
0RELOH�3UR[LHV

Benjamin Aziz, B.Sc.

A dissertation submitted to the University of Dublin, in partial fulfillment of
the requirements for the degree of Master of Science in Computer Science.

1999

Mobile Proxies I

'HFODUDWLRQ

I declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work and has not been submitted as an exercise for a degree at this or

any other university.

Signed: ________________________
Benjamin Aziz

17 September 1999

3HUPLVVLRQ�WR�OHQG�DQG�RU�FRS\

I agree that Trinity College Library may lend or copy this dissertation upon request.

Signed: ________________________

Benjamin Aziz

17 September 1999

Mobile Proxies II

$FNQRZOHGJHPHQWV

I would like to thank my supervisor, Mr. Christian Jensen, for his support and advice

without which this work would not have been possible. I would also like to thank the

teaching staff for all the knowledge they imparted to me throughout year.

Finally, I would like to thank my loving dad and mom for their support and

encouragement.

Mobile Proxies III

6XPPDU\

One of the important issues that are quite often a challenge in modern distributed systems

is the issue of adaptability.

The need for adaptability rises from the fact that these systems are very much open,

heterogeneous environments encompassing a wide range of hardware/software products

from an ever-increasing number of vendors. Therefore, mechanisms are needed that

allow these products to live and interact dynamically in a way that satisfies the different

performance and functionality requirements of their heterogeneous environments.

The Mobile Proxies (MP) project provides one such mechanism for client/server systems

that are integrated using the Common Object Request Broker Architecture (CORBA)

technology. The system achieves adaptability by exposing the low-level data traffic,

exchanged between clients and servers, to different functionality-manipulating programs,

each capable of modifying the data traffic in such a way that adaptability is achieved

between client and server environments.

The system design relies on two major principles: The first is the well-known proxy

principle, defined by Shapiro in 1986, and implemented in a number of middleware

technologies including CORBA. The other is the concept of interceptors defined by the

Object Management Group (OMG) as part of the CORBA v2.3 specification. These

interceptors allow the above-mentioned exposure of the low-level data.

The system combines these two principles such that a client is allowed to specialize the

proxy it has by downloading from the server, another proxy that performs some extra

functionality. The MP system then informs the server of the downloaded proxy, allowing

it in turn to specialize itself with the same type of functionality.

Two aspects of adaptability were taken into consideration when developing the system

and the functionality extensions it offers. The first is performance, which aims at

minimizing the communication overhead using performance-enhancement techniques

like compression. The second is security, where the issues of confidentiality, message

integrity, and trust of downloaded code were all taken into consideration using digital

signatures and encryption (both symmetric and asymmetric).

Mobile Proxies IV

7DEOH�RI�&RQWHQWV

Chapter One: Introduction 1

1.1 The Adaptability Problem 1

1.1.1 What is Adaptability? 1

1.1.2 How Important is Adaptability? 2

1.1.3 An Example 3

1.2 The Aim of the MP Project 4

Chapter Two: Survey 7

2.1 The Proxy Principle 8

2.1.1 Overview 8

2.2 The Common Object Request 10

 Broker Architecture (CORBA)

2.2.1 Overview 10

2.3 The Jini™ Technology 13

2.3.1 Overview 13

2.3.2 Jini™ Goals 14

2.3.3 Why Java? 15

2.3.4 Jini™ System Structure 16

2.3.5 Jini and Mobile Proxies 17

2.4 Reliable Multicast proXy (RMX) 19

2.4.1 Overview 19

2.4.2 RMX Architecture 20

2.4.3 Related Concepts 21

Mobile Proxies V

2.5 SPIN Operating System 22

2.5.1 Overview 22

2.5.2 SPIN System Design 23

2.5.3 Related Concepts 24

2.6 Spring Operating System 24

2.6.1 Overview 24

2.6.2 Spring System Structure 25

2.6.3 Related Concepts 27

Chapter Three: System Design 28

3.1 Overview of the General Scene 28

3.1.1 The Application 29

3.1.2 The ORB 29

3.1.3 The Environmental Repository 29

3.2 Five Steps to Adaptability 30

3.2.1 Step One 30

3.2.2 Steps Two and Three 31

3.2.3 Step Four 32

3.2.4 Step Five 33

3.2.5 The Problem of Concurrency 34

3.3 The MP System Design 36

3.3.1 The Client Adapter 36

3.3.2 The ORB Adapter 37

3.3.3 The Proxy Loader 37

3.3.4 The Class Loaders 37

3.3.5 The Server Adapter 38

3.4 The Functionality Design 38

3.4.1 The Functionality Tree 40

3.4.2 The Four Levels 40

Mobile Proxies VI

Chapter Four: System Implementation 43

4.1 Overview of the Implementation 43

4.2 The MobileProxies Package 44

4.2.1 Class MobileProxies.ClientEnvAdapter 44

4.2.2 Class MobileProxies.MobileProxyFactory 45

4.2.3 Class MobileProxies.ProxyLoader 46

4.2.4 Class MobileProxies.ServerEnvAdapter 46

4.2.5 Class MobileProxies.ServerIOCallback 47

4.2.6 Class MobileProxies.DummyTransformer 47

4.2.7 Class MobileProxies.MultiClassLoader 47

4.2.8 Class MobileProxies.FileClassLoader 48

4.2.9 Class MobileProxies.URLClassLoader 48

4.2.10 Class MobileProxies.PrivateKeys 49

4.2.11 Interface MobileProxies.Adaptable 49

4.3 The Functionality Tree Implementation 49

4.3.1 The Interceptors Level 50

4.3.2 The Functionality Level 51

4.4 The Environmental Repository and 52

 The Decision Objects

4.4.1 The Decision Object 52

4.4.2 The Environmental Repository 52

4.5 The Runtime Interaction 53

Chapter Five: System Evaluation 58

5.1 The Application 58

5.1.1 Overview 58

5.1.2 The Application Package 59

Mobile Proxies VII

5.2 Results of the Compression Functionality 62

5.2.1 Overview 62

5.2.2 The Results 64

5.3 Results of the Security Functionality 69

5.4 Concluding Points 71

Chapter Six: Conclusion 72

6.1 Review of the Adaptability Problem 72

6.2 Review of the MP System 73

6.3 Review of the Evaluation Results 74

6.4 Future Work 75

Appendix: Performance Results 76

A.1 Compression Performance Results 76

A.1.1 The PDF Files 76

A.1.2 The Repetitive-Number Files 78

A.2 Security Performance Results 79

References 81

WWW Resources 84

Mobile Proxies VIII

List of Figures

Figure 1.1: An example of adaptability 3

Figure 2.1: The Proxy in a Distributed System 9

Figure 2.2: The Object Management Group 10

 Object Management Architecture

Figure 2.3: The CORBA model 11

Figure 2.4: The Request- and Message- level Interceptors 12

Figure 2.5: An entity discovering a Jini federation 17

Figure 2.6: The RMX model 21

Figure 2.7: An invocation in Spring Operating System 26

Figure 3.1: The Mobile Proxies System and other entities 30

Figure 3.2: 31

1. The Client MPS sending an Environmental object

2. The decision-making process in the Environmental Repository

3. The Client MPS receiving a Decision object

Figure 3.3: 32

4. The Client MPS downloads the adaptable proxy, then

5. It sends the Decision object to the Server MPS

Figure 3.4: The interaction between the client 33

 and the server using the MP system

Figure 3.5: Concurrency in the MP system 35

Figure 3.6: The different modules of the MP system 36

Figure 3.7: The MP system functionality tree 40

Figure 3.8: Adaptable proxies, interceptors 41

 and functionality objects in action

Figure 4.1: Runtime Interaction 1 53

Figure 4.2: Runtime Interaction 2 54

Figure 4.3: Runtime Interaction 3 56

Figure 4.4: Runtime Interaction 4 57

Mobile Proxies IX

Figure 5.1: The file-sending application 60

Figure 5.2: Different time delays suffered by the data 63

Figure 5.3: The FileTransfer.sendData time with and 64

 without the MP system for the PDF files

Figure 5.4: The DataTransfer.DataClient application time with 65

 and without the MP system for the PDF files

Figure 5.5: The compression time versus the transmission time 65

 for the FileTransfer.sendData method using

 the MP system for the PDF files

Figure 5.6: The Breakeven point v. Network Speed 67

Figure 5.7: The FileTransfer.sendData time with and without 68

 the MP system for the repetitive-number files

Figure 5.8: The DataTransfer.DataClient application time 68

 with and without the MP system for

 the repetitive-number files

Figure 5.9: The compression time versus the transmission time 69

 for the FileTransfer.sendData method using

 the MP system for the repetitive-number files

Mobile Proxies 1

&KDSWHU�2QH
,QWURGXFWLRQ

The rapid advances in modern computer science have facilitated the development of a

wide range of distributed technologies ranging from office-wide local area networks

(LANs) to the worldwide Internet. These technologies form a sophisticated environment

that encompasses every type of products (hardware and software) from an ever-

increasing number of vendors.

Being such an open environment means that changes take place so rapidly. New

products being added, old ones removed or upgraded, new standards, protocols and data

formats emerging all the time. It is in fact a very dynamic and heterogeneous

environment, and unless some mechanisms are devised to respond to these changes, the

integrity of the whole system is in question.

One of the technical answers to this problem is adaptability.

The Mobile Proxies (MP) project is one of many attempts that aimed at achieving

adaptability in distributed systems.

In this chapter, a general introduction will be made to the problem of adaptability,

explaining it with a simple example, and then clarifying the goal that is sought from this

project.

1.1 The Adaptability Problem

1.1.1 What is adaptability?

At the most basic level, adaptability may be defined as being the ability to alter a course

of action when new information becomes available [www1]. It might also be defined as

the ability of some entity to adjust (or adapt) itself to the requirements and capabilities of

other entities.

Mobile Proxies 2

In computer terms, a software entity, such as a client, a server, or a peer may have to

change its state and/or behavior whenever it interacts with another new entity. This

change may be necessary to make the interaction possible on one hand, and then carried

out in the best possible way (or at least to some acceptable level of satisfaction) on the

other hand.

The issue of adaptability rises from the fact that modern computer systems are

heterogeneous environments comprising a wide range of hardware/software products

from different vendors. This variety of products is driven by the openness of these

systems and it eventually raises the question of how adaptable entities living in such a

changing environment are, and at which level(s) of detail. Such a question can only be

answered once it is determined how satisfying a certain entity is performing in its

environment.

1.1.2 How Important is Adaptability?

To answer this question, it is necessary to realize what is really required of our entity.

This can be seen as either a matter of survival, where unless the entity adapts itself to the

rapidly changing environment, it won’t be able to continue in service and will have to be

changed by another more “adapting” entity. On the other hand, adaptability could only

be a matter of reaching some level of satisfaction in its performance, or in other words a

Quality of Service (QoS) level. Or even going one step further and trying to achieve a

best effort level of service. In either case, adaptability is desirable since it lengthens the

service lifetime, saves effort, time, and money.

Another important result of adaptability is to offer more flexibility and more freedom,

and hence facilitating mobility. It allows mobile systems to configure themselves

dynamically depending on the environment they are living in at the time and react

quickly to any changes in that environment. [Katz 1994] looks at the issue of adaptation

and mobility in wireless information systems where the awareness of the location and

situation are taken as forms of adaptability.

Mobile Proxies 3

1.1.3 An Example

Let’s take one example of how adaptability can be used to optimize the interaction

between two entities. In our case, assume a client-server application where the server is

running on a host on a fixed network, and its client is running on a slow mobile network.

With the server being aware of the two environments, it might for example use some

performance enhancement techniques, like compression, to minimize the amount of data

being exchanged with the client and hence optimizing the use of the slow mobile network

the client is running on.

Figure 1.1: An example of adaptability.

A Server on a fixed
network

CompressionA Client on a
slow mobile

network

A Client on a
fast backbone

network

The same server as in
(a)

Compression

(a)

(b)

Mobile Proxies 4

Now another situation can occur with another client trying to interact with the same

server. This client is running on a fast backbone network for which compression would

be an overhead rather than performance raising. The server in this scenario, equipped

with knowledge of the client’s environment would have to adjust itself automatically to

the new situation and switch, for example, to another mode of operation. In this new

mode no compression is employed and data is exchanged directly knowing that this will

yield a better performance than if that data were compressed.

With this ability of the server to switch its modes according to the different clients it’s

interacting with means that the server is an adaptable one, and it’s trying to achieve the

optimal interaction with its clients. Figure 1.1 illustrates this example, where the server

in (a) is using compression in its communication with the client. In (b), the same server

has “adapted” to the new client and its new environment.

1.2 The Aim of the MP Project

Many of the middleware distributed paradigms today that are used to integrate

applications across a wide range of languages, operating systems, and network

architectures offer a good level of transparency that hides the underlying details and helps

ease the programmers task.

An application, for example, would not normally be aware of the data traffic that is going

in and out of the application, and therefore cannot control it. However, it is this cross-

level accessibility that would help some sort of intelligent adaptability that is at a high

level (i.e.; the applications level) and yet it controls the low level details (i.e.; the byte

level).

OMG’s Common Object Request Broker Architecture (CORBA), which will be

overviewed quickly in next chapter, defines the principle of interceptors, which expose to

the high level of applications, the low level bytes that are moving around between the

client and the server. These bytes once controlled and adjusted can enhance the

performance of the application or they may be securely shielded against external attacks

Mobile Proxies 5

if the application is running on two networks separated widely by untrusted foreign

networks.

Another feature that is used by CORBA and is quite popular among other technologies as

well, like Remote Procedure Calls (RPC) and Java Remote Method Invocation (RMI) is

the proxy feature introduced by [Shapiro 1986] and also overviewed in next chapter.

A proxy represents the server locally at the client. It offers taking care of the low-level

details of requests and replies including the marshalling and unmarshalling of the data

sent. What it doesn’t offer is the access to those details, something that is possible with

interceptors.

The idea of this project is to implement a mechanism that combines the proxy principle

with interceptors and so it can be used to achieve adaptability between CORBA client

and server environments.

Any number of interceptors can be built each encapsulating a certain performance- or

security-enhancement functionality, like compression or encryption, that will be used in

modifying the traffic going out of and coming in to the client or server processes. A

number of functionality extensions can even be combined into one interceptor.

Once these interceptors have been built, they can be used to specialize any other piece of

code, including proxies. Therefore a number of proxies will come up to represent some

service and each will be rightly equipped to adapt a different client environment.

As we mentioned earlier, the project aims at building a system that offers a mechanism

by which a CORBA proxy, written in Java, will be specialized dynamically at runtime by

downloading different interceptors from the server depending on a previous decision.

This decision could have been reached through some interaction between the client and

either the server or a third entity that acts for example, as a repository containing

knowledge about the server’s environment. This entity should be able to reach a

decision, after examining the client’s environment, as to what functionality best suits the

client. Once the client is aware of this decision it can use the MP system to adapt to the

server’s environment.

Mobile Proxies 6

Two aspects of adaptability will be tackled. The first is performance, where the delay

incurred in sending and receiving data is cut by employing compression. The other

aspect is security, where a client may be running on a foreign network and hence all the

data sent and received would be susceptible to attacks from outside. Therefore,

encryption and digital signatures would be necessary to ensure the integrity and

authenticity of the all the messages exchanged with the server.

Iona’s OrbixWeb was chosen as the framework for this project because of the many

features it offers including its implementation of the principle of interceptors in the form

of filters and transformers.

On the other hand, Java 1.1 was used as then programming environment, because of the

many features it offers including code mobility and security.

Mobile Proxies 7

&KDSWHU�7ZR
6XUYH\

In this chapter, a number of concepts and technologies will be overviewed that have a

direct relationship to the project.

The first is the proxy principle introduced by Shapiro in a paper in 1986 [Shapiro 1986]

that appeared earlier in Nelson’s Remote Procedure Calls (RPC) [Nelson 1981]. The

paper defines the meaning of a proxy and its functionality as well as its properties in a

distributed system.

The proxy principle reappears in a number of modern middleware technologies of which

CORBA (Common Object Request Broker Architecture) is one of them and that provides

the general framework under which this project is built. CORBA will be overviewed

with a particular emphasis on the concept of interceptors, which, along with the concept

of proxies, constitute the two most important tools used in building the MP system and

reaching the goals behind it.

Also a number of other technologies are included to help make the overall picture clearer

and complete as to where the project started from, and what were the options available

before any real implementation took place. The chapter also shows where the system

stands in terms of what it tries to achieve and how those goals were tackled by other

technologies.

The first of these is the Jini™ technology put forward by Sun as a new approach to

distributed computing that, as we feel, has a number of common features with our

system, including mobility although, it is used in a different context.

Then there is the RMX (Reliable Multicast proXy) architecture, which aims at achieving

adaptability among client/server environments but at the level of IP multicast.

Two operating systems will also be overviewed, the first of these is Spin operating

system implemented by Computer Science Department, University of Washington

Mobile Proxies 8

[www3]. The system can be dynamically specialized to offer a different interface to meet

the requirements and performance of different applications and hence can be considered

an adaptable system.

The final system that is included in this chapter is Sun’s Spring system, which uses the

concept of proxies in network communication between a client and a server. These

proxies use different communication protocols and a host can have any number of them,

using the one that suits the other host with which communication session is established.

This could be envisioned as a form of adaptability, although in a completely different

context than the one with which the MP system is concerned.

2.1 The Proxy Principle

2.1.1 Overview

The first piece of work that directly relates to this project is the proxy principle as

introduced by Shapiro. The principle is widely used in modern distributed systems since

it reconciles flexibility with the capability of encapsulating a structured object behind a

black-box boundary.

The principle states that:” in order for a client to avail of some service, it must first

acquire a proxy for that service; the proxy being the only visible interface to the service.”

Which means that the principle is built on an object oriented model of computation,

which well adapts to distributed systems, since it allows to abstract processes, processors,

services, resources, and virtually everything into one concept, namely that of the object.

When an object is represented by a proxy, it’s called the proxy’s principal, and together,

they form a single distributed object called a group, as shown in figure 2.1.

Several properties for the proxy were mentioned in the paper, including the locality

property, which states that the proxy is always local to its client, and so the network

becomes transparent and all accesses are local from the client view. Also the proxy

encapsulates the service and hence becomes the only way to avail of that service, and it

also deals with all the marshalling of the data into a network-compatible format that is

ready for transmission, making it a stub.

Mobile Proxies 9

Other properties were mentioned like the access protocol property, where a proxy

enforces a certain order on the client calls, the capability property, where it tests the

validity of calls before being dispatched to the server. Also the trusted communication

property, since both the proxy and its server had originated from the same source, and

finally the protocol encapsulation property, where the protocol between the server and

the proxy is hidden from the client.

An important consequence of the principle is whether it allows for the implementation of

open distributed systems, which are characterized by their ability for interprocess

communication, which facilitates resource sharing and makes them extensible and

independent from specific vendors. The encapsulation property touches on this matter

although it does not state explicitly its appropriateness for the heterogeneous

environments, which are a characteristic of open, distributed systems.

Concluding, the main idea behind the proxy principle is for the client to delegate the

responsibility of accessing a service (delivering the request and obtaining the result) to a

local proxy. This frees the client from many worries that rise from remote service

invocations, and it allows the implementation of the service to be changed without

informing its clients.

Figure 2.1: The Proxy in a Distributed System.

Server HostClient Host

The
Server
Proxy

The Client
Process

The Server
Process

Request

Reply

Request

Reply

Distributed Group

Mobile Proxies 10

2.2 The Common Object Request Broker Architecture (CORBA)

2.2.1 Overview

CORBA is a standard devised by the Object Management Group (OMG) [www4]

representing an influential implementation of the Object Request Broker (ORB)

middleware. It is part of a wider architecture the OMG has dubbed, which is the Object

Management Architecture (OMA). The two architectures are shown in figures 2.2 and

2.3.

The OMA provides a reference model within which standards are developed. It uses

OMG’s object model, which provides the object semantics for specifying the visible

characteristics of objects in a standard and implementation independent way.

Figure 2.2: The Object Management Group Object Management Architecture

The ORB as shown from figure 2.2 lies at the heart of the OMA: It is the communication

mechanism enabling objects to send and receive messages in a distributed, heterogeneous

environment. Around the ORB are various services, all provided by classes and objects,

which are invoked via well-defined interfaces. The language used to write these

interfaces is another standard OMG has devised, called the Interface Definition Language

The Object Request Broker (ORB)

Common Facilities

Object Services

Application Objects

Mobile Proxies 11

(IDL). This language achieves both location transparency (representing objects by object

references) and programming language transparency, hence allowing the implementation

behind the interface to be in one of several programming languages.

CORBA on the other hand portrays how the OMA can be implemented, and especially

the ORB part of it. It gives an abstract definition of the ORB’s functionality as a bus that

conveys requests from CORBA clients to CORBA object implementations (which is the

term used to describe an object that implements some service) leaving the actual

implementation of the ORB to different vendors.

Figure 2.3: The CORBA model

The ORB is seen as composed of a number of components:

• The IDL Stub, which is the code generated for a specific IDL interface to allow static

invocations to operations in that interface. It basically acts as a proxy to the

implementation object.

• The Dynamic Invocation Interface (DII) which is a way for making dynamic

invocations at runtime without any prior knowledge of the IDL interface. The

Interface Repository (IR) may then be queried to obtain information about the

operations and their parameters.

Dynamic
Invocation
Interface

(DII)

IDL Stub
(Default
Proxy)

IDL
Skeleton

Dynamic
Skeleton

Interface (DSI)

ORB
Interface

Object
Adapter

The ORB Core

The
Client The Server

Object

Mobile Proxies 12

• The ORB Interface which offers an interface to miscellaneous services from the to

clients and servers.

• The IDL skeleton, which is the code, generated for a specific IDL interface that

invokes object implementations of that type.

• The Dynamic Skeleton Interface (DSI) which is a generic interface allowing

interpretation of incoming requests to a server for IDL types that were unknown at

compile time.

• And finally, the Object Adapter, which defines standard interfaces to servers because

the ORB Core is free to be implemented in a variety of ways (depending on the

vendor). Recently the Portable Object Adapter (POA) replaced the old standard

known as the Basic Object Adapter (BOA).

In addition to the above components, which are basically part of the ORB Core, there

exists another major part known as the ORB Services. These services are built on top of

the core part and they provide additional level of transparency and functionality to the

application making the ORB look as if it’s a higher level entity.

Figure 2.4: The Request- and Message- level Interceptors.

The Client The Target
Object

Request level Interceptors

Message level InterceptorsMessage level Interceptors

Request level Interceptors

Request ReplyReply Request

Mobile Proxies 13

One of these services is the Security Service, which defines, under the Replaceable

Security option, the concept of Interceptors. The specification of interceptors as well as

their uses is described in [CORBA/IIOP v2.3 Spec. 1999] and figure 2.4 shows the two

types of interceptors: The Request level, and the Message level interceptors. The Request

level interceptor acts at a higher level (on the Request object) than the Message level

interceptor does. However, the latter is the one of direct interest to the MP project since

it allows access to the specific details of a message and hence permits certain

performance and/or security measures to act upon it just before it is sent over the

network.

2.3 The Jini™ Technology

2.3.1 Overview

Jini™ technology brought with it a new approach to distributed computing which, as

claimed, will change the traditional view of what computers are and how software should

be written for them.

The new technology is based on an extremely simple-to-use computing power distributed

across a diverse collection of devices all connected by a network and each able to share

with others’ resources. This view replaces the old notion of peripherals and applications

with that of network-available services and clients that use those services, all forming a

flexible distributed system that can change easily over time.

Many factors played a major role in developing this view. The fact that networks are an

expensive resource that live long and that are the central connecting tissues of all the

modern computing systems, had to be taken into consideration by the developers of

Jini™ Technology. Components, both hardware and software, are constantly added and

removed making it increasingly difficult to update these networks as a single entity.

Therefore, support for changing and updating network components, and the way these

components interact, without having to shut down the whole network each time (which is

an expensive and a difficult process) had to be provided.

A direct result of the above situation, and the fact that the new technology builds around

the network, is that the data and code running on any particular device in the network

Mobile Proxies 14

cannot be assumed by the users or the developers to have been designed especially for

that device. In fact, that code and data are often constructed and gathered well before the

device is designed or built.

Jini™ arose from a Sun research and development project that started in 1994 and that

was committed to dramatically simplifying the interaction among networked components.

The project was the inspiration of Sun cofounder and vice president Bill Joy who, with a

small team of engineers, worked for four years to develop the new paradigm for

distributed computing. And the result was small, very efficient, well-designed, and

powerful Java-based software that does not exceed 48K of Java software binaries.

2.3.2 Jini™ Goals

On top of the list of goals that Joy’s team maintained was to make adding an electronic

device to a network as easy as plugging in the base unit of a new cordless phone. Jim

Waldo, the chief architect, puts it in his own word [Byous 1999]: “One of the keys behind

the Jini system is that we have tried to erase the distinction between hardware and

software.” This implies that basically anything with a processor, some memory, and a

network connection, is allowed to offer services to other entities in the network or to use

the services that are so offered. This class of devices includes not only computers, but

also most of the things people usually think of as peripherals, like printers, storage

devices, and specialized hardware. The potential is also there to include other classes of

devices, such as cell phones, personal digital assistants, and microprocessor-controlled

devices, like televisions, stereo systems, and even, modern thermostats.

The other goal that was as well important was to facilitate distributed computing by

creating federations or communities of shared data, storage, and computing power, hence

allowing users to easily access the needed power and features of any device on the

network no matter what their individual capabilities are. Mike Clary, director of the

Jini™ project describes it: “With Jini technology, computing power could become a

service where computers on a network rent their ‘brains’ or processors out to other

computers.” This concept promotes the idea of spontaneous networking, where any

number of entities can combine spontaneously together for a period of time to avail of

some service or to offer one.

Mobile Proxies 15

The size of today’s networks and their rapid growth impose a final goal, or consequence

of the above goals. If every device (including embedded ones) is given the chance to be

part of the Jini structure, this will introduce the problem of scalability, probably, to levels

previously never thought of. In other words, a Jini network has to be able to scale and

adapt the increasing number of components that might be connected to it.

In short words, the Jini system aims at enabling users to share services and resources over

a network, regardless of the location, the nature (being hardware or software), or the

capabilities of those services and resources. Therefore simplifying the task of building,

maintaining, and altering a network of devices, software, and users.

2.3.3 Why Java?

To know why Java was chosen as the language of the system comes as no surprise. Java

offers a number of attractive features that help in achieving what Jini is aiming at. These

include for example, code mobility where a program can be executed anywhere after

being compiled into byte codes. This has promoted Java’s slogan: “write-once-run-

everywhere”. This allows code to be moved from somewhere else and loaded

dynamically into a running program, hence allowing a new state and behavior to be

added. Nonetheless, it also introduces serious security risk regarding the trust of the

mobile code, but this issue has been solved to a certain degree by Java’s security model

and its extensions.

The other feature of Java is the homogeneous environment it provides to its applications

by turning an otherwise heterogeneous network of computing entities into a

homogeneous collection of Java Virtual Machines (JVM). This will ensure a consistent

environment in which the Jini system can exist, allowing services to be able to run in

their clients’ environments.

As indicated above, the security model of Java would be another attractive features that

enables the Jini technology maintain safety through referential integrity, array-bounds

checking, and type safety. In addition to allowing fine-grain control of the operations

that can be performed by any program.

In general terms, the combination of code mobility, homogeneity, and security, allows

clients and services to join and leave a network federation at any time, hence representing

Mobile Proxies 16

a spontaneous form of networking and allowing for the introduction of new services that

will extend the functionality of the federation.

2.3.4 Jini™ System Structure

The Jini system can be seen as composed of three high level components: The

infrastructure, the programming model, and the services. Each of these components is

regarded as a logical extension of the Java language to a fully distributed case.

The infrastructure defines the minimal core technology required to build a Jini federation.

It consists of three parts: A distributed security system, which builds on the Java Remote

Method Invocation (RMI) and extends the basic Java Virtual Machine security model.

Discovery and join protocols that allow different entities to discover and join a Jini

federation. Finally, a lookup service, which acts as a repository that contains information

about other services that are part of the federation, and allows clients to avail of those

services.

The programming model is a set of interfaces that enable the construction of reliable

services including those that are part of the infrastructure and those that join it later. It is

implemented as three sets of interfaces that are meant to extend Java in a way that will

permit connecting objects to the model in a robust and flexible way. The first of these

sets defines a distributed event model that is an extension of the standard Java event

model in JavaBeans™ and that enables event-based communication between Jini

services. The second set is a two-phase-commit protocol, which is a simplified

distributed version of the Java transaction service that allows Jini applications to

coordinate state changes. Finally, the last set of interfaces defines the notion of leasing,

which was developed especially for problems in resource allocation and reclamation in

distributed systems that might arise from entities leaving the federation. The leasing

model is a duration-based, renewable model.

The final component that defines a Jini system is the services component which is

enabled by the first two components. A service appears as an object with a well defined

set of operations that constitute its interface and that is determined by the type of the

service itself. A service may be used by other services or by clients interacting with the

Jini federation. Examples of services would be a printing service, a communication

Mobile Proxies 17

service (like the JavaSpaces™), and a transaction manager, which enables entities to

participate in a Jini transaction protocol.

Sun’s Jini™ Architecture Specification [Jini™ Architecture Spec. 1999] provides a good

description of the Jini structure including its relationship with the Java language.

2.3.5 Jini and Mobile Proxies

The notion of proxies is a central one to the Jini technology enabling the idea of

spontaneous formation of entities into a federation and for other entities to join that

federation and use the services advertised in it.

An entity that wants to join a Jini federation sends out a discovery request as a multicast

packet to some network asking for any lookup services in it. Upon receipt of that request,

a lookup service responds by sending back a proxy that represents that lookup service to

the requesting entity. This happens by downloading the proxy dynamically from the

lookup service to the requester with enough information that allows the latter to proceed.

This process is clarified in figure 2.5. The entity then proceeds to the next stage in which

it either decides to join the federation as a service, whereby it’ll be required to place a

proxy object representing it in the lookup service, or avails itself of some service(s) in the

federation, in which case it behaves as a mere client.

Figure 2.5: An entity discovering a Jini federation

Entity
(Hardware/
Software)

The Lookup Service

Multicast Discovery Packet

A Proxy representing the
Lookup Service

Discovery Response

Mobile Proxies 18

This ability to download code at runtime is what distinguishes Jini proxies from proxies

used in other distributed technologies such as CORBA. A CORBA client for example,

has to know beforehand what the interface of the service it wants to use looks like. In

other words, it is linked statically to the proxy of that service, and the communication

knowledge between the proxy and the service is built into the client, despite the fact that

this knowledge is hidden from the client (the protocol encapsulation property, section

2.1). This implies that any changes made to this communication protocol have to be

coordinated in both the client and the service.

The mobility aspect of Jini’s proxies allows such changes to be private to the service and

the code sent to the client by that service. Effectively, these changes are only propagated

as needed without the client being aware of them.

Unlike Jini, which is a complete standalone distributed paradigm; the MP system is only

part of the CORBA middleware. However, the one important common feature between

the two is the mobility feature that allows information to be sent to the client depending

on some previous requirement. This requirement in the case of Jini is merely the need to

use some service. In the case of the MP system, it is the need to adapt the client and

service environments. Therefore, the nature of the downloaded code is different in the

two cases. In the MP system, unlike Jini, the client has to have beforehand a proxy to the

service it wants to use (called the default proxy). The downloaded proxies then are only

used to specialize the original, default proxy, in a way that will meet certain

environmental needs regarding performance or security, between the client and the

service. Jini proxies on the other hand are not used in the context of adaptability,

although the potential is very much there, and the technology as well.

Jini’s lookup service could also play a role in the MP system, although in a different way,

acting this time as an environmental repository that holds information about the clients

and services environments. Then it would respond to queries by sending a

“specialization” proxy to adapt the requester’s environment.

Mobile Proxies 19

2.4 Reliable Multicast proXy (RMX)

2.4.1 Overview

RMX is a generic model, presented by a number of researchers at Computer Science

department, UC Berkley [Chawathe et al 1998] as a solution to the adaptability problem

in heterogeneous environments during reliable multicast sessions.

The solution tackles the heterogeneity problem with a hybrid model that relies both on

end-to-end loss recovery mechanisms and an intelligent and application-aware adaptation

carried out within the network.

In multicast communication, the data sent by some source will be delivered to a number

of interested receivers according to a multicast routing tree. And although multicasting

offers enormous savings in bandwidth (especially for large-scale communication), it is

challenged by the fact that the environments for those receivers as well as the connecting

network are very much disparate. Consequently, a communication source is potentially

confronted with a wide range of path characteristics to each receiver, for example,

different delays, link rates, and packet losses. In addition to that, the source cannot

simply modify its stream transmission to satisfy the conflicting requirements of different

paths and the heterogeneous end-users.

So, the proxy model is adopted to actively transform the transmission to each receiver in

a way that will bridge the gap between the end environments and any route requirements.

Moreover, this will even allow communication, in the first place, among otherwise

incompatible receivers.

The model suggests a twofold solution. First, it relaxes the semantics of reliability,

lifting the constraint that all receivers advance uniformly with the sender’s data stream,

and allowing each receiver to define its own level of reliability. The second is

decoupling the members of the reliable multicast session through a proxy-based

communication model.

The end receivers will interact with the proxy to customize their transport decisions and

reliability semantics in a fine-grained, application-specific fashion, using proxy-

embedded computational and protocol bridging elements.

Mobile Proxies 20

2.4.2 RMX Architecture

A number of features characterize the RMX design. These include the exposure of

application-specific information to optimize the receiver/network adaptation process and

to tune the transport protocol, otherwise known as the cross-level optimization or

information accessibility (as mentioned in 1.2) and the leveraging of the data semantics

when creating data adaptation algorithms

The model basically splits the communication session into two sub-sessions: the RM

session (or the main multicast session) and the proxied session. The RM agent interfaces

with the RM session whereas the Protocol agent interfaces with the proxied session. The

model also has a Protocol Adapter that uses transformation engines in transforming the

data store between the formats of the two sessions. This architecture is shown in figure

2.6.

The RM agent participates in the RM session on behalf of the RMX client (the receiver)

handling all the details of the communication protocol. At the same time, it builds a data

store of all the data that is part of the reliable session. Both the main and the proxied

sessions update the data store, with the RM agent adding the main session data and

propagating the proxied session data. The RM agent uses loss recovery mechanisms in

the event that the store is lost due to a system crash, recovering the data from other agents

that have participated in the reliable multicast session.

The Protocol Adapter and the Protocol Agent provide the interface to the proxied session.

The Protocol agent implementing the actual communication protocol used with the

clients. It could be a totally different protocol than the one used in the RM session. The

Protocol Agent is designed based on Application level Framing (ALF) principles and the

characteristics of the proxied clients and the network separating them. On the other hand,

the RM Agent may only apply simple congestion control techniques to limit the

transmission rate.

The Protocol Adapter is the most sophisticated element in the RMX model. It not only

provides the required functionality for heterogeneous environments, but also relies

heavily on ALF information to achieve reasonable performance.

Mobile Proxies 21

Figure 2.6: The RMX model

The Protocol Adapter also maintains a connection object for every client connected to the

proxy, which encapsulates the state of that client at the proxy. This up-to-date

information is used to assist the Protocol Adapter in the adaptation process. This process

mainly appears in three forms of dynamic adaptation: rate adaptation which reduces the

data flow rate, data transformation which transforms the format of the data, and protocol

conversion which switches between different reliable multicast protocols depending on

application-level information.

In addition to the above architecture, the model also describes how an RMX client locates

an RMX point of contact inside a network using the Scalable Network Service (SNS)

architecture also developed in UC Berkeley [Chawathe, Brewer 1998].

2.4.3 Related Concepts

The RMX model is an attempt to achieve adaptability at the network level for reliable

multicast sessions, which is related to the overall adaptability problem that the MP

system tries to solve but in a different context, i.e. that of the CORBA environments.

The model brings forward a number of related concepts and features apart from the

common adaptability goal. It uses a proxy-based design that adjusts the data flow

The
RM

session

The
Proxied
session

Data Store

The Protocol
Adapter

The
RM

Agent

The
Protocol

Agent

Transformation Engines

Mobile Proxies 22

between the sender and the receivers depending on the different environments, the state

of the network, and application-level characteristics.

However, the term proxy is used to convey the simple meaning of an intermediary

between the client and the server, which is somehow different than the view adopted in

middleware systems that a proxy as a representative of a service having the exact

interface and being local to the client.

In the context of CORBA, RMX would fall in the same classification as an interceptor

that has access to the low level data bytes of the application. Nonetheless, RMX also has

access to application level information, which adds more complexity to it than a mere

interceptor.

The model also touches on performance-enhancement techniques like compression, and

transport-layer-specific techniques like protocol conversion and data flow rate control.

Compression in particular was used in the MP project as an example of controlling the

output from the client to the server and vice versa. The security aspect was left out of the

RMX model.

2.5 SPIN Operating System

2.5.1 Overview

SPIN operating system was developed by a group of researchers [Bershad et al 1995]

from UC Berkley as a project sponsored by the Advanced Research Projects Agency

(ARPA), the National Science Foundation (NSF) in 1995.

The project was aimed at designing an operating system that could be dynamically

specialized and extended so that it could (safely) meet performance and functionality

requirements of the applications using it.

Such requirements are often poorly matched by operating systems and therefore result in

either the application not working well, or not working at all. For example, modern

operating systems employ disk buffering and paging algorithms that could pose potential

performance degradation for certain types of applications like database applications.

Also general-purpose network protocols are quite so often incapable of supporting the

Mobile Proxies 23

high-throughput parallel applications. Other applications have their own special needs

that are not always met by operating systems, like multimedia clients and servers, fault

tolerant systems, and real-time-data applications.

SPIN is described as an extensible operating system that can provide an extension

infrastructure, represented by a set of interfaces, to its applications in such a way that will

best meet the demands of those applications. These extensions allow the application to

“specialize” the underlying operating system and to grant fine-grained access to system

resources in a safe and low-cost way. This access has to be controlled to ensure safety,

whereas good performance is only achieved by low communication overhead between

the extensions and the operating system kernel.

2.5.2 SPIN System Design

The design of SPIN relies basically on four techniques implemented at the level of the

language in which it was written, or it runtime. These techniques are Co-location, which

enables communication between the system and the set of extensions to have a low

overhead. Also enforced modularity, through which modules are isolated from one

another by boundaries that are well defined by their interfaces. Extensions were written

in Modula-31, a modular programming language. The other technique used was the

logical protected domains2, which ensured that extensions were executed in separate

namespaces protecting their effects from other programs. And finally, extensions were

only allowed to execute in response to system events, which described potential actions

in the system, like a virtual memory page fault or the scheduling of a thread. This is

termed as the dynamic call binding.

However, it should be noted that these techniques do not guarantee extensibility. It is

only guaranteed by the infrastructure functionality provided by the set of extensions and

accessed through the exported interfaces.

1 v-Promela is a recent Visual Object-Oriented language proposed for SPIN, see [Leue et al 1999].
2 A good example of logical protected domains is the sandbox security model in Java.

Mobile Proxies 24

In general, SPIN system design encompasses two models, the protection model and the

extension model. The protection model controls the set of operations that can be applied

to resources. It ensures that a process can only access the memory within a particular set

of virtual addresses. It makes use of the notion of capabilities, which are unforgeable

references to a resource. As mentioned above, the protected domains are used in defining

the set of accessible names available to an execution context.

The extension model provides a controlled communication facility between the

extensions and the core system operating system allowing for a variety of interaction

styles.

These two models provide the framework for managing interfaces between services

within the system.

2.5.3 Related Concepts

The SPIN operating system is an adaptable, dynamic, flexible system providing different

functionality extensions to the applications using it. In other words, it aims at adapting

the needs of those applications although this adaptability is more at the high level of

applications rather than the low level environment adaptation that represents the goal of

the MP project. However, the extensibility represented by the set of interfaces, each

providing a different functionality appears in the form of the mobile proxies, each of

which carries with it a different form of specialization when sent to the client. The

difference should be noted though in the two systems, since SPIN is an operating system,

whereas MP is part of an integrating middleware, i.e. CORBA.

2.6 Spring Operating System

2.6.1 Overview

Spring is a highly modular, distributed, multi-threaded operating system that not only

supports object-oriented applications but also is object-oriented in itself.

The system was developed in Sun Microsystems Laboratories by a group of researchers

[Mitchell et al 1993] who were working on a clean sheet design for a new operating

system that would have the potential of replacing Unix. The new system would keep as

Mobile Proxies 25

many of the good features of Unix as possible, like good performance, memory

protection, and network interoperability. However, it would improve in areas that

suffered from problems, like the cost of maintenance, the inflexible security aspect, and

the difficulty of supporting time-critical media.

Because the design was a fresh one, the opportunity was there to make full use of the best

available technology to come out with an open and flexible system, that is able to evolve

and be extended by different vendors. Such a system would have to pay attention to the

different components that construct it and the interfaces between them. This requirement

immediately dictated a system structured around the notion of objects that are defined by

strong interfaces specifying what these objects do and leaving the actual implementation

open. These interfaces allowed operation invocations to be type safe, secure, and

uniform, whether the client invoking a method is in the same address space, in another

address space, or on a different machine altogether.

Further, in order that these interfaces are defined without tying them to a particular

programming language (and hence undermining the openness of the system), an Interface

Definition Language (IDL) was used. This language is basically the same as the one

adopted by OMG.

2.6.2 Spring System Structure

Spring is designed using the microkernel approach. The kernel supports basic cross

domain invocations and threads, low-level machine-dependent handling, as well as basic

virtual memory support for memory mapping and physical memory management.

A typical Spring node runs several system servers in addition to the kernel. Two of these

run in the kernel mode: The nucleus and the virtual memory manager.

The nucleus manages process and inter-process communication, and it supports three

basic abstractions: domains, which are analogous to Unix processes, threads, which

execute within domains, and doors which support object-oriented calls and provide entry

points between domains.

The virtual memory manger controls the memory management hardware. The rest of the

system services, including naming, paging, network IO, file systems, keyboard

management, etc., are implemented as user-level servers.

Mobile Proxies 26

These services are available on all the nodes in a distributed system and basically provide

access to the system resources they manage through their interfaces allowing clients to

use those resources in a safe way by invoking operations on these interfaces.

Also appearing in the Spring structure are network proxies that support invocations

among objects across the network. However, they are normal user-mode server domains

that receive no special support from the nucleus. A Spring machine might have any

number of them, that speak different network protocols.

Spring proxies transparently forward door invocations between domains on different

machines with neither the client nor the server being aware of their existence. Network

addresses and handles are used in identifying these proxies and the doors using them.

Figure 2.7 shows how an invocation is routed from the client to the server through doors

and network proxies.

Figure 2.7: An invocation in Spring Operating System [Mitchell et al 1993]

[Nelson et al 1993] provides a further outlook into the structure of the Spring file system

and the Spring virtual memory system respectively.

Client
Domain

Nucleus B

Door Y

Server
Domain

Proxy
A

Nucleus A

Door X

Proxy
B

Mobile Proxies 27

2.6.3 Related Concepts

The Spring operating system is another example of how proxies can be used as

intermediaries between client/server communication. Although Spring proxies have a

limited functionality regarding adaptability at the low level of data bytes, yet it could be

argued that they are working at the protocol level simply by having the system use the

suitable proxy depending on what protocol the server speaks. This however is the only

common concept that would fall into the same set of concepts that the MP system relies

on.

Mobile Proxies 28

&KDSWHU�7KUHH
6\VWHP�'HVLJQ

In this chapter, a high level description of the MP system design is given with all its

major parts and the way these parts combine to make up the system.

Also described are the performance and security techniques employed in providing

distributed applications that use the system, with the extra functionality needed by those

applications to enhance the interaction between different components of the application.

The chapter begins with an overview of the general scene in which the MP system works

and the other entities with which it interacts.

One of these entities is the Environmental Repository, which alongside the

Environmental and Decision objects, will also be overviewed but only in general without

going into further details, as it does not form a part of the project, but is rather a separate

system that deserves its own research.

3.1 Overview of the General Scene

The MP system basically provides a mechanism by which applications using the CORBA

middleware can adapt to different environments and meet the different requirements of

the applications. However, in order for the MP system to meet its expected goals and

become fully functional, other parties are assumed to exist.

The overall scene is depicted in figure 3.1 with basically three major entities that the MP

system has to interact with. These are:

• The Application

• The Object Request Broker (ORB)

• The Environmental Repository

Mobile Proxies 29

3.1.1 The Application

This is just an ordinary CORBA-integrated application, comprising a client process that

uses a server object reachable through the ORB. The client makes all the method

invocations through the local proxy that represents the server object1.

The server process will also be the provider of a number of adaptable proxies2. These

proxies carry the same exact interface of the server process but also implement a certain

interface that will make them adaptable.

The current version of the MP system only supports applications using OrbixWeb from

Iona.

3.1.2 The ORB

The ORB was briefly discussed in section 2.2 being the integrating bus that carries the

requests sent from clients to different server objects living in the CORBA environment.

3.1.3 The Environmental Repository

Finally, there is the Environmental Repository, a new concept suggested throughout this

project that is meant to fill two roles. The first is being a holder for the description of

different services and the environments in which these services live. The second is to

compare this description with that of the clients willing to avail of these services in a

decision-making process.

The description of the services and their environments could be some form of Meta data

that must be standardized in order for the description to be valid across different

repositories and the clients interacting with them.

The Environmental objects will be used to represent the description of different

environments. This description could be a set of parameters or variables that control the

state of these objects and that reflect the state of the environment they represent. They

will also contain Application Level Data (ALD) necessary for the decision-making

process. The outcome of the latter process would then be embedded in a Decision object.

1In CORBA jargon, this is the stub. In this project, we will refer to it as the default proxy.
2These are also termed the mobile proxies, because of their mobility.

Mobile Proxies 30

The Environmental Repository might use any techniques in reaching its decision, ranging

from simple if-then rules, to high-level intelligent methods like Case Base Reasoning

(CBR).

It is important to note that the MP system will be part of both the client and the server

processes. These two parts will be referred to as the Client MPS and the Server MPS

respectively. They basically provide a set of APIs that the client and the server processes

will have to call in order to initiate and end the adaptation process.

Figure 3.1: The Mobile Proxies System and other entities

3.2 Five Steps to Adaptability

3.2.1 Step One

The first step in the interaction process between different entities starts with the Client

MPS contacting the Environmental Repository on behalf of the client process and

supplying it with an Environmental Object. This object will describe the client’s

environment as well as any other parameters that would be useful in deciding the

necessary functionality that will control the flow of data between the client and server.

This point marks the beginning of the adaptation process.

The Environmental
Repository

A Client
Process

A Server
Process

The Client
Mobile Proxies
System (MPS)

The ORB

The Server
Mobile Proxies
System (MPS)

Mobile Proxies 31

3.2.2 Steps Two and Three

The repository then undergoes a decision-making process that ends with a decision made

as to what functionality should be used. This decision will then be passed to the Client

MPS in the form of a Decision object. This is shown in figure 3.2.

The Decision object will normally hold the decision as a URL pointing to the location of

the adaptable proxy at the server site. Along with the URL will also be its digital

signature, which will be used in verifying the source of that URL. The object may also

hold other information related to the server, such as any digital keys or certificates that

would be necessary for security purposes, such as authentication or message

confidentiality, specially that code mobility is involved.

Again the emphasis here is on the fact that these objects, as well as the Environmental

ones, have to have a standard format that will be compatible everywhere, regardless of

the application or the environment it’s built in.

Figure 3.2:

4. The Client MPS sending an Environmental object

5. The decision-making process in the Environmental Repository

6. The Client MPS receiving a Decision object

The
Environmental
Repository

The Mobile
Proxies (MP)

System

A Client
Process

The Client Process

Environmental
Object

1

3
Decision Object

Decision-making
process

2

Mobile Proxies 32

3.2.3 Step Four

The next step involves the Client MPS downloading the adaptable proxy along with any

code referenced by it from the server process and then installing it in the client process.

This step is depicted in figure 3.3.

The code mobility aspect was preferred to the other choice, i.e. the client having all the

necessary adaptable proxies locally stored (just as it has the default proxy) and loaded at

runtime into the JVM. Being mobile meant that the same advantages mentioned in

section 2.3.3 would be retained, as well as, adding an extra advantage, i.e. that of

extensibility.

Figure 3.3:

6. The Client MPS downloads the adaptable proxy, then

7. It sends the Decision object to the Server MPS

Extensibility here refers to the fact that the server is free to implement as many of the

adaptable proxies as it wishes without having to notify the client. New proxies can be

added and older ones removed depending on the necessity. This also allows for a

lightweight client that does not have, at compilation time, more than the default proxy

generated by the CORBA IDL compiler.

The Mobile
Proxies (MP)

System

The
Client
Object

The Client Process

The Mobile
Proxies (MP)

System

The Server Process

The
Server
Object

The ORB

Adaptable Proxy

Decision Object

4

5

Mobile Proxies 33

3.2.4 Step Five

After downloading the necessary code, the Client MPS will send the Decision object

across to the Server MPS through the ORB. This will distribute the knowledge of the

outcome of the decision-making process between the client and the server processes and

so an agreement will have been reached as to what functionality should both sides use to

best match their needs.

The Client MPS will then call a method in the adaptable proxy to install the necessary

interceptor in the client process. The same thing takes place on the server side, with the

Server MPS installing another interceptor that complements the client-side interceptor.

These interceptors are only used to expose the low-level data bytes running between the

two processes. A number of objects each implementing a different functionality is then

used to modify and control these bytes. The functionality of these objects is defined

through a set of interfaces.

Figure 3.4: The interaction between the client

and the server using the MP system

It is important to keep in mind that all these objects are downloaded as necessary from

the server site at runtime.

The Mobile
Proxies (MP)

System

The
Client
Object

The Client Process

The Mobile
Proxies (MP)

System

The Server Process

The
Server
Object

The ORB

Adaptable Proxy

Default Proxy

Interceptor

Functionality Objects

Functionality Objects

Interceptor

Mobile Proxies 34

This step denotes the end of the adaptation process and invocations can now take place

and data can be exchanged between the client and server as depicted in figure 3.4.

3.2.5 The Problem of Concurrency

One important issue that the Server MPS has to deal with is the concurrency issue. It is

possible that more than one client at a time opens a connection to the server process. The

Server MPS should be able then to deal with these clients allowing each to implement a

different functionality and at the same time reversing the effects of that functionality

when the modified data is received at the server side.

One way of achieving this is for the Server MPS to spawn a different child thread for

every new client that connects to the server process. This will free the Server MPS to

deal with new clients coming up. It will also allow the child thread to be specialized for

only one client.

The child thread will encompass all the objects used to treat the incoming data as well as

modifying the outgoing ones. It will also have a reference to the server object to which

method invocations are made. This however implies that the server object should in itself

be able to deal with multiple requests, something that must be taken care of at

development stage.

Another way of dealing with multiple clients would be for those clients to transmit some

knowledge with the data, which would inform the Server MPS of the way that data was

modified. This knowledge will be inserted by the Client MPS at each client process and

would indicate the source of the data. This should be sufficient in determining how the

modified data can be restored to its normal state taking into consideration the fact that

that the Server MPS already has an idea about the different clients connected and the

different decisions reached for each client (represented by the Decision objects.)

The Server MPS will still have to know how the outgoing data would be modified

according to its client.

These two solutions to the concurrency problem are illustrated in figure 3.5 where in (a),

the Server MPS spawns a different thread to deal with each client, whereas in (b), the

Server MPS has the necessary knowledge as to the source of the data received.

Mobile Proxies 35

After the client finishes invoking the server, the connection is closed between the two

processes and the Server MPS will have to remove any objects that were installed during

the adaptation process.

However, the situation is different in the case of multiple clients. In the first situation the

Server MPS will have to kill the child thread that was dealing with that client. In the

second situation, the Server MPS will only remove the client’s entry containing, at least,

the id and the functionality used in modifying the data.

Figure 3.5: Concurrency in the MP system

 Clients Server Threads

The parent Server MPS

(a)

1

2

3

 Clients

The parent Server MPS
1

2

3

(b)

Mobile Proxies 36

3.3 The MP System Design

The MP system is generally divided into five modules that combine together to provide a

set APIs for the application developer and help achieve the goal of adaptability.

These modules are:

• The Client Adapter

• The Server Adapter

• The ORB Adapter

• The Proxy Loader

• The Class Loaders

Which are displayed below in figure 3.6 and further described in the following sections.

It is worth noting that the Client Adapter, the ORB Adapter, and the Proxy Loader form

the Client MPS, whereas the Server Adapter represents the Server MPS. The Class

Loaders are part of both the client and Server MPS.

Figure 3.6: The different modules of the MP system

3.3.1 The Client Adapter

This module is nothing more than a front-end to the client process. It is itself part of the

client process and it provides to the client a set of APIs that will start and end the

adaptation process.

The Client
Process

The
Server
Process

The ORB

The Client
Adapter

The ORB
Adapter

Class
Loaders

The Server
Adapter

The Proxy
Loader

The MP System

Mobile Proxies 37

However, this module is also responsible for contacting the Environmental Repository

and supplying it with the Environmental object and receiving the Decision object.

It will also carry out a number of other tasks, including sending the Decision object to the

Server MPS using the Proxy Loader module, calling the appropriate method(s) on the

adaptable proxies that will cause them to adapt the environment. And finally, making

sure that the adaptation process was successful while informing the client of any

exceptions.

3.3.2 The ORB Adapter

The ORB adapter deals with the ORB and provides some means for it to synchronize the

adaptation process, especially at the point where an adaptable proxy is downloaded from

the server.

It allows the ORB to inform the Client MPS of the point in time when a proxy is needed

either because a reference to the server object has entered the client process or the client

has decide to bind to that object. The Proxy Loader will act at this point and download

an adaptable proxy that will override the default proxy at the client.

This module is only part of the client process and the Client MPS.

3.3.3 The Proxy Loader

The Proxy Loader has a major task of downloading the adaptable proxies from the server.

It also provides the means for the Client Adapter to send the Decision object to the Server

MPS. In turn, it uses the Class Loaders in its downloading procedure.

This module is only part of the client process and the Client MPS.

3.3.4 The Class Loaders

This module is only a proprietary class loader that overrides the default class loader,

which is usually provided with the JVM.

Being part of both the client and server processes, it has to be able to load Java classes

across the network as well as locally. This ability is needed because of the fact that the

client does not have the class files for the adaptable proxies. And although the server

Mobile Proxies 38

does have them, the proxy used remains anonymous to the latter until the point when the

Client Adapter sends the Decision object to the Server MPS.

This module also has to deal with the security issue rising from code mobility. This is

worked out by using digital signatures to authenticate the mobile code.

3.3.5 The Server Adapter

The Server Adapter is the equivalent of the Client Adapter, but at the server process. It

performs all the necessary tasks, including receiving the Decision object, calling the

necessary method(s) on the adaptable proxies causing them to adapt the environment.

Also keeping track of all the connected clients and spawning different threads to deal

with each, or monitoring the incoming and the outgoing data, depending on the solution

adopted for the concurrency problem mentioned in the previous section.

This module constitutes the Server MPS.

The previous classification of the different modules of the system does not imply that

these are separate Java classes, but rather is based on the different roles performed by

each of the modules.

The system design was meant to be as flexible and lightweight as possible so that its

performance cost would be kept to the minimum and at the same time allowing for the

different modules to be replaced and upgraded as necessary.

3.4 The Functionality Design

Basically, the MP system is targeted at achieving adaptability in two contexts, i.e.

communication performance and security.

The performance of any application can be improved by in a number of ways. One of

these ways is to reduce the delay incurred when data is transmitted from one machine to

another across the network.

This delay varies among different networks and is a function of a number of factors,

including the network bandwidth and the amount of traffic flowing at a certain point in

time.

Mobile Proxies 39

One of the factors linearly affecting the transmission delay is the size of data that is being

sent over the network. Size reduction could lead to considerable gains in performance

since the transmission time would be reduced. This reduction however represents extra

processing time, hence the trade off in this situation would be the transmission time

versus the processing time. More discussion of this issue is provided in chapter five.

The security side of the system works in the three areas often termed CIA. These are:

Confidentiality, Integrity, and Authenticity.

Confidentiality refers to the ability of the application to hide or protect its data from

unauthorized access, otherwise known as Eavesdropping. Protecting against

eavesdropping becomes even more difficult when that data is exposed to the outside

world while transmitted over the network.

Encryption is normally the solution to securing confidentiality. Encryption usually falls

into three broad categories that are populated by different algorithms: Symmetric,

Asymmetric, and Hybrid encryption. Examples of these include the Data Encryption

Standard (DES) and the International Data Encryption Algorithm (IDEA) which are

symmetric algorithms. The Rivest-Shamir-Adleman (RSA) is an example of an

asymmetric algorithm. On the other hand, Pretty Good Privacy (PGP) and Secure

Sockets Layer (SSL) use a combination of the previous two and so they are often termed

hybrid algorithms.

Integrity means that the data sent has not been tampered with or altered. Message

Digests are one good and efficient way of achieving this through providing digital

fingerprints. Examples of message digest algorithms are the Secure Hashing Algorithm

(SHA) and MD5.

Finally, Authenticity is to verify the source of the data received, and prove its real

identity. Digital Signatures are used in proving the authenticity of messages and DSA is

one algorithm that achieves this.

Two good references on the different security concerns and solutions are [Knudsen 1998]

and [Oaks 1998].

Mobile Proxies 40

3.4.1 The Functionality Tree

The design of the system functionality was made as open as possible in order for any

enhancements or new functions to be added in subsequent versions of the system and still

remain compatible with the previous ones.

The design takes the form of a hierarchical tree that can be expanded horizontally and

vertically allowing for new elements to be added at each level. This tree is shown in

figure 3.7.

Figure 3.7: The MP system functionality tree

3.4.2 The Four Levels

The first level is the default proxy level. This level contains the normal default CORBA

proxy generated by the IDL compiler and statically linked to the client. It mirrors the

service interface.

The next level represents the adaptable proxies, which are extra proxies for the same

service but that have the ability to adapt to the requirements of the client and the needs of

its environment. This ability is defined by a certain interface that has to be implemented

by any proxy willing to become adaptable.

Default Proxy level

Adaptable Proxies level

Interceptors level

Functionality level

Mobile Proxies 41

These proxies will be stored at the server site and will be downloaded at runtime by the

client, overriding the default proxy of the first level. There can be any number of them

depending on the different adaptability semantics needed.

The third level defines the interceptors used in intercepting the data bytes going out and

coming in of each process. These are the Message-level interceptors defined in CORBA

v2.3 specification and discussed in section (2.2).

In the design of the MP system, these interceptors are only used to expose the low-level

data bytes without imposing any modification on them. This again is meant to keep the

system as open as possible, and to allow for different types of modifications to be

pipelined and therefore increase the flexibility of the adaptation process.

The fourth and the last level encompass the different functionality-implementing objects.

These objects are defined by a set of interfaces each reflecting a particular technique like,

compression, encryption, digital signatures and others.

These interfaces can be implemented in a variety of ways and for any number of

algorithms.

Figure 3.8: Adaptable proxies, interceptors and functionality objects in action

Proxy

Compression Message Digest

The ORB

The Application

Adapt

A
d
a
p
t
a
b
l
e

Request

Data Bytes Modified Data Bytes

Transform Return

Interceptor

Object Object

Compress Digest

Mobile Proxies 42

Figure 3.8 illustrates one example in which the different elements of the functionality tree

are seen in action. An adaptable proxy carries certain semantics like compression and

message integrity. The proxy will then install an interceptor that exposes the data to be

compressed and digested. This interceptor will in turn call methods in specific objects

that actually perform compression and message digesting.

In the next chapter, the implementation of the parts of the system and its functionality is

discussed in detail.

Mobile Proxies 43

&KDSWHU�)RXU
6\VWHP�,PSOHPHQWDWLRQ

In this chapter, a complete description of the implementation of the MP system is given.

The system design discussed in the previous chapter is revisited from a different angle

with each module and the classes it evolved to.

Provided also is a stub implementation of the Environmental Repository and Decision

object, leaving the implementation of the Environmental object for further research as

this object was not crucial to get things up and running.

Finally, the interaction between the different classes is outlined so that a clear picture will

be drawn as to how the system achieved its goals.

Java 1.1 was chosen as the language of implementation for all the features it provides and

that were described in section 2.3.3. The export restrictions imposed on the Java

Cryptography Extension (JCE) from Sun however meant that an extra package had to be

used to implement the encryption functionality of the system. The JCE package from the

Australian Business Access Pty Ltd was chosen for many reasons not least of being the

clean room implementation it provides of Sun’s JCE. All about the package can be found

in this page [www5].

OrbixWeb v3.1c from Iona Technologies was adopted as a product of CORBA that

combines most if not all of the concepts and features that the MP system was based on.

4.1 Overview of the Implementation

A number of packages were developed as an implementation of most of the entities

involved in the project. These combine together to form the MP v1.0 system. However,

not all of the design features and requirements were satisfied in this version. These

limitations will be referred to as appropriate in the description of the packages.

Mobile Proxies 44

The first of these packages is the MobileProxies package, which encompasses all the

five modules that form the basic structure of the system as described in section 3.3. This

package gives an implementation of the core MP system classes.

The next three packages include the MobileProxies.interceptors package that defines

the interceptor classes, the MobileProxies.interfaces package, which contains the

interfaces defining the functionality objects, and the MobileProxies.functionality, which

has all the functionality objects.

These packages implement the two low levels of the functionality tree (figure 3.7).

The last package is not really part of the MP system but rather is employed by the system.

The MobileProxies.repository package gives a stub implementation of the

Environmental Repository and the Decision object, leaving out the Environmental object.

In the following sections, a description of each package is provided and the role its

classes satisfy in the overall system design as well as the interaction between them.

4.2 The MobileProxies Package

The package consists of ten classes and one interface. Four of the classes are used by the

Client MPS, another four by the Server MPS, and the remaining two by both of them.

The interface defines couple of methods that have to be implemented by any adaptable

proxy.

These classes will be overviewed in the following sections, where each class is fitted into

the system module it belongs to, and so a complete picture of the core MP system

structure is portrayed.

4.2.1 Class MobileProxies.ClientEnvAdapter

This class represents the Client Adapter module. It basically provides a couple of

methods for the client application to invoke in order to start and end the adaptation

process. These are the startAdapting and the endAdapting methods.

In the v1.0 of the MP system this class has a Constructor that reads the Decision object

from a file called Client_Decision.object which will have been generated by the

Mobile Proxies 45

Environmental Repository. The file contains a serialized Decision object with the

decision as what functionality should be used to best adapt the client and the server

processes. This object is then passed to the adaptable proxy that will be downloaded

using the Proxy Loader.

The startAdapting method will create the ORB Adapter module represented by the

MobileProxies.ProxyLoader class passing it the identifier of the IDL interface which can

be obtained by calling the id method of the Helper class generated by the IDL compiler.

The creation of this class and the calling of the startAdapting method have to be done

prior to any reference to the server object entering the client’s address space.

The second method that interfaces to the client application is the endAdapting method.

This method will effectively end the establishing of all the required objects and hence the

adaptation process and will open the door for the client application to start using the

server object (in an adaptive way).

4.2.2 Class MobileProxies.MobileProxyFactory

This class is used to provide a front end to the ORB. It constitutes the ORB Adapter

module that is part of the Client MPS and provides the ORB with means to synchronize

the whole adaptation process by signaling the point in time when a reference to the server

object enters the client address space. At this point, the ORB will effectively request a

proxy object to be created, leaving the decision as to how to do that to the

implementation of this class.

This was made possible by allowing this class to inherit from

IE.Iona.OrbixWeb.Features.ProxyFactory class, which provides a certain method called

New that is called by the ORB whenever a proxy object is needed. It is then all left to the

particular implementation of the method. A description of the

IE.Iona.OrbixWeb.Features.ProxyFactory can be found in [ORG 1998].

Currently, this method uses the Proxy Loader module to download an adaptable proxy

that is practically a subclass of the default proxy provided by the IDL compiler.

Mobile Proxies 46

4.2.3 Class MobileProxies.ProxyLoader

This class implements the Proxy Loader module in the Client MPS. It is mainly used by

the previous two classes, where it provides a method for each. The first method is called

sendURL and is used to by the ClientEnvAdapter to send the Decision object to the server

side. The second is called the downloadProxy and is used by the MobileProxyFactory to

download an adaptable proxy.

The sendURL method uses the ORB. It constructs an org.omg.CORBA.Request object

and populates it with the necessary information, including the URL of the adaptable

proxy represented as a string.

The downloadProxy method uses the Class Loaders module in downloading the

adaptable proxy over a URL connection.

It is important to note that unless the string representing the URL of the adaptable proxy

is set before hand (this is normally achieved by calling this method before the sendURL

method), an exception will be thrown.

4.2.4 Class MobileProxies.ServerEnvAdapter

This class is a subclass of the IE.Iona.OrbixWeb.Features.Filter class [ORG 1998], which

is the parent class of all the Request level interceptors, or otherwise known as Filters in

the OrbixWeb terminology. More about Filters can be found in [OPG 1998].

The class is part of the Server Adapter module. The server does not have to call any

methods on this object, in fact all what the server has to do is to create an instance of this

class.

Being a Filter, this class can intercept all the requests arriving at this server process. It

does that for the purpose of trapping the sendURL method that would have been called

by the ProxyLoader at the client side. As soon as this request arrives, the sendURL

method of this class is called and the string representing the URL of the adaptable proxy

is made available. This informs the server process of the name of the adaptable proxy

used in the client process.

Mobile Proxies 47

4.2.5 Class MobileProxies.ServerIOCallback

This class implements the IE.Iona.OrbixWeb.Features.ioCallback [ORG 1998] interface

that gives it the ability to monitor any connections that are established or closed by

clients.

This ability is provided by two methods, the CloseCallBack and the OpenCallBack that

are defined in the ioCallBack interface.

The current implementation provided by MP v1.0 install a

MobileProxies.DummyTransformer (which will be described next) whenever a client

closes its connection with the server process.

The class is also part of the Server Adapter module.

4.2.6 Class MobileProxies.DummyTransformer

This class is a Message level interceptor that simply does nothing to the incoming or the

outgoing data. In OrbixWeb, Message level interceptors are called Transformers and

they are subclasses of the IE.Iona.OrbixWeb.Features.IT_Transformer class [ORG 1998].

These Transformers are called by the ORB just prior to the transmission of the byte array

representing the marshaled request and just at the arrival of that array at the other side.

This provides for the accessibility that is required to control the data traffic in a way that

achieves adaptability (section (1.2).)

However, there can only be one Transformer installed in a process at any moment in time

limiting the prospect of multithreading. This will limit the first solution to the

concurrency problem as mentioned in section (3.2.5) to the creation of different process

each to deal with a single client as opposed to the spawning of threads.

This problem was left unsolved in MP v1.0, and therefore this class was built to remove

any specialization caused by the previous client and so allowing for different clients to

queue at the server process.

4.2.7 Class MobileProxies.MultiClassLoader

This is an abstract class that inherits from the java.lang.ClassLoader class and so

allowing the definition of a new way for loading classes into the JVM. The class was

defined as abstract to give the sub classes a free implementation of how the actual class

Mobile Proxies 48

bytes will be provided and from which resources. Apart from overriding the loadClass

method of the java.lang.ClassLoader class, it provides one abstract method that is

implemented by its subclasses, that is the loadClassBytes method.

When attempting to load a class, a subclass will look first in a locally stored pool of

classes using a Hashtable. This technique was employed to speed up the loading process.

If the required class was not found, or in other words, if it was not loaded previously, it

looks in the list of system classes in case it is a part of the standard JDK. Finally, if

everything fails, it will use the loadClassBytes method.

The class also provides a couple of other methods that are used in putting the class names

into an understandable format for this class.

Finally, this class is part of the Class Loaders module. Both the client and the Server

MPS require it.

4.2.8 Class MobileProxies.FileClassLoader

This is a subclass of the MultiClassLoader that allows classes to be loaded into the JVM

directly from the local file system. It is needed mainly by the Server Adapter, and

particularly, by the ServerEnvAdapter class since the URL of the adaptable proxy

employed remains anonymous until the Server MPS receives it from the Client MPS.

It defines the abstract method loadClassBytes inherited from its superclass such that the

bytes are read from a java.io.FileInputStream object. This gives the class a local

dimension.

The class falls naturally into the Class Loaders module but it’s only part of the Server

MPS.

4.2.9 Class MobileProxies.URLClassLoader

This is the opposite of the previous class allowing class bytes to be downloaded across

the network. It provides the mechanism with which all the classes needed by the Client

MPS can be downloaded. It is also an instance of the MultiClassLoader with a URL-

connection-based implementation of the loadClassBytes method.

The URLClassLoader has to consider one important issue, i.e. security. This is necessary

due to the code mobility and the threats associated with it. Therefore, digital signatures

Mobile Proxies 49

were used in authenticating all the downloaded classes having got the public key of the

server process in advance.

The class is the last entity in the Class Loaders module. However, it is only part of the

Client MPS.

The nine classes just described do not provide any functionality that will achieve

adaptability. In fact they only provide the basic tools used in installing the different

functionality choices employed in modifying the data bytes.

The size of the nine classes does not exceed 19 KB of executable class files that are

distributed between the client and the server processes.

4.2.10 Class MobileProxies.PrivateKeys

The PrivateKeys class contains the private and secret keys necessary for signing and

decrypting any data sent to other process.

It is part of the Client and the Server MPS and it is used directly by the ClientEnvAdapter

and the ServerEnvAdapter.

4.2.11 Interface MobileProxies.Adaptable

All the adaptable proxies that are part of the application package implement this

interface. It defines couple of methods called adaptClient and adaptServer that will be

invoked by the Client MPS and the Serve MPS respectively.

The methods when implemented will carry the adaptability semantics at an abstract level

allowing for the functionality objects to accomplish the low-level details.

4.3 The Functionality Tree Implementation

The functionality tree designed and described in section (3.4.1) was implemented at

different levels in a way that allowed for new classes to be added in the future.

The top two levels, by definition, are part of the application package that uses the MP

system. Therefore, these will not be considered as part of the MP system, although they

Mobile Proxies 50

still remain part of the functionality tree. The description of these two top levels will

follow in the next chapter, where an example application was used to evaluate the system.

Meanwhile, emphasis will be on the two low levels, i.e. the Interceptors and the

Functionality levels.

4.3.1 The Interceptors Level

The Interceptors level was implemented in the MobileProxies.interceptors package.

The interceptors are subclasses of the IE.Iona.OrbixWeb.Features.IT_Transformer

class [ORG 1998]. In other words, they are the Transformers of OrbixWeb described in

[OPG 1998], but each with a specialized transform method that overrides the superclass

method.

The current version of the MP system provides five Transformers in this package. These

are:

1. The MobileCompressionTransformer, which compresses and decompresses the

data bytes.

2. The MobileSignatureTransformer, which signs and verifies the data bytes.

3. The MobileSymmEncryptionTransformer, which encrypts and decrypts the data

bytes symmetrically.

4. The MobileAsymmEncryptionTransformer, which encrypts and decrypts the data

bytes asymmetrically.

5. The MobileMessageDigestTransformer, which adds and removes the message

digest of the data bytes.

These Transformers will be installed as required by the adaptable proxies and they will

apply the functionality they represents to the data traffic flowing to and from the process.

Because the number of these Transformers that can be installed in a process is limited to

only one, the actual modification of the data bytes will not take place here in this level.

Rather these Transformers will own and use another set of objects, namely that described

in the next level, and known as the functionality objects.

Mobile Proxies 51

4.3.2 The Functionality Level

This level was implemented as a set of interfaces, each of which defined certain

functionality. The choice of interfaces was made to facilitate populating this level with

as many objects implementing the interfaces as possible. It also leaves these

implementations open.

These interfaces are part of the MobileProxies.interfaces package. The current version

of the MP system supports five interfaces. These are:

1. The I_CompressionTransformer, which defines the compression functionality.

2. The I_SignatureTransformer, which defines the digital signatures functionality.

3. The I_SymmEncryptionTransformer, which defines the symmetric encryption

functionality.

4. The I_AsymmEncryptionTransformer, which defines the asymmetric encryption

functionality.

5. The I_MessageDigestTransformer, which defines the message digests functionality.

Each of these functionality interfaces defines certain methods that have to be

implemented by any objects willing to provide that functionality.

For this purpose, five implementation classes were developed. These were:

1. The MobileDeInflater class, which implements the I_CompressionTransformer and

uses the java.util.zip.Deflater and the java.util.zip.Inflater classes.

2. The MobileDSA class, which implements the I_SignatureTransformer and uses the

Secure Hashing Algorithm (SHA) and the Digital Signature Algorithm (DSA).

3. The MobileDES class, which implements the I_SymmEncryptionTransformer and

uses the Data Encryption Standard (DES) with Electronic Code Book (ECB) mode of

cipher and the PKCS#5 padding scheme.

4. The MobileRSA class, which implements the I_AsymmEncryptionTransformer and

Rivest-Shamir-Adleman (RSA) algorithm with ECB mode of cipher and PKCS#5

padding.

5. The MobileCRC32 class, which implements the I_MessageDigestTransformer and

uses the java.util.zip.CRC32 class that computes the CRC-32 checksum.

These classes are part of the MobileProxies.functionality package.

Mobile Proxies 52

4.4 The Environmental Repository and The Decision Objects

Five classes were developed as stub implementation of these two entities. The

Environmental object was left out as this is only useful in the first step explained in

section 3.2.1 as part of the client-repository negotiation process, which is not considered

to be part of the mechanism the MP system provides.

The classes were defined in the MobileProxies.repository package.

4.4.1 The Decision Object

This object is represented by three classes. These are:

1. The SignedURL class, which represents a signed URL object.

2. The OtherIdentity class, which holds necessary information about the other process

that this particular process is interacting with. In MP v1.0, this class holds the public

keys of the other party that are necessary for encrypting and verifying any data

received from there.

3. The DecisionObject class, which contains an array of SignedURL objects

representing the code that will be downloaded from the server process to the Client

MPS. It also contains an OtherIdentity object representing the server object.

It is worth noting that this same class was used also by the ServerEnvAdapter to

obtain the necessary information about the client reflected in the OtherIdentity object.

The SignedURL array however was taken as null.

4.4.2 The Environmental Repository

This repository is represented by the remaining two class:

4. The KeyGenerator class, which generates any necessary keys, embedded in the

DecisionObject and that represents a process.

5. The DecisionObjectGenerator class, which is the main decision-generating entity.

It generates the DecisionObject and serializes it to a file to be read by the

ClientEnvAdapter.

Mobile Proxies 53

4.5 The Runtime Interaction

The Client application starts running the MP system by creating an instance of the

MobileProxies.ClientEnvAdapter class and calling the startAdapting method. This

creation of the ClientEnvAdapter causes it also to read the

MobileProxies.repository.DecisionObject object from a file called the

Client_Decision.object.

Figure 4.1: Runtime Interaction 1

This is just a stub implementation of the actual negotiation process that will occur

between the ClientEnvAdapter and the Environmental Repository.

The ClientEnvAdapter will also read the MobileProxies.PrivateKeys object to

determine the private and secret keys belonging to the client application. It will then

create a MobileProxies.MobileProxyFactory object as soon as the startAdapting

method is invoked, supplying it with the PrivateKeys and the DecisionObject objects.

This point in time is shown in figure 4.1 below. The MP system now is ready to adapt the

client application as soon as a proxy to the server object is required. This requirement

may be initiated by invoking the bind method of the Helper class belonging to the IDL

interface of the server object. Alternatively, a reference to that object may enter the

The Client Application : MobileProxyFactory : ClientEnvAdapter

1: new

2: startAdapting

3: new

Mobile Proxies 54

address space of the client application through whatever means (like for example, the

return result of calling a method on another interface).

The next step follows with the client application binding to the server object. This causes

the ORB to call a special method in the MobileProxyFactory object which will requires

the creation of a proxy object (called stubs in the CORBA terminology.) The

MobileProxyFactory object will act by creating a MobileProxies.ProxyLoader object

and invoking a special method that will download an adaptable proxy from the server site

using a MobileProxies.URLClassLoader object.

As soon as the proxy is downloaded and created, a reference will be available and both

the ClientEnvAdapter object and the ORB will be informed of it. Figure 4.2 depicts the

last step.

Figure 4.2: Runtime Interaction 2

 : Client
EnvAdapter

 : Mobile
ProxyFactory

 : ProxyLoader : URLClass
Loader

The ORBThe Client
Application

The IDL Helper
class

2: New

3: downloadProxy

6: setProxyLoader

1: bind

4: loadClass

5: loadClassByte

Mobile Proxies 55

After the proxy object has been created in the client process, the client application will

call the last API, which will completely establish the adaptability requirements between

the client and the server processes. Invoking the endAdapting method of the

ClientEnvAdapter object will initiate a number of invocations as follows: The

ClientEnvAdapter will invoke the sendURL method of the ProxyLoader object, which

will in turn use the ORB in sending a request to the server process with the same method

name. This will be intercepted at the Request level by the ServerEnvAdapter object,

which is created as soon as the ORB starts the server process. The request will also carry

a string representing the URL of the adaptable proxy that has been decided for the client.

This achieves the purpose of section (3.2.4), where the importance of distributing the

knowledge of the outcome of the decision-making process in the Environmental

Repository was emphasized.

The above sequence of invocations is illustrated in figure 4.3.

The ClientEnvAdapter and the ServerEnvAdapter then will invoke the corresponding

adapt methods in the Adaptable proxy, therefore initiating the creation and installation

of all the necessary interceptors and functionality objects.

The above description highlighted the major steps that the MP system follows up to the

point where the adaptable proxy is used.

Mobile Proxies 56

Figure 4.3: Runtime Interaction 3

The next step will be completely determined by that specific proxy and how it converts

the abstract adaptability semantics into a reality implementation.

The next set of invocations is viewed in figure 4.4 with an example, where the

compression functionality is used in realizing adaptability.

The Client
Application

 : Client
EnvAdapter

 : Proxy
Loader

 : Server
EnvAdapter

 : FileClass
Loader

 : Adaptable

1: endAdapting

2: sendURL

3: sendURL

4: loadClass

5: loadClassBytes

6: adaptServer

7: adaptClient

Mobile Proxies 57

Figure 4.4: Runtime Interaction 4

Assuming that the adaptable proxy carries the compression functionality, the adapt

methods will cause it to create and install one of the classes belonging to the

MobileProxies.interceptor package that compresses and decompresses the data bytes.

Whenever data enters and leaves the process, the ORB will call the transform method of

that Transformer.

The Transformer then will use another object defined by a MobileProxies.interfaces

interface and implemented in any package, including the current

MobileProxies.functionality package, to apply the compression functionality.

At this point, all the data flowing between the two processes will be compressed when

sent from one process and decompressed at the other. This means that the interaction

between the two processes has been specialized to apply certain techniques that will, in

the case of compression, increase the performance of the application by minimizing the

amount of traffic exchanged over the network.

In the next chapter, an application will be used to evaluate the MP system and the

different functionality extensions it currently provides.

 : Adaptable : MobileCompressionTransformer MobileDeInflater : I_CompressionTransformeThe ORB

1: new

4: transform

3: transform

2: new

Mobile Proxies 58

&KDSWHU�)LYH
6\VWHP�(YDOXDWLRQ

The evaluation of the MP system was carried out to determine the level at which the

system has reached in achieving its intended goals.

As we mentioned in section 1.2, the system was meant to tackle the adaptability issue

from the performance and security points of view.

The performance side of the evaluation is meant to show how feasible the system is

regarding the overhead incurred in sending the data over the network. Whereas the

security goal aims at achieving the three goals of security: Confidentiality, integrity, and

authentication.

An application has to be chosen so as the evaluation process would rightly assess the

system. Such an application has to test the different functionality extensions that are

provided by the system taking into consideration the goals that are sought from every

extension.

In the following sections, a brief description of the application package will be provided

along with the different proxies it includes. Samples of the results obtained while using

different proxies will then be assessed and conclusions drawn as well as determining how

successful the system was in a particular functionality. The cascading of different

functionality objects was left out, as the number of combinations that could be

constructed from these objects would be big enough to make the evaluation process a

time-consuming one.

5.1 The Application

5.1.1 Overview

One of the factors that control the adaptability between the different applications is the

nature of the application itself and the data it is manipulating. Therefore, it becomes

Mobile Proxies 59

difficult to decide on a specific application and the way it is distributed between the client

and the server environments.

The performance goals are quantity measurements, which dictate that performance

evaluation should be carried over a wide range of data sizes ranging from zero-byte data

to the excess of Megabytes to determine the gain profile. Yet, experience revealed that

the nature of the data is also an issue when it comes to performance. This will be further

discussed when performance measurements are given in the next section.

The security demands are also determined by the nature of the data and its sensitivity, but

also by the nature of the different media that data traverses. This however is a matter of

deciding how important that data is and the appropriate functionality that should be

applied to best protect it against attacks from the network that separates the client and the

server. This requirement does not impose any performance goals, although it is always

nice to have a high performance system. So the only requirements remaining are those

determined by the level of security needed.

From the above perspectives as to the different performance and security demands, a file

transfer application was chosen. This application is a simple example yet it has the

ability to deal with files of different sizes and nature.

The design of the application allows for the client to read a file from the local file system,

send it to the server on another host, receive an acknowledgement from that server, and

meanwhile, perform all the necessary measurements. The server will just write the file to

the its local file system. This is shown in figure 5.1.

5.1.2 The Application Package

The DataTransfer package was developed as an implementation of the above outlined

application design. The package contained eight classes, five of which were proxies that

implemented the MobileProxies.Adaptable interface. Also part of the package was the

IDL interface that defines the server object.

Mobile Proxies 60

Briefly, the three application classes are:

• The DataTransfer.DataClient class, which is the CORBA client application.

• The DataTransfer.DataServer class, which is the CORBA server

application.

• The DataTransfer.DataImpl class, which is the implementation class of the

IDL interface.

The IDL interface was defined by the DataTransfer.FileTransfer interface. Also the

inheritance method of interface implementation was used with the DataImpl class

extending the _DataTransferImplBase compiler-generated class. The delegation

method could equally be used.

Figure 5.1: The file-sending application.

On the other hand, the five adaptable proxies are:

• The DataTransfer.MobileCompressionProxy class, which provides compression

semantics.

• The DataTransfer.MobileSignatureProxy class, which provides digital signatures

semantics.

• The DataTransfer.MobileSymmEncryptionProxy class, which provides symmetric

encryption semantics.

• The DataTransfer.MobileAsymmEncryptionProxy class, which provides

asymmetric encryption semantics.

1. Read

3. Write

4. Acknowledge2. Send

Measure

File

File

The Server ObjectThe Client

The ORB

The Client MPS The Server MPS

Mobile Proxies 61

• The DataTransfer.MobileMessageDigestProxy class, which provides message

digesting semantics.

All these proxies are subclasses of the default proxy generated by the IDL compiler, i.e.

the DataTransfer.FileTransferStub.

The number of these proxies however should not be considered as a limitation to the total

number of proxies that can be developed. Any combination of functionality extensions

can be formed as we mentioned earlier. Moreover, with the current version of the MP

system, a suitable compiler can be built to generate these proxies automatically from the

default one. Although this will make the adaptability process less flexible as the choices

of functionality will be limited by the output of that compiler.

The proxies are stored in the file system of the server process and are downloaded, along

with the Transformers and the functionality objects, at runtime by the client process using

some protocol, like HTTP or FTP, depending on the nature of the server.

In the project, an HTTP server different from the application server was used to provide

the mobile code for the client process. The HTTP server was however chosen to be on

the same host as the application server.

The system requires from .77 to1.55 Milliseconds to be completely set up with all the

Transforms installed and ready for the client to make its invocations. This numbers were

calculated by measuring the times required for the startAdapting, the endAdapting, as

well as the call to the Constructor of the ClientEnvAdapter class.

For the purpose of measurements, the java.lang.System.currentTimeMillis method, which

returns the system time in Milliseconds.

The application used three types of files. The first type was a text file with a repetitive

nature that was generated “artificially” using a program. These files contained numbers

that counted from 0 to 255 and then repeated the format up to the specified size.

The second type of files was a PDF file, which was more natural than the first type.

Different files were chopped from one large file according to the required size.

Mobile Proxies 62

The last type was an image file, with a combination of JPG, GIF, and bitmap-formatted

files.

30 files of each type were used with sizes ranging from 0 to 2M bytes. These files helped

satisfying the evaluation requirements as they provided a wide range of data sizes as well

as a variety of natures.

5.2 Results of the Compression Functionality

5.2.1 Overview

The compression functionality was used to improve the performance level of the

application by minimizing the delay while transferring data from one process to another

over the network. This delay depends on two components: The processing time, and the

transmission time.

The processing time includes any time spent prior to the transmission of the data over the

wire, whereas the transmission time is the time spent by the data while travelling over the

network. The latter though depends on two factors: The size of the data to be transmitted,

and the network speed.

The size is an obvious factor affecting the transmission time linearly. The network speed

is a less obvious one, depending on a number of other factors, like the physical

bandwidth and the amount of traffic already flowing over the network.

To reduce the transmission time, either the size of data has to be reduced, or the network

has to be faster up. Unlike the network speed, which cannot be controlled directly from

the application, the data size can be controlled and reduced to an optimum level. To do

so, compression techniques between the client and server processes have to be employed.

Ideally, If these compression techniques did not take any time, the minimum transmission

time would be achieved at the smallest size for the compressed data. However, in reality,

compression does take time. This time will add up to the processing time therefore

increasing the overall delay and possibly affecting the total performance gain negatively.

Mobile Proxies 63

Figure 5.2 illustrates the different times spent during the transfer process, including the

processing time at both ends, of which the compression time is one factor, and the

transmission time suffered over the wire.

At this point a trade off begins to form as to whether use the compression or just send the

data directly. This will depend on all the above-mentioned factors as well as on the

nature of the data. This nature will determine how well the data is compressed and hence

whether or not the compression process was justifiable.

Figure 5.2: Different time delays suffered by the data.

All these factors that are part of the overall delay formula can be described by the

Environmental objects. These objects (and hence the factors) will then be compared for

different client-server applications and environments and a decision will be reached as

whether or not compression techniques should be used.

To evaluate the feasibility of the MP system from the compression point of view, the

different files mentioned in the previous section were transmitted from the client running

on a Windows NT platform, to the server object running on a Sun Solaris workstation.

These however were part of a department-wide local area network, which is considered to

be a relatively fast medium. In other words, the transmission time will be small

compared to other networks.

The following section will present some of the results that were obtained in chart form.

The raw numbers can be found in the Appendix titled Performance Results.

Client
Process

Server
Process

Overall Delay

Transmission TimeProcessing
Time

Processing
Time

Mobile Proxies 64

5.2.2 The Results

The first set of measurements was carried out for the PDF-type files. The following chart

in figure 5.3 shows a comparison of the time taken by the sendData method of the

FileTransfer interface when invoked by the client, with and without using the

compression functionality of the MP system. The chart shows a gain at the point where

the size of the file reaches 187.5 KB forward. The gain then is not that high due to the

nature of the files which had a compression ratio ranging from 23 to 65 %.

Figure 5.3: The FileTransfer.sendData time with and without the MP system for the

PDF files.

The next chart in figure 5.4 shows the profile of the whole DataTransfer.DataClient

application time and for the same set of files. It is clear that due to the MP system setup

overhead, the gain is occurring at a later point of approximately 1M byte file size.

In addition to these two sets of measurements, a theoretical calculation was made to

compare the processing time spent in the compressing/decompressing part, and the

transmission time spent over the network. These two elements are compared in figure

5.5. The dark-colour component being the transmission time.

The FileTransfer.sendData method time v. File size

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

The file size (KB)

The sendData method time using the compression functionality of the MP System

The sendData method time without the MP System

Linear (The sendData method time without the MP System)

Linear (The sendData method time using the compression functionality of the MP System)

Point of
intersection
at 187.5 KB

Mobile Proxies 65

Figure 5.4: The DataTransfer.DataClient application time with and without the MP

system for the PDF files.

Figure 5.5: The compression time versus the transmission time for the

FileTransfer.sendData method using the MP system for the PDF files.

The DataTransfer.DataClient Process time v. File size

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500

The file size (KB)

The DataTransfer.DataClient process time using the MP System (with compression functionality)

The DataTransfer.DataClient process time without the MP System
Linear (The DataTransfer.DataClient process time using the MP System (with compression functionality))

Linear (The DataTransfer.DataClient process time without the MP System)

Point of
intersection
at 1.021 MB

Compression v. Transmission Times for the MP system

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

File Size (KB)

Compression/Decompression Time Transmission Time

Mobile Proxies 66

The point to be drawn here is that for slower networks, the transmission time will

increase while the compression time will remain the same. So if the data were sent

without any compression, the delay would be higher since the time consumed is only

composed of the transmission component. In other words, the effect of the slow network

will be more on times that are composed of one component (the transmission time) than

those composed of two components (the transmission and processing times).

The following table predicts the breakeven point at which the gain occurs for a number of

networks, whereas figure 5.6 illustrates the results on a chart. It is worth noting that the

measurements were taken on a 10 Mbps network.

Network Speeds v. Breakeven Point for the PDF files using compression

Network Mbps Breakeven Point (KB)

Slow modem 0.0024 0
Basic fax/modem 0.0096 0
Fast modem 0.0144 0
Nokia’ HSCSD network 0.0576 0
ISDN 0.128 0
Cable modem 0.5 0
T1 1.544 0
Wireless Bridges 2 0

3 2.5
10Base2 4 15

6 47
7.5 82

10BaseT, and Ethernet 10 187.5
11 388

11.5 393
Telesat satellite 12 398

12.5 403
13 not feasibile

T3 45 not feasibile
SONET 52 not feasibile
Fast Ethernet, 100BaseT, 100BaseT4, 100BaseTX, FDDI 100 not feasibile
ATM, STM-1 155 not feasibile
OC-12 622 not feasibile
Gigabit Ethernet 1000 not feasibile
OC-48 2400 not feasibile
OC-192 9600 not feasibile

Mobile Proxies 67

Figure 5.6: The Breakeven point v. Network Speed

The second type of files used was the repetitive-number file. These, owing to their

nature, had a higher compression ratio than the previous type with most of the ratios

above 90 %. This meant that the transmission time would be more constant because the

actual size transmitted is very close across the range of files. Therefore the small files

will get the same benefit as the large files. This is in contrast to the previous case, where

the transmission time was irregular across the size range, with small files transmitted

quicker than the large ones.

Figures 5.7 to 5.9 illustrate the same charts but for the repetitive-number files.

Breakeven Point v. Network Speed for the PDF files and using compression

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14

Network Speed (Mbps)

Breakeven Point 2 per. Mov. Avg. (Breakeven Point)

After this
point the MP

system
becomes

unfeasible

Mobile Proxies 68

Figure 5.7: The FileTransfer.sendData time with and without the MP system for the

repetitive-number files.

Figure 5.8: The DataTransfer.DataClient application time with and without the MP

system for the repetitive-number files.

FileTransfer.sendData method time v. File size

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Size (KB)

Measureme nts taken for the MP System

Measurements taken wi thout the MP System

Linear (Measurements taken for the MP System)

Linear (Me asurements taken without the MP System)

At file
size =

92.7KB

The DataTransfer.DataClient Process Time v. File size

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Size (KB)

Measurements taken for the MP System

Measurements taken without the MP System

Linear (Measurements taken for the MP System)

Linear (Measurements taken without the MP System)

Mobile Proxies 69

Figure 5.9: The compression time versus the transmission time for the

FileTransfer.sendData method using the MP system for the repetitive-number files.

The nature of the image files did not allow them to be compress more than 5 %, which

meant that the compression functionality is not suitable for that type of files. Hence

adaptability would be achieved by not applying the compression functionality.

5.3 Results of the Security Functionality

The security aspect of the system was implemented to cater for application that are

separated by untrusted networks as well as protecting any host that is downloading code

from hostile actions performed by that code.

All the mobile code downloaded from the server to the client, including the adaptable

proxies, the Transformers, and the functionality objects were signed and verified at the

Compression Time v. Transmission Time

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

File Size (KB)

The Compression/Decompression time The Transmission Time

Mobile Proxies 70

Client MPS before any instances of them were created. These signatures were applied at

all times even in the case compression was used.

However, the adaptability goal regarding security was achieved by applying, in addition

to digital signatures, encryption (symmetric and asymmetric) and message digests to the

file sent from client to the server object.

The digital signatures made sure that the source of the data arriving is authenticated as

being the client. Such an authentication would protect against masquerading.

The encryption would be necessary if the data sent is sensitive enough so that no

eavesdropping is allowed and the confidentiality of data is preserved.

Finally, message digests are a way of insuring that the data have not been tampered with

during the time it’s travelling over the network. Thus the integrity of the data is insured.

The performance of these security extensions was measured, except for the message

digests, although it is not a goal. However this was done to get some feeling of how

expensive these functions are in terms of processing time.

The most expensive one was the asymmetric encryption to the degree that files larger

than 450 KB caused the JVM to run out of memory. Less expensive was the symmetric

encryption then the digital signatures. The table below gives an idea about the cost of

these functions for a sample PDF file of size 500 KB. A complete table can be found in

Appendix B.

Security Functionality The FileTransfer.sendData

method time (Millisec.)

The DataTransfer.DataClient

process time (Millisec.)

Digital Signatures 10.091 16.53033

Symmetric Encryption 10.809 17.42833

Asymmetric Encryption 55.001 62.586

Mobile Proxies 71

5.4 Concluding Points

All the measurements were recorded at times when the network is most stable and the

amount of traffic is at a minimum. In addition, a number of measurements were taken for

each file, with the average being adopted as a representative of that measurement.

It should also be noted that the times were recorded for a dead server process, in which

case there is extra time spent by the ORB in starting the process. This choice was

preferred to calling the same process each time before it exits so that the worst possible

case would be always considered.

It can be claimed that if the appropriate knowledge about the environment, including the

state of the network, and the application was made available to the MP system that it can

achieve performance gains in the case they are needed.

The system also satisfies security demands depending on the level of security required

and the sensitivity of the data sent as well as the nature of the network on which that data

travelling. Code mobility however is always made secure.

Mobile Proxies 72

&KDSWHU�6L[
&RQFOXVLRQ

The previous chapters demonstrated the different aspects of the adaptability problem in

client server environments and a proposal was suggested that provided a solution to this

problem in the performance and security contexts.

A survey was then carried out that included a number of technologies related to the goal

of the project but that fell short somewhere of achieving that goal.

Therefore a design was laid down for a system that would offer a mechanism for adding

extra functionality extensions to the runtime interaction between clients and servers so

that the security and communication performance requirements of that interaction would

be met.

The design was then implemented and evaluated for a number of functions including,

compression, digital signatures, and encryption (symmetric and asymmetric).

In this chapter, a general review of the whole work and the lessons learnt will be

presented as well as a perspective to where future work may be directed.

6.1 Review of The Adaptability Problem

The fact that modern distributed systems are composed of a wide range of products and

network types meant that these systems should also offer mechanisms to allow for the

different products to interact in a way that will satisfy certain application- and

environment-level needs.

These needs are often expressed in terms of performance, security, fault tolerance,

processing power and other issues that can shape the way applications interact and the

outcome of that interaction.

Mobile Proxies 73

Adaptability is therefore the term that describes how well applications are matched

according to some level of acceptance. This level could be determined by certain

standards, like the Quality of Service (QoS) standard, or by some user-defined criteria.

Among the different aspects of adaptability, security and communication performance

where chosen as the two goals towards which this project was directed.

6.2 Review of the MP System

The MP system was designed as a mechanism that provides secure and performance-

enhanced interaction among applications integrated with the Common Object Request

Broker Architecture (CORBA) technology.

The system relied on two main concepts: The Proxy principle [Shapiro 1986], and the

concept of Interceptors [CORBA/IIOP v2.3 Spec 1999], both of which are used in the

CORBA technology.

These two concepts when combined provide a means by which the low level data bytes

exchanged by clients and servers may be exposed to the higher levels of applications and

hence allowing for some “intelligent” control to be applied. The control means that

different requirements of applications from the performance and security points of view

are met.

The system consists mainly of five modules distributed between the client and the server.

These modules provide the necessary mechanism for a proxy that carries some

adaptability semantics to be downloaded from the server’s site and installed in the

client’s process.

This proxy will then install an interceptor that exposes the data exchanged between the

client and the server, and at the same time, feeding it to one or more functionality objects

that are capable of applying certain security- and/or performance-enhancement

techniques to the data.

Mobile Proxies 74

The adaptable proxy is chosen based on a decision taken by a third party, which could be

some form of an environmental repository which would hold different environment and

application level information for clients and servers.

The security implications rising from the code mobility were taken care of by using

digital signatures.

The system was implemented as MP v1.0 and represented by a number of packages, of

which the MobileProxies package holds the core system classes.

Java was the language of implementation and OrbixWeb from Iona Technologies was

chosen as the integration framework for the system.

6.3 Review of the Evaluation Results

To allow for the MP system to be evaluated and assessed, an application was developed

that allowed a CORBA client to send a file as a byte array across the ORB to an IDL-

defined server object.

This application was used then to measure the performance of the different functionality

extensions provided under the two major goals of the project, i.e. communication

performance and security.

The communication performance results revealed a gain that was achieved at a certain

file size, although this gain was very much dependent, among other things, on the nature

of files transmitted which determined their ability to be compressed.

A comparison was then carried out to determine the gaining point, or otherwise known as

the breakeven point, for a number of data transmission speeds varying from the slow

2400 bps modem, to the 9600 Mbps OC-192 network (figure 5.6 and the table preceding

it.)

This comparison revealed the fact that the MP system offered breakpoints as low as 0

byte files for the slow networks, but then it became unfeasible for the highly fast ones.

Mobile Proxies 75

These results emphasize the need for clients and servers to negotiate their environment

requirements and the nature of the data that is being exchanged which is application-

dependent.

The security measurements were solely meant to give an idea of how expensive (in terms

of time delay) these functions are.

The results were according to the expected profile that states that digital signature are the

least expensive whereas the asymmetrical encryption costs were the highest.

6.4 Future Work

The MP system is one step towards the achievement of adaptability among client-server

applications by improving the communication performance and enhancing security

measures.

However, further research can be carried out both horizontally and vertically.

Horizontally would be to look at other aspects of adaptability like fault tolerance, where a

server may or may not use a replicated process depending on the client’s fault tolerance

needs.

On the other hand, extra vertical research may be carried out, by looking at other entities

interacting with the MP system. Of these is the Environmental Repository and the

Environmental Objects (as suggested in section 3.1.3) both of which play a major role in

the decision-making process that will eventually determine the adaptability semantics

used in a particular interaction between the client and the server.

Further research would also include the cascading of different functionality-manipulating

objects allowing for a variety of extensions to be available and hence offer extra

adaptability semantics.

Mobile Proxies 76

$SSHQGL[
3HUIRUPDQFH�5HVXOWV

A.1 Compression Performance Results

The following tables show the performance results that were obtained for the

compression functionality of the MP v1.0 system.

A.1.1 The PDF Files

The Mobile Proxies System Measurements for the Compression Functionality
(Using java.util.zip.Deflater.BEST_SPEED and java.util.zip.Deflater.DEFAULT_STRATEGY variables)

FileTransfer.sendData method time The DataTransfer.DataClient
File (.pdf) Normal Size (KB) Request buffer (Bytes) Compressed buffer (Bytes) Compression ratio % Tx1 Tx2 Tx3 Txav T1 T2 T3

1 0 116 89 23.28 0.912 0.902 0.932 0.915333 5.369 5.519 5.49
2 1 1140 769 32.54 0.912 0.972 0.912 0.932 5.619 5.529 5.58
3 5 5236 2603 50.29 0.992 0.961 0.982 0.978333 5.58 5.619 5.519
4 10 10356 5187 49.91 1.012 0.982 1.002 0.998667 5.76 5.449 5.98
5 25 25716 10521 59.09 1.142 1.032 1.082 1.085333 5.78 5.799 5.533
6 50 51316 19116 62.75 1.082 1.222 1.172 1.158667 5.539 5.779 5.73
7 75 76916 27506 64.24 1.213 1.202 1.172 1.195667 5.69 5.73 5.629
8 100 102516 36132 64.75 1.232 1.242 1.152 1.208667 5.789 5.719 5.64
9 150 153716 62946 59.05 1.292 1.202 1.262 1.252 5.86 5.679 5.94

10 200 204916 105180 48.67 1.312 1.362 1.312 1.328667 5.909 6.02 5.719
11 250 256116 153462 40.08 1.512 1.412 1.413 1.445667 6 6.13 5.956
12 300 307316 184980 39.81 1.502 1.463 1.583 1.516 6.221 6.24 6.16
13 350 358516 214450 40.18 1.603 1.563 1.613 1.593 6.22 6.12 6.271
14 400 409716 244971 40.21 1.873 1.652 1.853 1.792667 6.171 6.461 6.32
15 450 460916 292243 36.60 1.863 1.933 1.843 1.879667 6.481 6.47 6.681
16 500 512116 343458 32.93 1.883 1.893 1.853 1.876333 6.451 6.741 6.32
17 550 563316 386485 31.39 1.964 2.014 1.973 1.983667 6.531 6.601 6.791
18 600 614516 415477 32.39 2.154 1.993 2.123 2.09 6.681 6.631 6.701
19 650 665716 450626 32.31 2.204 2.074 2.083 2.120333 6.881 6.611 6.742
20 700 716916 485563 32.27 2.224 2.163 2.153 2.18 7.001 6.772 6.701
21 750 768116 520428 32.25 2.223 2.274 2.294 2.263667 6.781 6.952 6.852
22 800 819316 548024 33.11 2.384 2.394 2.323 2.367 7.102 7.101 6.861
23 850 870516 578667 33.53 2.515 2.404 2.444 2.454333 7.052 7.001 7.172
24 900 921716 609023 33.93 2.605 2.605 2.514 2.574667 7.061 7.172 7.162
25 950 972917 636052 34.62 2.764 2.744 2.594 2.700667 7.242 7.201 7.121
26 1000 1024116 664396 35.12 2.654 2.664 3.045 2.787667 7.191 7.242 7.272
27 1250 1280116 817492 36.14 3.105 3.065 3.005 3.058333 7.633 7.722 7.892
28 1500 1536116 978322 36.31 3.606 3.655 3.635 3.632 8.163 8.063 8.113
29 1750 1792116 1158857 35.34 4.216 4.287 4.256 4.253 8.574 8.574 8.594
30 2000 2048116 1318920 35.60 4.877 4.868 4.798 4.847667 9.095 9.164 9.004

Notes:

1- All times in msec unless otherwise mentioned

2- Measurements taken at 2.25 AM, 10 Aug.1999

Mobile Proxies 77

M easurem ents taken w ithou t the M obile P rox ies S ys tem

T he F ileT ransfe r.sendD a ta m e thod tim e T he D a taTransfe r.D a taC lien t p rocess tim e
F ile (.pdf) l S ize (K B) T x1 Tx2 Tx3 T xav T1 T 2 T 3 Tav

1 0 0.781 0.791 0.791 0.787667 5 .117 5 .117 5.037 5.090333
2 1 0.802 0.801 0.802 0.801667 5 .078 5 .208 5.007 5.097667
3 5 0.831 0.861 0.821 0.837667 5 .087 5 .267 5.207 5.187
4 10 0.821 0.871 0.822 0 .838 5 .267 5 .238 5.207 5.237333
5 25 0.832 0.851 0.871 0.851333 5 .558 5 .127 5.177 5.287333
6 50 0.942 0.901 0.921 0.921333 5 .268 5 .188 5.218 5.224667
7 75 0.982 0.971 0.991 0.981333 5 .308 5 .287 5.348 5.314333
8 100 1.051 1.542 1.623 1.405333 5 .348 5 .288 5.338 5.324667
9 150 1.201 1.763 1.312 1.425333 5 .468 5 .418 5.477 5.454333

10 200 1.513 1.251 1.613 1 .459 5 .989 5 .467 5.538 5.664667
11 250 1.502 1.462 1.582 1.515333 5 .969 5 .929 5.528 5.808667
12 300 1.532 1.803 1.583 1.639333 5 .789 6 .059 5.889 5.912333
13 350 1.763 1.813 1.693 1.756333 6 .188 5 .999 5.798 5.995
14 400 1.793 1.853 1.753 1.799667 6 .139 5 .929 6.159 6.075667
15 450 1.953 1.773 1.792 1.839333 6 .629 6 .099 5.838 6.188667
16 500 2.113 1.942 1.893 1.982667 6 .449 6 .269 6.118 6.278667
17 550 1.973 2.073 2.012 2.019333 6.57 6 .169 6 .5 6.413
18 600 2.043 2.103 2.093 2.079667 6 .599 6 .369 6.369 6.445667
19 650 2.243 2.423 2.254 2.306667 6 .529 6 .789 6 .66 6.659333
20 700 2.314 2.274 2.433 2.340333 6.63 6.82 6 .51 6.653333
21 750 2.554 2.363 2.323 2.413333 6.75 6 .649 6.569 6.656
22 800 2.474 2.423 2.394 2.430333 6.87 6 .7 6 .94 6.836667
23 850 2.574 2.653 2.593 2.606667 6.92 6.93 7 .27 7 .04
24 900 2.814 2.613 2.694 2 .707 7.16 7.07 7.241 7.157
25 950 2.764 2.834 2.694 2 .764 7.13 7.25 7 .15 7.176667
26 1000 2.854 2.854 2.874 2.860667 7.14 7.25 7 .23 7.206667
27 1250 3.335 3.335 3.414 3.361333 7 .721 7 .701 7.792 7.738
28 1500 3.865 3.826 3.846 3.845667 8 .332 8 .092 8.262 8.228667
29 1750 4.446 4.377 4.447 4.423333 8 .913 8.82 8.803 8.845333
30 2000 4.797 4.967 4.857 4.873667 9 .424 9 .293 9.394 9.370333

N otes:

1- A ll tim es in m sec un less o therw ise m entioned

2- M easurem ents taken a t 4 .30 AM , 10 Aug.1999

E s t i m a t e d C o m p r e s s i o n / D e c o m p r e s s i o n t i m e

F i l e (. p d f)N o r m a l S i z e (K B) C o m p r e s s e d b u f f e r (K B) T e s m 1 T x a v T c o m p 1 A B S

1 0 0 . 0 8 6 9 1 4 0 6 3 0 . 9 3 6 0 7 4 0 . 9 7 3 4 0 . 0 3 7 3 2 6
2 1 0 . 7 5 0 9 7 6 5 6 3 0 . 9 3 7 4 0 2 0 . 9 7 5 2 0 . 0 3 7 7 9 8
3 5 2 . 5 4 1 9 9 2 1 8 8 0 . 9 4 0 9 8 4 0 . 9 8 2 4 0 . 0 4 1 4 1 6
4 1 0 5 . 0 6 5 4 2 9 6 8 8 0 . 9 4 6 0 3 1 0 . 9 9 1 4 0 . 0 4 5 3 6 9
5 2 5 1 0 . 2 7 4 4 1 4 0 6 0 . 9 5 6 4 4 9 1 . 0 1 8 4 0 . 0 6 1 9 5 1
6 5 0 1 8 . 6 6 7 9 6 8 7 5 0 . 9 7 3 2 3 6 1 . 0 6 3 4 0 . 0 9 0 1 6 4
7 7 5 2 6 . 8 6 1 3 2 8 1 3 0 . 9 8 9 6 2 3 1 . 1 0 8 4 0 . 1 1 8 7 7 7
8 1 0 0 3 5 . 2 8 5 1 5 6 2 5 1 . 0 0 6 4 7 1 . 1 5 3 4 0 . 1 4 6 9 3
9 1 5 0 6 1 . 4 7 0 7 0 3 1 3 1 . 0 5 8 8 4 1 1 . 2 4 3 4 0 . 1 8 4 5 5 9

1 0 2 0 0 1 0 2 . 7 1 4 8 4 3 8 1 . 1 4 1 3 3 1 . 3 3 3 4 0 . 1 9 2 0 7
1 1 2 5 0 1 4 9 . 8 6 5 2 3 4 4 1 . 2 3 5 6 3 1 . 4 2 3 4 0 . 1 8 7 7 7
1 2 3 0 0 1 8 0 . 6 4 4 5 3 1 3 1 . 2 9 7 1 8 9 1 . 5 1 3 4 0 . 2 1 6 2 1 1
1 3 3 5 0 2 0 9 . 4 2 3 8 2 8 1 1 . 3 5 4 7 4 8 1 . 6 0 3 4 0 . 2 4 8 6 5 2
1 4 4 0 0 2 3 9 . 2 2 9 4 9 2 2 1 . 4 1 4 3 5 9 1 . 6 9 3 4 0 . 2 7 9 0 4 1
1 5 4 5 0 2 8 5 . 3 9 3 5 5 4 7 1 . 5 0 6 6 8 7 1 . 7 8 3 4 0 . 2 7 6 7 1 3
1 6 5 0 0 3 3 5 . 4 0 8 2 0 3 1 1 . 6 0 6 7 1 6 1 . 8 7 3 4 0 . 2 6 6 6 8 4
1 7 5 5 0 3 7 7 . 4 2 6 7 5 7 8 1 . 6 9 0 7 5 4 1 . 9 6 3 4 0 . 2 7 2 6 4 6
1 8 6 0 0 4 0 5 . 7 3 9 2 5 7 8 1 . 7 4 7 3 7 9 2 . 0 5 3 4 0 . 3 0 6 0 2 1
1 9 6 5 0 4 4 0 . 0 6 4 4 5 3 1 1 . 8 1 6 0 2 9 2 . 1 4 3 4 0 . 3 2 7 3 7 1
2 0 7 0 0 4 7 4 . 1 8 2 6 1 7 2 1 . 8 8 4 2 6 5 2 . 2 3 3 4 0 . 3 4 9 1 3 5
2 1 7 5 0 5 0 8 . 2 3 0 4 6 8 8 1 . 9 5 2 3 6 1 2 . 3 2 3 4 0 . 3 7 1 0 3 9
2 2 8 0 0 5 3 5 . 1 7 9 6 8 7 5 2 . 0 0 6 2 5 9 2 . 4 1 3 4 0 . 4 0 7 1 4 1
2 3 8 5 0 5 6 5 . 1 0 4 4 9 2 2 2 . 0 6 6 1 0 9 2 . 5 0 3 4 0 . 4 3 7 2 9 1
2 4 9 0 0 5 9 4 . 7 4 9 0 2 3 4 2 . 1 2 5 3 9 8 2 . 5 9 3 4 0 . 4 6 8 0 0 2
2 5 9 5 0 6 2 1 . 1 4 4 5 3 1 3 2 . 1 7 8 1 8 9 2 . 6 8 3 4 0 . 5 0 5 2 1 1
2 6 1 0 0 0 6 4 8 . 8 2 4 2 1 8 8 2 . 2 3 3 5 4 8 2 . 7 7 3 4 0 . 5 3 9 8 5 2
2 7 1 2 5 0 7 9 8 . 3 3 2 0 3 1 3 2 . 5 3 2 5 6 4 3 . 2 2 3 4 0 . 6 9 0 8 3 6
2 8 1 5 0 0 9 5 5 . 3 9 2 5 7 8 1 2 . 8 4 6 6 8 5 3 . 6 7 3 4 0 . 8 2 6 7 1 5
2 9 1 7 5 0 1 1 3 1 . 6 9 6 2 8 9 3 . 1 9 9 2 9 3 4 . 1 2 3 4 0 . 9 2 4 1 0 7
3 0 2 0 0 0 1 2 8 8 . 0 0 7 8 1 3 3 . 5 1 1 9 1 6 4 . 5 7 3 4 1 . 0 6 1 4 8 4

T e s m 1 E s t i m a t e d t i m e f o r F i l e T r a n s f e r . s e n d D a t a m e t h o d w i t h o u t t h e M P S y s t e m f o r t h e c o m p r e s s e d b u f f e r s i z e .

T x a v E s t i m a t e d t i m e f o r F i l e T r a n s f e r . s e n d D a t a m e t h o d u s i n g t h e M P S y s t e m a n d f o r t h e n o r m a l f i l e s i z e .

T c o m p 1 A B S E s t i m a t e d c o m p r e s s i o n / d e c o m p r e s s i o n t i m e (T e s m 1 - T x a v) .

Mobile Proxies 78

A.1.2 The Repetitive-Number Files

Measurements taken for the Mobile Proxies System at 4.00 PM (Saturday) All times in mSecs unless otherwise mentioned

The FileTransfer.sendData method The DataTransfer.DataClient application
File Size (KB) Request buffer (Bytes) Compressed buffer (Bytes) Compression ratio % Tx1 Tx2 Tx3 Txav T1 T2 T3 Tav

1 0 116 104 10.34 1.111 1.112 1.072 1.098333333 5.678 5.528 5.318 5.508
2 1 1140 386 66.14 1.072 1.091 1.072 1.078333333 5.608 5.368 5.298 5.424666667
3 5 5236 424 91.90 1.072 1.192 1.102 1.122 5.388 5.448 5.458 5.431333333
4 10 10356 471 95.45 1.092 1.212 1.121 1.141666667 5.368 5.237 5.377 5.327333333
5 25 25716 543 97.89 1.121 1.102 1.072 1.098333333 5.508 5.518 5.408 5.478
6 50 51316 655 98.72 1.122 1.322 1.121 1.188333333 5.368 5.668 5.448 5.494666667
7 75 76916 776 98.99 1.322 1.162 1.122 1.202 5.679 5.698 5.478 5.618333333
8 100 102516 869 99.15 1.212 1.202 1.192 1.202 5.528 5.458 5.698 5.561333333
9 150 153716 1076 99.30 1.222 1.332 1.141 1.231666667 5.488 5.598 5.367 5.484333333

10 200 204916 1267 99.38 1.231 1.302 1.332 1.288333333 5.718 5.538 5.709 5.655
11 250 256116 1467 99.43 1.392 1.362 1.281 1.345 5.648 5.537 5.638 5.607666667
12 300 307316 1670 99.46 1.442 1.472 1.402 1.438666667 6.339 5.518 5.678 5.845
13 350 358516 1862 99.48 1.452 1.462 1.412 1.442 5.889 5.859 5.688 5.812
14 400 409716 2062 99.50 1.502 1.492 1.492 1.495333333 6.119 5.738 5.748 5.868333333
15 450 460916 2266 99.51 1.532 1.593 1.522 1.549 5.808 5.668 5.808 5.761333333
16 500 512116 2459 99.52 1.573 1.562 1.572 1.569 5.999 5.859 6.018 5.958666667
17 550 563316 2659 99.53 1.572 1.612 1.593 1.592333333 5.978 5.918 5.979 5.958333333
18 600 614516 2854 99.54 1.713 1.743 1.622 1.692666667 6.009 6.059 5.989 6.019
19 650 665716 3052 99.54 1.652 1.812 1.683 1.715666667 6.399 5.999 6.069 6.155666667
20 700 716916 3252 99.55 1.692 1.662 1.672 1.675333333 6.309 6.088 6.109 6.168666667
21 750 768116 3454 99.55 1.663 1.692 1.612 1.655666667 6.129 6.008 6.36 6.165666667
22 800 819316 3649 99.55 1.702 1.752 1.632 1.695333333 6.249 6.45 5.979 6.226
23 850 870516 3849 99.56 1.812 1.643 1.713 1.722666667 6.108 6.399 6.179 6.228666667
24 900 921716 4051 99.56 1.723 1.732 1.742 1.732333333 6.059 6.189 6.028 6.092
25 950 972917 4245 99.56 1.753 1.732 1.702 1.729 6.71 6.049 6.089 6.282666667
26 1000 1024116 4446 99.57 1.722 1.783 1.702 1.735666667 6.099 6.169 6.339 6.202333333
27 1250 1280116 5436 99.58 1.822 1.793 1.742 1.785666667 6.149 6.139 6.089 6.125666667
28 1500 1536116 6426 99.58 1.712 1.702 1.723 1.712333333 6.199 6.149 6.219 6.189
29 1750 1792116 7420 99.59 1.793 1.752 1.722 1.755666667 6.119 5.978 6.35 6.149
30 2000 2048116 8413 99.59 1.793 1.773 1.682 1.749333333 6.119 6.509 6.489 6.372333333

M ea su rem en ts ta ken w ith ou t the M ob ile P rox ies S ys tem a t 8 .0 0 P M (S a tu rday) A ll tim es in m S e cs un less o the rw is e m en tion ed

T he F ile T rans fe r.s en dD a ta m e th od T he D a ta T ran s fe r.D a ta C lien t ap p lica tion
F ile S iz e (K B) T x1 T x 2 T x3 T xav T 1 T 2 T 3 T a v

1 0 0 .8 91 0 .79 1 0 .891 0 .85 76 67 4 .637 5 .0 57 5 .18 7 4 .9 603 33 333
2 1 0 .8 01 1 .02 2 0 .891 0 .90 46 67 5 .277 4 .7 77 4 .93 7 4 .997
3 5 0 .9 11 1 .02 2 1 .081 1 .00 46 67 4 .827 4 .9 57 4 .59 6 4 .7 933 33 333
4 1 0 1 .2 82 0 .92 1 0 .932 1 .0 45 4 .927 4 .5 86 4 .85 7 4 .79
5 2 5 0 .9 41 0 .95 1 0 .962 0 .95 13 33 4 .787 4 .8 87 4 .95 7 4 .877
6 5 0 1 .1 32 1 .01 2 1 .362 1 .16 86 67 4 .847 4 .7 77 5 .00 7 4 .877
7 7 5 1 .0 62 1 .06 2 1 .132 1 .08 53 33 4 .847 5 .0 58 5 .10 8 5 .0 043 33 333
8 10 0 1 .2 12 1 .10 2 1 .372 1 .22 86 67 4 .897 5 .1 17 5 .06 7 5 .027
9 15 0 1 .1 92 1 .28 1 1 .202 1 .2 25 5 .177 5 .3 17 5 .49 8 5 .3 306 66 667

10 20 0 1 .3 32 1 .36 1 1 .342 1 .3 45 5 .508 5 .3 72 5 .16 8 5 .3 493 33 333
11 25 0 1 .4 62 1 .38 2 1 .402 1 .41 53 33 5 .298 5 .5 38 5 .40 7 5 .4 143 33 333
12 30 0 1 .6 42 1 .51 2 1 .582 1 .57 86 67 5 .719 5 .3 68 5 .65 8 5 .5 816 66 667
13 35 0 1 .6 93 1 .59 2 1 .673 1 .65 26 67 5 .678 5 .7 98 5 .46 8 5 .648
14 40 0 1 .7 52 1 .79 2 1 .783 1 .77 56 67 5 .678 5 .6 28 5 .49 8 5 .6 013 33 333
15 45 0 1 .8 93 1 .79 3 1 .863 1 .84 96 67 5 .728 5 .6 68 5 .77 9 5 .725
16 50 0 1 .9 63 1 .85 2 1 .923 1 .91 26 67 6 .089 6 .1 39 5 .668 1 5 .9 653 66 667
17 55 0 2 .0 93 2 .01 3 2 .083 2 .0 63 6 .108 5 .9 38 6 .13 9 6 .0 616 66 667
18 60 0 2 .0 53 2 .00 3 2 .073 2 .0 43 6 .099 6 .5 5 .91 8 6 .1 723 33 333
19 65 0 2 .2 23 2 .08 3 2 .073 2 .12 63 33 6 .269 6 .0 68 6 .28 9 6 .2 086 66 667
20 70 0 2 .1 23 2 .29 3 2 .043 2 .1 53 6 .088 6 .5 79 5 .94 9 6 .2 053 33 333
21 75 0 2 .2 13 2 .27 3 2 .224 2 .23 66 67 6 .079 6 .1 79 6 .07 9 6 .1 123 33 333
22 80 0 2 .2 24 2 .51 4 2 .083 2 .27 36 67 6 .55 6 .4 29 6 .21 9 6 .3 993 33 333
23 85 0 2 .5 53 2 .26 3 2 .363 2 .3 93 6 .499 6 .4 59 6 .55 9 6 .5 056 66 667
24 90 0 2 .3 54 2 .40 4 2 .503 2 .42 03 33 6 .51 6 .2 99 6 .23 9 6 .3 493 33 333
25 95 0 2 .3 53 2 .42 4 2 .423 2 .4 6 .44 6 .87 6 .18 9 6 .4 996 66 667
26 1 00 0 2 .9 24 2 .46 4 2 .724 2 .7 04 6 .729 6 .1 39 6 .6 2 6 .496
27 1 25 0 2 .4 54 2 .82 5 2 .553 2 .61 06 67 6 .52 6 .6 6 .68 9 6 .603
28 1 50 0 2 .7 34 2 .64 4 2 .483 2 .62 03 33 6 .91 7 .19 6 .49 9 6 .8 663 33 333
29 1 75 0 2 .6 74 2 .68 4 2 .704 2 .68 73 33 6 .84 6 .79 7 .3 7 7
30 2 00 0 2 .9 34 2 .93 4 3 .014 2 .96 06 67 6 .98 7 .03 7 .0 8 7 .03

Mobile Proxies 79

A.2 Security Performance Results

The security performance results were taken for three of the security. These results are

only meant to show how much security costs in terms of performance.

T h e M o b i le P r o x ie s S y s t e m M e a s u r e m e n ts f o r t h e D ig i t a l S ig n a t u r e s F u n c t io n a l i t y
(U s in g D S A a lg o r i t h m)

T h e s e n d D a t a m e t h o d t im e T h e D a t a C l ie n t p r o c e s s t im e
F i le (. p d f) l S i z e (K B) T x 1 T x 2 T x 3 T x a v T 1 T 2 T 3 T a v

1 0 5 . 2 5 7 6 . 2 4 9 4 . 3 4 6 5 . 2 8 4 1 2 . 4 1 7 1 3 . 2 2 9 1 1 . 3 5 7 1 2 . 3 3 4 3 3
2 1 6 . 1 3 9 5 . 2 8 8 6 . 4 5 5 . 9 5 9 1 2 . 6 7 8 1 2 . 0 9 8 1 3 . 4 8 1 2 . 7 5 2
3 5 7 . 4 4 1 6 . 6 1 9 5 . 5 3 8 6 . 5 3 2 6 6 7 1 4 . 3 6 1 1 3 . 2 6 9 1 2 . 1 9 8 1 3 . 2 7 6
4 1 0 5 . 5 3 6 6 . 4 9 9 6 . 2 9 9 6 . 1 1 1 3 3 3 1 2 . 0 0 6 1 3 . 7 1 1 2 . 7 0 8 1 2 . 8 0 8
5 2 5 6 . 9 6 6 . 4 7 6 . 4 6 9 6 . 6 3 3 1 4 . 1 3 1 3 . 4 3 1 2 . 8 7 8 1 3 . 4 7 9 3 3
6 5 0 6 . 8 5 7 . 8 4 2 4 . 6 0 6 6 . 4 3 2 6 6 7 1 3 . 3 5 9 1 4 . 3 4 1 1 1 . 7 3 6 1 3 . 1 4 5 3 3
7 7 5 6 . 1 8 9 8 . 0 0 2 5 . 2 6 7 6 . 4 8 6 1 2 . 5 7 8 1 4 . 5 5 1 1 2 . 6 1 8 1 3 . 2 4 9
8 1 0 0 8 . 5 5 2 8 . 5 6 2 8 . 6 5 2 8 . 5 8 8 6 6 7 1 5 . 0 8 1 1 5 . 6 9 2 1 5 . 5 5 2 1 5 . 4 4 1 6 7
9 1 5 0 7 . 8 3 2 8 . 1 9 1 8 . 8 7 3 8 . 2 9 8 6 6 7 1 4 . 6 4 1 1 5 . 1 6 1 1 5 . 7 1 2 1 5 . 1 7 1 3 3

1 0 2 0 0 9 . 6 2 4 9 . 1 5 3 1 0 . 3 7 5 9 . 7 1 7 3 3 3 1 6 . 4 4 4 1 6 . 1 3 3 1 6 . 8 9 4 1 6 . 4 9 0 3 3
1 1 2 5 0 8 . 9 2 3 9 . 2 6 3 1 0 . 9 5 6 9 . 7 1 4 1 5 . 9 6 3 1 5 . 7 1 3 1 7 . 2 8 5 1 6 . 3 2 0 3 3
1 2 3 0 0 1 0 . 1 8 4 1 0 . 0 9 5 9 . 0 4 3 9 . 7 7 4 1 7 . 1 2 4 1 7 . 0 4 5 1 5 . 8 6 3 1 6 . 6 7 7 3 3
1 3 3 5 0 1 0 . 4 9 5 9 . 6 4 4 9 . 6 2 4 9 . 9 2 1 1 7 . 0 8 5 1 6 . 0 7 3 1 6 . 3 1 4 1 6 . 4 9 0 6 7
1 4 4 0 0 1 0 . 8 1 5 9 . 6 9 4 9 . 7 6 4 1 0 . 0 9 1 1 7 . 5 0 5 1 6 . 0 6 3 1 6 . 0 2 3 1 6 . 5 3 0 3 3
1 5 4 5 0 1 1 . 2 7 6 1 0 . 3 1 5 1 0 . 3 0 5 1 0 . 6 3 2 1 7 . 6 4 5 1 7 . 5 6 5 1 7 . 1 8 5 1 7 . 4 6 5
1 6 5 0 0 1 0 . 7 4 5 1 0 . 2 1 5 1 0 . 9 2 6 1 0 . 6 2 8 6 7 1 7 . 6 2 5 1 7 . 5 2 6 1 7 . 9 0 6 1 7 . 6 8 5 6 7
1 7 5 5 0 1 0 . 7 6 5 1 1 . 0 4 6 1 0 . 4 6 5 1 0 . 7 5 8 6 7 1 7 . 5 1 5 1 7 . 4 8 5 1 8 . 8 0 8 1 7 . 9 3 6
1 8 6 0 0 1 1 . 1 0 6 1 1 . 3 3 6 1 0 . 7 8 5 1 1 . 0 7 5 6 7 1 7 . 1 4 4 1 7 . 4 6 5 1 6 . 7 7 4 1 7 . 1 2 7 6 7
1 9 6 5 0 1 1 . 3 0 6 1 2 . 0 4 8 1 1 . 7 0 7 1 1 . 6 8 7 1 8 . 4 0 7 1 8 . 6 4 7 1 8 . 6 7 7 1 8 . 5 7 7
2 0 7 0 0 1 2 . 3 7 8 1 2 . 2 3 8 1 2 . 7 6 9 1 2 . 4 6 1 6 7 1 9 . 3 8 8 1 9 . 2 5 8 1 9 . 1 8 8 1 9 . 2 7 8
2 1 7 5 0 1 3 . 3 0 9 1 2 . 3 7 7 1 3 . 3 7 9 1 3 . 0 2 1 6 7 1 9 . 9 4 9 1 9 . 5 8 8 1 9 . 6 2 8 1 9 . 7 2 1 6 7
2 2 8 0 0 1 2 . 7 1 9 1 3 . 7 3 1 2 . 6 2 8 1 3 . 0 2 5 6 7 1 9 . 9 6 9 2 0 . 3 9 9 1 9 . 7 0 8 2 0 . 0 2 5 3 3
2 3 8 5 0 1 3 . 4 0 9 1 3 . 5 6 9 1 3 . 1 1 9 1 3 . 3 6 5 6 7 2 0 . 8 6 1 9 . 9 6 9 1 9 . 9 3 9 2 0 . 2 5 6
2 4 9 0 0 1 5 . 0 3 2 1 4 . 6 6 1 1 3 . 2 3 9 1 4 . 3 1 0 6 7 2 1 . 7 1 1 2 1 . 8 8 1 1 9 . 5 8 9 2 1 . 0 6 0 3 3
2 5 9 5 0 1 3 .9 9 1 5 . 6 2 3 1 4 . 8 3 1 1 4 . 8 1 4 6 7 2 0 . 7 1 2 1 . 9 6 2 2 3 . 0 4 3 2 1 . 9 0 5
2 6 1 0 0 0 1 4 1 4 . 6 8 1 1 4 . 2 5 1 4 . 3 1 0 3 3 2 0 . 5 6 9 2 1 . 9 6 1 2 0 . 8 5 2 1 . 1 2 6 6 7
2 7 1 2 5 0 1 6 . 1 0 3 1 7 . 6 8 5 1 6 . 0 9 3 1 6 . 6 2 7 2 3 . 3 7 3 2 4 . 5 5 5 2 3 . 0 7 3 2 3 . 6 6 7
2 8 1 5 0 0 1 8 . 6 0 6 1 8 . 7 8 7 1 8 . 3 7 7 1 8 . 5 9 2 6 . 8 7 9 2 6 . 7 5 9 2 5 . 3 0 6 2 6 . 3 1 4 6 7
2 9 1 7 5 0 2 0 .8 4 2 0 . 6 7 2 0 . 3 3 2 0 . 6 1 3 3 3 2 7 . 5 0 9 2 7 . 5 4 9 2 7 . 4 9 2 7 . 5 1 6
3 0 2 0 0 0 2 2 . 5 1 3 2 3 . 3 5 4 2 4 . 1 0 4 2 3 . 3 2 3 6 7 3 0 . 6 9 4 3 0 . 5 8 4 2 9 . 3 2 3 3 0 . 2 0 0 3 3

N o t e s :

1 - A l l t im e s in m s e c u n le s s o t h e r w is e m e n t io n e d

2 - M e a s u r e m e n ts t a k e n a t 1 2 . 1 5 A M , 2 6 . 8 . 1 9 9 9

E s t i m a t e d C o m p r e s s i o n / D e c o m p r e s s i o n t i m e v F i l e s i z e

F i l e S i z e (K B) C o m p r e s s e d S i z e (K B y t e s) T e s m 1 T x a v T c o m p 1 A B S

1 0 0 . 1 0 1 . 1 8 8 9 1 . 2 5 3 8 0 . 0 6 4 9
2 1 0 . 3 8 1 . 1 8 8 9 1 . 2 5 4 2 0 . 0 6 5 3
3 5 0 . 4 1 1 . 1 8 8 9 1 . 2 5 5 8 0 . 0 6 6 9
4 1 0 0 . 4 6 1 . 1 8 8 9 1 . 2 5 7 8 0 . 0 6 8 9
5 2 5 0 . 5 3 1 . 1 8 8 9 0 1 1 . 2 6 3 8 0 . 0 7 4 8 9 9
6 5 0 0 . 6 4 1 . 1 8 8 9 0 1 1 . 2 7 3 8 0 . 0 8 4 8 9 9
7 7 5 0 . 7 6 1 . 1 8 8 9 0 1 1 . 2 8 3 8 0 . 0 9 4 8 9 9
8 1 0 0 0 . 8 5 1 . 1 8 8 9 0 1 1 . 2 9 3 8 0 . 1 0 4 8 9 9
9 1 5 0 1 . 0 5 1 . 1 8 8 9 0 1 1 . 3 1 3 8 0 . 1 2 4 8 9 9

1 0 2 0 0 1 . 2 4 1 . 1 8 8 9 0 1 1 . 3 3 3 8 0 . 1 4 4 8 9 9
1 1 2 5 0 1 . 4 3 1 . 1 8 8 9 0 2 1 . 3 5 3 8 0 . 1 6 4 8 9 8
1 2 3 0 0 1 . 6 3 1 . 1 8 8 9 0 2 1 . 3 7 3 8 0 . 1 8 4 8 9 8
1 3 3 5 0 1 . 8 2 1 . 1 8 8 9 0 2 1 . 3 9 3 8 0 . 2 0 4 8 9 8
1 4 4 0 0 2 . 0 1 1 . 1 8 8 9 0 2 1 . 4 1 3 8 0 . 2 2 4 8 9 8
1 5 4 5 0 2 . 2 1 1 . 1 8 8 9 0 2 1 . 4 3 3 8 0 . 2 4 4 8 9 8
1 6 5 0 0 2 . 4 0 1 . 1 8 8 9 0 3 1 . 4 5 3 8 0 . 2 6 4 8 9 7
1 7 5 5 0 2 . 6 0 1 . 1 8 8 9 0 3 1 . 4 7 3 8 0 . 2 8 4 8 9 7
1 8 6 0 0 2 . 7 9 1 . 1 8 8 9 0 3 1 . 4 9 3 8 0 . 3 0 4 8 9 7
1 9 6 5 0 2 . 9 8 1 . 1 8 8 9 0 3 1 . 5 1 3 8 0 . 3 2 4 8 9 7
2 0 7 0 0 3 . 1 8 1 . 1 8 8 9 0 3 1 . 5 3 3 8 0 . 3 4 4 8 9 7
2 1 7 5 0 3 . 3 7 1 . 1 8 8 9 0 4 1 . 5 5 3 8 0 . 3 6 4 8 9 6
2 2 8 0 0 3 . 5 6 1 . 1 8 8 9 0 4 1 . 5 7 3 8 0 . 3 8 4 8 9 6
2 3 8 5 0 3 . 7 6 1 . 1 8 8 9 0 4 1 . 5 9 3 8 0 . 4 0 4 8 9 6
2 4 9 0 0 3 . 9 6 1 . 1 8 8 9 0 4 1 . 6 1 3 8 0 . 4 2 4 8 9 6
2 5 9 5 0 4 . 1 5 1 . 1 8 8 9 0 4 1 . 6 3 3 8 0 . 4 4 4 8 9 6
2 6 1 0 0 0 4 . 3 4 1 . 1 8 8 9 0 5 1 . 6 5 3 8 0 . 4 6 4 8 9 5
2 7 1 2 5 0 5 . 3 1 1 . 1 8 8 9 0 6 1 . 7 5 3 8 0 . 5 6 4 8 9 4
2 8 1 5 0 0 6 . 2 8 1 . 1 8 8 9 0 7 1 . 8 5 3 8 0 . 6 6 4 8 9 3
2 9 1 7 5 0 7 . 2 5 1 . 1 8 8 9 0 8 1 . 9 5 3 8 0 . 7 6 4 8 9 2
3 0 2 0 0 0 8 . 2 2 1 . 1 8 8 9 0 9 2 . 0 5 3 8 0 . 8 6 4 8 9 1

T e s m 1 E s t i m a t e d t i m e f o r F i l e T r a n s f e r . s e n d D a t a m e t h o d w i t h o u t t h e M P S y s t e m f o r t h e c o m p r e s s e d f i l e s i z e .

T x a v E s t i m a t e d t i m e f o r F i l e T r a n s f e r . s e n d D a t a m e t h o d u s i n g t h e M P S y s t e m a n d f o r t h e n o r m a l f i l e s i z e .

T c o m p 1 A B S E s t i m a t e d c o m p r e s s i o n / d e c o m p r e s s i o n t i m e (T e s m 1 - T x a v) .

Mobile Proxies 80

T h e M o b i le P r o x ie s S y s te m M e a s u r e m e n t s f o r t h e A s y m m e t r ic E n c r y p t io n F u n c t io n a l i t y
(U s in g R S A a lg o r i th m w i th P K C S 1 p a d d in g)

T h e s e n d Im a g e m e t h o d t im e T h e Im a g e C l ie n t p r o c e s s t im e
F i l e (. p d f) l S iz e (K B) T x 1 T x 2 T x 3 T x a v T 1 T 2 T 3 T a v

1 0 6 .9 5 .7 9 9 4 . 9 2 7 5 .8 7 5 3 3 3 1 4 .2 7 1 1 2 .1 0 8 1 2 .7 1 8 1 3 .0 3 2 3 3
2 1 6 .5 2 5 .0 8 7 7 . 4 4 1 6 .3 4 9 3 3 3 1 2 .9 5 9 1 2 .1 0 7 1 4 . 2 7 1 3 .1 1 2
3 5 7 .2 3 1 6 . 9 4 7 . 5 7 1 7 .2 4 7 3 3 3 1 3 .9 2 1 3 .9 9 1 3 .8 1 3 .9 0 3 3 3
4 1 0 7 .6 6 1 6 .4 4 9 6 . 1 2 9 6 .7 4 6 3 3 3 1 5 .0 0 1 1 3 .3 2 9 1 2 .7 6 8 1 3 .6 9 9 3 3
5 2 5 8 .8 6 3 8 .6 0 2 9 . 2 2 3 8 .8 9 6 1 5 .7 4 3 1 5 .6 1 2 1 5 .7 9 3 1 5 .7 1 6
6 5 0 1 0 .8 6 6 1 1 .4 8 6 1 0 . 9 5 6 1 1 .1 0 2 6 7 1 7 .7 8 6 1 8 .0 7 6 1 7 .0 9 5 1 7 .6 5 2 3 3
7 7 5 1 4 .5 2 1 1 5 .4 6 3 1 5 . 1 6 2 1 5 .0 4 8 6 7 2 1 .3 8 1 2 1 .7 6 2 2 2 .0 7 2 2 1 .7 3 8 3 3
8 1 0 0 1 7 .3 0 5 1 7 .9 5 6 1 8 . 4 4 7 1 7 .9 0 2 6 7 2 4 .9 7 6 2 5 .0 2 6 2 5 .4 5 7 2 5 .1 5 3
9 1 5 0 2 3 .9 0 4 2 3 .8 1 4 2 4 . 4 0 5 2 4 .0 4 1 3 0 .8 8 4 3 0 .1 3 3 3 0 .8 0 4 3 0 .6 0 7

1 0 2 0 0 3 0 .7 1 4 3 0 .9 2 5 2 9 . 9 3 4 3 0 .5 2 4 3 3 3 7 .3 0 3 3 7 .5 0 4 3 7 .2 4 4 3 7 .3 5 0 3 3
1 1 2 5 0 3 8 .7 5 6 3 6 .3 5 2 3 6 . 2 2 2 3 7 .1 1 4 5 .3 1 5 4 3 .6 0 2 4 2 .8 2 2 4 3 .9 1 3
1 2 3 0 0 4 3 .0 1 1 4 2 .6 4 1 4 2 . 4 7 1 4 2 .7 0 7 6 7 5 0 .6 3 2 4 9 .5 0 1 4 8 .9 4 1 4 9 .6 9 1 3 3
1 3 3 5 0 4 9 .2 2 1 4 9 .6 0 1 4 9 . 1 2 1 4 9 .3 1 4 3 3 5 6 .4 2 1 5 5 .6 6 5 6 .2 0 1 5 6 .0 9 4
1 4 4 0 0 5 5 .4 2 5 5 .0 2 9 5 4 . 5 5 4 5 5 .0 0 1 6 3 .1 2 1 6 1 .6 3 9 6 2 .9 9 8 6 2 .5 8 6
1 5 4 5 0 A t th i s f i le s i z e , th e R e q u e s t b u f fe r b e c o m e s
1 6 5 0 0 to o la r g e th a t a ja v a . la n g .O u to fM e m o r y E r r o r e r r o r is r a s e d .
1 7 5 5 0
1 8 6 0 0
1 9 6 5 0
2 0 7 0 0
2 1 7 5 0
2 2 8 0 0
2 3 8 5 0
2 4 9 0 0
2 5 9 5 0
2 6 1 0 0 0
2 7 1 2 5 0
2 8 1 5 0 0
2 9 1 7 5 0
3 0 2 0 0 0

N o te s :

1 - A l l t im e s in m s e c u n le s s o t h e r w is e m e n t io n e d

2 - M e a s u re m e n t s t a k e n a t 6 .1 0 A M , 2 6 .8 .1 9 9 9

T h e M o b i le P r o x ie s S y s te m M e a s u r e m e n ts f o r th e S y m m e t r ic E n c r y p t io n F u n c t io n a l i ty
(U s in g D E S a lg o r i th m w it h P K C S 5 p a d d in g)

T h e s e n d Im a g e m e th o d t im e T h e Im a g e C l ie n t p r o c e s s t im e
F i le (.p d f) l S iz e (K B) T x 1 T x 2 T x 3 T x a v T 1 T 2 T 3 T a v

1 0 5 .9 5 8 4 .6 1 7 6 .3 8 9 5 .6 5 4 6 6 7 1 2 .4 4 7 1 1 .1 7 6 1 2 .8 7 9 1 2 .1 6 7 3 3
2 1 5 .4 2 7 5 .8 9 8 5 .6 9 8 5 .6 7 4 3 3 3 1 1 .7 2 7 1 2 .1 8 7 1 2 .5 8 9 1 2 .1 6 7 6 7
3 5 5 .1 9 8 7 .0 1 5 .7 7 9 5 .9 9 5 6 6 7 1 1 .5 3 7 1 3 .3 4 9 1 2 .7 9 9 1 2 .5 6 1 6 7
4 1 0 6 .1 3 8 6 .6 4 5 .9 8 8 6 .2 5 5 3 3 3 1 2 .5 4 8 1 3 .3 6 9 1 2 .6 1 8 1 2 .8 4 5
5 2 5 6 .9 5 5 .2 6 7 7 .6 3 1 6 .6 1 6 1 4 .0 5 1 2 .2 2 7 1 4 .1 9 1 3 .4 8 9
6 5 0 6 .9 5 6 .7 1 6 .5 6 6 .7 4 1 3 .9 3 1 2 .9 4 9 1 3 .7 1 1 3 .5 2 9 6 7
7 7 5 6 .2 4 9 7 .0 8 6 .0 1 9 6 .4 4 9 3 3 3 1 4 .4 4 1 1 4 .2 3 1 2 .3 0 8 1 3 .6 5 9 6 7
8 1 0 0 7 .8 4 1 6 .1 2 8 7 .3 3 7 .0 9 9 6 6 7 1 4 .0 8 1 3 .0 3 9 1 3 .6 6 9 1 3 .5 9 6
9 1 5 0 6 .5 0 9 8 .8 1 3 7 .5 9 1 7 .6 3 7 6 6 7 1 3 .1 4 9 1 5 .3 6 2 1 4 .5 1 1 4 .3 4 0 3 3

1 0 2 0 0 9 .2 7 3 9 .8 1 4 9 .1 9 3 9 .4 2 6 6 6 7 1 6 .5 6 3 1 6 .7 8 4 1 6 .0 5 3 1 6 .4 6 6 6 7
1 1 2 5 0 8 .8 4 3 1 0 .3 5 2 8 .7 4 3 9 .3 1 2 6 6 7 1 5 .7 9 3 1 6 .7 5 4 1 5 .7 5 3 1 6 .1
1 2 3 0 0 1 0 .0 8 5 9 .9 3 6 1 0 .2 1 5 1 0 .0 7 8 6 7 1 8 .4 1 6 1 7 .8 3 6 1 7 .3 6 5 1 7 .8 7 2 3 3
1 3 3 5 0 1 1 .4 6 7 1 0 .7 2 6 1 0 .3 8 5 1 0 .8 5 9 3 3 1 8 .4 0 7 1 7 .1 9 5 1 7 .3 3 5 1 7 .6 4 5 6 7
1 4 4 0 0 1 0 .8 5 6 1 0 .4 6 5 1 1 .1 0 6 1 0 .8 0 9 1 7 .6 9 5 1 7 .3 5 5 1 7 .2 3 5 1 7 .4 2 8 3 3
1 5 4 5 0 1 1 .9 9 7 1 1 .3 0 6 1 1 .6 6 7 1 1 .6 5 6 6 7 1 8 .0 2 6 1 7 .3 8 5 1 8 .1 8 6 1 7 .8 6 5 6 7
1 6 5 0 0 1 2 .2 0 8 1 3 .6 3 9 1 3 .2 0 9 1 3 .0 1 8 6 7 1 9 .0 7 8 2 0 .4 2 2 0 .0 7 9 1 9 .8 5 9
1 7 5 5 0 1 5 .2 3 2 1 3 .9 8 1 2 .8 3 8 1 4 .0 1 6 6 7 2 1 .7 3 1 2 0 .7 8 1 9 .4 7 8 2 0 .6 6 3
1 8 6 0 0 1 4 .8 1 1 1 4 .3 9 1 4 .8 6 1 1 4 .6 8 7 3 3 2 1 .4 6 1 2 2 .5 3 2 2 1 .7 9 1 2 1 .9 2 8
1 9 6 5 0 1 5 .2 7 2 1 4 .7 1 1 1 5 .7 6 2 1 5 .2 4 8 3 3 2 2 .1 4 1 2 1 .8 7 1 2 2 .4 9 2 2 2 .1 6 8
2 0 7 0 0 1 5 .8 2 3 1 5 .8 7 3 1 5 .9 1 3 1 5 .8 6 9 6 7 2 2 .8 4 3 2 2 .9 8 3 2 2 .4 0 2 2 2 .7 4 2 6 7
2 1 7 5 0 1 5 .1 6 2 1 5 .7 8 2 1 6 .3 1 4 1 5 .7 5 2 6 7 2 1 .7 2 2 2 2 .7 4 3 2 3 .0 1 3 2 2 .4 9 2 6 7
2 2 8 0 0 1 7 .6 2 5 1 7 .0 2 5 1 6 .6 2 3 1 7 .0 9 1 2 4 .8 2 5 2 4 .1 8 5 2 2 .9 3 3 2 3 .9 8 1
2 3 8 5 0 1 6 .8 4 5 1 8 .1 9 6 1 8 .1 7 6 1 7 .7 3 9 2 3 .2 5 4 2 5 .0 3 6 2 4 .6 4 5 2 4 .3 1 1 6 7
2 4 9 0 0 1 8 .5 3 7 1 7 .3 0 5 1 8 .0 1 6 1 7 .9 5 2 6 7 2 5 .0 9 6 2 4 .6 0 6 2 4 .8 4 5 2 4 .8 4 9
2 5 9 5 0 1 9 .0 0 7 1 8 .6 3 1 8 .6 0 7 1 8 .7 4 8 2 5 .4 8 6 2 5 .7 8 2 5 .1 7 7 2 5 .4 8 1
2 6 1 0 0 0 1 9 .9 1 8 1 9 .8 0 8 2 0 .1 9 9 1 9 .9 7 5 2 6 .4 1 8 2 6 .4 4 8 2 6 .8 7 9 2 6 .5 8 1 6 7
2 7 1 2 5 0 2 3 .3 1 3 2 2 .6 2 3 2 4 .3 1 5 2 3 .4 1 7 2 9 .5 8 3 2 9 .8 0 3 3 1 .5 2 5 3 0 .3 0 3 6 7
2 8 1 5 0 0 2 7 .6 3 2 7 .2 9 2 7 .0 8 9 2 7 .3 3 6 3 3 3 3 .7 2 8 3 4 .3 3 3 .1 1 7 3 3 .7 1 5
2 9 1 7 5 0 3 0 .5 7 4 3 2 .4 2 6 3 1 .4 8 5 3 1 .4 9 5 3 7 .2 8 4 3 9 .1 4 6 3 8 .3 8 5 3 8 .2 7 1 6 7
3 0 2 0 0 0 3 3 .9 6 8 3 3 .7 7 9 3 6 .1 4 2 3 4 .6 2 9 6 7 4 1 .2 6 4 0 .0 5 8 4 3 .4 3 2 4 1 .5 8 3 3 3

N o te s :

1 - A l l t im e s in m s e c u n le s s o t h e rw is e m e n t io n e d

2 - M e a s u re m e n t s ta k e n a t 4 .0 0 A M , 2 6 .8 .1 9 9 9

Mobile Proxies 81

5HIHUHQFHV

[Bershad et al 1995] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and S.
Eggers. Extensibility, Safety and Performance in
the SPIN Operating System. ACM, 1995.

[Byous 1999] J. Byous. Jini™ Technology Grants the Ultimate
Wish. Jini™ Technology Homepage, 1999.

[Chawathe, Brewer 1998] Y. Chawathe, and E. Brewer. System Support for
Scalable and Fault Tolerant Internet Services.
Proceedings of Middleware, 1998.

[Chawathe et al 1998] Y. Chawathe, S. McCanne, S. Fink, and E. A.
Brewer. A Proxy Architecture for Reliable
Multicast in Heterogeneous Environments. ACM
Multimedia, 1998.

[CORBA/IIOP v2.3 Spec. 1999] CORBA/IIOP v2.3 Specification. The OMG,
1999, Chapter 21.

[Jini™ Architecture Spec. 1999] Jini™ Architecture Specification. Sun, 1999.

[Katz 1994] R. H. Katz. Implementing Communication
through “Situation Awareness” Adaptation and
Mobility in Wireless Information Systems. IEEE
Personal Communications Magazine, First
Quarter 1994, Volume 1, Number 1.

Mobile Proxies 82

[Knudsen 1998] J. Knudsen. Java Cryptography. O’Reilly &
Associates, Inc., 1998.

[Leue, Holzmann 1999] S. Leue, and G. Holzmann. v-Promela: A Visual,
Object-Oriented Language for SPIN.
Proceedings of the Second IEEE International
Symposium on Object-oriented Real-time
Distributed Computing ISORC '99, Saint Malo,
France, 1999.

[Mitchell et al 1993] J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B.
Kessler, Y. A. Khalidi, P. Kougiouris, P. W.
Madany, M. N. Nelson, M. L. Powell, and S. R.
Radia. An Overview of the Spring System. Sun
Microsystems Inc., 1993.

[Nelson 1981] B. J. Nelson. Remote Procedure Call. Carnegie-
Mellon University report CMV-CS-81-119, 1981.

[Nelson, Khalidi 1993] M. N. Nelson, and Y. A. Khalidi. The Spring
Virtual Memory System. Sun Microsystems
Laboratories Inc., 1993.

[Nelson, Khalidi 1993] M. N. Nelson, Y. A. Khalidi, and P. W. Madany.
The Spring File System. Sun Microsystems
Laboratories Inc., 1993.

[Oaks 1998] S. Oaks. Java Security. O’Reilly & Associates,
Inc., 1998.

[OPG 1998] OrbixWeb Programming Guide. Iona
Technologies PLC, 1998.

Mobile Proxies 83

[ORG 1998] OrbixWeb Reference Guide. Iona Technologies
PLC, 1998.

[Shapiro 1986] M. Shapiro. Structure and Encapsulation in
Distributed Systems: the Proxy Principle. IEEE,
1986.

Mobile Proxies 84

:::�5HVRXUFHV

1. http://www.act.navy.mil/Adaptability_Flexibility.htm

2. http://www.sun.com/jini/overview/

3. http://www.cs.washington.edu/research/projects/spin/www/

4. http://www.omg.org

5. http://www.aba.net.au/solutions/crypto/jce.html

