
Journal of Functional Analysis 226 (2005) 406–428

www.elsevier.com/locate/jfa

On the central Haagerup tensor product and
completely bounded mappings of aC∗-algebra

Robert J. Archbolda, Douglas W.B. Somerseta,
Richard M. Timoneyb,∗

aDepartment of Mathematical Sciences, University of Aberdeen, King’s College, Aberdeen AB24 3UE,
Scotland, UK

bSchool of Mathematics, Trinity College, Dublin 2, Ireland

Received 8 September 2004; accepted 10 March 2005
Communicated by G. Pisier

Available online 29 April 2005

Abstract

We consider the natural contractive map from the central Haagerup tensor product of a unital
C*-algebraA with itself to the space of completely bounded mapsCB(A) on A. We establish
the necessity of the known sufficient condition for isometry of the map, namely that all Glimm
ideals ofA are primal. However, when the map is restricted to tensors with length bounded by
a fixed quantity, a weaker necessary and sufficient condition is established.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

Let A be a unitalC∗-algebra,A ⊗h A the Haagerup tensor product,CB(A) the
space of completely bounded mapsT :A → A and E	(A) the subspace of elementary
operators onA (those expressible in the formT x = ∑	

j=1 ajxbj with aj , bj ∈ A)
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[4, Chapter 5]. There is a natural contraction�:A⊗hA → CB(A) (mapping
∑n

j=1 aj ⊗
bj to T ∈ E	(A) as above). Following the pioneering work of Haagerup in the case
of B(H) (see [16], [4, 5.4.7, 5.4.9] and [17]), Chatterjee and Sinclair [9] showed that
� is isometric ifA is a separably-acting von Neumann factor. More generally, Mathieu
showed that� is isometric if and only ifA is a primeC∗-algebra (see [4, 5.4.11]).
If A is not prime then� is not even injective, and it is then natural to consider the

central Haagerup tensor productA⊗Z,h A (the quotient of the Haagerup tensor product
A⊗h A by the closure of the span of elements of the formaz⊗ b− a ⊗ zb, a, b ∈ A,
z ∈ Z(A), where Z(A) is the centre ofA). The mapping� induces a contraction
�Z:A ⊗Z,h A → CB(A). Chatterjee and Smith [10] showed that�Z is isometric ifA
is a von Neumann algebra or if the primitive ideal space Prim(A) is Hausdorff (see
also [11]). More generally, Ara and Mathieu (see [3] and [4, 5.4.26]) showed that�Z

is isometric ifA is a boundedly centrally closedC∗-algebra.
A further generalization was obtained by Somerset [19, Theorem 4], who showed

that �Z is isometric if every Glimm ideal ofA is primal. It was also shown in [19]
that �Z is injective if and only if every Glimm ideal ofA is 2-primal, and that if
A has a Glimm ideal which fails to be 3-primal then there is a “pre-derivation" 1⊗
a − a ⊗ 1 for which �Z reduces the norm (see also [18]). In particular, while the
primality of every Glimm ideal is sufficient for�Z to be an isometry, the 3-primality
of every Glimm ideal is necessary. This seemed to suggest that it should be possible
to find a necessary and sufficient condition in terms of ideal structure for�Z to be an
isometry.
In Section 2, we construct an example to show that the 3-primality of all Glimm

ideals is not sufficient for�Z to be an isometry. Indeed, we explicitly exhibit an element
whose norm is reduced by�Z. In Section 3, we extend the ideas and computations
associated with this example to a general situation. Our first main result (Theorem 7)
is that the primality of all Glimm ideals is necessary for�Z to be an isometry (this is
the converse of [19, Theorem 4]). The proof makes crucial use of a result of Akemann
and Pedersen [1, Proposition 2.6] concerning orthogonal lifting from a quotient of a
C∗-algebra. At the end of Section 3, we consider the case of a non-unitalC∗-algebra
A by using the multiplier algebraM(A) in the usual way.
In Section 4, we go on to consider the more difficult question of how the degree of

primality of the Glimm ideals is related to the isometric behaviour of�Z on (cosets
of) tensorsu ∈ A ⊗ A of bounded length. For this, we exploit the recent results of
Timoney [21] on matrix numerical ranges, together with a corollary of Carathéodory’s
theorem on convex hulls inRn. Our second main result (Theorem 17) is that, for fixed
	�1, �Z is isometric on eachu =∑	

j=1 aj ⊗ bj ∈ A⊗A if and only if every Glimm

ideal of A is (	2+ 1)-primal.

1. Notation

If A is a unitalC∗-algebra andJ ∈ Max(Z(A)) (the maximal ideal space of the
centreZ(A)), then theGlimm idealof A generated byJ is the proper closed two-sided
idealAJ (see [15, §4]). It is closed by Cohen’s factorization theorem. SinceAJ∩Z = J ,
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the mappingJ 	→ AJ (J ∈ Max(Z(A))) is a bijection of Max(Z(A)) onto the set
Glimm(A) of all Glimm ideals ofA.
A (closed two-sided) idealI of A is called n-primal (for somen�2) if whenever

J1, J2, . . . , Jn are ideals ofA with productJ1J2 · · · Jn = {0}, then at least one of the
Ji is contained inI. The ideal I is called primal if it is n-primal for all n�2. This
concept arose in[6] where it was shown that a state ofA is a weak*-limit of factorial
states if and only if the kernel of its GNS representation is primal.
In [7, Lemma 1.3], it is shown that an idealI of A is n-primal if and only if

⋂n
i=1Pi is

primal wheneverP1, P2, . . . , Pn are primitive ideals ofA containingI. Furthermore, the
primality of such an intersection

⋂n
i=1Pi is equivalent to the existence of a net(Q�) in

the primitive ideal space Prim(A) which converges to each element of{P1, P2, . . . , Pn}
and hence to every element in the closure of this set, namely Prim(A/(P1∩P2∩· · ·∩Pn))

(see [6, Proposition 3.2]).
In [6, §3] it is shown that for eachn�2 there is a unitalC∗-algebraAn containing

an idealIn which is n-primal but not(n+1)-primal. Note thatIn is not a Glimm ideal
because it is non-zero andAn has trivial centre. In [7, Theorem 2.7], it is shown that,
for each odd integern�3, there is a 2-step nilpotent Lie group whose (non-unital)
C∗-algebra contains a Glimm ideal which isn-primal but not(n+ 1)-primal.
To conclude this notation section, we mention that we denote the norm onA⊗Z,h A

by ‖ ·‖Z,h. For convenience, we will often refer to‖u‖Z,h and�Z(u) whenu ∈ A⊗A,
where it is to be understood thatu is to be replaced by its image inA⊗Z,h A.

2. Basic constructions

We consider in some detail an example of a unitalC∗-algebraA in which all Glimm
ideals are primitive (and hence primal) except for one particular Glimm idealG∞
which is 3-primal but not 4-primal. This example is an elaboration of an example in
[5, Example 4.12] which has a Glimm ideal that is 2-primal but not 3-primal, and it is
also a prototype for variants which seem to be able to exhibit many of the phenomena
that can occur in general.
The basic idea is to build a 4-point compactification of a locally compact Hausdorff

space, where in each way of approaching the points at infinity one actually has three
limiting values (but not the fourth). This requires four ‘directions’ of approach to
infinity. A way to visualise such a space is to consider a disjoint unionT =⋃4

j=1Rj

of four semi-infinite closed rays in the plane with four points adjoined as follows. For
exampleT = {(x, y) : xy = 0, x2 + y2�1} ⊂ R2 with (say) R1 = {(x,0) : x�1}.
Label the four extra points�i (1� i�4). A basis of neighbourhoods of each�i is
given by the sets

{�i} ∪
⋃
j �=i

{t ∈ Rj : |t | > r},

where r > 1. So, for example, the sequence(n,0) in the rayR1 of the spaceT ∪
{�1,�2,�3,�4} would have each of�2, �3 and �4 as limits asn → ∞ (but not
�1).
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A ‘discrete’ version of this space would start withT ∩ Z2 in place of T . Clearly
one can mapT ∩Z2 to N by mapping the four directions to equivalence classes inN

modulo 4 (cf. [5, Example 4.12]).
We now construct aC∗-algebraA such that Prim(A) is (homeomorphic to)T ∪

{�1,�2,�3,�4}. We consider theC∗-algebra B of bounded continuous functions
x: T → M3(C) and we defineA to be theC∗-subalgebra ofB consisting of all those
elementsx ∈ B for which there exist scalars�1(x), �2(x), �3(x), �4(x) such that

lim
Rj�t→∞ x(t) = diag(�j+1(x), �j+2(x), �j+3(x)) (1�j �4),

where we understand the subscriptsj + i (1� i�3) to be reduced modulo 4 to lie in
the range 1,2,3,4. Next, we introduce notation for what we call ‘constant’ elements
of A. Given four scalars�1, �2, �3, �4 we write c(�1, �2, �3, �4) for the elementx ∈ A

where

x(t) = diag(�j+1, �j+2, �j+3) (t ∈ Rj , j ∈ {1,2,3,4})

(where we again understand the subscripts modulo 4). The setAc of all constant ele-
ments ofA forms an abelianC∗-subalgebra isomorphic toC4 andA = C0(T ,M3(C))+
Ac.
We call thisA a ‘4-spoke’ example. The centreZ(A) of A consists of elementsx

where eachx(t) is a multiple of the identity (and hence�i (x) does not depend on
i) and soZ(A) is canonically isomorphic to the algebra of scalar-valued continuous
functions on the one-point compactification ofT . The space Glimm(A) can then be
identified with this one point compactification, or{Gt : t ∈ T } ∪ {G∞} whereGt =
{x ∈ A : x(t) = 0} andG∞ = C0(T ,M3(C)). As A/G∞ is abelian, the irreducible rep-
resentations ofA whose kernels containG∞ arex 	→ �i (x). The remaining irreducible
representations ofA restrict to irreducible representations ofC0(T ,M3(C)), and hence
have the form�t :A → M3(C) where �t (x) = x(t) for x ∈ A and t ∈ T . Thus, as
ker �t = Gt ,

Prim(A) = {Gt : t ∈ T } ∪ {ker �i : 1� i�4}.

As a topological space Prim(A) is homeomorphic toT ∪ {�i : 1� i�4}. For example,
to see that ast ∈ Rj tends to infinity we haveGt = ker �t → ker �i for eachi �= j , let
us fix i �= j and consider an open neighbourhoodU of ker �i in Prim(A). Then there
is a closed two-sided idealJ of A with U = {I ∈ Prim(A) : J�I }. Since ker�i ∈ U ,
there is somex ∈ J with �i (x) �= 0. Thus there existsr > 1 so that if t ∈ Rj and
|t | > r then x(t) �= 0. It follows that ker�t ∈ U whenevert ∈ Rj and |t | > r.
The four idealsJi = {x ∈ A : x(t) = 0 for all t ∈ Ri} have product{0} but (for

example)J1 is not contained inG∞ becausec(1,0,0,0) ∈ J1. HenceG∞ is not
4-primal. To show thatG∞ is 3-primal, note that there are only four primitive ideals
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of A which containG∞, namely ker�i (i = 1,2,3,4). So it suffices to show that, for
eachi,

ker �i+1 ∩ ker �i+2 ∩ ker �i+3

is primal. But we have just shown that ker�t converges in Prim(A) to each of ker�i+1,
ker �i+2 and ker�i+3, as t ∈ Ri tends to infinity.

Proposition 1. For A as above, denote byãj , b̃j ∈ A for 1�j �4 the following
elements:

ã1 = c(0,1,1,1), b̃1 = c(1,0,0,0),
ã2 = c(1,0,1,1), b̃2 = c(0,1,0,0),
ã3 = c(1,1,0,1), b̃3 = c(0,0,1,0),
ã4 = c(1,1,1,0), b̃4 = c(0,0,0,1).

(1)

Then, for u =∑4
j=1 ãj ⊗ b̃j ∈ A⊗ A and T = �(u) ∈ E	(A),

‖u‖Z,h > ‖T ‖cb.

Our verification of the proposition will require an analysis of norms of elementary
operators similar toT but acting onM3 andM4. We will use eij for the n× n matrix
with 1 in the (i, j) position and zeros elsewhere (then will be inferred from the
context). We also use�ij for the Kronecker delta symbol.

Example 2. Consider the (elementary) operatorTn:Mn → Mn given by Tnx =∑n
j=1

(In − ejj )xejj = x −∑n
j=1 ejj xejj .

Then ‖Tn‖ = ‖Tn‖cb = 2(n− 1)/n.
Proof. Note thatTneij = (1− �ij )eij and TnIn = 0.
We can rewriteTnx = ((n − 1)/n)x − ∑n

j=1(ejj − In/n)x(ejj − In/n) = ((n −
1)/n)x − Snx where Sn is a completely positive operator. Hence‖Sn‖cb = ‖Sn‖ =
‖Sn(In)‖ = (n− 1)/n and thus‖Tn‖�‖Tn‖cb �2(n− 1)/n.
To show that we have equality in both of these inequalities, we introduce the unit

vector � = (1,1, . . . ,1)/
√

n ∈ Cn and the rank one projection operator�∗ ⊗ � of
Cn onto the span of�. As a matrix,�∗ ⊗ � has 1/n in each entry. So we can see
that 〈Tn(�

∗ ⊗ �)�, �〉 = (n − 1)/n. Since 2(�∗ ⊗ �) − In is a norm one operator and
〈Tn(2(�

∗⊗�)−In)�, �〉 = 2〈Tn(�
∗⊗�)�, �〉 = 2(n−1)/n we have‖Tn‖�2(n−1)/n. �

Proof of Proposition 1. We know (from [4, 5.3.12]) that‖T ‖cb = sup�∈Â
‖T �‖cb

where the supremum is over all irreducible representations� of A and T �:B(H�) →
B(H�) is given by

T �(y) =
4∑

j=1
�(ãj )y�(b̃j ).
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When� = �t (for any t ∈ T ) we haveT � = T3 and so‖T �‖cb = 4/3. For � = �j we
haveT � = 0. Hence‖T ‖cb = 4/3.
We now claim that‖u‖Z,h = ‖T4‖cb = 3/2 for u =∑4

j=1 ãj ⊗ b̃j . By Somerset[19,

Theorem 1],‖u‖Z,h = supG ‖uG‖h where the sup is over all Glimm ideals ofA and
uG ∈ (A/G)⊗h (A/G) is uG =∑4

j=1(ãj +G)⊗ (b̃j +G). The caseG = G∞ yields
A/G as a four-dimensional commutative algebra. We can identify it as the diagonal
in M4(C). Then the elements̃bj + G can be taken to correspond toejj ∈ M4(C)

and ãj +G to I4− ejj . By injectivity of the Haagerup norm (see [14, 9.2.5]) we can
compute‖uG‖h in M4⊗M4 where, by Haagerup’s theorem [4, 5.4.7], it gives‖T4‖cb

which equals 3/2.
Thus‖u‖Z,h�3/2 (and in fact we could easily show equality as all the other Glimm

ideals are primitive, being the kernels of the representations�t for t ∈ T ). Thus we
have‖u‖Z,h�3/2> 4/3= ‖T ‖cb = ‖�Z(u)‖cb. �

Remark 3. The proof can be generalised to produce similar examples where all Glimm
ideals aren-primal but not all are(n+ 1)-primal. The elementary operator would have
length n + 1 and the algebraA would be replaced by an ‘(n + 1)-spoke’ algebra
constructed from aT having n + 1 rays to infinity Ri (1� i�n + 1) and matrices
Mn(C). There would ben + 1 multiplicative linear functionalsx 	→ �i (x) at ‘infinity’
with x(t) tending to a diagonal usingn of the n+1 values�i (x) as t → ∞ in anyRi .
One would obtainu ∈ A⊗A such that‖u‖Z,h = 2n/(n+ 1), ‖�Z(u)‖cb = 2(n− 1)/n
and hence‖u‖Z,h/‖�Z(u)‖cb = n2/(n2− 1).
In Proposition1, the (minimal) length of the tensoru is 4, the elementary operator

T = �Z(u) is self-adjoint (T ∗(x) = T (x∗)∗ = T (x)) and ‖u‖Z,h/‖T ‖cb = 9/8. For
the same algebraA, we now exhibit a tensoru with length 2 on which�Z fails to be
isometric. In this case, the corresponding elementary operatorT is not self-adjoint but
‖u‖Z,h/‖T ‖cb = 4

1+√
5
> 9/8.

Example 4. For A the ‘4-spoke’C∗-algebra introduced above, takeT :A → A to be
the generalised derivation given byT x = ax − xb where

a = c(0, �,0,−�), b = c(−1,0,1,0)

(� = √−1). Then‖T ‖cb = 1/2+√
5/4< 2= ‖a ⊗ 1− 1⊗ b‖Z,h.

Proof. By a result of[20], the norm of a generalised derivationS : x 	→ ax − xb on
B(H) (any Hilbert spaceH, any a, b ∈ B(H)) is

‖S‖ = inf
�∈C

(‖a − �‖ + ‖b − �‖) .
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For k = 2,3, . . ., the operatorS(k) on Mk(B(H)) given by S(k)((xij )
k
i,j=1) =

(Sxij )
k
i,j=1 may be regarded as the generalised derivation onB(Hk) defined by the

amplifications ofa and b. So, by Stampfli’s formula again,‖S(k)‖ = ‖S‖. Hence
‖S‖cb = ‖S‖.
As before we compute‖T ‖ via the representations�t (t ∈ T ). When t ∈ R4 we end

up with

�t (a) = diag(0, �,0) �t (b) = diag(−1,0,1).

One can see geometrically that

‖�t (a)− (�/2)I3‖ + ‖�t (b)− (�/2)I3‖ = 1

2
+
∣∣∣1+ �

2

∣∣∣ = 1

2
+
√
5

4

achieves the minimum in the Stampfli formula, but in any case‖T �‖ is bounded above
by this number for� = �t and t ∈ R4. A similar analysis applies for allRi (1� i�4).
In the one-dimensional irreducible representations� = �j we have‖T �‖ = 1 and so

we end up with‖T ‖cb = sup�∈Â
‖T �‖cb �1/2+√

5/4.
Finally, to show that‖a ⊗ 1− 1⊗ b‖Z,h = ‖a‖ + ‖b‖ = 2 we concentrate on the

quotientA/G∞. We then must consider (following the pattern of proof in Example2)
the norm (= cb-norm) of the generalised derivation onM4 given by

x 	→ diag(0, �,0,−�)x − xdiag(−1,0,1,0).

One may verify that the norm is 2 using Stampfli’s formula quoted above.�

3. Solution of the isometry problem for �Z

Our aim in this section is to show that if a unitalC∗-algebraA has a non-primal
Glimm ideal then the mapping�Z is not an isometry. In order to utilise the computations
of Example2 in a more general setting, we shall need the following lemma:

Lemma 5. Let bj (1�j �n) be orthogonal, positive elements of norm one in aC∗-
algebra A (that is, bj �0, ‖bj‖ = 1 and bjbk = 0 for j �= k, 1�j, k�n) and let
X denote their linear span. Letdj (1�j �n) be orthogonal positive elements of a
C∗-algebra B and let Y denote their linear span. Assume‖dj‖�1 for 1�j �n.
We can define a linear map	:X → Y by 	(bj ) = dj and it has the following

properties:

(i) ‖	‖�1.
(ii) The map	 ⊗ 	:X ⊗h X → Y ⊗h Y (with Haagerup tensor norms in each case)

has norm at most one.
(iii) If ‖dj‖ = 1 for each j, then	⊗	 is an isometry betweenX ⊗h X and Y ⊗h Y .
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Proof. Consider the commutativeC∗-algebra generated by thebj (1�j �n). It is
isomorphic to an algebra of continuous functionsC0(KX) on some locally compact
Hausdorff spaceKX where thebj must be positive functions that are non-zero on
disjoint open sets. It is clear then that the norm of a linear combination

∑n
j=1 �j bj

is maxj |�j |‖bj‖ = maxj |�j |. (In particular thebj are linearly independent and	 is
well-defined.) For similar reasons, we may viewY ⊆ C0(KY ) for a locally compact
Hausdorff spaceKY , and

∥∥∥∥∥∥
n∑

j=1
�j dj

∥∥∥∥∥∥ = max
j

|�j |‖dj‖� max
j

|�j |.

This shows‖	‖�1.
For the second part, note that when we compute the Haagerup tensor norm of

u =∑N
i=1 ai ⊗ ci ∈ X ⊗X, we consider an infimum of expressions

1

2

(∥∥∥∥∥
N∑

i=1
aia

∗
i

∥∥∥∥∥+
∥∥∥∥∥

N∑
i=1

c∗i ci

∥∥∥∥∥
)

over all representations ofu and we can find a representation where this infimum is
attained (without going outside representations inX⊗X). We can compute that applying
	⊗	 to this same representation produces a representation of(	⊗	)(u) ∈ Y⊗Y where
the corresponding expression is reduced. For example if we writeai =∑n

j=1 aij bj ∈ X

then, for
 ∈ KY ,

(
N∑

i=1
	(ai)	(ai)

∗
)

(
)=
N∑

i=1


 n∑

j=1
aij dj (
)




 n∑

j=1
aij d

∗
j (
)




=
n∑

j=1

N∑
i=1

|aij |2|dj (
)|2

becausedj (
) is non-zero for at most onej. The supremum of this latter sum over

 ∈ KY is at most

max
j

N∑
i=1

|aij |2 =
∥∥∥∥∥

N∑
i=1

aia
∗
i

∥∥∥∥∥ .

Thus ‖	 ⊗ 	‖�1.
For the third part, we can apply the second part to the inverse map of	 if ‖dj‖ = 1

for all j. �
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Lemma 6. Let bj (1�j �n) be positive elements of aC∗-algebra withbjbk = 0 for
j �= k (1�j, k�n). Let

u =

 n∑

j=1
bj


⊗


 n∑

j=1
bj


−

n∑
j=1

bj ⊗ bj .

(i) If ‖bj‖�1 for 1�j �n, then ‖u‖h�2(n− 1)/n.
(ii) If ‖bj‖ = 1 for 1�j �n, then ‖u‖h = 2(n− 1)/n.

Proof. We can deduce this from Lemma5 and Example 2. We identifyCn with the
diagonals inMn and consider

	:Cn → Y = span{bj : 1�j �n}

given by 	(ejj ) = bj . Using injectivity of the Haagerup norm, Haagerup’s theorem
and Example2, we have

∥∥∥∥∥∥In ⊗ In −
n∑

j=1
ejj ⊗ ejj

∥∥∥∥∥∥
h

= ‖Tn‖cb = 2(n− 1)/n.

But the tensor in the left-hand side maps tou under the mapping	⊗	 of Lemma5. �

Theorem 7. Let A be a unitalC∗-algebra containing a Glimm ideal G that is not
n-primal for somen�2. Then there existsu =∑n

j=1 aj ⊗ bj ∈ A⊗ A with

‖u‖Z,h > ‖�Z(u)‖cb.

Proof. By reducingn if necessary, we may assume thatG is (n − 1)-primal but not
n-primal (where we adopt the convention that all closed two-sided ideals inA are
1-primal).
There must existn primitive idealsPj of A (1�j �n) with G ⊆ Pj for all j but

J :=⋂n
j=1Pj not primal. However

Rj :=
⋂

1�k�n,k �=j

Pk

is primal for each 1�j �n. Note that sinceR1, R2, . . . , Rn are primal butJ is not, it
follows thatPj�Pk for j �= k.
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There must exist open neighbourhoodsUj of Pj in Prim(A) (1�j �n) so that

n⋂
j=1

Uj = ∅.

For, if no such neighbourhoods existed there would be a net(Q�)� in Prim(A) con-
verging to each of thePj (1�j �n) and hence to every primitive ideal containingJ,
contradicting the non-primality ofJ [6, Proposition 3.2]. Now there are closed two-sided
idealsJj in A so thatUj = Prim(Jj ) (henceUj = {Q ∈ Prim(A) : Jj�Q}).
Let Ij = JjRj for 1�j �n. The idealIj cannot be contained inJ because then we

would haveJjRj ⊆ Pj and since the primitive idealPj is necessarily prime, it would
follow that Jj ⊆ Pj or Rj ⊆ Pj . SincePj ∈ Uj , we haveJj�Pj . By primeness of
Pj , if Rj ⊆ Pj , thenPk ⊆ Pj for somek �= j (again not so).
Let �:A → A/J denote the quotient map. LetKj = �(Ij ), a non-zero closed ideal

of A/J . Note thatKjKk = 0 for j �= k (asRjRk ⊆ J ).
For 1�j �n, choose a positive elementdj ∈ Kj of norm one andgj ∈ Ij positive of

norm one with�(gj ) = d
1/3
j . Sinced1/3j d

1/3
k = 0 for j �= k, we can use [1, Proposition

2.6] to find cj ∈ A (1�j �n) with �(cj ) = �(gj ) = d
1/3
j and cj ck = 0 for j �= k.

Let b′j = cj dj cj ∈ I+j . Thenb′j b′k = 0 for j �= k and�(b′j ) = dj (1�j, k�n).
Let f : [0,∞) → [0,∞) be f (t) = min(t,1), a uniform limit on any compact subset

of [0,∞) of polynomials without constant term. Definebj = f (b′j ) by functional
calculus. Then we havebj ∈ I+j , �(bj ) = dj , ‖bj‖ = 1 andbjbk = 0 for j �= k.
Consider now

u =

 n∑

j=1
bj


⊗


 n∑

j=1
bj


−

n∑
j=1

bj ⊗ bj =
n∑

j=1

((
n∑

k=1
bk

)
− bj

)
⊗ bj

as in Lemma6. Note that the canonical quotient map fromA/G to A/J induces a
contraction fromA/G ⊗h A/G to A/J ⊗h A/J . From [19, Theorem 1]), we have
‖u‖Z,h�‖uG‖h. Applying Lemma 6 toA/J , we deduce

‖u‖Z,h�‖uG‖h�‖uJ ‖h = 2(n− 1)/n.

On the other hand, by[4, 5.3.12, 5.4.10]

‖�Z(u)‖cb = sup{‖uP ‖h : P ∈ Prim(A)}.

Let P ∈ Prim(A). There existsj ∈ {1, . . . , n} such thatP /∈ Uj and hencebj ∈ Ij ⊆
Jj ⊆ P . Applying Lemma6 again (this time toA/P with at mostn − 1 non-zero
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bk + P ), we have

‖uP ‖�2(n− 2)/(n− 1).

Thus

‖�Z(u)‖cb �2(n− 2)/(n− 1) < 2(n− 1)/n = ‖u‖Z,h. �

Combining Theorem7 with [19, Theorem 4], we obtain the following result:

Theorem 8. Let A be a unitalC∗-algebra. The mapping�Z : A ⊗Z,h A → CB(A) is
an isometry if and only if every Glimm ideal of A is primal.

If A is a non-unitalC∗-algebra then it is customary to consider the multiplier algebra
M(A). If Z now denotes the centre ofM(A), then we have the natural contraction
�Z:M(A) ⊗Z,h M(A) → CB(M(A)) for the unital C∗-algebraM(A). But, sinceA
is an ideal inM(A), we obtain a contraction�Z:M(A) ⊗Z,h M(A) → CB(A) by
defining�Z(u) = �Z(u)|A (see[4, 5.4.17]).

Corollary 9. Let A be a non-unitalC∗-algebra. The map�Z:M(A) ⊗Z,h M(A) →
CB(A) is an isometry if and only if every Glimm ideal ofM(A) is primal.

Proof. Let u ∈ M(A) ⊗ M(A). By taking a faithful non-degenerate representation of
A on a Hilbert spaceH, we may assume the inclusionsA ⊆ M(A) ⊆ A′′ ⊆ B(H).
By tensoring withMn(C) and using Kaplansky’s density theorem, one obtains that
‖�Z(u)‖cb = ‖�Z(u)‖cb. The result now follows from Theorem8. �

We can state a necessary condition for�Z to be an isometry in terms of Glimm
ideals ofA, something that involves an extension of the notion of Glimm ideal to the
non-unital case. In a (not necessarily unital)C∗-algebraA, aGlimm ideal is the kernel
of an equivalence class in Prim(A), where primitive idealsP andQ are defined to be
equivalent iff (P ) = f (Q) for all f ∈ Cb(Prim(A)) [8,12]. By the Dauns–Hofmann
theorem, this definition is consistent with the one already given in the unital case.

Lemma 10. Let A be a(non-unital) C∗-algebra containing a Glimm ideal G that is not
n-primal (somen�2). ThenM(A) also contains a Glimm ideal that is not n-primal.

Proof. In this proof, we elaborate an argument in[4, p. 88] and use different notation.
By the Dauns–Hofmann theorem, there is an isomorphism� of the algebraCb

(Prim(A)) onto the centreZ(M(A)) of M(A) such that forf ∈ Cb(Prim(A)), a ∈ A

andP ∈ Prim(A),

(�(f )a)+ P = f (P )(a + P)
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in A/P . Temporarily fixP ∈ Prim(A) with P ⊇ G and define a multiplicative linear
functional	 on Cb(Prim(A)) by 	(f ) = f (P ). Clearly	 is independent of the choice
of P ⊇ G. Let J = ker(	 ◦�−1), a maximal ideal ofZ(M(A)), and letH = M(A)J ,
a Glimm ideal ofM(A).
We haveH ∩ A = M(A)JA = AJ . Let a ∈ A, z ∈ J and letQ be any primitive

ideal of A containingG. In A/Q we have

za +Q = (�−1(z))(Q)(a +Q) = 	(�−1(z))(a +Q) = 0.

HenceAJ ⊆ G. (In fact AJ = G, but we will not need that.)
Suppose thatH is n-primal. For any closed idealsI1, I2, . . . , In ⊆ A, with product

I1I2 · · · In = {0} we must haveIi ⊆ H (for some 1� i�n) and soIi ⊆ H ∩ A =
AJ ⊆ G. ThusG is n-primal, a contradiction showing thatH cannot ben-primal. �

From Lemma10 and Corollary 9, we can make the following assertion:

Corollary 11. Let A be a(non-unital) C∗-algebra. If the map�Z:M(A)⊗Z,hM(A) →
CB(A) is an isometry then every Glimm ideal of A is primal.

For an odd integern�3, let Wn be the simply connected, 2-step nilpotent, Lie
group considered in[7] and letA = C∗(Wn). ThenA has a Glimm ideal which is not
(n + 1)-primal [7, Theorem 2.7] and so, by Corollary 11,�Z is not an isometry in
this case.
The next example, together with Corollary 9, shows that the necessary condition in

Corollary 11 is not sufficient for�Z to be an isometry.

Example 12. There is aC∗-algebraA with compact, Hausdorff, primitive ideal space
(and hence with every Glimm ideal primal) such thatM(A) has a Glimm ideal which
is not 2-primal.

Proof. Let X be a non-compact, locally compact Hausdorff space such that the Stone–
Čech remainder�X\X has at least two distinct pointsy andz (e.g. we could takeX =
N or X = R). Let B be theC∗-algebraC(�X,M2(C)), and letB1 be theC∗-subalgebra
consisting of those functionsf ∈ B for which there exist complex numbers�1(f ),
�2(f ), �3(f ) such thatf (y) = diag(�1(f ), �2(f )) and f (z) = diag(�2(f ), �3(f )).
Let �x :B1 → M2 denote the representation�x(f ) = f (x). Then

Prim(B1) = {ker �x : x ∈ �X \ {y, z}} ∪ {ker �1, ker �2, ker �3}

and, forG = ker �1 ∩ ker �2 ∩ ker �3,

Glimm(B1) = {ker �x : x ∈ �X \ {y, z}} ∪ {G}.
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The Glimm idealG is not 2-primal. To see this, letU andV be disjoint neighbourhoods
of y and z, respectively, in�X. Let KU be the closed ideal ofB1 consisting of those
functions vanishing offU, and similarly letKV consist of thosef ∈ B1 vanishing off
V, also a closed ideal ofB1. ThenKU,KV �G, but KUKV = {0}.
Let A = {f ∈ B1 : �1(f ) = �3(f ) = 0}, a closed ideal inB1. We have

Prim(A) = {ker �x |A : x ∈ �X \ {y, z}} ∪ {ker(�2|A)}.

Furthermore, Prim(A) is homeomorphic to the compact Hausdorff space obtained from
�X by identifying the pointsy and z. In particular, therefore, every Glimm ideal ofA
is primitive and hence primal.
Now let J = C0(X,M2(C)). ThenM(J) = Cb(X,M2(C)) by Akemann et al.[2,

Corollary 3.4]. Note that the restriction mapf 	→ f |X is a ∗-isomorphism between
B = C(�X,M2(C)) and Cb(X,M2(C)). SinceJ is an essential ideal inA, it is also
an essential ideal inM(A) and so we now haveJ ⊆ A ⊆ M(A) ⊆ M(J) = B.
Elementary computations show thatM(A) = B1. �

4. Length specific results

If every Glimm ideal of a unitalC∗-algebraA is 2-primal (so that�Z is injective)
but not every Glimm ideal is primal, then one may look for a relationship between the
degree of primality of the Glimm ideals ofA and the length of the shortest tensors
u ∈ A⊗A on which�Z fails to be isometric. We begin by considering the question of
whethern-primality of all the Glimm ideals ofA is sufficient for �Z to be isometric
on tensorsu =∑	

j=1 aj ⊗ bj ∈ A⊗ A, wheren and 	 are related in some way.
We will use results from [21] in the sequel in order to be able to calculate Haagerup

norms. By injectivity of the Haagerup norm, we can always make our computation in
B(H) for someH and in this setting we have equality of the Haagerup norm of a
tensoru = ∑	

j=1 aj ⊗ bj and the cb-norm of the elementary operatorT = �(u) on
B(H) [4, 5.4.9]. The difficulty addressed by [21] is to be able to recognise when a
tensoru is represented in an optimal way, meaning a way that gives equality in the
infimum

‖u‖h = inf 1
2

(
‖a‖2+ ‖b‖2

)
,

where we now adopt the shorthandb = [b1, b2, . . . , b	]t for the (column) 	-tuple
of the bj ’s and a = [a1, a2, . . . , a	] for the (row) 	-tuple of the aj ’s. Recall that

‖a‖2 =
∥∥∥∑	

j=1 aja
∗
j

∥∥∥ while ‖b‖2 =
∥∥∥∑	

j=1 b∗j bj

∥∥∥. The infimum for‖u‖h can also be

written using the geometric mean version‖u‖h = inf ‖a‖‖b‖ but there is no loss in
restricting to representationsu =∑	

j=1 aj ⊗bj where‖a‖ = ‖b‖ and so the geometric
and arithmetic means of‖a‖2 and ‖b‖2 agree.
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The results from[21] use numerical range ideas to characterise the situation where
we have equality in

‖�(u)‖�‖�(u)‖cb � 1
2

(
‖a‖2+ ‖b‖2

)
(2)

and then an extension of this characterisation to amplifications�(u)(k) of �(u) in order
to deal with the equality in the second inequality only.
From [21] we use the notationWm(b) for the matrix numerical range

Wm(b) =
{
(〈b∗j bi�, �〉)	i,j=1 = (〈bi�, bj�〉)	i,j=1 : � ∈ H, ‖�‖ = 1

}

associated with a columnb. This subset ofM+
	 (the positive semidefinite	×	 matrices)

is in fact the joint spatial numerical range of the	2 operatorsb∗j bi but it is convenient
to consider it as a set of matrices. It is easy to see that each matrix inWm(b) has
trace at most‖b‖2 and that this is the supremum of the traces. The ‘extremal matrix
numerical range’Wm,e(b) is defined as the subset of the closure ofWm(b) consisting
of those matrices with trace equal to‖b‖2. (In caseH is finite dimensional,Wm(b)
is already closed and the extremal matrix numerical range corresponds to restricting
� ∈ H to be in the eigenspace for the maximum eigenvalue of

∑
j b∗j bj .) The criterion

in [21, Proposition 3.1] for equality in (2) is

Wm,e(a∗) ∩Wm,e(b) �= ∅

(wherea∗ = [a∗1, a∗2, . . . , a∗	 ]t is a column).
Let co(S) denote the convex hull of a setS. Equality in the second inequality of

(2) occurs if and only if

co(Wm,e(a∗)) ∩ co(Wm,e(b)) �= ∅ (3)

by Timoney[21, Theorem 3.3]. Givenu ∈ B(H)⊗B(H) of length	, it can be written
as u =∑	

j=1 aj ⊗ bj so as to get

‖u‖h = ‖a‖2 = ‖b‖2 = ‖a‖2+ ‖b‖2
2

(4)

(see[14, Proposition 9.2.6]) with the same	. Via Haagerup’s theorem‖u‖h = ‖�(u)‖cb,
we see that (3) and (4) are equivalent foru ∈ B(H)⊗B(H). We will use this equivalence
several times to detect when representations of suchu satisfy (4).

Lemma 13. Consider a Hilbert space H which is a(Hilbert space) direct sum of
Hilbert spacesHi (i ∈ I = some index set). Let aj,i , bj,i ∈ B(Hi) for each i ∈ I
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with supi ‖aj,i‖ < ∞ and supi ‖bj,i‖ < ∞ for 1�j �	. Consideraj = (aj,i)i∈I as a
‘block diagonal’ element inB(H), bj = (bj,i)i∈I similarly and u = ∑	

j=1 aj ⊗ bj ∈
B(H)⊗ B(H).
For a subsetF ⊆ I, let HF be the direct sum of thoseHi for i ∈ F and let

aj,F = (aj,i)i∈F ∈ B(HF ), bj,F similarly defined anduF = ∑	
j=1 aj,F ⊗ bj,F ∈

B(HF )⊗ B(HF ).
Then

‖u‖h = sup{‖uF ‖h : F ⊆ I, F has at most	2+ 1 elements}.

Proof. As remarked above, we know that‖u‖h = ‖�(u)‖cb for �(u) ∈ E	(B(H)) and
similarly for ‖uF ‖h.
Let (P�) be an increasing net of projections converging in the strong operator topo-

logy to the identity operator onH. Since, for the strong operator topology, multiplication
is jointly continuous on norm-bounded sets, we have

‖�(u)‖ = lim
�

‖�(u�)‖,

where

u� =
n∑

j=1
(P�ajP�)⊗ (P�bjP�).

Furthermore, for eachk�2, the k-fold amplification ofP� converges strongly to the
identity onHk and so

‖�(u)‖cb = lim
�

‖�(u�)‖cb.

We may therefore assume thatI is finite.
We assume next thatu is written so as to get equality in the Haagerup norm infimum

‖u‖h = (‖a‖2+‖b‖2)/2, hence (3) holds. Since we are in the case whereI is finite,

‖a‖2 = max
i∈I

‖a{i}‖2 = max
i∈I

∥∥∥∥∥∥
	∑

j=1
aj,i(aj,i)

∗
∥∥∥∥∥∥ , (5)

where nowa{i} = [a1,i , a2,i , . . . , a	,i] relates to the summandi.
A unit vector � ∈ H = ⊕

i Hi gives an element ofWm(a∗) which is a convex
combination of elements ofWm(a∗{i}) (i ∈ I). Hence, since closed bounded subsets of
M	 are compact andI is finite,

co(Wm(a∗)) = co
(
co
⋃
i∈I

Wm(a∗{i})
)
= co

(⋃
i∈I

Wm(a∗{i})
)

.
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To get elements of the extremal matrix numerical rangeWm,e(a∗), we must only use
thosei ∈ I where the maximum in (5) is attained and matrices from co(Wm,e(a{i})) in
the convex combination. Thus, ifIa denotes the subset ofi ∈ I where the maximum
in (5) is attained, we have

co(Wm,e(a∗)) = co

⋃

i∈Ia
Wm,e(a∗{i})


 . (6)

Applying the same argument tob as applied above toa∗, we obtain a (possibly different)
Ib ⊆ I so that

co(Wm,e(b)) = co

⋃

i∈Ib
Wm,e(b{i})


 . (7)

We claim that there are non-empty subsetsFa ⊆ Ia and Fb ⊆ Ib such that|Fa| +
|Fb|�(	2− 1)+ 2= 	2+ 1 and

co

⋃

i∈Fa

Wm,e(a∗{i})




 ∩


co


⋃

i∈Fb

Wm,e(b{i})




 �= ∅. (8)

To see this, note that all the matrices we are considering (in the extremal matrix
numerical ranges) are hermitian	 × 	 matrices with the same trace‖a‖2 = ‖b‖2 and
hence they lie in an affine space of real dimension	2−1 (or affine dimension	2). By
Carathéodory’s theorem, any element in the convex hull of a subsetS of Rn can be
represented as a convex combination ofn + 1 or fewer elements ofS. A slightly less
well-known fact is that if the convex hulls of two non-empty setsS1, S2 ⊂ Rn (or an
affine space equivalent to it) intersect, then we can find a convex combination ofn1
elements inS1 to equal a convex combination ofn2 elements ofS2, wheren1, n2�1
and n1 + n2�n + 2. This follows by applying Carathéodory’s theorem to the origin,
which belongs to the convex hull of

{(x,1) : x ∈ S1} ∪ {(−y,−1) : y ∈ S2} ⊂ Rn+1.

We can apply this fact because we have (3) valid, and therefore the subsetsFa andFb
exist as claimed.
Let � be in intersection (8) and letF = Fa ∪ Fb. Let

aF = [a1,F , a2,F , . . . , a	,F ] and bF = [b1,F , b2,F , . . . , b	,F ]t .

Applying (6) and (7) toa∗F and bF , respectively, and noting thatF ∩ Ia ⊇ Fa and
F ∩ Ib ⊇ Fb, we obtain‖aF ‖ = ‖a‖, ‖bF ‖ = ‖b‖ and that

� ∈ co(Wm,e(a∗F )) ∩ co(Wm,e(bF )).
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Hence, by criterion (3) we have‖uF ‖h = ‖aF ‖2 = ‖bF ‖2 = ‖a‖2 = ‖b‖2 = ‖u‖h.
SinceF has at most	2+ 1 elements, the result now follows.�

Proposition 14. Let A be a unitalC∗-algebra and	 a positive integer. Suppose that
every Glimm ideal in A is(	2+ 1)-primal. Let u =∑	

j=1 aj ⊗ bj ∈ A⊗ A. Then

‖�Z(u)‖cb = ‖u‖Z,h

Proof. From [19, Theorem 1 and Proposition 3], we know that

‖u‖Z,h = sup{‖uG‖h : G ∈ Glimm(A)}

while

‖�Z(u)‖cb = sup{‖uJ ‖h : J minimal primal inA}.

Let G ∈ Glimm(A) and consideruG ∈ (A/G) ⊗h (A/G). In order to compute‖uG‖h

we embedA/G faithfully as an algebra of operators, and use injectivity of the Haagerup
norm [14, Proposition 9.2.5]. We take as our faithful representation the reduced atomic
representation


r : A/G ↪→
∏
�

B(H�) ⊂ B
(⊕

�

H�

)

(one irreducible representation� from each equivalence class in̂A/G).
Let � > 0. By Lemma 13, there exist inequivalent irreducible representations

�1, . . . ,�n of A/G such thatn�	2+ 1 and

‖uG‖h − � < ‖((
r ⊗ 
r )(u
G))F ‖h = ‖(
 ⊗ 
)(uG)‖h,

whereHF = H�1⊕· · ·⊕H�n and
 = �1⊕· · ·⊕�n. Let Pi = ker �i for 1� i�n and
let I =⋂n

i=1Pi . By hypothesis,I is a primal ideal ofA.
Since
 induces a faithful representation ofA/I (given bya+ I → 
(a) for a ∈ A),

we have‖(
 ⊗ 
)(uG)‖h = ‖uI‖h by injectivity of the Haagerup norm. Now letJ be
a minimal primal ideal ofA contained inI. We have

‖uG‖h − � < ‖uI‖h�‖uJ ‖h�‖�Z(u)‖cb.

Since � andG were arbitrary,‖u‖Z,h�‖�Z(u)‖cb. As �Z is a contraction, the result
follows. �
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Our aim now is to show that the converse of Proposition14 holds, and for that we
need some preparation.

Lemma 15. Given a positive definiten× n matrix � of trace1, there existn2 affinely
independent rank one(self-adjoint) projections�i ∈ Mn (1� i�n2) so that

� =
n2∑
i=1

ti�i

is a convex combination of the�i with ti > 0 for each i (and
∑n2

i=1 ti = 1).

Proof. Note that positive semidefinite trace 1 matrices� ∈ Mn correspond to states
of Mn via x 	→ trace(x�) and the rank one projections correspond to the pure states.
We argue by induction onn. Of course then = 1 case is obvious and so we consider
n > 1.
Recall that we can write any rank one projection� in Mn as � = �∗ ⊗ � for a

unit vector � in the range of�. We can assume the given matrix� is diagonal with
(positive) diagonal entries�11��22� · · · ��nn > 0 in descending order (by replacing
the original� by u∗�u for some suitable unitaryu ∈ Mn and applyingu(·)u∗ to the rank
one projections we find). Sincen > 1, �11 < 1. Choose� > 0 so that� < �nn/�11�1
and �11(1+ (n − 1)�2) < 1. Let � be a primitivemth root of unity withm = 2n − 1.
Let

�i = (1, ��i , ��2i , . . . , ��(n−1)i )/
√
1+ (n− 1)�2 (1� i�m)

and observe that

� =
m∑

i=1

�11

√
1+ (n− 1)�2

m
(�∗i ⊗ �i )+

(
1− �11

√
1+ (n− 1)�2

)
�′,

where�′ is essentially a positive definite diagonal matrix of trace 1 inMn−1. Strictly
speaking,�′ is in Mn and has 0 in the(1,1) entry, but we are able to apply the
inductive hypothesis to it. We end up with� as a convex combination of a total of
m+ (n− 1)2 = n2 rank one projections.
Working with the first row and column (and using a Vandermonde determinant ar-

gument), we can check that the projections�∗i ⊗ �i are affinely independent among
themselves and also when we add in the(n−1)2 projections we get from the inductive
step. �

There is a simpler argument which does not quite prove the preceding lemma. The
affine dimension of the state space isn2 and so it is possible to findn2 affinely
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independent rank one projections. One can argue that the average� of such a collection
of projections has to be positive definite. If not, there is a unit vector� ∈ Cn with
〈��, �〉 = 0 and then each of the projectionsp would necessarily satisfy〈p�, �〉 = 0.
That is the projections would be restricted to lie in an affine space of dimension strictly
less thann2 (in fact in a face of the state space). So� has to be non-singular.
For us, it is more convenient to be able to express any pre-assigned, positive definite

matrix � with trace(�) = 1 as a convex combination ofn2 rank one projections (though
we could actually manage with a non-specific�). A variant of the inductive argument
above is needed in the next lemma.

Lemma 16. For 	�2 and (	− 1)2+ 2�N �	2+ 1 there existsu =∑	
j=1 aj ⊗ bj ∈

CN ⊗CN such that‖u‖h = 1 (whereCN is considered as the commutativeC∗-algebra
of functions on a discrete space with N points) and such that for any non-empty subset
F ⊂ {1,2, . . . , N} of N − 1 points or fewer,

‖uF ‖h < 1

whereuF =∑	
j=1 aj,F ⊗ bj,F and aj,F , bj,F are the restrictions ofaj , bj to F.

Proof. We will adopt a similar notation to that in Lemma13 and takeI = {1,
2, . . . , N}, Hi = C (each i ∈ I) and H = ⊕

i∈I Hi . Our aj will be diagonal ele-
ments ofB(H) with diagonal entries(aj,i)i∈I and similarlybj = (bj,i)i∈I (for scalars
aj,i , bj,i ∈ C). We abbreviatea = [a1, a2, . . . , a	] and b = [b1, b2, . . . , b	]t .
Let m = 2(	− 1) and n = N − ((	− 1)2+ 2). Our aj,i will be zero form < i�N

and bj,i will be zero for 1� i�n. As 0�n�m < N , we shall be able to arrange that
for eachi ∈ {1, . . . , N} there will be aj with aj,i �= 0 or bj,i �= 0 (or both).
We will arrange that

‖a‖2 =
∥∥∥∥∥∥

	∑
j=1

aja
∗
j

∥∥∥∥∥∥ = max
1� i �m

	∑
j=1

|aj,i |2 = 1

and that the maximum is achieved in each position 1� i�m (so that
∑	

j=1 |aj,i |2 = 1
for 1� i�m). We will also arrange that

‖b‖2 =
∥∥∥∥∥∥

	∑
j=1

b∗j bj

∥∥∥∥∥∥ = max
n<i �N

	∑
j=1

|bj,i |2 = 1

and each
∑	

j=1 |bj,i |2 = 1 for n < i�N . We will use (3) to ensure‖u‖h = (‖a‖2 +
‖b‖2)/2 = 1 by ensuring that� ∈ co(Wm,e(a∗)) ∩ co(Wm,e(b)) with � the diagonal
	 × 	 matrix with diagonal entries all equal to 1/	. In fact, � will be the only matrix
in the intersection. But we achieve this in such a way that allN summands inH are
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required and therefore for any choice ofF giving N −1 or fewer summands we do not
satisfy criterion (3) (and hence‖uF ‖h is strictly less than 1 by Timoney [21, Theorem
3.3]).
For the aj (1�j �	), it is helpful to think of 	 rows a1, . . . , a	 which we will

specify column by column (where each column has length	). We take a primitivemth
root of unity � and, for i ∈ {1, . . . , m}, we define

(a1,i , a2,i , . . . , a	,i) = (1, �i , �2i , . . . , �(	−1)i )/
√

	.

Recall thataj,i is to be zero fori > m and 1�j �	. Any unit vector� ∈ H supported
in the summandsHi (1� i�m) gives a matrix inWm,e(a∗), specifically the matrix

m∑
i=1

|�i |2(�∗i ⊗ �i )

(a convex combination of the�∗i ⊗ �i , from which we see thatWm,e(a∗) is convex)
where

�i = (1, �̄
i
, �̄
2i
, . . . , �̄

(	−1)i
)/
√

	.

Taking each�i = 1/
√

m we get the matrix�. For future reference, notice that�	−1 =
−1 and so, for 1� i�m, the matrix�∗i ⊗ �i has the real number(−1)i/	 in the (1, 	)
position.
As with the aj , it is helpful to think of thebj as 	 rows which we will specify

column by column. The first two non-zero columns (columnn+ 1 and columnn+ 2)
are as follows:

�1 =
(√
2,0, . . . ,0, �

)
/
√
3 and�2 =

(√
2,0, . . . ,0,−�

)
/
√
3,

where � = √−1. We choose the remaining(	 − 1)2 columns by using Lemma15.
According to that lemma, we can find(	−1)2 affinely independent rank one projections
�k (1�k�(	− 1)2) in M	−1 so that the diagonal(	− 1)× (	− 1) matrix

� =




2

2	− 3 0 · · · 0

0
2

2	− 3 · · · 0

. . .

0 0
1

2	− 3




=
(	−1)2∑
k=1

tk�k

is a convex combination ofall of the �k (that is, tk > 0 for all k and
∑

k tk = 1).
(Note that only the final diagonal entry of� is reduced to the value 1/(2	− 3).) Take
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unit vectors�k (1�k�(	 − 1)2) in C	−1 to be in the ranges of�k, and extend them
to vectors(0,�k) = �̃k ∈ C	. Let

(b1,i , b2,i , . . . , b	,i) = �̃k (i = n+ 2+ k,1�k�(	− 1)2).

We can check that

� = 3

4	
(�∗1 ⊗ �1)+ 3

4	
(�∗2 ⊗ �2)+

(	−1)2∑
k=1

2	− 3
2	

tk(�̃
∗
k ⊗ �̃k),

a convex combination. Thus� ∈ Wm,e(b). Since� ∈ Wm,e(a∗) also, the criterion (3)
guarantees that‖u‖h = 1.
We show next that� is the unique element of co(Wm,e(a∗)) ∩ co(Wm,e(b)) =

Wm,e(a∗) ∩Wm,e(b). Suppose that

m∑
i=1

ci�∗i ⊗ �i = r�∗1 ⊗ �1+ s�∗2 ⊗ �2+
(	−1)2∑
k=1

tk�̃
∗
k ⊗ �̃k,

whereci, r, s, tk �0,∑i ci = 1 andr+s+∑k tk = 1, and let the common value be the
	× 	 matrix �. By considering the(1,1)-entry of �, we see that 1/	 = 2(r + s)/3. On
the other hand, recalling that the(1, 	)-entry of � must be real, we see that−r + s =
0. Thus r = s = 3/(4	). By considering the first row of� and also the entries
�	−1,1, �	−2,1, . . . , �2,1, we obtain thatVc = e1 whereV is them × m matrix whose

(i, j)-entry is �j (i−1), c = (c1, . . . , cm)t and e1 = (1,0, . . . ,0)t . By inspection, one
solution is c1 = c2 = · · · = cm = 1/m (giving � = �), and this solution is unique
because the determinant ofV is a non-zero alternant of Vandermonde.
What remains, in order to show that‖uF ‖h < 1 for any non-empty proper subsetF

of {1,2, . . . , N}, is to show that we cannot find a common element of the convex hulls
of the corresponding extremal matrix numerical ranges when we remove any summand
Hi (or more than oneHi). However, by the uniqueness established above, the matrix
� is the only possible candidate for being such a common element. Removing the
summandHi implies removing one of the�i if 1� i�m, and one of�1, �2 or some
�̃k if n < i�N . (If N < 	2 + 1, then there will be somei falling into both groups.)
But to get� on thea∗F side, we need all of the�∗i ⊗ �i (1� i�m) because they form
an affinely independent set (since the equationVd = 0 has unique solutiond = 0).
ThusF must contain alli in the range 1� i�m. On the other hand, it is easily checked
that the set{�∗1 ⊗ �1, �

∗
2 ⊗ �2} ∪ {�̃∗

k ⊗ �̃k : 1�k�(	 − 1)2} is affinely independent.
Hence, to get� on the bF side, F must contain alli in the rangen < i�N . So if
F is a proper subset of{1,2, . . . , N}, then we cannot satisfy the criterion (3) of [21,
Theorem 3.3] and so‖uF ‖h < 1. �
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Theorem 17. Let A be a unitalC∗-algebra. Fix 	�1. Then

‖�Z(u)‖cb = ‖u‖Z,h

holds for eachu = ∑	
j=1 aj ⊗ bj ∈ A ⊗ A if and only if every Glimm ideal in A is

(	2+ 1)-primal.

Proof. One direction is already done in Proposition14 above. For the converse, suppose
that A has a Glimm idealG which is not (	2 + 1)-primal. If G is not 2-primal then
there existsu = a ⊗ b ∈ A ⊗ A such that‖u‖Z,h �= 0 and �Z(u) = 0 (see the proof
of [19, Lemma 5]). IfG is 2-primal (so	 > 1) then there exists	′ ∈ {2, . . . , 	} and
N ∈ {(	′ − 1)2+ 2, . . . , 	′2+ 1} such thatG is (N − 1)-primal but notN-primal. Since
a tensor with	′ summands may be regarded as a tensor with	 summands, by the
addition of zeros, we may as well assume (for notational convenience) that	′ = 	.
As in the proof of Theorem 7, there exist primitive idealsP1, . . . , PN of A such that

G ⊆ Pi for 1� i�N and J := P1 ∩ · · · ∩ PN is not primal. Furthermore, there exist
mutually orthogonal positive elementsb1, . . . , bN of A such that‖bi‖ = ‖bi + J‖ = 1
for 1� i�N and such that for eachP ∈ Prim(A) there existsi ∈ {1, . . . , N} for
which bi ∈ P . We now re-label theseN elements asd1, . . . , dN (to avoid confusion
with the elementsb1, . . . , b	 which we are about to import from Lemma 16). Let
v =∑	

j=1 aj ⊗ bj ∈ CN ⊗ CN have the properties of Lemma 16, let

� := max{‖vF ‖h : F a proper non-empty subset of{1, . . . , N}} < 1

and let

u :=
	∑

j=1

(
N∑

i=1
aj,idi

)
⊗
(

N∑
i=1

bj,idi

)
∈ A⊗ A.

On the one hand,

‖u‖Z,h�‖uG‖h�‖uJ ‖h = ‖v‖h = 1,

where the penultimate equality follows by applying Lemma5 to the linear map	 :
CN → span{d1+J, . . . , dN +J } given by	(eii) = di+J (whereeii is the ith standard
basis vector). On the other hand, ifP ∈ Prim(A) then there existsi′ ∈ {1, . . . , N} such
that di′ ∈ P . Let F = {1, . . . , N} \ {i′}. Then

‖uP ‖h =
∥∥∥∥∥∥

	∑
j=1


∑

i �=i′
aj,i(di + P)


⊗


∑

i �=i′
bj,i(di + P)



∥∥∥∥∥∥
h

�‖vF ‖h��,
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where the penultimate inequality follows by applying Lemma5 to the linear map
	 : span{eii : i �= i′} → span{di + P : i �= i′} given by	(eii) = di + P . Hence

‖�Z(u)‖cb = sup
P∈Prim(A)

‖uP ‖h�� < 1. �

Finally, we note that we can extend Theorem17 to the non-unital case in the same
way as Corollary 9 extends Theorem 8.
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