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ABSTRACT

With increasing competitive pressures, manufacturing systems in the automotive industry
are being driven more and more aggressively. The pressures imposed on the processes and lack
of system 'slack’ have led to increased use of Tool Condition Monitoring systems. In parallel,
there has been wide-ranging research in academia. However, a closer examination shows that
there has been very little migration of this research into industrial practice. Furthermore, the
success of industrially deployed monitoring systems has been poor. It has been suggested that a
significant factor behind both these phenomenon has been the 'difficult’ environment in which
such systems must operate; an environment where they are subject to many stochastic influences,
ranging from ambient conditions, to user input, to workpiece consistency.

Neural networks have found increasing favour in manufacturing systems research because
of their ability to perform robustly in noisy environments. Almost all the applications of this
technology in tool condition monitoring have been in the detection/prediction of tool wear. From
an academic standpoint, it may be speculated that the lack of focus on breakage and missing tool
detection has been due to the relatively trivial nature of detecting such anomalies in the
laboratory environment. However, detection in the production environment is compromised by a
wide range of factors, which can give rise to false alarms when such strategies are transported
from laboratory conditions.

In this paper, data from a real manufacturing process is used to demonstrate the potential
application of neural networks to the task of anomaly detection in the production environment.
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1. INTRODUCTION

1.1. Tool Condition Monitoring

The demand in the manufacturing industry to reduce production costs has driven major
manufacturers to automate many operations. Productivity increases are often limited by the
requirement that such automated operations have a high level of reliability. Part scrappage or
damage to machines as a result of broken tooling, tool wear, tool collisions, inadequate swarf
removal, or coolant malfunction, among others, must be avoided. Several strategies are available
to manufacturers to reduce the possibility of such failures. The two main options, apart from
returning to manual observation of each operation, are to run the machine tool well below its
maximum capacity, or to introduce some form of feedback (representing the quality of the
process to the system). A more specific case of this monitoring of the process is where attention
is focussed on the state of the cutting tool. These are termed "Tool Condition Monitoring' (TCM)
systems.



Broadly speaking, there are two possible methods of determining tool condition. In the
direct method, tool condition is measured directly in-situ. Measuring devices based on
inductance, capacitance, vision, radiation, or pneumatics can be used to measure the level of
wear [1]. While direct methods tend to be accurate, they are more complex and often not
applicable to real machining environments. They are also usually only implementable between
operations meaning that breakage or excessive wear can only be detected post process [1].
Indirect methods involve the measurement of some phenomenon related to tool wear or
breakage. Commonly, the measurement of cutting force, torque, temperature, vibration, spindle
motor power, feed motor power, and strain are used to indirectly indicate the level of tool wear.
As the measured phenomenon often varies with process conditions it can be difficult to find a
good correlation between tool wear and the sensor signal over the full range of operating
conditions. Indirect methods do, however, offer the advantages that they: can continuously
monitor the process, are less complex than direct methods, and are applicable in industrial
environments. For these reasons, the majority of the research carried out in TCM has
concentrated on indirect methods.

The correct choice of sensor(s) is essential to the operation of any monitoring system [2].
If there is poor correlation between the sensor signal and the tool condition it is unlikely that
correct classification of tool state can take place. Deterioration of drill condition manifests itself
in a change in the cutting forces and so monitoring these forces should provide a good indication
of tool state. In drilling, the measurement of torque, thrust force and transverse strain gives
information on the cutting forces. Torque can be measured directly with a torque sensor or
indirectly through measurement of the spindle motor power and the spindle speed. It is worth
noting, however, that spindle motor power can be used as a valid indicator of tool condition only
when the cutting process consumes a significant proportion of the total spindle power [1]. Non
symmetric wear of a drill or drill asymmetry can be identified through the analysis of the
vibration signals [3].

In summary, the majority of researchers investigating TCM in drilling have measured
torque, thrust force, vibration and strain [3, 4, 5, 6]. Other researchers have measured
temperature and sound [7] and acoustic emission (AE) [8, 9, 10].

Applications of TCM in industry have depended mostly on robust and reliable sensor
signals such as force, power and AE. The monitoring strategies used by TCM system
manufacturers are largely based on limits and enveloping functions. Most require the capture of
a reference pattern (the 'teach-in' signal), where the sensor signal is recorded and stored as being
representative of a typical machining operation. Certain limits are applied to the reference signal
based on the heuristic knowledge of the system manufacturer taking into account the individual
set up. During subsequent machining operations the recorded signals are compared with the
taught-in signal and appropriate action is taken by the TCM system based on the result. The
action of “teach-in” may be required for every new tool, new part and new material. Hence this
methodology can be very tedious and time consuming, in particular when TCM is applied to
flexible machining systems.

1.2. Intelligent TCM systems

Research into the area of TCM has proceeded apace, although advances in research have
typically not found their way to practically applied monitoring systems. There are doubtless
many factors behind this, although principal among them would appear to be concerns about
reliability. This hesitance is understandable in the light of the controlled conditions under which
most strategies have been tested [11]; typically off-line and with a very limited range of
operating conditions. Further to this point, there are many stochastic influences on the process in



production environments (e.g. variations in workpiece composition) which are difficult, if not
impossible, to replicate during laboratory research.

The success of any TCM system is dependent on two factors, the quality of the data
acquired by the sensors and the diagnosis algorithm used to analyse the sensory information and
determine tool state. Intelligent models for tool breakage detection have gained more and more
attention in recent years largely because they can better approximate the correct mapping
relationship between inputs and outputs of a dynamic system directly (including an implicit
accounting for the stochastic influences mentioned above), whereas physical models require the
derivation of very complex mathematical equations involving quantities that are difficult to
ascertain [12]. Dimla et al. [11] have referred to the efforts of many researchers in recent years
to move from the 'predictive’ type of system model to an intelligent discriminator type of system.
Examples of such 'intelligent discriminators' are expert systems, fuzzy sets, and neural networks
(NN). Neural network based algorithms are perhaps the most suitable for integrating multiple
sensor information due to their strong ability to describe the highly non-linear characteristics of
machining processes, superior learning, noise suppression, and parallel computation abilities.

Two main classes of network architecture may be identified, namely the 'supervised' and
‘unsupervised' types. This classification refers to the method used to train the network, i.e. the
means by which the reference/inference information is encoded within the network structure.
Supervised learning requires the intervention of the trainer to provide feedback to the network to
further the training progress. Unsupervised learning proceeds by assembling or grouping the
training data into 'clusters’, i.e. the network produces a topologically ordered map of the input
data. In both cases, the network is typically used (after the training phase has been completed) as
a classifier.

Many different network architectures have been applied to the TCM problem, spanning
both the supervised and unsupervised paradigms [11]. The most popular network structure has
been that of the multi-layer perceptron trained by back-propagation. Other methods, including
Kohonen self-organising maps and Adaptive resonance theory have also been applied. The vast
majority of work presented in the literature has focussed on the identification of tool wear, and
reported success rates of 95% are fairly typical. Tansel et. al. [13, 14, 15] have looked at
recognition/prediction of tool breakage, particularly in micro-drilling.

What the research has typically had in common, however, was feature-extraction from a
large volume of sensed data (often from several sensors, i.e. so-called 'sensor-fusion’). Dimla et
al. [11] have identified 4 typical phases in this feature extraction:

Sensor selection

Primary transformation, via FFT or wavelet analysis

Secondary transformation, through derivative or integral operations

Tertiary transformation, through statistical analysis such as mean, standard deviation,
kurtosis etc.

Of course, not all researchers have used all 4 stages, but it is almost invariably the case that
statistical parameters extracted from the (processed) sensor data have been used in the training of
the network.

The work reported here (and in an earlier publication [16]) differs substantially in respect
of the fact that a single raw sensed signal (in this case the spindle motor power) is passed directly
to the network.



2. NETWORK DEVELOPMENT

The work described in this paper was initiated as part of the COMPRO project (see
Acknowledgements). This was a collaborative research effort in the area of Tool Condition
Monitoring, involving both industrial concerns and research institutes. It was funded by the
European Commission under the BRITE-Euram funding framework. During the project,
extensive testing and measurement was carried out by the authors at the sites of several of the
industrial users. The use of neural networks for anomaly detection made up one important part of
the COMPRO project.

Section 2.1 describes the development of the neural network during the COMPRO project,
and section 2.2 summarises some of the results obtained. The network was trained with data
acquired from an automated drilling operation over a 3-week period. The network was then
tested on data from different machining operations but gathered during the same period.
However section 2.3 describes a new test regime for this network. Subsequent to the COMPRO
project, data was gathered by a different system over a period of several months. The difficulties
that this new data posed to the neural network are explained in section 2.3 and there is a
summary of the classification success for these later tests in section 2.4.

2.1. Initial Set-up and Testing of Network

The aim of the work reported here was to develop a neural network capable of detecting
anomalies (such as tool breakages and missing tools) in industrial drilling processes. Operations
were classified as being either 'Normal' or 'Abnormal’ on the basis of the spindle power signal
from the machine tool. The goal therefore was to replicate the judgement of an experienced
operator using the network, with potential benefits for the monitoring of unmanned machining
operations. The spindle power signal was acquired for a full drilling operation and passed to the
network. The network incorporates two distinct stages:

Feature Extractor — The first stage of the network uses unsupervised learning to extract
the so-called 'principal components' from the raw power signal. It does this without prior
definition of what these principal components are. The reduction in the number of data points
making up the input, to the number of principal components extracted, is roughly 10:1

Classifier — The principal components extracted in the first stage form the input to the
second stage. This stage learns through supervised learning (back-propagation) to classify the
principal components from the first stage as being representative of either a normal or abnormal
operation.

Feature Extractor Classifier
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Figure 1: Schematic of Neural Network



The two-stage network was first presented with a set of 'training’ files along with a set of
known output classifications. When the network was adequately trained, a set of ‘testing' files
was introduced to see how well the network classified files it had not previously encountered.

The machining operation under examination was gun-drilling at a station in a transfer line
that was machining diesel truck engine blocks. The bore of the drilling operation was 12mm and
the duration was 185 seconds. The workpiece material was cast iron.

Ideally, the network would learn to classify the power signals as representing either
‘Normal' or 'Abnormal’ drilling operations. (An abnormal signal would result from a missing
tool or a tool breakage during machining). The network should thus be trained on a
representative set of signals from both normal and abnormal operations. However, there was
only one abnormal signal (due to a tool breakage) within the entire data set for the two processes.
In order to test the network, a number of abnormal signals had to be simulated or generated.

'‘Missing Tool' signals were easily simulated as flat line power traces. For 'Breakage'
signals, the shapes were chosen to imitate breakage signals encountered by experienced
operators, on this and similar processes. Both 'high-speed steel' type (exhibiting a spike in the
power signal when breaking) and ‘tungsten carbide' type (typically no spike on breaking)
breakages were simulated. Care was also taken to ensure that there was a variation between
network training and testing sets in the size, timing and type of breakage signals used. A sample
of these breakage signals is shown in Figure 2.

Break 2 Normal

Break 1

Figure 2: Sample of Breakages

2.2. Results of Initial Tests
The classification success of the network is summarised in table 1. All operations were
classified correctly.

Training
No. of Normal 79
No. of Abnormal 6

Training Time (min.) 15

Testing

No. of Normal 79
Correctly Classified 79
No. of Abnormal 6

Correctly Classified 6

Table 1. Classification success of network for first series of tests.



The network was able to recognise the basic pattern of the power plot from the drilling
operation despite considerable variation in the mean level of the signals. The mean level of the
largest signal was nearly two and a half times the value of the smallest one. There was also a
large amount of in-process noise as well as many aberrations in the shape of the signals. Such
variations would pose considerable problems to a conventional level-based monitoring system.
It can also be seen that the training time (around 15 minutes) is relatively short.

2.3. Long Term Unsupervised Testing

Although the network performed well on this real industrial data, the training and test data
sets were gathered during the same time period. It could therefore be contested that the network
was being trained with the test data in mind. In conjunction with this, the breakages had to be
simulated as there was only one actual breakage signal recorded during the 3-week acquisition
period. What was now required was a longer-term test run. A recording module was left attached
to the process over a period of several months. It was hoped that there would be more process
variability over this longer time period and that this would provide a sterner test for the network.
It was also hoped that there would be some breakages during this time.

Data was collected for 3 months. In that time, the power signals from over 2900 drilling
operations were recorded. There were some distinct differences between this data set and that
used to test the network initially. Data was acquired using a different acquisition module with a
much poorer resolution than that used before. This introduced noise in the form of quantisation
error into the new test data. Figure 3 shows two power signals from this new data set. The
signals both came from normal machining operations. The quantisation noise can be clearly seen
on both plots. The upper plot also displays a ‘hump’ near to the start of machining. This increase
in power may have been caused by a build up of swarf that later cleared. There were many such
aberrations in the shapes of the power curves in this new data set that weren’t present in the
original data. This posed new, unforeseeable challenges to the network that had been trained on
the original data set.

Figure 3: Two “Normal” power signals from the new data set.

There were no breakages recorded during the three-month trial. However, there were
several operations that displayed abnormal spindle power plots. Two such plots are shown in
Figure 4. The solid line plot came from an operation where machining was aborted (probably
due to a breakage of one of the other drill bits at this machining station). The broken line plot
came from an operation which immediately followed an aborted operation and for which the first
part of machining had already been carried out.



-

e
"HJ,..

Figure 4: Two “Abnormal” power signals from the new data set.

These abnormal signals were used as the anomalies for this 3-month test batch. The
technician in charge of the transfer line had mistakenly thought that many of these operations
were actual breakages. The exact reason for each of these abnormal curves was only discovered
at a later stage. Thus, although it was once again impossible to test the network with real
breakages, at least the signals used were considered genuinely anomalous by an experienced
technician and worthy of further examination. The network could be considered successful if it
were able to distinguish these signals from the normal signals described earlier.

2.4. Results of Long Term Tests

The trained network from the first series of trials was used. This network wasn’t retrained
with any of the new data. Of the new data set, power plots from 27 normal operations and 6
abnormal operations, selected representatively from the new data, were used for testing. The
classification success with this set of data is summarised in table 2.

Training

As per Table 1

Testing

No. of Normal 27
Correctly Classified 27
No. of Abnormal 6
Correctly Classified 5

Table 2. Classification success of on data gathered over 3-month period.

The output of the network is a probability of whether the operation represents either of the
two states; normal or abnormal. The single incorrect classification made was on the operation
(dashed line) shown earlier in Figure 4. This operation was the completion of one that had been
begun before. The reason that it was not detected as an anomaly is that there was no operation
that resembled this one in the training set. It is not unreasonable therefore, that the network
would guess incorrectly that this was supposed to be an abnormal signal.



3. DISCUSSION AND CONCLUSIONS

A two-stage neural network has been used to detect anomalies in the drilling process. The
network has been used to classify drilling operations as 'normal’ or ‘abnormal’ (tool breakage or
missing tool). This network is distinguished by the fact that it uses the spindle power signal
(acquired over all or part of the operation) as its input, rather than statistical features extracted
from this signal.

A further distinguishing feature of the work reported here is that the data used in the
training and testing of the network were acquired from a working industrial process. High
classification success has been achieved with short training times. The network was originally
trained and tested on distinct sets of data obtained contemporaneously, as reported previously
[16]. This paper has also examined the performance of the network (without re-training) on data
acquired using a different logging module and over a longer (and separate) period of time.
Furthermore, the recurrent difficulty found with currently applied strategies (where the limits
required to ensure recognition of breakage also results in a large number of false alarms) has
been overcome, with no false alarms being encountered in either of the test sets.

Although there was only one actual breakage signal produced by either of the test runs, it is
worth noting that the abnormal signals used in the second test run were originally identified by
an experienced operator as resulting from breakages. Given that the goal of an intelligent system
must to be replicate sound human judgement, the ability of the network to also recognise these
signals as abnormal shows that it does act as an intelligent discriminator. In the case of the single
operation that it failed to classify as abnormal, it should be pointed out that no such signal
(where machining resumed on a previously aborted operation) had been encountered in the
training set. Periodic re-training of the network to include such anomalous signals could redress
this difficulty; in much the same way as a human operator learns from experience. Alternatively,
incorporation of information from the preceding machining operation (e.g. total energy
consumed) could solve the problem.

A limitation of the approach detailed in this paper is that it requires the full signal before a
classification is made. For many operations this is acceptable, but for operations of very long
duration, or where undetected breakage is catastrophic, additional precautions and techniques are
required. Some such methods, involving dynamically evaluated networks using partial data are
explored in detail elsewhere [16]. A further promising avenue for research is a hybrid approach
combining elements of neural network based strategies with more conventional limit-based
algorithms. This is currently under investigation [17].
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