bus route have a direction, whereas individual road vectors are bi-

directional.

Model

Controller:
Listens for

http://localhost/ events

WML
UI Tree

VoiceXML
UI Tree

HTML
UI Tree

Incoming request for
http://localhost/ by wap device

1

Recognises WAP device and hands
event (request) over to the root document
in the WML UI tree.

2

Since the controller only listens for the
http://locahost/ event, it will ignore events like
http://localhost/wap/rootpage.jsp. Therefore
all user interaction is now confined to the
WML UI tree unless user explicitly changes
browser to point to http://localhost /

3

Each page in the UI Tree is a dynamically
generated JSP page. Each page provides
user interface logic and content from the
underlying model.

4

64

- Bus stop data: The GIS service provides access to the list of bus stops. Each bus stop

is geo-coded, which means its x, y co-ordinate is given a human readable name. Each

bus stop also can be queried for the street it is on.

- Street names: A list of street names is provided along with the set of road vectors

that make up that street.

The GIS Service also provides functionality to overlay the bus stop data onto the bus route

vector data. The overall functionality provided by the GIS service is summarised in figure 4.2

Figure 4.2: GIS Service Functional Architecture

4.3.2 Simulator

The role of the simulator is to simulate the output of the Positioning Server described in the

M-AVL system. To do this requires simulating the Dublin bus transport network. Buses

depart from virtual termini according to timetables stored in a database. They drive along

virtual roads provided by the GIS service. They stop at virtual bus stops and take on (and let

off) virtual passengers. At regular intervals each bus uses the simulator proxy object to send a

message to the tracking service stating its location, speed and number of passengers on board.

Each bus in the network has a unique id. If the real-time feed came from the M-AVL system

this id would be the SIM number of the mobile positioning device. When a bus starts a trip, it

registers with the tracking service, passing its unique id and the route it is on. In the M-AVL

system, the driver or someone who is monitoring the bus would have to enter this information

manually.

The functional architecture is shown in figure 4.3

Road
Vector
Data

Route
Vector
Data

Street
Data

Bus Stop
Data

In
te

rf
ac

e
to

 T
ra

ck
in

g
S

er
vi

ce

Tracking
Service

65

Figure 4.3: Simulator Functional Architecture

4.3.3 Tracking Service

The role of the tracking service is to maintain the location of all the buses currently driving on

a route in internal tracking tables. It must keep also track of speed and the number of

passengers on the bus. When the tracking service receives a registration message from the

simulation/M-AVL Position Sever it records the unique id and corresponding route in the

tracking tables. When subsequent location messages are received, only the unique id is sent

with them. Since the tracking service knows what route that bus is on it can accurately update

the location and attributes of the bus. The updated location message may state a position that

is not exactly on the route, in this case the tracking service finds the nearest node or line and

snaps the location to this point. Each bus currently on a route has an associated BusTracker

object associated with it in the tracking service. BusTracker objects are created when the

tracking service receives registration messages. These objects are then indexed in a number of

ways to enable fast lookups. The functional architecture is shown below, where N in the

diagram is the number of buses currently on the route.

Tracking
Service

GIS
Service

Timetable
Data

S
im

ul
at

or
 P

ro
xy

BUS

BUS

BUS

BUS

Simulator
Route
Vector
Data

Real-time
Location

Feed

66

Figure 4.4: Tracking Service Architecture

4.3.4 HTTP Document Server

The HTTP Document Server uses the Model-View-Controller pattern to provide a device

independent interface to the tracking service. This allows devices with different display

characteristics access the same URL and receive an appropriate interface for that device. For

example if a PC-based web browser and a WAP-enabled mobile phone point to the same

URL, the web browser will get an HTML interface and the WAP-enabled mobile phone will

get a WML interface.

The Web Server is called an HTTP Document Server to reinforce the fact that it serves

document-based interfaces to multiple devices. A web server is usually associated with

serving HTML and images to PC-based web browsers.

Figure 4.5: HTTP Document Server Architecture

Simulator

GIS
Service

HTTP
Document

Server

T
ra

ck
in

g
S

er
vi

ce
 In

te
rf

ac
eT

racking S
ervice Interface

Fast Indexing

2 N

Bus Tracker Objects

1

Simulator

GIS
Service

Tracking
Service

C
on

tr
ol

le
rM

odel

View 1

View 1

View N

Multiple Devices

Mobile
Phone/PDA

(
Voice Only

Phone

: Web
Browser

67

4.4 VoiceXML

In order for a voice only phone to interpret the VoiceXML document served by the HTTP

Documents server, an extra two layers need to be added to the architecture. These layers are

placed between the HTTP document server and the phone. They consist of a VoiceXML

Interpreter Context, a VoiceXML Interpreter and an Implementation Platform. This

Architectural model is defined by the VoiceXML Forum [15].

Figure 4.5: VoiceXML Architectural model

The implementation platform performs the following functions:

- Provides Voice recognition capabilities, and delivers the data to the Interpreter or

Interpreter Context

- Recognises DTMF tones, and passes them to the Interpreter or Interpreter Context

- Provide text-to-speech (TTS) capabilities for audio presentation of content. It must also

be able to play back pre-recorded audio files.

The Interpreter Context, responds to incoming call requests. When a call comes in, the

Interpreter Context retrieves the root document of the UI tree and passes it to the Interpreter.

The Interpreter Context must also listen for special escape codes independent of the

interaction logic defined in the VoiceXML document. For example an application may define

HTTP
Document

Server

VoiceXML
Interpreter Context

VoiceXML
Interpreter

Request

Document

Implementation
Platform

PSTN

(End user

68

an escape code to be the word “operator” or DTMF tone 1. When the Interpreter Context

hears this escape code, it hands the voice call over to a human operator.

The interpreter parses and validates all VoiceXML documents. It is responsible for

conducting the interaction logic defined in the VoiceXML document. It receives voice/text

input from the implementation platform and sends text to the implementation platform for

audio presentation.

The Interpreter Context, the Interpreter and the Implementation platform would usually reside

on a different node to the document server. In fact in a real-world scenario, they would

probably reside on a load-balanced farm of nodes because performing speech recognition on

simultaneous voice streams is computationally very expensive.

4.5 Communications Architecture

If implemented in a real-world scenario, each of the four components in the Dublin Bus

Tracking Service would have different owners and would reside on geographically separated

IP nodes. In fact this is the reason that the service chain architecture was used in the first

place. The service chain architecture is a very good way of integrating geographically

distributed applications in an Internet environment when there are multiple owners of the

different components in the distributed system. This section describes the complete

communications architecture of the Dublin Bus Tracking Service in a real world environment.

In a real-world system, there would be no simulation component. The M-AVL Positioning

Server would replace the simulation component and would reside in the domain of the mobile

network service provider. A third party that specialises in GIS systems would own the GIS

service component. The GIS component would either reside in the transport operator’s

domain or in the third parties domain. The choice of location would be dependent on

performance criteria.

Both the tracking service and the HTTP document server would be maintained and operated

by the transport network service provider. Both components would reside in the domain of the

transport network service provider but would reside on different nodes for scalability reasons.

The VoiceXML application software would reside on a third party server. This third party

would specialise in delivering voice applications and would be better able to absorb the cost

69

of deploying a concurrent real-time voice recognition engine. Finally the system may

interface with the systems of the road service provider (this is the organisation that maintains

the traffic light network). The road service provider would need to install a Proxy Server that

could communicate with tracking service. Note that all inter-domain communication is via a

TCP/IP network. The actual protocol used e.g. Sockets, IIOP, HTTP, RMI, DCOM or SOAP

is left to the implementation of the system. The proposed communications architecture is

shown in figure 4.6, a more detailed description of the M-AVL system is given. Section 6.3

shows how this architecture can be modified to make it more scalable.

Figure 4.6: Proposed Communications Architecture

 GSM/GPRS/
WCDMA
Network

Modified User
Terminal

Installed in
Vehicle

Signal
Controller

Positioning
Server
(M-AVL
system)

Mobile Network Operator Domain

WAP
Gateway

Tracking
Server

HTTP
Document

Server

Transport Network Operator Domain

GIS Server

GIS Application
Service Provider

Domain

Mobile
Phone/PDA

: Web
Browser

(
Voice Only

Phone

Internet

Voice
Server

Voice Service
Provider Domain

PSTN

Request Response

Request Response

Real-time
location feed

Communication with
mobile devices

Request

Response

Road Service Provider Domain

Signal
Controller
Manager
Server

Proxy
Server LAN

Signal
Controller

70

The M-AVL system consists of network of mobile devices connected to a mobile network.

These devices can be either

- Tracking devices: Installed on buses and positioned using the Positioning Server. Each

of the tracking devices can send messages to the tracking service via the WAP gateway.

For example, when the number of passengers on the bus change, the device can inform

the tracking service of this fact via the WAP gateway.

- Signal Controllers: These are micro-controllers with the ability to communicate over the

mobile network. When the tracking server calculates that a bus is behind schedule and is

near a set of traffic lights, it sends a message via the WAP gateway to the signal

controller instructing it to extend its green signal. However it may not be necessary to

modify individual signal controllers if they are already networked. In that case the

tracking server would communicate with the server that controlled the signal controllers.

The tracking service either continuously polls the positioning server or the positioning server

continuously sends updates to the tracking service. In either case the result is a real-time

position feed delivered to the tracking service. This position feed consists of the x, y position

of the bus, its speed and the direction it is travelling in. However the tracking service also

needs to know how many passengers are on board. This value can be sent periodically by the

tracking device on the bus via the WAP gateway. Counting passengers can be done by sensors

on the doors or manually by the driver.

On starting up, the tracking service loads in the necessary geographical data from the GIS

service. Finally the HTTP Document server provides interfaces to multiple devices that allow

them to query the internal state of the tracking service in a user-friendly manner. Note that

WAP-enabled phones and PDA’s communicate with the HTTP Document Server via a WAP

Gateway. This WAP Gateway may be the same gateway used by the tracking service to

communicate with the mobile devices on the buses. It will be the same if the user has the

same mobile network operator as the tracking service.

The next chapter looks at a prototype implementation of this architecture.

71

CHAPTER 5

Implementation

A Passenger information system is a large system consisting of many components. This thesis

does not attempt to implement a full real-world passenger information system. The goal of

this thesis was to develop a prototype system that would validate the design in chapter 4.

Some of the aspects of the real-world system were not included in this proof-of-concept

prototype.

Firstly since the M-AVL system could not be implemented, there was a need to build a bus

simulation to provide an artificial position feed. However in order to simulate buses driving

on virtual roads and stopping at virtual stops, geographical data is needed. Therefore the first

system to be implemented was the GIS service. After that was the simulator, then the tracking

service and finally the HTTP Document Server and corresponding views. In fact the

implementation sequence followed the same sequence as the service chain described in

section 4.1

Three views were implemented an HTML view, a WML view and an applet view. The

decision was made to not implement a VoiceXML view for two reasons:

- This is a proof-of-concept implementation, and VoiceXML has been incorporated

into the design anyway

72

- The Voice Recognition Software is only commercially available

Other than this most of the other concepts from the design have been implemented in the

Dublin Bus Tracking service prototype

5.1 GIS Service Implementation

Geographical data provides the foundation on which the simulator is built. The first stage in

the implementation of the GIS service was the digitising of a raster map of south Dublin. The

next stage was to associate street names with the corresponding vectors. This process is called

geocoding. Bus routes where created from the road vector data. A survey of all the 15, 15a

and 15B bus stops was conducted, resulting in x, y co-ordinates and names for all these bus

stops. All this geographical data was imported into the MySQL database shown in Appendix

A.

With the data gathering exercise complete, the GIS service was developed using Java 1.3.

Objects were created to represent the different geographical objects in the database.

Algorithms were developed to overlay groups of geographical objects to create a vector path

joining all the objects. The following sections describe the implementation process in more

detail.

5.1.1 Map Digitising & Geocoding

The Dublin Street Guide [16] was used as a basis to create the road vector data needed for the

simulator. This provides detailed street data of Dublin city and district at a scale of 1:15,000.

However this data resides on printed paper, separated into 58 A4 pages. Therefore all the

pages corresponding to south Dublin – from Lucan out to Killiney – had to be scanned. The

pages were then joined together in Photoshop to create one large raster map of south Dublin.

A software package called MapInfo Professional 6.0 (see figure 5.1) was used to digitise the

raster map. Firstly the raster image was imported into the package. In order for MapInfo to

calculate the co-ordinate of each pixel in the raster, fifteen known co-ordinates were entered.

These co-ordinates where points on the map whose co-ordinates were previously known, e.g.

the co-ordinate of the top left of the Lucan page is 303,000, 236,000. These co-ordinates use

the Irish Transverse Mercator Grid co-ordinate system.

73

Figure 5.1: MapInfo Professional 6.0 showing the Dublin Raster Map

Digitising the road data consisted of overlaying polylines on top of the road network

displayed in figure 5.1. After that street names were assigned to groups of polylines since

each street consists of one or more polylines. Each poyline was assigned the id of the street it

was on. Note that the polylines were plotted along the centreline of each road. This vector

data was exported to a MIF (MapInfo Interchange File) file, which was parsed and the data

was entered in the roadsegments and streets tables of the MySQL database (see Appendix A).

Bus routes were entered into MapInfo next. Each polyline on the route was assigned a route id

and an index. Each polyline on the route was indexed sequentially from the start of the route

to the end. This vector data was also exported to a MIF file and parsed. The parsed data was

entered into the routes and busroutes tables. A separate file containing timetable information

for that route was also parsed, with the data being entered into the timetable table.

Finally bus stop data was gathered for the 15, 15A and 15B bus routes. This involved doing a

survey of the route. Each bus stop on each route was visited, its position on the map was

74

recorded. Each stop was also given a name that was descriptive enough for users to recognise

on a list. For example the 15 bus stop in Rathmines beside dominos pizza was called beside

dominos pizza. After the survey was complete, the positions of all the bus stops were entered

into MapInfo and assigned names. Each route was then assigned a list of bus stops. Again the

data was exported to a MIF, parsed and then entered into the database.

5.1.2 Java Implementation

Each of the geographical entities in the database has a corresponding object wrapper. The

objects are Node, LineSegment, Street, BusStop, RoadNetwork, RouteNetwork, BusRoute

and BusRouteNetwork. The Node class extends java.awt.geom.Point2D.Double and BusStop

extends Node. A LineSegment consists of two Nodes and extends

java.awt.geom.Line2D.Double. All Nodes have a corresponding Street.

An interesting aspect of the GIS service implementation is the algorithm used by the

BusRoute object to overlay the bus route with the corresponding bus stops to create a driving

plan. A driving plan is a list of sequential nodes that a bus must visit on its journey. The bus

starts at the first point in the list and ends at the last. The algorithm is as follows:

1) A list of sequential bus stops and sequential road vectors (the route) is given.

2) Pop a bus stop of the top of the list if it is not empty otherwise finish

3) Continue to pop road vectors of the top of the road vector list until a road vector is

reached that is on the same street as the bus stop. As each road vector is popped

off the list, its points are added to the driving plan.

4) Create a list of line segments representing that street.

5) Calculate the nearest perpendicular line segment and the nearest node to the bus

stop.

6) If a line segment is nearer than a node then calculate the intersection point with

the line segment. This is the insertion point.

7) Otherwise the node is the insertion point

8) Add all the road vectors on the current street that occur before the insertion point

to the driving plan.

9) Add the insertion point to the driving plan

10) Add the bus stop to the driving plan

11) Add the insertion point to the driving plan again

12) Go to step 2

75

The GIS service is a singleton object, which means there can only be one instance of

the service in a single virtual machine. It is loaded into the simulator by calling the

static method GisService.getInstance()

5.2 Simulator Implementation

The simulator consists of four Java Classes: Bus, BusDispatcher, Scheduler and

SimulatorProxy. The simulator is multithreaded, with each bus running in its own thread. The

Scheduler thread looks up the timetable to see when the next buses are leaving. It then creates

a bus dispatcher thread, passing it the time the next buses are due to depart. The scheduler

thread then puts itself to sleep until this time.

The scheduler thread wakes up, and starts the dispatcher thread. The scheduler thread then

looks up the timetable database again, and follows the same steps as before. The dispatcher

thread meanwhile is running at the same time. The dispatcher thread looks up all the buses

that are scheduled to leave at the given time. It creates a new bus thread for each of these

buses and starts them. The bus thread is the workhorse of the simulation and is covered in

section 5.2.1. Once all the bus threads are created and started, the work of the dispatcher

thread is over and it is marked for garbage collection.

5.2.1 The Bus Thread

When a bus thread is first started it registers itself with the tracking service. It does this

through the SimulatorProxy object, which uses RMI to communicate with the tracking

service. The decision was taken to use RMI for inter-process communication for ease-of-

implementation reasons. However in a real-world scenario RMI would probably not scale

well enough. Registration involves passing the buses unique id, route id and its depart time to

the tracking service.

After registration, the bus thread loads its driving plan from the GIS service. It also loads the

bus.properties file (see Appendix B) which affects how the bus drives along the route. There

is a property in the bus.properties file called update-thread-frequency. A bus drives at a

speed of avg-speed when it starts a journey and when it leaves a stop. Every update-

thread-frequency seconds a random deviation is applied to the speed. The deviation can be

76

positive or negative but has a maximum absolute value of max-speed-deviation. A bus can

travel no faster than speed-limit kilometres per hour.

Every update-thread-frequency seconds the bus thread wakes up and recalculates its

position on the route. It calculates the distance travelled in metres since it last woke up. The

bus knows the last visited node in the driving plan and the next node in the driving plan. The

last known location is a point somewhere in between the last node and the next node. The bus

thread calculates the distance from the last known location to the next node. If this distance is

smaller than the distance travelled then the next node becomes the last node and the last

known location is the last node. Otherwise the last known location becomes that point which

is distance_travelled metres ahead of the previous last known location. This process

continues until all the nodes in the driving plan have been visited.

When the bus reaches a node it checks to see if it is an instance of BusStop. If it is, then it

calculates the number of passengers that are boarding and the number of passengers that are

de-boarding. To explain how these values are calculated consider figure 5.2

Figure 5.2: Passenger boarding and de-boarding envelopes

Figure 5.2 describes the boarding and de-boarding envelopes for a route with N stops. The

maximum number of passengers that can fit on the bus is max-passengers. The number of

passengers boarding the bus at each stop decreases linearly from a peak value of max

boarding. The value of max boarding is max-passengers * max-boarding-percentage /

100. Similarly the number of passengers de-boarding the bus increases linearly from zero to a

maximum value of max de-boarding. The value of max de-boarding is max-passengers *

max-deboarding-percentage / 100. Therefore, the number of passengers boarding or de-

max-passengers

Max boarding

Max de-boarding

Stop 1 Stop N

77

boarding at a stop is the y value of the boarding or de-boarding envelope at that stop. In order

to add some variation to the simulation, a random deviation is applied to the number of

passengers boarding and de-boarding. The bus will stay at the stop either

(passengers_boarding * seconds-to-board) seconds or (passengers_deboarding *

seconds-to-deboard) seconds, depending on which value is greater.

Every update-tracking-service-frequency seconds the bus sends a message to the

tracking service via the SimulatorProxy. The message consists of the current x, y co-ordinates

(in Irish Transverse Mercator Grid format), the current speed and the number of passengers

on board.

5.3 Tracking Service Implementation

When the tracking service receives a registration message, it creates a BusTracker object for

that bus. This object will live as long as the bus is on a route. The tracking service also makes

entries into the following three tables for fast indexing:

- Bus id to Route id mappings: This allows the corresponding route id to be found from a

particular bus id.

- Tracking table: This table stores BusTracker objects, indexed by bus id.

- Route tracking table: This table stores groups of BusTracker objects, indexed by route id.

On startup, the tracking service registers with the RMI registry under the name

TrackingService. It also loads in the necessary geographical data from the GIS service. When

there is at least one BusTracker created, the tracking service can process the update messages

(i.e. the real-time location feed). Each update message contains the bus id, x & y co-ordinates,

speed and number of passengers on the bus. The relevant BusTracker is looked up in the

tracking table, and its updateLocation method.is called.

5.3.1 The Bus Tracker

When the updateLocation method is called, the bus tracker sets the last known location to

the x and y co-ordinate given. The current speed and number of passengers is also set.

However because the x, y location may not always be accurate, an algorithm is run to

calculate the buses actual location on the route. Every time the updateLocation method is

78

called the buses position is calculated from scratch. The algorithm consists of the following

procedures:

1) Each node on the driving plan is examined, and the distance between each node and

the x, y co-ordinates given is calculated. The nearest node to the updated location (the

x, y co-ordinates) is found.

2) A test is done to check if the updated location is before or after the nearest node.

3) The intersection point of the updated location with the nearest perpendicular line

segment is calculated. This becomes the new last known location.

4) The previous bus stop and next bus stop is calculated.

Using this procedure minimises errors arising from inaccuracies in the real-time location feed.

The BusTracker class also provides a simple prediction algorithm for predicting when the bus

will arrive at a particular stop. The bus tracker calculates how many metres it is to the given

stop from the last known location. Then using the current speed it estimates the time it will

take to get to the stop. If the bus is stationary, the average speed is used to calculate the

estimated time of arrival.

5.3.2 Tracking Service as the Model in the MVC pattern

The tracking service returns the state of a particular bus as a table of name value pairs. These

tables are called location tables. The tracking service provides methods for views, to allow

them query the state of the tracking service. A view can query a particular route and will get a

list of location tables in return. Each location table corresponds to a bus currently on that

route. The tracking service also provides the capability of retrieving location tables for

individual buses or all the buses currently on the route network. The names in the location

table are as follows:

- BUS ROUTE

- ROUTE NUMBER

- TERMINUS DEPART TIME

- CURRENT LOCATION

- CURRENT X

- CURRENT Y

- LAST STOP

- NEXT STOP

- CURRENT SPEED

79

- PASSENGERS ON BOARD

- ETA AT NEXT STOP

5.4 HTTP Document Server Implementation

The web server - or HTTP Document server as it is called in this thesis – used to deliver

documents to users is Tomcat 1.0. This is the reference implementation of the Java Servlet 2.2

and JavaServer Pages 1.1 specifications developed by the Apache software foundation. It is a

fully compliant Servlet container and JSP engine. The interface trees described in chapter 4

are implemented as JSP pages. HTML and WML user interface trees were implemented. In

the MVC pattern, the UI trees are the views and the Tracking Service is the model.

The JSP pages use the WebServerProxy Object to communicate with the Tracking Service.

On startup the WebServerProxy looks up the TrackingService in the RMI registry. Like the

GIS service the WebServerProxy is a singleton object. A handle to the object is obtained by

calling the static method WebServerProxy.getInstance().

5.4.1 Device Independence

The Controller from the MVC pattern described in chapter 4 is implemented as follows:

- Tomcat is set up to run on port 80

- The default file for the root directory is set to device.control instead of index.jsp

or index.html. i.e. when the user types in http://localhost/ they are actually calling

http://localhost/device.control

- A servlet called Controller is set up to listen for requests for

http://localhost/device.control. In the MVC architecture requesting this url

generates an event which is handled by the Controller servlet.

- The controller searches for particular patterns in the user-agent and accept HTTP

headers. If any of these patterns are found, then the requesting device is a WAP

80

device. This device is then given the root JSP page (http://localhost/wap.jsp) in

the WML user interface tree. For a list of these patterns see appendix C.

- If none of these patterns are found then the device is a web browser and it is

given the root document in the HTML user interface tree -

http://localhost/index.jsp

See appendix D for listing of the Tomcat configuration files.

5.4.2 HTML View

The root document in the HTML user interface tree is http://localhost/index.jsp. This is shown

in figure 5.3.

Figure 5.3: Root document in the HTML user interface tree

From this page the user can click on Locate a bus on a particular route which provides a

HTML form for querying the tracking service. They can also click on tracking applet which

provides an interactive applet so the user can see visually the entire internal state of the

81

tracking service. Clicking on Locate a bus on a particular route displays the find-route.jsp

document. This is shown in figure 5.4.

Figure 5.4: HTML Form for querying Tracking Service

On this page the user selects the route they want to travel on and the bus stop they are waiting

at. When the user clicks on Find>> the JSP page uses the WebServerProxy to contact the

TrackingService. In the example shown in figure 5.4 the tracking service will return a list of

location tables for the 15B from City Centre route. When the WebServerProxy receives the

list of location tables, it formats the data for an HTML device. The following content is

returned to the JSP page:

The next bus is scheduled to leave the terminus at 12:35

There is a bus between the stops Opp. Reads, Nassau Street and Kildare

Street

The bus has already passed your current location, it is 1 stop ahead

of your stop.

There are 60 seats left.

82

There is a bus between the stops Opp. Lakelands Park, Templeogue Road

and Opp. Terenue College Entrance, Templeogue Road

The bus has already passed your current location, it is 22 stops ahead

of your stop.

There are 17 seats left.

5.4.3 WML View

The root document in the WML user interface tree is http://localhost/wap.jsp, this is shown in

figure 5.5.

Figure 5.5: Root document in WML user interface tree

After 10 seconds this page automatically forwards to http://localhost/wap/index.jsp shown in

figure 5.6. On this page the user selects the route they want to travel on.

Figure 5.6: WML page for selecting bus route
In the page shown in figure 5.6 the 15 from Scholarstown Road route is choosen. The next

page (figure 5.7) allows the user choose one of the bus stops on this route. This is the bus stop

they are waiting at. In the example shown the bus stop choosen is in templeogue village.

83

Figure 5.7: WML page for selecting bus stop

When the user clicks on Next>> the JSP page uses the WebServerProxy to contact the

TrackingService. For this example the tracking service will return a list of location tables for

the 15 from Scholarstown Road route. When the WebServerProxy receives the list of location

tables from the tracking service, it then formats the data for a WML device. The

WebProxyServer knows that the calling page is a WML page because it was passed the

WebProxyServer.WML constant by the JSP page. The following content is returned to the JSP

page:

The next bus is scheduled to leave the terminus at 13:05

There is a bus between the stops Terminus, Scholarstown Road and

Beverly Drive, Scholarstown Road, 7 stops from your current

location.

The bus will arrive in 3 minutes, 45 seconds, There are 68 seats

left.

There is a bus between the stops Opp. Spar, Rathgar Road and Near

Esso, Rathgar Road. The bus has already passed your current location,

it is 12 stops ahead of your stop.

There are 3 seats left.

As can be seen here, a bus is due to arrive at the user’s bus stop in 3 minutes and 45 seconds.

There are 68 seats left. He is also told the another bus will leave the terminus 13:05. This

location sensitive information is invaluable to the passenger. It allows them make informed

travel decisions and takes the uncertainty out of using public transport.

84

5.4.4 Applet View

The applet view is actually part of the HTML user interface tree. It provides a visually rich

and interactive environment for querying the underlying model i.e. the tracking service. The

applet is shown in figure 5.8

Figure 5.8: Applet showing real-time location of all buses

The applet uses a request/response architecture just like the other views. An updater thread

runs in the background and periodically requests the location tables for all the buses in the

network. By clicking on File and Settings, the user can change the frequency that the updater

thread requests the location tables from the tracking service (see figure 5.9).

85

Figure 5.9: Applet Update Frequency Dialog

The applet provides a rich interface with intuitive querying of data. The applet displays the

entire road and route network data. The applet then places bus icons on top of the route,

according to the data stored in the location tables. The user can then dynamically query the

attributes of a bus by just clicking on the icon (see figure 5.10). The information provided is

location sensitive and gives the estimated time of arrival at the next stop.

Figure 5.10: Querying the attributes of a single bus

86

The user can also query static map data object. By clicking on the bus stop icon, the user is

presented with the name of the bus stop, its location and the street it is on

Figure 5.11: Querying the attributes of a bus stop

As well as the intuitive data querying, the user is given zoom and drag capabilities for easy

navigation around the map.

87

CHAPTER 6

Evaluation & Future Work

From the point of view of architecture and systems design, this thesis contributed to the state

of the art and compares favourably with existing systems. From an implementation

perspective it is difficult to compete with multimillion-pound passenger information systems.

While issues such as scalability and fault tolerance have been dealt to a certain degree within

the implementation, in a real-world environment, systems need to be tested rigorously under

multiple load scenarios. These tests are needed to expose weaknesses in the system, which

may not be otherwise obvious. Therefore in terms of scalability and stability, the Dublin bus

tracking service can not be compared with existing passenger information systems such as

project 423 and Superoute 66.

This chapter contrasts the Dublin bus tracking service with two other state-of-the-art

passenger information systems, project 423 and Superoute 66. Finally a quick summary of

some possible future work is given that would build upon the Dublin bus tracking service

prototype and architecture.

88

6.1 Evaluation of Dublin Bus Tracking Service

This section contrasts the Dublin bus tracking service prototype with the two passenger

information systems introduced in chapter 3. A look is also taken at the issues that were not

fully addressed by the prototype.

6.1.1 DBTS versus Project 423 & Superoute 66

The table below contrasts the features of the Dublin bus tracking service architecture and the

implementation with the Helsinki-based project 423 system and U.K.-based Superoute 66.

PIS Systems DBTS
architecture

DBTS
implementation

Project 423 Superoute 66

Web Browser
support

YES YES Limited to staff NO

WAP-enabled
Phone support

YES YES NO YES

Voice-based Phone
support

YES NO NO YES

At-Stop Display YES N/A YES YES

On-board display YES N/A YES NO

Driver support
system

YES NO YES NO

Interactive Java
Applet

YES YES NO YES

Positioning
infrastructure

M-AVL Simulation GPS &
Odometer &

Door Sensors

GPS &
Odometer

Low infrastructure
costs

YES YES NO NO

Communications
infrastructure

Public Cellular
Radio network

N/A Dedicated
Radio Network

Dedicated
Radio Network

Integrated with
traffic light network

Limited N/A YES NO

6.1.2 Issues not addressed

There are many features specified in the design that were not implemented as can be seen in

the table above. These features could not be implemented because they rely on underlying

infrastructure. However below are some software issues that were not properly addressed by

the Dublin bus tracking service prototype.

89

Scalability

Scalability is not adequately designed for in the implementation. A possible remedy to this is

described in section 6.2.1.

Voice Interface

Although specified in the architecture, a voice interface was not implemented in the

prototype. This is an area for future work.

XML data exchange format

In the architecture described in chapter 4, the HTTP document server could also function as a

Content Provider Centre. It could provide information to other VASPs to integrate into their

systems. Other VASPs need to be able to access content provided by the Dublin Bus tracking

service in a structured way. Since the VASP has no need for formatting information, the best

way to provide the content to a VASP is as an XML data exchange format.

6.2 Future work

While many features and additions can be made to the added to the Dublin bus tracking

service, the most interesting short-term additions and improvements are mentioned below.

Obviously the long-term goal is to produce a national intermodal passenger information that

spans all modes of public and private transport. This goal is more hindered by organisational

issues than technological ones. However when the systems become cheap enough the

organisational issues will become much less important.

6.2.1 Scalability

In a production (i.e. real-world) environment, the most critical points of failure are the HTTP

document server and the tracking service. Figure 6.1 suggests modifications that could be

made to the architecture described in figure 4.6 to enable it to

- Scale linearly to cope with increased load

- Recover from failure of the tracking service

Implementing this architecture requires no modifications to the software to enable load

balancing. Level-4 switches or IP load balancers are hardware-based network layer devices.

90

Using these switches, incoming requests are sent to the servers in the farm on a round robin

basis. If a server fails it will not be sent any requests. Figure 4.6 shows how incoming HTTP

requests can be sent to different HTTP document servers on a round-robin basis.

Clients of the HTTP Document Server are unaware that there is more than one HTTP

Document Server. Each HTTP document server accesses the tracking service through a level-

4 switch. Like its own clients, the HTTP document server is not aware that there is more than

one tracking service. The real-time location feed is sent to a multicasting network device,

which sends the feed to all tracking servers simultaneously. Each tracking service operates

independently of the others.

If an HTTP document server fails and recovers, it has no impact on the system. This is

because HTTP servers are stateless, which is not the case with the tracking service. In order to

maintain consistent behaviour in a fault-tolerant scenario, modifications will need to be made

to the tracking service software. A possible solution would be that when a tracking service

fails and recovers, it requests the entire state of a neighbouring tracking service.

Figure 6.1: Enhanced Scalable Systems Architecture

Tracking
Server

1

HTTP
Document
Server 1

Transport Network Operator Domain

HTTP
Document
Server 2

HTTP
Document
Server N

Tracking
Server

2

Tracking
Server

N

Multicast feed to
farm of tracking

servers

Real-time
location feed Level-4

Switch

Incoming
requests

Round Robin
access to
servers

Level-4
Switch

91

6.2.2 Implementation of M-AVL

The M-AVL system could be integrated into the system without installing it on a network of

buses. An interesting project would be to feed a real-time location feed from a group of

individuals into the Dublin bus tracking service. In this case it would be a people tracking

service. The concept is the same as tracking buses, except instead of positioning mobile

devices installed on buses, individual’s personal mobile phones are being positioned.

92

 Bibliography

[1] TS 22.071 V3.2.0: 3rd Generation Partnership Project: Technical Specification Group

Services and System Aspects; Location Services (LCS).

[2] FCC 0036: Federal Communications Commission: Revision of the Commission's

Rules To Ensure Compatibility with Enhanced 911 Emergency Calling Systems 3rd

Generation Partnership Agreement CC Docket No. 94-102, Forth Memorandum

Opinion and Order

http://www.fcc.gov/Bureaus/Common_Carrier/Orders/2000/fcc00326.pdf

[3] 3rd Generation Partnership Agreement 18 January 2000

http://www.3gpp.org/About_3GPP/3gppagre.pdf

[4] U.S. Coastal Guard, Global Positioning System FAQ

http://www.navcen.uscg.mil/faq/gpsfaq.htm

[5] White House Press Release May 1 2000: Statement by the president regarding the

United States decision to stop degrading global positioning system accuracy.

http://www.navcen.uscg.mil/news/archive/2000/May/SA.htm

[6] Andrew S. Tanenbaum; Prentice Hall, 1996 International Edition. Computer

Networks Ch2 p99

ISBN 0-13-394248-1

[7] G. L. Turin, W. S. Jewell, T. L. Johnston, Simulation of Urban Vehicle-Monitoring

Systems, IEEE Trans. on Vehicular Technology, Vol. VT-21, No. 1, pp 9-16,

February 1972.

[8] F. Cristian, A probabilistic approach to distributed clock synchronization.

Proceedings 9th International Conference on Distributed Computing Systems, June

1989

[9] Bibl, K and Reinisch B.W., The Universal Digital Ionosonde.

Radio Science.Vol. 13, No. 3, pp 519-530, 1978.

93

[10] PROMISE Project TR1043

Deliverable D3.1 “Specification of PROMISE Services”

Version 7, July 1996

[11] PROMISE Project TR1043

Deliverable D4.1 “Generic PROMISE System Architecture”

Version 2, August 1996

[12] BT Laboratories, Ipswitch: Using Telecommunications to Deliver Real-time

Transport Information; “Superoute 66 Live” Trial Results

November 1999

[13] Michael E. Porter; Free Press 1998; Competitive Strategy: Techniques for Analyzing

Industries and Competitors

ISBN 0-684-84148-7

[14] Goldberg, Adele & David Robson; Addison-Wesley, 1983 (reprinted 1985 with

corrections). Smalltalk-80: The Language and Its Implementation

ISBN 0-201-11371-6.

[15] VoiceXML Forum, Voice eXentensible Markup Language Specification version 1.00

7 March 2000

[16] Ordanance Survay of Ireland, Dublin City and District Street Guide 2nd Edition

ISBN 0-904996-16-6

94

Appendix A: Database DDL

create table busroutes (

busrouteID int NOT NULL,

routeID int NOT NULL,

busRouteName VARCHAR(80) NOT NULL,

busRouteNumber VARCHAR(10) NOT NULL,

stopsID int NOT NULL,

UNIQUE INDEX pk_busroutes (busrouteID)

);

create table busroutestops (

stopsID int NOT NULL,

stopIndex int NOT NULL,

stopID int NOT NULL,

UNIQUE INDEX pk_busroutestops (stopsID,stopIndex)

);

create table busstops (

stopID int NOT NULL,

stopName VARCHAR(100) NOT NULL,

streetID int NOT NULL,

x int NOT NULL,

y int NOT NULL,

UNIQUE INDEX pk_busstops (stopID)

);

create table timetable (

busrouteID int NOT NULL,

departday VARCHAR(9) NOT NULL,

departtime TIME NOT NULL,

INDEX busrouteidindex (busrouteID),

INDEX timeindex (departtime)

);

create table streets (

streetID int NOT NULL,

streetName VARCHAR(100),

UNIQUE INDEX pk_streets (streetID)

);

create table roadsegments (

segmentID int NOT NULL,

nodeIndex int NOT NULL,

95

streetID int NOT NULL,

x REAL NOT NULL,

y REAL NOT NULL,

UNIQUE INDEX pk_roadsegments (segmentID,nodeIndex)

);

create table routes (

routeID int NOT NULL,

routeIndex int NOT NULL,

segmentID int NOT NULL,

reversed ENUM('false','true') NOT NULL,

UNIQUE INDEX pk_routes (routeID,routeIndex)

);

96

Appendix B: Bus Configuration File

This is a sample bus configuration file (bus.properties). It defines attributes that the simulator

applies to all buses driving on a route.

//Maximum random speed deviation of the bus (km/h).

//A random speed deviation is applied every update-thread-frequency seconds.

max-speed-deviation=2

//This is the fastest speed that a bus can travel at.

speed-limit=48.2

//This is the average speed of a bus in km/h.

//When a bus leaves a stop is will initially travel at this speed.

avg-speed = 30

//This is the time (in seconds) between sending update messages to the

//tracking service

update-tracking-service-frequency=1

//This is the time (in seconds) a bus thread sleeps before waking up and

//recalculating its location

update-thread-frequency=1

//The maximum of people that will fit on a bus

max-passengers = 85

//The max size (as percentage of max-passengers) of the boarding envelope

max-boarding-percentage = 16

//The random max percentage deviation from the linearly decreasing number of

//passengers boarding at each stop.

max-boarding-deviation = 4

//The max size (as percentage of max-passengers) of the deboarding envelope.

max-deboarding-percentage = 15

//The random max percentage deviation from the linearly increasing number of

//passengers deboarding at each stop.

max-deboarding-deviation = 4

//The average time it takes 1 person to get on a bus

seconds-to-board = 2

97

//The average time it takes 1 person to get off a bus

seconds-to-deboard = 1

98

Appendix C: User-Agent Patterns

This appendix specifies the algorithm used to identify WAP-enabled devices.

1) If the HTTP accept header (converted to uppercase) contains VND.WAP.WML then it is

a WAP device.

2) Otherwise if the HTTP user-agent header converted to uppercase contains any of the

following patterns it is a WAP device

NOKI

ERIC

WAPI

MC21

AUR

R380

UP.B

WINW

UPG1

UPSI

QWAP

JIGS

JAVA

ALCA

MITS

MOT-

MY S

WAPJ

FETC

ALAV

WAPA

3) Otherwise it is a HTML web browser

99

Appendix D: Tomcat Configuration Files

The following lines are added to the server.xml file.

<!—-This directive instructs tomcat to listen on TCP port 80 -->

<Connector className="org.apache.tomcat.service.SimpleTcpConnector">

 <Parameter name="handler"

 value="org.apache.tomcat.service.http.HttpConnectionHandler"/>

 <Parameter name="port" value="80"/>

</Connector>

<!—-Setting path to "" makes this the default web application-->

<Context path="" docBase="webapps/sim" debug="0" reloadable="true" />

This is the entire web application descriptor file web.xml:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application

2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <display-name>Dublin Bus Tracking Simulation</display-name>

 <description>

Provides a web interface to the Dublin Bus Tracking Service

 </description>

 <!—-gives the alias device controller to the Controller servlet -->

 <servlet>

 <servlet-name>

 devicecontroller

 </servlet-name>

 <servlet-class>

 webserver.Controller

 </servlet-class>

 </servlet>

100

 <!—-Makes the Controller servlet handle all urls that have the *.control

 pattern in them -->

 <servlet-mapping>

 <servlet-name>

 devicecontroller

 </servlet-name>

 <url-pattern>

 *.control

 </url-pattern>

 </servlet-mapping>

 <!—- Makes the default file in a directory to be device.control -->

 <welcome-file-list>

<welcome-file>

 device.control

 </welcome-file>

 </welcome-file-list>

</web-app>

