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Abstract
Context—Large genomic copy number variations (CNVs) have been implicated as strong risk
factors for schizophrenia. However, the rarity of these events has created challenges for the
identification of further pathogenic loci, and extremely large samples are required to provide
convincing replication.

Objective—To detect novel CNVs increasing susceptibility to schizophrenia, utilizing two
ethnically homogeneous discovery cohorts and replication in large samples.

Design—Genetic association study of microarray data.

Setting—DNA samples were collected at nine sites from different countries.

Participants—Two discovery cohorts were comprised of: a) 790 cases (schizophrenia and
schizoaffective disorder) and 1347 controls of Ashkenazi Jewish descent; and b) 662 trios
(offspring affected with schizophrenia or schizoaffective disorder) from Bulgaria. Replication
datasets consisted of 12,398 cases and 17,945 controls.

Main outcome measure—Statistically increased rate of specific CNVs in cases versus
controls.

Results—One novel locus was implicated: a deletion at distal 16p11.2, which does not overlap
the proximal 16p11.2 locus previously reported in schizophrenia and autism. Deletions at this
locus were found in 13 out of 13,850 cases (0.094%) and in 3 out of 19,954 controls (0.015%),
Fisher Exact p = 0.0014; OR = 6.25 (95%CI = 1.78 – 21.93).

Conclusion—Deletions at distal 16p11.2 have been previously implicated in developmental
delay and obesity. The region contains nine genes, several of which are implicated in neurological
diseases, regulation of body weight, and glucose homeostasis. A telomeric extension of the
deletion, observed in about half the cases but no controls, potentially implicates an additional eight
genes. Our findings add a new locus to the list of CNVs that increase risk to develop
schizophrenia.

Introduction
Uncovering the genetic factors underlying schizophrenia (SZ) has proven difficult despite
heritability estimates of up to 80% 1. Copy number variants (CNVs) at several loci show
consistently replicated evidence for association with SZ 2, 3. These CNVs are individually
very rare, are not fully penetrant, and are found cumulatively in ~2% of SZ cases; therefore,
large samples were required to establish their association. Given their low baseline
frequency, it is likely that further CNV susceptibility loci have yet to be discovered.

In the present study, we report the identification of a CNV locus at distal 16p11.2 that
increases risk for SZ. Findings pointing to a possible association between this locus and SZ
were obtained independently by two teams of investigators. During the process of obtaining
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replication data, the two groups became aware of each other’s work and decided to combine
results from their discovery and replication cohorts. Using highresolution microarrays, one
group (from New York and Israel) examined a SZ case-control cohort from the Ashkenazi
Jewish (AJ) population, while the other group (from Cardiff, UK) examined a cohort of
parent-offspring trios from Bulgaria (BG). Because of the need for large-scale replication,
we contacted research groups worldwide willing to share raw data from microarray-based
CNV studies in cohorts of SZ and control individuals, and obtained data from a total of
~34,000 individuals.

Methods
Bulgarian Trios sample (BG)

Sample description—The final sample (after QC) consisted of 662 Bulgarian offspring
with all their parents, in 638 families (615 families with one offspring, 22 with two offspring
and one with three). Details on this cohort have been previously described4, but that
previous publication only reported on de novo CNVs; here we report on the transmitted
CNVs in this cohort. This cohort does not include patients with severe developmental
disorders (all probands had attended mainstream schools, from which people with known
intellectual disability were excluded). Diagnoses were made according to DSM-IV criteria 5,
using a SCAN 6 interview and review of hospital discharge summaries. We included
patients with schizophrenia or schizoaffective disorder. Concomitant medical conditions
were not systematically assessed, except as related to psychiatric diagnosis. The CNVs
found in the parents of each trio but not transmitted to the affected offspring comprised the
“pseudocontrol” population listed in Table 1 under “controls”.

Genotyping and Quality Control (QC)—All samples were genotyped on Affymetrix
6.0 arrays at the Broad Institute, USA. Analysis was performed using Genotyping Console
4.0 software, one batch at a time, with each batch containing 70–90 arrays. QC included
removal of CNVs if they were from the X or Y chromosome, less than 15kb, covered by less
than 15 probes or a probe density (size/probe number) greater than 7500bp. PLINK v1.07 7

was used to exclude CNVs if 50% or more of their length was covered by a segmental
duplication (SD). CNV loci with a frequency greater than 1% were excluded. Individuals
with multiple large duplicate CNVs on the same chromosome were excluded, as these are
likely to be artifacts 8. Samples were also removed if their total number of CNVs was very
high and constituted an outlier for the distribution within that sample (>50 CNVs for this
experiment).

For additional QC of the Bulgarian trios we used a modification of the MeZOD algorithm
proposed by McCarthy et al 2009 9 and described in detail in Kirov et al., 2012 4. A Z-Score
is the median of the standardised Log2 ratios for all probes within a specified chromosomal
region. Through comparison of all individual Z-Scores for a given region, true CNVs are
represented as outliers from the Z-Scores normal distribution. We show the distribution of
the z-scores for the 16p11.2 distal region in the eSupplement (eFigure 1), which demonstrate
that the only outliers for this region are the two probands with deletions, and their parents.

Ashkenazi Jewish sample (AJ)
Sample description—Case (n=1156) and control (n=2279) samples were selected from
an Ashkenazi Jewish repository (Hebrew University Genetic Resource, HUGR, http://
hugr.huji.ac.il). Patients for discovery analysis were recruited from hospitalized inpatients at
seven medical centres in Israel. All diagnoses were assigned after direct interview using the
structured clinical interview (SCID) 10, a questionnaire with inclusion and exclusion criteria,
and cross-references to medical records. Chronic medical disorders and conditions were
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recorded based on both patient report and hospital records. The inclusion criteria specified
that subjects had to be diagnosed with SZ or schizoaffective disorder by DSM-IV criteria 5,
that all four grandparents of each subject were reported to be of Ashkenazi Jewish ethnic
origin, and that each subject or the subject’s legal representative has signed the informed-
consent form. Exclusion criteria included psychotic disorder due to a general medical
condition, substance-induced psychotic disorder, pervasive developmental disorders, or any
Cluster A (schizotypal, schizoid, or paranoid) personality disorder. Samples from healthy
Ashkenazi individuals were collected from volunteers at the Israeli Blood Bank; these
subjects were not psychiatrically screened but reported no chronic disease and were taking
no medication at the time of blood draw. Corresponding institutional review boards and the
National Genetic Committee of the Israeli Ministry of Health approved the studies. All
samples were fully anonymized immediately after collection and subsequently, genomic
DNA was extracted from blood samples through use of the Nucleon kit (Pharmacia).
Genotyping and analyses were performed under protocols approved by the Institutional
Review Board of the North Shore-LIJ Health System.

Genotyping and Quality Control (QC)—Genotyping was performed with Illumina
HumanOmni1-Quad arrays according to manufacturers’ specifications for ~ 1.4 million
genome wide markers (~900K SNPs and ~500K CNV intensity probes). SNPs were filtered
on the following basis: call rate < 98%, minor allele frequency < 0.02 and Hardy-Weinberg
exact test P < 0.000001 in controls. Samples were filtered based on genotype quality control
filtration (sample call rate < 97 %, gender mismatch) and examined for cryptic identity and
first- or second-degree relatedness using pairwise identity-by-decent (IBD) estimation
(PI_HAT) in PLINK 7 with 128,403 LD pruned (r2 > 0.2) genome wide SNPs. Samples
were excluded based on PI_Hat > 0.125; the individual with the lower call rate from each
control/control or case/case pair was excluded, and controls were excluded from case/
control pairs. The remaining samples were further examined for underlying population
stratification using Principal Component Analysis (PCA) with Ancestry Informative
Markers (AIMs) specific for the Ashkenazi Jewish population 11. Samples with PCA results
suggestive of one or more non-AJ grandparents were identified as outliers based on first
principal component score > 0.01 and were excluded from further analysis (eSupplement,
eFigure2). After quality control based on SNP markers, the dataset contained 2544 samples
comprised of 904 cases (573 male and 331 female) and 1640 controls (1216 male and 424
female) genotyped on 762,372 high-quality SNPs with 99.8 % overall call rate.

CNV calls and validation—Normalization and log ratio data calculation for 904 cases
and 1640 controls were performed using Illumina GenomeStudio. The resulting log2 R
ratios (LRR) and B-allele frequencies (BAF) were used to identify CNVs on autosomes for
each subject. We used variations of three algorithms for CNV detection: PennCNV 8,
QuantiSNP 12 and cnvPartition (www.illumina.com). QuantiSNP and PennCNV are based
on Hidden markov model (HMM) and cnvPartition is based on bivariate Gaussian
distribution as implemented at Illumina GenomeStudio (www.illumina.com).

Following the methods of Need et al., (2009) 13 and Sanders et al. (2011) 14, we excluded
any individuals with pennCNV threshold of LogR standard deviation (LRR_SD) ≥ 0.30,
BAF drift ≥ 0.002, and/or Waviness factor (WF) deviating from 0 by > 0.04. Individuals
containing > 500 CNVs (before filtration described below) were also excluded from the
analysis. The final dataset contains 790 cases and 1347 controls.

We further excluded CNV calls based on QC thresholds recommended by each of the
respective algorithms. Thus, CNV calls were excluded from further analysis if the Log
Bayes Factor was ≤ 10 in QuantiSNP, confidence threshold ≤ 35 in cnvPartition, or default
QC parameters in PennCNV were not obtained.
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Following the QC steps all the CNV calls were merged using CNVision program 14 The
final rare CNV calls were made based on consensus calls from all three algorithms (with no
more than 25% of the length drawn from one algorithm only), with the following filtration
criterion: ≥ 20 probes, ≥ 100kb in size, and <1% frequency in the total sample. CNVs of the
same type (i.e., deletion or duplication) that were separated by ≤3 probes were merged into
one contiguous segment as recommended by Vacic et al., 2011 15. All CNVs were annotated
using CNVision. Based on previous findings in SZ and other neuropsychiatric disorders16,
purely intergenic CNVs were excluded.

Replication samples
Evidence for replication of the findings was obtained from seven case-control samples
recruited and genotyped by other teams from the USA, Europe and Japan. These comprised
12,398 cases and 17,945 controls genotyped with high-resolution arrays. Details on the
samples, genotyping platforms and QC used by these teams are detailed in the eSupplement,
Section 1. The minimally affected region was covered well by all arrays used by the other
teams (eFigure 3).

All coordinates in this paper are based on the human genome build NCBI36/hg18.

Results
After stringent quality control procedures, 790 cases and 1347 controls from the AJ cohort,
and 662 probands from 638 BG families were examined for rare, large CNVs. Replication
was sought in other case-control datasets for any CNVs that were observed in at least two
cases and no controls (for the AJ cohort) and transmitted at least twice with no non-
transmissions in the BG trios cohort. Several relevant CNVs were found in the two
discovery datasets at loci already reported to increase risk to develop SZ, but as they are
already known susceptibility factors, we only list them in the eSupplement eTable 4. In the
AJ cohort, CNVs at two additional loci were observed in two cases and no controls. These
were at chromosome 6q14.3 (hg18 coordinates: 85.25–85.58Mb) and 7q33 (133.39–
133.50Mb), but replication evidence was not observed. No other CNV of this type was
supported by replication evidence in the BG data (apart from the 16p11.2 deletion). The lists
of all rare and large (>100kb) CNVs, in the two samples, that intersected genes, are
available as eSupplement files (AJ_SZ_CNVs_over_100kb.xls and
BG_SZ_trios_CNVs_over_100kb.xls).

The only CNV of interest that overlapped between the two discovery samples was a deletion
at the distal region of 16p11.2, with a minimal common region between 28.73–28.95Mb
(build 36, hg18). This region intersects nine genes and is flanked by two SD blocks (Figure
1). It does not overlap the known 16p11.2 locus at 29.56–30.11Mb that has been implicated
in SZ 9, 16, autism 14, 17 and developmental delay 18. Deletions at this locus were found in
two cases (and no controls) from the AJ cohort and two offspring from the BG samples, both
transmitted from mothers (there were no parents who did not transmit this CNV).
Duplications at this locus were observed in one AJ control and in one BG parent (who
transmitted it to an affected offspring).

We sought evidence for association between this deletion with SZ in seven independent
case-control cohorts (12,398 cases and 17,945 controls) where we had access to the raw data
(Table 1 and eSupplement, Section 1). Deletions overlapping this region were observed in
an additional nine cases and three controls (Fisher exact for the replication sample p = 0.018,
one-tailed; OR = 4.35 (95% CI = 1.18 - 16.06). Combining the discovery and replication
cohorts, we found 13 deletions among 13,850 cases (0.094%) and three among 19,954
controls (0.015%) (two-tailed Fisher exact test p = 0.0014, OR = 6.25, 95%CI = 1.78 -
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21.93). The positions of the CNVs are shown in Figure 1. There was no excess of
duplications in cases at distal 16p11.2.

The minimal common region for all deletions reported in Table 1 encompasses nine genes
within a 220kb interval flanked by blocks of SD (Figure 1). Some CNVs extend over the
SDs, (however, we note that no CNV in the 16p11.2 region was excluded on the basis of
>50% overlap with SD). Different breakpoints that extend over the flanking SD regions (but
do not reach the telomeric region that is free of SDs) are more likely to reflect the different
coverage of arrays (eSupplement eFigure 3) and/or the problems of calling CNVs over
repetitive regions, rather than to have different pathogenicity, especially as these regions
have fewer genes. Seven deletions cover an additional region of unique DNA sequence, at
the telomeric side (very left on Figure 1, the interval free of SDs), that contains further
genes. Evidence for pathogenicity of the seven CNVs that extended over the telomeric
region was nearly as strong as for the implicated critical region (7/13,850 cases vs. 0/19,954
controls, two-tailed Fisher exact test p = 0.0019). However the critical “distal 16p11.2
region” remains the more likely candidate due to its confirmed involvement in other
neurodevelopmental disorders (see Discussion), and the lack of isolated CNVs in the smaller
telomeric region. Out of the three controls with deletions, one (in the Swedish dataset) was
recruited at the age of 45, had diabetes type 2, and high blood pressure, but no other medical
or psychiatric problems. No further information is available on the two anonymized controls
from the WTCCC2/Irish dataset: one is from the British Blood Transfusion service
(therefore presumably healthy), and the other one from the 1958 cohort.

Importantly, the new “distal” locus is approximately 600kb telomeric from the previously
implicated “proximal” 16p11.2 CNV (29.56–30.11Mb) 9. CNVs at “proximal” 16p11.2 have
been shown to increase risk for SZ, autism, and developmental delay when duplicated 5,16,
and for autism and developmental delay when deleted 9, 14, 18. None of the CNVs in our
study extend over the “proximal” region (Figure 1).

We have previously demonstrated that the known SZ-associated CNVs have high mutation
rates and that strong selection pressure operates against them 24. We are able to estimate the
de novo rate for this deletion at 25% based on the current study (two transmitted deletions
and no information on inheritance in the other subjects) and four available datasets with a
total of 5 de novo occurrences out of 20 events with a known inheritance 19–22 (eSupplement
Section 7). This approximates to a selection pressure of 0.25. In line with this we observe
the two BG proband deletions to be found on different haplotypes, and therefore very likely
to be independent mutations.

Phenotypic data, where available, indicate a spectrum of typical presentations of SZ with no
evidence for intellectual disability, or a specific clinical profile (eTable 2). This is similar to
the lack of specific clinical presentations reported for the other large CNVs implicated in
neurodevelopmental disorders 2, 14, 19. The possible exception is the presence of two
individuals with obesity and two with type 2 diabetes (plus one control with type 2 diabetes)
in line with previous reports, (see Discussion). In addition to the 13 cases listed in Table 1
and eTable 2, we note that the brother of one case (in the Japanese sample) carries the same
deletion and is also affected with SZ. Further probands had positive family histories of SZ,
but we do not know if their affected relatives also carry the deletion. Although the
transmission status of the CNVs is only available for the BG cohort, we further note that
both deletions were transmitted maternally.
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Discussion
Several lines of evidence from the literature support the distal 16p11.2 deletion as a true SZ-
associated CNV locus. The deletion has been implicated in developmental delay and other
clinical phenotypes 18, 19, 20 (details in eTable 1), similar to other SZ-associated CNVs 2, 3, 9.
Briefly, Cooper et al. (2011) 18 reported a very similar increased rate of 0.1% (15/15,767)
for this deletion in children with intellectual disability, autism spectrum disorders and
congenital malformations, that were referred for genetic testing, compared with a control
rate of 0.01% (1/8329). Similar rates were found in another large study on patients with
developmental delay and a range of other abnormal phenotypes 19: 31/23,084 cases (0.13%)
and 1/7700 controls (0.01%). Interestingly, out of the six cases in that study, for whom
detailed clinical information was available, one had autism, behavioral problems/ADHD and
SZ, another one had behavioral problems/ADHD and bipolar disorder, and a third one had
autism. Four of these six cases were overweight and all six had developmental delay.
Moreover, additional telomeric extension of the deletion (to approx. 28.4Mb) was present in
9 of the 31 cases and was never observed in controls. Similarly, in our study, 7 of the 13 of
the cases demonstrated this telomeric extension, whereas this was not seen in the controls.
We note that the controls used in these studies partially overlap ours, so these control rates
are not independent, (eSupplement Section 4, eTable 1). Additional published reports of
distal 16p11.2 deletions include five patients from two separate families 21, all of whom
have developmental delay and behavioral problems, and one child out of 4284 patients with
mental retardation 22.

Distal 16p11.2 deletions have also been shown to be enriched in patients with severe early-
onset obesity (3/300 = 1%) compared to unscreened population controls (2/7366 =
0.03%) 20, consistent with the findings in the study by Bachmann-Gagescu et al 19,
discussed above. It was postulated that the most likely obesity candidate within the distal
16p11.2 region is SH2B1, as this gene plays a role in the regulation of body weight and
glucose homeostasis in mice 23. Two of our cases were obese/overweight, and two cases and
one control had type 2 diabetes, (consistent with being overweight although this information
is not available). However, one carrier (from Japan) had documented evidence of normal
weight, and several did not have recorded evidence of obesity despite being drawn from
cohorts that were assessed for this and other medically-relevant phenotypes.

Considerable heterogeneity of phenotypic expression has been reported for most large rare
CNVs implicated in SZ, with carriers often manifesting non-psychotic phenotypes including
intellectual disability, autism, epilepsy, obesity, and cardiac disorders 2,16. Pleiotropy
appears to also be the case for distal 16p11.2 deletions, possibly due to the presence of
multiple genes within the deleted region.

Clinical presentations for distal 16p11.2 deletion carriers are unremarkable for SZ, with
diagnoses ranging across all major subtypes: paranoid, catatonic, undifferentiated and
schizoaffective. Age of SZ onset for deletion carriers ranges from 15–30 (mean = 23.4), with
no clear evidence for early onset. Two parents who transmitted the deletions to probands did
not have psychotic disorders, although one had a mood disorder. Out of the three controls
who carry the deletion, one (from Sweden) did not report psychiatric problems at the age of
45, when interviewed, past the usual accepted age for the period of risk for SZ. Of the other
two controls, one had also passed through the risk period (from the 1958 cohort, examined at
the age of 44–45, see eSupplement) and the third one, a blood donor, is presumably healthy
and not on any medication. These observations indicate that this CNV does not have full
penetrance, similar to most other CNVs implicated in SZ. None of the carriers had any other
SZ-associated CNVs.
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Mutations in several of the nine genes within the critical region of distal 16p11.2 have been
implicated in neurological diseases: homozygous mutations in the gene TUFM have been
described in infants with fatal encephalopathy 25; ATP2A1 is implicated in Brody disease in
which patients are unable to relax their muscle during exercise 26, and its homologue,
ATP2A2 has been implicated in neuropsychiatric phenotypes 27; ATXN2L (although
unknown in function) encodes a protein belonging to the spinocerebellar ataxia family. The
remaining genes are either involved in immunity, insulin and leptin signaling (SH2B1) or
are of unknown function. In addition to the nine genes in the minimal critical region, the
larger CNVs with telomeric extensions include eight additional deleted genes (seven of them
in DNA region that is free of SDs, Figure 1), possibly increasing the pathogenicity of these
larger CNV. Most notable among these eight genes is CLN3, where recessive mutations are
associated with Batten disease, characterized by childhood-onset neurodegeneration 28.
Moreover, CLN3 is the only gene in either the minimal or the extended region that is
implicated in synaptic function based on Gene Ontology annotation. Our previous study of
de novo CNVs indicated an enrichment of such genes in SZ-related events, however CLN3
is not among the post-synaptic density (PSD) genes, implicated in that study 4. Additional
evidence from animal knockout models may help disentangle the contributions of each of
these genes to the observed range of phenotypes.

In conclusion, we have obtained strong evidence for the role of a new CNV locus in SZ.
Similar to other such loci, it is very rare and increases risk for other neurodevelopmental
phenotypes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Microdeletions at 16p11.2 distal region in the current study
The region intersects nine genes and is flanked by two blocks of segmental duplications
(SD). Red lines represent SZ cases deletions and blue lines represent control deletions. The
double headed arrows indicate the intervals implicated in the current study (distal 16p11.2
deletion; minimal common region 28.73–28.95Mb, hg18), and the known 16p11.2 CNV
locus (known proximal 16p11.2 region, minimal common region 29.56–30.11Mb).
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