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DYNAMICS OF ONE-RESONANT BIHOLOMORPHISMS

FILIPPO BRACCI AND DMITRI ZAITSEV*

Abstract. Our first main result is a construction of a simple formal normal form for holomorphic
diffeomorphisms in Cn whose differentials have one-dimensional family of resonances in the first
m eigenvalues, m ≤ n (but more resonances are allowed for other eigenvalues). Next, we provide
invariants and give conditions for the existence of basins of attraction. Finally, we give applications
and examples demonstrating the sharpness of our conditions.

1. Introduction

Let F be a germ of holomorphic diffeomorphism of Cn fixing the origin 0 with diagonalizable
differential. The dynamical behavior of the sequence of iterates {F ◦q}q∈N of F in a neighborhood
of 0 is depicted at the first order by the dynamics of its differential dF0. In fact, depending on the
eigenvalues λ1, . . . , λn of dF0, in some cases both dynamics are the same.
In the hyperbolic case (namely when none of the eigenvalues is of modulus 1) the map is

topologically conjugated to its differential (by the Hartman-Grobman theorem [19], [13], [14]) and
the dynamics is clear. Moreover, if the eigenvalues have either all modulus strictly smaller than
one or all strictly greater than one, then the origin is an attracting or respectively repelling fixed
point for an open neighborhood of 0. Also, by the stable/unstable manifold theorem, there exists
a holomorphic (germ of) manifold invariant under F and tangent to the sum of the eigenspaces of
those λj’s such that |λj| < 1 (resp. |λj| > 1) which is attracted to (resp. repelled from) 0. However,
already in case when all eigenvalues have modulus different from 1, holomorphic linearization is
not always possible due to the presence of resonances among the eigenvalues (see, for instance, [4,
Chapter IV]).
The case where some eigenvalue has modulus 1 is the most “chaotic” and interesting, since

it presents a plethora of possible scenarios. For instance, if those eigenvalues of modulus 1 are
not roots of unity and satisfy some Bruno-type conditions, then there exist Siegel-type invariant
submanifolds (see [20], [31]) on which the map is (holomorphically) linearizable. If the map is

tangent to the identity, it has been proved by Écalle [11] and Hakim [18] that generically there
exist “petals”, also called “parabolic curves”, namely, one-dimensional F -invariant analytic discs
having the origin in their boundary and on which the dynamics is of parabolic type. Later, Abate
[1] (see also [3]) proved that such petals always exist in dimension two.
On the other hand, Hakim [17] (based on the previous work by Fatou [12] and Ueda [29], [30]

in C2, see also Takano [28]) studied the so-called semi-attractive case, with one eigenvalue equal
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to 1 and the rest of eigenvalues having modulus less than 1. She proved that either there exists a
curve of fixed points or there exist attracting open petals. Such a result has been later generalized
by Rivi [23].
The quasi-parabolic case of a germ in C2, i.e. having one eigenvalue 1 and the other of modulus

equal to one, but not a root of unity has been studied in [7] and it has been proved that, un-
der a certain generic hypothesis called “dynamical separation”, there exist petals tangent to the
eigenspace of 1. Such a result has been generalized to higher dimension by Rong [24], [25]. We
refer the reader to the survey papers [2] and [5] for a more accurate review of existing results.
In case of diffeomorphisms with unipotent linear part, it was shown by Takens [27] (see also

[16, Chapter 1]) that such diffeomorphism can be embedded in the flow of a formal vector field.
Therefore, in this case the dynamics of the diffeomorphism, at least at the formal level, is related
to that of a (formal) associated vector field. For instance, using the Camacho-Sad theorem on the
existence of separatrices for vector fields [9], Brochero, Cano and Hernanz [8] gave another proof of
Abate’s theorem. On the other hand, when the linear part of the diffeomorphism is not unipotent,
the authors are not aware of any general result about embedding such a diffeomorphism into the
flow of a formal vector field. In fact, one encounteres somewhat unexpected differences between
the dynamics of diffeomorphisms and that of vector fields, see Raissy [22].
The aim of the present paper is the study of normal forms and the dynamics of germs of

holomorphic diffeomorphisms having a one-dimensional family of resonances among only certain
eigenvalues (that we call here partially one-resonant diffeomorphisms). It should be mentioned
here that (fully) one-resonant vector fields have been studied by Stolovitch in [26], where he also
obtained a normal form for vector fields up to multiplication by a unit. In case of diffeomorphisms
considered here, there is no natural analogue of multiplying by a unit and thus we are lead to seek
a normal form for the original diffeomorphism only under conjugations.
More in details, let λ1, . . . , λn be the eigenvalues of the linear part of a biholomorphic dif-

feomorphism germ F at 0. We say that F is one-resonant with respect to the first m eigen-

values {λ1, . . . , λm} (1 ≤ m ≤ n) (or partially one-resonant) if there exists a fixed multi-index

α = (α1, . . . , αm, 0, . . . , 0) 6= 0 ∈ Nn such for s ≤ m, the resonances λs =
∏n

j=1 λ
βj

j are precisely

of the form λs = λs
∏m

j=1 λ
kαj

j , where k ≥ 1 ∈ N is arbitrary. We stress out that, since arbitrary

resonances are allowed for s > m, such a condition is much weaker (see Example 2.4) than the
one-resonance condition normally found in the literature corresponding here to the case m = n,
see e.g. [15, 26]. The main advantage of the new notion of partial one-resonance is that it can be
applied to the subset of all eigenvalues of modulus equal to 1 that is natural to treat differently
from the rest of the eigenvalues.
In case of partial one-resonance, the classical Poincaré-Dulac theory implies that, whenever F

is not formally linearizable in the first m components, F is formally conjugated to a map whose
first m components are of the form λjzj +ajz

αkzj +Rj(z), j = 1, . . . , m, where, the number k ∈ N

is an invariant, called the order of F with respect to {λ1, . . . , λm}, the vector (a1, . . . , am) 6= 0 is
invariant up to a scalar multiple and the Rj ’s contain only resonant terms of higher degree. The
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number

Λ = Λ(F ) :=
m∑

j=1

ajαj

λj

is an invariant up to a scalar multiple, and the map F is said to be non-degenerate provided Λ 6= 0.
We show that (partially) one-resonant non-degenerate diffeomorphisms have a simple formal

normal form (see Theorem 3.6) in which the first m components are of the form

λjzj + ajz
kαzj + µαjλj

−1
z2kαzj , j = 1, . . . , m.

Although none of the eigenvalues λj , j = 1, . . . , m, might be roots of unity, such a normal form
is the exact analogue of the formal normal form for parabolic germs in C. In fact, a one-resonant
germ acts as a parabolic germ on the space of leaves of the formal invariant foliation {zα = const}
and that is the reason for this parabolic-like behavior.
Let F be a one-resonant non-degenerate diffeomorphism with respect to the eigenvalues

{λ1, . . . , λm}. We say that F is parabolically attracting with respect to {λ1, . . . , λm} if

|λj| = 1, Re
(
ajλj

−1Λ−1
)
> 0, j = 1, . . . , m.

Again, such a condition is invariant and its inequality part is vacuous in dimension 1 or whenever
m = 1 and |λ1| = 1 since in that case α = (α1, 0, . . . , 0) with α1 > 0. Our main result is the
following:

Theorem 1.1. Let F be a holomorphic diffeomorphism germ at 0 that is one-resonant, non-
degenerate and parabolically attracting with respect to {λ1, . . . , λm}. Suppose that |λj| < 1 for
j > m. Let k ∈ N be the order of F with respect to {λ1, . . . , λm}. Then F has k disjoint basins of
attraction having 0 on the boundary.

The different basins of attraction for F (that may or may not be connected) project via the
map z 7→ u = zα into different petals of the germ u 7→ u+ Λ(F )uk+1 + o(|u|k+1).
Theorem 1.1 has many consequences. For instance, we recover a result of Hakim (see Corollary

6.1) since not formally linearizable semi-attractive germs are always one-resonant, non degenerate
and parabolically attracting. Also, we apply our machinery to the case of quasi-parabolic germs,
providing “fat petals” in the quasi-parabolic dynamically separating and attracting cases (see
Subsection 6.2). Another area of application of Theorem 1.1 concerns elliptic germs which, in
dimension greater than 1, might present some, maybe unexpected, parabolic-like behavior, see
Subsection 6.3. Finally, we present examples of a one-resonant degenerate as well as non-degenerate
but not parabolically attracting germs which have no basins of attraction at 0, demonstrating
sharpness of the assumptions of Theorem 1.1, see Subsections 6.4 and 6.5.
The outline of the paper is as follows. In Section 2 we briefly recall the one-dimensional theory

of parabolic germs and define one-resonant germs in higher dimension. In Section 3 we construct
a formal normal form for non-degenerate partially one-resonant germs. In Section 4 we study the
dynamics of normal forms, as a motivation for the subsequent Section 5, where we give the proof of
Theorem 1.1. Finally, in Section 6 we apply our theory to the semi-attractive case, quasi-parabolic
case, elliptic case and provide examples of diffeomorphism with no basins of attraction.
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2. One-resonant diffeomorphisms

2.1. Preliminaries on germs tangent to the identity in C. (see e.g. [10]). Let

(2.1) h(u) := u+ Auk+1 +O(|u|k+2)

for some A 6= 0 and k ≥ 1, be a germ at 0 of a holomorphic self-mapping of C.

The attracting directions {v1, . . . , vk} for h are given by the k-th roots of − |A|
A
. These are pre-

cisely the directions v such that the term Avk+1 shows in the direction opposite to v. An attracting

petal P for h is a simply-connected domain such that 0 ∈ ∂P , h(P ) ⊆ P and limm→∞ h◦m(z) = 0
for all z ∈ P , where h◦m denotes the mth iterate of h.
We state here (a part of) the Leau-Fatou flower theorem. We write a ∼ b whenever there exists

constants 0 < c < C such that ca ≤ b ≤ Ca.

Theorem 2.1 (Leau-Fatou). Let h(u) be as in (2.1) and v an attracting direction for h at 0. Then
there exists an attracting petal P for h (said centered at v) such that for each z ∈ P the following
hold:

(1) h◦m(z) 6= 0 for all m and limm→∞
h◦m(z)
|h◦m(z)|

= v,

(2) |h◦m(z)|k ∼ 1
m
.

Moreover, the petals centered at the attracting direction v can be chosen to be connected components
of the set

{z ∈ C : |Azk + δ| < δ},
where 0 < δ << 1.

By the property (1), petals centered at different attracting directions must be disjoint.

Remark 2.2. Property (1) of Theorem 2.1 is a part of the standard statement of the Leau-Fatou
theorem (see, e.g., [2] or [6]). Property (2) follows from construction of the so-called Leau-Fatou
coordinate. We sketch it briefly here for the reader convenience. Up to a dilation one can assume
A = −1/k and v = 1. Let H := {w ∈ C : Rew > 0, |w| > C} and Ψ(w) := w−1/k for
w ∈ H with the k-th root chosen so that 11/k = 1. By the Leau-Fatou construction (see, e.g.
[6, pp.19-22]) if C > 0 is sufficiently large then the set P := Ψ(H) is h-invariant and the map
ϕ := Ψ−1 ◦ h ◦Ψ: H → H satisfies

ϕ(w) = w + 1 +O(|w|−1), w ∈ H.

From here both (1) and (2) follow easily.
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2.2. Partially one-resonant germs. Let Diff(Cn; 0) denote the space of germs of holomorphic
diffeomorphisms of Cn fixing 0. We shall adopt the notation N = {0, 1, . . .}. Given {λ1, . . . , λn}
a set of complex numbers, recall that a resonance is a pair (j, l), where j ∈ {1, . . . , n} and
l = (l1, . . . , ln) ∈ Nn is a multi-index with |l| ≥ 2 such that λj = λl (where λl := λl11 · · ·λlnn ).
In all the rest of the paper, and without mentioning it explicitly, we shall consider only germs

of diffeomorphisms whose differential is diagonal.

Definition 2.3. For F ∈ Diff(Cn; 0), assume that the differential dF0 has eigenvalues λ1, . . . , λn.
We say that F is one-resonant with respect to the first m eigenvalues {λ1, . . . , λm} (1 ≤ m ≤ n) if
there exists a fixed multi-index α = (α1, . . . , αm, 0, . . . , 0) 6= 0 ∈ Nn such that the resonances (j, l)
with j ∈ {1, . . . , m} are precisely of the form (j, αk + ej), where ej ∈ Nn is the unit vector with 1
at the jth place and 0 otherwise and where k ≥ 1 ∈ N is arbitrary. (In particular, it follows that

the relation λα1

1 · · ·λαm
m = 1 holds and generates all other relations λβ1

1 · · ·λβn
n = 1 with βs ≥ 0

for all s.) The multi-index α is called the index of resonance. If F is one-resonant with respect to
{λ1, . . . , λn} (i.e. m = n) we simply say that F is one-resonant.

The notion of one-resonance for m = n has been known in the literature, see e.g. [15, 26].
However, its generalization for m < n given here seems to be new. The following class of examples
illustrates the difference.

Example 2.4. Let F ∈ Diff(C3; 0) be any diffeomorphism with eigenvalues λ, µ, ν of dF0 such
that λ is a root of unity, |µ| < 1 and ν = µs for some natural number s ≥ 1. Then F is one-
resonant with respect to λ but has resonances of the form (3, se2) showing it is not one-resonant
with respect to all the eigenvalues.

Remark 2.5. It follows directly from the definition that, if F is one-resonant with respect to
{λ1, . . . , λm}, then λj 6= λs for any j ∈ {1, . . . , m} and s ∈ {1, . . . , n} with j 6= s. Indeed,
otherwise one would have resonances of type (j, kα + es) which are not of the required form
(j, kα + ej).

Example 2.6. The same diffeomorphism can be considered one-resonant with respect to different
groups of eigenvalues. For instance, consider F (z, w) = (z+ z3, e2πiθw+ zw), where θ is irrational.
Then F is one-resonant with respect to λ1 = 1 with index of resonance (1, 0). But also F is
one-resonant (with respect to {λ1, λ2} = {1, e2πiθ} with the same index of resonance (1, 0)). (Note
that the higher order terms of F play no role here but will be used later in Example 3.4.)

As the previous example shows, there may exist “non-maximal” sets of “one-resonant eigen-
values”. However, it is easy to see from the definition that any set of “one-resonant eigenval-
ues” is contained in the unique maximal set and containes the unique minimal set. Namely,
let F be one-resonant with respect to {λ1, . . . , λm} and assume that the index of resonance is
α = (α1, . . . , αm, 0, . . . , 0). Since the relation λα1

1 · · ·λαm
m = 1 holds and generates all other rela-

tions λβ1

1 · · ·λβn
n = 1 with βs ≥ 0 for all s, it follows that any other resonant set of eigenvalues

corresponds to the same index α. Then it follows directly from the definition that every set of
one-resonant eigenvalues contains the minimal set L of all λj with αj 6= 0 and the set L itself
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is one-resonant. On the other hand, let L̃ be the set of all λj such that any resonance (j, l) is of

the required form (j, kα + ej). Then L̃ is the maximal one-resonant set that contains any other
one-resonant set of eigenvalues.
The choice of the set of eigenvalues with respect to which the map is considered one-resonant

depends on the problem one is facing, in our main result Theorem 1.1 it is natural to consider
one-resonance with respect to the set of all eigenvalues of modulo one.

3. Normal form for non-degenerate one-resonant diffeomorphisms

Let F ∈ Diff(Cn; 0) be one-resonant with respect to {λ1, . . . , λm} with index of resonance α.
Using Poincaré-Dulac theory (see, e.g. [4, Chapter IV]), one can formally conjugate F to a germ
G = (G1, . . . , Gn) such that

(3.1) Gj(z) = λjzj + ajz
αkzj +Rj(z), j = 1, . . . , m,

where either a = (a1, . . . , am) 6= 0 and Rj(z) contains only resonant monomials ajsz
αszj with s > k

or aj = 0 and Rj ≡ 0 for all j = 1, . . . , m. Note that the second case occurs precisely when F is
formally linearizable in the first m variables.

Definition 3.1. Let F ∈ Diff(Cn; 0) be one-resonant with respect to {λ1, . . . , λm} such that

(3.2) Fj(z) = λjzj + ajz
αkzj +O(|z||α|k+2), j = 1, . . . , m,

with k ≥ 1 and a = (a1, . . . , am) 6= 0, where α is the index of resonance. Set

(3.3) Λ = Λ(F ) :=

m∑

j=1

ajαj

λj
.

We say that F is non-degenerate if Λ 6= 0.

Remark 3.2. The integer k in (3.2) is invariant under conjugations preserving the form (3.2)
and the vector a = (a1, . . . , am) is invariant up to multiplication by a scalar. In particular, the
non-degeneracy condition given by Definition 3.1 is invariant. Indeed, if the conjugation with a
map ψ = (ψ1, . . . , ψn) ∈ Diff(Cn; 0) preserves the form (3.2) (possibly changing a), then ψj(z) =
bjzj + O(|z|2), bj ∈ C∗, for any j = 1, . . . , m, in view of Remark 2.5. Conjugating with the linear
part of ψ, we see that for any such j, aj is replaced by ajb

αk. Assume now that ψ(z) = z+O(|z|2).
Then by the Poincaré-Dulac theory, since ψ preseves (3.2), all terms of order less than |α|k + 2
that ψ has in its first m components must be resonant and therefore a is invariant.

Definition 3.3. We call the invariant number k the order of F with respect to λ1, . . . , λm.

Example 3.4. Let F be the germ given in Example 2.6. Then F is non-degenerate when regarded
as a one-resonant germ with respect to the eigenvalue 1 (with k = 2 and a = a1 = 1). But it
becomes degenerate when regarded as a one-resonant germ (with respect to both eigenvalues
{1, e2πiθ}), because in that case a = (a1, a2) = (0, 1) and the index of resonance is (1, 0), thus
Λ(F ) = 0. The main reason being the change of the order k.
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Note that, more generally, for a germ of the form (z + . . . , e2πiθw + . . .) with θ irrational, the
condition of being non-degenerate with respect to {1, e2πiθ} is equivalent to F being dynamically

separating in the terminology of [7] (see Subsection 6.2).

As illustrated by the latter example, if one passes from a smaller set of one-resonant eigenvalues
to a larger one, the order k may drop, in which case the corresponding non-degeneracy conditions
are not related, i.e. F can be non-degenerate with respect to the smaller set but not the larger
one or with respect to the larger but not the smaller one. On the other hand, if the order k is the
same for both sets, since both sets contain the set of all λj with αj 6= 0, the (non-)degeneracies
with respect to the smaller and larger sets are clearly equivalent.

Remark 3.5. If F is one-resonant with respect to {λ1}, then λ1 is a root of unity. Moreover, in
this case F is non-degenerate if and only if it is not formally linearizable in the first component.

We have the following normal form for non-degenerate partially one-resonant diffeomorphisms.

Theorem 3.6. Let ∈ Diff(Cn; 0) be one-resonant and non-degenerate with respect to λ1, . . . , λm
with index of resonace α. Then there exist k ∈ N and numbers µ, a1, . . . , am ∈ C such that F is
formally conjugated to the map F̂ (z) = (F̂1(z), . . . , F̂n(z)), where

(3.4) F̂j(z) = λjzj + ajz
kαzj + µαjλj

−1
z2kαzj , j = 1, . . . , m,

and the components F̂j(z) for j = m+ 1, . . . , n, contain only resonant monomials.

Proof. By the Poincaré-Dulac theory, we may assume that Fj(z) for j = m + 1, . . . , n, contain
only resonant monomials and

(3.5) Fj(z) = λjzj + ajz
kαzj +

∑

l≥1

ajlz
(l+k)αzj , j = 1, . . . , m.

With the notation F ′ := (F1, . . . , Fm), λ
′ := diag(λ1, . . . , λm), z

′ := (z1, . . . , zm), we can rewrite
(3.5) in the more compact form

(3.6) F ′(z) = λ′z′ + zkα
∑

j

ajzjej +
∑

k′>k

zk
′α
∑

j

ak′jzjej ,

where the summation over j is understood from 1 to m and ej is the unit vector with 1 at the jth
place and 0 otherwise.

We now study the conjugation F̃ = Θ ◦ F ◦Θ−1 under that map

(3.7) Θ(z) = z + θ(z), θ(z) = (zlα
∑

j

bjzjej , 0) = (b1z
lαz1, . . . , bmz

lαzm, 0, . . . , 0),

for an integer l ≥ 1 and a vector b = (b1, . . . , bm) ∈ Cm. We also use the notation

F (z) = λz + f(z), F̃ (z) = λz + f̃(z), f, f̃ = O(2),
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and the Taylor expansions

(3.8) f̃(z + h) = f̃(z) +
∑

r≥1

1

r!
f̃ (r)(z)(h), θ(z + h) = θ(z) +

∑

r≥1

1

r!
θ(r)(z)(h),

where the derivatives f̃ (r)(z)(h) and θ(r)(z)(h) are regarded as n-tuples of homogeneous polyno-
mials of degree r in h. We use (3.8) to rewrite the identity

(3.9) F̃ (Θ(z)) = Θ(F (z))

as

(3.10) f̃(z) + λθ(z) +
∑

r≥1

1

r!
f̃ (r)(z)(θ(z)) = θ(λz) + f(z) +

∑

r≥1

1

r!
θ(r)(λz)(f(z)).

In view of the resonance relations, we have λθ(z) = θ(λz) and hence (3.10) is equivalent to

(3.11) f̃(z)− f(z) =
∑

r≥1

1

r!

(
θ(r)(λz)(f(z))− f̃ (r)(z)(θ(z))

)
.

Now identifying terms of order up to k|α|+ 1 in (3.11), we conclude by induction on the order
that

(3.12) f̃ ′(z) = f ′(z) +O(|z|k|α|+2) = zkα
∑

j

ajzjej +O(|z|k|α|+2),

where f̃ ′ = (f̃1, . . . , f̃m). Next, identifying terms of order up to (k + l)|α|+ 1, we obtain

f̃ ′(z)− f ′(z) = θ′(1)(λz)(f(z))− f̃ ′(1)(z)(θ(z)) +O(|z|(k+l)|α|+2).

Substituting f ′, f̃ ′ from (3.12) and θ from (3.7), we find

(3.13) f̃ ′(z)−f ′(z) = z(k+l)α
∑

j,s

ajbs
(
(lαjλ

lα−ej+es+δjsλ
lα)zses−(kαs+δjs)zjej

)
+O(|z|(k+l)|α|+2).

By the resonance conditions, λlα = 1. In particular, the terms with δjs cancel each other and we
obtain

(3.14) f̃ ′(z)− f ′(z) = z(k+l)α
∑

j,s

ajbs
(
lαjλ

es−ejzses − kαszjej
)
+O(|z|(k+l)|α|+2)

= z(k+l)αbAZ +O(|z|(k+l)|α|+2),

where b = (b1, . . . , bm), Z is the diagonal matrix with entries z1, . . . , zm and A is the m×m matrix
given by

A = l(aL−1αt)L− kαta.

Here αt is the transpose of α and L is the diagonal matrix with entries λ1, . . . , λm. Note that the
expression in parentheses is a scalar. Then

A = CL, C = l(aL−1αt)id− kαtaL−1.
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Since the matrix kαtaL−1 is of rank one, it has at most one nonzero eigenvalue equal to its trace
kaL−1αt. By our nondegeneracy assumption, this trace is actually different from zero. The first
matrix in the expression of C is scalar with all its diagonal entries equal to laL−1αt. Since aL−1αt 6=
0, we conclude that C is invertible if and only if l 6= k. Since f has the form (3.5), given any l 6= k,

it follows from (3.14) that there exists (unique) vector b such that f̃ ′ = f ′ + O(|z|(k+l)|α|+1) and

the terms of f̃ ′ of order (k + l)|α|+ 1 all vanish.
On the other hand, in case l = k, C has rank m− 1. In this case we use the identity

bCαt = kb
(
aL−1αt

)
αt − kb

(
αtaL−1

)
αt = k(aL−1αt)bαt − kbαt(aL−1αt) = 0,

where we have used that both b and bαt commute with the scalar aL−1αt. Hence αt annihilates the
image of the map b 7→ bC. Since C has rankm−1, its image is precisely the orthogonal complement
of α (with respect to the standard hermitian scalar product on Cm, note that α = α). Then the

image of the map b 7→ bA is precisely the orthogonal complement of αL
−1

= (α1λ1
−1
, . . . , αmλm

−1
).

It now follows from (3.14) that, choosing suitable b, we can arrange that the term of f̃ ′ of order
2k|α|+ 1 equals

(3.15) z2kαµαL
−1
Z = z2kαµ

∑

j

αjλj
−1
zjej

for some µ ∈ C.
We now apply inductively the above procedure for each l ≥ 1, either to eliminate the corre-

sponding term in (3.5) or normalize it as in (3.15), by conjugating with a suitable map (3.7) for
that number l. At each step we may create nonresonant terms whose order must be greater than
l|α| + 1 in view of (3.10). Those terms can be eliminated inductively according to the Poincaré-
Dulac theory by conjugation with further maps Θ(z) = z+θ(z) with θ(z) being suitable monomials
of order greater than l|α|+ 1. Again using (3.10) we see that those additional conjugations does
not affect the normalized terms of order l|α| + 1. Thus by induction on l, we obtain the desired
normalization (3.4). �

Remark 3.7. It is clear from the proof of Theorem 3.6 that, for any given t ∈ N there exists
a holomorphic (polynomial) change of coordinates which transforms F into F̂ + O(t), where F̂
satisfies (3.4) and O(t) denotes a function vanishing of order ≥ t at 0.

4. Dynamics of normal forms

Motivated by Theorem 3.6, we shall first study the dynamics of a one-resonant diffeomorphism
G ∈ Diff(Cn; 0) of the form G(z) = (G1(z), . . . , Gn(z)) with

(4.1) Gj(z) = λjzj + ajz
kαzj + bjz

2kαzj , j = 1, . . . , n,

and Λ = Λ(G) 6= 0, where Λ(G) is as in Definition 3.1. We consider the singular foliation F of Cn

given by {zα = const}.
Lemma 4.1. The foliation F is G-invariant.
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Proof. Let π(z) = zα. Then

π(G(z)) = zα
n∏

j=1

(λj + ajz
kα + bjz

2kα)αj ,

where the right-hand side is clearly a holomorphic function of zα. Hence G maps leaves of F into
(possibly different) leaves of F and the desired conclusion follows. �

Let L denote the space of leaves of F . Let π : Cn → L be the projection given by (z1, . . . , zn) 7→
zα. Clearly, L ≃ C. Let u = zα = π(z). The action of G on L is given by

(4.2) Φ(u) := G1(z)
α1 · · ·Gn(z)

αn = u+ Λ(G)uk+1 +O(|u|k+2),

where we have used that λα = 1. Note that Φ : (C, 0) → (C, 0) is locally biholomorphic. Let
v1, . . . , vk be the attracting directions for Φ, and Pj ⊂ C, j = 1, . . . , k, attracting petals centered
at vj (see Section 2.1). Set

Uj := π−1(Pj) ⊂ Cn.

Since F is G-invariant, the domains Uj are also G-invariant.
Let z ∈ Uj. Then Φ◦m(π(z)) → 0 as m → ∞. In order to understand the dynamics of G, it

is then sufficient to understand the “motion” along the leaves of F . As a matter of notation, let
pj(z1, . . . , zn) = zj .

Proposition 4.2. Let G ∈ Diff(Cn; 0) be in the normal form (4.1) with Λ = Λ(G) 6= 0. Fix
1 ≤ j ≤ n and 1 ≤ t ≤ k.

(1) If |λj| < 1, then for all z ∈ Ut, one has limm→∞ pj ◦G◦m(z) = 0.
(2) If |λj| > 1, then for all z ∈ Ut with zj 6= 0, one has limm→∞ pj ◦G◦m(z) = ∞.
(3) If |λj| = 1 and Re (ajλj

−1Λ−1) > 0, then for all z ∈ Ut, one has limm→∞ pj ◦G◦m(z) = 0.
(4) If |λj| = 1 and Re (ajλj

−1Λ−1) < 0, then for all z ∈ Ut with zj 6= 0, one has limm→∞ pj ◦
G◦m(z) = ∞.

Proof. Note that by construction Φ(π(z)) = π(G(z)). We can write for j = 1, . . . , n,

Gj(z) = (λj + aju
k + bju

2k)zj

and, letting ul := Φ◦l(u) = π(G◦l(z)),

pj ◦G◦m(z) = λmj

m∏

l=1

(
1 +

aj
λj
ukl +

bj
λj
u2kl

)
zj .

We examine the asymptotical behavior of the infinite product

(4.3)

∞∏

l=1

(
1 +

aj
λj
ukl +

bj
λj
u2kl

)
.

Let z ∈ Ut, therefore u = π(z) ∈ Pt. By Theorem 2.1, part (2), it follows that |ukl | = |ul|k ∼ 1
l
.
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Let Al :=
aj
λj
ukl +

bj
λj
u2kl . We examine the behavior of

∏m
l=1 |1 + Al|. Taking the logarithm we

have

log

(
m∏

l=1

|1 + Al|
)

=
1

2

m∑

l=1

log(1 + |Al|2 + 2ReAl).

For l >> 1, ||Al|2+2ReAl| ∼ l−c for some c ∈ N∗. Hence, since for l >> 1, log(1+|Al|2+2ReAl) ∼
|Al|2 + 2ReAl,

1

2

∞∑

l=1

| log(1 + |Al|2 + 2ReAl)| ∼
1

2

∞∑

l=1

l−c.

From this it follows that the infinite product (4.3) either converges or goes to zero or infinity much
slower than |λj|m in case |λj| 6= 1. Thus (1) and (2) follow.

As for (3) and (4) we need a better estimate. By Theorem 2.1, part (1), it follows that
uk
l

|ul|k
→

vkt = −|Λ|Λ−1 as l → ∞. Hence

lim
l→∞

Re

(
aj
λj

ukl
|ul|k

)
= Re

(
aj
λj
vkt

)
= −Re

(
aj
λj

|Λ|
Λ

)
.

Therefore in case (3), for l large, |Al|2 + 2ReAl ∼ (−l−1). Hence

log

(
∞∏

l=1

|1 + Al|
)

=
1

2

∞∑

l=1

log(1 + |Al|2 + 2ReAl) ∼
1

2

m∑

l=1

−1

l
= −∞,

and thus (3) follows. Statement (4) is similar. �

5. Dynamics of non-degenerate one-resonant maps

Definition 5.1. Let F ∈ Diff(Cn; 0) be one-resonant and non-degenerate with respect to
{λ1, . . . , λm}. Let k ∈ N be the order of F with respect to λ1, . . . , λm (see Definition 3.3). Choose
coordinates such that (3.2) holds. We say that F is parabolically attracting with respect to
{λ1, . . . , λm} if

(5.1) |λj| = 1, Re
(
ajλj

−1Λ−1
)
> 0, j = 1, . . . , m,

where Λ = Λ(F ) is given by (3.3)

Remark 5.2. The condition of being parabolically attracting is independent of the coordinates
chosen. To see this, let ψ be a transformation which preserves (3.2), and let F̃ := ψ ◦ F ◦ ψ−1.
In view of Remark 3.2, it suffices to check the invariance of (5.1) for ψ linear with ψj(z) = bjzj ,

bj ∈ C∗, for any j = 1, . . . , m. Then, aj is replaced by ãj := ajb
αk and Λ(F̃ ) = Λ(F )bαk from

which the claim follows.

Remark 5.3. If F is one-resonant and non-degenerate with respect to {λ1} (with |λ1| = 1), then
it is always parabolically attracting. Indeed, in such a case, Λ = a1α1λ1

−1 and

Re
(
a1λ1

−1Λ−1
)
= α−1

1 > 0.
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Definition 5.4. Let F ∈ Diff(Cn; 0). We call a basin of attraction for F at 0 a nonempty (not
necessarily connected) open set U ⊂ Cn with 0 ∈ U , for which there exists a neighborhood basis
{Ωj} of 0 such that F (U ∩ Ωj) ⊂ U ∩ Ωj and F

◦m(z) → 0 as m→ ∞ whenever z ∈ U ∩ Ωj holds
for some j.

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Denote u := zα. In view of Theorem 3.6, up to biholomorphic conjugation
we can assume that F (z) = (F1(z), . . . , Fn(z)) with

Fj(z) = (λj + aju
k + µλjαju

2k)zj +O(|z|l), j = 1, . . . , m,

Fj(z) = λjzj +O(|z|2), j = m+ 1, . . . , n,
(5.2)

for any fixed l to be chosen later. Also, acting with a dilation (cfr. Remark 3.2) we can assume
that Λ = Λ(F ) = −1/k. Then, since F is parabolically attracting, we have

(5.3) Re
(
ajλj

−1
)
< 0, j = 1, . . . , m.

Let R > 0 be a number we will suitably choose later. Let

∆R :=

{
u ∈ C :

∣∣∣∣u
k − 1

2R

∣∣∣∣ <
1

2R

}
.

Note that ∆R has exactly k connected components corresponding to different branches of the kth
root. The desired basins of attraction will be constructed by means of the projection z 7→ zα over
sectors contained in such connected components.
We first construct a basin of attraction based on a sector centered at the direction 1, namely,

(5.4) SR(ε) := {u ∈ ∆R : |Argu| < ǫ},
for some small ǫ > 0 to be chosen later.
Let β > 0 be such that β|α| < 1 and let

B := {z = (z1, . . . , zn) ∈ Cn : |zj | < |u|β, j = 1, . . . , m, |(zm+1, . . . , zn)| < |u|β, u := zα ∈ SR(ǫ)}.
First of all, B 6= ∅ and 0 ∈ ∂B. Indeed, it is easy to see that zr = (r, . . . , r) ∈ B for r > 0
sufficiently small. Moreover, since the map z 7→ zα is open and 0 is not in the interior of SR(ε), it
follows that 0 /∈ B, i.e. 0 ∈ ∂B. Finally, the set B is obviously open.
Next, we prove that B is F -invariant. Let z ∈ B and let u := zα. Let

Φ(u, z) := F α1

1 (z) · · ·F αm

m (z) = u− 1

k
uk+1 + h1(u) + h2(z),

where we consider Φ as a function of the variables z, u = zα and h1(u) = O(|u|k+2) and h2(z) =
O(|z|l). We make the change of coordinates U = u−k and write

Φ̃(U, z) := Φ(U− 1

k , z)−k
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for the map Φ in the new coordinates. Note that u ∈ SR(ǫ) if and only if U ∈ HR(ǫ), where

HR(ǫ) := {w ∈ C : Rew > R, |Argw| < kǫ}.
Since Re (ajλ

−1
j ) < 0, it is easy to see that, choosing R sufficiently large and ε sufficiently small,

we obtain

(5.5)

∣∣∣∣1 +
aj
λj

1

w
+ µαj

1

w2

∣∣∣∣ < 1− c

|w|
for some c > 0 and for all w ∈ HR(ε).
Now fix 0 < δ < 1/2 such that

(5.6) HR(ǫ) + 1 + τ ⊂ HR(ǫ) whenever |τ | < δ,

Note that δ depends on ǫ but not on R. Fix 0 < c′ < c. By choosing β < 1/2 sufficiently small,
we can assume that

(5.7) β(δ + 1)− c′k < 0

and choose l > 1 such that

(5.8) βl > k + 1.

After a direct computation we find

(5.9) Φ̃(U, z) = U

(
1

1− 1
kU

+ U1/kh1(U−1/k) + U1/kh2(z)

)k

.

Since |z| < n|u|β in B, there exists K > 0 such that

|U |1/k|h1(U−1/k)| ≤ K|U |1/k|U |−(k+2)/k = K|U |−1−1/k

and

|U |1/k|h2(z)| ≤ K|U |1/k|u|βl = K|U |(1−βl)/k.

Therefore, if R is sufficiently large and z ∈ B (hence U ∈ HR(ǫ)), we have

(5.10) Φ̃(U, z) = U + 1 + ν(U, z), with |ν(U, z)| < δ,

where we have used (5.8). In particular, U1 := Φ̃(U, z) ∈ HR(ǫ) in view of (5.6) and ReU1 ≥
ReU + 1

2
. Therefore we have proved that

(5.11) z ∈ B ⇒ u1 := Φ(u, z) ∈ SR(ǫ).

Moreover, by the same token, setting by induction um+1 := Φ(um, F
◦m(z)), it follows that

(5.12) lim
m→∞

um = 0.

Now we examine the components Fj for j = m + 1, . . . , n. Set x := (z1, . . . , zm) and y :=
(zm+1, . . . , zn). Then

y1 =My + h(z)z,



14 F. BRACCI AND D. ZAITSEV

where M is the (n − m) × (n −m) diagonal matrix with entries λj (j = m + 1, . . . , n) and h is
a holomorphic (n−m)× n matrix valued function in a neighborhood of 0 such that h(0) = 0. If
z ∈ B, then |y| < |u|β. Moreover, since |λj| < 1 for j = m + 1, . . . , n, it follows that there exists
a < 1 such that |My| < a|y| < a|u|β. Also, let 0 < b < 1 − a. Then, for R sufficiently large, it
follows that |h(z)| ≤ b/n if z ∈ B. Hence, letting p = a + b < 1, we obtain

(5.13) |y1| ≤ |My|+ |h(z)||z| < a|u|β + b

n
n|u|β = (a + b)|u|β = p|u|β.

Now, we claim that for R sufficiently large, it follows that

(5.14) |u| ≤ 1

p1/β
|u1|,

where u1 = Φ(u, z). Indeed, (5.14) is equivalent to |U1| ≤ p−k/β|U | and hence to

|U + 1 + ν(U, z)|
|U | ≤ p−k/β.

But the limit for |U | → ∞ in the left-hand side is 1 and the right-hand side is > 1, thus (5.14)
holds for R sufficiently large.
Hence, by (5.13) and (5.14) we obtain

(5.15) |y1| ≤ |u1|β.
Now we examine the components Fj for j = 1, . . . , m. Let z ∈ B and, as before, let U = u−k ∈

HR(ǫ). By (5.2) and by (5.3) we have

(5.16) Fj(z) = λj

(
1 +

aj
λj

1

U
+ µαj

1

U2

)
zj +Rl(z)

with Rl(z) = O(|z|l). If z ∈ B and R is sufficiently large, one has

(5.17) |Rl(z)| < |z|l−1 < (n|u|β)(l−1).

From (5.16), and since U ∈ HR(ε), we now obtain using (5.5) and (5.17):

|Fj(z)| ≤
(
1− c

|U | + nl−1|u|β(l−2)

)
|u|β =

(
1− c

|U | +
nl−1

|U |β(l−2)/k

)
|u|β.

Then β(l− 2) > k+ 1− 2β > k by (5.8) and thus β(l− 2)/k > 1. Hence, if R is sufficiently large,

(5.18) p(u) := 1− c

|U | +
nl−1

|U |β(l−2)/k
< 1.

Hence

(5.19) |Fj(z)| ≤ p(u)|u|β.
Now we claim that, setting u1 := Φ(u, z), we obtain

(5.20) |u| ≤ 1

|p(u)|1/β |u1|.
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Indeed, (5.20) is equivalent to |U1| ≤ p(u)−k/β|U | and hence, in view of (5.10), to

(5.21)
|U + 1 + ν(U, z)|

|U | ≤ p(u)−k/β.

Note that, since 0 < c′ < c (recall that c′ is chosen before (5.7)), taking R sufficiently large,

(1 − c′/|U |)−k/β ≤ p(u)−k/β. Also, by (5.10) we have |U+1+ν(U,z)|
|U |

≤ 1 + 1+δ
|U |

, hence (5.21) holds if

we can show that

(5.22) 1 +
1 + δ

|U | ≤
(
1− c′

|U |

)−k/β

.

But
(
1− c′

|U |

)−k/β

= 1 +
k

β

c′

|U | + o

(
1

|U |

)
,

and thus (5.22) holds whenever δ +1− c′k/β < 0 (which is assured by (5.7)) and R is sufficiently
large. Hence, (5.20) holds. Putting together (5.19) and (5.20) we have for j = 1, . . . , n

(5.23) |Fj(z)| ≤ |u1|β, j = 1, . . . , m.

Equations (5.15) and (5.23) imply that F (B) ⊆ B. Moreover, by induction, for all z ∈ B, denoting
by ρj(z) := zj the projection on the j-th component, we have

|ρj ◦ F ◦m(z)| ≤ |um|β,

hence F ◦m(z) → 0 as m→ ∞ by (5.12). Therefore B is a basin of attraction for F at 0.
To end the proof, we note that the previous argument can be repeated by considering in (5.4)

the sectors Sj
R(ǫ), j = 1, . . . , k, of the form

Sj
R(ǫ) := {u ∈ ∆R : |Argu− 2π(j − 1)

k
| < ǫ}.

Let Bj be the basin of attraction constructed over Sj
R(ǫ), namely

Bj := {z = (z1, . . . , zn) ∈ Cn : |zj | < |u|β, j = 1, . . . , m, |(zm+1, . . . , zn)| < |u|β, u := zα ∈ Sj
R(ǫ)}.

Then clearly B1, . . . , Bk are disjoint and the proof is complete. �

Remark 5.5. Let F be as in Theorem 1.1 and let B1, . . . , Bk be its basins of attraction at 0
constructed in the proof. If S1, . . . , Sk denote the k petals for the induced germ u→ u+Λuk+1 +
O(|u|k+2) (see (4.2)) then, up to relabeling, π(Bj) ⊂ Sj for j = 1, . . . , k, where π : Cn ∋ z 7→ zα ∈
C. In particular, if α = (q, 0, . . . , 0) for some q ≥ 1, then each Bk has q connected components.
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6. Applications and examples

6.1. Semi-attractive case. One-resonant diffeomorphisms with respect to one eigenvalue (which
is necessarily a root of unity) are either formally linearizable in the associated eigendirection or
non-degenerate and parabolically attracting (see Remark 5.3). Thus, in particular, we recover
Hakim’s theorem on semi-attractive germs (cfr. [17, Thm. 1.1] for q = 1):

Corollary 6.1. Let F ∈ Diff(Cn; 0). Let {λ1, . . . , λn} be the eigenvalues of dF0. Suppose that
λq1 = 1 for some q ∈ N \ {0} and λl1 6= 1 for l = 1, . . . , q − 1, and that |λj| < 1 for j = 2, . . . , m.
In particular, F is one-resonant with respect to {λ1}. Let k be the order of F with respect to λ1.
Then:

(1) either k < ∞ and there exist k basins of attraction for F at 0, each having q connected
components which are cyclically permuted by F ,

(2) or k = ∞ and F is formally linearizable in the first component. This is the case if and only
if there exists a holomorphic germ of a non-singular curve of fixed points of F ◦q passing
through 0.

Proof. (1) If k < ∞ then F is non-degenerate with respect to {λ1} and with index of resonance
(q, 0, . . . , 0) (see Remark 3.5). By Remark 5.3, F is parabolically attracting with respect to {λ1}
and hence Theorem 1.1 applies yielding k basins of attraction. Let B1, . . . , Bk be the basins of
attraction constructed in course of the proof of Theorem 1.1. By Remark 5.5, each Bj has q
connected components.
Fix one such a basin of attraction B = Bj and let D0, . . . , Dq−1 be its connected components.

By Remark 5.5, the image of B in C via the map Cn ∋ z 7→ zq1 belongs to a petal S of u 7→
u + Λ(F )uk+1. Let w ∈ C be such that wq ∈ S. In view of the construction in the proof of
Theorem 1.1, assuming w being sufficiently small, we have Qp := (λp1w, 0, . . . , 0) ∈ B for p =
0, . . . , q − 1. Moreover, the Qp’s belong to different connected components of B. We can assume

Qp ∈ Dp for p = 0, . . . , q − 1. Now F1(Qp) = λp+1
1 w + o(|w|) and hence F (Qp) belongs to Dp+1

(where Dq = D0), proving the statement.
(2) We note that by Definition 3.3, the orders of F and of F ◦q with respect to λ1 coincide.

Furthermore, k = ∞ if and only if F is formally linearizable in the first component, and hence,
if and only if F ◦q is formally linearizable in the first component. Therefore we can assume q = 1.
One direction being clear, we only show that if k = ∞ then F has a holomorphic non-singular
curve of fixed points through 0. Write z = (z, z′) ∈ C× Cn−1, λ′ = (λ2, . . . , λn) and

F (z, z′) = (f(z, z′), λ′z′ + g(z, z′)) ∈ C× Cn−1,

where f(z, z′) = z + o(|(z, z′)|) and g(z, z′) = o(|(z, z′)|). We look for a curve given by ψ : ζ 7→
(ζ, v(ζ)) where v : U → Cn−1 is a germ at 0 of holomorphic map defined in some open set U ⊂ C

such that v(0) = 0 and such that F (ψ(ζ)) = ψ(ζ) for all ζ ∈ U . We decouple the latter condition
as

(6.1) f(ζ, v(ζ)) = ζ
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(6.2) λ′v(ζ) + g(ζ, v(ζ)) = v(ζ)

Since k = +∞, the Poincaré-Dulac theory yields that F is formally conjugated to a map of the
type F̂ (z, z′) = (z, λ′z′ + h(z, z′)), where each monomial in the expansion of h(z, z′) is divisible

by zj for some j = 2, . . . , n. Clearly F̂ has a unique curve of fixed points tangent to e1, namely
z′ = 0. Hence, F has a unique formal solution to (6.1) and (6.2). It is enough to show that such
a solution is actually holomorphic. To this aim, we let G(x, y) := (λ′ − id)y + g(x, y) with x ∈ C

and y ∈ Cn−1. Since the Jacobian matrix {∂Gj(x,y)

∂yk
|0}j,k=1,...,n−1 = λ′ − id has maximal rank, then

by the (holomorphic) implicit function theorem, there exists a unique function v(x) defined and
holomorphic near x = 0 such that G(x, v(x)) ≡ 0, and the proof is complete. �

6.2. Quasi-parabolic germs. A germ of holomorphic diffeomorphism of C2 at 0 of the form
F (z, w) = (z + . . . , e2πiθw + . . .) with θ ∈ R is called quasi-parabolic. In particular, if θ ∈ R \Q,
then F is one-resonant. We shall restrict to this case here.
Using Poincaré-Dulac theory, since all resonances are of the type (1, (m, 0)), (2, (m, 1)), the map

F can be formally conjugated to a map of the form

(6.3) F̂ (z, w) = (z +

∞∑

j=ν

ajz
j , e2πiθw +

∞∑

j=µ

bjz
jw),

where we assume that either aν 6= 0 or ν = ∞ if aj = 0 for all j. Similarly for bµ.
As it is proved in [7], the number ν(F ) := ν is a formal invariant of F . Moreover, it is proved

that, in case ν < +∞, the sign of Θ(F ) := ν − µ − 1 is a formal invariant. The map F is said
dynamically separating if ν < +∞ and Θ(F ) ≤ 0.
An argument similar to that of the proof of Corollary 6.1.(2) yields:

Proposition 6.2. Let F be a quasi-parabolic germ of diffeomorphism of C2 at 0. Then ν(F ) = +∞
if and only if there exists a germ of (holomorphic) curve through 0 that consists of fixed points of
F .

In case ν(F ) < +∞, we note that the index α = (1, 0) and therefore Λ(F ) equals either aν(F )

or 0, depending on whether ν ≤ µ + 1 or ν > µ + 1. Hence F is dynamically separating if and
only if it is non-degenerate with respect to {1, e2πiθ}. In case F is non-degenerate, k := ν(F )− 1
is the order of F with respect to {1, e2πiθ}.
In [7] it is proven that if F is a quasi-parabolic dynamically separating germ of diffeomorphism

at 0 then there exist ν(F )−1 petals for F at 0. A direct computation shows that if F is dynamically
separating, then it is parabolically attracting if and only if

(6.4) Re

(
bν−1

e2πiθaν

)
> 0.

Then as a consequence of Theorem 1.1 and Remark 5.5 we have:

Corollary 6.3. Let F be a dynamically separating quasi-parabolic germ, formally conjugated to
(6.3). If (6.4) holds, then there exist ν(F )− 1 disjoint connected basins of attraction for F at 0.
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6.3. An example of an elliptic germ with parabolic dynamics. Let λ = e2πiθ for some
θ ∈ R \Q. Let

F (z, w) = (λz + az2w + . . . , λ−1w + bzw2 + . . .),

with |a| = |b| = 1. Then F is one-resonant with index of resonance (1, 1) and for each choice of
(a, b) such that the germ is non-degenerate (i.e. aλ−1+bλ 6= 0), there exists a basin of attraction for
F at 0. Indeed, it can be checked that the non-degeneracy condition implies that F is parabolically
attracting with respect to {λ, λ−1} and hence Theorem 1.1 applies.
A similar argument can be applied to F−1, producing a basin of repulsion for F at 0. Hence we

have a parabolic type dynamics for F .
On the other hand, suppose further that there exist c > 0 andN ∈ N such that |e2πqiθ−1| ≥ cq−N

for all q ∈ N \ {0} (such a condition holds for θ in a full measure subset of the unit circle). Since
λq 6= λ for all q ∈ N, it follows from [20, Theorem 1] that there exist two analytic discs through 0,
tangent at the origin to the z-axis and to the w-axis respectively, which are F -invariant and such
that the restriction of F on each such a disc is conjugated to ζ 7→ λζ or ζ 7→ λ−1ζ respectively.
Thus, in such a case, the elliptic and parabolic dynamics mix, although the spectrum of dF0 is
only of elliptic type.

6.4. Examples of one-resonant degenerate germs with no basins of attraction. Set

(6.5) F (z, w) =

(
λz
(
1− zw

λ

)−1

,
w

λ

(
1− zw

λ

))
,

with |λ| = 1 and λ not a root of unity. Then F is one-resonant with index of resonance α = (1, 1)
but it is degenerate because

Λ(F ) =
1

λ
− 1

λ2
· λ = 0.

Note also that the order of F is k = 1. Set u = zw and

Φ(u) = F1(z, w) · F2(z, w) = u.

We claim that F has no basins of attraction at 0. Indeed, suppose F ◦n(z, w) → 0 as n → ∞ for
some (z, w). Then it follows that Φ◦n(zw) → 0 as n→ ∞, which implies that zw = 0. The latter
cannot hold on a nonempty open set.
A less trivial example demonstrating this phenomenon is the following. Set

(6.6) F (z, w) =

(
λz + z2w,

1

λ
w − 1

λ2
zw2

)
,

where |λ| = 1 and λ is not a root of unity. As before, F is one-resonant with index of resonance
(1, 1) and Λ(F ) = 0. The order of F is 1 and for u = zw we obtain

Φ(u) = F1(z, w) · F2(z, w) = u− 1

λ2
u3.

The order of Φ at u = 0 is 2. Now the attracting directions of Φ at 0 are v = ±λ. The map Φ
is a polynomial, with two attracting maximal petals P (λ) and P (−λ) at the origin. The maximal
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petals P (λ) and P (−λ) are disjoint and obtained as unions of all preimages under F ◦n, n = 1, 2, . . .
of two fixed local petals.

Let J be the Julia set of Φ. Set Ĵ := {(z, w) : zw ∈ J}. Then Ĵ has empty interior since J does

(see e.g. [10]). We claim that if (z, w) /∈ Ĵ , then F ◦n(z, w) 6→ 0 as n→ ∞.
It is well-known that, if u0 /∈ J and Φ◦n(u0) → 0 as n→ ∞, then u0 ∈ P (λ)∪P (−λ). Therefore

if (z, w) 6∈ Ĵ is such that zw 6∈ P (λ)∪ P (−λ) then {Φ◦n(zw)} cannot converge to 0 and therefore
F ◦n(z, w) 6→ 0.

Now, let (z, w) 6∈ Ĵ be such that zw ∈ P (λ) ∪ P (−λ). Then, setting ul = Φ◦l(zw) we have

F ◦m(z, w) =

(
λmz

m∏

l=1

(
1 +

ul
λ

)
,
w

λm

m∏

l=1

(
1− ul

λ

))
,

so that the behavior of F ◦m(z, w) depends only on the behavior of the infinite products∏m
l=1

(
1± ul

λ

)
.

The sequence {ul} tends to 0 with speed

(6.7) |ul|2 ∼
1

l
,

while ul/|ul| → ±λ depending on whether zw ∈ P (±λ). But
∣∣∣1± ul

λ

∣∣∣ =
√

1 + |ul|2 ± 2|ul|Re
ul
λ|ul|

∼ 1± 1√
l
Re

v

λ
,

where v = ±λ. Therefore, if zw ∈ P (λ), i.e. v = λ, then the behavior of p1 ◦ F ◦m(z, w) (here
p1(z, w) = z) depends on the infinite product

∏(
1 +

1√
l

)
,

which diverges to ∞, while the behavior of p2 ◦ F ◦m(z, w) (here p2(z, w) = w) depends on the
infinite product

∏(
1− 1√

l

)
,

which converges to 0. If zw ∈ P (−λ) the situation is reversed. In both cases F ◦n(z, w) 6→ 0. Hence
F has no basin of attraction at 0.

6.5. Example of a one-resonant non-degenerate (but not parabolically attracting)
germ with no basins of attraction. Consider the germ given by

F (z, w) = (z − z2, λw + λzw),

where |λ| = 1 and λ is not a root of unity. Then F is one-resonant with index of resonance
(1, 0). Furthermore Λ = −1, hence F is non-degenerate. On the other hand, F is not parabolically
attracting, in fact Re (a2λ

−1
2 Λ−1) = −1 < 0. Thus Theorem 1.1 does not apply and, in fact, F has

no basin of attraction.
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Indeed, if F ◦n(z0, w0) → 0 as n → ∞, then z0 must belong to the maximal petal of the map
ϕ(z) = z − z2. Setting zn := ϕ◦n(z0), we have

F ◦n(z0, w0) =

(
zn, λ

nw

n∏

l=1

(1 + zl) .

)

In view of Theorem 2.1, ∣∣∣∣∣

n∏

l=1

(1 + zl)

∣∣∣∣∣ ≥
n∏

l=1

(
1 +

ε

l

)
= +∞

for suitable ε > 0. Hence the only possibility for F ◦n(z0, w0) → 0 is when w0 = 0. Thus we cannot
have a (open) basin of attraction.
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