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UNIVERSALLY REVERSIBLE JC∗-TRIPLES AND

OPERATOR SPACES

LESLIE J. BUNCE AND RICHARD M. TIMONEY

Abstract. We prove that the vast majority of JC∗-triples satisfy
the condition of universal reversibility. Our characterisation is that
a JC∗-triple is universally reversible if and only if it has no triple
homomorphisms onto Hilbert spaces of dimension greater than two
nor onto spin factors of dimension greater than four. We establish
corresponding characterisations in the cases of JW ∗-triples and
of TROs (regarded as JC

∗-triples). We show that the distinct
natural operator space structures on a universally reversible JC∗-
triple E are in bijective correspondence with a distinguished class
of ideals in its universal TRO, identify the Shilov boundaries of
these operator spaces and prove that E has a unique natural oper-
ator space structure precisely when E contains no ideal isometric
to a nonabelian TRO. We deduce some decomposition and com-
pletely contractive properties of triple homomorphisms on TROs.

1. Introduction

The norm closed subspaces of B(H) invariant under the ternary prod-
uct [a, b, c] = ab∗c and known as TROs (ternary rings of operators)
have a well-documented significance in the category of operator spaces
in which, up to complete isometry, they occur as the noncommutative
Shilov boundaries, injective envelopes and as Hilbert C∗-modules [2,
Chapters 4, 8]. TROs have a natural operator space structure since
the algebraic isomorphisms between them are exactly the surjective
complete isometries. This is a state generally not possessed by the
norm closed subspaces of TROs invariant under the symmetrised triple
product {a, b, c} = (1/2)([a, b, c] + [c, b, a]) which arose in a different
tradition and were named J∗-algebras by Harris [17, 18] who showed
that the open unit ball of each such space is a bounded symmetric do-
main, that is, the group of biholomorphic automorphisms of the open
unit ball is transitive. Kaup’s extension [23] is a formidable conjunction
of algebra and analysis: the open unit ball of a complex Banach space
E is a bounded symmetric domain if and only if there is a continuous
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map {·, ·, ·} : E3 → E such that the operator D(a, b) on E given by
D(a, b)(c) = {a, b, c} is sesquilinear, satisfies the Jordan triple identity,
[D(a, b), D(x, y)] = D({a, b, x}, y)−D(x, {y, a, b}) and that D(x, x) is
a positive hermitian operator on E with norm ‖x‖2 (for all a, b, c, x and
y in E). This class of Banach spaces, the JB∗-triples, is invariant un-
der linear isometries and a key feature is that the Jordan triple product
{a, b, c} on a JB∗-triple is unique: the triple isomorphisms between
JB∗-triples are the surjective linear isometries.

The linear isometric copies of J∗-algebras, hereafter referred to as
JC∗-triples, are principal examples of JB∗-triples. In these terms J∗-
algebras are precisely the JC∗-subtriples of B(H), or concrete JC∗-
triples, and by the triple Gelfand-Naimark theorem of Friedman and
Russo [13] JC∗-triples are the JB∗-triples with vanishing exceptional
ideal. The JC∗-triples with a predual are called JW ∗-triples. Hilbert
spaces are JC∗-triples as are all (linear isometric copies of) Cartan fac-
tors, C∗-algebras, TROs and Jordan operator algebras. Friedman and
Russo [12] have also shown that the range of a contractive projection
on a C∗-algebra is a JC∗-triple, though not necessarily a subtriple of
the ambient C∗-algebra (one by-product of this paper is the passing
observation that all simple JC∗-triples arise in this way up to linear
isometry).

Operator space structure of reflexive JC∗-triples has been investi-
gated in important articles by Neal, Ricard and Russo [25] and by
Neal and Russo [26, 28], who also proved [27] that an operator space
X is completely isometric to a TRO if and only if Mn(X) is a JC∗-
triple (in the abstract sense defined above) for all n ≥ 2. In [3] B. Feely
and the authors began a general study of JC-operator spaces (the op-
erator spaces induced by linear isometries onto concrete JC∗-triples)
which was continued in [4, 5]. The JC-operator spaces of all Cartan
factors (see §2) were described and enumerated in the process via in-
strumental use of the notions (inaugurated in [3]) of the universal TRO
of a JC∗-triple and of a universally reversible JC∗-triple, conceived by
analogy with companion notions in Jordan operator algebras [15, 16]
which they precisely generalise [3, §4].

Universally reversible JC∗-triples form a class of Banach spaces pre-
served by linear isometries. The extent and influence of this class is
the subject of this paper.

The setting is that given a1, . . . , a2n+1 in a JC∗-subtriple E of B(H)
with n ≥ 2, the reversible element

a1a
∗
2a3 · · · a

∗
2na2n+1 + a2n+1a

∗
2n · · · a3a

∗
2a1

(lying in the TRO generated by E) is not a Jordan-theoretic product
and has no compelling algebraic claim to membership of E: if E con-
tains all reversible elements arising in this way it is said to be reversible
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in B(H). A JC∗-triple E is defined to be universally reversible if π(E)
is reversible in B(H) for every triple homomorphism π : E → B(H).

By [3] Cartan factors are universally reversible with the exceptions of
Hilbert spaces of dimension ≥ 3 and spin factors of dimension ≥ 5. We
shall prove that the latter are essentially the only obstacles to universal
reversibility thus showing that most JC∗-triples satisfy the condition
and that failure to do so is confined to a sharply delineated isolated
class.

Our characterisation is that a JC∗-triple is not universally reversible
when, and only when, it has a triple homomorphism onto a Hilbert
space of dimension ≥ 3 or a spin factor of dimension ≥ 5 (Theorem 4.7).
Further results in §4 give the structures of universally reversible JW ∗-
triples (in Theorem 4.14) and W ∗-TROs (Corollary 4.15), and that
section contains other results of independent interest. The prior sec-
tion, §3, deals with important special cases such as one-sided weak*-
closed ideals in von Neumann algebras. Having shown the prevalence
of universally reversible JC∗-triples we study their JC-operator spaces
in §5, distilling the significance (as it turns out) of nonabelian TROs
in the process (Theorem 5.12). For a given universally reversible JC∗-
triple E we prove that its JC-operator spaces are in bijective corre-
spondence with a distinguished family of ideals in its universal TRO
(Theorem 5.10), identify the Shilov boundaries of each such operator
space (Corollary 5.11) and severally characterise those E with a unique
JC-operator space structure (Theorem 5.12). Modulo a mild restric-
tion, we apply our results to show that triple homomorphisms on a
TRO routinely decompose into the sum of a TRO homomorphism and
a TRO antihomomorphism (Proposition 5.14) and deduce that a triple
automorphism on a W ∗-TRO factor not isometric to a von Neumann
algebra must be a TRO automorphism (Theorem 5.18).

2. Preliminaries

We refer to surveys [29, 30] and articles [7, 13, 17, 18, 24] for general
background on JC∗-triples and to [2, 10] for the theory of operator
spaces and also for TROs, further information about which may be
found in [3, 5, 9, 14, 35]. Related to JC∗-triples are the JC∗-algebras,
the complexifications of the JC-algebras studied thoroughly in [16].
JC∗-algebras are the norm closed subspaces of C∗-algebras invariant
under the involution and Jordan product a◦ b = (ab+ ba)/2, which are
all JC∗-triples because {a, b, c} = (a ◦ b∗) ◦ c+ a ◦ (b∗ ◦ c)− (a ◦ c) ◦ b∗.
A JW ∗-algebra is a weakly closed JC∗-subalgebra of a von Neumann
algebra. Given elements a1, . . . , a2n+1 of a TRO T , we often write
[a1, · · · , a2n+1] for the element a1a

∗
2a3 · · · a

∗
2na2n+1 of T .

Throughout this paper the term ideal shall mean norm closed ideal.
In each of the four above mentioned categories ideals have the obvious
algebraic definition with respect to the relevant product and, by a
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result of Harris [18, Proposition 5.8], the definitions coincide whenever
the categories overlap. We write TRO(X) for the TRO generated by
subset X in a C∗-algebra and recall [5, Proposition 3.2] that TRO(I)
is an ideal of TRO(E) with I = E ∩TRO(I) whenever I is an ideal of
a concrete JC∗-triple E.

Let E be a JC∗-triple. Elements x and y in E are said to be or-
thogonal (denoted by x ⊥ y) if {x, x, y} = 0, which is equivalent to
x∗y = xy∗ = 0 when E is a JC∗-subtriple of B(H), implying that
‖x+ y‖ = max(‖x‖, ‖y‖) [17, p. 18]. Given x ∈ E and S ⊆ E we write
x ⊥ S if x ⊥ y for all y in S and denote {x ∈ E : x ⊥ S} by S⊥. Ideals
I and J of E are orthogonal, that is, I ⊆ J⊥ (equivalently, J ⊆ I⊥)
if and only if I ∩ J = {0}, in which case, I + J = I ⊕∞ J . If E is a
JW ∗-triple with a weak*-closed ideal I then E is the sum of I and its
complementary weak*-closed ideal I⊥. A JW ∗-triple E is a factor if it
has no nontrivial weak*-closed ideals. Given x in E, Qx denotes the
conjugate linear operator y 7→ {x, y, x} on E.

An element u of a JC∗-triple E is a tripotent if {u, u, u} = u. The
Peirce projections Pk(u) (k = 0, 1, 2, u a tripotent) on E associated
with u are given by

P2(u) = Q2
u, P1(u) = 2(D(u, u)−P2(u)) and P0(u) = I−P2(u)−P0(u)

and satisfy Pi(u)Pj(u) = 0 whenever i 6= j. Also E = E2(u) ⊕
E1(u) ⊕ E0(u) [linear direct sum] where Ek(u) = Pk(u)E = {x ∈
E : 2{u, u, x} = kx} is the Peirce k-space for u and each Ek(u) is a
JC∗-subtriple of E. In addition, E2(u) is a JC

∗-algebra with product
x ◦ y = {x, u, y}, identity element u and involution x# = {u, x, u}. If
E is a JW ∗-triple then E2(u) is a JW

∗-algebra.
A tripotent u ∈ E is said to be abelian if E2(u) is an abelian JC∗-

algebra (equivalently, an abelian C∗-algebra) and to be minimal if
E2(u) = Cu. If P0(u) = 0, then u is called a complete tripotent of
E and is called a unitary tripotent if P0(u) = P1(u) = 0. The com-
pleteness of a tripotent u is equivalent to u⊥ = {0} (by [17, p. 18]).
and to u being an extreme point of the closed unit ball of E (by [17,
Theorem 11]).

We note the following.

Lemma 2.1. Let u be a tripotent in a JC∗-triple E, M a JW ∗-triple,
and let π : E → M be a nonzero triple homomorphism with weak*-
dense range. If u is a complete (respectively, a unitary, an abelian,
a minimal) tripotent of E, then π(u) is a complete (respectively, a
unitary, an abelian, a minimal) tripotent of M . In particular π(u) 6= 0
if u is a complete tripotent of E.

By a Cartan factor we shall mean a JC∗-triple linearly isometric to
one of the following canonical forms (i) B(H)e; (ii) {x ∈ B(H) : xt =
x}, dimH ≥ 2; (iii) {x ∈ B(H) : xt = −x}, dimH ≥ 4; (iv) a spin
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factor, where in (i) – (iii) H is a Hilbert space, e ∈ B(H) is a projection
and x 7→ xt is a transposition. Up to linear isometry, the forms (ii),
(iii) when H has even or infinite dimension, and (iv), are type I JW ∗-
triples and those of form (i) where e is a minimal projection are Hilbert
spaces. The spin factor of finite dimension n+ 1 is denoted by Vn.

We denote the norm closed linear span of the minimal tripotents in
a Cartan factor C by KC , an ideal of C (which consists of the compact
operators contained in C when C is of type (i), (ii) or (iii) above).
The Cartan factors may be characterised as the JW ∗-triple factors
possessing minimal tripotents. The rank of a Cartan factor C is the
cardinality of a maximal family of orthogonal minimal tripotents in C.

The following three conditions are equivalent for a Cartan factor C:

(2.1) (a) C has finite rank; (b) KC = C; (c) C is reflexive.

A Cartan factor representation of a JC∗-triple E is a triple homo-
morphism π : E → C where C is a Cartan factor with π(E) weak*-
dense in C (so that π(E) = C if C has finite rank). If π : E → C
is a a Cartan factor representation, the weak*-continuous extension
π̃ : E∗∗ → C is a surjective triple homomorphism so that the orthogo-
nal complement of ker π̃ is a weak*-closed ideal of E∗∗ linearly isometric
to C. Conversely, if J is a weak*-closed ideal of E∗∗ linearly isometric
to C, then the restriction to E of the natural projection from E∗∗ onto
J induces a Cartan factor representation π : E → C. Every JC∗-triple
E has a separating family of Cartan factor representations [13].

The type of a JW ∗-algebra is the type of its self-adjoint part, a JW -
algebra, and the corresponding decomposition theory of JW ∗-algebras
may be read directly from [16, 31, 32, 34]. In particular, a JW ∗-algebra
is of type I if it is the norm closed linear span of abelian projections
and is continuous if it has no nonzero abelian projections. We briefly
recall the extension to JW ∗-triples due to Horn and Neher [19, 20, 21].

Following Horn [20] we use B⊗N to denote the weak* closure of the
algebraic tensor product B ⊗ N in the von Neumann algebra tensor
product B(H)⊗B(K) when B is an abelian von Neumann subalgebra
of B(H) and N is a JW ∗-subtriple of B(K).

A JW ∗-triple is defined to be of type I if it is the weak*-closed linear
span of its abelian tripotents, and to be continuous if it contains no
nonzero abelian tripotents [19, 21]. By Horn’s theorem [20], a JW ∗-
triple M is type I if and only if M is linearly isometric to an ℓ∞ sum

(2.2)
⊕

j

Bj ⊗ Cj

where each Bj is an abelian von Neumann algebra and each Cj is a
Cartan factor in canonical form. When all Bj are nonzero and the Cj

are mutually distinct we shall refer to M as being {Cj}-homogeneous.
We further say that a JW ∗-triple M is of type Ifinite if each Cj has

finite rank in the decomposition (2.2). Specialising, we refer to M as
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type I1 if each Cj is (isometric to) a Hilbert space, and as type Ispin if
each Cj is a spin factor. Equivalently (by [20, §2]) M is type I1 if and
only if it contains a complete abelian tripotent and (by [16, Theorem
6.3.14]) M is type Ispin if and only if it is linearly isometric to a JW ∗-
algebra with self-adjoint part of type I2 in the sense of [16, 5.3.3]. If
each Cj has infinite rank we say that M has type I∞, in which case,
collecting terms, with ∼= meaning ‘linearly isometric to’, we have

(2.3) M ∼= N ⊕∞ We,

whereN is a type I∞ JW ∗-algebra and e is a properly infinite projection
in a type I∞ von Neumann algebra W .

In general, by [21, (1.17)] every JW ∗-triple M has a decomposition

(2.4) M ∼=M1 ⊕∞ Mc,

where the first summand is type I and the second is continuous, referred
to as the type I and continuous parts of M , respectively. In addition
(see [21, §4])

(2.5) Mc
∼= N ⊕∞ We,

where N is a continuous JW ∗-algebra and e is a projection in a con-
tinuous von Neumann algebra W .

We remark that a JW ∗-algebra is continuous as a JW ∗-algebra if and
only if it is continuous as a JW ∗-triple, the ‘if’ part being clear since
abelian projections are abelian tripotents. Conversely, suppose M is
a continuous JW ∗-algebra. If M is not a continuous JW ∗-triple, then
the decomposition theory implies a surjective linear isometry π : N →
B ⊗ C, for some weak*-closed ideal N (a continuous JW ∗-algebra)
of M , where B is an abelian von Neumann algebra and C is a Cartan
factor in canonical form possessing a unitary tripotent, u, say. In which
case, with v = 1 ⊗ u and w = π−1(v), we arrive at the contradiction
that the type I JW ∗-algebra B⊗C2(u) is Jordan*-isomorphic to N2(w)
which, by [21, (5.2) Lemma], is a continuous JW ∗-algebra. It follows
that the two forms of ‘type I’ for JW ∗-algebras also coincide.

We have defined universally reversible JC∗-triples in the Introduc-
tion. By [3, §4], when A is a JC∗-algebra, A is universally reversible if
and only if π(A)sa is a reversible JC-algebra (see [16, 2.3.2]) for each
Jordan *-homomorphism π : A→ B(H).

It follows from these remarks together with the coordinatisation the-
orem [16, 2.8.9] that a unital JC∗-algebra is a universally reversible
JC∗-triple if it contains, for 3 ≤ n < ∞, n orthogonal projections
with sum 1 and pairwise exchanged by symmetries. The following is
recorded for later use.

Proposition 2.2. Let M be a JW ∗-algebra such that M is continuous
or of type I∞ or of type In with 3 ≤ n < ∞. Then M is a universally
reversible JC∗-triple.
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Proof. M contains m orthogonal projections with sum 1 pairwise ex-
changed by symmetries with m = 4 if M is continuous or of type I∞
(see the proof of [16, Theorem 5.3.9]), and with m = n if M has type
In for 3 ≤ n <∞. �

The universal TRO [3] of a JC∗-triple E is a pair (T ∗(E), αE) con-
sisting of an injective triple homomorphism

αE : E → T ∗(E)

where T ∗(E) is a TRO generated by αE(E) (as a TRO) and possessing
the universal property that for each triple homomorphism π : E →
B(H) there is a (unique) TRO homomorphism π̃ : T ∗(E) → B(H) with
π̃ ◦ αE = π. The canonical involution Φ: T ∗(E) → T ∗(E), which has
order 2, is the unique antiautomorphism of T ∗(E) fixing each element
of αE(E). By [3], a JC∗-triple E is universally reversible if and only
if αE(E) = {x ∈ T ∗(E) : Φ(x) = x}. When A is a JC∗-algebra
(T ∗(A), αA) coincides with the universal C∗-algebra (C∗

J(A), βA) of A
[3, Proposition 3.7].

Proposition 2.3. Let A be a JC∗-algebra and T a TRO and let π : A→
T be a surjective linear isometry. Then there is a C∗-algebra B, a Jor-
dan *-isomorphism φ : A → B and a TRO isomorphism ψ : B → T
such that π = ψ ◦ φ.

Proof. We may suppose that A ⊆ C∗
J(A). By [3, Proposition 3.7] there

is a TRO homomorphism π̃ : C∗
J(A) → T extending π. Putting I =

ker π̃ we have the commutative diagram

A
π

//
� _

��

T

C∗
J(A)

π̃

99
r
r
r
r
r
r
r
r
r
r
r

q
// C∗

J(A)/I

π̃I

OO

where q is the quotient map and π̃I is the map sending x + I to π(x)
for each x in C∗

J(A). Since π(A) = T , π̃I is a TRO isomorphism and
since π̃I ◦q agrees with π on A we have q(A) = C∗

J(A)/I. The assertion
follows upon setting B = C∗

J(A)/I, ψ = π̃I and φ to be the restriction
of q to A. �

In outline an operator space is a complex Banach space E together
with a linear isometric embedding into B(H) and the resulting opera-
tor space structure on E is determined by the matrix norms onMn(E)
conferred thus by the C∗-algebras Mn(B(H)), for all n ∈ N . A lin-
ear map π : E → F between operator spaces is said to be completely
contractive if, for each n, ‖πn‖ ≤ 1 where πn is the tensored map
π ⊗ In : Mn(E) → Mn(F ), and to be completely isometric if each πn
is a surjective isometry. Complete isometries are the isomorphisms in
the category of operator spaces. By a JC-operator space structure on
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a Banach space E we mean an operator space structure determined
by a linear isometry from E onto a JC∗-subtriple of B(H) (in which
case, E is a JC∗-triple), and by a JC-operator space we mean a JC∗-
triple E together with a prescribed JC-operator space structure on E.
By [3, Proposition 6.2] the possible JC-operator space structures on
a JC∗-triple E arise from (norm closed) ideals I of T ∗(E) for which
αE(E) ∩ I = {0}, called operator space ideals of T ∗(E). For each
operator space ideal I of T ∗(E) we have the JC-operator space struc-
ture, EI , on E determined by the isometric embedding E → T ∗(E)/I
(x 7→ αE(x) + I).

Given an ideal I of a JC∗-triple E we recall [5, Theorem 3.3] that
TRO(αE(I)) is an ideal of T ∗(E), (T ∗(I), αI) = (TRO(αE(I)), αE|I)
and T ∗(E/I) = T ∗(E)/T ∗(I) with αE/I(x + I) = αE(x) + T ∗(I) for
x ∈ E.

Lemma 2.4. Let I be an ideal of a JC∗-triple E and J an ideal of
T ∗(E). Then J is an operator space ideal of T ∗(I) if and only if J is
an operator space ideal of T ∗(E) contained in T ∗(I); in which case IJ
is an operator subspace of EJ .

Thus, E has at least as many distinct JC-operator space structures
as does I.

Proof. We have

J ∩ T ∗(I) ∩ αE(I) = J ∩ αE(I) = J ∩ αI(I)

and an ideal of T ∗(I) is an ideal of T ∗(E) (see [5, Proposition 3.2] for
example), from which the assertions follow. �

3. Reversibility for JW ∗-triples

The aim of this section is to show that all continuous and type I∞
JW ∗-triples are universally reversible (Theorem 3.10) and to use this
to establish reversibility criteria for JW ∗-triples. In view of the Horn-
Neher structure theory (2.3) and (2.5), and Proposition 2.2 (and [3,
Proposition 3.6] which allows passage to direct sums of finitely many
terms) we may confine our attention to JW ∗-triples of the form eW
where e is a projection in a von Neumann algebra W . Moreover it
suffices to deal with the cases where (a) W is continuous (Propositions
3.6 and 3.9) and (b) eWe is type I∞ (Proposition 3.9).

Given projections e and f in a von Neumann algebra W we write
e ∼ f if and only if e = uu∗ and f = u∗u for some (partial isometry)
u ∈ W , and e - f if and only if there is a projection q in W with
e ∼ q ≤ f . In addition for n ∈ N we use the notation n · e - f
to mean the existence of orthogonal projections e1, . . . , en ∈ W with∑n

i=1 ei - f and e ∼ ei for i = 1, . . . , n. We note that if e, f, p are
projections in W with e, f ≤ p and e ∼ f in W then e ∼ f in pWp
since if u ∈ W with e = uu∗ and f = u∗u the u = euf ∈ pWp.
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We shall make frequent use of the properties [33, p. 291] that, in a
von Neumann algebra, if e and f are projections with e - f and f - e
then e ∼ f , and that if (ei)i∈I and (fi)i∈I are two families of orthogonal
projections with ei ∼ fi for each i ∈ I, then

∑
i∈I ei ∼

∑
i∈I fi. We

refer to [33, Chapter V] for any undefined terms used below.

Lemma 3.1. Let e and f be projections in a von Neumann algebra W
such that e ∼ f . Then eWf is a universally reversible JC∗-triple.

Proof. Given u ∈ W with e = u∗u and f = uu∗, the map x 7→ ux is
a TRO isomorphism from eWf onto the von Neumann algebra fWf ,
which is universally reversible as a JC∗-triple by [1, Lemma 3.4 and
Theorem 4.6] (together with [3, §4]). �

The following folklore is included for want of an exact reference.

Lemma 3.2. Let e and f be projections in a von-Neumann algebra
with e - f . Then there is a projection p ∈ W with e ≤ p ∼ f .

Proof. Let q be a projection in W such that e ∼ q ≤ f . By the
comparability theorem ([33, p. 293] there is a central projection z of
W such that (1 − e)z - (f − q)z and (f − q)(1− z) - (1− e)(1 − z).
Thus, using ez ∼ qz,

z = (1− e)z + ez - (f − q)z + qz = fz ≤ z,

giving z ∼ fz.
Since there is a projection r in W with (f − q)(1 − z) ∼ r ≤ (1 −

e)(1− z), so that

f(1− z) = (f − q)(1− z) + q(1− z) ∼ r + e(1− z)

we have

f = fz + f(1− z) ∼ z + (r + e(1− z)) = e+ (1− e)z + r ≥ e,

as required. �

Lemma 3.3. Let e be a projection in a continuous von Neumann alge-
bra W , let u be a tripotent in eW , and let n ∈ N . Then there exist or-
thogonal tripotents u1, . . . , un ∈ eW with u =

∑n
i=1 ui and n·(u

∗
iui) - e

for i = 1, . . . , n.

Proof. Let f = uu∗. We may choose orthogonal projections f1, . . . , fn
in W with f =

∑n
i=1 fi with fi ∼ f for i = 1, . . . , n (see [22, 6.5.6],

for instance). Now letting ui = fiu for i = 1, . . . , n, we have that
u1, . . . , un are orthogonal tripotents with u = u1 + · · ·+ un and u∗iui ∼
uiu

∗
i = fi ≤ e for i = 1, . . . , n giving n · (u∗iui) - e. �

Lemma 3.4. Let e be a finite projection in a continuous von Neumann
algebra W and let f1, f2, . . . , fn be projections in W with n · fi - e for
i = 1, . . . , n. Then

∨n
i=1 fi - e.
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Proof. Let f =
∨n

i=1 fi and g = e ∨ f (finite by [33, Theorem V.1.37])
and let τ be the centre-valued trace on the finite von Neumann algebra
gWg. Using [33, Corollary V.2.8] we have τ(fi) ≤ (1/n)τ(e) for i =
1, . . . , n so that τ(f) ≤

∑n
i=1 τ(fi) ≤ τ(e) and hence f - e. �

Lemma 3.5. Let u1, . . . , un be tripotents in eW where e is a finite pro-
jection in a continuous von Neumann algebraW such that n·(u∗iui) - e
for 1 ≤ i ≤ n. Then there is a universally reversible JC∗-subtriple of
eW containing u1, . . . , un.

Proof. By Lemma 3.4 together with Lemma 3.2 there is a projection
f in W with

∨n
i=1 u

∗
iui ≤ f ∼ e so that each ui ∈ eWf which, by

Lemma 3.1, is a universally reversible JC∗-triple. �

Proposition 3.6. Let e be a finite projection in a continuous von Neu-
mann algebra W . Then eW is a universally reversible JC∗-triple.

Proof. Let π : eW → B(H) be a triple homomorphism and let a1, . . . , an ∈
π(eW ) for an odd integer n ≥ 3. We must show that

(3.1) [a1, · · · , an] + [an, · · · , a1] ∈ π(eW ).

Choose xi ∈ eW such that π(xi) = ai, for 1 ≤ i ≤ n. In order to
establish (3.1), since eW is the norm closed linear span of its tripotents,
we may suppose without loss that each xi is a tripotent. In which case,
by Lemma 3.3, we may write xi =

∑n
j=1 ui,j where the ui,j are tripotents

in eW with n · (u∗i,jui,j) - e for 1 ≤ i, j ≤ n. Put ai,j = π(ui,j) for
1 ≤ i, j ≤ n. By Lemma 3.1, for each choice of j1, . . . , jn in {1, . . . , n}
there is a universally reversible JC∗-subtriple M of eW containing
u1,j1, . . . , un,jn from which it follows that

[a1,j1 , · · · , an,jn] + [an,jn, · · · , a1,j1] ∈ π(M) ⊆ π(eW ).

By summing over all such choices of j1, . . . , jn we obtain (3.1). �

We next turn to the more pliable properly infinite projections e in
a von Neumann algebra W . In this case we recall [33, Proposition
V.1.36] there are projections p and q in W with e = p + q ∼ p ∼ q,
so that if f1 and f2 are projections with f1 - e and f2 - e then
f1 ∨ f1 − f2 ∼ f1 − f1 ∧ f2 - p and f2 - q giving f1 ∨ f2 - p + q = e.
The next assertion is an immediate consequence.

Lemma 3.7. If f1, . . . , fn and e are projections in a von-Neumann
algebra W where fi - e for 1 ≤ i ≤ n and e is properly infinite then∨n

i=1 fi - e.

For an element x in a von-Neumann algebra W the range projection
r(x∗x) of x∗x is the least projection p in W with xp = x, and r(x∗x) ∼
r(xx∗) [33, Proposition V.1.5].

Lemma 3.8. Let S be a finite subset of eW where e is a properly
infinite projection in the von-Neumann algebraW . Then S is contained
in a universally reversible JC∗-subtriple of eW .
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Proof. Let x1, . . . , xn be the elements of S. For 1 ≤ i ≤ n we have
r(x∗ixi) ∼ r(xix

∗
i ) ≤ e so that by Lemmas 3.2 and 3.7 there is a pro-

jection f in W with
∨n

i=1 r(x
∗
ixi) ≤ f ∼ e. Hence for 1 ≤ i ≤ n,

xi ∈ eW ∩Wf = eWf , whence the result by Lemma 3.1. �

Proposition 3.9. Let e be a projection in a von-Neumann algebra W
such that (a) e is properly infinite or (b) W is continuous. Then eW
is a universally reversible JC∗-triple.

Proof. If e is properly infinite and S is a finite subset of π(eW ), where
π : eW → B(H) is a triple homomorphism, then Lemma 3.8 implies the
existence of a universally reversible JC∗-subtriple M of eW such that
S ⊂ π(M), implying that the latter is reversible in B(H) and proving
the result in case (a). The remaining case follows from this together
with Proposition 3.6. �

We now state and prove the main result of this section.

Theorem 3.10. Every JW ∗-triple with zero type Ifinite part is a uni-
versally reversible JC∗-triple.

Proof. The JW ∗-triples in question are those of the form

(type I∞)⊕∞ (continuous)

(it being understood that one or both summands can be zero). Recall-
ing the Horn-Neher structure theory related in (2.3) and (2.5), the as-
sertion follows from Proposition 3.9 together with Proposition 2.2. �

Definition 3.11. We say that a JW ∗-triple M is weakly universally
reversible if for every weak*-continuous triple homomorphism π : M →
B(H), π(M) is reversible in B(H).

Remarks 3.12. By [3, Theorem 5.6] a Cartan factor is universally
reversible if and only if it is not a Hilbert space of dimension ≥ 3
nor a spin factor of dimension ≥ 5. If B is an abelian von Neumann
algebra and C is a Cartan factor, then [5, Corollary 4.10] (for the case
dimC < ∞) together with Proposition 3.9 (for the case C = B(H)e)
and Proposition 2.2 (for the remaining cases) imply that B ⊗ C is
universally reversible if and only if C is universally reversible. We note
also that the class of JW ∗-triples satisfying Definition 3.11 is stable
under arbitrary ℓ∞ direct sums.

Combining these remarks with [5, Theorem 4.12] and Theorem 3.10,
and using the notation Vn for a spin factor of dimension n+1, we have
the following characterisation.

Proposition 3.13. The following are equivalent for a JW ∗-triple M .

(a) M is weakly universally reversible.
(b) The type I1 and type Ispin parts ofM are linearly isometric to B0⊕∞

B1 ⊗ ℓ22 and to B2 ⊗ V2 ⊕∞B3 ⊗ V3 (respectively), where the Bi are
abelian von Neumann algebras (or zero).
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In particular M is weakly universally reversible if it has zero type I1
and type Ispin parts.

In the next section we shall exploit Proposition 3.13 to show amongst
other things that weakly universally reversible JW ∗-triples are univer-
sally reversible. For the time being we note the following.

Proposition 3.14. Let E be a JC∗-triple. Then E is universally re-
versible if and only if its bidual E∗∗ is weakly universally reversible.

Proof. If E is universally reversible and π : E∗∗ → B(H) is a weak*-
continuous triple homomorphism then, since π(E) is reversible in B(H),
separate weak*-continuity of multiplication together with a simple in-
duction shows that π(E∗∗) = π(E) is reversible in B(H).

Conversely, let E∗∗ be weakly universally reversible. Identifying E
with its image in T ∗(E) (and T ∗(E) canonically with its embedding in
its bidual, E∗∗ with the weak*-closure of E in T ∗(E)∗∗) we have the
following commutative diagram

E � �
//

� _

��

T ∗(E)
� _

��

E∗∗ �
�

// T ∗(E)∗∗

Let x1, . . . , x2n+1 ∈ E. Then, since E∗∗ is reversible in T ∗(E)∗∗, by
assumption, [x1, · · · , x2n+1] + [x2n+1, · · · , x1] ∈ E∗∗ ∩ T ∗(E) = E (since
elements of T ∗(E) \E are not in the weak*-closure of E). Therefore E
is reversible in T ∗(E) and so is universally reversible. �

4. Characterising Universal Reversibility

We establish the prevalence of universally reversible JC∗-triples by
proving that the property fails only when a JC∗-triple possesses a quo-
tient (by an ideal) linearly isometric to a Hilbert space of dimension ≥ 3
or a spin factor of dimension ≥ 5 (Theorem 4.7). In this sense we prove
that ‘almost all’ JC∗-triples are universally reversible. In like vein we
characterise universally reversible TROs and JW ∗-triples, in the latter
case showing that universal reversibility is equivalent to the formally
weaker version of Definition 3.11. We conclude this section by showing
that the number of terms in the definition of universal reversibility can
be reduced to the minimum possible of five.

Lemma 4.1. Let u be a nonzero tripotent in a JC∗-subtriple E of a
spin factor V . Then

(a) u is unitary if it is not minimal;
(b) E is linearly isometric to a spin factor, a Hilbert space or to C⊕∞C.

Proof. (a) See [8, Lemma 5.4], for example.
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(b) Since V is reflexive, E is a JW ∗-subtriple. If E is a factor and
not a Hilbert space we may choose nonzero orthogonal tripotents
u and v in E which, by (a), are minimal in V with u + v unitary,
so that E = E2(u + v) is a spin factor. If E is not a factor,
then E = I ⊕∞ J for certain nonzero ideals I and J of E and
now we may choose minimal tripotents u ∈ I and v ∈ J giving
E = E2(u+ v) = Cu⊕∞ Cv.

�

If B is an abelian C∗-algebra and C a finite dimensional Cartan
factor, we note that the JC∗-triple B ⊗ C has a separating family of
Cartan factor representations onto C given by ρ⊗ idC as ρ ranges over
the pure states of B. Recall that we introduced following (2.2) the
notion of a JW ∗-triple being {Cj : j ∈ J}-homogeneous (for distinct
Cartan factors Cj).

Lemma 4.2. Let E be a JC∗-triple with a separating family of Cartan
factor representations {πλ : E → Cλ}λ∈Λ where Cλ has finite rank ∀λ ∈
Λ. (Hence πλ(E) = Cλ for all λ ∈ Λ.)

(a) If D is a Cartan subfactor of E, then D is linearly isometric to a
subfactor of Cλ for some λ ∈ Λ.

(b) If E is a JW ∗-triple and F a JW ∗-subtriple of E, then F is {Di :
i ∈ I}-homogeneous where each Di is contained in Cλ for some λ
(depending on i).

(c) If Λ is finite and each Cλ is finite-dimensional, then E∗∗ is {D1, . . . , Dn}-
homogeneous, where eachDi is contained in Cλ for some λ (depend-
ing on i).

Proof. (a) Let D be a Cartan subfactor of E and choose λ ∈ Λ such
that πλ does not vanish on the elementary ideal KD of D. Then
(sinceKD is has no nontrivial ideals)KD

∼= πλ(KD) ⊆ Cλ, implying
that D has finite rank, giving KD = D and proving (a).

(b) This follows from (a) and Horn’s type I classification (2.2) (since the
existence of a weak*-continuous triple homomorphism π : F → D
onto a Cartan factor D implies that D is isomorphic to a summand
of F ).

(c) In this case, for appropriate sets Xλ, E may be represented as a
subtriple of a finite ℓ∞-sum

⊕
λ∈Λ ℓ∞(Xλ)⊗ Cλ and , in turn, E∗∗

may be mapped to a JW ∗-subtriple of
⊕

λ∈ΛBλ ⊗ Cλ (with Bλ

abelian von Neumann algebras). The assertion now follows from
(b).

�

Lemma 4.3. LetM be a type I1 JW
∗-triple. Then every JW ∗-subtriple

of M is type I, M∗∗ is type I, and all Cartan factor representations of
M are onto Hilbert spaces.
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Proof. The first assertion follows from Lemma 4.2 (b). Since M con-
tains an abelian complete tripotent u, which is automatically complete
and abelian in M∗∗ (Lemma 2.1), the latter is type I. Finally, for any
Cartan factor representation π : M → C, π(u) is a minimal complete
tripotent in C, so that C is a Hilbert space. �

Proposition 4.4. The following are equivalent for a JC∗-triple E.

(a) All Cartan factor representations of E are onto Hilbert spaces.
(b) E has a separating family of Hilbert space representations.
(c) E∗∗ is type I1.

Proof. (a) ⇒ (b): This is clear.
(b) ⇒ (c): Given (b), E may be realised as a subtriple of an ℓ∞-

sum, M (say), of Hilbert spaces. Since M is a type I1 JW
∗-triple and

E∗∗ ⊂ M∗∗, E∗∗ is type I1 by Lemma 4.3.
(c) ⇒ (a): The implication follows from Lemma 4.3 (since any Car-

tan factor representation π : E → C extends to a triple homomorphism
from E∗∗ onto C). �

Proposition 4.5. Let E be a JC∗-triple. Let J be the intersection of
the kernels of all nonzero Hilbert space representations of E (it being
understood that J = E if there are no nonzero Hilbert space represen-
tations). Then

(a) E∗∗ has nonzero type I1 part if and only if E has a nonzero Hilbert
space representation.

(b) (E/J)∗∗ is type I1 and J∗∗ has zero type I1 part.
(c) E∗∗ has nonzero type Ispin part if and only if E has a spin factor

representation.

Proof. (a) Suppose the type I1 part,M , of E∗∗ is nonzero and consider
the (weak*-continuous) canonical projection P : E∗∗ → M . Since
P (E) is a nonzero JC∗-subtriple of M , by Lemma 4.3 there is
a Hilbert space representation π of M which does not vanish on
P (E), implying that π ◦ P is a Hilbert space representation of E.
The converse is clear.

(b) By construction E/J has a separating family of Hilbert space repre-
sentations so that (E/J)∗∗ ≡ E∗∗/J∗∗ is type I1 by Proposition 4.4.
Further, since any Hilbert space representation of J will extend to
one of E, J∗∗ has zero type I1 part by (a).

(c) The converse being clear, suppose that the type Ispin part, N , of
E∗∗ is nonzero. By (b), J∗∗ is the orthogonal complement of the
type I1 part of E∗∗ and so contains N as a weak*-closed ideal. Let
Q : E∗∗ → N be the canonical projection. Since N has a separating
family of spin factor representations [32, Lemma 2], we may choose
a spin factor representation π : N → V with π(Q(J)) 6= {0}. By the
definition of J together with Lemma 4.1, π◦Q induces a spin factor
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representation of J , which extends to a spin factor representation
of E ([5, Remarks 2.5 (b)]).

�

Lemma 4.6. Let E be a JC∗-triple. Each of the following two condi-
tions separately implies that E is universally reversible.

(a) E has separating family of representations onto Cartan factors C ∈
{C, ℓ22, V2, V3}

(b) E has no nonzero Hilbert space representations and no spin factor
representations.

Proof. By Proposition 3.14, in either case it is enough to show that E∗∗

is weakly universally reversible.

(a) In this case by Lemma 4.2 (c) and Lemma 4.1 E∗∗ is linearly iso-
metric to an ℓ∞-sum of JW ∗-triples of the form B ⊗ C where
C ∈ {C, ℓ22, V2, V3} and B is an abelian von Neumann algebra, and
so is universally reversible (see Remarks 3.12).

(b) By Proposition 4.5 (a), (c) E∗∗ has zero type I1 and type Ispin parts
and thus is weakly universally reversible by Proposition 3.13.

�

Our characterisation of universally reversible JC∗-triples below shows
that Hilbert spaces of dimension ≥ 3 and spin factors of dimension ≥ 5
are essentially the only obstacles to the property.

Theorem 4.7. Let E be a JC∗-triple. Then E is universally reversible
if and only if E satisfies both of the following conditions.

(a) E has no representation onto a Hilbert space of dimension ≥ 3.
(b) E has no representation onto a spin factor of dimension ≥ 5.

Proof. Let E satisfy (a) and (b). Let J be as in Proposition 4.5. Note
that the hypotheses pass to ideals (since Cartan factor representations
of ideals extend) and we rely on the fact that universal reversibility of
both an ideal J of a JC∗-triple E and the quotient E/J imply universal
reversibility of E [5, Corollary 3.4].

Now either J = E (in which case E/J is trivially reversible) or E/J
has a separating family of representations onto Hilbert spaces of dimen-
sions one or two and thus is universally reversible by Lemma 4.6 (a). We
show now that J is universally reversible. Suppose that J 6= {0} and
let K be the intersection of the kernels of spin factor representations of
J . Then J/K is zero or has a separating family of representations onto
spin factors of dimensions 3 or 4 so that J/K is universally reversible,
again by Lemma 4.6 (a). The ideal K is universally reversible because
it satisfies the condition of Lemma 4.6 (b). Hence J is universally
reversible, as therefore is E.

The converse is clear. �
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Remark 4.8. It is immediate from Theorem 4.7 that the only simple
JC∗-triples failing to be universally reversible are the Hilbert spaces of
dimension ≥ 3 and the spin factors of dimension ≥ 5.

Since realisable as a corner of a C*-algebra (see [9, p. 493], for exam-
ple), up to complete isometry every TRO is the range of a completely
contractive projection on a C∗-algebra. If E is a JC∗-triple then the
set of points in T ∗(E) fixed by its canonical involution Φ is the range
of the bicontractive projection 1

2
(id+Φ) on T ∗(E). It follows that ev-

ery universally reversible JC∗-triple linearly isometric to the range of a
contractive projection on a C∗-algebra. Since Hilbert spaces and spin
factors also possess this property, by [11] in the spin case, we note that
every simple JC∗-triple has the same property.

We recall from [5, Theorem 3.5] that every JC∗-triple has a largest
universally reversible ideal. We can reprove its existence and charac-
terise it as follows.

Corollary 4.9. Let E be a JC∗-triple and let I denote the intersections
of the kernels of representations onto Hilbert space of dimension ≥ 3
and spin factors of dimension ≥ 5 (understood as E if there are no
such representations). Then I is the largest universally reversible ideal
of E.

Proof. If π : E → C is a Cartan factor representation such that C fails
to be universally reversible, then C has finite rank and so π(E) = C.
Hence if J is an ideal in E we have π(J) an ideal in C, giving π(J)
equal to {0} or C. If J is universally reversible we must have J ⊆ ker π
for all such π and so J ⊆ I.

On the other hand, by the extension property of Cartan factor rep-
resentations from ideals and the construction of I, Theorem 4.7 implies
that I is universally reversible. �

Corollary 4.10. Let E be a JC∗-triple with a complete tripotent u. If
E2(u) is universally reversible with no one dimensional representations,
then E is universally reversible.

Proof. Let π : E → C be a Hilbert space or spin factor representation
and put v = π(u). Then v is a complete tripotent of C and the induced
map π2 : M2(u) → C2(v) is surjective (since π(E) = C). If C is a spin
factor, then C = C2(v) is universally reversible and so has dimension 3
or 4. If C is a (nonzero) Hilbert space then C2(v) = Cv, a contradiction.
Hence, E is universally reversible by Theorem 4.7. �

By passing to a quotient, if a spin factor is a triple homomorphic
image of a TRO, then it is linearly isometric to a TRO and thus,
via Proposition 2.3, Jordan *-isomorphic to a type I2 von Neumann
algebra, and hence to M2(C).

Theorem 4.11. Let T be a TRO. Then the following are equivalent.
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(a) T is universally reversible (as a JC∗-triple).
(b) T has no triple homomorphisms onto a Hilbert space of dimension

≥ 3.
(c) T has no TRO homomorphisms onto a Hilbert space of dimension

≥ 3.

Proof. The equivalence of (a) and (b) follows from Theorem 4.7 and the
above remark. That (c) ⇒ (b) is seen on passing to quotients (recalling
that triple ideals in a TRO are TRO ideals ([18, Proposition 5.8]), and
(b) ⇒ (c) is clear. �

Lemma 4.12. Let M be an ℓ∞-sum
⊕

i∈I Bi⊗B(Hi)ei where Bi is an
abelian von Neumann algebra and ei is a rank 2 projection in B(Hi),
for each i ∈ I. Then M is universally reversible.

Proof. With W =
⊕

i∈I Bi ⊗ B(Hi) and e =
⊕

i∈I 1 ⊗ ei, we have
e a complete tripotent in M = We and M2(e) = eWe is a type I2
von Neumann algebra. Thus M2(e) is universally reversible and has
no *-homomorphism onto C. Hence M is universally reversible by
Corollary 4.10. �

If e and f are projections in a JW ∗-algebra M we use e
1
∼ f to

denote that e and f are exchanged by a symmetry and we recall [16,
Lemma 5.2.9] that if (ei)i∈I and (fi)i∈I are two families of orthogonal
projections in M with ei 1

∼ fi for all i ∈ I and
∑

i∈I ei ⊥
∑

i∈I fi, then∑
i∈I ei 1

∼
∑

i∈I fi.

Lemma 4.13. Let M be a type I finite JW ∗-algebra with no nonzero
summands of type I1 nor of type Ispin. Then M is a universally re-
versible JC∗-triple with no one dimensional representations.

Proof. We may suppose that there is a sequence (zi)i of orthogonal
central projections in M with (weak) sum 1 such that each Mzi is a
type Ini

JW ∗-algebra with ni strictly increasing and 3 ≤ ni < ∞, for
all i.

Fixing i, we have

(4.1) zi = ei,1 + · · · ei,ni

where the ei,j (1 ≤ j ≤ ni) are orthogonal and exchanged by symme-
tries. Taking equivalence classes modulo 3, write ni = 3k + r where
r = 0, 1 or 3. Letting fi,j =

∑k
s=1 ei,3(s−1)+j (1 ≤ j ≤ 3) we then have

zi = fi,1 + fi,2 + fi,3 + gi

where fi,1, fi,2 and fi,3 are exchanged by symmetries and gi 1
∼ pi ≤

fi,1 + fi,2 for some projection pi in M . Repeating this process for each
i and putting fj =

∑
i fi,j for 1 ≤ j ≤ 3, g =

∑
i gi and p =

∑
i pi we

have

(4.2) f1+f2+f3+g = 1, fj 1
∼ fm (1 ≤ j,m ≤ 3) and g ∼ p ≤ f1+f2.
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The condition (4.2) continues to hold in M∗∗, showing that M∗∗ has
zero type Ispin part since, for any nonzero central projection z in M∗∗,
zf1, zf2 and zf3 are nonzero orthogonal projections. Therefore, by
Proposition 3.13, M∗∗ is weakly universally reversible. Hence M is a
universally reversible JC∗-triple by Proposition 3.14.

By a similar argument, any quotient of M by an ideal must have
dimension at least 3. �

Theorem 4.14. The following are equivalent for a JW ∗-triple M .

(a) M is universally reversible.
(b) M is weakly universally reversible.
(c) The type I1 ⊕∞ Ispin part of M is linearly isometric to

B0 ⊕∞ B1 ⊗ ℓ22 ⊕∞ B2 ⊗ V2 ⊕∞ B3 ⊗ V3,

where the Bi are abelian von Neumann algebras (or zero).

Proof. (c) ⇒ (a): Assume (c). Let J denote the type I1 ⊕∞ Ispin part
of M . By Remarks 3.12, J is universally reversible and, passing to the
orthogonal complement of J in M , we may suppose J = {0}. By The-
orem 3.10, we may assume further that M =

⊕
iBi⊗Ci, where the Bi

are abelian von Neumann algebras and the Ci are Cartan factors with
3 ≤ rank(Ci) < ∞ for all i. For each i, choose a complete tripotent
ui ∈ Bi ⊗ Ci and put u =

⊕
i ui. Then u is a complete tripotent of

M with M2(u) a JW
∗-algebra of the form considered in Lemma 4.13,

and hence M2(u) is universally reversible with no one dimensional rep-
resentations. By Corollary 4.10, M is universally reversible.

The implication (a) ⇒ (b) is clear, and (b) ⇒ (c) is given by Propo-
sition 3.13. �

Corollary 4.15. AW ∗-TRO is universally reversible (as a JC∗-triple)
if and only if its type I1 part is linearly isometric to B0 ⊕∞ B1 ⊗ ℓ22,
where B0 and B1 are abelian von Neumann algebras.

Given a JC∗-triple E and a Cartan factor C, we have that C is
linearly isometric to a weak*-closed ideal of E∗∗ if and only if there is
a Cartan factor representation π : E → C. Recall (see [13, Proposition
2 and Corollary 4]) that the weak*-closed linear space of the minimal
tripotents in E∗∗ is called the atomic part E∗∗

at of E∗∗ and E∗∗
at is the ℓ∞

sum of the distinct Cartan factor ideals of E∗∗. Combining this with
Theorems 4.7 and 4.14 we have the following.

Corollary 4.16. The following are equivalent for a JC∗-triple E.

(a) E is universally reversible.
(b) E∗∗

at is universally reversible.
(c) E∗∗ is universally reversible.

We shall conclude this section by showing that the number of terms
in the definition of universally reversible JC∗-triples can be reduced to
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the smallest possible. We recall that the universal TRO (T ∗(A), αA)
coincides with the universal C∗-algebra (C∗

J(A), βA) when A is a JC∗-
algebra [3, Proposition 3.7].

Theorem 4.17. The following are equivalent for a JC∗-triple E.

(a) E is universally reversible.
(b) [x1, · · · , x5] + [x5, · · · , x1] ∈ αE(E) whenever x1, . . . , x5 ∈ αE(E).
(c) [y1, · · · , y5] + [y5, · · · , y1] ∈ π(E) whenever y1, . . . , y5 ∈ π(E) and

π : E → B(H) is a triple homomorphism.

Proof. (a) ⇒ (b) and (c) ⇒ (b) are clear.
(b) ⇒ (c): Assume (c). Let π : E → B(H) be a triple homomor-

phism, yi ∈ π(E) and xi ∈ E with π(xi) = yi for 1 ≤ i ≤ 5. Let
π̃ : T ∗(E) → B(H) be the TRO homomorphism with π = π̃ ◦αE. Then
with zi = αE(xi), applying π̃ to [z1, · · · , z5]+ [z5, · · · , z1] ∈ αE(E) gives
[y1, · · · , y5] + [y5, · · · , y1] ∈ π̃(αE(E)) = π(E).

(c) ⇒ (a): Assume (c). Let ψ : E → F ⊂ B(H) be a surjective
triple homomorphism and consider π : E → αF (F ) ⊂ T ∗(F ) where
π denotes αF ◦ ψ. By [3, Theorem 5.1 and proof], if F is a Hilbert
space of dimension ≥ 3 then αF : F → T ∗(F ) fails condition (c), as
therefore does π. If F is a spin factor of dimension ≥ 5 then (using
(T ∗(F ), αF ) = (C∗

J(F ), βF )) αF (Fsa) = αF (F )sa is not reversible in
T ∗(F ) so that by [6] (or see [16, p. 142]) there exist y1, y2, y3, y4 ∈
αF (F )sa with y1y2y3y4 + y4y3y2y1 /∈ αF (F )sa. Thus, in this case π fails
condition (c) for y1, y2, y3, y4, y5 with y5 = 1.

Therefore E is universally reversible by Theorem 4.7. �

5. JC-operator spaces

We recall from §2 that the JC-operator space structures of a JC∗-
triple E, the operator space structures determined by triple embed-
dings π : E → B(H), are the EI induced by the maps E → T ∗(E)/I
(x 7→ αE(x)+I) as I ranges over the ideals of T ∗(E) having vanishing
intersection with αE(E) (the operator space ideals of T ∗(E)).

Let T be a subTRO of B(H). We use T op to denote the identical
image of T in the opposite C∗-algebra B(H)op. Given a transposition
x 7→ xt on B(H) we write T t = {xt : x ∈ B(H)}. Thus id : T → T op

and the map T op → T t (x 7→ xt) are a TRO anti-isomorphism and a
TRO isomorphism, respectively.

By definition, T is an abelian TRO if [x, y, z] = [z, y, x] for all
x, y, z ∈ T . Evidently, T is an abelian TRO if and only if id : T → T op

is a TRO isomorphism (equivalently, a complete isometry).

Lemma 5.1. Let T be a TRO. Then

(a) id : T → T op is completely contractive if and only if T is abelian;
(b) a TRO antihomomorphism π : T → B(H) is completely contractive

if and only if π(T ) is abelian.
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Proof. (a) If id : T → T op is completely contractive, then so is id : T op →
(T op)op = T by [2, 1.1.25], implying that it is a complete isometry,
and hence that T is abelian. The converse is clear.

(b) Let π : T → B(H) be a completely contractive TRO antihomo-
morphism. Let S denote T/ ker π and let π̃ : S → π(T ) denote
the induced TRO antihomomorphism, also completely contractive
(by [2, 1.1.15]). Since π̃−1 : π(T ) → Sop is a TRO isomorphism,
π̃−1 ◦ π : S → Sop, which is the identity map, is completely con-
tractive, so that S is abelian by (a). Conversely, a TRO antihomo-
morphism into an abelian TRO is a TRO homomorphism and so
is completely contractive.

�

A JC∗-triple E is said to be abelian if

{x, y, {a, b, c}} = {{x, y, a}, b, c}

for all x, y, a, b, c ∈ E. An abelian TRO is an abelian JC∗-triple.
On the other hand, given an abelian JC∗-subtriple E of B(H), the
abelian JW ∗-triple Ē (the weak*-closure of E) is linearly isometric to
an abelian von Neumann algebra by [19, (3.11)] and we may choose
a unitary tripotent u ∈ Ē. Then Ē2(u) is an abelian von Neumann
subalgebra of B(H)2(u), the binary product and involution of the latter
being given by x • y = [x, u, y] and x# = [u, x, u]. In particular, with
a, b, c ∈ E (since E ⊆ Ē = Ē2(u)) we have [a, b, c] = ab∗c = a• b# • c =
c • b# • a = cb∗a. Thus E is a TRO and the inclusion E →֒ Ē2(u) is a
TRO isomorphism onto a subTRO of Ē2(u).

Proposition 5.2. The following are equivalent for a JC∗-subtriple E
of B(H).

(a) E is an abelian JC∗-triple.
(b) E is an abelian TRO.
(c) E is completely isometric to a subTRO of an abelian C∗-algebra.
(d) E has a separating family of representations onto C.
(e) T ∗(E) = E

Proof. The equivalence of (a), (b) and (c) is verified by the preamble,
and (a) ⇐⇒ (d) is shown in [24, Proposition 6.2]. If (b) holds
then every triple homomorphism from E into a C∗-algebra is a TRO
homomorphism, giving (e). Conversely (e) implies that E is a TRO
and the universal property of T ∗(E) implies that id : E → Eop is a
TRO isomorphism, giving (b). �

Corollary 5.3. Every abelian JC∗-triple has a unique JC-operator
space structure.

Theorem 5.4. Let T ⊂ B(H) be a TRO with no nonzero representa-
tions onto a Hilbert space of any dimension other (possibly) than two.
Suppose x 7→ xt is a transposition of B(H). Then
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(a) T ∗(T ) = T ⊕ T t with αT (x) = x ⊕ xt and canonical involution
Φ(x⊕ yt) = y ⊕ xt (for x, y ∈ T );

(b) T has at least three distinct JC-operator space structures.

Proof. (a) By the assumptions on T and Theorem 4.11, T is universally
reversible with no ideals of codimension one. Moreover x 7→ xt is
a TRO antiautomorphism of B(H). Therefore (a) follows from [3,
Corollary 4.5].

(b) Regarding T and T t as operator subspaces of B(H) and T⊕T t as an
operator subspace of B(H)⊕B(H), neither the map T → T t (x 7→
xt) nor its inverse can be completely contractive, by Lemma 5.1 (a),
since T is not abelian. Further, since the natural TRO projection
T ⊕ T t → T t is completely contractive, αT : T → T ⊕ T t cannot
be completely contractive. Thus if I0 denotes the zero ideal and
I1 = T ⊕ {0}, I2 = {0} ⊕ T t (which are nonzero operator space
ideals of T ∗(T )), then the JC-operator spaces TIj (j = 0, 1, 2) are
mutually distinct.

�

Given an ideal I of a JC∗-triple E we recall [5, Theorem 3.3] that
the canonical involution Φ of T ∗(E) restricts to that of T ∗(I) and the
canonical involution of T ∗(E/I) = T ∗(E)/T ∗(I) is given by x+T ∗(I) 7→
Φ(x) + T ∗(I) (x ∈ T ∗(E)). In each of the following three technical
results Φ denotes the canonical involution of T ∗(E) for the JC∗-triple
E in question.

Lemma 5.5. Let E be a universally reversible JC∗-triple and let I be
an ideal of T ∗(E). Then

(a) if I is an operator space ideal with Φ(I) = I then I = {0};
(b) I ∩ Φ(I) = T ∗(J) where J is the ideal of E given by αE(J) =

αE(E) ∩ I;
(c) (I + Φ(I)) ∩ αE(E) = {x+ Φ(x) : x ∈ I}.

Proof. (a) See [3, Lemma 4.3].
(b) Letting Φ̃ be the canonical involution of T ∗(E/J) = T ∗(E)/T ∗(J)

and K = I ∩ Φ(I), K/T ∗(J) is a Φ̃-invariant operator space ideal
of T ∗(E/J). Since E/J is universally reversible, K = T ∗(J) by (a).

(c) Given x, y ∈ I with x+Φ(y) ∈ αE(E), we have x+Φ(y) = a+Φ(a)
where a = (1/2)(x + y), so that the left hand side is contained in
the right. On the other hand, since E is universally reversible, the
right hand side is contained in αE(E), establishing the assertion.

�

Proposition 5.6. Let E be a universally reversible JC∗-triple. Then
the following are equivalent for an ideal I of T ∗(E)

(a) I is an operator space ideal of T ∗(E);
(b) I ∩ Φ(I) = {0};
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(c) the map I → (I + Φ(I)) ∩ αE(E) (x 7→ x + Φ(x)) is a triple
isomorphism (onto an ideal of αE(E)).

Proof. (a) ⇒ (b) is immediate from Lemma 5.5 (a) since I ∩Φ(I) is a
Φ-invariant ideal of T ∗(E).

(b) ⇒ (c). Given (b) we have I + Φ(I) = I ⊕∞ Φ(I) so that the
stated map is a linear isometry, surjective by Lemma 5.5 (c), and thus
a triple isomorphism.

(c) ⇒ (a). If (c) holds and x ∈ I ∩ αE(E), then Φ(x) = x and
‖x‖ = ‖2x‖, giving x = 0. �

Lemma 5.7. Let I, J be operator space ideals of T ∗(E) with J ⊆ I,
where E is a universally reversible JC∗-triple. Put K = J +Φ(J ) and
let L be the ideal of E such that αE(L) = αE(E) ∩ K. Then

(a) I ∩ (αE(E) +K) = J = I ∩ K;
(b) (I +K) ∩ (αE(E) +K) = K;
(c) I/J is TRO isomorphic to an operator space ideal of T ∗(E/L) =

T ∗(E)/K.

Proof. (a) That J is contained in the two stated sets is clear. Con-
versely given x ∈ I ∩ (αE(E) + K) we have x = y + a + Φ(b) for
some y (= Φ(y)) in αE(E) and a, b ∈ J . Putting c = a − b we
have Φ(x − c) = x − c and so, since E is universally reversible,
x− c ∈ αE(E) ∩ I = {0} giving x = c ∈ I.

(b) Given z in the left hand set we have x ∈ I, y ∈ αe(E) and a, b ∈ K
such that z = x+a = y+b. Then x = y+b−a ∈ I∩(αe(E)+K) =
J , by (a), so that z ∈ K.

(c) The quotients I/J and (I+K)/K are TRO isomorphic by (a). By
Lemma 5.5 (b), T ∗(L) = K, so that T ∗(E/L) = T ∗(E)/K. Since
(I +K)/K has vanishing intersection with (αE(E)+K)/K, by (b),
it is an operator space ideal of T ∗(E/L).

�

Lemma 5.8. Let E be a JC∗-triple and let E1 denote the intersection
of the kernels of all the one dimensional representations of E (with
E1 = E if E has no representations onto C). Then

(a) E1 has no (nonzero) one dimensional representations and E/E1 is
abelian;

(b) T ∗(E1) has no one dimensional representations and T ∗(E/E1) =
T ∗(E)/T ∗(E1) is abelian;

(c) an ideal I of T ∗(E) is abelian if and only if I ∩ T ∗(E1) = {0}.

Proof. (a) and (b) are immediate by Proposition 5.2 and the properties
of the universal TRO. To see (c), if I has trivial intersection with
T ∗(E1) then it may be realised as a subtriple of T ∗(E)/T ∗(E1) and so
is abelian by the second part of (b). On the other hand the first part
of (b) implies that T ∗(E1) has no nonzero abelian ideal. �
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Proposition 5.9. Let E be a universally reversible JC∗-triple and let
E1 be as in Lemma 5.8. Then

(a) T ∗(E) has no nonzero abelian operator space ideals;
(b) all operator space ideals of T ∗(E) are contained in T ∗(E1).

Proof. (a) Let I be an abelian operator space ideal of T ∗(E) and let
J be the ideal of E with αE(J) = αE(E) ∩ (I + Φ(I)). Since
I and Φ(I) are orthogonal, by Proposition 5.6 (b), I + Φ(I) is
abelian, as therefore is J . Hence, using Proposition 5.2 (e) in the
first equality and Lemma 5.5 (b) in the second, we have αE(J) =
T ∗(J) = I+Φ(I), so that I is contained in αE(E). Hence I = {0}.

(b) Let I be a nonzero operator space ideal of T ∗(E). Put J =
I ∩ T ∗(E1), K = J + Φ(J ). [Note that J is nonzero by (a)
together with Lemma 5.8 (c).] By construction I/J is TRO iso-
morphic to (T ∗(E1) + J )/T ∗(E1) and so is abelian by Lemma 5.8
(b). In addition, by Lemma 5.7 (c), there is a JC∗-triple quotient
F of E such that I/J is TRO isomorphic to an operator space
ideal of T ∗(F ) and therefore vanishes, by (a), since F is universally
reversible. Hence, I = J .

�

Given a JC∗-triple E and an operator space ideal I of T ∗(E), in
the proof below we denote the triple homomorphic image {αE(x) + I :
x ∈ E} of E in T ∗(E)/I by ẼI , noting that the latter is a completely
isometric copy of EI .

Theorem 5.10. Let E be a universally reversible JC∗-triple. Then
I 7→ EI is a bijective correspondence between the operator space ideals
of T ∗(E) and the JC-operator space structures of E.

Proof. We know that the stated correspondence is surjective. By [3,
Theorem 6.5] given an operator space ideal J of T ∗(E) there is a largest
operator space ideal I of T ∗(E) with EI = EJ . To establish injectivity
it is enough to show that this largest I coincides with J . Suppose
on the contrary that I, J are operator space ideal of T ∗(E) with J
strictly contained in I but with EI = EJ . Simplifying notation we shall
regard E as a subtriple of T ∗(E). Put K = E ∩ (I + Φ(I)). Then,
by Lemma 5.5 and Proposition 5.6, we have K = {x + Φ(x) : x ∈ I}
and T ∗(K) = I + Φ(I) = I ⊕∞ Φ(I). In particular, I and J are

operator space ideals of T ∗(K) and we may regard K̃I and K̃J as
operator subspaces of T ∗(K)/I and T ∗(K)/J , respectively. We shall
show that the linear isometry π : K̃I → K̃J given by π(x+I) = x+J ,
for all x in K, is not a complete contraction, implying KI 6= KJ and
hence EI 6= EJ . We have K̃I = (K + I)/I = {Φ(x) + I : x ∈ I} =
T ∗(K)/I ∼= Φ(I) (as TROs). The map β : K̃I → Φ(I) (Φ(x) + I 7→
Φ(x)) is a TRO isomorphism and hence a complete isometry. Define
ψ : T ∗(K)/J → I/J by ψ(a+Φ(b) + J ) = a+J , whenever a, b ∈ I.



24 L. J. BUNCE AND R. M. TIMONEY

Then ψ is a TRO homomorphism restricting to a surjective complete
contraction Υ: K̃J → I/J . We note that I/J cannot be abelian, by
Lemma 5.7 (c) together with Proposition 5.9 (a). On the other hand
the composition Υ ◦ π ◦ β−1

Φ(I) → K̃I → K̃J → I/J

which sends Φ(x) to x+J for all x in I, is a TRO antihomomorphism
and so, by Lemma 5.1 (b) cannot be completely contractive. Hence, π
is not a complete contraction. �

For the definition and properties of the triple envelope (T (X), j) of
an an operator space X we refer to [14] and [2, Chapter 8], and again
to the latter for a justification that it be regarded as the noncommu-
tative Shilov boundary of X . We should point out a clash of usage:
the terms “triple system” and “triple homomorphism” used in [2, 14]
should be read as “TRO” and “TRO homomorphism”. In particular,
T (X) is a TRO. The following is immediate from Theorem 5.10 and
[4, Proposition 1.2].

Corollary 5.11. (a) If E is a universally reversible JC∗-triple and
I is an operator space ideal of T ∗(E) then the triple envelope of
the operator space EI is (T ∗(E)/I, j), where j : EI → T ∗(E)/I
(x 7→ αE(x) + I).

(b) If E is a universally reversible JC∗-subtriple of a C∗-algebra A
(regarded as an operator subspace of A) then
(i) the triple envelope of E is (TRO(E), inclusion);
(ii) every complete isometry from E onto a JC∗-subtriple F of

B(H) extends to a TRO isomorphism from TRO(E) onto
TRO(F ).

Theorem 5.12. The following are equivalent for a universally re-
versible JC∗-triple E.

(a) E has a unique JC-operator space structure.
(b) T ∗(E) has no nonzero operator space ideal.
(c) E has no ideal linearly isometric to a nonabelian TRO.
(d) If π : E → B(H) is an injective triple homomorphism, then (TRO(π(E)), π)

is the universal TRO of E.

Proof. The equivalences (a) ⇐⇒ (b) and (b) ⇐⇒ (d) are immediate
from Theorem 5.10 and properties of T ∗(·), respectively.

(a) ⇒ (c). Suppose that E has an ideal I linearly isometric to
a nonabelian TRO. Via Lemma 5.8 I has a nonzero ideal I1 linearly
isometric to a universally reversible TRO without one dimensional rep-
resentations. By Theorem 4.11 the latter TRO satisfies the conditions
of Theorem 5.4 so that I1, and hence E, has at least three JC-operator
structures.
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(c) ⇒ (b). Suppose I is a nonzero operator space ideal of T ∗(E).
Then I is nonabelian by Proposition 5.9 and is linearly isometric to an
ideal of E by Proposition 5.6, proving the implication. �

Remarks 5.13. Since the nonzero operator space ideals occur in pairs
(Lemma 5.5 (a)), it follows from Theorem 5.10 that the number of
distinct JC-operator spaces of a universally reversible JC*-triple must
be odd or infinite. In [3, Remark 6.9] we proved that for a projection
e of rank ≥ 2 in B(H), the universally reversible Cartan factor B(H)e
has three or 2|α|+5 JC-operator space structures according to whether
the rank of e is finite or an infinite cardinal ℵα respectively, with |α|
denoting the cardinality of the ordinal segment [0, α) so that, as |α|
varies over finite cardinalities all odd numbers ≥ 3 arise (the case α > 0
was mis-stated in [3, Remark 6.9 (iii)]).

On the other hand, if E is a universally reversible JC∗-triple with
no Cartan factor representations π : E → C such that C has the form
B(H)e, then E must satisfy condition (c) of Theorem 5.12 and so must
have a unique JC-operator space structure.

Another corollary of Theorem 5.12 is that a simple universally re-
versible JC∗-triple E either has a unique JC-operator space structure
or it has exactly three. By Remark 4.8, this together with [4, Proposi-
tion 2.4 and Theorem 3.7] and [5, §6], accounts for the enumeration of
the JC-operator space structures of all simple JC∗-triples.

Consider a triple homomorphism π : E → B(K) where E is a uni-
versally reversible JC∗-subtriple of B(H). If E has no ideals isometric
to a nonabelian TRO, then by Theorem 5.12 ((c) ⇒ (d)) π extends
to a TRO homomorphism on TRO(E)(= T ∗(E)) and so is completely
contractive, and further is completely isometric (onto its range) if π is
injective. By contrast, for TROs with few nonzero Hilbert space rep-
resentations we have the following consequence of Theorem 5.4 (which
should be compared with the C∗-algebra result [15, Corollary 4.6]).

Proposition 5.14. Let T be a TRO with no nonzero Hilbert space
representations other (possibly) than of dimension two. Let π : T →
B(H) be a triple homomorphism. Then there exist π1, π2 : T → B(H)
where π1 is a TRO homomorphism and π2 is a TRO antihomomorphism
such that π = π1 + π2 and π1(T ) ⊥ π2(T ).

Proof. Supposing T ⊆ B(K) and x 7→ xt to be a transposition of B(K)
Theorem 5.4 implies that there is a TRO homomorphism π̃ : T ⊕T t →
B(H) such that π(x) = π̃(x ⊕ xt) for all x ∈ T . Defining π1, π2 : T →
B(H) by π1(x) = π̃(x⊕0) and π2(x) = π̃(0⊕xt), the result follows. �
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We remark that by the results of [5, §3 and §4], with the notation of
Proposition 5.14, there is a central projection z in the right von Neu-
mann algebra of π(T ) such that π1(x) = π(x)z and π2(z) = π(x)(1−z)
for all x ∈ T .

Corollary 5.15. Let T be as in Proposition 5.14 and let π : T → B(H)

be a triple homomorphism such that the weak*-closure TRO(π(T )) of
TRO(π(T )) is a W ∗-TRO factor. Then π is either a TRO homomor-
phism or a TRO antihomomorphism.

Proof. The factor condition implies that TRO(π(T )) cannot contain a
nontrivial pair of orthogonal ideals. Thus, in the notation of Proposi-
tion 5.14, either π1 is trivial or π2 is, whence the assertion. �

Corollary 5.16. Let π : T → B(H) be a completely contractive triple
homomorphism where T is as in Proposition 5.14. Then π is a TRO
homomorphism.

Proof. By Proposition 5.14 and its proof, π1(T ) and π2(T ) are triple
ideals of π(T ) so that TRO(π(T )) = TRO(π1(T )) ⊕∞ TRO(π2(T )) =
π1(T )⊕∞π2(T ), and so π2 must be completely contractive. Hence π2(T )
is abelian by Proposition 5.1 (b), Hence π2(T ) = {0} as otherwise T
would have a one dimensional (Hilbert space) representation, proving
the result. �

Lemma 5.17. If T is a a W ∗-TRO, there exist centrally orthogonal
projections e and f in a von Neumann algebra W such that T is TRO
isomorphic to the direct sum eW+Wf . If T is a factor, then T is TRO
isomorphic to a weak*-closed one-sided ideal in a W ∗-algebra factor.

Proof. Up to TRO isomorphism, a W ∗-TRO T has the form T = gMh
where g and h are projections in a von Neumann algebra M [9, §2].
By comparison theory, there exist projections e, f and z in M , with z
central, such that

gz ∼ e ≤ hz and h(1− z) ∼ f ≤ g(1− z)

For W1 = zhMh and W2 = (1 − z)gMg, centrality of z implies that
Tz = (gz)Mh is TRO isomorphic to pMh = e(hMh)z = eW1 (see
proof of Lemma 3.1) and similarly that T (1− z) is TRO isomorphic to
W2f . The result follows from putting W = W1 ⊕W2.

If T is a factor, one summand must be zero and if (say) T = eW
we may assume that e has central cover 1, in which case W must be a
factor. �

The examples x 7→ xt on B(H) and x ⊕ yt 7→ y ⊕ xt on B(H)e ⊕
etB(H), where e is a projection of rank strictly less than the dimension
of H , show that neither of the two conditions imposed upon T in the
next result can be removed.
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Theorem 5.18. Let π : T → T be a surjective linear isometry where
T is a W ∗-TRO factor not linearly isometric to a C∗-algebra. Then π
is a complete isometry.

Proof. By Lemma 5.17 we may suppose that T is eW where e is a
nonzero projection in a von Neumann algebra factorW . (The argument
for the left ideal case is similar.) We may further suppose that T ⊂
B(H) and that x 7→ xt is a transposition of B(H) with et = e.

If there is a nonzero Hilbert space representation ψ : eW → K, then
the induced map from the factor eWe = (eW )2(e) to K2(ψ(e)) is a one-
dimensional Jordan *-homomorphism, implying that e is a minimal
projection and W is a type I factor: in which case, eW is (linearly
isometric to) a Hilbert space and the result follows from [4, Proposition
1.5].

Thus we may suppose that eW has no nonzero Hilbert space repre-
sentations and so satisfy the conditions of Proposition 5.14.

Therefore, by Corollary 5.15, π is a TRO isomorphism or a TRO an-
tiautomorphism. Assume the latter. Then there is a TRO isomorphism
ψ : W te→ eW . Putting u = ψ(e) we have

ψ(a) = ψ(ae∗e) = ψ(a)u∗u

for all a ∈ W te, giving eW = eWu∗u, hence WeW = WeWu∗u and
therefore u∗u = 1 because W is a factor. Since uu∗ ≤ e, this im-
plies that e ∼ 1 and therefore that eW is TRO isomorphic to W , a
contradiction. Therefore, π is a TRO isomorphism. �
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