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This note is a short announcement of some results of a longer paper where the supersymmet-

ric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted

masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of

integrable spin chain Hamiltonians. The Heisenberg SU(2) XXX spin chain is mapped to the

two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain is mapped

to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XY Z

spin chain and eight-vertex model are related to the four dimensional theory compactified on T
2.

The correspondence extends to any spin group, representations, boundary conditions, and inho-

mogeneity, it includes Sinh-Gordon and non-linear Schrödinger models as well as the dynamical

spin chains such as the Hubbard model. Compactifications of four dimensional N = 2 theories

on a two-sphere lead to the instanton-corrected Bethe equations. We propose a completely novel

way for the Yangian, quantum affine, and elliptic algebras to act as a symmetry of a union of

quantum field theories.
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1. Introduction

The dynamics of gauge theory is a subject of long history and the ever growing im-

portance.

Gauge theories and many − body systems.

In the last fifteen years or so it has become clear that the gauge theory dynamics in the

vacuum sector is related to that of the quantum many-body systems. A classic example is

the equivalence of the pure Yang-Mills theory with the U(N) gauge group in two dimensons

and the system of N free non-relativistic fermions on a circle. The same theory embeds as

a supersymmetric vacuum sector of a (deformation of) N = 2 super-Yang-Mills theory in

two dimensions.

The Ref. [1] found a less trivial example of the gauge theory/many-body correspon-

dence. Namely, the results of [1] imply that the vacua of a certain supersymmetric two

dimensional U(N) gauge theory with massive adjoint matter are described by the solu-

tions of Bethe equations for the quantum Nonlinear Schrödinger equation (NLS) in the

N -particle sector. The model of [1] describes the U(1)-equivariant intersection theory on

the Hitchin’s moduli space [2],[3], just as the pure Yang-Mills theory describes the intersec-

tion theory on moduli space of flat connections on a two dimensional Riemann surface [4].

This subject was revived in [5],[6], by showing that the natural interpretation of the results

of [1] is in terms of the equivalence of the vacua of the U(N) Yang-Mills-Higgs theory in

a sense of [5] and the energy eigenstates of the N -particle Yang system, i.e. a system of

N non-relativistic particles on a circle with delta-function interaction. Furthermore, [5],[6]

suggested that such a correspondence should be a general property of a larger class of

supersymmetric gauge theories in various spacetime dimensions1.

A dictionary.

We thus aim to formulate precisely in full generality the correspondence between the

two dimensional N = 2 supersymmetric gauge theories and quantum integrable systems.

1 Prior to [1] a different connection to spin systems with long-range interaction appeared in

two dimensional pure Yang-Mills theory with massive matter [7],[8]. The three dimensional lift

of that gauge theory describes the relativistic interacting particles [9], while the four dimensional

theories lead to elliptic generalizations [10].
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The N = 2 supersymmetric theories have rich algebraic structure surviving quantum

corrections [11]. In particular, there is a distinguished class of operators (OA), which com-

mute with some nilpotent supercharge Q of the supersymmetry algebra. These operators

have no singularities in their operator product expansion and, when considered up to the

Q-commutators, form a (super)commutative ring, called the (twisted) chiral ring [11],[12].

The supersymmetric vacua of the theory form a representation of that ring. The space of

supersymmetric vacua is thus naturally identified with the space of states of a quantum

integrable system, whose Hamiltonians are the generators of the (twisted) chiral ring. Our

duality states that the spectrum of the quantum Hamiltonians coincides with the spec-

trum of the (twisted) chiral ring. The nontrivial result of this paper and that of [13],[14]is

that arguably all quantum integrable lattice models from the integrable systems textbooks

correspond in this fashion to the N = 2 supersymmetric gauge theories, essentially also

from the (different) textbooks. More precisely, the gauge theories which correspond to

the integrable spin chains and their limits (the non-linear Schrödinger equation and other

systems encountered in [1],[5],[6] being particular large spin limits thereof) are the softly

broken N = 4 theories. It is quite important that we are dealing here with the gauge

theories, rather then the general (2, 2) models, since it is in the gauge theory context that

the equations describing the supersymmetric vacua can be identified with Bethe equations

of the integrable world.

It is known that the low energy dynamics of the four dimensional N = 2 supersymmet-

ric gauge theories is governed by the classical algebraic integrable systems [15]. Moreover,

the natural gauge theories lead to the integrable systems of Hitchin type [16], which are

equivalent to many-body systems [17] and conjecturally to spin chains [18],[19].

We emphasize, however, that the correspondence between the gauge theories and

integrable models we discuss in the present paper, as well as in [1],[5],[6],[13],[14] is of a

different nature. The vacuum states we discuss presently are mapped to the quantum

eigenstates of a different, quantum integrable system2.

2 Another possible source of confusion is the emergence of the Bethe ansatz and the spin chains

in the N = 4 supersymmetric gauge theory in four dimensions. In the work [20] and its further

developments [21] the anomalous dimensions of local operators of the N = 4 supersymmetric

Yang-Mills theory are shown (to a certain loop order in perturbation theory) to be the eigenvalues

of some spin chain Hamiltonian. The gauge theory is studied in the ’t Hooft large N limit. In

our story the gauge theory has less supersymmetry, N is finite, and the operators we consider

are from the chiral ring, i.e. their conformal dimensions are not corrected quantum mechanically.

Our goal is to determine their vacuum expectation values.
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The gauge theories we study in two dimensions, as well as their string theory realiza-

tions, have a natural lift to three and four dimensions, while keeping the same number of

supersymmetries, modulo certain anomalies. Indeed, the N = 2 super-Yang-Mills theory

in two dimensions is a dimensional reduction of the N = 1 four dimensional Yang-Mills

theory (this fact is useful in the superspace formulation of the theory [22]). Instead of the

dimensional reduction one can study the compactification on a two dimensional torus T2.

The theory obtained in this way looks two dimensional macroscopically, yet its effective

low energy dynamics gets corrected by the loops of the Kaluza-Klein modes (the examples

of these corrections in the analogous compactifications from five to four dimensions can

be found in [23]). This is seen, for example, in the geometry of the (classical) moduli

space of vacua, which is compact for the theory obtained by compactification from four

to two dimensions (being isomorphic to the moduli space BunG of the semi-stable holo-

morphic GC-bundles on elliptic curve), and is non-compact in the dimensionally reduced

theory. Quantum mechanically, though, the geometry of the moduli space of vacua is more

complicated, in particular it will acquire many components. The twisted superpotential

is a meromorphic function on the moduli space. We show that the critical points of this

function determine the Bethe roots of the anisotropic spin chain, the XY Z magnet. Its

XXZ limit will be mapped to the three dimensional gauge theory compactified on a cir-

cle. We thus get a satisfying picture of the elliptic, trigonometric, and rational theories

corresponding to the four dimensional, three dimensional and the two dimensional theories

respectively.

Our duality between the gauge theories and the quantum integrable systems can be

used to enrich both subjects.

A longer version.

This note is a shortened version of [14], where we give all the details covering the

correspondence between vacuum structure of supersymmetric gauge theories and quantum

integrable models from all perspectives, including the sring theory realization. Here we

just mention that the guiding equations for the supersymmetric vacua for the two, three,

and four dimensional models (compactified on the tori of appropriate dimension) can be

summarised as:

exp

(
∂W̃ eff(σ)

∂σi

)
= 1 (1.1)
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where W̃ eff(σ) is the effective twisted superpotential, while σi are the eigenvalues of the

complex scalar in the vector multiplet. It is this equation that coincides with the Bethe

equation determining the exact spectrum of a quantum integrable system. In this corre-

spondence W̃ eff(σ) coincides with Yang-Yang function Y (λ) (λi denoting the rapidities)

generating the Bethe roots in quantum integrable systems [24]:

Y (λ) ↔ W̃ eff(σ)

λ ↔ σ

(1.2)

We identify these quantum integrable systems in all our examples and study the conse-

quences. In [14] the Hamiltonians of the quantum integrable system are identified with

the operators of quantum multiplication in the equivariant cohomology of the hyperkähler

quotients, corresponding to the Higgs branches of our gauge theories. In particular, the

length L inhomogeneous XXX 1
2

chain (with all local spins equal to 1
2
) corresponds to

the equivariant quantum cohomology of the cotangent bundle T ∗Gr(N,L) to the Grass-

manian Gr(N,L). This result complements nicely the construction of H. Nakajima and

others of the action of the Yangians [25],[26] and quantum affine algebras on the classical

cohomology and K-theory respectively of certain quiver varieties. Next, [14] applies these

results to the two dimensional topological field theories. We discuss various twists of our

supersymmetric gauge theories. The correlation functions of the chiral ring operators map

to the equivariant intersection indices on the moduli spaces of solutions to various versions

of the two dimensional vortex equations, with what is mathematically called the Higgs

fields taking values in various line bundles (in the case of Hitchin equations the Higgs

field is valued in the canonical line bundle). The main body of [14] has essentially shown

that all known Bethe ansatz-soluble integrable systems are covered by our correspondence.

However, there are more supersymmetric gauge theories which lead to the equations (1.1)

which can be viewed as the deformations of Bethe equations. For example, a four dimen-

sional N = 2∗ theory compactified on S2 with a partial twist leads to a deformation of

the non-linear Schrödinger system with interesting modular properties (we devote last sec-

tion of current paper to this example). Another interesting model related to the D1−D5

brane systems relates the quantum cohomology of instanton moduli spaces and the Hilbert

scheme of points [27] to the Bethe ansatz for the yet unknown spin chains with the affine

Lie algebras replacing the su(2) of the Heisenberg spin chain.
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The long paper [14] is also reviewed in detail in [13]. In particular, the details of

the correspondence between the equivariant quantum cohomology of T∗Gr(N,L) and the

inhomogeneous Heisenberg magnet can be found there.

Acknowledgments. We thank V. Bazhanov, G. Dvali, L. Faddeev, S. Frolov, A. Gorsky,

K. Hori, A. N. Kirillov, V. Korepin, B. McCoy, M. Nazarov, A. Niemi, A. Okounkov,

E. Rabinovici, N. Reshetikhin, S. J. Rey, L. Takhtajan, A. Vainshtein and P. Wiegmann,

and especially A. Gerasimov and F. Smirnov, for discussions. The results of this note, as

well as those in [14], were presented at various conferences and workshops3 and we thank

the organizers for the opportunity to present our results. We thank various agencies and

institutions4 for supporting this research.

2. The gauge theory

Here we give a brief review of the relevant gauge theories.

3 The IHES seminars and the theoretical physics conference dedicated to the 50th anniversary

of IHES (Bures-sur-Yvette, June 2007, April 2008, June 2008); the IAS Workshop on “Gauge

Theory and Representation Theory” and the IAS seminar (Princeton, November 2007, 2008); the

YITP/RIMS conference “30 Years of Mathematical Methods in High Energy Physics ” in honour

of 60th anniversary of Prof. T. Eguchi (Kyoto, March 2008); the London Mathematical Society

lectures at Imperial College (London, April 2008); L. Landau’s 100th anniversary theoretical

physics conference (Chernogolovka, June 2008); Cargese Summer Institute (Cargese, June 2008);

the Sixth Simons Workshop “Strings, Geometry and the LHC” (Stony Brook, July 2008); the

ENS summer institute (Paris, August 2008); the French-Japanese Scientific Forum ”Perspectives

in mathematical sciences”, (Tokyo, October 2008)
4 The RTN contract 005104 ”ForcesUniverse” (NN and SS), the ANR grants ANR-06-BLAN-

3 137168 and ANR-05-BLAN-0029-01 (NN), the RFBR grants RFFI 06-02-17382 and NSh-

8065.2006.2 (NN), the NSF grant No. PHY05-51164 (NN), the SFI grants 05/RFP/MAT0036,

08/RFP/MTH1546 (SS) and the Hamilton Mathematics Institute TCD (SS). Part of research

was done while NN visited NHETC at Rutgers University in 2006, Physics and Mathematics De-

partments of Princeton University in 2007, Simons Center at the Stony Brook University in 2008,

KITP at the UC Santa Barbara in 2009, while SSh visited IAS in Princeton in 2007, CERN in

2007 and 2008, Ludwig-Maximilians University in Munich in 2007 and IAS in Jerusalem in 2008.
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2.1. Gauge theories with four supercharges

We study two dimensional N = (2, 2) supersymmetric gauge theory with some matter.

The matter fields are generally in the chiral multiplets which we denote by the letters Q,

Q̃, and Φ (sometimes we use X to denote matter fields without reference to their gauge

representation type), the gauge fields are in the vector multiplet V. We also use the

twisted chiral multiplets Σ, as e.g. the field strength Σ = D+D−V is in the twisted chiral

multiplet.

V = θ−θ
−

(A0 − A1) + θ+θ
+
(A0 + A1) −

√
2σθ−θ

+ −
√

2σθ+θ
−

+

+ 2iθ−θ+(θ
−
λ− + θ

+
λ+) + 2iθ

+
θ
−

(θ+λ+ + θ−λ−) + 2θ−θ+θ
−
θ
+
H ,

(2.1)

where we use a notation H for the auxiliary field (in most textbooks it is denoted by D).

X = X(y) +
√

2
(
θ+ψ+(y) + θ−ψ−(y)

)
+ θ+θ−F (y) (2.2)

where

y± = x± − iθ±θ
±
,

and the twisted chiral multiplet Σ:

Σ = σ(ỹ) + i
√

2
(
θ+λ+(ỹ) − θ

−
λ−(ỹ)

)
+

√
2θ+θ

−
(H(ỹ) − iF01) (2.3)

where F01 = ∂0A1 − ∂1A0 + [A0, A1] is the gauge field strength, and

ỹ± = x± ∓ iθ±θ
±

(2.4)

2.1.1. Lagrangians

The action of the corresponding two dimensional quantum field theory action has

three types of terms - the D-terms, the F -terms and the twisted F -terms:

D :

∫
d2x d4θ tr

(
ΣΣ

)
+ K(eV/2 X , X eV/2)

F :

∫
d2x dθ+dθ− W (X) + c.c.

F tw :

∫
d2x dθ+dθ

−
W̃ (Σ) + c.c.

(2.5)
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2.1.2. Global symmetries and twisted masses

The typical N = (2, 2) gauge theory has the matter fields X transforming in some

linear5 representation R of the gauge group G. Let us specify the decomposition of R onto

the irreducible representations of G:

R =
⊕

i

Mi ⊗Ri (2.6)

where Ri are the irreps of G, and Mi are the multiplicity spaces. The group

Hmax = ×i U(Mi) (2.7)

acts on R and this action commutes with the gauge group action. The actual global

symmetry group H of the theory may be smaller then (2.7): H ⊂ Hmax, as it has to

preserve both D and the F -terms in the action.

The theory we are interested in can be deformed by turning on the so-called twisted

masses m̃ [28], which belong to the complexification of the Lie algebra of the maximal

torus of H:

m̃ = (m̃i) , m̃i ∈ End (Mi) ∩H (2.8)

The superspace expression for the twisted mass term is [29], [30]:

L
m̃ass

=

∫
d4θ trR X†

(
∑

i

eṼi ⊗ IdRi

)
X (2.9)

where

Ṽi = m̃i θ+θ− (2.10)

The twisted masses which preserve the N = 4 supersymmetry will be denoted by µ, and

the ones which break it down to N = 2, by u.

When the twisted masses are turned on in the generic fashion, the matter fields are

massive and can be integrated out. As a result, the theory becomes an effective pure

N = 2 gauge theory with an infinite number of interaction terms in the Lagrangian, with

the high derivative terms suppressed by the inverse masses of the fields we integrated out.

Of all these terms the F -terms, i.e. the effective superpotential, or the twisted F -terms,

5 In [14] we also discuss the generalization where X takes values in some non-linear space with

the G-action
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i.e. the effective twisted superpotential, can be computed exactly. In fact, these terms only

receive one-loop contributions. Let m̃ denote collectively the set of the twisted masses of

the fields we are integrating out. We get:

W̃ eff
matter(σ) =

∑

b

2πi tb tr bσ + trR (σ + m̃) (log (σ + m̃) − 1) (2.11)

where for each U(1) factor in G we have introduced a Fayet-Illiopoulos term which together

with the corresponding theta-angle combine into a complex coupling tb,

tb =
ϑb

2π
+ irb . (2.12)

The generator of the corresponding U(1) factor in G is denoted in (2.11) by tr bσ. We put

the subscript “matter” in (2.11) in order to stress the fact that it only includes the loops

of the matter fields.

There are other massive fields which can be integrated out on the Coulomb branch.

For example, the g/t-components of the vector multiplets (where g denotes Lie algebra

corresponding to Lie groups G and t is its Cartan sub-algebra), the W -bosons and their

superpartners. Their contribution to the effective twisted superpotential is rather simple:

W̃ eff
gauge = −

∑

α∈∆

〈α, σ〉 [ log 〈α, σ〉 − 1 ] = −2πi 〈ρ, σ〉 (2.13)

where

ρ = 1
2

∑

α∈∆+

α (2.14)

is half the sum of the positive roots of g. It may appear that the expression (2.13) is

inconsistent with the gauge invariance, however the effective interaction (2.13) is gauge

invariant. The total effective twisted superpotential is, therefore:

W̃ eff(σ) = W̃ eff
matter(σ) + W̃ eff

gauge(σ) (2.15)

2.1.3. Superpotential deformations and twisted masses

The supersymmetric field theories also have the superpotential deformations, which

correspond to the F -terms in (2.5). The superpotential W has to be a holomorphic gauge

invariant function of the chiral fields, such as Φ, Q, Q̃. It may be not invariant under the

maximal symmetry group Hmax, thus breaking it to a subgroup H or completely. For

example, the so-called complex mass of the fundamental and anti-fundamental fields H

8



comes from the superpotential Wcomplex mass =
∑

a,bm
b
aQ̃bQ

a, which breaks the U(nf ) ×
U(n

f
) group down to U(1)min(nf ,n

f
).

In all cases discussed in this paper, in spacetime dimensions two, three and four,

one can consider more sophisticated superpotentials, involving the fundamental, anti-

fundamental, and adjoint chiral fields:

W
Q̃ΦQ

=
∑

a,b

Q̃amb
a(Φ)Qb =

∑

a,b;s

mb
a;sQ̃

aΦ2sQb (2.16)

The case of most interest for us, that of the two dimensional ultraviolet finite theories

corresponds to nf = n
f

= L. In this case we will see later that equations describing

supersymmetric vacua are linked to known quantum integrable lattice models.

2.2. Examples

There are two classes of examples: a.) the asymptotically free theories and b.) the

asymptotically conformal theories. The a.) examples include the gauge theories which look

at low energy as the N = 2 sigma models with various Kähler target spaces: the complex

projective space CPL−1, the Grassmanian Gr(N,L), or, more generally, the (partial) flag

variery F (n1, n2, . . . , nr, nr+1 ≡ L). The b.) examples can also be identified at the low

energy level with the sigma models. These sigma models typically have the hyperkähler

target spaces, such as the cotangent bundles to the Kähler manifolds from the a.) list.

The b.) examples turn out to include, via (1.1), essentially all known quantum integrable

models of statistical physics.

By taking an appropriate scaling limit one can get the a.) models from the b.) models.

For example, the Grassmanian model (which is so extensively studied in [31]) is a limit of

the T ∗Gr(N,L) model in the limit where the twisted mass u corresponding to the rotations

of the cotangent direction is sent to infinity, with the complexified Kähler class adjusted

in such a way, that the effective mass scale ΛGr = ue
2πit

L remains finite. This corresponds

to a non-Hermitian deformation of the Heisenberg magnet which is dual, via (1.1), to the

original T ∗Gr(N,L) theory.

The reason why the ultraviolet finiteness is so special in the relation to the quantum

integrability has to do with the S-matrix nature of the Bethe equations which we identify

with the vacuum equation (1.1).

In this note we consider the G = U(N) gauge group only. Here we present the effective

twisted superpotential (2.15) for the main example of the b.) class. There are many more

examples presented in [14].
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2.2.1. Two dimensions

One can start with the so-called N = 2∗ theory. It has R = g ⊗ C, i.e. the adjoint

chiral multiplet Φ. In the absence of the twisted mass term this is the N = 4 theory,

the dimensional reduction of the pure N = 2 super-Yang-Mills from four dimensions.

This theory has a global U(1) symmetry, which rotates the adjoint chiral multiplet, e.g.

Φ 7→ eiϕΦ. We can turn on the corresponding twisted mass m̃ = iu which breaks N = 4

to N = 2 (the factor of i is introduced for the later convenience). The effective twisted

superpotential for G = U(N) is:

W̃ eff (σ) =

N∑

i,j=1

(σi − σj + iu) (log (σi − σj + iu) − 1) − 2πi

N∑

i=1

(
t+ i− 1

2 (N + 1)
)
σi

(2.17)

A more interesting theory is obtained by taking

R = V ⊗ V ∗ ⊗ L⊕ V ⊗ F ⊕ V ∗ ⊗ F̃ .

which corresponds to the theory with the Hmax = U(L) × U(L) × U(1) global symmetry

group. Here V = CN is the N -dimensional fundamental representation of G, F ≈ CL,

F̃ ≈ CL are the L-dimensional fundamental representations of the first and the second

U(L) factors in the flavour group, and L is the standard one-dimensional representation

of the global group U(1). In simple terms, this theory has the matter content of the four

dimensional Nc = N , Nf = L, N = 2 gauge theory with fundamental hypermultiplets,

however, the supersymmetry is half that of the four dimensional theory. This theory has

2L+ 1 twisted mass parameters (we skip tildes from now on): (mf
a, m

f
a)L

a=1, m
adj = −iu.

Upon integrating out the matter fields and the W -bosons we get the theory of the abelian

vector multiplet with the effective twisted superpotential:

W̃ eff

Q̃ΦQ
(σ) =

N∑

i=1

L∑

a=1

[(
σi +mf

a

) (
log
(
σi +mf

a

)
− 1
)

+
(
−σi +mf

a

)(
log
(
−σi +mf

a

)
− 1
)]

+

N∑

i,j=1

(
σi − σj +madj

) (
log
(
σi − σj +madj

)
− 1
)

− 2πi

N∑

i=1

(
t+ i− 1

2 (N + 1)
)
σi

(2.18)
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The generic twisted masses are incompatible with any tree level superpotential. However,

for the special choice of the twisted masses one can turn on the tree level superpotential.

Its variation does not change the effective twisted superpotential (2.18) though. We shall

discuss this point later.

2.2.2. Three dimensions

Consider now the theory on R2 × S1. It suffices to make all the fields depend on an

extra coordinate x2 = y, y ∼ y + 2π. Since the translations in y are the global symmetry

of the theory we can turn on the corresponding twisted mass6 m̃S1 . This is equivalent

to promoting the real part of the complex scalar in the vector multiplet to the covariant

derivative:

σ(t, x) −→ 1

R
∂y + σ(t, x, y) ,

σ(t, x) −→ − 1

R
∂y + σ(t, x, y)

(2.19)

where R is the radius of the circle S1. In other words,

σ =
1

R
Ay + σR (2.20)

where Ay is the gauge field component (the y coordinate being dimensionless the Ay field

is dimensionless too, while σ has a dimension of mass). The twisted mass corresponding

to the translations is m̃ = i
R

. Thus, the Kaluza-Klein modes with momentum n, n ∈ Z,

have the corresponding twisted mass

m̃n =
in

R
(2.21)

To compute the effective twisted superpotential, it suffices to enumerate the Kaluza-Klein

modes and sum up their contributions. One needs to use a kind of zeta-regularization,

which can be justified, e.g. by topological field theory methods [23].

For definiteness let us consider the contribution of a matter field in the representa-

tion R of the gauge group. Let m̃ denote the ordinary two dimensional twisted mass,

corresponding to the centralizer of G in R which preserves other couplings of the theory,

6 The space of fields is of course acted on by Diff(S1), but the Lagrangian is invariant only

under S
1, the translations.
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such as the superpotential. We assume m̃ sufficiently generic so that all the modes of the

corresponding matter multiplet are massive. The sum over the Kaluza-Klein modes gives:

W̃ eff
matter(σ) = trR

[
∑

n∈Z

(
σ + m̃ +

in

R

)(
log

(
σ + m̃ +

in

R

)
− 1

)]
∼

1

2πR
trR

[
Li2

(
e−2πR(σ+m̃)

)] (2.22)

In addition to the matter-induced twisted superpotential we also have a contribution of

the W -bosons:

W̃ eff
gauge = − tr g/t

[
1

2πR
Li2
(
e−2πRσ

)]
=
πR

2
tr adj

(
σ2
)

+ 2πi 〈ρ, σ〉 (2.23)

where we used:

Li2(e
−x) + Li2(e

x) =
π2

3
− iπx− x2

2
(2.24)

and dropped an irrelevant constant. The quadratic term in (2.23) corresponds to the

anomaly-induced Chern-Simons interaction [32], [33] in the three dimensional theory.

2.2.3. Four dimensions

We can lift the theory to the N = 1 supersymmetric Yang-Mills theory (with matter),

compactified on a two-torus T2. Again, we can view the lift to four dimensions as the two

dimensional theory with the infinite number of fields, which depend on the two additional

coordinates (y, z), with y ∼ y + 2π, z ∼ z + 2π. The theory is regularized by the twisted

masses corresponding to the translations along T2. We choose one of the masses to be i
R ,

then the other is iτ
R . Here τ is the complex modulus of T2. The normalized holomorphic

coordinate on T2 is given by: w = 1
2π

(y + τz). The gauge theory is sensitive to the metric

on the torus and a two-form, the so-called B-field, via the coupling
∫

R2×T2

B ∧ trF . (2.25)

Similarly to the three dimensional lift of the previous section the field σ gets promoted to

the covariant derivative operator (τ2 = Imτ):

σ(t, x) → τ2
iπR

∂ + σ(t, x, y, z), σ(t, x) → τ2
iπR

∂ + σ(t, x, y, z) (2.26)

where

∂ =
iπ

τ2
(∂z − τ∂y)
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The invariance under the large gauge transformations now translates to the double-

periodicity of the twisted superpotential:

σ → σ +
i

R
(m+ nτ) , m, n ∈ Z (2.27)

The effective twisted superpotential is given by (q = exp 2πiτ):

W̃ eff =
πR

2
trR(σ + m̃)2 +

πiτ

6
trR(σ) +

1

2πR

∞∑

n=1

trR

[
Li2

(
qn−1e−2πR(σ+m̃)

)
− Li2

(
qne2πR(σ+m̃)

)]

=
πR

2
trR(σ + m̃)2 +

πiτ

6
trR(σ) +

1

2πR

∑

n∈Z6=0

trR

[
e2πRn(σ+m̃)

]

n2(1 − qn)

(2.28)

plus linear terms.

2.3. Supersymmetric vacua of N = 2 theories

The only local gauge invariant of the abelian gauge field in two dimensions is the field

strength F01 which is subject to the only global constraint:

1

2πi

∫

Σ

F i = mi ∈ Z (2.29)

i.e. the integrality of the magnetic flux. In addition, the global invariants of the T-valued

gauge field include the holonomies, which are irrelevant for our discussion at the moment.

In order to minimize the potential energy and find the vacua of the theory we promote

Fα
01 to the independent fields, while adding at the same time the term

r∑

i=1

ni

∫

Σ

F i (2.30)

to the action (cf. [34],[35],[36]). Following [37], the shift (2.30) is equivalent to the shift

W̃ eff(σ) −→ W̃ eff
~n (σ) = W̃ eff(σ) − 2πi

r∑

i=1

niσ
i (2.31)

where nowH±iF01 (cf. (2.3) ) are two independent auxiliary fields, which can be integrated

out. Thus the target space of the effective sigma model becomes, a priori, disconnected,

with ~n labeling the connected components. In fact, the actual connected components are

13



labeled by the equivalence classes of ~n up to the action of the monodromy group (the

effective superpotential is not a univalent function of σ). The potential on the component,

labelled by ~n is given by (note that unlike the standard expressions involving “. . .minn(x+

2πn)2, which follows from the pair creation in the background electric field induced by the

theta angle. . . ” it is consistent with supersymmetry and holomorphy):

U~n = 1
2
gij


−2πini +

∂W̃
eff

∂σi




+2πinj +

∂W̃
eff

∂σj


 (2.32)

The minima of the effective potential (2.32) are thus the solutions of the equations:

1

2πi

∂W̃ eff(σ)

∂σi
= ni (2.33)

This equation is derived under very general conditions. Everything is hidden in W̃ eff . The

ni dependence in (2.33) can be eliminated by exponentiating both sides:

exp

(
∂W̃ eff(σ)

∂σi

)
= 1

(2.34)

2.4. Examples of the vacuum equations

2.4.1. Old examples: asymptotically free theories

Asymptotically free theories are certain limits of asymptotically conformal theories.

Since our main examples are asymptotically conformal for completeness we give couple of

examples of asymptotically free theories first.

CPL−1 model. G = U(1), R = R+1 ⊗ CL, where R+1 is a one-dimensional charge +1

representation of U(1). From twisted effective superpotential of this model we immediately

derive:
L∏

a=1

(σ + m̃a) = q ≡ e2πi t (2.35)

which implies that the model has L isolated vacua, and the theory at each vacuum is

massive, for the generic values of the twisted masses m̃a. For vanishing twisted masses

the equation (2.35) simplifies to σL = q which is the famous quantum cohomology ring of

CPL−1. For the generic twisted masses the equation (2.35) describes the U(L)-equivariant

quantum cohomology H∗
U(L)(CPL−1) ring.
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The next example is that of the

Grassmanian Gr(N,L) model. G = U(N) and R = CN ⊗CL. Using the effective twisted

superpotential of this model we derive (q = e2πit):

L∏

a=1

(σi + m̃a) = (−1)N+1 q , i = 1, . . . , N (2.36)

We should supplement the equations (2.36) with the condition that σl 6= σm for l 6= m

and identify the solutions which differ by the permutations of σl’s. In other words, the

equations (2.36) should be viewed as equations on the elementary symmetric functions

cl =
∑

i1<...<il

σi1σi2 . . . σil
(2.37)

which can be compactly written using the gauge invariant order parameter Q(x),

Q(x) ≡ det(x− σ) =

N∏

i=1

(x− σi) = xN +

N∑

i=1

(−1)icix
N−i , (2.38)

which we shall call the Baxter-Chern (BC) order parameter, as:

L∏

a=1

(x+ m̃a) + (−1)Nq = t(x)Q(x) (2.39)

for some polynomial t(x) of degree L−N ,

t(x) = xL−N +
L−N∑

j=1

tjx
L−N−j .

This polynomial is uniquely fixed in terms of ci’s from the equation (2.39) by expanding

both sides at x = ∞ and equating the coefficients of xL−N−j , j = 1, . . . , L − N . In

the classical limit q → 0 the polynomial Q(x) is essentially the U(L)-equivariant Chern

polynomial of the tautological rank N bundle E over the Grassmanian Gr(N,L), while

t(x) is the U(L)-equivariant Chern polynomial of the tautological dual bundle E⊥ of rank

L −N . The relation (2.39) then reads simply as the consequence of the exactness of the

sequence:

0 −→ E −→ F ≈ CL −→ E⊥ −→ 0

N = 2∗ theory.
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The example of the pure N = 4 theory broken down to N = 2 by the twisted mass

term for the adjoint chiral multiplet is the first example where the supersymmetry is

broken, for N > 1. Here G = U(N), SU(N), SO(N), Sp(N) and R = g ⊗ C, i.e. the

adjoint representation. Using (2.17) we derive:

N∏

j=1

σi − σj +m

σi − σj −m
= −q , (2.40)

which can be neatly rewritten using our Q-operator (2.38) again:

Q(x+m) + qQ(x−m) = (1 + q)Q(x) (2.41)

It is easy to see that this equation has no solutions for σi’s for N > 2, or for N = 1, q 6= 1

and has a valley of solutions for N = 1, q = 1.

Hitchin theory.

The model studied in [1], [5], [6] corresponds to the N = 2∗ theory with the tree level

twisted superpotential7:

W̃ (σ) =
λ

2
tr σ2 , (2.42)

which corresponds to the two-observable representing the Kähler form on the Hitchin’s

moduli space MH . This leads to the change in the right hand side of (2.40):

N∏

j=1

σi − σj +m

σi − σj −m
= exp 2πiλ σi , (2.43)

and one now gets solutions for σi’s for allN . The topological twist of this theory, introduced

in [1] and was studied in detail in [5], [6].

2.4.2. New examples: asymptotically conformal theories

Our main example will be the U(N) gauge theory with L fundamental chiral multiplets

Qa, L anti-fundamental chiral multiplets Q̃a, and one adjoint chiral multiplet Φ. This

matter content corresponds to the gauge theory with extended supersymmetry, N = 4,

which is the dimensional reduction of the four dimensional N = 2 theory. The adjoint

Φ is a part of the vector multiplet in four dimensions, while the chiral fundamental and

7 In most of the discussion we have the tree level superpotential, rather then the tree level

twisted superpotential turned on.
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anti-fundamentals combine into the four dimensional hypermultiplet in the fundamental

representation. We are dealing, therefore, with the matter content of the four dimensional

N = 2 theory with Nc = N , Nf = L. If the superpotential
∑

a Q̃
aΦQa is added, then the

theory does have the four dimensional N = 2 supersymmetry.

Since the gauge group has a center U(1) one can turn on the Fayet-Illiopoulos term,

and the theta angle as we already explained in Section 2, which we combine into a

complexified coupling ϑ 7→ t = ϑ
2π + ir.

First, we consider the theory with general twisted masses for the chiral fundamentals,

anti-fundamentals, and the adjoint field (which is compatible only with the zero superpo-

tential). We then turn on the superpotential and discuss the consequences.

Two dimensions.

Using (2.33) with (2.18) we arrive at the equations for vacua (we shift t by L/2 to

avoid extra phases in the right hand side):

L∏

a=1

σi +mf
a

σi −mf
a

= −e2πit
N∏

j=1

σi − σj −madj

σi − σj +madj
(2.44)

The equation (2.44) is written in terms of the eigenvalues σi of the complex scalar σ.

The equations have solutions related by permuting σi’s. These solutions are physically

equivalent. It is better to formulate (2.44) directly in the gauge invariant terms. This is

done, similar to Grassmanian case above, with the help of the BC order parameter (2.38).

The equation (2.44) is equivalent to:

a(x)Q(x+madj) + e2πit d(x)Q(x−madj) = t(x)Q(x) (2.45)

where:

a(x) =

L∏

a=1

(x+mf
a) , d(x) =

L∏

a=1

(x−mf
a) (2.46)

and t(x) is an unknown polynomial of degree L.

Three dimensions. If we take the analogous theory in three dimensions, compactified on a

radius R circle, the resulting vacuum equations would look like:

L∏

a=1

sinh
(
πR
(
σi +mf

a

))

sinh
(
πR
(
σi −mf

a

)) = −e2πit
N∏

j=1

sinh
(
πR
(
σi − σj −madj

))

sinh (πR (σi − σj +madj))
(2.47)
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Notice the invariance of the eqs. (2.47) under the transformations:

σi −→ σi +
ini

R
, ni ∈ Z (2.48)

and the permutations of σi’s. This invariance is the affine Weyl group symmetry, the

residual gauge invariance, whose origin is the gauge transformations of the form:

g(y) = diag
(
ein1y, . . . , einN y

)
.

The equations (2.47) can be also analyzed in the gauge invariant fashion using the BC

operator. The order parameters of the three dimensional theory compactified on the circle

S1 are contained in the trigonometric polynomial (cf. [23]):

Q(x) = 2NeπRNŷ
N∏

i=1

sinh (πR (ŷ − σi)) = xN + u1x
N−1 + . . .+ uN , (2.49)

where

x = exp (2πRŷ) (2.50)

The equations (2.47) are equivalent to the difference equation:

a(x)Q(xq̂) + q d(x)Q(xq̂−1) = t(x)Q(x) (2.51)

where q = e2πit,

q̂ = e2πRmadj

,

a(x) =

L∏

a=1

(xeπRmf
a − e−πRmf

a) ,

d(x) =
L∏

a=1

(xe−πRmf
a − e+πRmf

a)

(2.52)

and t(x) is a polynomial to be determined.

In the limit R→ 0 with all other parameters kept finite we recover the two dimensional

story.

Four dimensions. The four dimensional gauge theory with the similar field content, com-

pactified on a two-torus with the modular parameter τ , will lead to the elliptic generaliza-

tion of (2.47):

L∏

a=1

Θ1

(
πR
(
σi +mf

a

))

Θ1

(
πR
(
σi −mf

a

)) = −e2πit
N∏

j=1

Θ1

(
πR
(
σi − σj −madj

))

Θ1 (πR (σi − σj +madj))
(2.53)
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where (in this section q denotes exp(2πiτ)):

Θ1(ξ) = −iq 1
8

(
eξ − e−ξ

) ∞∏

m=1

(1 − qm)
(
1 − qme2ξ

) (
1 − qme−2ξ

)
(2.54)

The gauge invariance of the equations (2.53) is more subtle then that of its three and two

dimensional counterparts. We have the gauge transformations of the form:

g(y, z) = diag
(
ein1y−im1z, . . . , einN y−imN z

)
, ni, mi ∈ Z (2.55)

which act on σ as follows:

σi 7→ σi +
i

R
(ni +miτ) (2.56)

The shifts by ni’s are clearly a symmetry of (2.53). The shifts by mi’s are more subtle. It

turns out that to maintain the invariance of (2.53) under these shifts one has to assume

that
∑

a

(
mf

a +mf
a

)
= −Nmadj

and that t transforms under the U(1) subgroup of the U(N) gauge transformations. The

physics of this phenomenon is rather deep, as it involves the chiral anomalies of the charged

fermions in four dimensions [14].

3. Spin chains and Bethe ansatz

In this section we give a swift review of the integrable spin chains at the example of

the XXX spin chain for SU(2). We also briefly mention other models like XXZ, XY Z,

spin chains with other groups, various boundary conditions, various limits, such as the

one-dimensional Bose gaz, the one-dimensional Hubbard model, etc. The so-called Yang-

Yang (YY) function Y (λ) plays the central rôle in our discussion. Its critical points are

the solutions of Bethe equations. These equations determine the spectrum of integrable

hamiltonians. That the equations determining the spectrum have a potential is a highly

non-trivial consequence of the rich algebraic structure behind these systems. It is also the

cornerstone of our correspondence with the gauge theories.
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3.1. XXX spin chain

The Heisenberg spin chain, also known as the SU(2) XXX spin chain, is defined

on the one dimensional length L lattice. At each lattice point one has the spin s = 1
2

representation of SU(2), and the Hilbert space of the system is the tensor product HL =

C2⊗C2⊗ . . .⊗C2. The Hamiltonian HHeis acts in HL. It is written in terms of generators

~Sa = i
2~σa where a denotes the position on the lattice of the spin s = 1

2 representation of

SU(2) and has the nearest-neighbor interaction form:

HHeis = J
L∑

a=1

(Sx
aS

x
a+1 + Sy

aS
y
a+1 + Sz

aS
z
a+1) (3.1)

The boundary conditions are quasi-periodic:

~SL+1 = e
i
2ϑσ3 ~S1e

−
i
2ϑσ3 . (3.2)

In other words we identify HL with the subspace Hϑ
L ⊂

(
C2
)⊗∞

, characterized by (3.2).

One can also consider the spin chains defined on an open interval. For the ferromagnet

J > 0 and for the anti-ferromagnet - J < 0.

The total spin, ~S =
∑L

a=1
~Sa commutes with HHeis for ϑ = 0. The spin projection on

the third axis, Sz, is a conserved quantity for any ϑ. The corresponding subspace of the

Hilbert space, HN
L ⊂ HL, where Sz = N − 1

2L, is sometimes called the N -particle sector.

We study the N -particle eigenstates of HHeis. The states in HN
L are the linear com-

binations of the states with N spins up and L − N spins down. Clearly, the maximal

number of spins up or down is L, so |Sz| ≤ L
2
, and N ≤ L. The N -particle state |Ψ〉 can

be expanded as:

|Ψ〉 =
∑

1≤x1<...<xN≤L

Ψ(x) |x1, . . . , xN 〉 (3.3)

with |x1, . . . , xN〉 denoting the state in above tensor product with spins up at the positions

x1, . . . , xN : |x1, . . . , xN 〉 = S+
x1
. . . S+

xN
Ω, where Ω = |↓↓ . . . ↓〉 is the (pseudo)vacuum, the

state with all spins down. It is annihilated by all operators S−
x , S−

x Ω = 0. The total

number of the N -particle eigenstates of the Hamiltonian HHeis is

(
L
N

)
, as they can be

enumerated by the appropriate functions Ψ(x).

20



3.1.1. The coordinate Bethe ansatz

In 1931 H. Bethe parametrized [38] these functions by N quasimomentum variables

p = (p1, . . . , pN ) , subject to the further equations which we write momentarily. The

ansatz, known as Bethe ansatz, reads as follows: let

Ψp(x1, ...xN) =
∑

w∈SN

(−1)wA(pw(1), .., pw(N)) exp




N∑

j=1

ipw(j)xj


 , (3.4)

then the eigenstate of HHeis is given by |Ψp >=
∑

1≤x1<...<xN≤L Ψp(x)|x1, ..., xN〉. The

Bethe ansatz expresses the coefficients Ap(x) in terms of the two body S-matrix Σ(p1, p2):

A(p1, ..., pN) =
∏

1≤j≤k≤N

Σ(pj , pk), Σ(pj, pk) = 1 − 2eipk + ei(pj+pk)

It is more convenient to use the new variables λj instead of pj :

eipj =
λj + i

2

λj − i
2

.

In this notation Ψλ(x) of (3.3) is an eigenstate of the HHeis if and only if (λ1, ..., λN) satisfy

the Bethe equation: (
λj + i

2

λj − i
2

)L

= eiϑ
∏

k 6=j

λj − λk + i

λj − λk − i
(3.5)

which guarantees that (3.4) obeys the twisted boundary conditions (3.2). The energy of

the state (3.3) is HHeisΨp = EpΨp , Ep = J
(
L− 2N + 2

∑N
i=1 cos (pi)

)
.

A similar construction works for an arbitrary spin, when ~Sa is in the spin sa represen-

tation of SU(2) at every site of a chain. In addition, the spin sites can be, in some sense,

displaced from the symmetric round-the-clock configuration, so that one gets L additional

parameters ν1, . . . , νL. This model is sometimes called the inhomogeneous XXXs magnet.

The corresponding Bethe equations have the form:

L∏

a=1

λj − νa + isa

λj − νa − isa
= eiϑ

∏

k 6=j

λj − λk + i

λj − λk − i
(3.6)

The Hamiltonian for the general local spins is given by a polynomial in the neighbouring

spins, which is more complicated then (3.1), see [14] for details.
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3.1.2. The analytic Bethe Ansatz

There is yet another interpretation of the Bethe equations (3.6), due to [39], [40], as

the condition for the polynomial function

Q(λ) =
N∏

i=1

(λ− λi) (3.7)

to solve Baxter’s equation

a(λ)Q(λ+ i) + eiϑd(λ)Q(λ− i) = t(λ)Q(λ) (3.8)

with the given polynomials:

a(λ) =

L∏

a=1

(λ− νa − isa) , d(λ) =

L∏

a=1

(λ− νa + isa) (3.9)

and some unknown degree L polynomial t(λ).

Indeed, let us define t(λ) as the ratio of the left hand side of (3.8) and Q(λ). The

absence of poles of t(λ) at the zeroes of Q(λ), i.e. at λ = λj , j = 1, . . . , N is equivalent to

(3.6).

The polynomial t(λ) gives the eigenvalues of the twisted transfer matrix

Tϑ(λ) = A(λ) + eiϑD(λ) (3.10)

which is a central object in the algebraic Bethe Ansatz [41],[42],[43],[44],[45], where it is a

trace of monodromy matrix, see [14] for details. The quasiclassical limit of the equation

(3.8) defines an analytic curve, whose geometry can be effectively used to write formulae

for the matrix elements of local operators [46].

3.1.3. Yang-Yang function

The highly surprising property of the equations (3.5),(3.6) is that they have a potential

[24]. If we rewrite (3.6) as e2πi ̟j(λ) = 1, then the following one-form:

̟ =

N∑

j=1

̟j(λ)dλj (3.11)

is closed, d̟ = 0 and ̟ = dY

Y (λ) =

L∑

a=1

sa

π

N∑

j=1

x̂

(
λj − νa

sa

)
+

1

π

N∑

j,k=1

x̂(λj − λk) +

N∑

j=1

λj

(
nj +

ϑ

2π

)

(3.12)

where the integers nj label various branches of the logarithms, and the function x̂(λ) is

given by:

x̂(λ) = λ arctan

(
1

λ

)
+

1

2
log
(
1 + λ2

)
. (3.13)
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3.1.4. Higher rank spin groups

Now imagine the spin operators ~Sa are realized as the generators of some simple Lie

algebra k = LieK. Let r = rank(k). The number of spin sites L and the excitation

level N of our previous models generalize to the vectors: ~L = (L1, L2, . . . , Lr) , ~N =

(N1, N2, . . . , Nr). The twist parameter becomes the r-tuple of angles: (ϑ1, . . . , ϑr), which

define an element of the maximal torus of K. The Bethe equations read as follows:

Li∏

a=1

λ
(i)
i − ν

(i)
a + is

(i)
a

λ
(i)
i − ν

(i)
a − is

(i)
a

= eiϑi

r∏

j=1

∏

j: (i,i)6=(j,j)

λ
(i)
i − λ

(j)
j + i

2Cij

λ
(i)
i − λ

(j)
j − i

2
Cij

(3.14)

where the unknowns (Bethe roots) are λ
(i)
i , i = 1, . . . , r, i = 1, . . . , Ni. The equations

(3.14) describe the spectrum of the transfer matrix acting in the space

H~L =
r⊗

i=1

⊗Li

a=1 W
(i)

s
(i)
a

(
ν(i)

a

)

where W(i)
s (ν), 2s ∈ Z≥0, ν ∈ C are the so-called Kirillov-Reshetikhin modules [47], the

special evaluation representations of the Yangian Y(k) of k. The matrix Cij in (3.14) is

the Cartan matrix of k.

The equations (3.14) also have a YY function, see [14] for details. The most general

closed spin chains correspond to yet more general representations of the Yangian Y (k), not

necessarily the Kirillov-Reshetikhin ones. These representations W~P are characterized by

the highest weights, which are given by an r-tuple ~P of monic polynomials, called Drinfeld

polynomials:

~P = (P1(λ), P2(λ), . . . , Pr(λ)) (3.15)

For example, in the case of k = sl2, the inhomogeneous spin chains were characterized by

the polynomials a(λ) and d(λ). These polynomials enter Baxter’s equations (3.8). These

two polynomials can be related to the single Drinfeld polynomial P1(λ), as it should be,

since the rank of sl2 is equal to one:

a(λ)

d(λ)
=
P1(λ+ i

2
)

P1(λ− i
2 )

(3.16)

Explicitly (ŝa = sa − 1
2 ):

P1(λ) =

L∏

a=1

ŝa∏

ma=−ŝa

(λ− νa + ima) (3.17)
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In the general case the Bethe roots again form r groups
(
λ

(i)
i

)
, i = 1, . . . , r, i = 1, . . . , Ni.

The general Bethe equations can be written for the simply-laced k, for each (i, i), as:

Pi(λ
(i)
i + i

2 )

Pi(λ
(i)
i − i

2 )
= eiϑi

r∏

j=1

Nj∏

j=1

λ
(i)
i − λ

(j)
j + i

2Cij

λ
(i)
i − λ

(j)
j − i

2Cij

(3.18)

There exists also the generalizations to the non-simply laced k, and some partial results

for the affine case as well, see [14] for details and references.

The equations (3.18) can be also written in the form of Baxter-like equations for r

polynomial functions Qi(λ) =
∏Ni

i=1(λ−λ
(i)
i ), either directly using (3.18), see [14], or using

the theory of q-characters [48], or, for k = su(r + 1), using the discrete Hirota equations

[49].

3.2. Anisotropic chains

The model with the (3.1) Hamiltonian can be generalized to the anisotropic situations:

HHeis =

L∑

a=1

( JxS
x
aS

x
a+1 + JyS

y
aS

y
a+1 + JzS

z
aS

z
a+1) (3.19)

with the general anisotropy parameters Jx, Jy, Jz. These more general spin chains (the

XXZ, XY Z, or the 8-vertex model [50]) also admit the Bethe ansatz, with the Bethe

equations (3.6) replaced by the trigonometric or elliptic analogues.

4. The Dictionary

In this section we present the explicit bridge between the two topics of our story, the

dictionary, relating the quantum integrable spin chains and the N = (2, 2) supersymmetric

gauge theories in two dimensions.

We do it here at the example of the inhomogeneous twisted XXXs spin chain and

a certain U(N) gauge theory in two dimensions. This map extends to other examples

presented above and more, see [14] for details.

The foundation of our dictionary is of course the observation that the vacuum equation

for the gauge theory (1.1) coincides with Bethe equation in the integrable theory (which

we formulate in some generality in (3.6), (3.18)):

The effective twisted superpotential corresponds to the YY function
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Actually, the entries of the YY function are dimensionless, while the vacuum equation

(1.1) is written for σ, which has the dimension of mass. The precise relation reads as

follows:

uY (λ; s, ν) = W̃ eff(σ; s, µ)

λi u = σi

νa u = µa

(4.1)

where u is the particular twisted mass, corresponding to the U(1) symmetry breaking the

N = 4 supersymmetry of the theory we present below, down to N = 2.

Of course this is only a starting point leading to precise identification of two theories

– the vacuum structure, including the vacuum expectation values of the (twisted) chiral

operators on the gauge theory side and the entire spectrum of all integrable Hamiltonians

on the spin chain side. The Baxter operator(s) Qi(λ) are identified, up to the rescaling

λ→ x = λu, Qi(λ) → u−NiQi(x), with the BC order parameters of the gauge theory.

4.1. The Q̃ΦQ theory vs the XXXs spin chain

Our announced duality maps the inhomogeneous XXXs spin chain to the U(N) gauge

theory with the following matter fields and twisted masses:

Gauge representation Matter multiplets Twisted mass

adjoint Φ madj = −iu

N Qa mf
a = −µa + isau

N Q̃a mf
a = +µa + isau

a = 1, . . . , L
(4.2)

In the absence of superpotential all the parameters are complex numbers, µa, sa, u ∈ C.

The generic superpotential (2.16) breaks the global symmetry group U(L)× U(L)× U(1)

down to the subgroup U(1) of the transformationsQa 7→ eiµaQa, Q̃a 7→ e−iµaQ̃a. However,
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if the matrix-valued function mb
a(Φ) is chosen in a special way, the unbroken subgroup gets

enhanced. In particular, when

mb
a(Φ) = δb

a̟a Φ2sa , W
Q̃ΦQ

=

L∑

a=1

̟a Q̃
aΦ2saQa, (4.3)

for some complex constants ̟a, we have the group U(1)L × U(1) of the transformations

of the form:

Qa 7→ eiµa−isauQa , Q̃
a 7→ e−iµa−isauQ̃a ,Φ 7→ eiuΦ (4.4)

In this case we turn on both the superpotential (4.3) and the twisted masses (4.2). In order

for the superpotential (2.16) be a polynomial, we need 2sa’s be the non-negative integers.

Note that the massless N = 2, d = 4 theory has a superpotential W0 =
∑L

a=1 Q̃
aΦQa

which corresponds to sa = 1
2
.

A few comments about the superpotential (4.3) are in order. In two dimensions the

corresponding theory is renormalizable for all half-integer values of s. In three dimensions

only for s = 1
2 or s = 1 we get renormalizable theory, and in four dimensions - only

for s = 1
2 . One has several approaches to the three and four dimensional theories for

the values of s when the superpotentials Q̃Φ2sQ are not renormalizable: 1.〉 Think about

these theories as effective theories arising from a renormalizable fundamental theory after

integrating out some massive modes; 2.〉 View them as the theories with cutoff; 3.〉 Embed

them into string theory, or 4.〉 Abandon them for such values of s altogether. Obviously

we do not like to pursue the last option. We describe the details of 1.〉 in [14].
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Thus, the Q̃ΦQ theory with

Nc = N, Nf = L (4.5)

the superpotential (4.3) and the twisted masses (4.2) with the half-integers sa is mapped

to the N -particle sector of the twisted inhomogeneous SU(2) XXXs spin chain. The

supersymmetric vacua correspond to Bethe states. The twisted masses correspond to the

inhomogeneities νa and the local spins sa:

mf
a = (−νa − isa)u, mf

a = (νa − isa)u, madj = −iu (4.6)

Since the gauge group U(N) has a center, one has an additional parameter, the complexified

theta angle, which is the sum of the theta angle and the Fayet-Illiopoulos term. This

parameter is mapped to the twist parameter of the (complexified) spin chain:

t =
1

2π
ϑ+ ir −→ ~Sa+L = e−πitσ3~Sae

πitσ3 (4.7)

Note that the only rôle of the superpotential W (4.3) is to impose the integrality

condition on the sa parameters of the twisted masses (4.2). It is conceivable that in the

absence of W the theory with complex sa’s maps to the sl2 spin chain with possibly infinite

dimensional spin representations (still in the N -particle sector).

4.2. Order parameters, Hamiltonians, local operators

Let us discuss the rôle of the BC order parameter and Baxter’s equation in the gauge

theory. Define the gauge theory observable, which we shall call the T -operator (cf. (2.45)):

T(x) = a(x)
Q(x+madj)

Q(x)
+ e2πit d(x)

Q(x−madj)

Q(x)
(4.8)

with a(x), d(x) from (2.46). The T -operator is an infinite expansion in x, whose coefficients

are the gauge invariant functions of σ. In a sense, we can view t(x) as the generating

function of the twisted chiral ring operators. Now, the twisted chiral ring is a commutative

associative ring [14] generated by the coefficients of Q(x), and the relations which can be

concisely formulated as:

T(x)− ≡
∞∑

n=1

Tnx
−n = {Q, . . .} (4.9)
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where Q is one of the supercharges of the theory. In other words, in the twisted chiral ring

the following equations hold:

Tn = 0 , n = 1, 2, . . . (4.10)

It would be nice to derive this from some Ward identities, analogous to the generalized

Konishi anomaly [51]. In the spin chain the positive coefficients of the expansion of t(x)

correspond to the integrable Hamiltonians Hk of the model:

T(x)+ = (1 + e2πit)xL +

L∑

k=1

Hkx
k−1 (4.11)

Finally, the gauge theory has non-local operators, creating soliton states, interpolating

between different vacua of the theory. It is natural to identify those with local operators

in the spin chain, such as the operator of the local spin ~Sa. The matrix elements of these

operators between the Bethe states, the form-factors [52], are worth investigating on the

gauge theory side.

4.3. More general systems

It is now clear how to generalize this correspondence to other spin systems. Take,

for example, the XXX spin chain with the spin group K. The Bethe equations (3.14),

(3.18) tell us what N = 2 supersymmetric gauge theory should be taken in order for its

vacua represent the Bethe vectors of the spin chain. It is the quiver gauge theory, with the

product gauge group G = U(N1)× . . .×U(Nr), the adjoint, bi-fundamental, fundamental,

and anti-fundamental matter multiplets, which can be easily read off the Dynkin diagram

of K. Again, one turns on the twisted masses for these various fields, and the integrality of

some of these masses, which in (3.18) are represented by the spins s
(i)
a or the components

of the Cartan matrix Cij, comes from the invariance of the tree level superpotential.

However, nothing prevents us from turning off the tree level superpotential. In this

way all bets are off, the matrix Cij of twisted masses is no longer restricted to be a Cartan

matrix, and the spins s
(i)
a are no longer restricted by any integral considerations.

If we believe that the rich algebraic structure of the spin chain survives the translation

to the gauge theory then the Yangian Y(k) is to be replaced by another algebra, which is

worth investigating further, see [14] for details.
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5. Lifts to higher levels and higher dimensions
Our two dimensional theories can be lifted to three and four dimensions while keeping

the same amount of supersymmetry. The three dimensional theory compactified on a circle

would map to the XXZ spin chain (cf. (2.47) with (4.2)), the four dimensional theory

compactified on T2 (cf. (2.53) ) maps to the 8-vertex model and the XY Z spin chain.

5.1. Beyond the known systems

The correspondence with the supersymmetric gauge theories opens new doors both

for the quantum integrable systems and for the gauge theories. We already mentioned a

possibility of relaxing the integrality of the Cartan matrix Cij. As another example, we

can study other four-dimensional constructions leading to an interesting deformation of the

would-be-Bethe equations, i.e. the vacuum equations of the compactified four-dimensional

supersymmetric gauge theory.

We start with the N = 2 supersymmetric gauge theory in four dimensions and com-

pactify it on a two-dimensional sphere S2. Of course, this compactification breaks super-

symmetry, so we shall have to make a partial twist along S2 to preserve some fraction of

the supersymmetry.

This theory is interesting as its low-energy two dimensional dynamics is sensitive to

the effects of the four dimensional instantons. The equations (2.33) then contain the

complexified four-dimensional coupling

T =
θ

2π
+

4πi

e2
(5.1)

and, for the appropriate four dimensional theory, are modular.

The partial twist is done as follows (cf. [53]). The holonomy group of the product

manifold Σ × S2 with the product metric is SO(2)Σ × SO(2)S2 . Here Σ is the worldsheet

of the effective two dimensional theory. In addition, the N = 2 theory has an SU(2)

R-symmetry group (it can be larger for the theories with matter). The supercharges of the

N = 2 theory, eight of them, transform as
(
±1

2
,±1

2
, 2
)

under SO(2)Σ ×SO(2)S2 ×SU(2).

Since the two-sphere has no covariantly constant spinors, none of these supercharges are

conserved, if the R-symmetry group is to be preserved. Now imagine SO(2)S2 is allowed

to act on the R-symmetry index. In other words, let us embed SO(2)S2 → SU(2), via

eiα 7→ eiqασ3 , 2q ∈ ZZ (5.2)

The eight supercharges now transform as:
(
±1

2
,±1

2
± q
)

under SO(2)Σ×SO(2)S2 . We now

can choose q = ±1
2 , to make four supercharges have vanishing charge under SO(2)S2 . The

other four supercharges transform as:
(
±1

2
,±1

)
and are not conserved on the two-sphere

S2.
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5.1.1. Pure N = 2 theory

As a warmup, consider the compactification of the pure N = 2 super-Yang-Mills

theory on S2 with the q = ±1
2

twist.

The result is the two dimensional theory, with the N = 2 supersymmetry in two

dimensions. The field content of that theory contains a massless vector multiplet and a

Kaluza-Klein tower of massive vector and chiral multiplets, all transforming in the adjoint

representation of the gauge group. The lowest massive level comes from the Laplacian

eigenstates in the space of the one-forms on S2.

Now we wish to calculate the effective twisted superpotential of the two dimensional

theory. We shall take the size of S2 to zero. In this way the massive states become infinitely

massive and ought to decouple.

Now let us turn on the magnetic flux on the two-sphere. More precisely, we can turn

on the flux, for G = U(N),

1

2πi

∫

S2

F ∼ diag (m1, . . . ,mN ) , mi ∈ ZZ

in the maximal torus of the gauge group, determined by the vacuum expectation value of

the adjoint Higgs field. In the presence of the magnetic flux, some of the charged Kaluza-

Klein modes become massless and contribute to the effective twisted superpotential. As a

result, the twisted superpotential can be expressed in terms of the prepotential of the four

dimensional theory as follows:

W (a) =
r∑

i=1

mi
∂F
∂ai

(5.3)

where r = N for G = U(N), r = N − 1 for G = SU(N) (in the latter case there is one

more subtlety related to the possibility to turn on the discrete magnetic flux w2 ∈ ZZN ).

In addition, the unfolding of the two dimensional field strength can be accomplished, as

in (2.32), by introducing the integral vector (n1, . . . ,nr), which can be identified with the

vector or electric fluxes through the two-sphere. The twisted superpotential becomes [37]:

W (a) =

r∑

i=1

(
mi

∂F
∂ai

+ nia
i

)
=

∮

Cm,n

λ (5.4)

where λ = pdz is the Seiberg-Witten differential, and Cm,n ∈ H1(C,ZZ) is a cycle on the

Seiberg-Witten curve C,

ΛN
(
ep + e−p

)
= zN + u1z

N−1 + . . .+ uN , (5.5)

corresponding to the charges (m,n).
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5.1.2. The N = 2∗ theory

Now, to make things interesting let us add some matter fields. One of the most

beautiful gauge theories in four dimensions is the so-called N = 2∗ theory. This is the

N = 2 theory with massive adjoint hypermultiplet. In the ultraviolet this is the N = 4

theory, which exhibits S-duality. In the infrared this is the abelian theory with the moduli

space of vacua described by the algebraic integrable system [15], an elliptic Calogero-Moser

system, which can also be described [7],[17] as a degenerate case of the Hitchin system [2].

The classical elliptic Calogero-Moser system describes the system of particles q1, q2, . . . , qN

on a circle, interacting via a pair-wise potential

U = m2
N∑

i,j=1

℘ (qi − qj)

which is doubly periodic, with the periods 1 and T , ImT > 0, where we use the elliptic

modulus defined by the gauge couplings (5.1). The classical motion of that system is

mapped to the constant velocity motion on the Jacobian variety of the spectral curve,

DetN×N (Φ(z) − λ) = 0 (5.6)

where

Φij(z) = piδij +m
Θ1(z + qi − qj)Θ

′
1(0)

Θ1(z)Θ1(qi − qj)
(1 − δij) (5.7)

This family of curves encodes [54], [16] the low-energy effective action of the N = 2∗

theory with the mass of the hypermultiplet equal to m. The prepotential F depends on

the vacuum expectation values 〈φ〉 = diag(a1, . . . , aN) of the scalars in the vector multiplet

of the U(N) gauge group, and on m and τ :

F(a;m, T ) = Fpert(a;m, T ) +

∞∑

k=1

e2NkπiT Fk(a;m) , (5.8)

where (aij = ai − aj):

Fpert(a;m, T ) =
T
2

N∑

i=1

a2
i +

3N2m2

4
+

1

4

N∑

i,j=1

[
a2

ij log (aij) − (aij +m)
2

log (aij +m)
]

(5.9)
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The terms Fk(a;m) come from the charge k instantons and can be computed for any k

using localization techniques [54]:

F1(a;m) = m2
N∑

i=1

∏

j 6=i

(
1 − m2

(aij)2

)
, etc. (5.10)

Now let us apply the same procedure to the N = 2∗ theory, i.e. let us compactify the theory

on a two-sphere with the partial twist. Actually, the theory with adjoint hypermultiplet

can be twisted in many ways. Indeed, we have an extra U(1) symmetry under which the

complex scalars B1, B2 in the adjoint hypermultiplet have charges +1,−1. By embedding

SO(2)S2 into this U(1) we shall assign the additional Lorentz spins to the bosons and

fermions in the hypermultiplet.

The two dimensional twisted superpotential now contains, in addition to the terms

(5.4), the terms coming from the extra twist of the matter fields (we identify ai = σi):

W̃ eff(σ;m, T ) = 2
∂F(σ;m, T )

∂m
+

r∑

i=1

(
mi

∂F(σ;m, T )

∂σi
+ niσ

i

)
(5.11)

and vacuum equation is defined with this and (1.1). We note that the perturbative limit

of the (5.11) gives the twisted effective superpotential of the Yang-Mills-Higgs theory of

[1], [5], [6] (the example (2.43) of the Hitchin theory above). This is not surprising since

in the trivial instanton sector the reduction on S2 of the four dimensional N = 2∗ theory

gives the two dimensional N = 2∗ theory. We see here that the four dimensional instation

corrections give a modular-covariant deformation of the effective twisted superpotential,

and a modular-covariant deformation of the Bethe equations of the non-linear Schrödiner

system.

This is a very interesting phenomenon which needs further investigation, see [14] for

details.

5.1.3. Higher energies

Another very exciting direction of research involves attempting to lift the correspon-

dence between the quantum integrable system and the gauge theory beyond the vacuum

sector of the latter. It is conceivable that the Yangian, quantum affine, or elliptic quantum

algebra symmetry of the vacuum sector are the symmetries of the full quantum field theory.

Note that in the two and three dimensional cases these algebras do not, in general, preserve

the number of colors. We thus see a novel kind of symmetry of a gauge theory emerging.

When the gauge theories are imbedded in string theory via e.g. a D-brane construction,

the change of the rank of the gauge group looks less drastic, as it corresponds to bringing

some branes from infinity or sending them away, see [14] for details.
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