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Abstract

Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory
protein factor H (fH) to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the
surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins
and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound
significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-
bound fH exhibited cofactor functionality for factor I (fI)-mediated cleavage of C3b to iC3b which correlated positively with
increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced
recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-
fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first
identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion
mechanism.
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Introduction

Invasive pathogenic organisms infect and replicate in the host

leading to symptomatic disease. Their success, however, depends

on their ability to withstand the hostile environment of their host,

i.e., the immune system. The complement cascade is central to

host innate immune defenses and is activated within seconds of the

microbe’s entry [1]. The complement system comprises more than

30 proteins and operates in a catalytic cascade. Complement

activation leads to opsonization, pro-inflammatory anaphylatoxin

generation, and eventual assembly of the membrane attack

complex [2,3,4,5].

The three pathways of complement converge at the generation

of C3-convertases which cleave C3 into the anaphylatoxin C3a

and the potent opsonin C3b. While both the classical and lectin

pathways are specific in their activation, the alternative pathway

can be spontaneously activated without a recognition trigger [4],

and is crucial for amplification of the complement cascade [5].

Due to the potent nature of this system, both membrane-bound

and fluid-phase regulators are in place to protect host cells from

complement attack.

The major fluid-phase complement regulator Factor H is a

155 kDa plasma protein that accelerates the decay of the

alternative pathway C3 convertase, C3bBb. In addition to this

important function, fH is a cofactor for factor I-mediated cleavage

of C3b to iC3b [6,7]. Factor H is abundantly present in plasma at

approximately 500 mg mL, but this may vary due to environmen-

tal and genetic factors with a range of 116–562 mg mL reported

[4,8]. Due to its relatively high concentration and important

regulatory functions, fH is a prime target for sequestration by

pathogens where surface-bound fH can benefit their survival. As

such, invasive human pathogens are known to take advantage of

soluble regulators such as fH to evade the immune response.

Examples of these include Streptococcus pyogenes and Borrelia burgdorferi

which acquire fH via the M protein and Complement Regulator

Acquiring Surface Proteins (CRASPs), respectively [9,10,11,12],

and S. pneumoniae which binds fH via the Pneumococcal Surface

Protein C (PspC) [13,14].

S. aureus is known to recruit the complement regulator factor I

(fI) via cell wall component clumping factor A (ClfA) [15,16]. As a

master of complement evasion, S. aureus also secretes several

proteins to dampen complement attack. Secreted S. aureus proteins

such as the staphylococcal complement inhibitor (SCIN), extra-

cellular complement-binding protein (Ecb) and extracellular

fibrinogen-binding protein (Efb) can block convertase function, a
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crucial phase of the complement cascade [17,18,19,20,21,22]. The

staphylococcal superantigen-like 7 protein prevents generation of

the anaphylatoxin C5a [23], while chemotaxis inhibitory protein

of S. aureus (CHIPS) blocks the C5a receptor thereby impeding

migration of neutrophils to the site of infection [24].

We have recently shown that S. aureus binds the complement

regulatory protein fH to its surface to disrupt the alternative

pathway convertase [25]. Here we show that S. aureus binds fH via

the surface protein SdrE and that fH remains functionally active

when bound to recombinant SdrE. Further, we demonstrate that

SdrE provides a survival advantage when expressed on the surface

of a surrogate bacterium.

Figure 1. Factor H binds to S. aureus cell wall proteins. A, Far-western analysis (purified fH overlay) of S. aureus cell wall proteins fractionated
via ionic exchange chromatography; 9, 10, and 11 represent fraction numbers. B, Sypro-ruby stained SDS-PAGE gel, complimentary to (A). C, Peptide
map of Serine-aspartate repeat-containing protein E (SdrE) with peptides identified by LC-ESI-MS/MS shown in bold and underlined. D, Clumping
Factor A (ClfA) peptide map with peptides identified by LC-ESI-MS/MS shown in bold and underlined.
doi:10.1371/journal.pone.0038407.g001

Table 1. Mass spectrometry of fH-binding proteins detected via factor-H overlay identifying both SdrE and ClfA peptides.

SdrE

Mr (expt) Mr (calc) Peptide score Expect score Peptide

894.77 894.41 47 0.0055 R.FDNLDSGK.Y

911.07 911.42 34 0.099 K.DGETYTVK.F

1006.31 1006.49 48 0.0042 K.GHYEFGGLK.D

1114.79 1114.59 62 0.0002 R.LTLYSYIDK.K

1149.27 1149.59 61 0.00027 K.VIGTTTTDASGK.Y

1213.19 1213.57 48 0.0055 K.YRFDNLDSGK.Y

1242.98 1242.69 55 0.0013 R.LTLYSYIDKK.T

1252.86 1252.63 55 0.001 K.FETPTGYLPTK.V

2580.58 2580.16 47 0.0083 K.DNVAAAHDGKDIEYDTEFTIDNK.V

2679.01 2679.22 112 1.761029 K.FTDLDNGNYTVEFETPAGYTPTVK.N

2765.79 2765.40 66 9.861025 K.NVIPSDLTDKNDPIDITDPSGEVIAK.G

2856.59 2856.26 52 0.0019 K.YNLGDYVWEDTNKDGIQDANEPGIK.D

2970.08 2970.38 79 4.861026 K.YKFTDLDNGNYTVEFETPAGYTPTVK.N

3070.79 3070.37 40 0.035 K.ETSQNVTVDYQDPMVHGDSNIQSIFTK.L

3352.57 3352.47 151 1.5610213 K.YGYYNYAGYSNFIVTSNDSGGGDGTVKPEEK.L

3440.04 3439.55 72 1.961025 K.NTTAEDKDSNGLTTTGIKDADNMTLDSGFYK.T

3798.30 3797.69 148 5.7610213 R.TTDKYGYYNYAGYSNFIVTSNDSGGGDGTVKPEEK.L

3920.30 3920.87 69 3.561025 K.GDTMTINYDKVNIPSDLTDKNDPIDITDPSGEVIAK.G

ClfA

Mr (expt) Mr (calc) Peptide score Expect score Peptide

830.62 830.45 53 0.0014 K.SNALIDAK.N

979.67 979.53 47 0.0043 K.TVLIDYEK.Y

1180.74 1180.59 55 0.00062 R.ISFPNANQYK.V

1205.84 1205.62 63 0.00017 K.YGQFHNLSIK.G

1245.33 1245.66 74 1.561025 K.ELNLNGVTSTAK.V

1394.97 1394.72 78 5.161026 K.LNYGFSVPNSAVK.G

1635.18 1634.85 127 7.8610211 K.TGNVTLTTGIGTNTASK.T

1638.13 1637.80 61 0.00027 K.GTIDQIDKTNNTYR.Q

1654.99 1654.74 66 6.361025 R.STFYGYDSNFIWR.S

1936.08 1935.96 62 0.00016 K.VTIDSGTTVYPHQAGYVK.L

2235.05 2235.07 117 4.6610210 K.ENVTANITMPAYIDPENVTK.T

2737.43 2737.47 101 1.961028 R.QTIYVNPSGDNVVLPALTGNLIPNTK.S

2989.78 2989.32 123 1.6610210 R.VDNANDLSESYYVNPSDFEDVTNQVR.I

3408.38 3408.54 64 0.00011 K.VYRVDNANDLSESYYVNPSDFEDVTNOVR.I

3569.25 3568.76 138 5610212 K.VEFPTDDDQITTPYIVVVNGHIDPASTGDLALR.S

doi:10.1371/journal.pone.0038407.t001
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Methods

Ethics Statement
Human blood was obtained from four healthy volunteers for

generating serum used as a reagent in these studies. Eastern

Virginia Medical School IRB approved this study protocol: 02-06-

EX-0216. Written informed consent was provided by study

participants.

Bacteria
S. aureus strain Reynolds was grown to mid-logarithmic phase

(OD600 0.8–1.5) in Columbia 2% NaCl broth at 37uC with

shaking. Escherichia coli strains were grown at 37uC with shaking in

Luria broth supplemented with 100 mg ampicillin/mL. Lactococcus

lactis cells that constitutively express the staphylococcal protein

SdrE or that contain the empty vector pKS80, as previously

described [26], were grown in M17 broth containing 0.5% glucose

and 5 mg/mL erythromycin at 30uC without shaking. L. lactis

surface expression of SdrE was confirmed by immunoblotting.

Buffers
GVBS-EDTA (veronal-buffered saline [VBS] with 0.1% gelatin

and 0.01 M EDTA); raffinose buffer (5 mM Tris, 20 mM MgCl,

30% raffinose); GVBS ++ (VBS with 0.1% gelatin, 0.15 mM

CaCl2, and 1.0 mM MgCl2), Mg-EGTA-GVBS (GVBS with

5 mM MgCl2 and 8 mM EGTA), and 60% DGVBS ++ (GVBS ++

with 3% dextrose).

Serum and factor H
Normal human serum (NHS) was prepared as previously

described [27]. The serum was pooled, aliquoted, and stored at

280uC. Heat-inactivated serum (HI-serum) was prepared by

heating NHS at 56uC for 30 minutes. Purified fH was purchased

from CompTech.

Figure 2. Factor H cross-linked to S. aureus cell wall protein/s. A, Anti-fH Western blot of purified fH cross-linked to S. aureus cell wall protein/s
indicated by the asterisk (*); XL: cross-linker, BS3. B, LC-ESI-MS/MS mass spectra map of S. aureus protein SdrE found cross-linked to fH. Matched
peptides are shown in bold and underlined.
doi:10.1371/journal.pone.0038407.g002
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Cell wall preparations
Cell wall extracts were prepared as described previously [28].

Briefly, cells from 20 ml of S. aureus cultures were washed twice

with GVBS-EDTA and resuspended in 30% raffinose buffer for

bacterial protoplast stabilization. DNase and protease inhibitors

(Complete Mini, Roche) were then added. Cell wall proteins were

extracted using 10 mg lysostaphin (Sigma) at 37uC for 1 hour, with

rotation. The protoplasts were pelleted and cell wall proteins were

recovered in the supernatant.

Cell wall fractionation
S. aureus cell wall proteins were separated by size-exclusion

chromatography and ionic exchange chromatography, as de-

scribed by Hair et al. [16]. Briefly, size-exclusion chromatography

was performed using a HiPrep 16/60 Sephacryl column (GE

Healthcare) with 5- mL fractions collected at a rate of 1 mL/min

in PBS. For ionic exchange chromatography, a 5-mL HiTrap Q

HP column (GE Healthcare) was used with fractions eluted using a

gradient of 1 M NaCl in 20 mM Tris buffer.

Dot-blot detection of factor-H binding fraction and
factor-H overlay blot

Column fractions were added to dot-blot wells to allow proteins

to adhere to a PVDF membrane. Following blocking with 3%

BSA in Tris-buffered saline with 0.1% Tween (TBST), the

membrane was incubated with purified fH (20 mg fH/10 ml block

buffer) overnight at 4uC, washed, then probed with chicken anti-

fH antibody (1:1000, Accurate Chemical) followed by anti-chicken

HRP-labeled antibody (1:1000, Genway), and developed via

enhanced chemiluminescence (ECL). Fractions that showed

evidence of fH binding by optical densitometry were concentrated

using 10,000 MWCO centrifugal filtration units (Amicon,

Millipore) then assessed by far-Western analysis with purified fH,

as described for dot-blot detection. Protein bands that bound fH

were excised from Sypro-ruby stained gels and subjected to mass

spectrometry. Non-fractionated cell wall lysates were also assessed

for fH binding using purified fH overlay blot. Binding was

conducted in 3% BSA/TBST or 3% BSA/TBST containing

0.01 M EDTA.

Cross-linking fH to S. aureus
S. aureus Reynolds cells (16109 cells) were incubated with 10 mg

of purified fH for 1 hr in PBS (250 ml total volume) at 37uC. The

cross linker BS3 (Bis(sulfosuccinimidyl) suberate, Pierce) was added

to a final concentration of 50 mM and incubated for 30 mins. After

quenching (20 mM Tris-HCl, pH 7.5, 15 mins) and washing, cell

wall extracts were prepared as described above. Extracts were

subjected to SDS-PAGE and anti-fH Western blot analysis to

detect bands that contained fH; samples not incubated with fH

were used as controls. Bands determined to contain fH were

excised from Sypro-ruby stained gels and assessed by mass

spectrometry.

Mass spectrometry identification
Protein bands were excised from Sypro-ruby stained SDS-

PAGE gels and processed for liquid chromatography electrospray

ionization tandem mass spectrometry (LC-ESI-MS/MS) as

previously described [16]. The acquired data was processed and

the proteins were identified using Mascot Daemon client

application (Matrix Science) software using an indexed bacterial

subset database of the non-redundant proteins database from

ExPASy/SwissProt.

Recombinant proteins
rClfA and rSdrE were expressed as 66His-tagged proteins

comprising their respective unique A regions in an Escherichia coli

expression system, as described elsewhere [26,29]. Recombinant

proteins were purified from cell lysates by metal chelation

chromatography and analyzed via Sypro-ruby stained SDS-PAGE

gels and anti His-tag Western blot.

Table 2. Mass spectrometry of fH-binding protein detected via fH cross-linking identifying SdrE peptides.

Mr (expt) Mr (calc) Peptide score Expect score Peptide

1252.17 1252.63 37 0.074 K.FETPTGYLPTK.V

1492.01 1491.62 43 0.021 K.DADNMTLDSGFYK.T

1592.28 1592.77 124 2.1610210 K.VDIAGSQVDDYGNIK.L

1603.16 1602.81 88 7.961027 K.LGNGSTIIDQNTEIK.V

1762.99 1762.91 84 1.461026 K.TVPNETSLNLTFATAGK.E

1942.77 1942.02 110 3.661029 R.FAVAQPAAVASNNVNDLIK.V

1956.78 1956.87 110 3.961029 K.YTPTSDGELDIAQGTSMR.T

1964.10 1963.97 144 1.3610212 K.NTTAEDKDSNGLTTTGVIK.D

2092.70 2093.07 92 3.461027 K.EKPMANVLVTLTYPDGTTK.S

2098.08 2097.92 65 8.261025 R.IYDFSQYEDVTSQFDNK.K

2302.41 2302.21 44 0.019 K.LDEDKQTIEQQIYVNPLKK.S

2434.03 2434.20 56 0.00086 K.ENVKPSTDKTATEDTSVILEEK.K

2553.13 2553.29 79 3.661026 K.VDNQVTDATNPKEPVNVSKEELK.N

2679.09 2679.22 105 1.361028 K.FTDLDNGNYTVEFETPAGYTPTVK.N

2765.96 2765.40 49 0.007 K.NVIPSDLTDKNDPIDITDPSGEVIAK.G

3036.64 3036.39 50 0.004 K.VGDGKDNVAAAHDGKDIEYDTEFTIDNK.V

3069.86 3069.39 64 0.00021 K.ETSQNVTVDYQDPMVHGDSNIQSIFTK.L

3572.74 3572.76 54 0.0012 K.SSTQQQQNNVTATTETKPQNIEKENVKPSTDK.T

doi:10.1371/journal.pone.0038407.t002
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fH binding to recombinant proteins, dot-blot assay
Briefly, 5 mg of rSdrE, rClfA and BSA were adsorbed to a

PVDF membrane. A dilution series of purified fH was also

adsorbed for quantitation purposes. The membrane was washed

with TBS then blocked with 3% BSA/TBST. Purified fH (20 mg

fH/10 ml block buffer) was overlaid overnight. After washing, the

membrane was probed with goat anti-fH followed by anti-goat

HRP-labeled antibodies (1:4000 each, Sigma). Membranes were

developed via ECL with optical densitometry quantitation via

Quantity One software (Biorad).

fH binding to recombinant proteins, plate assay
Flat-bottom Immulon 2 plates (Thermo Labsystems) were

coated with 10 mg/mL of rSdrE, rClfA or BSA in 50 ml of

carbonate buffer and incubated overnight at 4uC. Wells were

washed to remove unbound protein with PBS with 0.05% Tween

(PBST) then blocked with block buffer (3% BSA/PBST for

purified fH; 0.5% gelatin/PBST for serum assays) for at least

90 mins at room temperature. Wells were washed, then block

buffer containing various amounts of purified fH or serum was

added and allowed to incubate at room temperature for the time

indicated. Control wells were incubated with block buffer only.

Wells were washed, and the presence of fH was assessed using

mouse monoclonal anti-fH IgG (1:500, Serotec) followed by goat

anti-mouse-HRP conjugated IgG (1:1000, Sigma) with 1 hr

incubation for each. Plates were developed with TMB substrate

(Thermo Scientific), stopped with 1 N H2SO4, and read at

450 nm. Absorbance values were indicative of fH, with values

from wells not incubated with fH or serum subtracted as

background.

fH binding to recombinant proteins, modified plate
assay/Western-blot approach

Recombinant proteins were immobilized as described for the

plate assay, above. Following blocking with 3% BSA/PBST, 10%

HI-serum was added to wells (in block buffer) and incubated

overnight. Wells were thoroughly washed, and bound proteins

were extracted with 2% SDS buffer and subjected to SDS-PAGE

followed by Western blot analysis using goat anti-fH IgG and anti-

goat HRP-conjugated IgG (1:1000 for each, Sigma).

C3b cleavage to iC3b, plate assay
rSdrE and ovalbumin (50 mL of 30 mg/mL) were adsorbed to

microtiter plate wells as described above; ovalbumin (OVA) was

used as a control. Wells were blocked with 2% OVA/PBST for

2 hours then purified fH was added and incubated for 30 mins at

room temperature. Wells were washed 4 times, then purified C3b

and purified fI (0.5 mg each) in 60% DGVB ++ (75 ml total volume)

were added and plates were incubated for 3 hrs at 37uC. The

liquid was extracted and samples were examined for the presence

of iC3b by Western blotting probing with goat anti-C3 antibody

(1:4000, CompTech), under reducing conditions. Negative con-

trols included wells not incubated with purified fH while a well

coated with goat anti-fH IgG (1:1000) served as a positive control.

C3b cleavage to iC3b, L. lactis
L. lactis (150 mL, OD600 = 4.0) were pre-incubated with or

without 10% heat-inactivated serum for 20 mins at 30uC in

GVBS++ to bind serum fH. Bacteria were washed 36 with

GVBS++, then resuspended in 75 mL of a master mix (300 mL

Figure 3. Purified fH binding to recombinant proteins. A, A
representative fH overlay dot blot using a purified fH dilution series as a
quantitation control (right column, fH). rSdrE, rClfA and BSA (5 mg) were
adsorbed to a PDVF membrane (left column), blocked, then overlaid
with purified fH (20 mg in 10 ml block buffer); BSA was used as a
control. fH binding was determined via optical densitometry using the
purified fH dilution series as a standard curve. B, Quantitative fH binding
via dot blot, as described in (A), *p,0.01; n = 4. C, Modified ELISA: rSdrE,
rClfA and BSA were adsorbed to a microtiter plate and incubated with

various amounts of purified fH for 1 hr; data represent the mean of at
least three independent experiments 6 SEM.
doi:10.1371/journal.pone.0038407.g003
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GVBS++ with 2 mg purified factor I and 2 mg purified C3b) and

incubated at 37uC for 2.5 hr. Purified proteins were purchased

commercially from CompTech. The samples were centrifuged and

the supernatant was assessed for C3b cleavage via Western blot,

under reducing conditions.

ELISA
For the detection of fH, flat-bottom Immulon 2 plates were

coated with 50 ml of goat anti-fH IgG (1:1000) in carbonate buffer

at 4uC, overnight. Following blocking with 3% BSA/PBST (2 hr,

room temperature), samples were added to the wells in block

buffer (1 hr, room temperature). Unless specified otherwise,

probes used were mouse monoclonal anti-fH (Serotec Ltd.,

Oxford, United Kingdom) with goat anti-mouse HRP-conjugated

IgG (Sigma). Probes were incubated for 1 hr each. Purified fH was

used as a standard. Plates were developed using TMB substrate,

stopped with 1N H2SO4, and read at 450 nm.

C3 ELISA was performed as described previously using goat

anti-C3 IgG (CompTech) to coat; wells were probed with chicken

antibodies specific for human C3 (Sigma) and HRP-labeled goat

anti-chicken IgG (GenWay) [25]. Purified C3 (CompTech) was

used as a standard for quantitation purposes. C5a ELISA was

performed as per manufacturer’s instructions using the DuoSet

ELISA Development kit (R&D systems).

Serum fH binding to membrane-immobilized L. lactis
L. lactis expressing SdrE and an empty vector control were

resuspended in carbonate buffer to OD600 1.0. Of this mixture,

15 ml was applied to a PVDF membrane, in sets of six per bacterial

sample. A dilution series of HI-serum was included for quantita-

tion purposes. The membrane was allowed to dry at 30uC, then

blocked with 0.05% gelatin/PBST at room temperature over-

night. The membrane was overlaid with 5% HI-serum in 0.05%

gelatin/PBST for 1 hr. After washing, the presence of serum fH

was assessed using goat anti-fH IgG followed by HRP conjugated

anti-goat IgG (1:4000 each, Sigma). To verify that each bacterial

type bound similarly to the membrane, control membranes were

washed several times following cell immobilization then stained

with Ponceau S and examined using optical densitometry.

Serum fH binding to L. lactis in solution
L. lactis were resuspended to OD600 = 4.0 in GVBS++; 500 ml of

the bacterial suspension was incubated with various amounts of

HI-serum, in 1 ml total volume, and incubated for 1 hr at 37uC.

After washing thoroughly, bound serum proteins were extracted

with 50 ml 2% SDS at 95uC for 10 mins. Samples were assessed

for serum fH content by Western blotting and fH ELISA using

Figure 4. fH binding to recombinant proteins. rSdrE, rClfA and BSA (10 mg/mL) were adsorbed to a microtitre plate and assessed for fH binding
using heat-inactivated serum (HI-serum): A, Serum proteins bound to immobilized rSdrE, rClfA, and BSA in microtiter wells were extracted with 2%
SDS and analyzed by anti-fH Western blot. B, fH binding via Western blot, as described in (A) quantitated using optical densitometry; *p = 0.03. C,
Modified ELISA using 15% HI-serum and various time points; p,0.001 as a group. D, Modified ELISA using various concentrations of HI-serum, 15-
minute incubation; p,0.001 as a group. Data represent the mean of at least three independent experiments 6 SEM.
doi:10.1371/journal.pone.0038407.g004
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chicken antibodies specific for human fH (Accurate Chemical)

followed by goat anti-chicken HRP-conjugated IgG (GenWay).

C3-fragment deposition
L. lactis cells (175 mL, OD600 = 4) were incubated with various

concentrations of NHS in GVBS++, 500 mL total volume, for

15 mins, 37uC. Cells were washed 36 with GVBS-EDTA and

bound C3-fragments were stripped using 25 mM methylamine as

described previously [25]. To examine C3-fragment deposition

from the alternative pathway activation and examine time-

dependency, this assay was conducted using GVBS-EGTA with

10% NHS, and incubation times were varied. Total C3-fragment

deposition was measured using an ELISA.

C5a generation
L. lactis (175 mL, OD600 = 4.0) were incubated with various

amounts of NHS in GVBS++ at 37uC for 15 mins in 500 mL total

volume to generate C5a. To stop the reaction, 100 mL 0.5 M

EDTA was added and the supernatant was analyzed for total C5a

via ELISA. Alternatively, this assay was conducted using GVBS++

EGTA for 30 mins to generate C5a via the alternative pathway.

Phagocytosis/Killing Assay
Human polymorphonuclear cells (PMNs) were purified from

heparinized whole blood from healthy volunteers by Hypaque-

Ficoll step gradient centrifugation followed by dextran sedimen-

tation and hypotonic lysis. PMNs were resuspended in HBSS with

calcium to 16107/mL prior to use. L. lactis were grown for 3 hrs,

resuspended to OD600 = 3, then diluted 1:20 in HBSS with

calcium. In 1 mL total volume, 100 mL of bacterial solution, 10%

NHS and 56106 PMNs were tumbled at 37uC. Control tubes did

not contain PMNs. Samples were taken at various time points,

diluted in sterile water then plated on GM17 agar supplemented

with erythromycin. Following an overnight growth at 30uC,

Figure 5. rSdrE-bound fH retains cofactor activity for factor-I
mediated cleavage of C3b. rSdrE was immobilized to a microtiter
plate and incubated with purified fH; anti-fH and ovalbumin (OVA) were
used as controls. After washing, C3b and factor I were added. Well
contents were assessed via anti-C3 Western blot for C3b and iC3b. A,
Samples with or without 2 mg fH. B, rSdrE with varied amounts of
purified fH. Representative Western blots of at least three independent
experiments are shown.
doi:10.1371/journal.pone.0038407.g005

Figure 6. Serum fH binds to SdrE-expressing L. lactis in a dose-
dependent manner. A, L. lactis isogenic mutants were immobilized to
a PVDF membrane and overlaid with 5% HI-serum; fH binding was
quantitated using a serum fH standard curve and optical densitometry;
*p = 0.02. B, L. lactis isogenic mutants were incubated with various
concentrations of HI-serum for 1 hr; bound proteins were extracted
with 2% SDS and analyzed by fH ELISA using chicken antibodies specific
for human fH; p = 0.005, as a group. C, L. lactis were incubated with 20%
HI-serum; bound proteins were extracted with 2% SDS and analyzed by
anti-fH Western blot. Data represent the mean of at least three
independent experiments 6 SEM.
doi:10.1371/journal.pone.0038407.g006
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colonies were counted. The number of bacteria killed was

calculated by subtracting phagocytosis tube counts from control

tube counts.

Statistical analysis
Results of independent replicate experiments were averaged,

and SEMs were calculated. Statistical comparisons were made

using a two-tailed paired Student’s t test and ANOVA.

Results

S. aureus bound fH via a putative fH binding protein
(fHbp) associated with the cell wall

We have previously shown that fH binds to the surface of intact

S. aureus [25]. To identify the S. aureus surface protein responsible

for binding fH, we fractionated S. aureus cell wall protein

preparations by size-exclusion and ionic exchange chromatogra-

phy. Fractions were adsorbed to a PDVF membrane, blocked, and

overlaid with purified fH. Fractions showing evidence of fH

binding based on optical densitometry were subjected to SDS-

PAGE and far-Western blot analysis (Figure 1A,B).

Protein bands with evidence of fH binding were excised,

digested by trypsin, followed by LC-ESI-MS/MS. A database

search of identified peptides resulted in the identification of two

putative fHbps: SdrE and ClfA (Figure 1C,D). Table 1 details the

SdrE and ClfA peptides identified. Peptide scores .30 and Expect

scores #0.05 are considered significant identifications.

Due to the possibility of the co-migration of SdrE and ClfA,

based on their similar molecular weights, we cross-linked purified

fH to the S. aureus surface with BS3, a water-soluble and membrane

impermeable crosslinker, followed by Western-blot analysis of

solubilized cell wall proteins (Figure 2A). These experiments

identified a fH-containing band at an evidently higher molecular

weight than purified fH, suggesting fH had been cross-linked to

another protein. The novel band was excised and processed by in-

gel digestion. LC-ESI-MS/MS analysis of these peptides identified

SdrE. The identified peptides and the sequence coverage of the

protein are shown in Figure 2B with corresponding peptide data

detailed in Table 2. No ClfA peptides were identified.

rSdrE binds purified fH in a dose-dependent manner
To investigate the fH-binding ability of ClfA and SdrE, we used

recombinant forms of the proteins [26,29]. The purified recom-

binant proteins and the control protein BSA were adsorbed to a

PVDF membrane in equal concentrations (5 mg) and incubated

with purified fH. For quantitation of fH binding, we included a

dilution series of purified fH to serve as standards. As shown in

Figure 7. Surface expression of SdrE increases cleavage of C3b and reduces total C3-fragment deposition. A. L. lactis were incubated
with (+) or without (2) 10% HI-serum to bind serum fH, washed thoroughly, then resuspended with fI and C3b (0.5 mg each) for 2.5 hr, 37uC;
supernatants were assessed for C3b cleavage via Western blot. B, C and D: L. lactis were incubated with NHS; deposited C3-fragments were stripped
with 25 mM methylamine and quantitated by ELISA. B, All pathways, 15-minute incubation, various serum concentrations (p,0.001, as a group). C, All
pathways, 10% NHS, varied incubation times (p,0.0001, as a group). D, Alternative pathway only (Mg-EGTA-GVBS), 10% NHS, various incubation
times (p,0.0001, as a group). Data represent at least 3 independent experiments 6 SEM.
doi:10.1371/journal.pone.0038407.g007

S. aureus SdrE Binds Factor H

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e38407



Figure 3A,B, rSdrE bound 2.2 ng fH, which is .4-fold more than

either rClfA or BSA (p,0.01).

To further explore the fH binding ability of rSdrE and rClfA,

the proteins were adsorbed to the wells of a microtiter plate and

incubated with various concentrations of purified fH in an ELISA-

type assay. As shown in Figure 3C, rSdrE bound purified fH in a

dose-dependent manner, with .10-fold greater binding than

either rClfA or the control protein (BSA) (p = 0.0019). These

results strongly suggest that SdrE is indeed a fHbp.

rSdrE bound serum fH in a time- and dose-dependent
manner

To assess fH binding in more physiological conditions than

using purified components, we used heat-inactivated serum as a

source of fH. Serum proteins bound to immobilized rSdrE, rClfA

and BSA in microtiter wells were extracted and analyzed by anti-

fH Western blot (Figure 4A). Optical densitometry readings

showed that serum fH binding to rSdrE was 4-fold greater than for

rClfA (p = 0.03, Figure 4B). However, there was no significant

difference between serum fH binding to rClfA compared to BSA

control. To further characterize the binding of serum fH to rSdrE,

we varied serum concentration and incubation times. As shown in

Figure 4C,D, rSdrE bound significantly more serum fH than BSA

(p,0.001) in a time- and dose-dependent manner.

rSdrE-bound fH retained regulatory function
To assess whether rSdrE-bound fH retained cofactor function-

ality for factor I-mediated cleavage of C3b, rSdrE was immobi-

lized to wells of a microtiter plate and incubated with various

amounts of purified fH; ovalbumin and goat anti-fH IgG were

used as controls. Following washing, purified fI and purified C3b

were added. Western blotting revealed that C3b was cleaved to

iC3b in wells coated with rSdrE and preincubated with fH

(Figure 5A). Increasing concentrations of fH correlated with

increasing amounts of C3b cleaved to iC3b (Figure 5B). These

experiments suggest that fH bound to rSdrE retains its ability to

act as a cofactor for fI in the degradation of C3b.

Lactococcus lactis expressing SdrE bound serum fH in a
dose-dependent manner

To further examine the fH binding ability of SdrE, we used L.

lactis expressing SdrE. L. lactis is a model organism for investigating

the individual effects of full-length staphylococcal proteins

expressed on the bacterial surface. L. lactis (pKS80-SdrE) was

compared to the empty vector control L. lactis (pKS80). Whole

bacteria were immobilized onto a PVDF membrane and overlaid

with 5% HI-serum to bind serum fH. Control membranes were

processed in parallel, without serum, to assess bacterial adherence.

L. lactis (pKS80-SdrE) bound 4-fold more serum fH than L. lactis

(pKS80) (p = 0.02), as shown in Figure 6A, while no significant

difference in bacterial adherence was detected between groups on

control membranes (data not shown).

To further investigate the binding of serum fH to L. lactis, we

incubated the bacteria with various concentrations of HI-serum

and measured serum fH binding to L. lactis by ELISA. As shown in

Figure 6B, a dose-response relationship exists for L. lactis binding

of serum fH, with up to 4-fold more serum fH bound to L. lactis

(pKS80-SdrE) than to L. lactis (pKS80) at 20% HI-serum with

significantly more binding of serum fH to L. lactis (pKS80-SdrE) as

a group (p = 0.005). Additionally, serum fH extracted from L. lactis

Figure 8. SdrE expression reduces C5a generation. L. lactis were
incubated with various concentrations of NHS at 37uC. Supernatants
were assessed for C5a content via C5a ELISA. A, GVBS++ buffer, 15 mins
(allows activation of all complement pathways), p,0.001, as a group; B,
Mg-EGTA-GVBS buffer, 30 mins (alternative pathway activation only),
p,0.001, as a group. Data represent the mean of 4 independent
experiments 6 SEM.
doi:10.1371/journal.pone.0038407.g008

Figure 9. SdrE expression reduces L. lactis killing by PMNs. L.
lactis were incubated with 10% NHS with or without PMNs and tumbled
at 37uC. Samples were taken at various time points, diluted in sterile
water, and plated (p = 0.0016, as a group). Data represent the mean of
at least 4 independent experiments 6 SEM.
doi:10.1371/journal.pone.0038407.g009
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pre-incubated with 20% HI-serum was analyzed by anti-fH

Western blot (Figure 6C). L. lactis (pKS80-SdrE) bound much

more serum fH than L. lactis (pKS80), confirming that surface

expression of SdrE enhanced the binding of serum fH to L. lactis.

SdrE-bound fH retains cofactor functionality
To characterize the significance of fH recruitment by SdrE, we

sought to examine whether SdrE-bound fH remained functionally

active in its ability to provide cofactor activity for factor I-mediated

cleavage of C3b. L. lactis variants were incubated with 10% HI-

serum to bind serum fH. Following washing, purified C3b and

purified factor I were added. Supernatants were examined for C3b

cleavage via anti-C3 Western blotting under reducing conditions.

As shown in Figure 7A, L. lactis (pKS80-SdrE) incubated with HI-

serum produced more C3b cleavage (iC3b) than the empty vector

control, L. lactis (pKS80), indicating that fH bound to the bacterial

surface via SdrE exhibits cofactor functionality for factor I. Since

L. lactis (pKS80) binds minimal serum fH, some limited C3b

cleavage was evident for this group.

Surface expression of SdrE reduces total C3-fragment
deposition

Since iC3b cannot participate in the formation of an active

convertase, thereby preventing additional C3 activation by the

alternative pathway, we sought to examine the extent to which the

surface expression of SdrE affected C3-fragment deposition on L.

lactis. L. lactis variants were incubated with NHS to allow

complement activation via all pathways (GVBS++ buffer), as well

as the alternative pathway only (Mg-EGTA-GVBS). Surface-

bound C3-fragments were stripped with 25 mM methylamine and

quantitated by C3 ELISA. In conditions that permitted the

activation of all complement pathways, significantly less C3-

fragments were deposited on L. lactis (pKS80-SdrE) compared to

L. lactis (pKS80) as a group, using various concentrations of NHS

(Figure 7B, p,0.001) and varied incubation times (Figure 7C,

p,0.0001). Under conditions that permitted the activation of the

alternative pathway only, a similar result was yielded with

significantly less C3-fragment deposition on L. lactis (pKS80-SdrE)

compared to L. lactis (pKS80) as a group (Figure 7D, p,0.0001).

Surface expression of SdrE reduces total C5a generation
Similar to affecting the C3 convertase of the alternative pathway

(C3bBb), the cleavage of C3b to iC3b also inhibits the formation of

the C5 convertase for all complement pathways as C3b is a

component of the C5 convertase for each pathway (C4bC2aC3b,

classical and lectin C5-convertase; C3bBbC3b, alternative C5-

convertase). Therefore, we examined the effect of SdrE surface

expression on the generation of C5a using L. lactis variants. L. lactis

were incubated with various concentrations of NHS for 15 mins in

conditions that allowed the activation of all pathways or the

alternative pathway only. Complement activation was stopped by

the addition of EDTA and supernatants were assessed for evidence

of C5a generation by ELISA. As expected, L. lactis (pKS80-SdrE)

produced significantly less C5a than L. lactis (pKS80) in either

condition tested as a group (Figure 8A,B, p,0.001).

Surface expression of SdrE reduces the number of
bacteria killed by PMNs

A significant reduction in both C3-fragment opsonization and

C5a anaphylatoxin generation indicates a down regulation of

complement activation and generation of effectors attributable to

the surface expression of SdrE. Therefore, we investigated the

extent to which these changes would alter bacterial killing by

neutrophils. L. lactis variants were incubated with 10% NHS with

or without PMNs in conditions that permitted the activation of all

complement pathways. As shown in Figure 9, significantly fewer

SdrE-expressing L. lactis (pKS80-SdrE) were killed than control L.

lactis (pKS80) as a group (p = 0.0016), suggesting that the surface

expression of SdrE provides a survival advantage for L. lactis.

Discussion

Many pathogenic bacteria express proteins that interfere with

the host defense, with complement evasion a central strategy to

their success in causing infection and disease [11,14,30,31,32,33].

As a highly successful pathogen, S. aureus is no exception. S. aureus

produces an effective arsenal directly targeted at the host immune

system, including the complement cascade and inhibition of its

downstream effects. Our current knowledge of the ability of S.

aureus to subvert the complement system continues to grow.

In the present study, we identified two potential fH-binding S.

aureus cell wall proteins: SdrE and ClfA. Both belong to the Sdr

family of structurally related cell wall-associated proteins that

contain a region of serine-aspartate repeats [34,35,36]. Anchored

via a conserved LPXTG motif, SdrE and ClfA possess an R region

containing the repeating SD dipeptides, and a unique A region;

SdrE also contains a B region. ClfA is known to bind fibrinogen

[34,37] and fI, as well as function as a cofactor for fI-mediated

degradation of C3b [15,16,38]. SdrE is less well described;

however, it is implicated in human platelet aggregation when

expressed on the surface of Lactococcus lactis [26]. Until now, a

definitive ligand for SdrE has been elusive.

We identified SdrE as a putative fH-binding protein via mass

spectrometric analysis of S. aureus cell wall proteins isolated by two

distinct techniques: purified fH overlay blot of fractionated cell

wall proteins as well as cross-linking. The corresponding identi-

fications provided extremely high peptide scores and expect values

indicating the strength of these identifications. Studies using

recombinantly expressed SdrE validated the ability of this protein

to bind fH whether purified or in serum, with a time- and dose-

dependent relationship evident. Using a gain-of-function L. lactis

model, we demonstrated that SdrE expression on a bacterial

surface significantly enhances fH recruitment, which confirms our

rSdrE-fH binding data. Functional analysis of rSdrE-bound fH

revealed that fH remains functionally active in its ability to provide

cofactor activity for fI-mediated cleavage of C3b, with a positive

correlation of iC3b generation for increasing amounts of fH. This

was also observed for L. lactis-SdrE-bound fH. Cleaved C3b (iC3b)

can no longer participate in the formation of C3- and C5-

convertases which negatively affects amplification of the comple-

ment cascade [7] resulting in decreased S. aureus phagocytosis, as

we have previously demonstrated [39]. Likewise, surface expres-

sion of SdrE on the surrogate bacterium L. lactis resulted in less

C3-fragment deposition, less C5a generation, and decreased

complement-mediated killing by neutrophils. The down-regulation

of complement-mediated host defenses in this gain-of-function

model strongly suggests that SdrE is an immune evasion protein.

Indeed, S. aureus strains that express SdrE are typically associated

with invasive infection [40,41] with 90% of 497 S. aureus isolates

tested being sdrE positive [41].

While characterizing the fH-binding protein band fractionated

from cell wall preparations, we also identified ClfA. However, no

ClfA peptides were identified in the cross-linked sample.

Recombinantly expressed ClfA did not bind purified fH and

anti-fH Western-blot analysis of serum proteins bound to rClfA

revealed no significant difference between fH binding to rClfA

compared to BSA, as determined via optical densitometry.
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Therefore, it seems reasonable that ClfA was originally identified

along with SdrE as a putative fH-binding protein due to co-

migration during fractionation and gel electrophoresis attributable

to the similar molecular weights and charges of these proteins.

Our earlier examination of S. aureus-bound serum proteins

suggests that S. aureus binds FHL-1, FHR-1a, and/or FHR-1b
[25]. Therefore, it is possible that these proteins interact with

SdrE. However, under the conditions tested, we were unable to

demonstrate binding of FHL-1, FHR-1a, and/or FHR-1b to

recombinant SdrE or SdrE expressed on the surface of L. lactis.

The serum concentration of FHL-1 is 10–50 times lower than fH

[40], which may have contributed to the negative result. FHR-1a
and FHR-1b are known to be at a much lower concentration in

serum than fH; however, their concentrations have not been

clearly defined [41]. Therefore, whether FHL-1 and/or FHR-1a/

b interact with SdrE will be further addressed in future studies.

The staphylococcus protein Sbi has previously been shown to

bind fH in a triparte complex with C3b via Sbi domains III and IV

[42]. Sbi can be found in both the cytoplasmic membrane fraction

as well as secreted into the external milieu [43]. The N-terminal

domains of Sbi (I and II) bind IgG in a similar manner to

staphylococcal protein A when exposed on the cell surface,

whereas the C-terminal domains of Sbi (III and IV) are only

biologically active when secreted [43]. Therefore, Sbi cannot

contribute to the acquisition of fH to the staphylococcal surface.

In summary, our data show that rSdrE is a clear fH-binding

molecule due to its ability to bind fH whether purified or in serum.

Moreover, rSdrE-bound fH retains cofactor activity for fI-

mediated cleavage of C3b. Additionally, our studies using SdrE-

expressing L. lactis demonstrate that SdrE expression on the

bacterial surface increases the binding of fH, down-regulates

complement effectors, and provides protection from neutrophil

killing. As such, SdrE recruitment of fH likely provides a survival

advantage for S. aureus by negatively affecting the formation of

complement activating complexes, thereby dampening the host

immune response. To our knowledge, this is the first description of

a S. aureus surface protein that recruits the potent complement

regulator fH to evade the immune response.
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