
The Method of Path Coefficients and OLS Regression 

R. C. G E A R Y 

SO M E time ago Sir Maurice Kendall suggested to the writer that a study o f 
the theory and practice of path coefficients might be rewarding as shedding 
light on the still dark patches in the theory o f relationship between random 

variables. 
For the writer this is a personal matter. I n holding (after a reasonably close train 

of argument—see Geary, 1963) that, i n multivariate OLS regression, the individual 
coefficients, i n general, are objectively meaningless, he is probably sti l l i n a minority 
amongst statisticians, though he is unaware of any systematic refutation o f his 
position. 

Attention is confined here to parts of Sewall Wright 's (1934) seminal paper. 
The writer is aware (mainly through D r D . E. Chambers) that there is a fairly large 
subsequent literature and that recently the path coefficient method has been used 
in social research. He has not read these papers; accordingly he is less concerned 
to claim novelty for any results i n this paper than to find out i f the path coefficients 
approach leads to a modification of the somewhat negative personal view expressed 
i n the last paragraph. We shall find that i n certain conditions i t does. There are also 
some comments on Wright's analysis. 

Path Coefficients 
Wright's paper, over 40 years old, is greatly to be admired for its comprehensive­

ness and thoroughness. For those not familiar wi th the subject a brief summary 
may be desirable, wi th special reference to two of his telling applications. I n the 
following expose, notation different from Wright's is used. 

Write 

y = b1x1+b2x2+ . . . + V « 00 
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each of the k+i variables being standardised from n sets,1 i.e., wi th 

y =0, Ey2 = n 

xt = 0, Ext

2 = n, i = 1, 2,. . . , k 

There is no disturbance term but i t is clear that Wright had OLS regression in 
mind. He contemplates additional variables "u", so that i t is possible that the 
ultimate representation is deemed to be exactly 

k K 
y = E biXi+ E b,Xj, (2) 

with only k (out of a possible K) variables known, so that nowadays we would 
write "y" for the "y" on the left o f (1). The bt are, by definition, the path 
coefficients. Because of standardisation, when k = 1, bt = r l s the coefficient of 
correlation (cc) between y and xt. I n general the path coefficients are functions of 
the ccs of the system, through the standard OLS equations for determining the bt. 

Essential i n Wright's theory is also the notation of causal sequence, represented 
diagrammatically. Thus Fig. 1 w i th its single-headed arrows and connecting lines 2 

is a causal representation of formula (1). 

F I G 1 

W i t h the single-headed arrows the head indicates the effect, i.e., the depvar y, 
the other end the cause, the indvars xt. The other lines indicate that the variables 
are possibly correlated, but without specification of direction of causation. 
Incidentally, throughout this paper we use the same algebraic notation, e.g., y and 
the xl} for both description of variables and their measure. 

Two Examples3 

Wright's "simplest application" was in connection with the factors which 
determine the average weight of guinea-pigs at bir th. Very full and clear data are 
given resulting from thousands of experiments. 

1. For simplicity of notation, throughout we omit cursive set subscript, say t, ranging 
from 1 to n. Unless otherwise indicated. E is summation according to t. 

2. Wright uses double-headed arrows. The writer thinks this basically illogical and 
possibly misleading, as suggesting causation where none is intended. 

3. A l l figures quoted in the examples are Wright's except as otherwise indicated. 



We reduce the report to bare essentials. Let 

y = Average weight at b i r th 

xx = Pre-natal rate o f growth 

x2 = Length of gestation period 

#3 = Size o f Utter 

Three ccs are given r 2 for (y, x2\ r3 for {y, x3) and r 2 3 for (x2s x3). Causation 
sequences are shown i n Fig. 2. I n fact r 2 = +056, r3 = -066, r 2 3 = —0-48. 

F I G 2 

Note that (1), xL is not precisely denned, (2), that xx and x2 can have causative 
factors 4 other than x3, (3), y is completely determined by xx and x2. Functions 
pertaining to xx are determined from the following equations 

(i) y = b1x1+b2x2 

(ii) xx = r13x3+Z! (3) 

(ii i) x2 — T23X3-\-Z2, 

Disturbances zx and z2 assumed to be uncorrelated wi th x3 and wi th one another. 
I n succession, mean square of (3X1) and mean products of (3)(i) xx2 and (3)(i) xx3 

are set down, as follows 

I = bj+bl+lb^^^ 

(i) = & ? + 6 i + 2 M 2 r 1 3 r 2 3 (using (3) (ii) and (3) (iii)) (4) 

(ii) 0-56 = b^r^+bi 

(iii) -0-66 =bxr13+b2r23 

(4) consists of three equations to determine three unknowns, the path coefficients 
bx and b2 and cc r13, the only other quantity involved, namely, r23, ( = —0-48) being 
given. Though the equations (4) are non-linear an unique solution 5 is easily 
derivable— 

bt = 0-87, b2 = 0-30, r13 = -0-59, (5) 

4. i.e. Indicated by arrows with provenance undefined. 
5. This solution is Wright's. The Referee kindly points out that the solution of (4) 

should be b^ =-86, b2 =-32, hence slightly different. 



to which we add r 2 3 = -0-48. Then, from (4) ( i i i ) , the cc between average weight 
at b i r th and size of litter, namely, r 3 = -066 breaks into two parts (on the right). 

bir13 = -0.51 and b2r23 = -0.15. 

So far the argument is unexceptionable, indeed i t has fascinating aspects. 
Characteristic of the method is the fact that (as we shall also see in the second 
example) variables, objectively undefinable, can be introduced into the calculation 
and their statistical functions calculated. This is the character of xx i n equation 
(3) ( i) . Sewall Wright calls i t "rate of growth". This is quite unnecessary: rate of 
growth, one would think, is YjX2 (Y and X2 being the absolute values of y and x2) 
but Wright carefully refrains from such definition. I n fact xx is simply a standardised 
variable introduced to make (3)(i) an identity, and thus enabling the derivation 
of the crucial (4)(i). This is.the true character of the variable xv I t has nothing 
necessarily to do wi th "rate of growth", unless by definition. Nevertheless, from 
the previous figures —0-51 and —015; Wright states 

The result is an analysis of the correlation between birth weight and size of litter 
into two components whose magnitudes indicate that size of litter has more than 
three times as much linear effect on birth weight through the mediation of its effect 
on growth as through its effect on the length of the gestation period . . . 

The wording is as cautious as the method is ingenious, but one suspects that Wright 
may have had qualms about the introduction of x1} for he goes on to set up the 
standard OLS regression equations of estimation of coefficients c 2 and c 3 ofy on 
x2 and x 3 

• (i) r2 = 0-56 = c 3 + c 2 r 2 3 (6) 

(ii) r 3 = -0-66 = c 3 r 2 3 = c 2 

which he describes as "mathematically identical" wi th the earlier analysis. He finds 
c 3 = —051 as before and states 

The term [ c 3 = —0-51] can be interpreted as measuring the influence of size of 
litter on birth weight in all other ways than through the gestation period. 

Again the wording is careful and the t ruth of the assertion remains to be seen. 
( I t is true: see later.) 

The second example pertains to Sewall Wright's treatment of supply-demand 
(in which he acknowledges the collaboration of P. G. Wright) applied to the 
corn-hog problem. W i t h X and Y representing year-to-year percentage changes in 
quantity and price respectively and again assuming linearity 

Xd = r)Y+D (7) 

Xs = eY+S 



D and S representing demand and supply factors, not otherwise defined, rj 
and e are the demand and supply price elasticities. A t transaction level Xd = Xs = X 
and on standardisation and solution 

x = bud+b^s (8) 

y = b21d+b22s 

Now e = £ n / 6 2 1 and r\ = b12/b2^. On mean-squaring and mean-producting 
from (8) 

(i) i = b2

n+b2

l2+2b11b12rsd 

(ii) I = b2

21+b2

2+2b21b22rsd (9) 

( i i i ) rxy = b11b21+b12b22+(bub22+b12b21)rsd 

Causal relations are indicated on Fig. 3 

F I G . 3: Supply-demand relations. 

(9) consists of three equations i n five unknowns, i.e., the four path coefficients 
b and rsd. For determination, two additional relations are necessary, pertaining 
respectively to demand and supply. These are indicated by a and b on the diagram, 
these being respectively assumed o f the supply and demand situations. W i t h a and b 
also deemed standardised, from (8) we easily derive four additional equations 

(i) = blxrai 

(ii) = b2lra4 

(ii i) rhX 
— bi2rbs 

(iv) — b22rhs 

(10) 

since, by hypothesis, ras and rbd are zero. There are now seven equations to 
determine seven unknowns, namely, the four path coefficients and the three 
ccs r4. „, ra 4 and rbs. I n theory the system is solvable, though (in the writer's view) 
one cannot be sure i f the solutioa is unique i n view o f the non-linearity of the 
equations. 



I n the corn-hog application the possibly serious assumption is made that rsd— o. 
As a factor of type b 

the most important single factor affecting the summer hog pack was shown to 
be the corn crop the preceding year. I t is assumed that i t is a factor [of type b] 
correlated with the supply situation . . . but not with the demand for pork . . . 

The equation system and solution then are 

Equations Solution 

i =b\x+b\2 blx = 0-132 

1 =&Si+&h bl2 = 0-991 

-0-63 = &n&2i+&i2&22 *2i = 0-686 (11) 

-0-47 = b12rbs b22 = -0-728 

0-64 = b22rb, r l s = 0-646 

Values of the price elasticities are £ — Oj .i/ft-j! =•= 0-192 for supply and r\ = 
bi2/b22 = —1-361 for demand. 6 

I t should be pointed out, i n regard to this second example, that, using modern 
terminology, the symbols d and s are "unidentified". As symbols they could have 
been reversed and then the demand price elasticity, i n the corn-hog application, 
would have been found to be small and positive, the supply price elasticity large 
and negative; identification transpires only i n economic interpretation, not within 
the statistical theory developed. 

Again we see illustrated, i n 5 and d, the possibility of deriving functions 
(coefficients and ccs) involving these, without defining them objectively. 

Summary as to the Path Coefficient Method 
The foregoing does not purport to be an adequate account o f Wright's remarkable 

paper. For instance, only the two simplest of many applications have been men­
tioned and these have been briefly treated. Our object has been merely to reveal 
the bare statistical essentials of the method relevant to our main purpose. 

Wright's approach is non-stochastic, except i n the very minor degree that there 
is mention of asymptotic estimates of standard errors of means, ccs, etc. A l l that is 
involved is substitution and summing wi th exact linear equations (though Wright 
treats briefly o f non-linearity). The approach to the study o f relationship is 
essentially through ccs, while modern practice almost entirely favours single or 
simultaneous equation models wi th disturbance elements, treated as random 
variables, hence stochastic. As we shall see, there is less difference between the two 
approaches than might at first appear. 

6. These values calculated from Wright's formulae differ considerably from those 
given by Wright, namely, 6=0-133 and *?=—0-944, for reason unknown. 



Its outstanding characteristic from our point of view is that i t implies an examina­
tion of relationships between the indvars. I t involves a causal ordering of all the 
variables starting wi th xk and culminating in the depvarj'. I t can be represented by 
something like 

xk-^xk_x-> . . • + 1 - > - X ( - > - . . . ^xx->y, 

meaning that xt can be caused only by variables xJ}j > i and all xt may be causes ofy. 
A sufficient condition for such a causal chain is that the variables can be so ordered 
i n time. The whole system is thus recursive or, as i t is sometimes called, a " W o l d 
causal chain". There may be more than one such chain, as i n the Wright-Wright 
demand-supply example above. I n fact, examination may reveal a great variety of 
relationships between all the variables, not necessarily recursive, raising all the 
problems of simultaneity, identification and the rest. 

I n the study of relationships between stochastic variables i n a particular case 
the most onerous part is the derivation of data—the computer w i l l do most of the 
rest. Having gone to this trouble one should surely make full use of what one has. 

The Nature of Linear Relationship between Variables 
The OLS estimate of the coefficient b i n the simple regression 

y = bx+v = yc+v (12) 

x and j> standardised, v the disturbance, n pairs of (x,y) is found from 

E vx = 0, (13) 

with (y—bx) substituted for v i n (13) yielding, of course, b — ryX. (13) can be 
writ ten rvx = 0. We regard the form (13) as more " te l l ing" than the more usual 
form of standard equation. I t says that i f x is to be regarded as the cause of y what 
remains after taking out bx should be unrelated to (literally uncorrelated with) bx. 
There is no point i n the OLS operation at all unless_y and x are related to start wi th . 
I t is therefore natural that we should "purge" the y series unt i l what remains is 
unrelated to what we have taken out. b = ryx is a path coefficient. 

We can even find a path coefficient c for v, supposing (12) writ ten 

y = bx+cv (14) 

with v now deemed standardised. The standard equations for b and c are 

fyx = b-{-cEvxjn 
ur l _ i _ ( I 5 ) ryv = bzvx/n+c 

which, from (13), reduce to b = ryX (as before) and c — ryv. Sewall Wright's 
omission of a disturbance term i n (1) is therefore less serious than might at first 
appear. 



I n the multivariate OLS regression case, the argument is nearly identical. W i t h 

k 
y = S btx.+v = yc+v (15a) 

« = i 

the standard equations for estimating the bt may be written 

E vxt = o, i = 1 ,2 , . . . , k. (16) 

I f disturbance v also be standardised and endowed wi th a coefficient c, clearly 
c = ryv, as before. 

So far, therefore, there is no difference between path coefficient and OLS theory. 

Contribution of Individual Causes to Total Variability 
There is, however, a fundamental difference between the disturbance v regarded 

as a variable, and the other variables. The other variables (x, y i n the simple case) 
are data known in advance, the v are known only in a formal way, ex post. The v 
summarises all we don't know about the system and is treated as a stochastic variable. 
I n OLS regression the only functions we can usefully calculate about i t are its 
variance and functions like the Durbin-Watson d or r (tau) (see Geary, 1970) for 
adjudging the completeness o f yc as estimates of data y, by the test for residual 
non-autoregression. 

From (15a) using (16), 

l=±Zy\+\Zv*t (17) 

so that ZylJn = R2 is the principal measure of the extent to which the k indvars 
represent the y. I n the case of simple OLS regression^?2 = r2

yX. 
As already stated, the writer holds that individual coefficients i n multivariate 

OLS regression are meaningless (except i n the trivial case of all indvars being 
uncorrelated). I t is the whole vector of coefficients that matters, mainly for fore­
casting, or any rate the estimation o f yc, given indvar values. A corollary to this 
view would be that, wi th only the OLS regression available, i t is not, i n general, 
possible to estimate the contribution of individual variables to the total variance 
ofy. I t is possible only to assess the total effect, namely, £y2jn = R2. I t may be 
otherwise i f we have valid causative relations, i.e., OLS regressions, between 
the indvars. 

Let us see what would happen in the simplest case of two indvars. Our treatment 
wi l l be seen to be very similar to that of path coefficients, but wi th the introduction 
o f disturbance terms v and w 

(i) y = b^+biXt+v 
(18) 

(ii) * i = r12x2+w 

The Sewall Wright diagram would be as Fig. 4. 



y 
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Substituting for (i i) in (i) of (18) 

y = (b1r12+b2)xi+(v+b-,w) 

Since (i) and (ii) of (18) are both OLS regressions 

(19) 

Exxv = o, Ex2 v = c, Ex2 w — o (20) 

Hence Ex^v+btw) = 0 so that (19) is also an OLS regression. Hence the contri­
bution of x2 to the variance (which is unity) of y is (b1r12-\-b2y = r | . But from 
18 (i) the contribution of xx and x2 together is 6f+6 |+2& 1 fc 2 r 1 2 . Hence the 
contribution of xt alone is 

I n this particular case we have, therefore, succeeded in splitting up the total 
contribution (to the total variance of y) o f the two indvars into the contributions 
of each, i n what seems to be a consistent fashion. I n particular, i n the case (already 
mentioned as trivial) of r12 = o, the total contribution splits up into b\, and b\, 
as i t should. 

Generalisation involves the assumption that variables can be ordered in a causa­
tive fashion illustrated in Fig . 5 for k = 4. 

bl+bl+ib^-ib^+b,)2 (21) 

I 
y 

F I G . 5 



The ful l set of equations are 

(i) y = b1x1+bzx2+ ; +bkxk+v0 = yc+v0 

(ii) xx = b12x2+b13x:!+ +blkxk+v1 (22) 

(ii i) x2 = b2ixs+b2ixi+ •+b2kxk+v2 

Xk-1 — bk_i.kXk + ^it-i 

A l l k equations in (22) as assumed to be solved by OLS regression. The causation 
chain is obvious. 

Total sum squares iny is Ey2

c-\- Ev2. When xx i n (22) (ii) is substituted in (22) ( i ) , 
the disturbance is (v^b-py) which is uncorrelated wi th x2, x3, . . . xk so that the 
equation is exactly the OLS of y The difference between Ey2

c 

and Ey'2 sum squares for y'c, the regression of y on x2, x3, . . . , xk, is the contri­
bution of xx to total sum squares. Incidentally, i t is obvious that this difference 
must be non-negative. Using (22) (iii) we have the regression of y on x3> 

xt,. . ., xk and so determine the contribution to total sum squares of x2. And so on, 
to y regressed on xk alone. 

But is this breakdown of Ey2 of (22) (i) unique? The answer is Yes. From the 
last k-i equations of (22) each of the remaining indvars could be expressed as a 
linear function of one particular indvar and of v1} v2 . . . vk_i. Substitution for, 
say, x2 i n (22) (i) would yield an expression in x2 and a residue a linear function of 

Vi, v2, . . . vk_1} say v. But i t would not necessarily follow that Zx2v = 0; 
hence this linear function for y i n terms of xt alone would not necessarily be the 
OLS regression of y on x2. Hence the Ey\\n would not necessarily represent the 
contribution of x 2 to total variance. Similarly, i t can be shown that only the strict 
sequence of causation, applied in the manner indicated w i l l , in general, yield the 
contributions of each variable to total variance. O f course, (22) is the recursive set. 

I f one is interested in only a single depvar there is no need formally to construct 
the (k -1) OLS regressions, (22) ( i i ) , etc. A i l that one needs is awareness after due 
examination of the causal sequence 

x f c -> . . . ^x^y 

One regresses y on x t . . ., xk, then on x2, . . . , xk etc and so split up sum squares 
of yc into the separate contributions of xls x2, . . . xk. I n doing so, incidentally, we 
establish the coefficients b of the (k — 1) regressions i n the indvars because of 
relations like b'2 (from y'c) = &2+Mi2>to find b12, knowing b^, b2, b'2. Practically, 
this is not a point of much importance since the computer can so easily produce all 
the regressions. What is really important is the ex ante study of relations (with or 
without a Wright diagram). 



As already remarked, there is an immense number of possibilities o f relationships 
between all the variables, all of which are worthy of investigation, given the data. 
Time o f occurrence may not be decisive o f causation, perhaps because aggregation 
for a fixed time period (say a year) may impose simultaneity, therefore concealing 
causation, e.g., o f current income as a part cause of value of food consumption. 

Here we mention only a few possibilities, confining attention to the case o f only 
one depvar (in general there may be many current endogenous variables each wi th 
its equation, endos being possibly part causes in some equations):— 

(i) Some variables may be missing from the (k -1 ) recursive equations between 
indvars because of ex ante considerations or insignificance of value by the 
Mest. While the exact relationships between coefficients referred to above 
no longer obtain, clearly the procedure for analysing sum squares o f yc 

is still valid. For theoretical (or algebraic) tieatment one can restore the 
missing variables, and so obtain (22) i n ful l version. 

(ii) Relations between indvars are fewer than (k — 1). Clearly one can isolate 
the contribution to sum squares yc i n respect of each of the left hand 
variables for the equations one has, and amalgamate the effect of the rest. 

( i i i ) The indvar recursive set may contain variables not i n the prime depvar 
equations. The sensible course would appear to be to introduce them 
formally into the ^-equation and proceed as before. 

(iv) The case o f non-recursive relationship between indvars may be exemplified 
by the five variable case. 

(i) V = blxl-irb2x2

J

rb3x3

Jrbixi-\-vB 

(ii) xt = b13x3+blixi+v1 (23) 

( i i i ) x2 = b23x3+b2ixA+v2 

F I G . 6 

A l l three equations are deemed solved by OLS regression, when the expressions for 
xx and x2 by (ii) and (ii i) are substituted on the right side of ( i) , y is an expression 
in x3 and x4 which is exactly the OLS regression of y on x3 and x±. So, we can 
consistently break up sum squares y into two, sum squares (x3, * 4 ) and (xu x2). 

This seems the best we can do. I f we substitute for x1 alone we get an expression 
for y on ( x M x3, x4) but this is not in general the regression ofy on the three indvars. 



But the contribution of xx to sum squares y can be formally calculated as above. 
Having worked the OLS regression ofy on (x 2 , x3> xt) and substituted therein for x 2 

by (iii) we get the regression of y on (x3, x4) and so can calculate the contribution of 
x2 to sum squares y. However, in general this result w i l l not be consistent: the sum 
of the individual contributions w i l l not in general add to the contribution of xx and 
x 2 together. 

I n general, i t seems that when the indvars can be separated into two groups, one 
the causative and the others the effects, as i n (23) we can only hope to express sum 
squares y i n two classes (i) , due to the causative variables ( i i ) , due to the rest. 

I t would appear that (though the writer has no proof) i t is only in the fully 
recursive case of (22) that one can consistently calculate the contribution of each 
indvar to sum squares y. 

There are many other cases of types of relationship like those considered. The 
essential point is that i n any particular application the causal chain is well worthy 
of investigation. 

I t would appear that, wi th the full causal order given one may infer the recursive 
relationship and so uniquely split up sum squares y into the contributions of each 
indvar. 

Stochastic Aspects 
As the fully recursive case is closely related tc path coefficients one may recall 

the Wold-Bentzel theorem that (with disturbances independently and normally 
distributed) the maximum likelihood solution for the estimation of all coefficients— 
wi th asymptotic properties of consistency and efficiency—is obtained by solving 
each equation separately by OLS regression. 

I f the OLS regression (22) (i) is complete, i.e., i f plausibly the population 
equation is 

.V = PiXi+P&z. . . +fikxk+u, (24) 

with u regular and Eu2 =• a2, then a2 w i l l be consistently estimated as 

Zv2J(n-k-i) =s2 

I t is evident that, i n the full recursive case of (22), after each successive elimina­
tion of an indvar, the remaining regression, i n say k „ < k indvars is, i n (22)(i), 
complete. Now, i f to the existing regression of y on the k„ indvars we add a new 
standardised indvar, x„, exactly uncorrelated wi th the existing k„ indvars and 
solving the (kp-\-i) system by OLS regression, yielding a coefficient bp, i t is easy 
to show that Eb% = a2 wi th , of course, Eb„ = 0. 

Accordingly i t is suggested that one sets up the F type statistic 

with (1, n—k-i) degrees of freedom, xp now being the variable eliminated. 
O f course this is identical wi th the usual analysis for Fp = t2. Generalisation of 



procedure with a group of indvars is evident. This analysis wi l l enable one to assess 
the contribution of each indvar or group to the magnitude of y and also indicate 
the variables making no significant contribution. 

A l l this is very much as might have been expected. One may well ask why the 
same procedure could not have been adopted without any assumption about the 
recursive character of the indvars. Suppose four indvars are ordered x1} x2, x3, x4. 
Using the above elimination procedure assess the contribution of, say, x2 to sum 
squares y. But i f one orders as, say, xi} x3, x1} x2 (as of course, one can without 
doing violence to the yc values of the regression) one gets, i n general, a different 
value of the contribution o f x2. I t is only because recursiveness imposes an order o f 
causation that a unique solution transpires. 

Empirical Treatment 
W i t h k possible indvars to start wi th , i n theory there are (2fc — 1) possible OLS 

regressions in all sets of indvars numbering from 1 to k. We conceive i t our object 
to pick the "best", either as a single regression, or a small number of regressions. 
Our tests of "best" w i l l be by reference to R2 as large as possible and a test o f 
probable absence of residual autocorrelation. We are distrustful of regressions wi th 
large numbers o f indvars (say for k exceeding five) as lacking objective reality, 
recalling that i f k equalled number of sets of observations an exact fit, i.e.,yc = y 
could be attained even between (k+i) sets of variables picked at random. 7 

O f course when k is large we never try to produce the full (2* — 1) number of 
regressions: wi th k = 10 this number would be 1023! Instead, using perhaps the 
ful l correlation matrix of k(k+i)/2 ccs (including the k involving the depvar) and 
wi th some speculation as to indvars most likely to be "influential" from the nature 
of the problem, we considerably reduce the number of regression experiments. 
Of course, we never lose sight of the fact that OLS regression is a statement of 
cause-effect, the indvars collectively the cause and the depvar the effect. I n 
eliminating a variable from a regression we are not inferring that such variable is 
not causal i n part but rather that its influence is taken up by the indvars we retain. 

A l l this is rank empiricism. What the Sewall Wright approach does is to insist 
on sequential causal order i n the elimination, one by one, of indvars. A change i n 
the order wi l l not result, i n general, i n the correct contributions of the eliminated 
variables to total variance. We have shown that this orderly elimination is associated 
wi th a recursive set of OLS regression equations in the (k+i) variables. 

Sequential ordering on Wright lines may not always be possible, especially when 
dealing wi th cross-section data. W i t h time series, i t may help to order indvars 
according to time of occurrence, assuming the earlier event to be causal. The time 
lag may be infinitesimal, as i n the case of a consumption function wi th income as an 

7. A statistician of old remarked "Give me five parameters and I will make the dog 
stand up and talk". 



indvar: income is deemed to precede consumption. I t is only when we have causally 
ordered the data as i n Fig. 5 that we can calculate the contribution of individual 
variables to the total variance o f the depvar. 

Birth Weight of Guinea Pigs Reconsidered 
This "simplest application" of Wright's admirably illustrates the theory deve­

loped i n the last few sections. The standardised variables8 are 

y = average weight at b i r th 

xx — length of gestation period 

x2 = size o f litter 

The causative sequence is shown on Fig. 4. The OLS regression equations are at 
(18). The ccs (given by Wright) required for solution are 

*i = 056; r2 — -o -66;r 1 2 = -0-48. 

Using the standard equations the ^-coefficients are 

bx = 0-3160; b2 = -0-5083. 

The total variance of y is 1. Contributions of the variables and disturbance are as 
follows, using the formulae given earlier 

Contribution of xx = b\(i —r\2) = 0-0769 

„ „ x2 = ( 6 x r 1 2 + f t 2 ) 2 = r\ = 0-4356 

„ „ xx and # 2 = 0-5125 

„ „ disturbance = 0-4875 

The contribution of x2, size of litter, is over five times that o f xu length of gestation 
period. Size of litter has a very much greater influence on average weight at b i r th 
than has length of gestation period, confirming broadly Wright's conclusion.9 

Wright's method, however, fails to reveal that the two causes together account for 
little more than half the total variance of y, average weight at bir th. 

Conclusions 
The method path coefficients might be described as OLS regression together 

wi th relations between indvars all without disturbance terms. The latter is less of a 
disadvantage than might at first appear since i n practice the method exploits 

8. Notation has been changed from that used in the first example to bring application 
exactly into line with that of formula (18) and Fig. 4. 

9. The fact that Wright's "over three times" and the "over five times" here is 
attributable mainly to the dimensions of the statistics on which the statement is based. 



mainly correlation, whereby the disturbance terms would be eliminated even i f 
they were introduced into the system. Our contribution has been to bring in 
disturbances. One valuable feature of Wright's method lay in the estimation of ccs 
involving variables for which data were not explicitly provided, though deemed 
necessary for analysis. 

Related to the latter aspect is the main feature of the method. This is the use of a 
sequential (or ordered) causal chain involving all the variables, copiously illustrated 
in diagrams by Sewell Wright . I n this paper i t is shown that i f all the indvars can 
be so ordered, there results a recursive system of k — 1 equations, i n addition to the 
original OLS regression. As each equation is a causal statement i t may be solved 
by OLS regression. 

What Wright 's work and this paper show is that the solution of the single OLS 
multivariate equation is not enough, even when endowed with all the customary 
paraphernalia of r-values for coefficients, F, R2, tests for absence o f residual auto­
correlation and even the full correlation matrix. W i t h the single equation approach 
we may be under-using the data available to us. We are positively doing so i f the 
variables can be made to observe Wright's principle of causal ordering. 

I n extending Sewall Wright's work we have shown here that, when the indvars 
are recursively related, the contribution of each indvar to the sum of squares of the 
depvar can be ascertained, i n general uniquely. Heretofore, this was known to be 
true only when the indvars were uncorrelated, a trivial case from the practical 
viewpoint. Hence, we recommend that i n multivariate OLS regression indvars 
should be examined for the possibility of the existence of recursive relations 
between them. 

As a concluding remark: should we not, following Wright , i n all cases examine 
our data, which usually are all that is available relevant to our problem, in the first 
instance to seek a complete or partial causal chain, or to set down the ful l system, 
whatever its character, for solution? Many computer systems have programs for 
solution of the general simultaneous equation system, so that difficulty of solution 
is no longer a consideration. May the single OLS regression system be on the way 
out, and should we practitioners not give i t a gentle push on its way, while grateful 
for its services? 

The Economic and Social Research Institute, Dublin 
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