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Abstract

We consider the natural contractive map from the central Haagerup tensor product of a unital
C*-algebra A with itself to the space of completely bounded mapB(A) on A. We establish
the necessity of the known sufficient condition for isometry of the map, namely that all Glimm
ideals of A are primal. However, when the map is restricted to tensors with length bounded by
a fixed quantity, a weaker necessary and sufficient condition is established.
© 2005 Elsevier Inc. All rights reserved.

MSC: 46L05; 47B47;, 46M05

Keywords: Glimm ideal; Primal ideal; Matrix numerical range

0. Introduction

Let A be a unitalC*-algebra, A ®, A the Haagerup tensor produdf,B(A) the
space of completely bounded mapsA — A and £¢(A) the subspace of elementary
operators onA (those expressible in the forfix = Zle ajxb; with a;, b; € A)

* Corresponding author.
E-mail addressesr.archbold@maths.abdn.ac.R.J. Archbold),somerset@quidinish.fsnet.co.uk
(D.W.B. Somerset)richardt@maths.tcd.i¢R.M. Timoney).

0022-1236/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/}.jfa.2005.03.006


http://www.elsevier.com/locate/jfa
mailto:r.archbold@maths.abdn.ac.uk
mailto:somerset@quidinish.fsnet.co.uk
mailto:richardt@maths.tcd.ie

R.J. Archbold et al./Journal of Functional Analysis 226 (2005) 406—-428 407

[4, Chapter 5]. There is a natural contracti@m ®, A — CB(A) (mappingZ?=1 a;®
b; to T € ££(A) as above). Following the pioneering work of Haagerup in the case
of B(H) (see [16], [4, 5.4.7, 5.4.9] and [17]), Chatterjee and Sinclair [9] showed that
0 is isometric ifA is a separably-acting von Neumann factor. More generally, Mathieu
showed thatf) is isometric if and only ifA is a primeC*-algebra (see [4, 5.4.11]).

If Ais not prime thend is not even injective, and it is then natural to consider the
central Haagerup tensor produt®z , A (the quotient of the Haagerup tensor product
A ®p, A by the closure of the span of elements of the fargw b —a ® zb, a, b € A,

z € Z(A), where Z(A) is the centre ofA). The mappingé induces a contraction
07:A®zy A — CB(A). Chatterjee and Smith [10] showed that is isometric if A
is a von Neumann algebra or if the primitive ideal space PAinis Hausdorff (see
also [11]). More generally, Ara and Mathieu (see [3] and [4, 5.4.26]) showedfthat
is isometric if A is a boundedly centrally closed*-algebra.

A further generalization was obtained by Somerset [19, Theorem 4], who showed
that 0z is isometric if every Glimm ideal ofA is primal. It was also shown in [19]
that 07 is injective if and only if every Glimm ideal oA is 2-primal, and that if
A has a Glimm ideal which fails to be 3-primal then there is a “pre-derivatio®' 1
a —a ® 1 for which 0z reduces the norm (see also [18]). In particular, while the
primality of every Glimm ideal is sufficient fof; to be an isometry, the 3-primality
of every Glimm ideal is necessary. This seemed to suggest that it should be possible
to find a necessary and sufficient condition in terms of ideal structuréfaio be an
isometry.

In Section 2, we construct an example to show that the 3-primality of all Glimm
ideals is not sufficient fof; to be an isometry. Indeed, we explicitly exhibit an element
whose norm is reduced b§;. In Section 3, we extend the ideas and computations
associated with this example to a general situation. Our first main result (Theorem 7)
is that the primality of all Glimm ideals is necessary fyr to be an isometry (this is
the converse of [19, Theorem 4]). The proof makes crucial use of a result of Akemann
and Pedersen [1, Proposition 2.6] concerning orthogonal lifting from a quotient of a
C*-algebra. At the end of Section 3, we consider the case of a non-uriitalgebra
A by using the multiplier algebra/(A) in the usual way.

In Section 4, we go on to consider the more difficult question of how the degree of
primality of the Glimm ideals is related to the isometric behaviourfgfon (cosets
of) tensorsu € A ® A of bounded length. For this, we exploit the recent results of
Timoney [21] on matrix numerical ranges, together with a corollary of Carathéodory’s
theorem on convex hulls ifR". Our second main result (Theorem 17) is that, for fixed
£>1, 0z is isometric on each = Zf.:laj ®bj € A® A if and only if every Glimm
ideal of A is (£2 + 1)-primal.

1. Notation
If A is a unital C*-algebra and/ € Max(Z(A)) (the maximal ideal space of the

centreZ(A)), then theGlimm idealof A generated byl is the proper closed two-sided
ideal AJ (see [15, 84]). It is closed by Cohen’s factorization theorem. SihéeZ = J,
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the mappingJ — AJ (J € Max(Z(A))) is a bijection of MaxZ(A)) onto the set
Glimm(A) of all Glimm ideals ofA.

A (closed two-sided) ideal of A is called n-primal (for somen >2) if whenever
J1, Jo, ..., J, are ideals ofA with productJiJz---J, = {0}, then at least one of the
J; is contained inl. The ideall is called primal if it is n-primal for all n>2. This
concept arose ifi6] where it was shown that a state Afis a weak*-limit of factorial
states if and only if the kernel of its GNS representation is primal.

In [7, Lemma 1.3], it is shown that an idelabf A is n-primal if and only if(7_; P; is
primal wheneverPy, Py, ..., P, are primitive ideals ofA containingl. Furthermore, the
primality of such an intersectiofi)!_; P; is equivalent to the existence of a @) in
the primitive ideal space Prid) which converges to each element{d@f, Po, ..., P,}
and hence to every element in the closure of this set, namely(Ryia®1N PoN- - -NPy,))
(see [6, Proposition 3.2]).

In [6, 83] it is shown that for each >2 there is a unitalC*-algebraA, containing
an idealr, which is n-primal but not(n + 1)-primal. Note that/, is not a Glimm ideal
because it is non-zero amdl, has trivial centre. In [7, Theorem 2.7], it is shown that,
for each odd integer >3, there is a 2-step nilpotent Lie group whose (non-unital)
C*-algebra contains a Glimm ideal which sprimal but not(n + 1)-primal.

To conclude this notation section, we mention that we denote the norsh@n;, A
by |- |lz.». For convenience, we will often refer tf||z , and6z(u) whenu € AQ A,
where it is to be understood thatis to be replaced by its image iA ®z, A.

2. Basic constructions

We consider in some detail an example of a uniatalgebraA in which all Glimm
ideals are primitive (and hence primal) except for one particular Glimm idgal
which is 3-primal but not 4-primal. This example is an elaboration of an example in
[5, Example 4.12] which has a Glimm ideal that is 2-primal but not 3-primal, and it is
also a prototype for variants which seem to be able to exhibit many of the phenomena
that can occur in general.

The basic idea is to build a 4-point compactification of a locally compact Hausdorff
space, where in each way of approaching the points at infinity one actually has three
limiting values (but not the fourth). This requires four ‘directions’ of approach to
infinity. A way to visualise such a space is to consider a disjoint ufioa U§=1 R;
of four semi-infinite closed rays in the plane with four points adjoined as follows. For
example7 = {(x,y) : xy = 0,x2 + y2>1} C R? with (say) R1 = {(x,0) : x>1}.

Label the four extra pointsy; (1<i<4). A basis of neighbourhoods of eact} is
given by the sets

{wid Ul Jir e Ry :1el > r,
J#i

wherer > 1. So, for example, the sequen¢e, 0) in the ray R; of the spaceT U
{w1, w2, w3, wa} would have each ofvy, w3 and ws as limits asn — oo (but not
1).
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A ‘discrete’ version of this space would start with N Z? in place of 7. Clearly
one can map N Z2 to N by mapping the four directions to equivalence classedlin
modulo 4 (cf.[5, Example 4.12]).

We now construct aC*-algebraA such that PrimA) is (homeomorphic to)/ U
{w1, w2, w3, wa}. We consider theC*-algebra B of bounded continuous functions
x:T — M3(C) and we defineA to be theC*-subalgebra oB consisting of all those
elementsx € B for which there exist scalarg; (x), A2(x), A3(x), Aa(x) such that

lim  x(t) =diag(4j+1(x), 4j12(x), 2j+3(x)) (1<j<4),

Rj3t—00

where we understand the subscripts-i (1<i<3) to be reduced modulo 4 to lie in
the range 12, 3, 4. Next, we introduce notation for what we call ‘constant’ elements
of A. Given four scalarsii, A2, A3, A4 we write c(A1, A2, /3, /4) for the elementc € A
where

X([) = dlag(;"j'f‘ls /lj+27 )“j+3) (t € ij ] € {17 23 37 4})

(where we again understand the subscripts modulo 4). Thd seff all constant ele-
ments ofA forms an abeliarC*-subalgebra isomorphic 0% and A = Co(T, M3(C))+
Ae.

We call thisA a ‘4-spoke’ example. The centig(A) of A consists of elementg
where eachx(r) is a multiple of the identity (and hencg (x) does not depend on
i) and soZ(A) is canonically isomorphic to the algebra of scalar-valued continuous
functions on the one-point compactification @ The space Glimd) can then be
identified with this one point compactification, ¢G, : t € 7} U {Gx} Where G, =
{x e A:x(t) =0} and G = Co(T, M3(C)). As A/ G is abelian, the irreducible rep-
resentations oA whose kernels contaitv, are x — 4;(x). The remaining irreducible
representations oA restrict to irreducible representations G6§(7, M3(C)), and hence
have the formn;: A — M3(C) wheren,(x) = x(¢r) for x € A andr € 7. Thus, as
ker n; = Gy,

Prim(A) = {G; :t e T} U {ker 4; : 1<i<4).

As a topological space Prifd) is homeomorphic to/ U {w; : 1<i <4}. For example,
to see that as € R; tends to infinity we haves,; = ker m; — ker 4; for eachi # j, let
us fix i # j and consider an open neighbourhdddof ker /; in Prim(A). Then there
is a closed two-sided idedl of A with U = {I € Prim(A) : ng}. Since ker/; € U,
there is somex € J with /;(x) # 0. Thus there exists > 1 so that ifr € R; and
[t] > r thenx(z) # 0. It follows that kerm; € U wheneverr € R; and [¢] > r.

The four idealsJ; = {x € A : x(t) = O for allt € R;} have product{0} but (for
example) J1 is not contained inG,, becausec(l,0,0,0) € J1. Hence G is not
4-primal. To show thailG, is 3-primal, note that there are only four primitive ideals
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of A which containG,, namely ker; (i =1, 2, 3, 4). So it suffices to show that, for
eachi,

ker A;+1 Nker A; 12 Nker 4;43

is primal. But we have just shown that ker converges in Prirgd) to each of kerd; 1,
ker 4;12 and kerZ;;3, asr € R; tends to infinity.

Proposition 1. For A as above denote bya;,b; € A for 1< <4 the following
elements

le = 6(07 17 11 1)1 bl == c(l’ 07 01 0)7
a =c(1,0,1, 1), b =¢(0,1,0,0), 1)
az = ¢(1,1,0,1), b3 = ¢(0,0,1,0),

Ga = ¢(1,1,1,0), bs = c(0,0,0,1).

Then for u=Y"%_,a,®bj € A® A and T = 0(u) € EL(A),
lullzn > IIT llco-

Our verification of the proposition will require an analysis of nhorms of elementary
operators similar td but acting onM3 and Ms. We will usee;; for the n x n matrix
with 1 in the (i, j) position and zeros elsewhere (timewill be inferred from the
context). We also usé;; for the Kronecker delta symbol.

Example 2. Consider the (elementary) operatfy: M,, — M, given by T,x = Z’}.:l
(In —ejjxejj =x =3 5_qejjxejj.
Then [T, = I Taller = 2(n — 1)/n.

Proof. Note thatT,e;; = (1—9;;)e;; and T, 1, = 0.

We can rewriteT,x = ((n — 1)/n)x — Z?:l(ejj — Iy/n)x(ejj — I,/n) = ((n —
1)/n)x — S,x where S, is a completely positive operator. Hend&, ||, = |IS.Il =
S0 (1)l = (n — 1)/n and thus||T, | <[ Tullep <2(n — 1)/n.

To show that we have equality in both of these inequalities, we introduce the unit
vector ¢ = (1,1,...,1)//n € C" and the rank one projection operatét ® ¢ of
C" onto the span of. As a matrix,¢* ® ¢ has ¥n in each entry. So we can see
that (T,,(¢* ® &)¢&, &) = (n — 1)/n. Since 2E* ® &) — I, is a norm one operator and
(Th (2" RO —1)¢, &) = AT (£ ®E)E, &) = 2(n—1)/n we have|| T, || >2(n—1)/n. O

Proof of Proposition 1. We know (from[4, 5.3.12]) that||T |lcs = sup,.; 17" llcs
where the supremum is over all irreducible representatiorns A and T™: B(Hy) —
B(Hy) is given by

4
T™(y) = Y m(@;)yn(b;).

j=1
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Whenrn = n; (for anyr € T) we haveT™ = Tz and so||T"||., = 4/3. Forn = /; we
haveT™ = 0. Hence||T ||, = 4/3.

We now claim thatlullz, = [174llcs = 3/2 for u = Y"3_; 4; ® b;. By Somersef19,
Theorem 1},||ullz,» = SUp; 4% ||, where the sup is over all Glimm ideals #f and
u® € (A/G)®; (A)G) is u® = Zj?zl(aj +G)® (bj + G). The caseG = G yields
A/G as a four-dimensional commutative algebra. We can identify it as the diagonal
in M4(C). Then the eIementiSj + G can be taken to correspond tg; € M4(C)
anda; + G to I4 — ¢j;. By injectivity of the Haagerup norm (see [14, 9.2.5]) we can
compute|uC |, in M4 ® M4 where, by Haagerup’s theorem [4, 5.4.7], it giMEE|cp
which equals 32.

Thus|lullz.» >3/2 (and in fact we could easily show equality as all the other Glimm
ideals are primitive, being the kernels of the representatignfor ¢+ € 7). Thus we
have llullz,, >23/2> 4/3 =T llco = 10z@)llcp. U

Remark 3. The proof can be generalised to produce similar examples where all Glimm
ideals aren-primal but not all are(n 4+ 1)-primal. The elementary operator would have
length n + 1 and the algebrad would be replaced by an(#t + 1)-spoke’ algebra
constructed from & having n + 1 rays to infinity R; (1<i<n + 1) and matrices
M, (C). There would ber + 1 multiplicative linear functionals: — 4;(x) at ‘infinity’
with x(¢) tending to a diagonal using of the n 4+ 1 values;(x) ast — oo in any R;.
One would obtainu € A® A such that||u|lz, =2n/(n+1), [|0zW) ||y =2(n —1)/n
and hencelullz/10z @)l = n®/(n* = 1).

In Propositionl, the (minimal) length of the tensaris 4, the elementary operator
T = 0z(u) is self-adjoint {*(x) = T(x** = T(x)) and |lullzx/IITllcs = 9/8. For
the same algebra, we now exhibit a tensou with length 2 on whichf; fails to be
isometric. In this case, the corresponding elementary opefatermnot self-adjoint but

lullza/IT o = 3775 > 9/8.
Example 4. For A the ‘4-spoke’C*-algebra introduced above, take A — A to be
the generalised derivation given x = ax — xb where

a=1c¢(0,1,0,—1), b=¢(-10,1,0)

(1=+/-1). Then||T|lcp =1/24+ V/5/4<2=]la®1—-1Qb|zx.

Proof. By a result of[20], the norm of a generalised derivatidh: x — ax — xb on
B(H) (any Hilbert spaceH, anya, b € B(H)) is

ISl = inf (lla — Al + 16— 1) .
4eC
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For k = 2,3,..., the operatorS® on M;(B(H)) given by S(")((xij)fﬁjzl) =
(Sx,-j)f."j:l may be regarded as the generalised derivationBoH*) defined by the

amplifications ofa and b. So, by Stampfli's formula again|S®| = |S|. Hence
1Slles = IS

As before we comput§T| via the representations (t € 7). Whent € R4 we end
up with

7 (a) = diag(0, 1, 0) 7 (b) = diag(—1, 0, 1).
One can see geometrically that

1 1 5
I (@) = (/2051 + lIm B) = (/D 1sll = 5 + [1+ 3 = 5 + /2

achieves the minimum in the Stampfli formula, but in any c§Bé&| is bounded above
by this number forr = n, andr € R4. A similar analysis applies for alk; (1<i<4).

In the one-dimensional irreducible representatians A; we have|T™| = 1 and so
we end up with||T'[|c, = sup,_; |77 |y <1/2 4 /5/4.

Finally, to show that|ja ® 1 — 1® bl z, = |lall + |||l = 2 we concentrate on the
quotientA/G~. We then must consider (following the pattern of proof in Exanfle
the norm (= cb-norm) of the generalised derivation Mp given by

x — diag(0, 1, 0, —1)x — xdiag(—1, 0, 1, 0).

One may verify that the norm is 2 using Stampfli’'s formula quoted abolé.

3. Solution of the isometry problem for 6z

Our aim in this section is to show that if a unitaf*-algebraA has a non-primal
Glimm ideal then the mappin@z is not an isometry. In order to utilise the computations
of Example2 in a more general setting, we shall need the following lemma:

Lemma 5. Let b; (1<j<n) be orthogonal positive elements of norm one inGi'-
algebra A(that is b; >0, ||b;]l = 1 and b;by = 0 for j # k, 1<j, k<n) and let
X denote their linear span. Lef; (1<;j<n) be orthogonal positive elements of a
C*-algebra B and let Y denote their linear span. Assufde|| <1 for 1< j<n.

We can define a linear map: X — Y by ¢(b;) = d; and it has the following
properties

() lloll<1.
(i) The mapp ® ¢: X @, X — Y ®, Y (with Haagerup tensor norms in each case
has norm at most one
(iii) If |ldjll =1 for each j then ¢ ® ¢ is an isometry betweeX ®; X andY ®; Y.
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Proof. Consider the commutativ€*-algebra generated by the; (1<j<n). It is
isomorphic to an algebra of continuous functiofig(Ky) on some locally compact
Hausdorff spaceKy where theb; must be positive functions that are non-zero on
disjoint open sets. It is clear then that the norm of a linear combinaﬁ}?g1 ojb;

is max; |o;|1b;]l = max; |«;|. (In particular theb; are linearly independent angl is
well-defined.) For similar reasons, we may viegwC Co(Ky) for a locally compact
Hausdorff spaceKy, and

n
Zocjdj = m]ax|ozj|||dj||< mjaX|OCj|.
J=1

This shows||¢| <1.
For the second part, note that when we compute the Haagerup tensor norm of
U= Zf\’zl a;i ® ¢; € X ® X, we consider an infimum of expressions

d )

over all representations af and we can find a representation where this infimum is
attained (without going outside representationXi® X). We can compute that applying
¢®¢ to this same representation produces a representatiohed) (1) € Y Y where
the corresponding expression is reduced. For example if we writeZ’}zl ajjbj € X
then, forx € Ky,

N

E aiai*

i=1

+

N
k
>
i=1

n n

N
YD aidioo | | D aid; o
i=1

j=1 j=1

N
(Z ¢<ai>¢<ai>*) (x)

i=1

N

n
DO laijPld; ()2
j=1

i=1

becaused; (ic) is non-zero for at most ong The supremum of this latter sum over
Kk € Ky is at most

N

A%
E a;a;

i=1

N
max) " |a;j|* =
J °
i=1

Thus|¢ ® @[ <1.
For the third part, we can apply the second part to the inverse mgpifofid; || = 1
for allj. O
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Lemma 6. Let b; (1< j<n) be positive elements of @*-algebra withb;b; = 0 for
j#k (1<) k<n). Let

n n n
U= ij ® ij —ij@bj.
j=1 j=1 j=1
(i) If b1 <1 for 1< j <n, then [lully <2(n — 1)/n.
(i) If b} =1 for 1</ <n, then [ully = 2(n — 1)/n.

Proof. We can deduce this from Lemnfand Example 2. We identifC” with the
diagonals inM,, and consider

¢:C" — Y =spanb; : 1< j<n}
given by ¢(e;;) = b;. Using injectivity of the Haagerup norm, Haagerup's theorem
and Example2, we have
n
L®L—)Y eji®ejj| =Tl =2(n—1)/n.
j=l h

But the tensor in the left-hand side mapsitander the mapping ® ¢ of Lemma5. O

Theorem 7. Let A be a unitalC*-algebra containing a Glimm ideal G that is not
n-primal for somen >2. Then there exista = 3 /_;a; ® b; € A® A with

lullzn > 10z ) llep.

Proof. By reducingn if necessary, we may assume ti@tis (n — 1)-primal but not
n-primal (where we adopt the convention that all closed two-sided ideals are
1-primal).

There must exish primitive ideals P; of A (1< j<n) with G € P; for all | but
J :=(j—1 P; not primal. However

R; = ﬂ Py

1<k<n.k#j

is primal for each X j<n. Note that sinceR1, R>, ..., R, are primal butJ is not, it
follows that P; 2 P for j # k.
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There must exist open neighbourhoads of P; in Prim(A) (1< j<n) so that

ﬂ U;=40.
j=1

For, if no such neighbourhoods existed there would be a(@gb, in Prim(A) con-
verging to each of the?; (1< j<n) and hence to every primitive ideal containidg
contradicting the non-primality of [6, Proposition 3.2]. Now there are closed two-sided
ideals J; in A so thatU; = Prim(J;) (henceU; = {Q € Prim(A) : J;Z O}).

Let I; = J;R; for 1< j<n. The ideal/; cannot be contained it because then we
would have] R; € P; and since the pr|m|t|ve ideaP; is necessarily prime, it would
follow that J; C P; or R; C P;. Since P; € U;, we haveJ;¢ZP;. By primeness of

Pj, if R; C P then Py g P; for somek ;é j (again not so)

Let LI’ A— A/J denote the quotient map. L&t; = ¥(I;), a non-zero closed ideal
of A/J. Note thatK;K; =0 for j #k (asR; R, S J).

For 1< j <n, choose a positive elemedf € K; of norm one anc; € I; positive of
norm one with¥(g;) = 1/3 Slnceall/3dl/3 = 0 for j # k, we can use [1, Proposition
2.6] to findc; € A (1<] <n) with ‘P(cj) =Yg = dl/ andcjcy = 0 for j # k.
Let bJ =cjdjcj € I] Thenb’b,’( =0forj#k and‘P(b/) =d; (1<), k<n).

Let f:[0, c0) — [0, o0) be f(t) = min(z, 1), a uniform I|m|t on any compact subset
of [0, c0) of polynomials without constant term. Defing = f (b’) by functional

calculus. Then we havk; € IJr W(b;) =d;, |Ibjll =1 andb;by =0 for j # k.
Consider now

j=1

as in Lemma6. Note that the canonical quotient map frofY G to A/J induces a
contraction fromA/G ®, A/G to A/J ®, A/J. From [19, Theorem 1]), we have
lullz.n > luCln. Applying Lemma 6 toA/J, we deduce

lullzn = NuCln = lu! |h = 200 — D)/n.
On the other hand, b4, 5.3.12, 5.4.10]
162 @)lles = suplllu® |l : P € Prim(A)}.

Let P € Prim(A). There existsj € {1,...,n} such thatP ¢ U; and henceb; € I; C
J; € P. Applying Lemma6 again (this time toA/P with at mostn — 1 non-zero
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by + P), we have
lu”|<2(n — 2)/(n — D).
Thus

10z)llep <200 —2)/(n —1) <2(n = 1)/n = lullzn. O

Combining Theoren¥ with [19, Theorem 4], we obtain the following result:

Theorem 8. Let A be a unitalC*-algebra. The mappindz : A®z, A — CB(A) is
an isometry if and only if every Glimm ideal of A is primal

If Ais a non-unitalC*-algebra then it is customary to consider the multiplier algebra
M(A). If Z now denotes the centre dff(A), then we have the natural contraction
07: M(A) @z, M(A) — CB(M(A)) for the unital C*-algebraM(A). But, sinceA
is an ideal inM(A), we obtain a contractio®z: M(A) ®z., M(A) — CB(A) by
defining ®z(u) = 0z(u)|4 (seel4, 5.4.17)).

Corollary 9. Let A be a non-unitalC*-algebra. The mapdz: M(A) @z, M(A) —
CB(A) is an isometry if and only if every Glimm ideal 8f(A) is primal.

Proof. Letu € M(A) ® M(A). By taking a faithful non-degenerate representation of
A on a Hilbert spaceH, we may assume the inclusions C M(A) € A” C B(H).

By tensoring with M,,(C) and using Kaplansky’s density theorem, one obtains that
107 (W) leb = 11Oz m)]|lep. The result now follows from Theore®. O

We can state a necessary condition @y to be an isometry in terms of Glimm
ideals of A, something that involves an extension of the notion of Glimm ideal to the
non-unital case. In a (not necessarily unitaf)-algebraA, a Glimm idealis the kernel
of an equivalence class in Pr{m), where primitive ideald and Q are defined to be
equivalent if f(P) = f(Q) for all f e C*(Prim(A)) [8,12]. By the Dauns—Hofmann
theorem, this definition is consistent with the one already given in the unital case.

Lemma 10. Let A be a(non-unita) C*-algebra containing a Glimm ideal G that is not
n-primal (somen >2). Then M(A) also contains a Glimm ideal that is not n-primal

Proof. In this proof, we elaborate an argument[#) p. 88] and use different notation.

By the Dauns—Hofmann theorem, there is an isomorphiBnof the algebrac?
(Prim(A)) onto the centreZ(M(A)) of M(A) such that forf € C’(Prim(A)), a € A
and P € Prim(A),

(@(fa) + P = f(P)a+ P)
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in A/P. Temporarily fix P € Prim(A) with P 2> G and define a multiplicative linear
functional ¢ on C?(Prim(A)) by ¢(f) = f(P). Clearly ¢ is independent of the choice
of PO G. LetJ = ker(d)od)_l), a maximal ideal ofZ(M(A)), and letH = M(A)J,
a Glimm ideal of M(A).

We haveH N A = M(A)JA = AJ. Leta € A, z € J and letQ be any primitive
ideal of A containingG. In A/Q we have

za+ Q=@ 1)) a+ Q) = @ () + Q) =0.

HenceAJ C G. (In fact AJ = G, but we will not need that.)

Suppose thaH is n-primal. For any closed ideals, Io, ..., I, € A, with product
I1l>--- 1, = {0} we must havel; € H (for some Ki<n) and sol; C HNA =
AJ C G. ThusG is n-primal, a contradiction showing th&t cannot ben-primal. O

From Lemmal0 and Corollary 9, we can make the following assertion:

Corollary 11. Let A be a(non-unita) C*-algebra. If the magz: M(A)®z ., M(A) —
CB(A) is an isometry then every Glimm ideal of A is primal

For an odd integemn >3, let W, be the simply connected, 2-step nilpotent, Lie
group considered ifi7] and letA = C*(W,). ThenA has a Glimm ideal which is not
(n + 1)-primal [7, Theorem 2.7] and so, by Corollary 1®; is not an isometry in
this case.

The next example, together with Corollary 9, shows that the necessary condition in
Corollary 11 is not sufficient fo®; to be an isometry.

Example 12. There is aC*-algebraA with compact, Hausdorff, primitive ideal space
(and hence with every Glimm ideal primal) such tld{A) has a Glimm ideal which
is not 2-primal.

Proof. Let X be a non-compact, locally compact Hausdorff space such that the Stone—
Cech remaindefX \ X has at least two distinct poingsandz (e.g. we could takeX =

N or X = R). Let B be theC*-algebraC (X, M2(C)), and letB1 be theC*-subalgebra
consisting of those functiong € B for which there exist complex numbers(f),

42(f), 23(f) such thatf(y) = diag(41(f), 22(f)) and f(z) = diag(Z2(f), 43(f))-
Let n,: By — My denote the representation () = f(x). Then

Prim(By) = {ker m, : x € BX \ {y, z}} U {ker 41, ker 4o, ker 43}
and, for G = ker 11 Nker 12 Nker A3,

Glimm(B1) = {ker 7, : x € fX \ {y, z}} U{G}.
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The Glimm idealG is not 2-primal. To see this, léf andV be disjoint neighbourhoods
of y and z, respectively, infX. Let Ky be the closed ideal oB; consisting of those
functions vanishing ofU, and similarly letKy consist of thosef € B1 vanishing off
V, also a closed ideal oB;. Then Ky, KV,Q_G, but Ky Ky = {0}.

Let A={f € By: 21(f) = A3(f) = 0}, a closed ideal inB1. We have

Prim(A) = {ker |4 : x € fX \ {y, z}} U {ker(12]4)}.

Furthermore, Prirpd) is homeomorphic to the compact Hausdorff space obtained from
pX by identifying the pointsy andz In particular, therefore, every Glimm ideal éf
is primitive and hence primal.

Now let J = Co(X, M2(C)). Then M(J) = C?(X, M2(C)) by Akemann et al[2,
Corollary 3.4]. Note that the restriction map — f|x is a *-isomorphism between
B = C(BX, M>(C)) and C?(X, M»(C)). SinceJ is an essential ideal i, it is also
an essential ideal inM(A) and so we now havel € A € M(A) € M(J) = B.
Elementary computations show th&t(A) = B;. O

4. Length specific results

If every Glimm ideal of a unitalC*-algebraA is 2-primal (so that); is injective)
but not every Glimm ideal is primal, then one may look for a relationship between the
degree of primality of the Glimm ideals ok and the length of the shortest tensors
u € A® A on which 0 fails to be isometric. We begin by considering the question of
whethern-primality of all the Glimm ideals ofA is sufficient for0, to be isometric
on tensorsu = Z‘;zl aj®bj € A® A, wheren and ¢ are related in some way.

We will use results from [21] in the sequel in order to be able to calculate Haagerup
norms. By injectivity of the Haagerup norm, we can always make our computation in
B(H) for someH and in this setting we have equality of the Haagerup norm of a
tensoru = Z‘j:la.,- ® b; and the cb-norm of the elementary operafor= 0(u) on
B(H) [4, 5.4.9]. The difficulty addressed by [21] is to be able to recognise when a
tensoru is represented in an optimal way, meaning a way that gives equality in the
infimum

o1 5 5
lully = inf 5 (all? + 1b112)

where we now adopt the shorthamd = [b1, by, ..., b]" for the (column)é-tuple
of the b;’s and a = [a1, a2, ...,ac] for the (row) ¢-tuple of thea;’s. Recall that
lall? = H Zﬁ‘:l ajaj while ||b||2 = H Zle bj.bj H The infimum for ||u||; can also be
written using the geometric mean versi@in||;, = inf ||al|||b|| but there is no loss in
restricting to representations= Zﬁ‘:l a;®b; where|lal| = ||b|| and so the geometric
and arithmetic means dfaj|? and ||b||? agree.
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The results from21] use numerical range ideas to characterise the situation where
we have equality in

1 2 2
101 <1060 I <5 (11212 + 1b11?) @

and then an extension of this characterisation to amplificatioms® of 0(x) in order
to deal with the equality in the second inequality only.
From [21] we use the notatio,, (b) for the matrix humerical range

Wi (o) = { (b3biC. DLy = (BiC by Ly & € HL11El =1}

associated with a columin. This subset oMj (the positive semidefinité x ¢ matrices)

is in fact the joint spatial numerical range of thé operatorsb’;b,» but it is convenient

to consider it as a set of matrices. It is easy to see that each mati,if) has

trace at most|b|?2 and that this is the supremum of the traces. The ‘extremal matrix
numerical rangeW,, .(b) is defined as the subset of the closureWdf,(b) consisting

of those matrices with trace equal td||2. (In caseH is finite dimensional,W,,(b)

is already closed and the extremal matrix numerical range corresponds to restricting
¢ € H to be in the eigenspace for the maximum eigenvalu{gfbjbj.) The criterion

in [21, Proposition 3.1] for equality in (2) is

Win,e(@) N Wi, e(0) # 0

(wherea* = [a], a3, ..., a}]" is a column).
Let co(S) denote the convex hull of a s& Equality in the second inequality of
(2) occurs if and only if

CO (Wi e (@) N CO(Wy e (D)) # 0 3)

by Timoney[21, Theorem 3.3]. Givem € B(H) ® B(H) of length ¢, it can be written
asu=Y"_,a; ®b; so as to get

lall? + [Ibj|?

lull, = llal? = |Ibl|? = 5

(4)

(see[14, Proposition 9.2.6]) with the sante Via Haagerup’s theorenu||, = 10) ||,
we see that (3) and (4) are equivalent foe B(H)®B(H). We will use this equivalence
several times to detect when representations of sushtisfy (4).

Lemma 13. Consider a Hilbert space H which is @Hilbert spacg direct sum of
Hilbert spacesH; (i € Z = some index sgtleta;;, b;; € B(H;) for eachi € T
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with sup lla; ;|| < oo andsup [|b; ;] < oo for 1< j<¢. Considera; = (aj;)iez @S @
‘block diagonal element inB(H), b; = (bji)iez Similarly andu = Zﬁzlaj ®b; €
B(H) ® B(H).

For a subsetF C Z, let Hp be the direct sum of thosél; for i € F and let
ajr = (aji)ier € B(HFp), bjr similarly defined anduyp = Zé’:laj,F ®bjFr €
B(HF) ® B(HF). '

Then

lullp = sudllurll,: F € Z,F has at mostt? + 1 elements

Proof. As remarked above, we know thét|, = ||0(u)|» for O(u) € E€(B(H)) and
similarly for |lug|.

Let (P,) be an increasing net of projections converging in the strong operator topo-
logy to the identity operator oHl. Since, for the strong operator topology, multiplication
is jointly continuous on norm-bounded sets, we have

0G| = |i/rp 10,
where
up =Y (PuajPy) ® (PubjPy).
j=1

Furthermore, for eaclt > 2, the k-fold amplification of P, converges strongly to the
identity on H* and so

10G) ey = |ill:ﬂ 10 et -

We may therefore assume thatis finite.
We assume next thatis written so as to get equality in the Haagerup norm infimum
lull» = (llall2 + [Ib]I?)/2, hence 8) holds. Since we are in the case whérés finite,

14

2 2 *
all© = max|la; || = max ajitai)*|, 5
lal* = maxjiag | = ma Z an (5)
j=1
where noway;y = [ay;,az;, ..., ae,;] relates to the summand

A unit vector ¢ € H = p, H; gives an element oW,,(a*) which is a convex
combination of elements on(a?i}) (i € 7). Hence, since closed bounded subsets of
M, are compact and is finite,

co(W,,(a*)) = co (co U Wm(a?i})> =Co (U Wm(a?}})) .

iel i€l
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To get elements of the extremal matrix numerical rafgg.(a*), we must only use
thosei € Z where the maximum in5) is attained and matrices from €W, .(a;})) in
the convex combination. Thus, #; denotes the subset ofe Z where the maximum
in (5) is attained, we have

CO(W (@) =co | | J Wn(@) |- (6)

i€ly

Applying the same argument toas applied above ta*, we obtain a (possibly different)
Ip € T so that

CO(Wyne(0)) = co [ ) Win.e(bp |- 7

i€ly

We claim that there are non-empty subs&tsC 7, and Fy, C 7, such that|Fa| +
|Fo|<((?—1)+2=¢?+1and

co [ [J Wue@ip | | N[ co| U Wanetbap | ] # 2. ®)

ieFy ieFp

To see this, note that all the matrices we are considering (in the extremal matrix
numerical ranges) are hermitighx ¢ matrices with the same tradg||? = ||b||? and
hence they lie in an affine space of real dimensidr- 1 (or affine dimensiort?). By
Carathéodory’s theorem, any element in the convex hull of a subsgtR"” can be
represented as a convex combinationnof 1 or fewer elements o8 A slightly less
well-known fact is that if the convex hulls of two non-empty s6is S, ¢ R” (or an
affine space equivalent to it) intersect, then we can find a convex combinatien of
elements inS1 to equal a convex combination ab elements ofS,, whereni, no>1

and ny + n2<n + 2. This follows by applying Carathéodory’s theorem to the origin,
which belongs to the convex hull of

{(x,1):x € SI}U{(—y, =1) : y € So} C R**L,

We can apply this fact because we ha@g Valid, and therefore the subsdig and F,
exist as claimed.
Let o be in intersection (8) and lef = F, U Fy. Let

t
ar =[ayr,a2F,...,acrl @andbp =[byr,bor, ..., be ]

Applying (6) and (7) toaj and br, respectively, and noting that N7y > F, and
FNIp 2 Fp, we obtainflag| = |lall, [brll = [b]l and that

o e CO(Wm,e(a;)) N CO(Wm,e(bF))-
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Hence, by criterion 3) we havelurll, = llarl? = [brl2 = [al? = IbI? = [lulls.
SinceF has at most? + 1 elements, the result now follows[]

Proposition 14. Let A be a unitalC*-algebra and¢ a positive integer. Suppose that
every Glimm ideal in A ig¢? + 1)-primal. Letu = Z§:1 aj®b; € A® A. Then

10z@)lleo = llullz,n
Proof. From [19, Theorem 1 and Proposition 3], we know that
lllz,n = suplllu®llx : G € Glimm(A)}
while
102 )ller = supllu’|lx : J minimal primal in A}.

Let G € Glimm(A4) and considen® € (4/G) ®;, (A/G). In order to compute|u® |,

we embedA /G faithfully as an algebra of operators, and use injectivity of the Haagerup
norm [14, Proposition 9.2.5]. We take as our faithful representation the reduced atomic
representation

o A/G <> l—[B(Hn) cB (@ Hn>

(one irreducible representation from each equivalence class Jﬁ/ﬁ).
Let ¢ > 0. By Lemma 13, there exist inequivalent irreducible representations
m1,...,m, of A/G such thatn <¢?+ 1 and

1 — & < 1((6r ® 6,) W) Flln = 116 ® ) )|,

whereHr = Hy, @ - ® Hy, ando =11 & --- @ m,. Let P, =ker m; for 1<i<n and
let 7 = (_, Pi. By hypothesis] is a primal ideal ofA.

Sinceos induces a faithful representation df/1 (given bya+1 — a(a) for a € A),
we have| (e ® o) )|, = |lu’|lx by injectivity of the Haagerup norm. Now lek be
a minimal primal ideal ofA contained inl. We have

G . 1 J
™ ln —e < lulln <lu’lln <10z @)lcp-

Since ¢ and G were arbitrary,||ul|z., <0z )|l AS 0z is a contraction, the result
follows. [
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Our aim now is to show that the converse of Propositldnholds, and for that we
need some preparation.

Lemma 15. Given a positive definita x » matrix « of trace 1, there exist:? affinely
independent rank onéself-adjoin} projectionsp; € M, (1<i <n?) so that

n2
o= b
i=1

is a convex combination of the, with #; > O for each i(and Z;’il t; =1).

Proof. Note that positive semidefinite trace 1 matriges M, correspond to states
of M, via x — trace(xp) and the rank one projections correspond to the pure states.
We argue by induction om. Of course the: = 1 case is obvious and so we consider
n>1.

Recall that we can write any rank one projectipnin M, asp = & ® & for a
unit vector ¢ in the range ofp. We can assume the given matrxis diagonal with
(positive) diagonal entries11>022> -+ >0a,, > 0 in descending order (by replacing
the originala by u*ou for some suitable unitary € M,, and applying:«(-)u™* to the rank
one projections we find). Since> 1, «11 < 1. Choosed > 0 so thatd < o, /a11<1
andog1(1+ (n — 1)52) < 1. Let { be a primitivemth root of unity withm = 2n — 1.
Let

&= (1,00, 802, .., 00V 14+ (n— 16 (A<i<m)

and observe that

" g1/ 14 (n — DS
OC=Z<X11 n'(ln ) (éz'k@fi)-i-(l—(xll\/l—}—(n—l)éz)o(’,

i=1

where o is essentially a positive definite diagonal matrix of trace 1Mp_1. Strictly
speaking,o’ is in M, and has 0 in thel,1) entry, but we are able to apply the
inductive hypothesis to it. We end up with as a convex combination of a total of
m + (n — 1)> = n? rank one projections.

Working with the first row and column (and using a Vandermonde determinant ar-
gument), we can check that the projectioffs® &; are affinely independent among
themselves and also when we add in the- 1)2 projections we get from the inductive
step. [

There is a simpler argument which does not quite prove the preceding lemma. The
affine dimension of the state spacesd and so it is possible to fin&? affinely
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independent rank one projections. One can argue that the avemigeuch a collection
of projections has to be positive definite. If not, there is a unit veétar C" with
(P&, &) = 0 and then each of the projectiopswould necessarily satisfypé, &) = 0.
That is the projections would be restricted to lie in an affine space of dimension strictly
less tharwm? (in fact in a face of the state space). Bchas to be non-singular.

For us, it is more convenient to be able to express any pre-assigned, positive definite
matrix o« with tracgo) = 1 as a convex combination @f rank one projections (though
we could actually manage with a non-specific A variant of the inductive argument
above is needed in the next lemma.

Lemma 16. For ¢>2 and (¢ — 1)2 + 2< N <¢2 + 1 there exists: = Zleaj ®b; €

CN ®@C" such that|jull, = 1 (whereC" is considered as the commutatiZé-algebra

of functions on a discrete space with N po)rasid such that for any non-empty subset
Fc{l2,...,N} of N—1 points or fewer

luplly <1

whereur = Zi-:la.j’]-‘ ®bj;r anda; r,b; r are the restrictions ot:;, b; to F.

Proof. We will adopt a similar notation to that in Lemmb3 and takeZ = {1,
2,...,N}, H = C (eachi € 7) and H = ,.7 H;. Our a; will be diagonal ele-
ments of B(H) with diagonal entriesa; ;);cz and similarlyb; = (b;;);cz (for scalars
aji,bj; € C). We abbreviatea = [a1, ao, ..., a¢] andb = [by, by, ..., be]".

Letm =2(¢—1) andn = N — (¢ — 1)2+2). Oura,,; will be zero form <i <N
andb;; will be zero for 1<i <n. As 0<n<m < N, we shall be able to arrange that
for eachi € {1, ..., N} there will be aj with a;; #0 or b;; # 0 (or both).

We will arrange that

14

¢
2 * 2
al|c = a;a;|| = max a;ilc=1
a2 = | 3o ajaf| = max 3 lail
j=1 j=1

and that the maximum is achieved in each positiahi Xm (so thathZ1 |aj,i|2 =1
for 1<i <m). We will also arrange that

14

4

b= | bib;| = max > |b;iP=1

Ib] Zl ibi KMXQ jil
J= J=

and eachy"_; [b; ;1> =1 for n <i<N. We will use @) to ensurefull, = (|lal|® +
[bl?%)/2 = 1 by ensuring that, € co(Wy,.(@*)) N co(W,, (b)) with « the diagonal
¢ x ¢ matrix with diagonal entries all equal to/d. In fact, o« will be the only matrix
in the intersection. But we achieve this in such a way thatNaummands irH are
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required and therefore for any choice fgiving N — 1 or fewer summands we do not
satisfy criterion 8) (and hencéluy||, is strictly less than 1 by Timoney [21, Theorem
3.3)).

For thea; (1<;j</¥), it is helpful to think of £ rows ay, ..., a, which we will
specify column by column (where each column has lerfythWe take a primitiventh
root of unity { and, fori € {1,..., m}, we define

(@ri,azi, ... ae;) = L3, (VY Ve

Recall thata; ; is to be zero fori > m and 1< j <. Any unit vector € H supported
in the summandd?; (1<i<m) gives a matrix inW,, .(a*), specifically the matrix

PNISIRGE-TD

i=1

(a convex combination of thg! ® 1;, from which we see thaW,, .(a*) is convex)
where

=t e

Taking eaché; = 1/./m we get the matrixx. For future reference, notice that™t =
—1 and so, for Ki<m, the matrixn’ ® n; has the real number—1)/ /¢ in the (1, £)
position.

As with the a;, it is helpful to think of theb; as ¢ rows which we will specify
column by column. The first two non-zero columns (colum# 1 and columm + 2)
are as follows:

alz(ﬁ,o,...,o,l)/dé and92=(\/§,0,...,0,—1)/\/§,

where 1 = /—1. We choose the remaining — 1)? columns by using Lemmas.
According to that lemma, we can find—1)? affinely independent rank one projections
pr (L<k<(€—1)%) in M,_1 so that the diagonalt — 1) x (¢ — 1) matrix

2
20 -3
0 0 ey
k=1
1
0 0 —
2t -3

is a convex combination o&ll of the p, (that is,x > O for all k and ), nr = 1).
(Note that only the final diagonal entry ¢fis reduced to the value/12¢ — 3).) Take
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unit vectorsy, (1<k<(¢£—1)?) in C*~! to be in the ranges of,, and extend them
to vectors(0, ;) = i, € Ct. Let

(biboi,....be)) =T,  (=n+2+k 1<k<(f—1)?).
We can check that

(t-1)?

3 3 ¢ —3
=— 03000+ (050 —n(i ®
o= (01®01) + 5 (03®02) + ;;1 5 i ® fig),

a convex combination. Thug € W, .(b). Sincex € W,, .(a*) also, the criterion J)
guarantees thatu||, = 1.

We show next thatx is the unique element of &V, .(a*)) N co(W,, (b)) =
Win.e (@) N W, (b). Suppose that

m (£—1)2
St @n =rti@0+s050 0+ Y ni ® iy
P k=1

wherec;, r, 5,120, )", ¢c; =1 andr+s+) , x = 1, and let the common value be the
¢ x £ matrix y. By considering thg1, 1)-entry of y, we see that & = 2(r +5)/3. On
the other hand, recalling that th@&, ¢)-entry of y must be real, we see thatr +s =

0. Thusr = s = 3/(4¢). By considering the first row ofy and also the entries

Ve—1.1>Ve—2.1--- - V2.1, We obtain thatVc = e; whereV is the m x m matrix whose
@, j)-entry is 7YV ¢ = (c1,...,cn)" and e, = (1,0,...,0). By inspection, one
solution isc1 = ¢ = -+ = ¢, = 1/m (giving y = «), and this solution is unique

because the determinant \gfis a non-zero alternant of Vandermonde.

What remains, in order to show thit ||, < 1 for any non-empty proper subsét
of {1,2,..., N}, is to show that we cannot find a common element of the convex hulls
of the corresponding extremal matrix numerical ranges when we remove any summand
H; (or more than oneH;). However, by the uniqueness established above, the matrix
o is the only possible candidate for being such a common element. Removing the
summandH; implies removing one of the; if 1 <i<m, and one off, 0, or some
iy, if n <i<N.(f N <¢2+1, then there will be some falling into both groups.)
But to geta on theay, side, we need all of thg’ ® n; (1<i<m) because they form
an affinely independent set (since the equatith = 0 has unique solutiord = 0).
ThusF must contain all in the range Xi <m. On the other hand, it is easily checked
that the set{0; ® 01, 05 ® 02} U {jif ® Ji, : 1<k< (¢ — 1)?) is affinely independent.
Hence, to getx on theby side, F must contain alli in the rangen < i< N. So if
F is a proper subset ofl, 2, ..., N}, then we cannot satisfy the criterio)(of [21,
Theorem 3.3] and sturl|, < 1. O
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Theorem 17. Let A be a unitalC*-algebra. Fix£>1. Then
10z @) llcp = llullz,n

holds for eachu = Zleaj ®b; € A® A if and only if every Glimm ideal in A is
(£2 4 1)-primal.

Proof. One direction is already done in Propositibh above. For the converse, suppose
that A has a Glimm idealG which is not (¢2 + 1)-primal. If G is not 2-primal then
there existsu =a ® b € A ® A such that|u|z, # 0 andz(u) = 0 (see the proof
of [19, Lemma 5]). IfG is 2-primal (sof > 1) then there exist¢’ € {2,..., ¢} and

N e{('—1)%2+2,...,0%+1) such thatG is (N — 1)-primal but notN-primal. Since

a tensor with?’ summands may be regarded as a tensor Wittummands, by the
addition of zeros, we may as well assume (for notational conveniencef'that.

As in the proof of Theorem 7, there exist primitive idedls, ..., Py of A such that
G C P, for 1<i<N andJ := PLN---N Py is not primal. Furthermore, there exist
mutually orthogonal positive elements, ..., by of A such that||p;|| = ||b; + J| =1
for 1<i<N and such that for eact? € Prim(A) there existsi € {1,..., N} for
which b; € P. We now re-label thes&l elements asis,...,dy (to avoid confusion
with the elementshby, ..., by which we are about to import from Lemma 16). Let
v = Zf.:laj ®bj e CN ® CV have the properties of Lemma 16, let

p = maxX|lvrll, : Fa proper non-empty subset ¢f,..., N}} <1
and let
N N
U= Z (Zaj’idi) ® <ij,idi> cEARA.
i i=1
On the one hand,
Nl zn 2 M n =N 1w = llvlln = 1,

where the penultimate equality follows by applying Lemiao the linear mapp :

CN — sparddi+J,...,dv+J} given by ¢(e;;) = di +J (wheree;; is theith standard
basis vector). On the other hand,Afe Prim(A) then there exist$' € {1, ..., N} such
thatdy € P. Let F ={1,..., N}\ {i’}. Then

4
e ln = DD ajidi+P)| @D britdi+P) || <lvrli<B.

j=1 \i#i’ i#i! i
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where the penultimate inequality follows by applying Lemrhato the linear map
¢ :spare;; ;i #i'} — sparid; + P :i # i’} given by ¢(e;;) = d; + P. Hence

10z@)lles =  sup  uPll,<p<1l O
PePrim(A)

Finally, we note that we can extend Theordm to the non-unital case in the same
way as Corollary 9 extends Theorem 8.
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