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Vaccines that promote protective adaptive immune responses have been successfully developed
against a range of infectious diseases, and these are normally administered prior to exposure with the
relevant virus or bacteria. Adaptive immunity also plays a critical role in the control of tumors.
Immunotherapeutics and vaccines that promote effector T cell responses have the potential to
eliminate tumors when used in a therapeutic setting. However, the induction of protective antitumor
immunity is compromised by innate immunosuppressive mechanisms and regulatory cells that often
dominate the tumor microenvironment. Recent studies have shown that blocking these suppressor
cells and immune checkpoints to allow induction of antitumor immunity is a successful
immunotherapeutic modality for the treatment of cancer. Furthermore, stimulation of innate and
consequently adaptive immune responses with concomitant inhibition of immune suppression,
especially that mediated by regulatory T (Treg) cells, is emerging as a promising approach to enhance
the efficacy of therapeutic vaccines against cancer. This review describes the immunosuppressive
mechanisms controlling antitumor immunity and the novel strategies being employed to design
effective immunotherapeutics against tumors based on inhibition of suppressor cells or blockade of
immune checkpoints to allow induction of more potent effector T cell responses. This review also
discusses the potential of using a combination of adjuvants with inhibition of immune checkpoint or
suppressor cells for therapeutic vaccines and the translation of pre-clinical studies to the next-
generation vaccines against cancer in humans.Keywords: immunotherapy; vaccine; antitumor
immunity; immune checkpoint; regulatory T cell; Toll-like receptor agonist

INTRODUCTION

It is well established that the immune system can restrain tumor
growth. Adaptive immune responses, in particular IFN-y-secreting
T cells, play a central role in tumor immune surveillance.
However, tumor growth is also associated with immune escape,
immune subversion and immune suppression. Immunoeditin
gives rise to tumor variants that can escape immune surveillance.
Immune subversion strategies include downregulation of
MHC class | or co-stimulatory molecules, such as CD80/86 on
antigen presenting cells (APC) or enhancement of co-inhibitory
inhibitory molecules such as cytotoxic T-lymphocyte antigen-4
(CTLA-4) or programmed death-1 (PD-1) on T cells.” Furthermore,
the development of cancer is associated with the induction or
recruitment of regulatory cells and the production of molecules
that suppress antitumor effector T cell responses.” These immune
suppression networks include regulatory T (Treg) cells,
myeloid derived suppressor cells (MDSC) and type 2 (M2)
macrophages, as well as the immunosuppressive cytokines, IL-10
and TGF-B.

The potential of using of immunotherapy, where the patient's
own immune system is enhanced to attack tumors, is gaining
momentum as a viable approach for the treatment of cancer.
Immunotherapeutic approaches include strategies that directly
enhance anti-tumor immunity or that block immune checkpoints
or suppressor networks, thus allowing the development of effector

immune responses that eliminate the tumor (Figure 1). Immune-
activating approaches include non-specific stimulation of innate
or adaptive immune responses against the tumor or specific
stimulation of tumor-specific immune responses using vaccines
that include tumor antigens. The aim is to selectively promote
effective cytotoxic T-lymphocyte (CTL) and Th1 responses against
the tumor.” Prophylactic vaccines against infectious disease are
among the most effective and least expensive interventions in
modern medicine and function by generating protective adaptive
immune responses with the help of adjuvants that activate innate
immune responses. However, the application of these approaches
against cancer is still in its infancy and is compromised by the fact
that they must break tolerance to self antigens, they must work
therapeutically and they must overcome the immunosuppressive
environment of the growing tumor.

Dendritic cells (DCs) are key antigen APC, which play a vital role in
activating and directing adaptive immune responses and thus DCs
are being exploited in the development of vaccines against a range
of cancers® The first licensed DC-based cancer vaccine Provenge
induces antitumor responses in vivo by the adoptive transfer of DCs
pulsed in vitro with tumor antigens and stimulated to mature with
cytokines and immunomodulatory molecules. Nevertheless, this DC-
based tumor vaccine confers only modest survival advantage and
has limited success in mediating tumor regression.?
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Figure 1. The pro- and anti-tumor arms of the immune response and
the targets for the development of cancer immunotherapeutics and
vaccines. The induction of antitumor immunity is dependent on
activating DCs to express co-stimulatory molecule and innate
inflammatory cytokine such as IL-12, IL-23 and IL-1 that promote
Th1 and CTL responses. T cells secrete IFN-y, TNF-x and IL17, which
have antitumor effects. However, these effector responses are
suppressed by co-inhibitory molecules, such as PD-1/PD-LI, CTLA-4
and expansion of regulatory DCs (rDC), M2 macrophages and MDSC.
These innate suppressor cells secrete IL-10 and TGF-B, which
together with retinoic acid (RA), enhance induction of Treg cells
that are recruited to the tumor under the influence of the
chemokines, including CCL22 and CXCL12. Treg cells and innate
regulatory cells suppress effector immune responses and thereby
promote the growth of tumors. TLR agonists, «GalCer and vaccines
promote innate and adaptive immune responses, while cell-based
therapies with DCs or T cells can also enhance antitumor immunity.
Conversely, or in combination with these immune activating
strategies, antibodies or inhibitors of the suppressive pathways
and molecules can block immune checkpoints and suppressor cells
and thereby enhance antitumor immunity. DC, dendritic cell; TLR,
Toll-like receptor; aGalCer, alpha-galactosylceramide; Ml M9, type |
macrophage, NK, Natural killer; Th1, IFN-y-secreting CD4 T cell; CTL,
cytotoxic T lymphocyte, MDSC, myeloid-derived suppressor cell;
Treg cell, requlatory T cell; RA, retinoic acid; Ab, antibody; i, inhibitor;
Cy, cyclophosphoamide; Pi3Ki, Phosphatidylinositol 3-kinase inhibi-
tor; p38i, p38 MAP kinase inhibitor; RARI, retinoic acid receptor-
alpha inhibitor.

Toll-like receptor (TLR) agonists are potent activators of innate
immune cells and also direct adaptive immunity and thus have
been employed as adjuvants in a number of experimental cancer
vaccines and have been tested in clinical trials. Although the TLR7
agonist, imiquimod is being used in humans for the treatment of
superficial basal cell carcinoma,'® clinical trials with other TLR
agonists have not been so effective. One reason for the relatively
modest success with TLR agonist-based immunotherapies and
vaccines is that TLR agonists can promote regulatory as well as
effector T cells and this is compounded in a therapeutic setting by
the high prevalence of Treg cells infiltrating the tumor.

Depletion of Treg cells has been shown to promote antitumor
responses in vivo in mouse tumor models. =’ Furthermore,
Ipilimumab, a monoclonal neutralizing antibody that blocks CTLA-
4 has shown good efficacy in melanoma patients, has been
approved by the FDA.'? Another therapeutic mononclonal
antibody, Nivolumab (BMS-936558) that specifically blocks PD-1
has shown some efficacy against a range of human cancers.'*"*
However, persistent blockade of these inhibitory receptors has
lead to the breakdown in immune self tolerance, thereby increasing
susceptibility to autoimmune or auto-inflammatory side effects,
including rash, colitis, hepatitis and endocrinopathies.'® Alter-
natively, cancer vaccdnes that are rationally designed to
specifically block tumor-associated immune checkpoints may

have reduced side effects. These could potentially involve
combination therapy approaches, including inhibition of
immunosuppressive cells, blockade of co-inhibitory molecules and
the simultaneous activation of immune signaling pathways via TLR
agonists to promote effector immune responses.

TARGETING TUMOR INFILTRATING IMMUNOSUPPRESSIVE
CELLS

The induction of effective antitumor immune responses is
hindered by the high number of infiltrating immunosuppressive
cells in the tumor micro-environment, which in turn leads to poor
effector immune responses. Therefore, targeting immunosuppres-
sive cells, including Treg cells, MDSC and M2 macrophages has
emerged as leading approach in the development of new
immunotherapeutics and vaccines against cancer.

Regulatory T cells
Immunosuppressive cells, such as Treg cells, play a crucial role in
maintaining the immune homeostasis, which depends on the
balance between the immune responses that control infectious
pathogens and tumors and the reciprocal immune responses that
prevent inflammation and autoimmune diseases.’” It is now well
recognized that the natural Treg cells expressing FOXP3 and
inducible antigen-specific Treg cells that secrete IL-10 and TGF-§
play a protective role in immunity to infection by controlling
pathogen-induced immunopathology and also prevent the
development of autoimmune diseases.’® However, in the tumor
environment the frequency of Treg cells versus effector T cells is
greater than in the general circulation, and their recruitment and
activation is associated with tumor growth because of the local
inhibition of the effector immune responses.'**° Therefore,
depletion of Treg cells can enhance the development of protective
T cell responses and induction of antitumor immunity.'*'* Indeed,
the effective immunosuppressive effects of Treg cells may in part
explain the failure of many immunotherapeutic approaches
to cancer®’ Inhibiton of immunosuppressive cells using
cyclophosphamide treatment has been shown to enhance
antitumor immunity induced by vaccnation in melanoma
patients.”? Furthermore, systemic Treg cell depletion in melanoma
patients induced regression of metastases.”> However, it is now
accepted that more precise strategies are required to inhibit Treg
cells to enhance effector cells that mediate antitumor immunity.
Treg cell depletion strategies have utilized monoclonal neu-
tralizing antibodies or ligand-directed toxins targeted to cell
surface receptors, such as CD25. Two anti-CD25 antibodies,
daclizumab and basiliximab induce Treg cell death by cytokine
deprivation (IL-2) and by triggering antibody-dependent cell-
mediated cytotoxicity or complement-mediated cytotoxicity.* The
results of clinical trials have shown that daclizumab depletes Treg
cells and thereby enhances CTL responses to tumor antigens
induced by vaccination without any autoimmune side effects.”*?*
In addition to Treg cell depletion strategies, other approaches
have also been utilized to eliminate the immunosuppressive
effects of Treg cells. For example, intratumoral injection with an
agonistic antibody (DTA-1) to the glucocorticoid-induced tumor
necrosis factor (TNF) receptor, which is constitutively expressed on
Treg cells, invoked potent antitumor immunity and eradicated
established tumors in mice.”*”” Another strategy involves the
inhibition of receptor activation of NF-xB (RANK) signaling
using an anti-RANK ligand (RANKL) antibody denosumab, which
blocks the engagement of RANKL on Treg cells to the RANK
receptor on the tumor cells and thus blocks Treg cell-induced
metastases of certain cancers.** Furthermore, targeting the
Treg cell transcription factor FOXP3 by RNA interference, such as
miR-31 (negative regulator of FOXP3), can modulate Tre:
cells functionality and abolishes their suppressor activity.



Furthermore, a peptide inhibitor of FOXP3 has been shown to
impair Treg cell activity and enhance the efficacy of peptide
vaccine against CT26 tumors in mice.*® However, translating these
approaches to clinical applications will be challenging, as they
would have to be specifically delivered to tumor infiltrating Treg
cells because FOXP3 is transiently expressed in activated effector T
cells and in certain cancer cells.”’

Despite the obvious benefits of increasing effector T cells in the
tumor environment, depletion of Treg cells may have a high risk of
developing systemic autoimmune diseases due to increased
inflammatory responses. Thus, alternative approaches need to
be devised that involve selective inhibition or depletion of
immune suppressive cells in the tumor with optimal activation
of antitumor T cell responses. One approach may be to target Treg
cell migration into tumor. Studies in cancer patients have
demonstrated significant trafficking of Tregs into tumors and
have found an association between the frequency of intratumoral
Treg cells and poor survival.’”* Tumor cells and macrophages
produce the chemokine C-C motif chemokine ligand 2 (CCL22),
which promotes trafficking of Treg cells that express CCR4, the
receptor for CCL22. Studies in mice showed that in vivo blockade
of CCL22 reduced the trafficking of Treg cells into tumors.*
CXCL12/CXCR4 signals have also been shown to regulate the
Treg trafficking to the bone marrow in prostate cancer patients
with bone metastasis>® Blocking the CXCL12/CXCR4 signals
significan reduces the Treg cell trafficking to bone
marrow.**™* Therefore, strategies that target chemokines to
prevent T cell migration into tumor may be a more tailored and
less risky approach than systemic depletion of Treg cells.

Myeloid-derived suppressor cells

MDSC are another class of immunosuppressive cells, which are a
heterogeneous population of immature myeloid cells that
accumulate under conditions of inflammation and in tumors
and exert inhibitory function on immune responses. MDSCs are
thought to promote the tumor growth by both enhancement of
tumor angiogenesis and metastasis and also inhibition of
antitumor effector T cell responses. Under normal physiological
conditions, these cells are generated in bone marrow and
differentiate into mature macrophages, DCs and granulocytes.
However, in pathological conditions, there is a dramatic expansion
of these Gr-1"CD11b™* cells, with the same phenotype and
immunosuppressive activity in various tissues, and the differentia-
tion into mature myeloid cells is blocked.*>*®* MDSCs regulate
innate immune and T cell responses by depleting arginine,
modulating cytokine production by macrophages, upregulating
the production of immune—supgressive factors, such as nitric oxide
and reactive oxygen species,”®>" and by overexpressing anti
inflammatory cytokines, such as TGF-§ and IL-10.*%*' MDSCs
suppress proliferation and cytokine production by T cells and
natural killer cells, as well as induce apoptosis of CD8 " T cells.*

Interestingly, MDSCs have also been shown to indirectly
suppress T cell activation by inducing other immunosuppressive
cells such as Treg cells and M2 macrophages.**™* The MDSCs
accumulation in the inflammatory pathogenic setting suggests
that increased MDSC numbers play a protective role by providing
an anti-inflammatory mechanism for the maintenance of
homeostasis; however, in the tumor environment, the anti-
inflammatory effect of MDSCs leads to attenuation of antitumor
immunity. Thus, targeting the inhibitory functions of MDSCs
present a promising approach to enhance therapeutic potential of
antitumor vaccines and immunotherapies.

Anti-Gr-1 monoclonal antibodies have been widely used to
deplete MDSCs in vivo in mice. However, the clinical translation of
anti-Gr-1 antibodies to deplete MDSCs in humans is challenging,
since they recognize both Ly6G and Ly6C (molecules that express
the Gr-1 epitope on MDSCs), which could lead to non-selective

depletion of monocytes, T cells, natural killer cells and macro-
phages and might impair host immunity and lead to opportunistic
infections.*® Recently, pre-clinical and clinical studies have shown
that promoting the differentiation of immature suppressive
MDSCs into mature, non-suppressive cells such as myeloid DCs,
CD4* and CDB* T cells using all trans retinoic acid**®' and
Vitamin D3°?%% can enhance the antitumor immune responses.
A number of strategies have been used to deplete MDSCs,
including the use of chemotherapeutic drug gemcitabine,***
sunitinib,”* 7 5-FU,** docetaxel,”® retinoic acid®**® or the
debulking of tumors.®’®? Furthermore, mul&iple inhibitor
molecules, such as CDDO-ME® PDE-5°* COX-2*** and nitro
aspirin®® have also been successfully shown to inhibit the
suppressive function MDSC, restore T cell proliferation and
decrease tumor growth in vivo. These MDSCs depletion and
inhibitory approaches can improve immune surveillance and
promote antitumor immune responses, thus targeting MDSCs may
be a promising approach for enhancing the efficacy of cancer
vaccines or immunotherapies.

M2 macrophages

Tumor-associated macrophages are a dominant population of
immune cells present in the tumor microenvironment and are
mostly characterized as alternatively-activated M2-like macro-
phages, which are anti-inflammatory, immunosuppressive and
facilitate tumor progression,””“® unlike M1 macrophages, which
are highly inflammatory, microbicidal and tumoricidal. M2
macrophages play a significant role in promoting tumor growth,
angiogenesis, metastasis, matrix remodeling and facilitate
immune evasion in various human and animal tumors.5*7° M2
macrophages also ?rovide chemotherapy resistance,”’”?
radiotherapy resistance’* and promote tumor growth. Therefore,
targeting M2 macrophages is now considered a promising
approach for treatment of cancer.

A number of approaches have been employed to target M2
macrophages in tumors. Firstly, macrophage recruitment into the
tumor microenvironment can be suppressed by inhibiting che-
moattractants, such as CCL2, macrophage colony-stimulating factor
or C-C motif chemokine receptor 2 (CCR2) and macrophage colony-
stimulating factor receptor (M-CSFR); this has reduced tumor
growth and enhanced prognosis in multiple cancers.”** Secondly,
M2 macrophage survival can be suppressed using chemical drugs,
such as bisphosphonates, dasatinib,”’®* or bacterial infection with
attenuated Shigella flexneri® that selectively kill M2 macrophages
and result in regression of tumor growth, angiogenesis and
metastasis. Alternatively, M2 macrophages can be depleted using
immunotoxin-conjugated monodonal anti-FRB antibody, which
target membrane molecules of M2 macrophages.®*®® Lastly, the
tumor promoting activity of M2 macrophages can be blocked using
inhibitors of STAT3 (for example: sunitinib,®’ sorafenib*® WP
1066, corosolic acid”™® and oleanolic acid®'), STAT6,* c-Myc."3
PI3K** KLF4,” HIFs,” Ets2”” and Mtor.”®

BLOCKADE OF IMMUNE CHECKPOINTS

Among the most promising approaches to activate therapeutic
antitumor immunity is the blockade of the immune checkpoints.
Immune checkpoints are inhibitory pathways employed by the
immune system to maintain self-tolerance and thereby prevent the
development of autoimmunity.® They also help to regulate the
duration and amplitude of physiological immune responses against
pathogens in order to minimize collateral tissue damage and
prevent immunopathology during infection. There is increasing
evidence that tumors exploit certain immune checkpoint pathways
and thereby subvert antitumor immunity, especially T cell
responses specific for tumor antigens. Fortunately, most of the
immune checkpoint pathways are initiated by ligand-receptor



interactions, thus they can be readily blocked using neutralizing
monoclonal antibodies and inhibitory peptides or modulated using
recombinant forms of ligands or receptors. This can help to drive
effector immune responses and can enhance the efficacy of tumor
vaccines and immunotherapeutics.

T cell—APC interaction involves cell surface co-stimulatory and
co-inhibitory molecules,”® as well as membrane receptors that are
involved in adhesion and migration. These include members of
the immunoglobulin superfamily, such as CD80/CD86-CD28
molecules and the TNF receptor (TNFR) superfamily, such as
CD40-CD40L. Antagonizing the interaction between co-inhibitory
cell surface receptors with neutralizing antibodies or inhibitory
peptides can block the tolerogenic pathways. For example,
blockade of CTLA-4 pathway and programmed cell death
protein 1 (PD-1)-PDL-1 (also known as B7 homolog 1; B7H1)
pathway can enhance immune responses. DCs from ovarian
carcinomas overexpress B7H-1 (PD-1) and blockade of B7-H1
reduced IL-10 and enhanced IFN-y production by T cells, thereby
reduced the growth of human ovarian carcinoma in non-obese
diabetic-severe combined immunodeficient mice.'* Furthermore,
B7H4 expression in gastric cancer is associated with poor
survival.'”’ Expression of B7-H4 by APC is enhanced by Treg
cells through IL-10 production,” and blockade of B7-H4
enhances antitumor T cell responses.'”® Alternatively, agonists
that induce signaling via co-stimulatory cell surface receptors,
such as CD28, CD137, CD27 and CD40 have been used to enhance
lymphocyte priming to promote antitumor immune responses.""
Ipilimumab, a CTLA-4-specific monoclonal antibody, developed by
Bristol Myers Squibb, approved by the FDA in 2011 for the
treatment of metastatic melanoma, was the first immuno-
therapeutic based on the blockade of immune checkpoints.
However, the inhibition of CTLA-4 is associated with
immune-related adverse events,'°* including colitis/diarrhea,
dermatitis, hepatitis and  endocrinopathies.®®  Another
CTLA-4-specific monoclonal antibody, tremelimumab, is currently
being evaluated for the treatment of several other cancers as a
monotherapy, or as an adjuvant in a DC vaccine. oro8

An antibody that targets the co-inhibitory molecule PD-1, BMS
936558, has been evaluated in clinical trials and has shown
significant and durable responses in several types of refractory
tumors.'® This antibody was designed to represent newer
generation of immunomodulatory biologics that stimulate highly
effective and long lasting host tumor immunity with controllable
autoimmune toxicities. However, endocrine toxicities have been
reported with this antibody. Other drugs that target PD-1,
including MK3475, CT-011 and AMP-224 are currently in clinical
trials for different cancers. Furthermore, Genentech, AstraZeneca
and Roche have antibodies against PDL-1 under clinical evaluation
for solid tumors, melanoma or renal cell cancer.'®® Additional
immune checkpoints inhibitors under evaluation include those
that target lymphocyte activation gene 3,'%'"" 284 (also known
as CD244), B and T lymphocyte attenuator, ' T cell membrane
protein 3''*""* and adenosine A2a receptor.'’

A number of immunotherapeutics based on multiple antibody
and immunoglobulin fusion proteins targeting co-inhibitory
molecules are in pre-clinical and clinical trials (for example,
IMP321 against lymphocyte activation gene 3 is in phase Il
clinical trial in breast cancer). Alternatively, the direct activation
of co-stimulatory molecule signaling pathways using agonists,
such as the monoclonal antibody TGN1412 specific for CD28 has
the capacity to stimulate naive human T cells without the need
for a T cell receptor signal. This has been evaluated in clinical
trials. However, within 90min of infusion of the antibody,
severe systemic inflammatory responses were induced, char-
acterized by a massive pro-inflammatory cytokine storm
followed by multi-organ injury and lymphocyte depletion.
Fortunately, all volunteers survived after receiving immunosup-
pressive treatments and cardiopulmonary support, and this trial

cautioned against the global non-discriminatory stimulation of
naive T cell activation.' ©

TLR LIGANDS AS IMMUNOTHERAPEUTICS AND ADJUVANTS
FOR CANCER VACCINES

A new approach to the development of tumor vaccines and
immunotherapies has focused on enhancement of effector T cell
responses by targeting innate immune cells and the receptors that
mediate their activation. Pathogen recognition receptors, in
particular TLRs, sense pathogen-associated molecular patterns
and are the primary targets for activation of the innate immune
cells and are fundamental in the development of effective
adaptive immune responses. Innate immune cells not only act
as APC for T cells but also provide signals necessary for T-cell
activation. Ligand binding to the TLRs, such as lipopolysaccharide
to TLR4, flagellin to TLRS, CpG to TLRY, activates downstream
intracellular signaling cascades through the transcription factors
NF-kB, interferon regulatory factor 3, mitogen-activated protein
kinases leading to the production of pro-inflammatory cytokines
and type | interferons, which in turn activate co-stimulatory
molecules, which are necessary for the antigen-presenting
function of DCs and macrophages to activate T cells. Therefore,
TLR agonists are potent activators of innate and adaptive immune
responses and thus can act as adjuvants to promote immune
responses against tumor antigens.

Synthetic ligands for TLR4, TLR7/8 and TLR9 have been through
clinical trials against cancer''”''® and the TLR7 agonist,
imiquimod (Aldara) has been licensed for clinical use for the
treatment of superficial basal cell carcinoma.® However,
unsatisfactory results have been obtained from clinical trials
with other TLR agonists, and one pharmaceutical company
halted its clinical program for PF-3512676, a CpG
oligodeoxynucleotide that activates TLR9."® Furthermore,
the TLR4 agonists OK-432 and OK-PSA have been evaluated
as immunotherapeutics for uterine, cervical and non-small
lung cancer, but did not show promising results in most
patients.'?%?!

In addition to the use of TLR agonists as direct tumor
immunotherapeutics, TLR agonists have also been used as
adjuvants for co-administration with tumor antigens, peptides,
recombinant proteins or killed tumor cells. The detoxified
derivative of lipopolysaccharide, monophosphoryl lipid A has
shown promise as an adjuvant for vaccines against multiple
tumors.'?? Currently, a TLR3 agonist, hiltonol, is being evaluated in
clinical trials as an adjuvant for NY-ESO-1 protein vaccine in
patients with high-risk melanoma.'”® A study of hiltonol
administered with tumor lysate-pulsed DC vaccines is also
ongoing in patients with malignant glioma.'”> Immunization of
melanoma patients with the melanoma antigen Melan-A/MART-1
formulated in incomplete Freund's adjuvant with Csz-ODN
induced strong antigen-specific CD8 ' T-cell responses.'**

Studies in mice have demonstrated mixed results with TLR
agonists as adjuvants for tumor vaccines. Prophylactic but
not therapeutic immunization with CpG-ODN in a transgenic
mouse model expressing V40 T Ag prevented tumor growth.'?*
Furthermore, immunization of Tg mice expressing the Her-2/neu
gene product with a synthetic peptide specific for Her-2/neu in
combination with CpG-ODN prevented tumor growth in mice.'*®
Furthermore, the efficacy of a DC tumor vaccine was enhanced
with the use of CpG as an adjuvant in the presence of
a p38 mitogen-activated protein kinases signaling inhibitor.’*”
Finally, the therapeutic efficacy of adenovirus expressing
human tyrosinase-related protein 2 was enhanced with a
peritumoral injection of CpG and poly(:C) (a synthetic ligand
for TLR3)."

It has also been demonstrated that TLR agonists have the
potential to break tolerance to self-antigens by inhibiting the



function of immunosuppressive cells such as Tregs.**'*" TLR
induced IL-6 production by DCs blocked the suppressive function
of CD4*CD25* Treg cells.'”” The TLR3 agonist Poly(:C) has been
shown to enhance tumor-suppressing M1 macrophages at the
expense of tumor-supporting M2 macrophages and thus
inhibit_the 3|:;roduction of anti-inflammatory cytokines IL-10 and
TGF-."*'**  Furthermore, lipopolysaccharide and CpG can
enhance activation of NF-kB pathways important for the
establishment of the M1 phenotype of macrophages and
their production of the inflammatory cytokines IL-12, IFN-o/f
and TNF-.'"®'3* It is now recognized that TLR agonists are
effective adjuvants for cancer vaccines through their ability to
promote the differentiation of IFN-y-secreting Th1 cells. However,
TLR2 agonists have the potential to inhibit effector T cell
responses’** and all TLR agonists stimulate IL-10 as well as IL-12
production from DC and thereby promote induction of IL-10"
Treg as well as Th1 cells.”*® This has lead to the idea of using
combinations of TLR activation with inhibitors of Treg] cell
induction to promote more effective antitumor immunity.’
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COMBINATION STRATEGIES FOR NEXT-GENERATION CANCER
IMMUNOTHERAPEUTICS AND VACCINES
Our increased understanding of the tumor microenvironment and
the immune responses that mediate and regulate antitumor
immunity has provided a foundation for the rational development
of vaccines and immunotherapeutic approaches for the treatment
of cancer. Whilst vaccines and immunotherapeutics that target
one arm of the immune system have shown some promising
results in generating antitumor responses, many of these are
subverted by a failure to block the regulatory responses
associated with the tumor. Conversely, strategies that globally
suppress Treg cells increase the risks for the patient of developing
autoimmune diseases. The design of combination vaccines or
therapies that activate the inflammatory signaling pathways that
target the tumor and specifically block inhibitory pathways in the
immunosuppressive tumor microenvironment although challen-
ging may be the way forward (Figure 2).

There have already been a number of studies in mice that have
demonstrated the benefits of using combination approaches that
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Figure 2. Combination immunotherapeutic/vaccine approaches against tumors. (a) In the initial stages of immune response against tumors,
the local tissue resident innate immune cells, including macrophages and DCs recognizes the tumor antigens, are activated and migrate to
regional lymph nodes via the lymphatic vessels, where they activate the naive T cells by presenting the tumor antigens. Co-stimulatory and
co-inhibitory molecules on APC interact with ligands on T cells, leading to the proliferation of effector and regulatory T cells respectively.
A high percentage of immunosuppressive cells, including Treg cells, MDSCs, M2 macrophages, infiltrate the tumor microenvironment, which
inhibit the effector immune responses against tumor. (b) Combination vaccine or immunotherapeutic approaches that target the immune
response pathway are effective means of enhancing antitumor immunity. Strategies that combine innate cell activation with TLR agonists with
depletion or inhibition of Tregs and MDSCs, or blockade of co-inhibitory molecules can enhance effector T cell responses against the tumor.



target multiple points in the immune system to enhance the
antitumor immunity. For example, a study has demonstrated that
the efficacy of DC vaccine against B16 melanoma in mice can be
enhanced by the gene silencing of TGF-B1, which reduced the
tumor-associated Treg cells.”*® Furthermore, it has been shown
that a single dose use of cyclophosphamide can reduce the
numbers of Treg cells and enhance immune responses to the
renal cell cancer vaccine IMA901, thus leading to prolonged
survival of cancer patients after vaccination.” Also, a
combination of the TLR agonist flagellin and a class | PI3 kinase
inhibitor has been shown to block induction of Treg cells and
promote effector T cells that mediate rejection of tumors in
mice.'*® While PI3 kinase inhibitors are already in clinical trials
based on their ability to arrest cell proliferation and induce tumor
cell death, this study demonstrated that PI3 kinase inhibitors also
attenuated TLR-induced IL-10 and TGF-f§ and thereby inhibited
induction of Treg cells. Furthermore, gemcitabine has been shown
to reduce the numbers of splenic MDSC in tumor-bearing mice
and enhance antitumor immunity when used in combination with
IFN-B.** In a HER-2/neu tumor model, therapeutic administration
of anti-glucocorticoid-induced TNF receptor monoclonal antibody
with a HER-2/neu vaccine enhanced vaccine efficacy and
protected against pre-existing tumors.

The benefits of combination approaches to inhibit immune
checkpoints has recently been demonstrated with the report that
the blockade of PD-1/PD-L1 pathway using anti-PD-L1 neutralizing
antibodies or depletion of Treg cells alone failed to prevent
recurrence of tumors, whereas the combination of PD-L1 blockade
with Treg depletion effectively mediated disease regression.'*'
Furthermore, immune checkpoint blockade using anti-PD-L1 and
anti-LAG-3 antibodies overcame the requirement to deplete
tumor-specific Tregs.'*’ Double immune checkpoint blockade
with ipilimumab (anti-CTLA-4) and nivolumab/BMS-936558 (anti-
PD-1) has recently been evaluated in a phase | clinical trial in
patients with advance melanoma.'*? The results revealed that the
combination treatment induced clinical activity in 65% of patients,
with tumor regression of 80% or more in 53% of patients at the
maximum doses associated with acceptable side effects. This
combination may prove to be powerful for unleashing immune
responses to melanoma, provided the incidences of autoimmune
adverse effects are manageable.

Blockade of immune checkpoints or the inhibition of immuno-
suppressive cells are clearly promising approaches for the
treatment of cancer. However, global blocking of the anti-
inflammatory arm of the immune system alone significantly
enhances inflammatory responses, which can lead to the breaking
of immune self-tolerance, thereby inducing autoimmune/auto-
inflammatory side effects including rash, colitis, hepatitis and
endocrinopathies (summarized by Corsello et al. 2013).'%
Generalized non-specific activation of the immune system as a
result of blockade of immunosuppressive cells or checkpoints
when combined with immune stimulators also has the potential to
generate systemic inflammation. Thus a major challenge in the
blockade of immune checkpoints alone or in combination with
immune activators is to avoid exceeding the limits of safety
associated with removing the natural breaks on the immune
system that may lead to unacceptable toxicities. We believe that
this can be achieved by employing strategies that specifically
enhance tumor-specific immune responses, while transiently
blocking immunosuppressive networks, not systemically but
locally in the tumor or the draining lymph nodes. More specific
inhibition of tumor associated immunosuppressive cytokines and
cells and careful and controlled activation of immune system has
the potential to generate antitumor immune responses without
excessive systemic inflammation or autoimmune diseases. One
approach to achieve this objective involves the use of TLR agonists
as immunotherapeutics or adjuvants in tumor vaccines, in
combination with transiently depleting immune suppressive

cells or blockade of immune checkpoints at the time of
immunization in the vicinity of the tumor. For example, it has
been shown that the efficacy of TLR agonists as therapeutics or as
adjuvants in a DC vaccine were enhanced when Treg cells
induction in the tumor microenvironment were attenuated
through inhibition_of p38 mitogen-activated protein kinases or
Pi3K signaling.'””"'*® Transient inhibition of Treg cells at the time
of immunization generated potent antitumor immunity and
immunological memory and is less likely to be associated with
systemic autoimmunity. Therefore, combination approaches that
specifically inhibit tumor-associated Treg and innate suppressor
cells with concomitant enhancement of antitumor -effector
immune responses have considerable potential as safe and
effective cancer immunotherapeutics and vaccines of the future.
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