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Abstract A Bayesian multi-category kernel classifica-

tion method is proposed. The algorithm performs the

classification of the projections of the data to the prin-

cipal axes of the feature space. The advantage of this

approach is that the regression coe�cients are identifi-

able and sparse, leading to large computational savings

and improved classification performance. The degree of

sparsity is regulated in a novel framework based on

Bayesian decision theory. The Gibbs sampler is imple-

mented to find the posterior distributions of the param-

eters, thus probability distributions of prediction can be

obtained for new data points, which gives a more com-
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plete picture of classification. The algorithm is aimed

at high dimensional data sets where the dimension of

measurements exceeds the number of observations. The

applications considered in this paper are microarray,

image processing and near-infrared spectroscopy data.

Keywords Bayesian inference · multinomial logistic

regression · reproducing kernel Hilbert spaces · kernel

principal components analysis · Bayesian decision

theory

1 Introduction

Supervised learning for classification can be formalized

as the problem of inferring a function f(x) from a set

of n training samples xi 2 RJ and their correspond-

ing class labels yi. The model developed in this paper

is aimed at multi-category classification problems. Of

particular interest is classification of high dimensional
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data, where each sample is defined by hundreds or thou-

sands of measurements, usually concurrently obtained.

Such data arise in many application domains, for exam-

ple, the genomic and proteomic technologies, and their

rapid emergence in the last decade has generated much

interest in the statistical community, as analysis of such

data requires novel statistical techniques. The applica-

tions considered in this paper are microarray, image

processing and near-infrared (NIR) spectroscopy data

where the dimension of the variables J exceeds ten to

twenty - fold the number of samples n.

In this paper we consider classifiers based on the re-

producing kernel Hilbert spaces (RKHS) theory. RKHS

methods allow for nonlinear generalization of linear clas-

sifiers by implicitly mapping the classification problem

into a high dimensional feature space where the data is

thought to be linearly separable. Due to the reproduc-

ing property of the RKHS, the classification is actually

carried out in the subspace of the feature space which

is of dimension n << J . Therefore kernel methods are

especially useful for high dimensional data, such as the

data sets considered here.

A drawback of the RKHS models is that they can

become over-parameterized if n regression coe�cients

need to be estimated when n samples are available.

Therefore, these parameters are not identifiable in the

statistical sense, i.e. di↵erent combinations of non -

identifiable parameters lead to the same likelihood. This,

in Bayesian framework, results in a posterior distri-

bution that is multimodal, even if sparse priors are

placed on regression parameters. Furthermore, choos-

ing a globally optimal subset of regression coe�cients

out of 2n subsets is tricky as many combinations of the

parameters yield the same result. Bayesian framework

allows for arbitrarily complex models to be specified,

however inferences based on overparameterized mod-

els are not always legitimate as MCMC samplers mix

poorly and maximum a posteriori (MAP) estimates are

suboptimal.

In this paper, a RKHS classifier is constructed that

performs the classification of the projections of the data

to the principal axes of the feature space. Thus, the

sparsity is achieved by removing the principal axes with

zero-eigenvalues. The degree of sparsity can be further

regulated in a Bayesian decision theoretic framework,

where the optimal model maximizes the expected util-

ity function with respect to all the unknowns, includ-

ing the model parameters and future data. The deci-

sion space is discrete and of dimension  n, therefore

it is possible to do an exhaustive search and stochastic

search algorithms are not required. A sparse model of

uncorrelated principal axes requires estimating a small

number of identifiable regression coe�cients, which sim-

plifies the convergence and optimization issues. This
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approach to sparsity is computationally e�cient and

we argue that it is simpler than estimating MAPs from

multimodal n-dimensional posterior. In addition, we show

that computational savings and improved classification

performance can be achieved if the underlying structure

of the feature space can be adequately summarized by

a small subset of the principal axes.

Kernel methods were first introduced into statisti-

cal learning by [Aizerman et al., 1964] and later re-

introduced by [Boser et al., 1992] who constructed the

Support Vector Machine, a generalization of the opti-

mal hyperplane algorithm for binary classification. Bayesian

treatments of this popular deterministic statistical learn-

ing method were motivated by the need to overcome the

problem of quantifying uncertainty of SVM predictions,

as Bayesian framework allows for probabilistic outputs

to be obtained from the predictive distribution.

Many Bayesian treatments of deterministic kernel

methods have been developed, but only a subset of

most relevant approaches are discussed here. [Sollich,

2002, Seeger, 2000, Opper and Winther, 2000, Herbrich

et al., 1999, Kwok, 1999] use Gaussian process priors

to SVM classification models. For other basis function

models that have been fitted in Bayesian framework via

Gaussian processes see [Neal, 1996, 1998, Williams and

Barber, 1998, Rasmussen, 1996].

The Relevance Vector Machine (RVM) [Tipping, 2000]

is an alternative Bayesian formulation of SVM, devel-

oped for both classification and regression with the aim

of obtaining a sparse solution. The sparseness is induced

in the model through the prior structure; see [Tipping,

2001] for an in-depth discussion on the sparsity in RVM.

Following the work of [Wahba, 1990], [Tipping, 2000] re-

cast the SVM as regularization problem where the aim

is to minimize a loss function L subject to a penalty

term over a set of regression coe�cients �:

min
�

⇥
L(y,K�) + ⌧�

T K�

⇤
. (1)

The model function, i.e. the separating hyperplane, is

a linear combination of the reproducing kernels and is

in the dual form:

f(x) =
nX

i=1

�iK(x, xi|✓). (2)

[Tipping, 2000] use a binary logistic likelihood to model

loss and assume a relatively standard prior structure

for regression coe�cients. [Figueiredo, 2003] proposed

a similar model to the RVM, but uses a probit likelihood

for binary classification and places double exponential

priors on regression coe�cients, which are known to

promote sparseness [Figueiredo, 2002, Bishop and Tip-

ping, 2000]. Note that the RVM model can be viewed as

an implicit formulation of the Gaussian process, where

the prior is a Gaussian process over then model func-

tions f expressed in the primal form, i.e. as a (possibly
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infinite) linear combination of the feature space bases:

f(x) =
PX

p=1

cp�p(x) (3)

where cp are some coe�cients, P  1 is the dimension

of the feature space and �p(x) are the basis functions

of the feature space. For a more detailed discussion see

[Rasmussen, 1996].

The approach of [Figueiredo, 2003] obtains MAP es-

timates for the model parameters via expectation max-

imization algorithm. The RVM [Tipping, 2000] employs

the empirical Bayes approach. [Mallick et al., 2005] adopt

the same model construction and prior structure as the

RVM, however, rather than estimating the hyperparam-

eters, they assign distributions to them and employ an

MCMC sampling algorithm. The practical advantage of

the full probabilistic approach is that probability dis-

tributions of prediction can be obtained for new obser-

vations, which gives a more complete picture of clas-

sification. By assigning priors to the hyperparameters,

the binary classifier of [Mallick et al., 2005] accounts

for the uncertainty due to their estimation. In addi-

tion to the binary logistic likelihood, [Mallick et al.,

2005] also consider a stochastic version of the SVM

likelihood. [Zhang and Jordan, 2006] extend this model

to multi-category problems by employing the stochastic

version of the multi-category support vector machine of

Lee et al. [2004]. Chakraborty et al. [2007] also follow

the model construction and choice of prior architecture

of [Mallick et al., 2005], however, employ multinomial

logistic likelihood. Krishnapuram et al. [2005] extend

the approach of [Figueiredo, 2003] by also employing

multinomial logistic likelihood. The paper is organized

as follows; Sect. 2 describes a Bayesian multi-category

kernel classifier (BMKC) where the likelihood is mod-

eled through the multinomial logistic regression model

and the relatively standard hierarchical prior structure

for Bayesian generalized linear models is assumed. This

is a natural multi-category extension of the model of

[Mallick et al., 2005] and very similar to algorithms

presented in Krishnapuram et al. [2005], Zhang and

Jordan [2006], Chakraborty et al. [2007]. This model

is developed for illustrative purposes and is used as as

a reference for further discussion and comparison to

Bayesian Kernel Projection Classifier (BKPC), which

is presented in Sect. 3. Section 4 outlines the variable

selection approach for this algorithm which is based on

Bayesian decision theory. The reduction of model com-

plexity and the implementation advantages of this al-

gorithm are discussed. Sect. 5 gives a brief description

of the data sets used. The classification results are pre-

sented in Sect. 6 and the concluding remarks are given

in Sect. 7.
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2 Bayesian Multi-category Kernel Classifier

(BMKC)

2.1 Multinomial Logistic Regression Model

The training data are n samples (x1,y1),...,(xn,yn)

where the predictors xi = (xi1, ..., xiJ) are real val-

ued J- dimensional vectors of feature values and yi =

(yi1, ..., yiK) are K- dimensional categorical response

variables with yik = 1 if xi belongs to a class k and 0

otherwise. A standard approach to this classification

problem is the multinomial logistic regression model

given by:

P(y|z) =
nY

i=1

KY

k=1

P(yik = 1|zik)yik
, (4)

where P(yik = 1|zik) is defined as:

P(yk = 1|x) =
exp(zk)

PK
l=1 exp(zl)

, (5)

and zik are linear combinations of the kernel functions:

zik(xi, �k, ✓) =
nX

l=1

�klK(xi,xl|✓) + ✏ik = Ki�k + ✏ik,

(6)

for i = 1, ..., n where �k are regression parameters �k =

[�1k, �2k, ...,�nk] corresponding to class k, for k = 1, ...,K�

1. Ki is the i

th row of matrix K and ✏ik are i.i.d.

N(0, �

2). In this application only Gaussian kernels are

considered:

K(xi,xl|✓) = exp(�✓||xi � xl||2). (7)

2.2 Prior Specification

In a Bayesian inference approach, priors are assigned to

the model parameters. The prior model is specified as:

zik ⇠ N(Ki�k, �

2),

�k ⇠ MV N(0, �

2T�1
k ),

�

2 ⇠ IG(�1, �2),

⌧ik ⇠ G(�3, �4).

Tk is a matrix with diagonal entries ⌧1k, ..., ⌧nk.

G denotes a gamma prior, IG an inverse gamma and

MV N is a multivariate normal of dimension n.

Note that this is a relatively standard hierarchical

prior structure for generalized linear models and is used

by [Mallick et al., 2005] for binary classification as well

as [Chakraborty et al., 2007] for the multinomial exten-

sion. In order to improve the mixing and convergence of

the MCMC algorithm, the latent variables are given a

normal prior with means Ki�k and standard deviation

�

2. This allows for direct block updating of regression

coe�cients from the joint conditional density [Holmes

and Held, 2005, Denison et al., 2002].

2.3 Inference

A Metropolis-within-Gibbs algorithm was used for sam-

pling from the posterior. The output from the MCMC

is a set of samples (�(m), z(m), �

2 (m), ⌧

(m)), for m =
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1, ...,M iterations, obtained from the joint posterior dis-

tribution after a period of ‘burn-in’ iterations. The joint

posterior distribution is given by:

P(�, z, ⌧, �2|y) / P(y|z, �, ⌧,�

2)P(z|�,�

2)

⇥ P(�|⌧,�2)P(⌧)P(�2). (8)

The full conditional distributions that were sampled

from for each parameter in the model are given in Ap-

pendix A.

The MCMC algorithm is implemented so that it it-

erates through block updates of the parameters start-

ing with z. Each zi = [zi1...zi(K�1)] is proposed to be

updated conditionally on the rest of the parameters in-

cluding the matrix z without the ith element. The pro-

posal density for zi is a random walk and is sampled

using a Metropolis step within the Gibbs algorithm.

Subsequently, parameters �, �

2 and ⌧ are block up-

dated directly from their conditionals via Gibbs steps.

2.4 Practical Aspects of Implementation

The MCMC algorithm was implemented in the C pro-

gramming language. The most time consuming aspect

of the algorithm is the block updating of the regres-

sion parameters � from their conditional distribution

P(�|z, ⌧, �2) =
QK�1

k=1 MV N(mk, �

2Vk), where mk =

VkKT zk,Vk = (KT K + Tk)�1. Note that at each

Gibbs iteration, the update of �k for k = 1, ...,K � 1

involves inverting matrices of dimension n ⇥ n. The

fact that the matrices are symmetric can be exploited

to make the computation easier by using Cholesky de-

composition, which runs in time proportional to n

3, see

[Thisted, 1988] or [Press et al., 1986]. The Cholesky

decomposition of matrix Vk = LLT is used to com-

pute the determinant of Vk, which is the square of the

product of the diagonal elements of L and to generate

vector valued samples from MV N(n)(mk, �

2Vk). If "

is a vector of components that are i.i.d. N(0, 1) then

�

(m)
k = mk + �L".

2.5 Prediction

The BMKC allows for posterior distributions to be ob-

tained through simulation, as opposed to just maxi-

mum a posteriori (MAP) estimates, which gives a more

complete picture of classification. Thus, for each new

observation x⇤, the probability

P(k|x⇤,x,y, �

(m)) =
exp(K⇤�

(m)
k )

1 +
PK�1

q=1 exp(K⇤�
(m)
q )

(9)

is calculated for each class k = 1, ...,K � 1 for sets

of samples �

(m) from m = 1, ...,M samples of the pa-

rameters from the joint posterior. Note that

K⇤ = [K(x⇤,x1|✓), K(x⇤,x2|✓), ...,K(x⇤,xn|✓)]

. Consider Ripley’s synthetic data Ripley [1996] where

each class is set to be a mixture of two Gaussians with
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the optimal error rate of 0.08. There are 200 train-

ing and 1,000 testing samples. Figure 1 displays his-

tograms of realizations from the posterior distributions

P(y = 1|x⇤,x,y, �

(m)) of predictions for four test ob-

servations from Ripley’s synthetic data set. Note that

this information can be particularly useful for examin-

ing borderline observations.

The MAP estimate can be obtained from the usual

Monte Carlo Integration approximations:

P(k|x⇤,x,y) ⇡ 1
M

MX

m=1

exp(K⇤
�

(m)
k )

1 +
PK�1

q=1 exp(K⇤
�

(m)
q )

, (10)

8k = 1, ...,K � 1. The result of a classification of Rip-

ley’s two-dimensional data set can be graphically dis-

played. The multinomial regression model obtains a

classification probability surface across the domain of

the training data. However the BKMC results in a set

of realizations of the classification probability surfaces

from the posterior density. From these realizations, it is

possible to estimate the MAP classification probability

surface and information about the certainty of this esti-

mate is available. Whereas it is di�cult to plot a set of

overlaid surfaces P(y = 1|x⇤,x,y, �

(m)), for some sam-

ples m 2 {1, ...,M}, Figure 2 shows the classification

boundary, i.e. P(y = 1|x⇤,x,y, �

(m)) = 0.5 obtained

for 25 samples of � from the posterior and the mean

boundary curve.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

Fig. 2 Twenty-five classification boundaries from the posterior

distribution, including the posterior mean boundary for the two-

dimensional synthetic data set.

The classification results of the BMKC are good,

obtained was the error rate of 0.098 which is comparable

to results reported by Tipping [2000], and Figueiredo

[2002] who obtain 0.093 and 0.095 respectively.

2.6 Mixing and Convergence Issues

The model is over-parameterized in the sense that all

n reproducing kernel bases K(xi, ·), i = 1, ..., n, i.e.

support vectors, are utilized, whereas only a subset

might be required for a good classification model. The

parameters � of the model are not identifiable; dif-

ferent combinations of nonidentifiable parameters lead

to the same likelihood, making it impossible to de-

cide among the potential parameter values based on

the data. Large correlations among the parameters and

the multi-modality in the posterior probability distribu-
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Fig. 1 Histograms of realizations from the posterior distribution of predictions P(y = 1|x⇤,x,y, �(m)) calculated at some m 2

{1, ..., M} for four observations from Ripley’s test data set. The range of values P(y = 1|x⇤,x,y, �(m)) can take is between 0 and 1.

The first MAP estimate for the first observations will place it in class 1, the second observation will be placed in class 2 etc.

tion result in slow convergence and poor mixing of the

MCMC algorithm. Multiple runs of the MCMC with

di↵erent starting values for the parameters show that

the algorithm tends to get stuck in the local optima of

the multimodal joint posterior and fails to explore the

full support of the distribution. The di↵erent starting

values of the parameters had little e↵ect on the mis-

classification rates. This indicates that convergence to

a good classification algorithm has been reached. How-

ever, the predictive distributions obtained through sim-

ulation discussed in Section 2.5 are no longer legitimate.

3 Bayesian Kernel Projection Classifier

(BKPC)

In this section, the Bayesian Kernel Projection Clas-

sifier (BKPC) is proposed. This is a modification to

BMKC, but instead of working with the data mapped

to some feature space via �(x), the classification is per-
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formed in the space spanned by the principal axes of the

feature space. This approach works well if the under-

lying structure of the feature space can be adequately

summarized by a small subset of the principal axes.

The mapping of the data and the eigen-decomposition

of the covariance matrix Cov(�(x)) is carried out im-

plicitly via the kernel matrix. This is also the mecha-

nism behind the Kernel Principal Components Analysis

(KPCA) of [Schölkopf et al., 1998] and the data pro-

jections to the principal axes are the kernel principal

components (KPCs).

KPCA maps the data xi 2 RJ into a high dimen-

sional feature space and then projects the mapped data

�(x) to a subspace of the feature space. In the KPCA

literature, the vector xi is often referred to as the pre-

image of �(xi). Note that, typically, the KPCA sub-

space will not have a pre-image in the input space.

Techniques have been proposed for finding approximate

pre-images of data projected on a subset of the eigen-

vectors, see for example [Schölkopf et al., 1999, Bakir

et al., 2004].

[Schölkopf et al., 1998] and [Schölkopf and Smola,

2002] note that the first few eigenvectors of the KPCA

can be used for separating clusters in two dimensional

data, see, for example, the simulated data in Figure

3. They suggest extracting nonlinear principal compo-

nents and then training a support vector machine, thus
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Fig. 3 A simulated dataset with the lines of constant principal

component value for the first three eigenvectors (given from left

to right). A Gaussian kernel with bandwidth ✓ = 5 was used.

constructing a multi-layer SVM. The multi-layer formu-

lation evades pre-image reconstruction, but the evident

disadvantage of this algorithm is loss of interpretability

as the data are mapped to a feature space twice.

The Bayesian Kernel Projection Classifier is a some-

what di↵erent approach to using KPCA to aid classi-
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fication. It follows the model construction of BMKC,

however, the kernel matrix K is replaced with the ma-

trix of kernel principal components:

K = (n⇤)�1/2K̃U, (11)

where K̃ is a kernel matrix of the ‘centered’ mapping,

given by:

K̃ = K�AK�KA + AKA (12)

where A is a n⇥n matrix with all entries equal to 1/n

[Schölkopf et al., 1998] and U and n⇤ are matrices of

eigenvector and eigenvalues obtained from:

K̃ = Un⇤UT
. (13)

Thus, the latent variables zik become:

zik ⇠ N(Ki�k, �

2) + ✏ik, i = 1, ..., n, (14)

where Ki is the i

th row of matrix K.

3.1 Sparsity and Identifiability from the Projection

Step

Consider the two dimensional, two class ‘circle data’

from Figure 3. By employing the Gaussian kernel, BMKC

from Sect. 2 fits a logistic regression model to �(x),

the data mapped to an infinitely dimensional feature

space. However, by application of the kernel trick, the

algorithm is actually working in the small subspace of

the full feature space. This subspace is spanned by the

reproducing kernels K(xi, ·) and its dimension is  n.

This is a direct extension of the conventional Bayesian

logistic regression by using reproducing kernels K(xi, ·)

as the new space of input features. The first nine repro-

ducing kernels of the ‘circle data’ are plotted in Fig-

ure 4(a). The graph shows that the reproducing kernels

are highly correlated and only a subset is needed for a

good classification model. Such correlation is to be ex-

pected given the nature of the new input features: the

Gaussian kernel K(xi, ·) maps each point to a Gaussian

centered at xi, which captures the similarity of xi to

all other points. Thus, two reproducing kernels K(xi, ·)

and K(xl, ·) will be correlated if xi and xl are neigh-

bouring points. This leads to non-identifiability prob-

lems discussed in section 2.6. The BKPC, however, fits

the logistic model to the projections of the data to the

principal axes of the feature space �(x). Thus the space

of new input features is spanned by the kernel princi-

pal components, which are by definition uncorrelated.

Figure 4(b) shows the first three bases of the KPCA

subspace for the ‘circle data’.

Furthermore, for highly correlated mapped data, the

diagonalization of the kernel matrix will yield many

eigenvalues n�l equal to zero. The corresponding prin-

cipal axes can be removed from the analysis as the

variance of the principal component is zero. This ef-
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fectively means setting regression parameters �lk = 0

for k = 1, ...,K � 1.

Thus the parameters included in the sparse model

are �

2, zik,⌧kI and �kI , 8k = 1, ...,K�1 where I = {l =

1, ..., n

0} and n

0 is the number of principal components

with non-zero eigenvalues.

Note that the proposed model does not require pre-

image calculations as the classification is performed in

the same feature space as the PCA. This is the main

(but subtle) di↵erence between the BKPC and the mul-

tilayer formulations of ‘first run KPCA then and SVM’

suggested by [Schölkopf et al., 1998] and [Schölkopf and

Smola, 2002].

3.2 Inference for Sparse Model

Consider a sparse model where some regression param-

eters �l are set equal to 0. Let I = {l = 1, ..., n

0|�l 6= 0}

and Ī = {l = n

0
, ..., n|�l = 0}. The conditional distri-

bution for �I |�Ī = 0 is given by:

P(�I |�Ī = 0, z, ⌧, �2) =
K�1Y

k=1

MV N(n0)(m̃k, �

2Ṽk),

(15)

where m̃k = mkI �Vk2V�1
k4 mkĪ is of dimension n

0 ⇥

1, Ṽk = (Vk1 � Vk2V�1
k4 Vk3), is of dimension n

0 ⇥

n. Note that mkI and mkĪ are block components of

mk =

0

BB@
mkI

mkĪ

1

CCA with sizes

0

BB@
n

0 ⇥ 1

(n� n

0)⇥ 1

1

CCA and Vk1,

Vk2, Vk3 and Vk4 are block components of Vk =0

BB@
Vk1 Vk2

Vk3 Vk4

1

CCA with sizes

0

BB@
n

0 ⇥ n

0
n

0 ⇥ (n� n

0)

n

0 ⇥ (n� n

0) (n� n

0)⇥ (n� n

0)

1

CCA ,

where mk = VkKT zk and Vk = (KT K + Tk)�1

The conditional distributions of the other model pa-

rameters are given in Appendix B.

3.3 Implementation Issues in Sparse Classifiers

Prior to the MCMC run, the implementation of the

BKPC algorithm involves spectral decomposition of K̃,

the kernel matrix of the ‘centered’ mapping, in order to

obtain K. Let:

K =

0

BB@
K1 K2

K3 K4

1

CCA and Tk =

0

BB@
TkI 0

0 TkĪ

1

CCA

both with sizes

0

BB@
n

0 ⇥ n

0
n

0 ⇥ (n� n

0)

n

0 ⇥ (n� n

0) (n� n

0)⇥ (n� n

0)

1

CCA.

It can be shown using Shur complement that:

Ṽ�1
k = (Vk1 �Vk2V�1

k4 Vk3)�1

= KT
1 K1 + KT

3 K3 + TkI , (16)

and

m̃k = mkI �Vk2V�1
k4 mkĪ

= (KT
1 K1 + KT

3 K3 + TkI)�1

⇥ KT
1 zkI + KT

3 zkĪ , (17)
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Fig. 4 The graph in (a) shows the ‘circle’ data mapped to the feature space spanned by the reproducing kernels K(xi, ·). Only the

first nine reproducing kernels are plotted. The graph in (b) shows the ‘circle’ data mapped to the KPCA subspace. Only the first three

KPCs are plotted. Note that the first eigenvector separates the two classes of observations.

where zk =

0

BB@
zkI

zkĪ

1

CCA with sizes

0

BB@
n

0 ⇥ 1

(n� n

0)⇥ 1

1

CCA .

Therefore, instead of first calculating mk = VkKT zk

and Vk = (KT K+Tk)�1, and subsequently decompos-

ing them to block components in order to get m̃k and

Ṽk at each iteration of the MCMC, see equation (15) ,

the result in (16) and (17) enables us to work directly

with K =

0

BB@
K1

K3

1

CCA, i.e. matrices K whose columns cor-

responding to Ī = {l = n

0
, ..., n|�l = 0} are deleted. It

follows that Cholesky decomposition and other compu-

tationally demanding operations of the proposed algo-

rithm BKPC are only applied to matrices of dimension

n

0 ⇥ n

0 at each parameter update, hence large compu-

tational gains can be achieved for sparse models.

3.4 Prediction

For test points x⇤i 2 RJ , where i = 1, ..., n

⇤, the n

⇤ ⇥ n

inner product kernel matrix is given by:

K⇤
il = K(x⇤i ,xl|✓),8i = 1, ..., n

⇤
,8l = 1, ..., n. (18)

Similar to (12), inner product matrix of the test

observations centered in the feature space can be ex-

pressed in terms of K⇤:

K̃⇤ = K⇤ �A⇤K�K⇤A + A⇤KA, (19)

where A⇤ is a n

⇤ ⇥ n matrix with all entries equal to

1/n. The new observation is projected on the principal

axes of the mapping �(x⇤) by:

K⇤
l = (n�l)�1/2K̃⇤ul, (20)
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where l = 1, ..., n

0 and K⇤
l denotes the l

th column of

the n ⇥ n

0 matrix K⇤. The observation x⇤ is classified

in class k

⇤ = arg maxk P(k|x⇤,x,y) by employing the

Monte Carlo integration approximations:

P(k|x⇤,x,y) ⇡ 1
M

MX

m=1

exp(K⇤
�

(m)
k )

1 +
PK�1

q=1 exp(K⇤
�

(m)
q )

(21)

8k = 1, ...,K � 1, and

P(K|x⇤,x,y) = 1�
K�1X

k=1

P(k|x⇤,x,y). (22)

4 The Choice of the Number of Projections

It is possible to work with an even sparser model, if the

projections with small corresponding eigenvalues are re-

moved from the analysis. We approach the problem of

selecting the optimal number of projections n̂

0 using

Bayesian decision theory, via maximization of expected

utility E[u(n0, y⇤)], where y

⇤
i denotes future observa-

tions. The utility is formulated so that it trades o↵ pre-

dictive accuracy against the complexity of the model.

Since data on future observations is not available, we

use a utility form that is approximated by crossvalida-

tory fit (e.g. Gelfand et al. [1992], Bernardo and Smith

[1994], Key et al. [1996], Marriott et al. [2001]) where

the dataset is randomly split into a training subset used

for creation of predictions and a testing set which serves

as a proxy for future observations.

For observations x⇤i 2 RJ , y

⇤
i , i = 1, ..., n

⇤ in the test

set of size n

⇤ and some constant c, utility is defined as:

u(n0, y⇤) =
n

⇤ �
Pn⇤

i=1 Ii(n0, y⇤i )
n

⇤ � cn

0

n

, (23)

where

Ii(n0, y⇤i ) =

8
>><

>>:

1 if y

⇤
i = k

⇤ and k

⇤ = arg maxk P(k|x⇤,x,y);

0 otherwise,

(24)

and P(k|x⇤,x,y) is defined in equations (21) and (22).

The first term in the utility expression (23) measures

the predictive capability of the model based on the mis-

classification rate of the test set while the second term

penalizes the inclusion of projections in the model.

The expectation is taken over all possible cross -

validation splits of the data. Since the number of such

splits is far too large to evaluate the expectation di-

rectly, we use Monte Carlo methods to approximate it,

averaging over N random splits of the data into training

and testing sets.

Figure 5 provides an illustration of this approach

for the data sets described in Section 5. For N = 10,

c = 1 the algorithm evaluates the expected utility as a

function of the number of kernel projections retained.

The optimal number of components n̂

0 is the one that

maximizes the expected utility. At N = 10 the Monte
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Fig. 5 Estimated expected utility as a function of n0 = 1, 2, ..., 15 for the microarray, NIR spectroscopy with four and five groups and

the image data sets respectively. For all data sets N = 10, c = 1.

Carlo standard error for each expected utility estimate

is at most 0.03 in all the datasets.

Choosing the number of projections can be viewed

as a model choice problem. In Bayesian literature on

variable selection most approaches focus on a proba-

bilistic fit, see for example George and McCulloch [1993]

and George and McCulloch [1997] who put a two com-

ponent mixture priors on the regression parameters.

Therefore a latent binary indicator variable with a Bernoulli

prior is used to determine whether a variable is included

in the model or not. A drawback of this approach is that

the parameter space for the latent variable is discrete

and of dimension 2n, thus an MCMC algorithm is un-

likely to to explore the full support of the posterior dis-

tribution. Bayesian decision theoretic approach to vari-

able selection was first suggested by Lindley [1968] for

univariate multiple regression. Note that it this frame-

work variables are omitted not because their coe�cients

are believed to be zero, but because they are too costly

relative to their predictive benefit [Brown et al., 1999].
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The approach taken in this paper is similar to that of

Fouskakis and Draper [2002] who apply it to regression

coe�cient selection in a logistic regression model. One

important di↵erence between the problem of choosing

of number of projections and the more general setting

of variable selection is that in the latter the number of

possible models is 2n, which, as n increases, requires

stochastic search methods. Note that the discrete na-

ture of the search space makes these algorithms very

sensitive to local optima and its high dimensionality

further exacerbates this problem. On the other hand,

the number of possible models in the BKPC is n

00
< n

where n

00 is the number of components with non-zero

eigenvalues, thus it is possible to evaluate the expected

utility for all candidate models. The BKPC algorithm

thus proceeds as follows: for each random split, the algo-

rithm carries out a spectral decomposition of the kernel

matrix of the centered mapping of the training data.

The algorithm then searches exhaustively though the

space of n

00 models starting with n

0 = 1 where only the

projection with the largest corresponding eigenvalue is

included and subsequently adding components with de-

creasing eigenvalue order. For n

0 = 1, ..., n

00, the ex-

pected utility is obtained by averaging over the utility

defined in (23) evaluated for N random splits.

5 Application: High Dimensional Data

5.1 Microarray Data

[Khan et al., 2001] describe gene expression profile data

consisting of eighty-three mRNA microarray slides. Each

microarray slide corresponds to an individual su↵er-

ing from one of four tumour types (EWS, BLC, NB

and RMS). The total of 2308 genes profiles are re-

ported for each slide. This corresponds to a four cate-

gory classification problem with a large number of fea-

tures (J = 2308) and small number of observations

(n = 83). The aim of the analysis is to classify the

slides into one of four tumour types on the basis of the

gene profiles.

5.2 NIR Spectroscopy Data

The data come from a food authenticity study [Dean

et al., 2006]: analysis of spectra of raw homogenized

meat samples recorded over the visible and near infra-

red wavelength range (400� 2498 at intervals of 2 nm,

so recorded are 1050 reflectance values) in order to

classify samples into five individual species (chicken,

turkey, pork, beef and lamb). A four class problem

where chicken and turkey are grouped together into a

’poultry’ class is also considered for the purposes of clas-

sification. Altogether, there are 1050 features and 231

samples in the study A plot of the data is given in Fig-
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Fig. 6 Individual observations in the NIR spectroscopy data are

plotted and coloured by groups: blue and black correspond to

the red meat, green is pork and magenta and red correspond to

poultry. The visible range of the spectra corresponds to the range

[0,150] in this graph.

ure 6. Each meat sample is plotted across the feature

space and coloured according to its classification group.

The plot shows the most apparent di↵erences between

the groups in the visible range of the spectra, which

corresponds to the [0,150] section of the feature space.

Note that these wavelengths di↵erentiate the colour of

the samples so the segregation is between the red and

white meat groups.

5.3 Animal Categorization Data

Object recognition is a widely studied problem which

has been tackled by a variety of di↵erent models. The

long term aim of such research is to achieve human lev-

els of recognition accuracy across a large number of ob-

ject classes in images varying in location, scale, orienta-

tion, illumination and subject to occlusions. Animals in

natural scenes constitute a challenging problem due to

large intra-class variability in terms of shape, texture,

size, pose, location in the scene, number of animals etc.

The data set is made up of images that are a sub-

set of the Corel database, which contains 59,795 images

of a wide variety of scenes, 8,114 of which are of ani-

mals. Four classes of animals were considered: tiger, ele-

phant, goat and lion. 100 images from each class were

randomly selected.

The success of the classification depends on the qual-

ity of the features summarizing the images. For this

task local features which form the ‘bag of keypoints’

histogram with order of 3,013 features were considered.

This set of features was obtained by first detecting the

areas of high interest in each image and then extracting

the colour, texture and structure information from each

area. This information is combined into a histogram of

frequencies of the occurrence of certain structures in

the image. The data was scaled to have equal standard

error across the features.

6 Results

The BKPC was used to fit the data sets described

in Sect. 5. For all of the data sets, ten even ran-

dom splits into training and testing data were used
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and the cost parameter c was set to one. In each case,

the MCMC algorithm was run for 100,000 iterations,

of which the first 9,000 were discarded as ‘burn-in’.

The misclassification rates of BKPC at n̂

0 the opti-

mal number of included components are given in Ta-

ble 1. The results of the proposed method were com-

pared with BMKC and two standard multi-category

RHKS classifiers: the Gaussian processes for classifi-

cation [Williams and Barber, 1998] implemented in li-

brary(kernlab) [Karatzoglou et al., 2004] and multi-

category SVM with one-against-one technique that fits

all the binary sub-classifications and finds the correct

class by a voting mechanism implemented in library(e1071)

[Dimitriadou et al., 2005], R package version 2.6.1 [R

Development Core Team, 2008].

In the proposed method the empirical estimate

✓̂ = 10/max(K) is used for the Gaussian kernel band-

width parameter. The same estimate for ✓ is used for

for the mSVM and the GPs.

The BKPC resulted in improved classification re-

sults for all high dimensional data sets. The optimal

models that maximized the expected utility were sig-

nificantly sparser than the full model even though a

utility with a very small penalty on the number of in-

cluded components was used. The BMKC algorithm

presented in Sect. 2 performed slightly worse than the

BKPC, but its classification results are still compara-

ble to the other kernel classifiers. The main drawback

of this model is that it su↵ers from over - parameteri-

zation, as all of the reproducing kernel basis functions

are utilized by the model. As a result, the algorithm

exhibits poor mixing, and the predictive distributions

obtained through simulation are unreliable. In compar-

ison, the BKPC algorithm works with input variables

that are by definition uncorrelated.

Another practical disadvantage of BKMC is the rel-

ative slow convergence rate caused by the block updat-

ing of regression parameters which requires computa-

tions involving matrices of dimension n ⇥ n, where n

is the number of training samples, at each iteration of

the MCMC algorithm. The computational speed gain

of the BKPC depends on the data set, however, it is

considerable for sparse models since the most computa-

tionally demanding operations run in time proportional

to n

03. For illustration purposes, consider the NIR spec-

troscopy data. The number of regression coe�cients in

this model is n⇥(K�1) = 117⇥3 = 351 in the four class

model. The 100,000 iterations of MCMC took 110 min-

utes to run. On the other hand, the first seven feature

space projections account for 99% of the variation in the

data. The graph in Figure 7(a) plots the proportion of

the total variation explained for n

0 = 1, ..., n. The graph

in Figure 7(b) shows the computation time required for

running 100,000 iterations of MCMC with n

0 = 1, ..., 40.
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Table 1 Average misclassification error in the test set obtained from ten random splits of the data sets. Standard deviations are

given in brackets. The results are given for runs of the BMKC algorithm proposed in Sect. 2 and the BKPC algorithm described in

Sect. 3.The results are given for runs of the proposed algorithm, BMKC algorithm described in Sect. 2, a multi-category SVM (mSVM)

with one-against-one technique and the Gaussian processes (GPs) for classification.

Data set J n n̂0 BKPC BMKC mSVM GPs Better?

Images 3013 200 10 0.28 (0.02) 0.37 (0.06) 0.27 (0.05) 0.37 (0.06)
p

Microarray 2308 43 4 0.02 (0.03) 0.06 (0.04) 0.14 (0.05) 0.17 (0.08)
p

NIR (4 groups) 1050 117 7 0.05 (0.02) 0.1 (0.03) 0.11 (0.03) 0.11 (0.02)
p

NIR (5 groups) 1050 117 9 0.16 (0.05) 0.24 (0.04) 0.22 (0.04) 0.23 (0.04)
p

The total computation time for the BKPC, where the

algorithm exhaustively searches through the space of

n

00 = 15 candidate models is 7.57 minutes for each ran-

dom split of the data. For the optimal model, the num-

ber of regression coe�cients is 7 ⇥ 3 = 21, as opposed

to 351 in the full model. In addition, the MCMC al-

gorithm for this sparse model of uncorrelated variables

achieves better mixing.

Another advantage of this approach is improved data

visualization; since BMKC performs the classification

in the feature space spanned by reproducing kernels,

the number of bases n is usually too large for a matrix

plot. However, is possible to visualize a small number

of principal component bases of the feature space that

the BKPC works in. Figure 8 shows the KPCs, i.e. the

ordered columns of matrix K, with the largest eigen-

values for the NIR spectroscopy data. The image of the

matrix K can be seen in Figure 9.

1 2 3 4 5 6 7

20

40

60

80

100

120

140

160

180

200

220

Fig. 9 The image of the matrix of projections K is plotted. Only

the first seven KPCs were included in the analysis. The sections

of the matrix correspond to: 1 � 55 chicken, 55 � 110 turkey,

110� 165 pork, 166� 197 beef and 198� 231 lamb.

Multiple chains for di↵erent initial values of pa-

rameters were run and the classification algorithm was

shown to yield similar misclassification error rates. To

examine the impact of Monte Carlo error on correct

classification rates, ten chains with di↵erent initial val-

ues for the regression coe�cients were run for the sin-

gle split of the five data sets into a training and testing
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Fig. 7 The graph in (a) plots the proportion of variance explained by n0 = 1, ..., 117 components. The graph in (b) plots the time

taken in minutes, for 100,000 iterations of the MCMC for a model where n0 = 1, ..., 40.
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Fig. 8 The first nine KPCs for the NIR spectroscopy data. The colours correspond to the meat type (red=chicken, cyan=turkey,

blue=pork, black=beef and green=lamb). Only the first seven KPCs were used for the classification.
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Table 2 Average misclassification error for di↵erent starting val-

ues of � obtained from running the chain ten times on the same

random split of the data set. Standard deviations are given in

brackets.

Data set Misclassific. rate

Images 0.28 (0.0)

Microarray 0.038 (0.052)

NIR (4 groups) 0.04 (0.016)

NIR (5 groups) 0.17 (0.02)

data. The regression coe�cients were initially either set

equal to 1, or were randomly drawn from normal and

uniform distributions. For each data set, the number

of included projections was set to n̂

0 given in Table 1.

Average misclassification rate for the ten runs is given

in Table 2. The results are comparable to those ob-

tained by multiple runs of the chain with the same ini-

tial values, but with di↵erent random splits seen in Ta-

ble 1. This shows relative insensitivity of the algorithm

to the starting values of these parameters and indicates

that ‘convergence’ to a good classification algorithm has

been reached.

7 Discussion

RKHS classifiers, of which BKMC is an example, su↵er

from over-parameterization if n regression coe�cients

need to be estimated when n samples are available.

Di↵erent combinations of nonidentifiable regression co-

e�cients lead to the same likelihood, which results in

a multimodal posterior distribution, even if sparse pri-

ors are placed on regression parameters. As a result,

MCMC samplers mix poorly and maximum a posteri-

ori (MAP) estimates are suboptimal. Regression coe�-

cient selection for these models is tricky as the number

of possible models is often near-infinite and many of

the 2n possible combinations of the parameters yield

the same result. In practice it is only possible to ex-

plore a small subspace of the huge and discrete model

space.

The proposed algorithm BKPC is a kernel classifier

that performs the classification of the projections of the

data to the principal axes of the feature space. The de-

gree of sparsity is regulated through a novel framework

based on Bayesian decision theory. Since the number

of the possible models is relatively small, it is possible

to exhaustively search through the entire model space.

We argue that this is a more e�cient approach to spar-

sity for RKHS classifiers. For the high dimensional data

sets considered, sparser sets of uncorrelated principal

axes were able to adequately summarize the underlying

structure of the feature space and improved classifica-

tion rates were obtained. The sparse optimal models of

uncorrelated principal axes required estimating a small

number of identifiable regression coe�cients and there-

fore achieved better mixing and faster convergence.
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Future work on this topic could involve exploring

other prior structures, for example, in the current con-

struction, both the mean and variance of the latent

variables depend on �

2. Whereas, this is a standard

assumption for a normal-gamma model which is widely

used for tractability in the posterior model, it would

be worth exploring the relaxation of this dependence.

Furthermore, the inverse-gamma (�1, �2) distribution is

the most common prior distribution used for variance

parameters, but it is well recognized that the inverse-

gamma priors can be problematic [Lambert, 2006, Gel-

man, 2006]. Instead of the standard [Spiegelhalter et al.,

1996a,b] uninformative prior �

2 ⇠ IG(�1 = 0.001, �2 =

0.001) on the variance parameter, it is possible to use a

truncated prior, or as [Gelman, 2006] suggests a proper

uniform

A Conditional Distributions for Parameters of

BMKC

The conditional distributions for the parameters are given by:

P(⌧ |�) =
nY

i=1

K�1Y

k=1

G(�3 +
1

2
, �4 +

�2
ik

2�2
), (25)

P(�|z, ⌧, �2) =
K�1Y

k=1

MV N(n)(mk, �2
Vk), (26)

P(�2|�, z, ⌧) = IG(�1 + n(K � 1), �̃2), (27)

where mk = VkK

T
zk,Vk = (KT

K + Tk)�1 and �̃2 =

�2 + 1
2

PK�1
k=1 (zT

k zk �m

T
k V

�1
k mk),

P(zi|z�i,y, �, ⌧, �2) / exp

"
K�1X

k=1

yikzik�

� log
KX

k=1

exp(zik)�
K�1X

k=1

1

2�2
(zik �Ki�k)2

#
. (28)

B Conditional Distributions for Parameters of

BKPC

The conditional distributions for the parameters are given by:

P(�I |�Ī = 0, z, ⌧, �2) =
K�1Y

k=1

MV N(n0)(m̃
(m)
k , �2(m)

Ṽ

(m)
k ), (29)

P(zi|z�i,y, �, ⌧, �2) / exp

"
K�1X

k=1

yikzik�

� log
KX

k=1

exp(zik)�
K�1X

k=1

1

2�2
(zik �Ki�kI)2

#
, (30)

P(�2|�, z, ⌧) = IG(�1 + n0(K � 1), �2 +

+
1

2

K�1X

k=1

(zT
k zk � m̃

T
k Ṽ

�1
k m̃k)), (31)

P(⌧I |�, ⌧Ī = 0) =
n0Y

l=1

K�1Y

k=1

X

G

(�3 +
1

2
, �4 +

(�kl)2

2�2
), (32)

where I = {l = 1, ..., n0} , Ṽ

(m)
k = (KT

K + T

(m�1)
kI )�1 and

m̃

(m)
k = Ṽ

(m)
k K

T
z

(m)
k .
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