DYNAMICS OF ONE-RESONANT BIHOLOMORPHISMS

FILIPPO BRACCI AND DMITRI ZAITSEV*

Abstract

Our first main result is a construction of a simple formal normal form for holomorphic diffeomorphisms in \mathbb{C}^{n} whose differentials have one-dimensional family of resonances in the first m eigenvalues, $m \leq n$ (but more resonances are allowed for other eigenvalues). Next, we provide invariants and give conditions for the existence of basins of attraction. Finally, we give applications and examples demonstrating the sharpness of our conditions.

1. Introduction

Let F be a germ of holomorphic diffeomorphism of \mathbb{C}^{n} fixing the origin 0 with diagonalizable differential. The dynamical behavior of the sequence of iterates $\left\{F^{\circ q}\right\}_{q \in \mathbb{N}}$ of F in a neighborhood of 0 is depicted at the first order by the dynamics of its differential $d F_{0}$. In fact, depending on the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $d F_{0}$, in some cases both dynamics are the same.

In the hyperbolic case (namely when none of the eigenvalues is of modulus 1) the map is topologically conjugated to its differential (by the Hartman-Grobman theorem [19, [13], [14]) and the dynamics is clear. Moreover, if the eigenvalues have either all modulus strictly smaller than one or all strictly greater than one, then the origin is an attracting or respectively repelling fixed point for an open neighborhood of 0 . Also, by the stable/unstable manifold theorem, there exists a holomorphic (germ of) manifold invariant under F and tangent to the sum of the eigenspaces of those λ_{j} 's such that $\left|\lambda_{j}\right|<1\left(\right.$ resp. $\left.\left|\lambda_{j}\right|>1\right)$ which is attracted to (resp. repelled from) 0 . However, already in case when all eigenvalues have modulus different from 1 , holomorphic linearization is not always possible due to the presence of resonances among the eigenvalues (see, for instance, 4, Chapter IV]).

The case where some eigenvalue has modulus 1 is the most "chaotic" and interesting, since it presents a plethora of possible scenarios. For instance, if those eigenvalues of modulus 1 are not roots of unity and satisfy some Bruno-type conditions, then there exist Siegel-type invariant submanifolds (see [20], [31]) on which the map is (holomorphically) linearizable. If the map is tangent to the identity, it has been proved by Écalle [11] and Hakim [18] that generically there exist "petals", also called "parabolic curves", namely, one-dimensional F-invariant analytic discs having the origin in their boundary and on which the dynamics is of parabolic type. Later, Abate [1] (see also [3]) proved that such petals always exist in dimension two.

On the other hand, Hakim [17] (based on the previous work by Fatou [12] and Ueda [29], [30] in \mathbb{C}^{2}, see also Takano [28]) studied the so-called semi-attractive case, with one eigenvalue equal

[^0]to 1 and the rest of eigenvalues having modulus less than 1 . She proved that either there exists a curve of fixed points or there exist attracting open petals. Such a result has been later generalized by Rivi 23 .

The quasi-parabolic case of a germ in \mathbb{C}^{2}, i.e. having one eigenvalue 1 and the other of modulus equal to one, but not a root of unity has been studied in [7] and it has been proved that, under a certain generic hypothesis called "dynamical separation", there exist petals tangent to the eigenspace of 1 . Such a result has been generalized to higher dimension by Rong [24], [25]. We refer the reader to the survey papers [2] and [5] for a more accurate review of existing results.

In case of diffeomorphisms with unipotent linear part, it was shown by Takens [27] (see also [16, Chapter 1]) that such diffeomorphism can be embedded in the flow of a formal vector field. Therefore, in this case the dynamics of the diffeomorphism, at least at the formal level, is related to that of a (formal) associated vector field. For instance, using the Camacho-Sad theorem on the existence of separatrices for vector fields [9], Brochero, Cano and Hernanz [8] gave another proof of Abate's theorem. On the other hand, when the linear part of the diffeomorphism is not unipotent, the authors are not aware of any general result about embedding such a diffeomorphism into the flow of a formal vector field. In fact, one encounteres somewhat unexpected differences between the dynamics of diffeomorphisms and that of vector fields, see Raissy [22].

The aim of the present paper is the study of normal forms and the dynamics of germs of holomorphic diffeomorphisms having a one-dimensional family of resonances among only certain eigenvalues (that we call here partially one-resonant diffeomorphisms). It should be mentioned here that (fully) one-resonant vector fields have been studied by Stolovitch in [26], where he also obtained a normal form for vector fields up to multiplication by a unit. In case of diffeomorphisms considered here, there is no natural analogue of multiplying by a unit and thus we are lead to seek a normal form for the original diffeomorphism only under conjugations.

More in details, let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of a biholomorphic diffeomorphism germ F at 0 . We say that F is one-resonant with respect to the first m eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}(1 \leq m \leq n)$ (or partially one-resonant) if there exists a fixed multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}, 0, \ldots, 0\right) \neq 0 \in \mathbb{N}^{n}$ such for $s \leq m$, the resonances $\lambda_{s}=\prod_{j=1}^{n} \lambda_{j}^{\beta_{j}}$ are precisely of the form $\lambda_{s}=\lambda_{s} \prod_{j=1}^{m} \lambda_{j}^{k \alpha_{j}}$, where $k \geq 1 \in \mathbb{N}$ is arbitrary. We stress out that, since arbitrary resonances are allowed for $s>m$, such a condition is much weaker (see Example 2.4) than the one-resonance condition normally found in the literature corresponding here to the case $m=n$, see e.g. [15, 26]. The main advantage of the new notion of partial one-resonance is that it can be applied to the subset of all eigenvalues of modulus equal to 1 that is natural to treat differently from the rest of the eigenvalues.

In case of partial one-resonance, the classical Poincaré-Dulac theory implies that, whenever F is not formally linearizable in the first m components, F is formally conjugated to a map whose first m components are of the form $\lambda_{j} z_{j}+a_{j} z^{\alpha k} z_{j}+R_{j}(z), j=1, \ldots, m$, where, the number $k \in \mathbb{N}$ is an invariant, called the order of F with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$, the vector $\left(a_{1}, \ldots, a_{m}\right) \neq 0$ is invariant up to a scalar multiple and the R_{j} 's contain only resonant terms of higher degree. The
number

$$
\Lambda=\Lambda(F):=\sum_{j=1}^{m} \frac{a_{j} \alpha_{j}}{\lambda_{j}}
$$

is an invariant up to a scalar multiple, and the map F is said to be non-degenerate provided $\Lambda \neq 0$.
We show that (partially) one-resonant non-degenerate diffeomorphisms have a simple formal normal form (see Theorem [3.6) in which the first m components are of the form

$$
\lambda_{j} z_{j}+a_{j} z^{k \alpha} z_{j}+\mu \alpha_{j} \bar{\lambda}_{j}^{-1} z^{2 k \alpha} z_{j}, \quad j=1, \ldots, m
$$

Although none of the eigenvalues $\lambda_{j}, j=1, \ldots, m$, might be roots of unity, such a normal form is the exact analogue of the formal normal form for parabolic germs in \mathbb{C}. In fact, a one-resonant germ acts as a parabolic germ on the space of leaves of the formal invariant foliation $\left\{z^{\alpha}=\right.$ const $\}$ and that is the reason for this parabolic-like behavior.

Let F be a one-resonant non-degenerate diffeomorphism with respect to the eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. We say that F is parabolically attracting with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ if

$$
\left|\lambda_{j}\right|=1, \quad \operatorname{Re}\left(a_{j} \lambda_{j}^{-1} \Lambda^{-1}\right)>0, \quad j=1, \ldots, m
$$

Again, such a condition is invariant and its inequality part is vacuous in dimension 1 or whenever $m=1$ and $\left|\lambda_{1}\right|=1$ since in that case $\alpha=\left(\alpha_{1}, 0, \ldots, 0\right)$ with $\alpha_{1}>0$. Our main result is the following:

Theorem 1.1. Let F be a holomorphic diffeomorphism germ at 0 that is one-resonant, nondegenerate and parabolically attracting with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. Suppose that $\left|\lambda_{j}\right|<1$ for $j>m$. Let $k \in \mathbb{N}$ be the order of F with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. Then F has k disjoint basins of attraction having 0 on the boundary.

The different basins of attraction for F (that may or may not be connected) project via the map $z \mapsto u=z^{\alpha}$ into different petals of the germ $u \mapsto u+\Lambda(F) u^{k+1}+o\left(|u|^{k+1}\right)$.

Theorem 1.1 has many consequences. For instance, we recover a result of Hakim (see Corollary 6.1) since not formally linearizable semi-attractive germs are always one-resonant, non degenerate and parabolically attracting. Also, we apply our machinery to the case of quasi-parabolic germs, providing "fat petals" in the quasi-parabolic dynamically separating and attracting cases (see Subsection (6.2). Another area of application of Theorem 1.1 concerns elliptic germs which, in dimension greater than 1, might present some, maybe unexpected, parabolic-like behavior, see Subsection 6.3. Finally, we present examples of a one-resonant degenerate as well as non-degenerate but not parabolically attracting germs which have no basins of attraction at 0 , demonstrating sharpness of the assumptions of Theorem 1.1, see Subsections 6.4 and 6.5,

The outline of the paper is as follows. In Section 2 we briefly recall the one-dimensional theory of parabolic germs and define one-resonant germs in higher dimension. In Section 3 we construct a formal normal form for non-degenerate partially one-resonant germs. In Section 4 we study the dynamics of normal forms, as a motivation for the subsequent Section [5, where we give the proof of Theorem 1.1. Finally, in Section 6 we apply our theory to the semi-attractive case, quasi-parabolic case, elliptic case and provide examples of diffeomorphism with no basins of attraction.

The first named author wishes to thank Jasmin Raissy for some helpful conversations. Also, both authors thank the referee for his/her very useful comments.

2. ONE-RESONANT DIFFEOMORPHISMS

2.1. Preliminaries on germs tangent to the identity in \mathbb{C}. (see e.g. [10]). Let

$$
\begin{equation*}
h(u):=u+A u^{k+1}+O\left(|u|^{k+2}\right) \tag{2.1}
\end{equation*}
$$

for some $A \neq 0$ and $k \geq 1$, be a germ at 0 of a holomorphic self-mapping of \mathbb{C}.
The attracting directions $\left\{v_{1}, \ldots, v_{k}\right\}$ for h are given by the k-th roots of $-\frac{|A|}{A}$. These are precisely the directions v such that the term $A v^{k+1}$ shows in the direction opposite to v. An attracting petal P for h is a simply-connected domain such that $0 \in \partial P, h(P) \subseteq P$ and $\lim _{m \rightarrow \infty} h^{\circ m}(z)=0$ for all $z \in P$, where $h^{\circ m}$ denotes the m th iterate of h.

We state here (a part of) the Leau-Fatou flower theorem. We write $a \sim b$ whenever there exists constants $0<c<C$ such that $c a \leq b \leq C a$.

Theorem 2.1 (Leau-Fatou). Let $h(u)$ be as in (2.1) and v an attracting direction for h at 0 . Then there exists an attracting petal P for h (said centered at v) such that for each $z \in P$ the following hold:
(1) $h^{\circ m}(z) \neq 0$ for all m and $\lim _{m \rightarrow \infty} \frac{h^{\circ m}(z)}{\left|h^{\circ m}(z)\right|}=v$,
(2) $\left|h^{\circ m}(z)\right|^{k} \sim \frac{1}{m}$.

Moreover, the petals centered at the attracting direction v can be chosen to be connected components of the set

$$
\left\{z \in \mathbb{C}:\left|A z^{k}+\delta\right|<\delta\right\}
$$

where $0<\delta \ll 1$.
By the property (1), petals centered at different attracting directions must be disjoint.
Remark 2.2. Property (1) of Theorem 2.1 is a part of the standard statement of the Leau-Fatou theorem (see, e.g., [2] or [6]). Property (2) follows from construction of the so-called Leau-Fatou coordinate. We sketch it briefly here for the reader convenience. Up to a dilation one can assume $A=-1 / k$ and $v=1$. Let $H:=\{w \in \mathbb{C}: \operatorname{Re} w>0,|w|>C\}$ and $\Psi(w):=w^{-1 / k}$ for $w \in H$ with the k-th root chosen so that $1^{1 / k}=1$. By the Leau-Fatou construction (see, e.g. [6, pp.19-22]) if $C>0$ is sufficiently large then the set $P:=\Psi(H)$ is h-invariant and the map $\varphi:=\Psi^{-1} \circ h \circ \Psi: H \rightarrow H$ satisfies

$$
\varphi(w)=w+1+O\left(|w|^{-1}\right), \quad w \in H
$$

From here both (1) and (2) follow easily.
2.2. Partially one-resonant germs. Let $\operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ denote the space of germs of holomorphic diffeomorphisms of \mathbb{C}^{n} fixing 0 . We shall adopt the notation $\mathbb{N}=\{0,1, \ldots\}$. Given $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ a set of complex numbers, recall that a resonance is a pair (j, l), where $j \in\{1, \ldots, n\}$ and $l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$ is a multi-index with $|l| \geq 2$ such that $\lambda_{j}=\lambda^{l}\left(\right.$ where $\left.\lambda^{l}:=\lambda_{1}^{l_{1}} \cdots \lambda_{n}^{l_{n}}\right)$.

In all the rest of the paper, and without mentioning it explicitly, we shall consider only germs of diffeomorphisms whose differential is diagonal.

Definition 2.3. For $F \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$, assume that the differential $d F_{0}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. We say that F is one-resonant with respect to the first m eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}(1 \leq m \leq n)$ if there exists a fixed multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}, 0, \ldots, 0\right) \neq 0 \in \mathbb{N}^{n}$ such that the resonances (j, l) with $j \in\{1, \ldots, m\}$ are precisely of the form $\left(j, \alpha k+e_{j}\right)$, where $e_{j} \in \mathbb{N}^{n}$ is the unit vector with 1 at the j th place and 0 otherwise and where $k \geq 1 \in \mathbb{N}$ is arbitrary. (In particular, it follows that the relation $\lambda_{1}^{\alpha_{1}} \cdots \lambda_{m}^{\alpha_{m}}=1$ holds and generates all other relations $\lambda_{1}^{\beta_{1}} \cdots \lambda_{n}^{\beta_{n}}=1$ with $\beta_{s} \geq 0$ for all s.) The multi-index α is called the index of resonance. If F is one-resonant with respect to $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ (i.e. $m=n$) we simply say that F is one-resonant.

The notion of one-resonance for $m=n$ has been known in the literature, see e.g. [15, 26]. However, its generalization for $m<n$ given here seems to be new. The following class of examples illustrates the difference.

Example 2.4. Let $F \in \operatorname{Diff}\left(\mathbb{C}^{3} ; 0\right)$ be any diffeomorphism with eigenvalues λ, μ, ν of $d F_{0}$ such that λ is a root of unity, $|\mu|<1$ and $\nu=\mu^{s}$ for some natural number $s \geq 1$. Then F is oneresonant with respect to λ but has resonances of the form $\left(3, s e_{2}\right)$ showing it is not one-resonant with respect to all the eigenvalues.
Remark 2.5. It follows directly from the definition that, if F is one-resonant with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$, then $\lambda_{j} \neq \lambda_{s}$ for any $j \in\{1, \ldots, m\}$ and $s \in\{1, \ldots, n\}$ with $j \neq s$. Indeed, otherwise one would have resonances of type $\left(j, k \alpha+e_{s}\right)$ which are not of the required form $\left(j, k \alpha+e_{j}\right)$.

Example 2.6. The same diffeomorphism can be considered one-resonant with respect to different groups of eigenvalues. For instance, consider $F(z, w)=\left(z+z^{3}, e^{2 \pi i \theta} w+z w\right)$, where θ is irrational. Then F is one-resonant with respect to $\lambda_{1}=1$ with index of resonance $(1,0)$. But also F is one-resonant (with respect to $\left\{\lambda_{1}, \lambda_{2}\right\}=\left\{1, e^{2 \pi i \theta}\right\}$ with the same index of resonance $(1,0)$). (Note that the higher order terms of F play no role here but will be used later in Example 3.4.)

As the previous example shows, there may exist "non-maximal" sets of "one-resonant eigenvalues". However, it is easy to see from the definition that any set of "one-resonant eigenvalues" is contained in the unique maximal set and containes the unique minimal set. Namely, let F be one-resonant with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ and assume that the index of resonance is $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}, 0, \ldots, 0\right)$. Since the relation $\lambda_{1}^{\alpha_{1}} \cdots \lambda_{m}^{\alpha_{m}}=1$ holds and generates all other relations $\lambda_{1}^{\beta_{1}} \cdots \lambda_{n}^{\beta_{n}}=1$ with $\beta_{s} \geq 0$ for all s, it follows that any other resonant set of eigenvalues corresponds to the same index α. Then it follows directly from the definition that every set of one-resonant eigenvalues contains the minimal set L of all λ_{j} with $\alpha_{j} \neq 0$ and the set L itself
is one-resonant. On the other hand, let \widetilde{L} be the set of all λ_{j} such that any resonance (j, l) is of the required form $\left(j, k \alpha+e_{j}\right)$. Then \widetilde{L} is the maximal one-resonant set that contains any other one-resonant set of eigenvalues.

The choice of the set of eigenvalues with respect to which the map is considered one-resonant depends on the problem one is facing, in our main result Theorem 1.1 it is natural to consider one-resonance with respect to the set of all eigenvalues of modulo one.

3. NORMAL FORM FOR NON-DEGENERATE ONE-RESONANT DIFFEOMORPHISMS

Let $F \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ be one-resonant with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ with index of resonance α. Using Poincaré-Dulac theory (see, e.g. [4, Chapter IV]), one can formally conjugate F to a germ $G=\left(G_{1}, \ldots, G_{n}\right)$ such that

$$
\begin{equation*}
G_{j}(z)=\lambda_{j} z_{j}+a_{j} z^{\alpha k} z_{j}+R_{j}(z), \quad j=1, \ldots, m \tag{3.1}
\end{equation*}
$$

where either $a=\left(a_{1}, \ldots, a_{m}\right) \neq 0$ and $R_{j}(z)$ contains only resonant monomials $a_{j s} z^{\alpha s} z_{j}$ with $s>k$ or $a_{j}=0$ and $R_{j} \equiv 0$ for all $j=1, \ldots, m$. Note that the second case occurs precisely when F is formally linearizable in the first m variables.
Definition 3.1. Let $F \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ be one-resonant with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ such that

$$
\begin{equation*}
F_{j}(z)=\lambda_{j} z_{j}+a_{j} z^{\alpha k} z_{j}+O\left(|z|^{|\alpha| k+2}\right), \quad j=1, \ldots, m \tag{3.2}
\end{equation*}
$$

with $k \geq 1$ and $a=\left(a_{1}, \ldots, a_{m}\right) \neq 0$, where α is the index of resonance. Set

$$
\begin{equation*}
\Lambda=\Lambda(F):=\sum_{j=1}^{m} \frac{a_{j} \alpha_{j}}{\lambda_{j}} \tag{3.3}
\end{equation*}
$$

We say that F is non-degenerate if $\Lambda \neq 0$.
Remark 3.2. The integer k in (3.2) is invariant under conjugations preserving the form (3.2) and the vector $a=\left(a_{1}, \ldots, a_{m}\right)$ is invariant up to multiplication by a scalar. In particular, the non-degeneracy condition given by Definition 3.1 is invariant. Indeed, if the conjugation with a $\operatorname{map} \psi=\left(\psi_{1}, \ldots, \psi_{n}\right) \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ preserves the form (3.2) (possibly changing a), then $\psi_{j}(z)=$ $b_{j} z_{j}+O\left(|z|^{2}\right), b_{j} \in \mathbb{C}^{*}$, for any $j=1, \ldots, m$, in view of Remark 2.5. Conjugating with the linear part of ψ, we see that for any such j, a_{j} is replaced by $a_{j} b^{\alpha k}$. Assume now that $\psi(z)=z+O\left(|z|^{2}\right)$. Then by the Poincaré-Dulac theory, since ψ preseves (3.2), all terms of order less than $|\alpha| k+2$ that ψ has in its first m components must be resonant and therefore a is invariant.

Definition 3.3. We call the invariant number k the order of F with respect to $\lambda_{1}, \ldots, \lambda_{m}$.
Example 3.4. Let F be the germ given in Example 2.6. Then F is non-degenerate when regarded as a one-resonant germ with respect to the eigenvalue 1 (with $k=2$ and $a=a_{1}=1$). But it becomes degenerate when regarded as a one-resonant germ (with respect to both eigenvalues $\left\{1, e^{2 \pi i \theta}\right\}$), because in that case $a=\left(a_{1}, a_{2}\right)=(0,1)$ and the index of resonance is $(1,0)$, thus $\Lambda(F)=0$. The main reason being the change of the order k.

Note that, more generally, for a germ of the form $\left(z+\ldots, e^{2 \pi i \theta} w+\ldots\right)$ with θ irrational, the condition of being non-degenerate with respect to $\left\{1, e^{2 \pi i \theta}\right\}$ is equivalent to F being dynamically separating in the terminology of [7] (see Subsection 6.2).

As illustrated by the latter example, if one passes from a smaller set of one-resonant eigenvalues to a larger one, the order k may drop, in which case the corresponding non-degeneracy conditions are not related, i.e. F can be non-degenerate with respect to the smaller set but not the larger one or with respect to the larger but not the smaller one. On the other hand, if the order k is the same for both sets, since both sets contain the set of all λ_{j} with $\alpha_{j} \neq 0$, the (non-)degeneracies with respect to the smaller and larger sets are clearly equivalent.

Remark 3.5. If F is one-resonant with respect to $\left\{\lambda_{1}\right\}$, then λ_{1} is a root of unity. Moreover, in this case F is non-degenerate if and only if it is not formally linearizable in the first component.

We have the following normal form for non-degenerate partially one-resonant diffeomorphisms.
Theorem 3.6. Let $\in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ be one-resonant and non-degenerate with respect to $\lambda_{1}, \ldots, \lambda_{m}$ with index of resonace α. Then there exist $k \in \mathbb{N}$ and numbers $\mu, a_{1}, \ldots, a_{m} \in \mathbb{C}$ such that F is formally conjugated to the map $\hat{F}(z)=\left(\hat{F}_{1}(z), \ldots, \hat{F}_{n}(z)\right)$, where

$$
\begin{equation*}
\hat{F}_{j}(z)=\lambda_{j} z_{j}+a_{j} z^{k \alpha} z_{j}+\mu \alpha_{j} \bar{\lambda}_{j}^{-1} z^{2 k \alpha} z_{j}, \quad j=1, \ldots, m \tag{3.4}
\end{equation*}
$$

and the components $\hat{F}_{j}(z)$ for $j=m+1, \ldots, n$, contain only resonant monomials.
Proof. By the Poincaré-Dulac theory, we may assume that $F_{j}(z)$ for $j=m+1, \ldots, n$, contain only resonant monomials and

$$
\begin{equation*}
F_{j}(z)=\lambda_{j} z_{j}+a_{j} z^{k \alpha} z_{j}+\sum_{l \geq 1} a_{j l} z^{(l+k) \alpha} z_{j}, \quad j=1, \ldots, m \tag{3.5}
\end{equation*}
$$

With the notation $F^{\prime}:=\left(F_{1}, \ldots, F_{m}\right), \lambda^{\prime}:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right), z^{\prime}:=\left(z_{1}, \ldots, z_{m}\right)$, we can rewrite (3.5) in the more compact form

$$
\begin{equation*}
F^{\prime}(z)=\lambda^{\prime} z^{\prime}+z^{k \alpha} \sum_{j} a_{j} z_{j} e_{j}+\sum_{k^{\prime}>k} z^{k^{\prime} \alpha} \sum_{j} a_{k^{\prime} j} z_{j} e_{j} \tag{3.6}
\end{equation*}
$$

where the summation over j is understood from 1 to m and e_{j} is the unit vector with 1 at the j th place and 0 otherwise.

We now study the conjugation $\widetilde{F}=\Theta \circ F \circ \Theta^{-1}$ under that map

$$
\begin{equation*}
\Theta(z)=z+\theta(z), \quad \theta(z)=\left(z^{l \alpha} \sum_{j} b_{j} z_{j} e_{j}, 0\right)=\left(b_{1} z^{l \alpha} z_{1}, \ldots, b_{m} z^{l \alpha} z_{m}, 0, \ldots, 0\right) \tag{3.7}
\end{equation*}
$$

for an integer $l \geq 1$ and a vector $b=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{C}^{m}$. We also use the notation

$$
F(z)=\lambda z+f(z), \quad \widetilde{F}(z)=\lambda z+\widetilde{f}(z), \quad f, \widetilde{f}=O(2)
$$

and the Taylor expansions

$$
\begin{equation*}
\widetilde{f}(z+h)=\widetilde{f}(z)+\sum_{r \geq 1} \frac{1}{r!} \widetilde{f}^{(r)}(z)(h), \quad \theta(z+h)=\theta(z)+\sum_{r \geq 1} \frac{1}{r!} \theta^{(r)}(z)(h) \tag{3.8}
\end{equation*}
$$

where the derivatives $\widetilde{f}^{(r)}(z)(h)$ and $\theta^{(r)}(z)(h)$ are regarded as n-tuples of homogeneous polynomials of degree r in h. We use (3.8) to rewrite the identity

$$
\begin{equation*}
\widetilde{F}(\Theta(z))=\Theta(F(z)) \tag{3.9}
\end{equation*}
$$

as

$$
\begin{equation*}
\widetilde{f}(z)+\lambda \theta(z)+\sum_{r \geq 1} \frac{1}{r!} \widetilde{f}^{(r)}(z)(\theta(z))=\theta(\lambda z)+f(z)+\sum_{r \geq 1} \frac{1}{r!} \theta^{(r)}(\lambda z)(f(z)) \tag{3.10}
\end{equation*}
$$

In view of the resonance relations, we have $\lambda \theta(z)=\theta(\lambda z)$ and hence (3.10) is equivalent to

$$
\begin{equation*}
\widetilde{f}(z)-f(z)=\sum_{r \geq 1} \frac{1}{r!}\left(\theta^{(r)}(\lambda z)(f(z))-\widetilde{f}^{(r)}(z)(\theta(z))\right) \tag{3.11}
\end{equation*}
$$

Now identifying terms of order up to $k|\alpha|+1$ in (3.11), we conclude by induction on the order that

$$
\begin{equation*}
\tilde{f}^{\prime}(z)=f^{\prime}(z)+O\left(|z|^{k|\alpha|+2}\right)=z^{k \alpha} \sum_{j} a_{j} z_{j} e_{j}+O\left(|z|^{k|\alpha|+2}\right) \tag{3.12}
\end{equation*}
$$

where $\widetilde{f}^{\prime}=\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{m}\right)$. Next, identifying terms of order up to $(k+l)|\alpha|+1$, we obtain

$$
\widetilde{f}^{\prime}(z)-f^{\prime}(z)=\theta^{\prime(1)}(\lambda z)(f(z))-\widetilde{f}^{\prime}(1)(z)(\theta(z))+O\left(|z|^{(k+l)|\alpha|+2}\right)
$$

Substituting $f^{\prime}, \widetilde{f}^{\prime}$ from (3.12) and θ from (3.7), we find

$$
\begin{equation*}
\tilde{f}^{\prime}(z)-f^{\prime}(z)=z^{(k+l) \alpha} \sum_{j, s} a_{j} b_{s}\left(\left(l \alpha_{j} \lambda^{l \alpha-e_{j}+e_{s}}+\delta_{j s} \lambda^{l \alpha}\right) z_{s} e_{s}-\left(k \alpha_{s}+\delta_{j s}\right) z_{j} e_{j}\right)+O\left(|z|^{(k+l)|\alpha|+2}\right) \tag{3.13}
\end{equation*}
$$

By the resonance conditions, $\lambda^{l \alpha}=1$. In particular, the terms with $\delta_{j s}$ cancel each other and we obtain

$$
\begin{align*}
\tilde{f}^{\prime}(z)-f^{\prime}(z)=z^{(k+l) \alpha} \sum_{j, s} a_{j} b_{s}\left(l \alpha_{j} \lambda^{e_{s}-e_{j}} z_{s} e_{s}-k \alpha_{s} z_{j} e_{j}\right) & +O\left(|z|^{(k+l)|\alpha|+2}\right) \tag{3.14}\\
& =z^{(k+l) \alpha} b A Z+O\left(|z|^{(k+l)|\alpha|+2}\right)
\end{align*}
$$

where $b=\left(b_{1}, \ldots, b_{m}\right), Z$ is the diagonal matrix with entries z_{1}, \ldots, z_{m} and A is the $m \times m$ matrix given by

$$
A=l\left(a L^{-1} \alpha^{t}\right) L-k \alpha^{t} a
$$

Here α^{t} is the transpose of α and L is the diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{m}$. Note that the expression in parentheses is a scalar. Then

$$
A=C L, \quad C=l\left(a L^{-1} \alpha^{t}\right) \mathrm{id}-k \alpha^{t} a L^{-1}
$$

Since the matrix $k \alpha^{t} a L^{-1}$ is of rank one, it has at most one nonzero eigenvalue equal to its trace $k a L^{-1} \alpha^{t}$. By our nondegeneracy assumption, this trace is actually different from zero. The first matrix in the expression of C is scalar with all its diagonal entries equal to $l a L^{-1} \alpha^{t}$. Since $a L^{-1} \alpha^{t} \neq$ 0 , we conclude that C is invertible if and only if $l \neq k$. Since f has the form (3.5), given any $l \neq k$, it follows from (3.14) that there exists (unique) vector b such that $\widetilde{f}^{\prime}=f^{\prime}+O\left(|z|^{(k+l)|\alpha|+1}\right)$ and the terms of $\widetilde{f^{\prime}}$ of order $(k+l)|\alpha|+1$ all vanish.

On the other hand, in case $l=k, C$ has rank $m-1$. In this case we use the identity

$$
b C \alpha^{t}=k b\left(a L^{-1} \alpha^{t}\right) \alpha^{t}-k b\left(\alpha^{t} a L^{-1}\right) \alpha^{t}=k\left(a L^{-1} \alpha^{t}\right) b \alpha^{t}-k b \alpha^{t}\left(a L^{-1} \alpha^{t}\right)=0
$$

where we have used that both b and $b \alpha^{t}$ commute with the scalar $a L^{-1} \alpha^{t}$. Hence α^{t} annihilates the image of the map $b \mapsto b C$. Since C has rank $m-1$, its image is precisely the orthogonal complement of α (with respect to the standard hermitian scalar product on \mathbb{C}^{m}, note that $\bar{\alpha}=\alpha$). Then the image of the map $b \mapsto b A$ is precisely the orthogonal complement of $\alpha \bar{L}^{-1}=\left(\alpha_{1} \bar{\lambda}_{1}{ }^{-1}, \ldots, \alpha_{m} \bar{\lambda}_{m}{ }^{-1}\right)$. It now follows from (3.14) that, choosing suitable b, we can arrange that the term of $\widetilde{f^{\prime}}$ of order $2 k|\alpha|+1$ equals

$$
\begin{equation*}
z^{2 k \alpha} \mu \alpha \bar{L}^{-1} Z=z^{2 k \alpha} \mu \sum_{j} \alpha_{j} \bar{\lambda}_{j}^{-1} z_{j} e_{j} \tag{3.15}
\end{equation*}
$$

for some $\mu \in \mathbb{C}$.
We now apply inductively the above procedure for each $l \geq 1$, either to eliminate the corresponding term in (3.5) or normalize it as in (3.15), by conjugating with a suitable map (3.7) for that number l. At each step we may create nonresonant terms whose order must be greater than $l|\alpha|+1$ in view of (3.10). Those terms can be eliminated inductively according to the PoincaréDulac theory by conjugation with further maps $\Theta(z)=z+\theta(z)$ with $\theta(z)$ being suitable monomials of order greater than $l|\alpha|+1$. Again using (3.10) we see that those additional conjugations does not affect the normalized terms of order $l|\alpha|+1$. Thus by induction on l, we obtain the desired normalization (3.4).

Remark 3.7. It is clear from the proof of Theorem 3.6 that, for any given $t \in \mathbb{N}$ there exists a holomorphic (polynomial) change of coordinates which transforms F into $\hat{F}+O(t)$, where \hat{F} satisfies (3.4) and $O(t)$ denotes a function vanishing of order $\geq t$ at 0 .

4. Dynamics of normal forms

Motivated by Theorem [3.6, we shall first study the dynamics of a one-resonant diffeomorphism $G \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ of the form $G(z)=\left(G_{1}(z), \ldots, G_{n}(z)\right)$ with

$$
\begin{equation*}
G_{j}(z)=\lambda_{j} z_{j}+a_{j} z^{k \alpha} z_{j}+b_{j} z^{2 k \alpha} z_{j}, \quad j=1, \ldots, n, \tag{4.1}
\end{equation*}
$$

and $\Lambda=\Lambda(G) \neq 0$, where $\Lambda(G)$ is as in Definition 3.1. We consider the singular foliation \mathcal{F} of \mathbb{C}^{n} given by $\left\{z^{\alpha}=\right.$ const $\}$.
Lemma 4.1. The foliation \mathcal{F} is G-invariant.

Proof. Let $\pi(z)=z^{\alpha}$. Then

$$
\pi(G(z))=z^{\alpha} \prod_{j=1}^{n}\left(\lambda_{j}+a_{j} z^{k \alpha}+b_{j} z^{2 k \alpha}\right)^{\alpha_{j}}
$$

where the right-hand side is clearly a holomorphic function of z^{α}. Hence G maps leaves of \mathcal{F} into (possibly different) leaves of \mathcal{F} and the desired conclusion follows.

Let \mathcal{L} denote the space of leaves of \mathcal{F}. Let $\pi: \mathbb{C}^{n} \rightarrow \mathcal{L}$ be the projection given by $\left(z_{1}, \ldots, z_{n}\right) \mapsto$ z^{α}. Clearly, $\mathcal{L} \simeq \mathbb{C}$. Let $u=z^{\alpha}=\pi(z)$. The action of G on \mathcal{L} is given by

$$
\begin{equation*}
\Phi(u):=G_{1}(z)^{\alpha_{1}} \cdots G_{n}(z)^{\alpha_{n}}=u+\Lambda(G) u^{k+1}+O\left(|u|^{k+2}\right), \tag{4.2}
\end{equation*}
$$

where we have used that $\lambda^{\alpha}=1$. Note that $\Phi:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$ is locally biholomorphic. Let v_{1}, \ldots, v_{k} be the attracting directions for Φ, and $P_{j} \subset \mathbb{C}, j=1, \ldots, k$, attracting petals centered at v_{j} (see Section 2.11). Set

$$
U_{j}:=\pi^{-1}\left(P_{j}\right) \subset \mathbb{C}^{n}
$$

Since \mathcal{F} is G-invariant, the domains U_{j} are also G-invariant.
Let $z \in U_{j}$. Then $\Phi^{\circ m}(\pi(z)) \rightarrow 0$ as $m \rightarrow \infty$. In order to understand the dynamics of G, it is then sufficient to understand the "motion" along the leaves of \mathcal{F}. As a matter of notation, let $p_{j}\left(z_{1}, \ldots, z_{n}\right)=z_{j}$.
Proposition 4.2. Let $G \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ be in the normal form (4.1) with $\Lambda=\Lambda(G) \neq 0$. Fix $1 \leq j \leq n$ and $1 \leq t \leq k$.
(1) If $\left|\lambda_{j}\right|<1$, then for all $z \in U_{t}$, one has $\lim _{m \rightarrow \infty} p_{j} \circ G^{\circ m}(z)=0$.
(2) If $\left|\lambda_{j}\right|>1$, then for all $z \in U_{t}$ with $z_{j} \neq 0$, one has $\lim _{m \rightarrow \infty} p_{j} \circ G^{\circ m}(z)=\infty$.
(3) If $\left|\lambda_{j}\right|=1$ and $\operatorname{Re}\left(a_{j} \lambda_{j}^{-1} \Lambda^{-1}\right)>0$, then for all $z \in U_{t}$, one has $\lim _{m \rightarrow \infty} p_{j} \circ G^{\circ m}(z)=0$.
(4) If $\left|\lambda_{j}\right|=1$ and $\operatorname{Re}\left(a_{j} \lambda_{j}^{-1} \Lambda^{-1}\right)<0$, then for all $z \in U_{t}$ with $z_{j} \neq 0$, one has $\lim _{m \rightarrow \infty} p_{j} \circ$ $G^{\circ m}(z)=\infty$.

Proof. Note that by construction $\Phi(\pi(z))=\pi(G(z))$. We can write for $j=1, \ldots, n$,

$$
G_{j}(z)=\left(\lambda_{j}+a_{j} u^{k}+b_{j} u^{2 k}\right) z_{j}
$$

and, letting $u_{l}:=\Phi^{\circ l}(u)=\pi\left(G^{\circ l}(z)\right)$,

$$
p_{j} \circ G^{\circ m}(z)=\lambda_{j}^{m} \prod_{l=1}^{m}\left(1+\frac{a_{j}}{\lambda_{j}} u_{l}^{k}+\frac{b_{j}}{\lambda_{j}} u_{l}^{2 k}\right) z_{j} .
$$

We examine the asymptotical behavior of the infinite product

$$
\begin{equation*}
\prod_{l=1}^{\infty}\left(1+\frac{a_{j}}{\lambda_{j}} u_{l}^{k}+\frac{b_{j}}{\lambda_{j}} u_{l}^{2 k}\right) . \tag{4.3}
\end{equation*}
$$

Let $z \in U_{t}$, therefore $u=\pi(z) \in P_{t}$. By Theorem [2.1, part (2), it follows that $\left|u_{l}^{k}\right|=\left|u_{l}\right|^{k} \sim \frac{1}{l}$.

Let $A_{l}:=\frac{a_{j}}{\lambda_{j}} u_{l}^{k}+\frac{b_{j}}{\lambda_{j}} u_{l}^{2 k}$. We examine the behavior of $\prod_{l=1}^{m}\left|1+A_{l}\right|$. Taking the logarithm we have

$$
\log \left(\prod_{l=1}^{m}\left|1+A_{l}\right|\right)=\frac{1}{2} \sum_{l=1}^{m} \log \left(1+\left|A_{l}\right|^{2}+2 \operatorname{Re} A_{l}\right)
$$

For $l \gg 1,\left|\left|A_{l}\right|^{2}+2 \operatorname{Re} A_{l}\right| \sim l^{-c}$ for some $c \in \mathbb{N}^{*}$. Hence, since for $l \gg 1, \log \left(1+\left|A_{l}\right|^{2}+2 \operatorname{Re} A_{l}\right) \sim$ $\left|A_{l}\right|^{2}+2 \operatorname{Re} A_{l}$,

$$
\frac{1}{2} \sum_{l=1}^{\infty}\left|\log \left(1+\left|A_{l}\right|^{2}+2 \operatorname{Re} A_{l}\right)\right| \sim \frac{1}{2} \sum_{l=1}^{\infty} l^{-c}
$$

From this it follows that the infinite product (4.3) either converges or goes to zero or infinity much slower than $\left|\lambda_{j}\right|^{m}$ in case $\left|\lambda_{j}\right| \neq 1$. Thus (1) and (2) follow.

As for (3) and (4) we need a better estimate. By Theorem [2.1, part (1), it follows that $\frac{u_{l}^{k}}{\left|u_{l}\right|^{k}} \rightarrow$ $v_{t}^{k}=-|\Lambda| \Lambda^{-1}$ as $l \rightarrow \infty$. Hence

$$
\lim _{l \rightarrow \infty} \operatorname{Re}\left(\frac{a_{j}}{\lambda_{j}} \frac{u_{l}^{k}}{\left|u_{l}\right|^{k}}\right)=\operatorname{Re}\left(\frac{a_{j}}{\lambda_{j}} v_{t}^{k}\right)=-\operatorname{Re}\left(\frac{a_{j}}{\lambda_{j}} \frac{|\Lambda|}{\Lambda}\right) .
$$

Therefore in case (3), for l large, $\left|A_{l}\right|^{2}+2 \operatorname{Re} A_{l} \sim\left(-l^{-1}\right)$. Hence

$$
\log \left(\prod_{l=1}^{\infty}\left|1+A_{l}\right|\right)=\frac{1}{2} \sum_{l=1}^{\infty} \log \left(1+\left|A_{l}\right|^{2}+2 \operatorname{Re} A_{l}\right) \sim \frac{1}{2} \sum_{l=1}^{m} \frac{-1}{l}=-\infty
$$

and thus (3) follows. Statement (4) is similar.

5. Dynamics of non-degenerate one-resonant maps

Definition 5.1. Let $F \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$ be one-resonant and non-degenerate with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. Let $k \in \mathbb{N}$ be the order of F with respect to $\lambda_{1}, \ldots, \lambda_{m}$ (see Definition 3.3). Choose coordinates such that (3.2) holds. We say that F is parabolically attracting with respect to $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ if

$$
\begin{equation*}
\left|\lambda_{j}\right|=1, \quad \operatorname{Re}\left(a_{j} \lambda_{j}^{-1} \Lambda^{-1}\right)>0, \quad j=1, \ldots, m \tag{5.1}
\end{equation*}
$$

where $\Lambda=\Lambda(F)$ is given by (3.3)
Remark 5.2. The condition of being parabolically attracting is independent of the coordinates chosen. To see this, let ψ be a transformation which preserves (3.2), and let $\tilde{F}:=\psi \circ F \circ \psi^{-1}$. In view of Remark 3.2, it suffices to check the invariance of (5.1) for ψ linear with $\psi_{j}(z)=b_{j} z_{j}$, $b_{j} \in \mathbb{C}^{*}$, for any $j=1, \ldots, m$. Then, a_{j} is replaced by $\tilde{a}_{j}:=a_{j} b^{\alpha k}$ and $\Lambda(\tilde{F})=\Lambda(F) b^{\alpha k}$ from which the claim follows.

Remark 5.3. If F is one-resonant and non-degenerate with respect to $\left\{\lambda_{1}\right\}$ (with $\left|\lambda_{1}\right|=1$), then it is always parabolically attracting. Indeed, in such a case, $\Lambda=a_{1} \alpha_{1} \lambda_{1}{ }^{-1}$ and

$$
\operatorname{Re}\left(a_{1} \lambda_{1}^{-1} \Lambda^{-1}\right)=\alpha_{1}^{-1}>0
$$

Definition 5.4. Let $F \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$. We call a basin of attraction for F at 0 a nonempty (not necessarily connected) open set $U \subset \mathbb{C}^{n}$ with $0 \in \bar{U}$, for which there exists a neighborhood basis $\left\{\Omega_{j}\right\}$ of 0 such that $F\left(U \cap \Omega_{j}\right) \subset U \cap \Omega_{j}$ and $F^{\circ m}(z) \rightarrow 0$ as $m \rightarrow \infty$ whenever $z \in U \cap \Omega_{j}$ holds for some j.

We are now ready to give the proof of Theorem 1.1,
Proof of Theorem 1.1. Denote $u:=z^{\alpha}$. In view of Theorem 3.6, up to biholomorphic conjugation we can assume that $F(z)=\left(F_{1}(z), \ldots, F_{n}(z)\right)$ with

$$
\begin{align*}
& F_{j}(z)=\left(\lambda_{j}+a_{j} u^{k}+\mu \lambda_{j} \alpha_{j} u^{2 k}\right) z_{j}+O\left(|z|^{l}\right), \quad j=1, \ldots, m, \tag{5.2}\\
& F_{j}(z)=\lambda_{j} z_{j}+O\left(|z|^{2}\right), \quad j=m+1, \ldots, n,
\end{align*}
$$

for any fixed l to be chosen later. Also, acting with a dilation (cfr. Remark (3.2) we can assume that $\Lambda=\Lambda(F)=-1 / k$. Then, since F is parabolically attracting, we have

$$
\begin{equation*}
\operatorname{Re}\left(a_{j} \lambda_{j}^{-1}\right)<0, \quad j=1, \ldots, m . \tag{5.3}
\end{equation*}
$$

Let $R>0$ be a number we will suitably choose later. Let

$$
\Delta_{R}:=\left\{u \in \mathbb{C}:\left|u^{k}-\frac{1}{2 R}\right|<\frac{1}{2 R}\right\} .
$$

Note that Δ_{R} has exactly k connected components corresponding to different branches of the k th root. The desired basins of attraction will be constructed by means of the projection $z \mapsto z^{\alpha}$ over sectors contained in such connected components.

We first construct a basin of attraction based on a sector centered at the direction 1, namely,

$$
\begin{equation*}
S_{R}(\varepsilon):=\left\{u \in \Delta_{R}:|\operatorname{Arg} u|<\epsilon\right\}, \tag{5.4}
\end{equation*}
$$

for some small $\epsilon>0$ to be chosen later.
Let $\beta>0$ be such that $\beta|\alpha|<1$ and let

$$
B:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{j}\right|<|u|^{\beta}, j=1, \ldots, m,\left|\left(z_{m+1}, \ldots, z_{n}\right)\right|<|u|^{\beta}, u:=z^{\alpha} \in S_{R}(\epsilon)\right\}
$$

First of all, $B \neq \emptyset$ and $0 \in \partial B$. Indeed, it is easy to see that $z_{r}=(r, \ldots, r) \in B$ for $r>0$ sufficiently small. Moreover, since the map $z \mapsto z^{\alpha}$ is open and 0 is not in the interior of $S_{R}(\varepsilon)$, it follows that $0 \notin B$, i.e. $0 \in \partial B$. Finally, the set B is obviously open.

Next, we prove that B is F-invariant. Let $z \in B$ and let $u:=z^{\alpha}$. Let

$$
\Phi(u, z):=F_{1}^{\alpha_{1}}(z) \cdots F_{m}^{\alpha_{m}}(z)=u-\frac{1}{k} u^{k+1}+h_{1}(u)+h_{2}(z)
$$

where we consider Φ as a function of the variables $z, u=z^{\alpha}$ and $h_{1}(u)=O\left(|u|^{k+2}\right)$ and $h_{2}(z)=$ $O\left(|z|^{l}\right)$. We make the change of coordinates $U=u^{-k}$ and write

$$
\widetilde{\Phi}(U, z):=\Phi\left(U^{-\frac{1}{k}}, z\right)^{-k}
$$

for the map Φ in the new coordinates. Note that $u \in S_{R}(\epsilon)$ if and only if $U \in H_{R}(\epsilon)$, where

$$
H_{R}(\epsilon):=\{w \in \mathbb{C}: \operatorname{Re} w>R,|\operatorname{Arg} w|<k \epsilon\}
$$

Since $\operatorname{Re}\left(a_{j} \lambda_{j}^{-1}\right)<0$, it is easy to see that, choosing R sufficiently large and ε sufficiently small, we obtain

$$
\begin{equation*}
\left|1+\frac{a_{j}}{\lambda_{j}} \frac{1}{w}+\mu \alpha_{j} \frac{1}{w^{2}}\right|<1-\frac{c}{|w|} \tag{5.5}
\end{equation*}
$$

for some $c>0$ and for all $w \in H_{R}(\varepsilon)$.
Now fix $0<\delta<1 / 2$ such that

$$
\begin{equation*}
H_{R}(\epsilon)+1+\tau \subset H_{R}(\epsilon) \quad \text { whenever } \quad|\tau|<\delta \tag{5.6}
\end{equation*}
$$

Note that δ depends on ϵ but not on R. Fix $0<c^{\prime}<c$. By choosing $\beta<1 / 2$ sufficiently small, we can assume that

$$
\begin{equation*}
\beta(\delta+1)-c^{\prime} k<0 \tag{5.7}
\end{equation*}
$$

and choose $l>1$ such that

$$
\begin{equation*}
\beta l>k+1 \tag{5.8}
\end{equation*}
$$

After a direct computation we find

$$
\begin{equation*}
\widetilde{\Phi}(U, z)=U\left(\frac{1}{1-\frac{1}{k U}+U^{1 / k} h_{1}\left(U^{-1 / k}\right)+U^{1 / k} h_{2}(z)}\right)^{k} \tag{5.9}
\end{equation*}
$$

Since $|z|<n|u|^{\beta}$ in B, there exists $K>0$ such that

$$
|U|^{1 / k}\left|h_{1}\left(U^{-1 / k}\right)\right| \leq K|U|^{1 / k}|U|^{-(k+2) / k}=K|U|^{-1-1 / k}
$$

and

$$
|U|^{1 / k}\left|h_{2}(z)\right| \leq K|U|^{1 / k}|u|^{\beta l}=K|U|^{(1-\beta l) / k}
$$

Therefore, if R is sufficiently large and $z \in B$ (hence $U \in H_{R}(\epsilon)$), we have

$$
\begin{equation*}
\widetilde{\Phi}(U, z)=U+1+\nu(U, z), \quad \text { with }|\nu(U, z)|<\delta \tag{5.10}
\end{equation*}
$$

where we have used (5.8). In particular, $U_{1}:=\tilde{\Phi}(U, z) \in H_{R}(\epsilon)$ in view of (5.6) and $\operatorname{Re} U_{1} \geq$ $\operatorname{Re} U+\frac{1}{2}$. Therefore we have proved that

$$
\begin{equation*}
z \in B \Rightarrow u_{1}:=\Phi(u, z) \in S_{R}(\epsilon) \tag{5.11}
\end{equation*}
$$

Moreover, by the same token, setting by induction $u_{m+1}:=\Phi\left(u_{m}, F^{\circ m}(z)\right)$, it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} u_{m}=0 \tag{5.12}
\end{equation*}
$$

Now we examine the components F_{j} for $j=m+1, \ldots, n$. Set $x:=\left(z_{1}, \ldots, z_{m}\right)$ and $y:=$ $\left(z_{m+1}, \ldots, z_{n}\right)$. Then

$$
y_{1}=M y+h(z) z,
$$

where M is the $(n-m) \times(n-m)$ diagonal matrix with entries $\lambda_{j}(j=m+1, \ldots, n)$ and h is a holomorphic $(n-m) \times n$ matrix valued function in a neighborhood of 0 such that $h(0)=0$. If $z \in B$, then $|y|<|u|^{\beta}$. Moreover, since $\left|\lambda_{j}\right|<1$ for $j=m+1, \ldots, n$, it follows that there exists $a<1$ such that $|M y|<a|y|<a|u|^{\beta}$. Also, let $0<b<1-a$. Then, for R sufficiently large, it follows that $|h(z)| \leq b / n$ if $z \in B$. Hence, letting $p=a+b<1$, we obtain

$$
\begin{equation*}
\left|y_{1}\right| \leq|M y|+|h(z)||z|<a|u|^{\beta}+\frac{b}{n} n|u|^{\beta}=(a+b)|u|^{\beta}=p|u|^{\beta} . \tag{5.13}
\end{equation*}
$$

Now, we claim that for R sufficiently large, it follows that

$$
\begin{equation*}
|u| \leq \frac{1}{p^{1 / \beta}}\left|u_{1}\right| \tag{5.14}
\end{equation*}
$$

where $u_{1}=\Phi(u, z)$. Indeed, (5.14) is equivalent to $\left|U_{1}\right| \leq p^{-k / \beta}|U|$ and hence to

$$
\frac{|U+1+\nu(U, z)|}{|U|} \leq p^{-k / \beta} .
$$

But the limit for $|U| \rightarrow \infty$ in the left-hand side is 1 and the right-hand side is >1, thus (5.14) holds for R sufficiently large.

Hence, by (5.13) and (5.14) we obtain

$$
\begin{equation*}
\left|y_{1}\right| \leq\left|u_{1}\right|^{\beta} . \tag{5.15}
\end{equation*}
$$

Now we examine the components F_{j} for $j=1, \ldots, m$. Let $z \in B$ and, as before, let $U=u^{-k} \in$ $H_{R}(\epsilon)$. By (5.2) and by (5.3) we have

$$
\begin{equation*}
F_{j}(z)=\lambda_{j}\left(1+\frac{a_{j}}{\lambda_{j}} \frac{1}{U}+\mu \alpha_{j} \frac{1}{U^{2}}\right) z_{j}+R_{l}(z) \tag{5.16}
\end{equation*}
$$

with $R_{l}(z)=O\left(|z|^{l}\right)$. If $z \in B$ and R is sufficiently large, one has

$$
\begin{equation*}
\left|R_{l}(z)\right|<|z|^{l-1}<\left(n|u|^{\beta}\right)^{(l-1)} \tag{5.17}
\end{equation*}
$$

From (5.16), and since $U \in H_{R}(\varepsilon)$, we now obtain using (5.5) and (5.17):

$$
\left|F_{j}(z)\right| \leq\left(1-\frac{c}{|U|}+n^{l-1}|u|^{\beta(l-2)}\right)|u|^{\beta}=\left(1-\frac{c}{|U|}+\frac{n^{l-1}}{|U|^{\beta(l-2) / k}}\right)|u|^{\beta} .
$$

Then $\beta(l-2)>k+1-2 \beta>k$ by (5.8) and thus $\beta(l-2) / k>1$. Hence, if R is sufficiently large,

$$
\begin{equation*}
p(u):=1-\frac{c}{|U|}+\frac{n^{l-1}}{|U|^{\beta(l-2) / k}}<1 . \tag{5.18}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|F_{j}(z)\right| \leq p(u)|u|^{\beta} . \tag{5.19}
\end{equation*}
$$

Now we claim that, setting $u_{1}:=\Phi(u, z)$, we obtain

$$
\begin{equation*}
|u| \leq \frac{1}{|p(u)|^{1 / \beta}}\left|u_{1}\right| . \tag{5.20}
\end{equation*}
$$

Indeed, (5.20) is equivalent to $\left|U_{1}\right| \leq p(u)^{-k / \beta}|U|$ and hence, in view of (5.10), to

$$
\begin{equation*}
\frac{|U+1+\nu(U, z)|}{|U|} \leq p(u)^{-k / \beta} \tag{5.21}
\end{equation*}
$$

Note that, since $0<c^{\prime}<c$ (recall that c^{\prime} is chosen before (5.7)), taking R sufficiently large, $\left(1-c^{\prime} /|U|\right)^{-k / \beta} \leq p(u)^{-k / \beta}$. Also, by (5.10) we have $\frac{|U+1+\nu(U, z)|}{|U|} \leq 1+\frac{1+\delta}{|U|}$, hence (5.21) holds if we can show that

$$
\begin{equation*}
1+\frac{1+\delta}{|U|} \leq\left(1-\frac{c^{\prime}}{|U|}\right)^{-k / \beta} \tag{5.22}
\end{equation*}
$$

But

$$
\left(1-\frac{c^{\prime}}{|U|}\right)^{-k / \beta}=1+\frac{k}{\beta} \frac{c^{\prime}}{|U|}+o\left(\frac{1}{|U|}\right)
$$

and thus (5.22) holds whenever $\delta+1-c^{\prime} k / \beta<0$ (which is assured by (5.7)) and R is sufficiently large. Hence, (5.20) holds. Putting together (5.19) and (5.20) we have for $j=1, \ldots, n$

$$
\begin{equation*}
\left|F_{j}(z)\right| \leq\left|u_{1}\right|^{\beta}, \quad j=1, \ldots, m \tag{5.23}
\end{equation*}
$$

Equations (5.15) and (5.23) imply that $F(B) \subseteq B$. Moreover, by induction, for all $z \in B$, denoting by $\rho_{j}(z):=z_{j}$ the projection on the j-th component, we have

$$
\left|\rho_{j} \circ F^{\circ m}(z)\right| \leq\left|u_{m}\right|^{\beta},
$$

hence $F^{\circ m}(z) \rightarrow 0$ as $m \rightarrow \infty$ by (5.12). Therefore B is a basin of attraction for F at 0 .
To end the proof, we note that the previous argument can be repeated by considering in (5.4) the sectors $S_{R}^{j}(\epsilon), j=1, \ldots, k$, of the form

$$
S_{R}^{j}(\epsilon):=\left\{u \in \Delta_{R}:\left|\operatorname{Arg} u-\frac{2 \pi(j-1)}{k}\right|<\epsilon\right\} .
$$

Let B_{j} be the basin of attraction constructed over $S_{R}^{j}(\epsilon)$, namely

$$
B_{j}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{j}\right|<|u|^{\beta}, j=1, \ldots, m,\left|\left(z_{m+1}, \ldots, z_{n}\right)\right|<|u|^{\beta}, u:=z^{\alpha} \in S_{R}^{j}(\epsilon)\right\}
$$

Then clearly B_{1}, \ldots, B_{k} are disjoint and the proof is complete.
Remark 5.5. Let F be as in Theorem 1.1 and let B_{1}, \ldots, B_{k} be its basins of attraction at 0 constructed in the proof. If S_{1}, \ldots, S_{k} denote the k petals for the induced germ $u \rightarrow u+\Lambda u^{k+1}+$ $O\left(|u|^{k+2}\right)($ see (4.2) $)$ then, up to relabeling, $\pi\left(B_{j}\right) \subset S_{j}$ for $j=1, \ldots, k$, where $\pi: \mathbb{C}^{n} \ni z \mapsto z^{\alpha} \in$ \mathbb{C}. In particular, if $\alpha=(q, 0, \ldots, 0)$ for some $q \geq 1$, then each B_{k} has q connected components.

6. Applications and examples

6.1. Semi-attractive case. One-resonant diffeomorphisms with respect to one eigenvalue (which is necessarily a root of unity) are either formally linearizable in the associated eigendirection or non-degenerate and parabolically attracting (see Remark 5.3). Thus, in particular, we recover Hakim's theorem on semi-attractive germs (cfr. [17, Thm. 1.1] for $q=1$):

Corollary 6.1. Let $F \in \operatorname{Diff}\left(\mathbb{C}^{n} ; 0\right)$. Let $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be the eigenvalues of $d F_{0}$. Suppose that $\lambda_{1}^{q}=1$ for some $q \in \mathbb{N} \backslash\{0\}$ and $\lambda_{1}^{l} \neq 1$ for $l=1, \ldots, q-1$, and that $\left|\lambda_{j}\right|<1$ for $j=2, \ldots, m$. In particular, F is one-resonant with respect to $\left\{\lambda_{1}\right\}$. Let k be the order of F with respect to λ_{1}. Then:
(1) either $k<\infty$ and there exist k basins of attraction for F at 0 , each having q connected components which are cyclically permuted by F,
(2) or $k=\infty$ and F is formally linearizable in the first component. This is the case if and only if there exists a holomorphic germ of a non-singular curve of fixed points of $F^{\circ q}$ passing through 0.

Proof. (1) If $k<\infty$ then F is non-degenerate with respect to $\left\{\lambda_{1}\right\}$ and with index of resonance $(q, 0, \ldots, 0)$ (see Remark 3.5). By Remark 5.3, F is parabolically attracting with respect to $\left\{\lambda_{1}\right\}$ and hence Theorem 1.1 applies yielding k basins of attraction. Let B_{1}, \ldots, B_{k} be the basins of attraction constructed in course of the proof of Theorem 1.1. By Remark 5.5, each B_{j} has q connected components.

Fix one such a basin of attraction $B=B_{j}$ and let D_{0}, \ldots, D_{q-1} be its connected components. By Remark [5.5, the image of B in \mathbb{C} via the map $\mathbb{C}^{n} \ni z \mapsto z_{1}^{q}$ belongs to a petal S of $u \mapsto$ $u+\Lambda(F) u^{k+1}$. Let $w \in \mathbb{C}$ be such that $w^{q} \in S$. In view of the construction in the proof of Theorem 1.1, assuming w being sufficiently small, we have $Q_{p}:=\left(\lambda_{1}^{p} w, 0, \ldots, 0\right) \in B$ for $p=$ $0, \ldots, q-1$. Moreover, the Q_{p} 's belong to different connected components of B. We can assume $Q_{p} \in D_{p}$ for $p=0, \ldots, q-1$. Now $F_{1}\left(Q_{p}\right)=\lambda_{1}^{p+1} w+o(|w|)$ and hence $F\left(Q_{p}\right)$ belongs to D_{p+1} (where $D_{q}=D_{0}$), proving the statement.
(2) We note that by Definition 3.3, the orders of F and of $F^{\circ q}$ with respect to λ_{1} coincide. Furthermore, $k=\infty$ if and only if F is formally linearizable in the first component, and hence, if and only if $F^{\circ q}$ is formally linearizable in the first component. Therefore we can assume $q=1$. One direction being clear, we only show that if $k=\infty$ then F has a holomorphic non-singular curve of fixed points through 0 . Write $z=\left(z, z^{\prime}\right) \in \mathbb{C} \times \mathbb{C}^{n-1}, \lambda^{\prime}=\left(\lambda_{2}, \ldots, \lambda_{n}\right)$ and

$$
F\left(z, z^{\prime}\right)=\left(f\left(z, z^{\prime}\right), \lambda^{\prime} z^{\prime}+g\left(z, z^{\prime}\right)\right) \in \mathbb{C} \times \mathbb{C}^{n-1}
$$

where $f\left(z, z^{\prime}\right)=z+o\left(\left|\left(z, z^{\prime}\right)\right|\right)$ and $g\left(z, z^{\prime}\right)=o\left(\left|\left(z, z^{\prime}\right)\right|\right)$. We look for a curve given by $\psi: \zeta \mapsto$ $(\zeta, v(\zeta))$ where $v: U \rightarrow \mathbb{C}^{n-1}$ is a germ at 0 of holomorphic map defined in some open set $U \subset \mathbb{C}$ such that $v(0)=0$ and such that $F(\psi(\zeta))=\psi(\zeta)$ for all $\zeta \in U$. We decouple the latter condition as

$$
\begin{equation*}
f(\zeta, v(\zeta))=\zeta \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
\lambda^{\prime} v(\zeta)+g(\zeta, v(\zeta))=v(\zeta) \tag{6.2}
\end{equation*}
$$

Since $k=+\infty$, the Poincaré-Dulac theory yields that F is formally conjugated to a map of the type $\hat{F}\left(z, z^{\prime}\right)=\left(z, \lambda^{\prime} z^{\prime}+h\left(z, z^{\prime}\right)\right)$, where each monomial in the expansion of $h\left(z, z^{\prime}\right)$ is divisible by z_{j} for some $j=2, \ldots, n$. Clearly \hat{F} has a unique curve of fixed points tangent to e_{1}, namely $z^{\prime}=0$. Hence, F has a unique formal solution to (6.1) and (6.2). It is enough to show that such a solution is actually holomorphic. To this aim, we let $G(x, y):=\left(\lambda^{\prime}-\mathrm{id}\right) y+g(x, y)$ with $x \in \mathbb{C}$ and $y \in \mathbb{C}^{n-1}$. Since the Jacobian matrix $\left\{\left.\frac{\partial G_{j}(x, y)}{\partial y_{k}}\right|_{0}\right\}_{j, k=1, \ldots, n-1}=\lambda^{\prime}$ - id has maximal rank, then by the (holomorphic) implicit function theorem, there exists a unique function $v(x)$ defined and holomorphic near $x=0$ such that $G(x, v(x)) \equiv 0$, and the proof is complete.
6.2. Quasi-parabolic germs. A germ of holomorphic diffeomorphism of \mathbb{C}^{2} at 0 of the form $F(z, w)=\left(z+\ldots, e^{2 \pi i \theta} w+\ldots\right)$ with $\theta \in \mathbb{R}$ is called quasi-parabolic. In particular, if $\theta \in \mathbb{R} \backslash \mathbb{Q}$, then F is one-resonant. We shall restrict to this case here.

Using Poincaré-Dulac theory, since all resonances are of the type $(1,(m, 0)),(2,(m, 1))$, the map F can be formally conjugated to a map of the form

$$
\begin{equation*}
\hat{F}(z, w)=\left(z+\sum_{j=\nu}^{\infty} a_{j} z^{j}, e^{2 \pi i \theta} w+\sum_{j=\mu}^{\infty} b_{j} z^{j} w\right) \tag{6.3}
\end{equation*}
$$

where we assume that either $a_{\nu} \neq 0$ or $\nu=\infty$ if $a_{j}=0$ for all j. Similarly for b_{μ}.
As it is proved in [7], the number $\nu(F):=\nu$ is a formal invariant of F. Moreover, it is proved that, in case $\nu<+\infty$, the sign of $\Theta(F):=\nu-\mu-1$ is a formal invariant. The map F is said dynamically separating if $\nu<+\infty$ and $\Theta(F) \leq 0$.

An argument similar to that of the proof of Corollary 6.1.(2) yields:
Proposition 6.2. Let F be a quasi-parabolic germ of diffeomorphism of \mathbb{C}^{2} at 0 . Then $\nu(F)=+\infty$ if and only if there exists a germ of (holomorphic) curve through 0 that consists of fixed points of F.

In case $\nu(F)<+\infty$, we note that the index $\alpha=(1,0)$ and therefore $\Lambda(F)$ equals either $a_{\nu(F)}$ or 0 , depending on whether $\nu \leq \mu+1$ or $\nu>\mu+1$. Hence F is dynamically separating if and only if it is non-degenerate with respect to $\left\{1, e^{2 \pi i \theta}\right\}$. In case F is non-degenerate, $k:=\nu(F)-1$ is the order of F with respect to $\left\{1, e^{2 \pi i \theta}\right\}$.

In [7] it is proven that if F is a quasi-parabolic dynamically separating germ of diffeomorphism at 0 then there exist $\nu(F)-1$ petals for F at 0 . A direct computation shows that if F is dynamically separating, then it is parabolically attracting if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{b_{\nu-1}}{e^{2 \pi i \theta} a_{\nu}}\right)>0 \tag{6.4}
\end{equation*}
$$

Then as a consequence of Theorem 1.1 and Remark 5.5 we have:
Corollary 6.3. Let F be a dynamically separating quasi-parabolic germ, formally conjugated to (6.3). If (6.4) holds, then there exist $\nu(F)-1$ disjoint connected basins of attraction for F at 0 .
6.3. An example of an elliptic germ with parabolic dynamics. Let $\lambda=e^{2 \pi i \theta}$ for some $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let

$$
F(z, w)=\left(\lambda z+a z^{2} w+\ldots, \lambda^{-1} w+b z w^{2}+\ldots\right)
$$

with $|a|=|b|=1$. Then F is one-resonant with index of resonance $(1,1)$ and for each choice of (a, b) such that the germ is non-degenerate (i.e. $a \lambda^{-1}+b \lambda \neq 0$), there exists a basin of attraction for F at 0 . Indeed, it can be checked that the non-degeneracy condition implies that F is parabolically attracting with respect to $\left\{\lambda, \lambda^{-1}\right\}$ and hence Theorem 1.1 applies.

A similar argument can be applied to F^{-1}, producing a basin of repulsion for F at 0 . Hence we have a parabolic type dynamics for F.

On the other hand, suppose further that there exist $c>0$ and $N \in \mathbb{N}$ such that $\left|e^{2 \pi q i \theta}-1\right| \geq c q^{-N}$ for all $q \in \mathbb{N} \backslash\{0\}$ (such a condition holds for θ in a full measure subset of the unit circle). Since $\lambda^{q} \neq \lambda$ for all $q \in \mathbb{N}$, it follows from [20, Theorem 1] that there exist two analytic discs through 0 , tangent at the origin to the z-axis and to the w-axis respectively, which are F-invariant and such that the restriction of F on each such a disc is conjugated to $\zeta \mapsto \lambda \zeta$ or $\zeta \mapsto \lambda^{-1} \zeta$ respectively. Thus, in such a case, the elliptic and parabolic dynamics mix, although the spectrum of $d F_{0}$ is only of elliptic type.

6.4. Examples of one-resonant degenerate germs with no basins of attraction. Set

$$
\begin{equation*}
F(z, w)=\left(\lambda z\left(1-\frac{z w}{\lambda}\right)^{-1}, \frac{w}{\lambda}\left(1-\frac{z w}{\lambda}\right)\right) \tag{6.5}
\end{equation*}
$$

with $|\lambda|=1$ and λ not a root of unity. Then F is one-resonant with index of resonance $\alpha=(1,1)$ but it is degenerate because

$$
\Lambda(F)=\frac{1}{\lambda}-\frac{1}{\lambda^{2}} \cdot \lambda=0
$$

Note also that the order of F is $k=1$. Set $u=z w$ and

$$
\Phi(u)=F_{1}(z, w) \cdot F_{2}(z, w)=u
$$

We claim that F has no basins of attraction at 0 . Indeed, suppose $F^{\circ n}(z, w) \rightarrow 0$ as $n \rightarrow \infty$ for some (z, w). Then it follows that $\Phi^{\circ n}(z w) \rightarrow 0$ as $n \rightarrow \infty$, which implies that $z w=0$. The latter cannot hold on a nonempty open set.

A less trivial example demonstrating this phenomenon is the following. Set

$$
\begin{equation*}
F(z, w)=\left(\lambda z+z^{2} w, \frac{1}{\lambda} w-\frac{1}{\lambda^{2}} z w^{2}\right) \tag{6.6}
\end{equation*}
$$

where $|\lambda|=1$ and λ is not a root of unity. As before, F is one-resonant with index of resonance $(1,1)$ and $\Lambda(F)=0$. The order of F is 1 and for $u=z w$ we obtain

$$
\Phi(u)=F_{1}(z, w) \cdot F_{2}(z, w)=u-\frac{1}{\lambda^{2}} u^{3}
$$

The order of Φ at $u=0$ is 2 . Now the attracting directions of Φ at 0 are $v= \pm \lambda$. The map Φ is a polynomial, with two attracting maximal petals $P(\lambda)$ and $P(-\lambda)$ at the origin. The maximal
petals $P(\lambda)$ and $P(-\lambda)$ are disjoint and obtained as unions of all preimages under $F^{\circ n}, n=1,2, \ldots$ of two fixed local petals.

Let J be the Julia set of Φ. Set $\widehat{J}:=\{(z, w): z w \in J\}$. Then \widehat{J} has empty interior since J does (see e.g. [10]). We claim that if $(z, w) \notin \widehat{J}$, then $F^{\circ n}(z, w) \nrightarrow 0$ as $n \rightarrow \infty$.

It is well-known that, if $u_{0} \notin J$ and $\Phi^{\circ n}\left(u_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$, then $u_{0} \in P(\lambda) \cup P(-\lambda)$. Therefore if $(z, w) \notin \widehat{J}$ is such that $z w \notin P(\lambda) \cup P(-\lambda)$ then $\left\{\Phi^{\circ n}(z w)\right\}$ cannot converge to 0 and therefore $F^{\circ n}(z, w) \nrightarrow 0$.

Now, let $(z, w) \notin \widehat{J}$ be such that $z w \in P(\lambda) \cup P(-\lambda)$. Then, setting $u_{l}=\Phi^{\circ l}(z w)$ we have

$$
F^{\circ m}(z, w)=\left(\lambda^{m} z \prod_{l=1}^{m}\left(1+\frac{u_{l}}{\lambda}\right), \frac{w}{\lambda^{m}} \prod_{l=1}^{m}\left(1-\frac{u_{l}}{\lambda}\right)\right)
$$

so that the behavior of $F^{\circ m}(z, w)$ depends only on the behavior of the infinite products $\prod_{l=1}^{m}\left(1 \pm \frac{u_{l}}{\lambda}\right)$.

The sequence $\left\{u_{l}\right\}$ tends to 0 with speed

$$
\begin{equation*}
\left|u_{l}\right|^{2} \sim \frac{1}{l} \tag{6.7}
\end{equation*}
$$

while $u_{l} /\left|u_{l}\right| \rightarrow \pm \lambda$ depending on whether $z w \in P(\pm \lambda)$. But

$$
\left|1 \pm \frac{u_{l}}{\lambda}\right|=\sqrt{1+\left|u_{l}\right|^{2} \pm 2\left|u_{l}\right| \operatorname{Re} \frac{u_{l}}{\lambda\left|u_{l}\right|}} \sim 1 \pm \frac{1}{\sqrt{l}} \operatorname{Re} \frac{v}{\lambda},
$$

where $v= \pm \lambda$. Therefore, if $z w \in P(\lambda)$, i.e. $v=\lambda$, then the behavior of $p_{1} \circ F^{\circ m}(z, w)$ (here $p_{1}(z, w)=z$) depends on the infinite product

$$
\prod\left(1+\frac{1}{\sqrt{l}}\right)
$$

which diverges to ∞, while the behavior of $p_{2} \circ F^{\circ m}(z, w)$ (here $\left.p_{2}(z, w)=w\right)$ depends on the infinite product

$$
\prod\left(1-\frac{1}{\sqrt{l}}\right)
$$

which converges to 0 . If $z w \in P(-\lambda)$ the situation is reversed. In both cases $F^{\circ n}(z, w) \nrightarrow 0$. Hence F has no basin of attraction at 0 .
6.5. Example of a one-resonant non-degenerate (but not parabolically attracting) germ with no basins of attraction. Consider the germ given by

$$
F(z, w)=\left(z-z^{2}, \lambda w+\lambda z w\right)
$$

where $|\lambda|=1$ and λ is not a root of unity. Then F is one-resonant with index of resonance $(1,0)$. Furthermore $\Lambda=-1$, hence F is non-degenerate. On the other hand, F is not parabolically attracting, in fact $\operatorname{Re}\left(a_{2} \lambda_{2}^{-1} \Lambda^{-1}\right)=-1<0$. Thus Theorem 1.1 does not apply and, in fact, F has no basin of attraction.

Indeed, if $F^{\circ n}\left(z_{0}, w_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$, then z_{0} must belong to the maximal petal of the map $\varphi(z)=z-z^{2}$. Setting $z_{n}:=\varphi^{\circ n}\left(z_{0}\right)$, we have

$$
F^{\circ n}\left(z_{0}, w_{0}\right)=\left(z_{n}, \lambda^{n} w \prod_{l=1}^{n}\left(1+z_{l}\right) .\right)
$$

In view of Theorem 2.1,

$$
\left|\prod_{l=1}^{n}\left(1+z_{l}\right)\right| \geq \prod_{l=1}^{n}\left(1+\frac{\varepsilon}{l}\right)=+\infty
$$

for suitable $\varepsilon>0$. Hence the only possibility for $F^{\circ n}\left(z_{0}, w_{0}\right) \rightarrow 0$ is when $w_{0}=0$. Thus we cannot have a (open) basin of attraction.

References

[1] M. Abate, The residual index and the dynamics of holomorphic maps tangent to the identity. Duke Math. J. 107, 1, (2001), 173-207.
[2] M. Abate, Discrete holomorphic local dynamical systems. Holomorphic dynamical systems, 155, Lecture Notes in Math., 1998, Springer, Berlin, 2010
[3] M. Abate, F. Bracci, F. Tovena, Index theorems for holomorphic self-maps. Ann. of Math. 159, 2, (2004), 819-864.
[4] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations. Springer, 1983.
[5] F. Bracci, Local dynamics of holomorphic diffeomorphisms. Boll. UMI (8) 7-B (2004), 609-636.
[6] F. Bracci, Local holomorphic dynamics of diffeomorphisms in dimension one. Five lectures in complex analysis, 142, Contemp. Math., 525, Amer. Math. Soc., Providence, RI, 2010
[7] F. Bracci and L. Molino, The dynamics near quasi-parabolic fixed points of holomorphic diffeomorphisms in \mathbb{C}^{2}. Amer. J. Math. 126 (2004), 671-686.
[8] F. Brochero Martinez, F. Cano, L. Lopez Hernanz, Parabolic curves for diffeomorphisms in \mathbb{C}^{2}. Publ. Math. 52 (2008), 189-194.
[9] C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields. Ann. of Math. 115 (1982), 579-595.
[10] L. Carleson, T. W. Gamelin, Complex dynamics. Springer, 1993.
[11] J. Écalle, Les fonctions résurgentes, Tome III: L'équation du pont et la classification analytiques des objects locaux. Publ. Math. Orsay, 85-5, Université de Paris-Sud, Orsay, 1985.
[12] P. Fatou, Substitutions analytiques et equations fonctionelles de deux variables. Ann. Sc. Ec. Norm. Sup. (1924), 67-142.
[13] D.M. Grobman, Homeomorphism of systems of differential equations. Dokl. Akad. Nauk. USSR 128 (1959), 880-881.
[14] D.M. Grobman, Topological classification of neighbourhoods of a singularity in n-space. Math. Sbornik 56 (1962), 77-94.
[15] F. Ichikawa, On finite determinacy of formal vector fields. Invent. Math. 70 (1982/83), no. 1, 45-52.
[16] Y. Ilyashenko, S. Yakovenko, Lectures on analytic differential equations. Graduate Studies in Mathematics, 86. American Mathematical Society, Providence, RI, 2008.
[17] M. Hakim, Attracting domains for semi-attractive transformations of \mathbb{C}^{p}. Publ. Math. 38, (1994), 479-499.
[18] M. Hakim, Analytic transformations of $\left(\mathbb{C}^{p}, 0\right)$ tangent to the identity, Duke Math. J. 92 (1998), 403-428.
[19] P. Hartman, A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11 (1960), 610-620.
[20] J. Pöschel, On invariant manifolds of complex analytic mappings near fixed points. Exp. Math. 4 (1986), 97-109.
[21] Y. Nishimura, Automorphisms analytiques admettant des sous-variétés de points fixés attractives dans la direction transversale J. Math. Kyoto Univ. 23-2 (1983), 289-299.
[22] J. Raissy, Torus actions in the normalization problem, Jour. Geom. Anal., to appear.
[23] M. Rivi, Parabolic manifolds for semi-attractive holomorphic germs. Michigan Math. J. 49, 2, (2001), 211-241.
[24] F. Rong, Quasi-parabolic analytic transformations of \mathbb{C}^{n} J. Math. Anal. Appl. 343, No. 1, (2008), 99-109 .
[25] F. Rong, Linearization of holomorphic germs with quasi-parabolic fixed points. Ergodic Theory Dyn. Syst. 28, No. 3, (2008), 979-986.
[26] L. Stolovitch, Classification analytique de champs de vecteurs 1-résonnants de ($\left.\mathbb{C}^{n}, 0\right)$. Asymptotic Analysis 12 (1996), 91-143.
[27] F. Takens, Forced oscillations and bifurcations, Global analysis of dynamical systems, Inst. Phys., Bristol, 2001, Reprint from Comm. Math. Inst. Rijksuniv. Utrecht, No. 3-1974, 1974, pp. 1-61.
[28] K. Takano, On the iteration of holomorphic mappings. Funkcial. Ekvac. 17 (1974), 107-156.
[29] T. Ueda, Local structure of analytic transformations of two complex variables, I. J. Math. Kyoto Univ., 26-2 (1986), 233-261.
[30] T. Ueda, Local structure of analytic transformations of two complex variables, II. J. Math. Kyoto Univ., 31-3 (1991), 695-711.
[31] J.-C. Yoccoz: Théoréme de Siegel, nombres de Bryuno et polynomes quadratiques. Astérisque 231 (1995), 388.
[32] B. J. Weickert, Attracting basins for automorphisms of \mathbb{C}^{2}. Invent. Math. 132 (1998), 581-605.
F. Bracci: Dipartimento Di Matematica, Università Di Roma "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Roma, Italy.

E-mail address: fbracci@mat.uniroma2.it
D. Zaitsev: School of Mathematics, Trinity College Dublin, Dublin 2, Ireland

E-mail address: zaitsev@maths.tcd.ie

[^0]: *Supported in part by the Science Foundation Ireland grant 06/RFP/MAT018.

