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SUMMARY: 

This paper presents simulations of spatially-varying non-stationary earthquake motions at subsurface sites in 

multi-layered soil medium. The motions are compatible to the sites in terms of both spatial-variation and 

earthquake energy. The stochastic Fourier spectrum characterizes the bedrock energy distribution. The bedrock 

and subsurface motions are related by a transfer function. The spatial-variation is represented by the existing 

lagged coherency functional forms and their site-compatible parameters and uniform and random phases. 

Wavelet transform is introduced to investigate simultaneously the temporal and spectral variation of the 

simulated motions. In the case study, horizontal motions of three sites at ground surface and at a depth of 20 m in 

a two layered soil medium above the bedrock depth of 50 m and corresponding to an earthquake moment 

magnitude of 5.5 are simulated. As subsurface motions are hardly recordable, the simulated motions are useful 

for the analyses of underground structures and soil-structure interactions. 
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1. INTRODUCTION 

 

 

The spatial-variation of ground motions has pronounced effects on structures. Various methods for 

simulating the spatially-varying ground motions have been developed (Deodatis, 1996; Zerva, 2009; 

Konakli and Der Kiureghian, 2011 among others). On the subsurface layers, the amplitude and phase 

of seismic motions at one site are also different from those at other sites. The earthquake-induced 

motions at subsurface layers are needed for seismic analysis of deep-foundation supported structures 

and underground structures. However, the records of subsurface motions are hardly obtainable and 

their simulations are also rarely reported in the literature. Numerical simulations of subsurface motions 

are therefore necessary and are presented in this paper. The simulation procedure involves 

characterizing earthquake energy and its loss and amplification, the spatial-variation in amplitude and 

phase, and the non-stationarity in both time and frequency. 

 

In the literature, the spatial-variation in ground motion amplitude has been represented by various 

lagged coherency functions with parameters estimated for specific zones. In this paper, the spatial-

variation of subsurface motion amplitude is characterized by Harichandran and Vanmarcke (1986) 

lagged coherency (H-V1986) model with a set of site-compatible parameters. The spatial-variation in 

phase is characterized by both wave passage effect and arrival time perturbations. The latter caused by 

the upward travelling variations of the waves and deviations of the propagation pattern has rarely been 

accounted for. A composite power spectral density (PSD) for earthquake-induced subsurface motions  

contributed by both the bedrock and the subsurface PSDs is formulated in this paper. The stochastic 

PSD (Boore, 2003) accounting for the earthquake magnitude, source spectrum and depth, path-

dependent loss of energy and geometrical spreading, and source-to-bedrock amplification, is adopted 

to characterize the earthquake energy at the bedrock. The bedrock and subsurface motions are related 

by a transfer function derived from vertical propagation of shear waves in multi-layered soil on elastic 

bedrock. The non-stationarities in both time and frequency of the motions are characterized by the 

parametric amplitude- and frequency-modulation (Chakraborty and Basu, 2008). The spatially-varying 

non-stationary ground and subsurface motions are finally simulated by using the one-dimensional 



multi-variate (1D-mV) algorithm (Deodatis 1996), which is a non FFT-based algorithm, thus the 

length of time history is not constrained by the power-of-two. 

 

In order to investigate simultaneously the temporal and spectral variation of the simulated motions, the 

wavelet transform is used and the Modified Littlewood-Paley (Basu and Gupta, 1998) is chosen as the 

wavelet basis. In the case study, horizontal motions of three sites at ground surface and at a depth of 

20 m in a two layered soil medium above the bedrock depth of 50 m and corresponding to an 

earthquake moment magnitude of 5.5 are simulated. 

 

 

2. COMPOSITE PSD OF SUBSURFACE MOTIONS WITH ELASTIC BEDROCK 

 

For simulating spatially-varying non-stationary ground motions, the stationary two-sided PSD 

function S(ω) representing the earthquake energy content and has been characterised by Clough-

Penzien spectrum (Deodatis, 1996) and by Kanai-Tajimi spectrum (Chakraborty and Basu, 2008) 

among others. Those spectra were derived using a single-layer soil model. However, real soil medium 

usually consists of deposits with layers of different stiffness and damping characteristics with 

boundaries at which elastic wave energy will be reflected and/or be transmitted (Kramer, 1996). In this 

paper, the geological profile consists of N horizontal layers of soil on an very thick elastic bedrock 

layer. The PSD of earthquake-induced motions at a subsurface layer n is related to that of bedrock 

motions by  
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where, the squared transfer function of the multi-layered soil medium and the PSD of bedrock are 

expressed respectively as 
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where Tbedrock is the stationary duration of the bedrock stochastic process contributed by the earthquake 

source and the source-to-bedrock path (Dinh el al., 2012). The transfer function of each soil layer 

( )ωlsH , , l = n, …, N in Eq. (2) and the Fourier amplitude spectrum of motions at the top level of the 

bedrock (hereby in short called the bedrock) Fbedrock(ω) in Eq. (3) are formulated in the following 

sections. 

 

2.1 Transfer Function of Subsurface Layers on Elastic Bedrock 

 

The transfer function relating the acceleration amplitude at the top of layer n to that at the bottom of 

the layer is given as (Kramer, 1996) 
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where An+1 and Bn+1 are computed from the recursive equations obtained by relating the shear stresses 

at the top and bottom of layer n 
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in which, hn is the thickness of layer n, 
*
nk  is the complex wave number relating the unit weight ρn, 

shear modulus Gn and damping ratio ξn of the soil layer n by 
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*
nα  is the complex impedance ratio at the interface between layers n and n + 1 
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At the ground surface, the shear stress is zero, hence A1 = B1. It can be assumed without influence on 

the results that A1 = B1 = 1.0. Considering the bedrock to be the (N + 1)th layer and repeating the 

recursive equations, Eqs. (5) and (6), from the top layer, the complex transfer function of each soil 

layer, H1(ω), …, HN(ω), is obtained. The transfer function relating the amplitudes of acceleration at a 

the top subsurface layer n and bedrock acceleration is 
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2.2 Fourier Amplitude Spectrum of Bedrock Motions 

 

The Fourier amplitude spectrum of earthquake motions at bedrock is represented by using the 

stochastic seismic spectrum (Boore 2003): 
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where the scaling factor and the source spectrum are respectively expressed as 
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in which, Re, Ve, Fs, Vs0 and ρ0 are respectively the radiation pattern, partition of total shear wave 

energy into horizontal components, constraint factor, and the shear wave velocity and density of the 

source rock.  The lower corner ωa frequency relates to the source duration. The term ωb is the higher 

corner frequency at which the spectrum attains half of the high frequency amplitude level, and ε is the 

weighting parameter.  The moment magnitude M is mapped from the seismic moment M0 (dyne-cm).  

The geometrical spreading function ( )RG  is characterized by an empirical formulas well supported by 

data of distance range from 10 to 1000 km with 22
0 ehRR += , R0 the epi-central distance and he the 

source depth.  The term ( )RP ,ω  is the path-dependent attenuation factor dependent on Vs.  The 

diminution factor D(ω) accounts for the path-independent attenuation of high-frequency waveforms 



and can be represented by the Kappa-filter.  The amplification factor ( )ωA  is approximated by the 

source-to-site impedance ratio in a numerical scheme implemented by the authors (Dinh et al., 2012) 

using the quarter-wavelength approximation method.  

 

 

3. SIMULATION OF SPATIALLY-VARYING NON-STATIONARY MOTIONS  

 

Earthquake motions at m sites of the subsurface layer n,  u1(t), u2(t), …, um(t), can be considered as 

components of the one-dimensional multi-variate (1D-mV) non-stationary zero-mean stochastic vector 

processes having diagonal and off-diagonal elements of the cross-spectra density (CSD) matrix  
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where Aj(ω,t) is the amplitude- and frequency-modulating function of uj(t), γjk(ω) is the complex 

coherency function between uj(t) and uk(t), and Sn,j(ω) is the PSD of earthquake-induced motions at the 

subsurface layer n presented in Eq. (1). 

 

The 1D-mV algorithm (Deodatis 1996) is introduced to simulate the motions. The CSD matrix is 

decomposed at every time instant t under consideration as ( ) ( ) ( )ttt ,,, *T0 ωωω HHS = , where the 

superscripts T and * denote the matrix transpose and complex conjugate, respectively.  Using 

Cholesky’s method, ( )t,ωH  can be evaluated as a lower triangular matrix: 
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The non-stationary vector processes of subsurface motions uj(t), j = 1, 2, …, m, are simulated by using  

Eqs. (15) where ω∆ω ll = , Nuωω∆ = , ωu is the upper cut-off frequency beyond which the CSD 

matrix elements are negligibly small, φml is the N sequences of independent random phase angles 

distributed uniformly over [0, 2π], and θjm is the phase angle of the off-diagonal elements of the lower-

triangular matrix, ( ) ( )[ ] ( )[ ]{ }tHtHt ljmljmljm ,Re,Imtan, 1 ωωωθ −= . 
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To provide temporal non-stationary, common forms of intensity modulation functions (Zerva, 2009) 

can be used together with the total duration at a site suggested by the authors (Dinh et al, 2012) that is 

contributed by both source and path durations. The term Aj(ω,t) can also be the parametric amplitude- 

and frequency-modulation function expressed as (Chakraborty and Basu, 2008) 
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4. COHERENCY AND SPATIAL-VARIABILITY 

 

The complex coherency function in Eq. (14) is expressed as 
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where the real term |γ(ξjk,ω)|, 0 ≤ |γ(ξjk,ω)| ≤ 1 called the lagged coherency characterizes the variation 

in space and the complex term implies the variation in time. The parameter ξjk is the separation 

distance between sites j and k.  The functional form of H-V1986 lagged coherency, Eq. (17), is used 

with subsurface site parameters estimated by Dinh et al. (2012).   
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Incorporating the wave passage effect of shear waves travelling with velocity Vs and the arrival-time 

perturbations in the coherency phase gives 
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 where ∆tr,jk is a normally distributed random variable with zero mean and standard deviation 

(Boissières and Vanmarcke 1995). 
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5. CONTINUOUS WAVELET TRANSFORM 

 

Continuous wavelet transform can be used to analyze non-stationarity in ground motions (Basu and 

Gupta, 1998; Chakraborty and Basu, 2008). Consider a “mother” wavelet function, ( )tψ , having finite 

energy. A family of baby wavelets can be constructed by scaling and translating ψ(t) using the dilation 

(or scale) parameter ‘a’ and the translation parameter ‘b’ as 
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The parameter b localises the basis function at t = b and its neighbourhood, where a controls the 

frequency content of the basis function by stretching or compressing it (with the number of cycles 

remaining unchanged). 

 

The continuous wavelet transform of the finite energy process u(t) with respect to the basis ( )tψ  is 

obtained by convolving the signal u(t) with a set of its baby wavelets  
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where (*) denotes the complex conjugate. Eq. (24) gives the localized frequency information of u(t) 

around bt = . The wavelet transform coefficient, ( )bauW ,ψ , represents how well the signal u(t) and the 

scaled and translated mother wavelet match. More significantly, ( )bauW ,ψ  represents the contribution 

to u(t) in the neighborhood of bt = and in the frequency band corresponding to the value of a. The 

scale and translation parameters can be numerically assumed as j
ja σ=  and ( ) bibi ∆1−=  where σ and 

∆b are constant parameters.  

 

In this paper, the Modified Littlewood-Paley (MLP) (Basu and Gupta, 1998) is chosen as the wavelet 

basis because it provides high accuracy in spectral analysis and advantages in numerical computation. 

The MLP wavelet basis pairs is given by 

 

( )
( )

( ) ( )
t

tFtF

F
t 11

1

2sin2sin
.

12

1 πσπ
σπ

ψ
−

−
=  (25) 

  

( )
( )14

1
|ˆ|

1 −
=

σπ
ωψ

F
, 11

2
FF σ

π
ω

≤≤  

          =          0          otherwise 

(26) 

 

where 1F  is the initial cut-off frequency of the mother wavelet. It is noted by Basu and Gupta (1998) 

that n12=σ , n ≥ 4 is found reasonable based on investigations on several ground motions recorded. 

However, as small value of σ leads to increased computational effort, 412=σ  has been chosen. 

 

6. CASE STUDY 

 

In this case study, a geological profile consisting of a two-layer soil medium above thick elastic 

bedrock as shown in Figure 1 is considered. The properties of each soil layer also vary horizontally 

and are modelled as three soil columns. The properties of soil layers, bed rock and source rock are 

presented in Table 1. There is an active fault of 20 km depth and 100 km away from the sites that may 

cause an earthquake with moment magnitude of 5.5. 

 

 

 

 

   

 

 

 

Figure 1. Geological profile of two-layer soil above thick elastic bedrock 

 

 

0.0 m 

Bedrock level 
Thick elastic bedrock layer  

Layer 2 

Layer 

 ξ = 59 m 

( )tug1
&&  ( )tug2&&  ( )tug3&&  

1

Column 1 Column 2 Column 3 

20 m 

ξ = 59 m 

2 3

( )tus1
&&  ( )tus2

&&  ( )tus3
&&  

30 m 



The earthquake-induced horizontal motions of three surface sites (0, 0), (59, 0) and (118, 0), and three 

subsurface sites (0, -50), (59, -50) and (118, -50) on the interface of the two soil layers are simulated 

in this case study. The H-V 1986 coherency model parameters estimated at a separation distance of 59 

m are A = 0.0957, α = 0.03727, β = 6.623, f0 = 2.02 Hz, and k = 5.116×104 m (Dinh et al. 2012). The 

parameters of the amplitude- and frequency-modulation function (Chakraborty and Basu, 2008) 

presented in Table 2 are used for all sites (j = 1, 2, 3). 

 
Table 1. Properties of soil layers, bed rock and source rock 

Layer, 

depth 

Soil 

Column 

E 

[MN/m2] 

Poisson 

ratio ν 
ρ 
[kN/m3] 

Damping 

ratio ξ [%] 

Vs 

[m/s] 

1 24.6 0.23 17.9 0.45 74.0 

2 30.6 0.25 19.2 0.50 79.6 

1, 

20 m 

 3 21.6 0.22 18.3 0.35 68.9 

1 74.6 0.28 23.0 0.42 111.5 

2 70.6 0.27 22.5 0.40 110.1 

2, 

30 m 

3 80.6 0.29 25.0 0.50 110.1 

Bedrock 3000.0 0.25 2500 0.05 565.7 

Source rock 70533.0 0.23 2800 0.02 3200 

 
Table 2. Modulation parameters in different frequency bands (Chakraborty and Basu, 2008). 

Band Frequency limits (rad/s) λj β j γ j 

1 0.4953 0.5890 30.00164 0.0449 0.049121 

2 0.5890 0.7005 29.84299 0.0824 0.090256 

3 0.7005 0.8330 330.2238 0.1042 0.105069 

4 0.8330 0.9907 16.9489 0.0916 0.107558 

5 0.9907 1.1781 19.91785 0.0908 0.104127 

6 1.1781 1.4010 35.31626 0.0746 0.080555 

7 1.4010 1.6661 44.75151 0.0663 0.07044 

8 1.6661 1.9813 39.51282 0.1001 0.107269 

9 1.9813 2.3562 27.63662 0.2103 0.231993 

10 2.3562 2.8020 67.13471 0.0843 0.087818 

11 2.8020 3.3322 24.77418 0.1859 0.207441 

12 3.3322 3.9626 122.3684 0.0598 0.06113 

13 3.9626 4.7124 64.63215 0.1085 0.113203 

14 4.7124 5.6040 53.86207 0.1517 0.159536 

15 5.6040 6.6643 130.6111 0.1146 0.116974 

16 6.6643 7.9253 80.4373 0.1882 0.194651 

17 7.9253 9.4248 156.5035 0.0978 0.099483 

18 9.4248 11.2080 92.96335 0.1346 0.138561 

19 11.2080 13.3286 71.48464 0.2797 0.29051 

20 13.3286 15.8505 72.47266 0.1316 0.136592 

21 15.8505 18.8496 130.0072 0.0797 0.081399 

22 18.8496 22.4160 101.9085 0.1170 0.120184 

23 22.4160 26.6573 90.42829 0.0777 0.080038 

24 26.6573 31.7010 75.27222 0.1819 0.188585 

25 31.7010 37.6991 89.29339 0.1022 0.105359 

26 37.6991 44.8321 81.59732 0.1761 0.182101 

27 44.8321 53.3146 106.5307 0.1390 0.142596 

28 53.3146 63.4021 163.8518 0.1659 0.168679 

 

 

 



The time histories of simulated ground accelerations at site 1, site 2 and site 3 are shown in Figures 2a, 

2c, and 2e, respectively.  The time histories of simulated accelerations at the corresponding subsurface 

sites are shown in Figures 2b, 2d, and 2ef respectively. The spatial-variability and non-stationarities in 

both amplitude and frequency can be observed in those time histories. It is also seen that the periods of 

ground accelerations are longer than those of the subsurface motions whereas the acceleration 

amplitudes are almost equal.  

 

The spatial-variability and temporal and spectral non-stationarities of the simulated accelerations are 

clearly observed in their squared wavelet coefficients shown in Figures 3. Both ground and subsurface 

accelerations are mainly contributed by the low-frequency components. The dominant frequency range 

for ground accelerations is 0-10 rad/s whereas that for subsurface accelerations is wider, 0-20 rad/s. 

 

  
  

  
  

  
 

Figure 2. Time histories of simulated ground accelerations: (a) site 1, (c) site 2, (e) site 3; and subsurface 

accelerations (depth -20 m): (b) site 1, (d) site 2, (f) site 3. 
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Figure 3. Squared wavelet coefficients of simulated ground accelerations: (a) site 1, (c) site 2, (e) site 3; and 

subsurface accelerations (depth -20 m): (b) site 1, (d) site 2, (f) site 3. 
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CONCLUSIONS 

 

Simulations of spatially-varying non-stationary earthquake motions at subsurface sites in the multi-

layered soil medium has been presented. The motions are compatible to the sites in both spatial-

variation and earthquake energy content. The stochastic Fourier spectrum characterizing the energy 

accounts for source spectrum, attenuation, geometrical spreading and source-to-bedrock amplification. 

The bedrock and subsurface motions are related by a transfer function. The spatial-variation is 

represented by existing lagged coherency functional forms and their site-compatible parameters and 

uniform and random phases. Wavelet transform is introduced to investigate simultaneously the 

temporal and spectral variation of the simulated motions. In the case study, horizontal motions at three 

sites at ground surface and at a depth of 20 m in a two layered soil medium above the bedrock depth of 

50 m and corresponding to an earthquake moment magnitude of 5.5 are simulated. The spatial-

variability and temporal and spectral non-stationarities of the simulated accelerations are clearly 

observed in the squared wavelet coefficients where the low-frequency components are dominant. 
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