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Testing a Model Parameter When Another is 
Unidentified Under the Null 
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The Economic and Social Research Institute 

Abstract: Some standard test procedures, such as Score and Likel ihood Ratio, replace nuisance 
parameters by the i r m a x i m u m likel ihood estimates under the n u l l hypothesis about the parameter 
of interest . I n some models, however, a nuisance parameter is not identif ied under the n u l l , so tha t 
these approaches need modification. By t ak ing a mathematically tractable case, this paper i l lustrates 
the issues tha t arise and the solutions t ha t have been proposed i n the l i te ra ture . The r iva l tests are 
compared i n terms of power and robustness to misspecification. 

n t i l relat ively recently the topic of hypothesis testing when a "nuisance" 
parameter (that is, a parameter not assigned a value by the hypothesis 

under test) is unidentifiable under the nu l l was a rather esoteric sideline i n 
mathematical statistics, w i t h Davies (1977) the best known reference. Engle 
(1984) d id discuss h6w the problem can arise i n econometrics and Watson and 
Engle (1985) employed the Davies approach to test for a t ime varying regression 
coefficient. Godfrey (1988) continued the discussion, applying the Davies method 
to some cases and suggesting another approach. I n the 1990s interest i n the 
topic has escalated i n the econometrics l i terature w i t h contributions including 
Bera and Higgins (1992); K i n g and Shively (1993); Andrews and Ploberger (1994); 
Bera and Ra (1995); Hansen (1996); Bera, Ra and Sarkar (1997); and Conniffe 
(1998). 

Paper presented at the Twelf th A n n u a l Conference of the I r i sh Economic Association. 
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I I N T R O D U C T I O N 



The topic, when treated i n a general way, can lead to demanding mathematics 
and sometimes to expressions tha t are not amenable to algebraic analysis, but 
only to computationally intensive numerical methods. Yet i t is impor tant for 
any user of t h i s developing methodology to unders tand the issues and 
assumptions invo lved and these do not differ fundamenta l ly between a 
mathemat ical ly easy case and a very diff icult one. Most of this paper w i l l 
concentrate on a simple model that adequately demonstrates the important 
points and the key differences i n approaches. 

I I N U I S A N C E PARAMETER U N I D E N T I F I A B L E U N D E R T H E N U L L 

The si tuation is easiest understood by comparing two simple models 

y s = 9 + <t>xi +ej (1) 

yi=ex^+ei (2) 

where the e's are assumed independently normally distr ibuted w i t h variance o 2 

and the n u l l hypothesis is 0 = 0. When the nu l l is true model (1) becomes 
y ( ^ X j + e , and the nuisance parameter can be es t imated (probably by 
maximum likelihood) "under the nul l" , w i t h the estimator denoted <j>. Bu t model 
(2) becomes y ; = e ;, which does not contain <)> and so (j> does not exist. The model 

y ; = Qxu +e(J)x2i +e; (3) 

is another example and w i l l be examined i n detail i n this paper. Of course, 
models w i t h more than one nuisance parameter unident if iable are easily 
visualised, for example, the Cobb-Douglas w i t h additive disturbance te rm 

y* = e x t i x 2 i + e i ' 

where neither of the nuisance parameters are identifiable under the nu l l . 

The Testing Problem 
The three best known approaches for constructing a statist ical test are 

probably the Score (Lagrange Mul t ip l i e r ) , the Likelihood Ratio and the Wald 
procedures. A l l involve the likelihood function and are closely related. The Score 
test cr i ter ion for testing 0 = 0 t , given a nuisance parameter § is: 
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w i t h p 2 = I2e<t> / l e e l w Both I e e and p 2 can be functions of <)> and V replaces <|) by 
(j). But , of course, this approach requires <|>. 

So does the Likel ihood Ratio criterion, 

-2[l(e t,$,y)-l(e,$,y)], 

where 9 and 4> are the unrestricted maximum likelihood estimates, given by 
the solutions of 

31(0,4) _ Q a n d 3 K M ) = 0 . 
36 3<t> 

The Wald cri terion, which compares 0 - 0 t to its standard error does not require 
<j>. I t may require $, as a step i n obtaining the corresponding 0 and i n estimating 
i ts variance, but 4> can be estimated. The criterion's nu l l d is t r ibut ion may be 
complicated by effects associated w i t h non-identification of <j>, but its relative 
neglect i n the l i terature may be unjustified and i t w i l l be returned to. 

I l l T H E ALTERNATIVES I N T H E L I T E R A T U R E 

I n the regular case when <|> is estimable under the nu l l the expectation of the 
Score 

91(9,40 
39 



is usual ly zero only when 9 = 9 t and 4> is at i t s t rue value, a l though the 
expectation is asymptotically zero when <j) replaces 4>. This is central to the 
va l id i ty of the Score test. However, Davies (1977, 1987) observed tha t when 4> is 
unidentifiable under the nu l l , the expectation of (7) is zero at 8 = 0 t , for arbi t rary 
constant <(>. The variance of (7) is then I e e and i f the y's are independent, so tha t 
1(9,<)>) = Lf(9,<t>,yj), the central l i m i t ensures tha t 

31(9t,4>) x a i O t , ^ 
89 89 

is asymptotically X i • Davies considered conducting a (possibly infini te) series 
of tests over the whole possible range of values of (j), which is equivalent to basing 
the test on the maximum of (8) w i t h respect to 4>. The nu l l d is t r ibut ion of this 
maximum is no longer %\, however. Davies proceeded by treat ing (8) as a random 
function, or stochastic process, of 4>, which could be assumed Gaussian for large 
sample size and considering the probability of the process crossing a barrier. 
Very s imilar approaches have been used i n recent years i n obtaining asymptotic 
cri t ical values for un i t root tests and tests of structural change. However, except 
for special cases such as model (3), the task of obtaining cri t ical values can be 
analytically intractable. Davies employed bounds to significance levels, while 
Hansen (1996) used transformation and simulation to estimate cri t ical values. 1 

Other authors have suggested alternatives to the Davies procedure. Godfrey 
(1988) suggested choice of some (constant) 4>, so (8) is asymptotically %i under 
the n u l l , but the power of the test depends on choice of 4>. Bera, Ra and Sarkar 
(1997) have reviewed examples where th is approach has appeared i n the 
l i terature, including some that amount to the choice of <)> = 0. Conniffe (1998) 
argued tha t although 4> is unobtainable, 4>> the maximum likelihood estimator 
under the alternative 9 9 t , is estimable and substituted i t into (7). This could 
have been done even i f 4> was identifiable under the nu l l and then the modified 
score test would be obtained by adjusting the variance of (7) to allow for the 
est imation of 4>. Since 

31 l f l A , 2 9 21 
1(9,40 = 1(9, <|>) + (<(> - 40 — + j(4> - 4>) — 2 + • • •> 

where <(> now means the true value, 

1. A referee has remarked tha t tha t the Davies test can be bootstrapped fa i r ly easily in many 
cases. 
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Now approximating the second derivative by - I e < 1 and noting that the covariance 
of 

— ^ p - and <|)-(|) 

is asymptotically zero, the variance is approximately 

.2 N 
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and the test cr i ter ion is 

a i O ^ ) ^ 31(6t,(t)) 
39 39 

(9) 

The test cr i ter ion (9) differs from (4), except when p 2 is zero, because <ji rather 
than ij> is inserted i n (7) and the variance modification involves division by 1-p 2 

rather than mul t ip l ica t ion by i t . When <)) is unidentifiable under the n u l l , (4) 
cannot be calculated , but (9) can and i t w i l l be applied to model (3) i n the next 
section. For a fair ly general regression model w i t h some parameters identifiable 
under the n u l l and some not, Conniffe (1998) compared the appropria te 
generalisation of (9) to the Davies test statistic and shows its advantages, i n at 
least some circumstances, of robustness, power and even simplicity. I t was also 
remarked tha t the generalisation of (9) is often of Wald test form. However, 
comparisons i n general cases are not mathemat ical ly t r i v i a l , but the key 
differences between test procedures can be i l lustrated through analysis of model 
(3), which permits simple algebraic analysis tha t can be seen as in tu i t ive ly 
plausible. 

I V T H E SIMPLE EXPOSITORY M O D E L 

Model (3) has already been employed by Godfrey (1988) to illustrate the Davies 
test and his own idea of assuming some constant <J). Here the i l lus t ra t ion w i l l be 
extended to the modified score test (9) and then the three tests w i l l be compared. 
The log l ikelihood is: 



1 = - 1 log TO2 - ^ I (y i - 9x u - 6$X 2 i ) 2 . 

So 

| j = - \ X (y i - ex u - e<t>x2i ) ( x u + <t>2i), 
at ) f j 

which at 8 = 0 is 

^ • I y i ( x i i + «|)x2i). (10) 

Note tha t (10), the Score at 6 = 0 contains <\> even though i t is not identifiable 
under the n u l l , since the model is then jus t y ; = e;, but that the expectation of 
(10) is zero whatever the value of <)). The a 2 parameter is estimable under the 
n u l l , of course. 

The variance of (10) is 

4 - I ( x l i + ( ( . x 2 l ) 2 . (11) 
a 

So for any constant $ 

^ r ' ( ' » + » " i > ] 2

 ( i 2 ) 
a 2 I ( X l i + < t ) x 2 i ) 2 

would (when a 2 is replaced by its estimate under the n u l l Zy 2 /n) be distr ibuted 
as asymptotically Xi (actually F l n i n finite samples). The simple test suggested 
by Godfrey jus t makes an arbi t rary single choice of § i n (12). The Davies test 
cr i ter ion maximises (12) w i t h respect to <(> (assuming no l imitat ions on i ts range) 
and this works out to be 

- V b l X X i y + b 2 X X 2 V ) > (13) 
a 

where b\ and b 2 are the OLS estimators of coefficients i n a regression of y on Xi 
and x 2 and so (13) is asymptotically xf> u n der the nu l l , or F w i t h 2 and n-2 
degrees of freedom i n finite samples. This is intui t ively plausible, since the choice 
of models is between y { = e{ and y = bjXj + b 2 x 2 + e, w i t h bY = 0 and b 2 = 0<j>. 

By obtaining the second derivatives of the likelihood and t ak ing expectations 



2 _ [ X x s j i t x H + ^ i ) ] 2 

I x l i K x n + ^ i ) 2 " 

Subst i tu t ing <j> into (10), squaring and dividing by i ts variance, which is (11) 
divided by 1-p2 (again inser t ing (j> where required) gives the Score test statistic: 

[ l y i ( x l i + $ x 2 i ) 

<J 2 X(Xi i+<frx 2 i ) 2 

f r i i \ 
| X X 2 i ( X i i +<t>x2i) 

X x l i K x j i + ^ X a i ) 2 
(14) 

J 

From y = b ^ + b 2 x 2 + e, i t is clear tha t the MLE's of the coefficients are 
and b 2 and so the M L E of d) is b 2 / b j , which i n this model is also the value tha t 
maximises (12). Then (14) simplifies greatly to: 

b ; X x i y + b 2 I x 2 y - ^ ^ -
X x 2 

This is the regression sum of squares for f i t t i n g both x1 and x 2 minus the 
regression sum of squares for f i t t ing x 2 alone which, of course, is the sum of 
squares for test ing X j given x 2 f i t ted and equals 

va r (b j ) 
(15) 

the square of the usual " t" value. I t s n u l l d i s t r i b u t i o n is asymptot ica l ly 
X?, or F j n _ 2 , i n f inite samples. Since the M L E of 0 is b\, (15) is also the Wald 
test, which is not surprising given the equivalence of Wald and Score tests i n 
standard l inear regression. A point wor th not ing is tha t (15) is a val id test for 0 
(=bi) = 0, whether b 2 ( = 0()>) = 0 or not. 

V COMPARING TESTS 

The three possible tests are given by (12), (13) and (15). The first assumes a 
value for <)) and is F j > n . x i f some assumptions hold. The second avoids the issue of 
the value of <|> by testing over i ts fu l l range and is F 2 n . 2 , again i f assumptions are 
correct. The t h i r d estimates <|) by its unrestricted M L E and is F x n _ 2 and does not 
require one key assumption of the other two tests. 



Robustness to Model Specification 
Impl i c i t i n model (3) 

y ; =0x u +e<|>x 2 i +e i , 

is the idea tha t the coefficients of both x± and x 2 become zero at 6 = 0. Bu t i t is 
clear tha t any two variable regression model 

where L, is not zero i f 9 is zero, can be wr i t t en i n the form of model (3) by t ak ing 
4> = £ / 0. As 9 —> 0 <j> becomes ever larger, so that the true model w i t h 9 = 0 
remains y ; = £x 2 i +e{. Perhaps economic theory strongly suggests that the model 
is p rope r ly f o r m u l a t e d i n the sense t h a t £ = 0 when 9 = 0, b u t model 
misspecification is a constant danger i n econometrics . I f £ is non-zero when 9 = 
0, both the test statistics (12) and (13) are non-central chi-squared w i t h the non-
central i ty parameter a function of £ and the Type 1 error probability tending to 
un i ty for large n. The Score test (15), however, s t i l l has its correct significance 
level, because, unlike (13), the sum of squares corresponding to x 2 has been 
subtracted out. Conniffe (1998) shows that this property of the Score test extends 
to more general models and that the Score test statistic can be seen as a correction 
to the Davies statistic to ensure robustness. A situation where (12) or (13) were 
h igh ly significant, but (15) not nearly significant, would strongly suggest 
misspecification. I f (12) or (13) were jus t significant (at 5 per cent, say) and (15) 
a l i t t l e short of significance, i t might be plausible to take the specification as 
correct and at t r ibute the discrepancy to greater power for tests (12) and (13). 
Tha t , however, raises the question of how test powers compare when the 
specification is correct. 

Relative Power of Tests 
Test powers depend on the true values of parameters and on the variat ion i n 

x L and x 2 and the correlation between them, but these factors are encapsulated 
by the non-centrality parameters. For the F test based on (12), w i t h 1 and n-1 
degrees of freedom, the non-centrality parameter is: 

Q2[J.{x1 + <\>ax2)(xl + <bx2)]2 

CT2I(x1+<l)aX2)2 

where 4>a is the value substituted for the unknown true <J). The non-centrality 
parameter of the F test based on (13), w i t h 2 and n-2 degrees of freedom, is 



8 2 

^ - [ I x 2 + 2 < t ) I x 1 x 2 + ( t ) 2 I x 2 ] , 

whi le tha t for the Score F test based on (15), w i t h 1 and n-2 degrees of freedom, 
is: 

2 ( X * i X 2 ) 
1 

: ^ X x 2 ( l - r 2 ) 
a ' 

where r = Jix1x2 I ^ X x f x ~ x f ^ For convenience, assume X * i X 2 = 0 and rescale 
the x's so tha t X x 2 = X ^ l = n o 2 . Then the non-centrality parameters become 

n9' n 6 2 ( l + (|)2) and n9 2 

respectively. The comparison between (12) and (15) is simplest, because both 
are single degree of freedom (for numerators) tests so the larger non-centrality 
parameter means the most powerful test (neglecting n-1 v n-2 i n denominators). 
Test (12) is more powerful than test (15) i f the rat io 

(1 + W a ) 2 . -, 

I t clearly w i l l be i f the guess is correct, although there w i l l be l i t t l e to gain i f <|> is 
small . I f <p = . l a n d the guess correct the rat io is 1.01. I f the guess is wrong, say 
.5, (12) could be considerably less powerful than (15) because the rat io is .8. On 
the other hand, i f § = .5 and the guess is r ight , (12) is better since the rat io is 
1.25. I f the guess is 1.0, the rat io is 1.125, so (12) s t i l l has some advantage, but 
i f i t is 2.0, the rat io is .8 and so (15) is better. 

Comparisons of tests based on (13) and (15) require actual evaluations of 
power because degrees of freedom differ as wel l as non-centrality parameters. 
The choice of 8 is impor tant for comparisons. There is l i t t l e point i n comparing 
tests at large values of 8, because both powers w i l l be almost unity, or at very 
small values, when both powers are near zero. The tests should be compared at 
intermediate levels of power, where there is scope for appreciable differences 
between them. For a "t" test the 5 per cent crit ical value is about 2 and the 
probabil i ty tha t a (symmetrically distributed) statistic exceeds its own mean is 
.5, so t ak ing 8 = 2 / V n makes the power of the Score test for a 5 per cent 
significance level approximately .5, since the F rat io is jus t the square of a "t" 
statistic. Table 1 compares test powers. 



Table 1: Powers of Score and Davies Tests for a=.05 

Fl.n-2 (Score test) 
= 0 .05 

^ 2 . n - 2 

.1 .2 .3 .4 .5 

62=.2 (n=20) .474 .359 .375 .390 .422 .452 .481 .510 
92=.08 (n=50) .500 .393 .411 .428 .461 .494 .525 .556 
92=.04 (n=100) .500 .403 .420 .438 .472 .506 .538 .568 

The Score test is more powerful than the Davies test, especially for low degrees 
of freedom, unless values of 0 are much larger than 0. However, the case of 
X x t x 2 = 0 is rather favourable to the score test. For X x t x 2 * 0, the power of 
the Score test decreases as r 2 increases from zero. The power of the r iva l test 
also falls i f r is negative (assuming § positive) and the pattern of Table 1 persists. 
Indeed, for n = 20, r = - .5 , the Score test is also more powerful at §2 = .4 and .5 . 
However, for positive r, the value of <|>2 below which the Score test is more 
powerful, decreases rapidly w i t h r. So for r = .3 the Score test becomes less 
powerful at (|)2 = .1 and at r = .5 i t is less powerful even at <))2= .05. There is no 
uniformly most powerful test and the best choice depends on the circumstances. 

What is clear is tha t even i f the model (3) is known to be perfectly specified, 
the Score test (15) is sometimes preferable to (13) on power grounds. As regards 
Godfrey's test (12), i t has already been seen that i t can be better or worse than 
the Score test , depending on whether a good or bad guess is made for <)>. Without 
prior knowledge of some sort, guessing seems a dubious way to proceed. I f there 
is any possibility tha t model (3) is incorrectly specified i n the sense tha t C(=9<)>) 
is non-zero under the nu l l , preference must swing decisively to the score test, 
since i t is then the only val id test. Overall , the Score test seems to be the 
preferable procedure. 

These remarks apply to more general models, a l though mathemat ica l 
diff icult ies complicate comparisons. The n u l l d is t r ibut ions need not be x 2 

asymptotically or F i n finite samples and can involve mixtures of distributions, 
even i n only moderately complex models, although the generalisation of (15) 
can be much simpler than tha t of (13) i n this regard (Conniffe, 1998). The vir tue 
of model (3) i n this paper has been i ts t ractabil i ty. I t does, however, have 
credibi l i ty i n suggesting the wider scope of the findings, because a class of non
linear models can be approximated by model (3). 

y; =6g(<t»,xi) + e i =0g(4>,x i) + e((t>-<i>)g'((t>,xi) + e i 

= 0(gi - ( fg i 'HOct ig i '+e i , 



or 

yj = 9 z l i + C z 2 l + e i , 

w h e r e pr ime denotes der ivat ive , £ = 6<|) a n d z x i a n d z 2 ; are not functions of 
parameters . 

REFERENCES 

ANDREWS, D.W.K., and W. PLOBERGER, 1994. "Optimal Tests when a Nuisance 
Parameter is Present only Under the Alternative", Econometrica, Vol. 62, pp. 1383-
1414. 

BERA, A.K., and M.L. HIGGINS, 1992. "A Test for Conditional Heteroscedasticity in 
Time Series Models", Journal of Time Series Analysis, Vol. 13, pp. 501-519. 

BERA, A.K., and S. RA, 1995. "A Test for the Presence of Conditional Heteroscedasticity 
Within Arch-M Framework", Econometrics Reviews, Vol. 14, pp. 473-485. 

BERA, A.K., S. RA, and N. SARKAR, 1997. "Hypothesis Testing for Some Nonregular 
Cases in Econometrics", in S. Chakravarty, D. Coondoa and R. Mukerjee (eds.), 
Quantitative Economics — Theory and Practice; Essays in Honour of Professor 
N. Bhattacharya, New Delhi: Allied Publishers, pp. 324-356. 

CONNIFFE, D., 1998. "Score Tests when a Nuisance Parameter is Unidentified Under 
the Null Hypothesis", Journal of Statistical Planning and Inference, in press. 

DAVIES, R.B., 1977. "Hypothesis Testing when a Nuisance Parameter is Present Only 
Under the Alternative", Biometrika , Vol. 64, pp. 247-254. 

DAVIES, R.B., 1987. "Hypothesis Testing when a Nuisance Parameter is Present Only 
Under the Alternative", Biometrika, Vol. 74, pp. 33-43. 

ENGLE, R.F., 1984. "Wald, Likelihood Ratio and Lagrange Mult ip l ier Tests in 
Econometrics", in Z. Griliches and M.D. Intriligator (eds.), Handbook of Econometrics 
Vol. 2, New York: North-Holland, pp. 776-826. 

GODFREY, L.G., 1988. Misspecification Tests in Econometrics: The Lagrange Multiplier 
Principle and Other Approaches. Cambridge: Cambridge University Press. 

HANSEN, B.E., 1996. "Inference when a Nuisance Parameter is not Identified Under 
the Null Hypothesis", Econometrica Vol. 64, pp. 413-430. 

KING, M.L., and T.S. SHIVELY, 1993. "Locally Optimal Testing when a Nuisance 
Parameter is Present Only Under the Alternative", The Review of Economics and 
Statistics, Vol. 75, pp. 1-7. 

WATSON, M.W., and R.F. ENGLE, 1985. "Testing for Regression Coefficient Stability 
with a Stationary AR(1) Alternative", Review of Economics and Statistics, Vol. 67, 
pp. 341-346. 




