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T H E R E is some renewed interest among agricultural economists and others 
in the old technique of using minimized absolute deviations in computing lines 
of best fit. H . B. Jones and J. C. Thompson, in a recent article in Agricultural 
Economics Research, discussed philosophical and practical questions raised when 
fitted lines using squared and unsquared deviations are compared[5j. However, 
economic literature (including the Jones-Thompson paper) as well as elementary 
statistics and econometric literature seems to contain no concise description of 
the straight-forward and simple procedure for calculating straight lines of best 
fit which minimize the sum of absolute deviations from the empirical observations 
to the fitted line. In some work at the University of Minnesota, we find that lines 
fitted by minimizing the sum of absolute deviations can be useful in certain 
circumstances. • 

Our purpose is to present, without proving, a simple step-by-step method for 
calculating such lines of best fit for the two-variable case. An illustrative example 
is appended. Those wishing to investigate the historical development and mathe­
matical basis for these methods are directed to the References section, especially 
[ 2] [3] M [7] M- The article by Kaarst is particularly helpful. 

It is our view that the minimized sum of absoluted deviations (MSAD) can be 
quite useful for linear trend fitting. Computing a linear trend generally does 
not involve assumptions about the error term's statistical distribution. Therefore, 
unless some quadratric loss function is postulated, minimizing absolute deviations 
has as much theoretical appeal as minimizing squared deviations and rests on a 
simpler conceptual base. Selection of the MSAD procedure over least squares 
might hinge on the existence of one or more extreme or "unusual" data points 
which strongly influence the position of a least squares line. The influence o f 
these extreme points is reduced with the MSAD approach. Moreover, an MSAD 
line is easy to compute with a desk calculator, perhaps easier than simple least 
squares. 



Consider a set of n observations on Y and X to which a linear function 
is to be fitted. The fitted function is to have the form 

U Y='d+bX> 

where a and b are parameter estimates. 
Suppose that, instead of an ordinary least squares line of best fit, a MSAD line 

is desired. 
Two versions of this line can be computed [6]. The first is the MSAD line 

constrained to pass through a pre-selected point such as the means, the medians, 
or the origin. The second is the unconstrained MSAD line. Unlike the ordinary 
least squares line, the unconstrained MSAD straight line does not, in general, 
pass through the point of means. 

The Constrained MSAD Line 

1. Select the reference point (Y0, X 0 ) through which the MSAD line is to pass. 
For each of the n observations, compute 

y i = ( Y - Y 0 ) 
i ' = 1,2,3, . . . n 

• • ; . ' . - x o ) . 

2. Calculate the n ratios, y,-/*;. ' Then rank these ratios in ascending algebraic 
order, beginning with largest negative or the smallest positive number. 

3. Sum the absolute values of x{; Zn\xi\ • 

4. To the value—E n \ xt | add the absolute value 2 | x{ | from the ratio having 
the lowest rank. Then add the absolute value 2 | x{ | from the ratio with 

' t h e next lowest rank. Continue until'the algebraic sum changes sign from 
. negative to positive.. '; V ' ' 1 

5. Note the actual value of the ratio (yk/xk) at which the sign change occurs. 
This rations the'slope,&,'of the constrained MSAD line. This line wi l l pass 

J. through' both the pre-selected point 'and the point at which the ratio 
„(xA/yA) is computed. Having calculated b then 

" r , A s Kaarst proves, the absolute,sum of the.error terms (or deviations) in this 
constrained .case is >. . ;» • . ,• . . . , 



When S is plotted on the vertical axis and b is plotted on the horizontal axis 
the result is an open polygon, convex downward [6]. The minimum point on 
this polygon is located directly above the point b = xkJyk, where the slope -
of S switches from negative to positive.1 

The Unconstrained MSAD Line 

Finding the unconstrained MSAD straight line of best fit involves a simple 
iterative procedure based on the method described above for the constrained line. 
The procedure is: 

1. Compute a constrained MSAD line, but select one of the data points as 
the initial reference point (fewer iterations are needed i f the selected point 
is on or near a freehand line of best fit.) 

2. This constrained line wi l l pass through at least one other data point in the 
sample. Select this point as the next reference point, and compute another.' 
MSAD line. 

3. This second line wi l l pass through still another data point. Using this point 
' as the reference, re-compute. 

4. Continue until the fitted line reflects back through a data point already used. 
This line is then the unconstrained MSAD line o f best fit. By judicious 
selection of the initial reference point on or near a freehand trend line, only 
one or two iterations usually wi l l be needed. 

When the constraint that the MSAD straight line must pass through a pre­
selected point is removed, then two parameters, a and b, must be estimated 
directly. Then, in this case 

This is an open polyhedron in three dimensions [6]. The iterative procedure de­
scribed above is then a systematic search for the minimum of S using various 
traces of S, each associated with a given value2 o f a. 

Goodness of Fit ' • ' ' 

Measuring the goodness of fit of an MSAD line is not as straight-forward as 
with the least squares technique. This is because the total sum of absolute devia­
tions of Yj about a point, say the mean or median, .cannot be partitioned',un­
ambiguously into that portion accounted for by the fitted line and that portion 

1. I f the polygon S has a flat horizontal base rather than-a single min imum point, then b is 
indeterminant between the values at the ends o f the base. • • • 

2. Similar mcleterrninant results for a and b also can arise in the unconstrained case. 



not accounted for by the fitted line, as can be done with squared deviations about 
the sample mean in least squares. However, we suggest the following coefficient 
as a measure of how well an MSAD line fits the sample observations on Y(. 

f = i - Z „ \ Y , . - Y , . | / i 7 n | Y t - Y \ 

Where % are values of Y along the fitted MSAD line associated with the sample 
X{ and Y is the median value of Y. 

.The median is selected as the reference point since, for any given set of num­
bers, the sum of the absolute deviations is smaller when measured from the median 
than from any other number [9]. The coefficient, / , can range between zero and 
+ i-o. I f there is no systematic association between X and Y in the data, then 
the minimizing of absolute deviations wi l l yield Ys= Y and / wi l l be zero. On 
the other hand, i f the fit is perfect and'Y) = Y{, then/wi l l be + i-o. Intermediate 
values o f / w i l l then indicate how well the MSAD line fits the data relative to a 
scale of zero to + i-o. As a criterion forjudging goodness of fit, the coefficient 

/ probably should not be compared with the least squares r 2 for the same set of 
data. Its use should be confined to comparisons of MSAD lines of best fit. For 
example, the coefficient / can be used to compare constrained vs unconstrained 
MSAD lines or constrained MSAD lines fitted through various pre-selected 
points. 

An example 

Consider the following set of five observations on X and Y respectively = 
(1,1), (2,4), (3,5), (4,6) and (5,7). I f a constrained MSAD straight line is fitted 
through the point (1,1), its slope, b, is 1-67 and its Y-axis intercept, a, is — 0-67. 

The/coefficient is -67. However, when the unconstrained procedure is used, 
the slope is + i-oo and the Y-axis intercept is + 2-00. The/coefficient increases 
to -75. The reader may wish to verify the results of this illustrative example 
using the procedures outlined previously. 

In conclusion 

- Extending these methods beyond two variables is not easy though it has been 
done mathematically [7] [8]. The multiple variable problem may be reduced 
to a linear programming exercise [4]. This use is demonstrated by Arrow and 
Hoffenberg in an interindustry demand study [ i ] ,bu t beyond this the use of this 
technique in economic research does not appear to be widespread. 
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