Optimizing Interpreters by Tuning Opcode Orderings
on Virtual Machines for Modern Architectures

Or: How I Learned to Stop Worrying and Love Hill Climbing

Jason McCandless *

David Gregg

Trinity College Dublin
Lero@TCD

{mccandjm,dgregg}@cs.tcd.ie

Abstract

Virtual machines (VMs) are commonly used to implement pro-
gramming languages such as Java, Python and Lua. VMs are typ-
ically implemented using an interpreter, a JIT compiler, or some
combination of the two. A long-standing question in the design of
VM interpreters is whether it is worthwhile to reorder the cases in
the main interpreter loop to improve code locality. We investigate
this phenomenon using an iterative, feedback-directed approach.
We show that the ordering of the cases in the interpreter loop has
a significant impact on performance on recent processors. Using
hardware performance counters, we demonstrate that the perfor-
mance improvement is primarily the result of indirect branch pre-
diction, not instruction cache locality. We propose a number of
strategies to achieve better orderings, and evaluate these strate-
gies in the Python and Lua virtual machine interpreters. We show
speedups of up to 40%.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages — Processors — Interpreters

General Terms Languages, Performance, Experimentation

Keywords Virtual machines, Lua, Python, Locality, Branch pre-
diction

1. Introduction

Virtual machine interpreters are widely used to implement pro-
gramming languages such as Java, Lua and Python.

Interpreters are much slower than the native code produced by
just-in-time compilers (even the fastest interpreters are around 5-10
times slower), but they have several advantages that can make them
attractive. If an interpreter is written in a high-level language such
as C, it can be made portable, and can simply be recompiled for a
new target architecture. In contrast, retargetting a just-in-time (JIT)
compiler can require a lot of effort. Interpreters also require little

* Supported by the Irish Research Council for Science, Engineering &
Technology.

[Copyright notice will appear here once ’preprint’ option is removed.]

Preprint

memory: the interpreter itself is typically much smaller than a JIT
compiler [19], and the interpreted bytecode is usually a fraction
of the size of the corresponding executable native code. For this
reason, interpreters are commonly found in embedded systems,
or systems such as games, where the memory budget is carefully
divided among the components of the system. Furthermore, if the
application consists of a lot of code, interpreting rarely-executed
code can actually be faster than JIT compilation. This is the basis
of many hybrid interpreter/JIT systems that interpret the bulk of
the code, and JIT compile the hotspots. A further advantage is
that the interpreter can collect information about the program as
it runs, which can be useful for JIT compilation. Interpreters are
also dramatically simpler than compilers; they are easy to construct,
and easy to debug. Finally, it is easy to provide tools such as
debuggers and profilers when using an interpreter because it is easy
to insert additional code into an interpreter loop. Providing such
tools for native code is much more complex. These advantages
make interpreters common among language implementations.

Language implementations based on virtual machines (VMs)
typically compile high-level source code into an array of opcodes
(bytecodes). They then use an interpreter to execute the array of
opcodes. Often this interpreter is written in C and uses a large
switch statement to select the appropriate code to execute for
the current opcode. The code implementations (switch cases) of
these opcodes are usually laid out in an ad-hoc manner'. The most
common ordering in the source code of VMs we have seen is the
numeric order of the corresponding opcodes.

A reasonable question to ask is whether the order of the cases in
the interpreter loop can have a significant impact on performance.
For example, if the commonly executed cases are kept together,
then it may improve code locality. Sun Microsystem’s K Virtual
Machine for embedded Java [20] does exactly this, which suggests
that there may be real benefits from code locality. There may also
be less obvious benefits. For example, arbitrary changes in the order
of code may change the relative positions of conditional branches,
which may result in fewer collisions in the branch predictors. Fi-
nally, arbitrary reorderings of code can have almost arbitrary ef-
fects on performance. For example, even code that is never exe-
cuted can have an impact on performance if it is fetched into the
processor pipeline. The less obvious benefits are much more diffi-
cult to model than locality effects, and it is thus difficult to design
code optimization strategies that take advantage of them. However,
it is valuable to discover the extent to which these arbitrary out-
comes can improve performance.

!'Since compiler optimizations often move code around, this might be
considered a case of ‘the compiler knows better’.

2011/6/29

We are not the first to investigate the question of ordering the
cases within the interpreter loop to improve locality. Brunthaler [5],
who refers to this problem as interpreter instruction scheduling?,
provides an algorithm to reorder cases to improve locality, and
reports speedups for a modified Python interpreter.

In this paper we address the case ordering question for VM
interpreters, but take a different approach. In addition to improving
locality we also want to investigate other effects of case reordering.
We therefore take a feedback-directed iterative approach to finding
good case orderings. This allows us to capture other speedups
beyond those resulting in improved locality, and investigate their
causes. This paper makes a number of contributions:

e We evaluate Brunthaler’s [S] graph selection approach in our
experimental framework and present results.

We propose an iterative solution based on the Monte Carlo
method, showing it to be a reasonable search method for this
problem.

We evaluate two alternatives to this method, based on hill
climbing and simulated annealing.

We apply our methods to the Python 2.6, Python 3.2, and
Lua 5.1 interpreters. We measure the difference the effect has
between switch and token-threaded interpreters, and present
results for the Intel Core and Nehalem architectures.

Using hardware performance counters, we demonstrate that in
our experiments performance improvements from code reorder-
ing are not primarily the result of improved locality.

We show that on recent processors the performance impact of
case reordering is primarily the result of its effect on indirect
branch prediction.

2. Background

Some of the computer architecture subsystems that typically influ-
ence program performance are instruction cache, data cache, and
branch prediction. Interpreters suffer from these influences also. An
interpreter does not usually stall waiting for data, so we focus our
attention on instruction cache and branch prediction misses.

Instruction caches rely on the property that program flow is
highly predictable, and therefore instruction memory access is pre-
dictable (it has good spatial and temporal locality). If a programmer
wants to improve the cache behavior, she should generate the small-
est code possible and additionally, improve prefetching through
code layout, or use explicit prefetching.

CPU pipelines have grown over time, and modern processors
have highly sophisticated branch predictors that attempt to avoid
branch misprediction and a flush of the pipeline. Effective branch
predictors are so important for performance that they are a compet-
itive edge for CPU manufacturers, so their specific behavior is not
publicly documented. There have been attempts to reverse engineer
the exact details of branch predictors [1].

An interpreter is frequently written in C, with code fragments
that implement the instruction set of the virtual machine. Opcode
ordering is the arrangement of the implementations of opcodes in
memory. Figure 2 shows the typical layout of an interpreter core.
Here we presume it is a switch interpreter; however, direct and
indirect threaded interpreters will be structured in a similar fashion.

Lua 5.1 is a register virtual machine with a switch-based inter-
preter and has 38 opcodes. Python 2.6 is a stack virtual machine
with a switch-based interpreter and has 112 opcodes. Python 3.2 is
token-threaded [3] when compiled with a compiler that supports la-

2 We refer to the concept as ordering, as scheduling implies a temporality
property, which is not the case here.

Preprint

Support functions, etc.

switch

opcode implementation 1

opcode implementation 2

opcode implementation n

Figure 1. Typical interpreter structure.

bels as values (computed goto), otherwise switch-based. It has 100
opcodes.

3. Best-first

To find a good ordering, perhaps the most ‘obvious’ choice would
be to arrange the opcode implementations such that the most fre-
quent are clustered together at the top of the interpreter dispatch
loop. Indeed it appears that this is a common practice amongst in-
terpreter designers: we see LOAD_FAST appear at the top of the
Python dispatch loop, and OP_MOVE appear at the top of the Lua
dispatch loop.

As a concrete example, Table 1 shows the frequencies of various
opcodes for the spectral norm benchmark. The most frequent op-
code, ADD would be the first opcode implementation in the memory
address space, and similarly for the following opcodes.

We implement ordering based on frequency for the Lua and
Python interpreters by aggregating opcodes from profiles we collect
by running the various benchmarks in our set. We place the most
frequently executed ones at the top of the switch.

An issue with the Python implementation is the use of ‘fall
through’ semantics for the overlapping implementations of some
opcodes. For instance the implementation of the PRINT_ITEM_TO
opcode (which prints the item second from the top of stack)
shown in Figure 2 has only one extra statement compared to the
PRINT_ITEM opcode, so the implementations are overlapped to
save code memory. This is a complication, since our opcode traces
will have two different opcodes. We do not want to consider dupli-
cate implementations®. We solve this by mapping these extended
opcodes to their parent opcode — we are only considering opcode
implementations, not opcodes.

Our traces include the start-up functions of the Python inter-
preter. That is, 70,394 opcodes in Python 2.6, and 823060 opcodes
in Python 3.2. A slight caveat is that we convert the parallel bench-

3 A potential approach might be to split the opcodes, however we have
not explored this. The effects of interpreter opcode replication have been
explored by Casey et al. [6]

2011/6/29

Opcode Frequency
ADD 18000600
MUL 10800600
MOVE 7200220
FORLOOP 3624653
GETTABLE 3600604
CALL 3600064
RETURN 3600061
GETUPVAL 3600040
DIV 3600001
LOADK 36090
SETTABLE 12300
FORPREP 12043
SUB 12042
GETGLOBAL | 6
CLOSURE 4
NEWTABLE 3

TEST 2

Table 1. Opcode frequencies for the Lua spectral norm bench-
mark, showing a possible ordering from most frequent to least fre-
quent.

case PRINT_ITEM_TO:
w = stream = POP();
/* fall through to PRINT_ITEM x*/

case PRINT_ITEM:
v = POP();

break;

Figure 2. Problem of joined opcode implementations in Python.
The two opcodes implement almost identical functionality, so a
‘fall though’ between cases is used to avoid code duplication.

marks (mandelbrot & binary-trees) to sequential equivalents in or-
der to get a coherent trace®.

Tables 2 and 3 show the speedups from best-first ordering on the
Core 2 and Nehalem machines respectively (rounded to the near-
est 0.5%). Our experimental methodology is described in Section
8. We observe some speedups, but also some slowdowns. These
results suggest that best-first is not a good heuristic for ordering
opcode implementations.

4. Graph Selection

Brunthaler [5] presents the problem of finding a good ordering as a
graph problem, where the vertices represent opcodes and the edges
represent the frequency of transitions between opcodes (collected
from a profile). This graph is a weighted directed graph that is
weakly connected. We wish to find a tour that visits each vertex
once, and maximises the cost function. This problem is similar
to the asymmetric travelling salesman problem, where the triangle
inequality does not hold. However the graph is incomplete, so it
also resembles the Hamiltonian path problem. This is not exactly
right either though, since a tour is permitted to include edges that
do not exist in the graph. These edges may be added because it is
legal to place opcode implementations adjacent to each other even
if they do not form a pair in the profile used to construct the graph.

4With our mandelbrot benchmark for Python 3, which uses a concurrent
worker-writer model, we could not remove the concurrency beyond a mini-
mum of two processes.

Preprint

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch -3% -1% 5% -4%
mandelbrot 10% 2% 6.5% 2.5%

fasta 45% -1.5% -1% 2.5%

n-body -0.5% 1.5% 6.5% 0%
binary-trees -1.5% 10.5% 6.5% 0%
spectral-norm 5.2% 13.5% 5.5% -4%

Table 2. Best-first speedups on Core 2.

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch 8% 13% -2.5% -0.5%
mandelbrot 325% 17% 6.5% -0.5%

fasta 10.5% 8.5% 0% 1%

n-body 0% 10% 4.5% 2.5%
binary-trees -1% 3.5% 1.5% 0%
spectral-norm 5% 17% 0% 0.5%

Table 3. Best-first speedups on Nehalem.

The only guaranteed tour in the graph (without adding extra edges)
is the tour formed by the sequence of opcodes from the profile.

Algorithm 1 Brunthaler’s graph selection algorithm

1: schedule + ()
2: open < sorted(graph)
3: while open # () do

4: n < largest(open)

5: while n do

6: schedule + schedule U{n}

7: reachable < sorted(n.destinations) \ schedule
8: n < false

9: if reachable # () then
10: n < largest(reachable)
11: open < sorted(reachable U open)
12: end if
13: end while
14: end while

15: return schedule

In Algorithm 1, we outline the graph selection algorithm de-
scribed by Brunthaler. Schedule and open are ordered sets. The
algorithm is similar to the classical nearest neighbour (greedy) al-
gorithm [2], with some differences:

e Revisiting a vertex is permitted.

e If we reach a ‘dead-end’ (recall that the graph is not complete)
then the next node is fetched from the open set.

¢ The final difference is the open set updating:
open < sorted(reachable U open)

Items reachable from the present node are added to the open
list. These items will have higher precedence, because items
initially put in the open list are sorted, but are placed in with
weight O (the ordering of the original nodes is not affected, since
a stable sort is used).

As an example, applying the algorithm to the profile graph
shown in Figure 3 yields the ordering: {FORLOOP, GETGLOBAL,
MOVE, CALL, RETURN, FORPREP, LOADK}.

We diverge slightly from the application of the algorithm as pre-
sented by Brunthaler. Instead of determining program kernels and

2011/6/29

loadk

A
forprep call

NS

3 3
forloop move
SN
1

return getglob

Figure 3. Opcode profile graph for the Lua program:
‘for i1 = 1,3 do print(i) end’.

applying the algorithm to the traces of those kernels, we apply the
algorithm to traces of whole programs. This should not have detri-
mental effects, as the algorithm selects for frequency, so infrequent
opcodes should get relegated in any case.

Brunthaler provides Python source and we base our implemen-
tation on this [5]. We evaluate his graph technique for the Lua,
Python 2.6 and Python 3.2 interpreters on the Core 2 and Nehalem
machines. The results we found are shown in Tables 4 and 5.

These results show the speedups (and slowdowns) when an or-
dering found from the trace of a benchmark is evaluated on that
benchmark. Better speedups are possible when we do not restrict
what benchmark an ordering was tuned on, and instead try all the
possible orderings generated from traces of the different bench-
marks. We do not present those numbers here, as the algorithm is
meant to find good orderings for the trace it is presented with.

To improve upon these results, a better algorithm than the
greedy algorithm could be used to minimize the global distance of
a tour (an optimal solution might be possible in O(2™)). However,
we do not explore this — since an ordering tuned from a particular
benchmark is not always the best ordering for that benchmark, it
must follow that the graph technique is modelling the wrong thing.
We instead now look at orderings generated stochastically.

5. Monte Carlo Generation

In the previous two sections we looked at opcode frequency based
methods to layout opcodes in memory. The results we found were
unsatisfactory. We now investigate a more general, combinatorial
technique. We want to find the opcode ordering that has the low-
est execution time (our cost function). The combinatorial search
space of all possible opcode orderings is every permutation, which
is O(n!) complexity for a brute force approach. Since most inter-
preters have more than thirty opcodes, this search space will be
upwards of 1032 (For Lua, which has a relatively low number of
opcodes (38), there are over 10** permutations). Without any in-
dication of an optimal algorithm, we investigate stochastic search
methods.

Monte carlo methods are used to model phenomena with sig-
nificant uncertainty in inputs. With Monte Carlo generation of or-
derings, we randomly (from an underlying uniform distribution)
permute the opcodes, compile the interpreter and evaluate it on a
set of benchmarks, recording the best time observed so far.

The combinatorial complexity of all possible opcode orderings
is similar to that of finding the shortest tour in the travelling sales-
man problem. Hence we can borrow the theorem that to stochasti-
cally achieve a result that is within 1 + % of the optimal solution

Preprint

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch -4.5% -1.5% 2.5% -4%
mandelbrot 10% 5.5% 5.5% -1.5%

fasta 1.5% 0.5% -1.5% 3%

n-body -3% 6% 5% -1.5%
binary-trees -05% 8.5% 8% 0%
spectral-norm 4% 21.5% 9% 1%

Table 4. Graph selection speedups on Core 2.

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch 7.5% 8.5% -7% -0.5%
mandelbrot 8.5% 17% -0.5% -4%

fasta 9% 7.5% 0.5% 0.5%

n-body -3.5% 9% 1.5% 1.5%
binary-trees 25% 6% -1.5% -1%
spectral-norm 2% 9% 4.5% -6%

Table 5. Graph selection speedups on Nehalem.

60 m I I I
50 | all .
40 | - .

30 | B

Count

20 | 1

10 - 1

0
1.10 1.15 1.20 1.25 1.30 1.35
Execution time

Figure 4. Histogram showing the frequencies of different ordering
execution times found by Monte Carlo sampling for the mandelbrot
benchmark on Python 3 (switch).

0.84 T T T T T
0.82 |- B
0.80 [B
0.78
0.76
0.74
0.72

Execution time (cost)

0.70 |- i

0.68 I I I I I
0 500 1000 1500 2000 2500 3000

Number of iterations

Figure 5. Monte Carlo progress on Lua fannkuch benchmark on

Core 2. The best ordering in this case was found after 2500 itera-
tions.

2011/6/29

for TSP with at least 50% certainty, requires the following com-
plexity: O(n2¢”" + nlogn) [11, p. 282]. With this exponential
decrease, we rapidly stop seeing improvements. We see this in our
experimental observations similarly.

An example of Monte Carlo generation is shown in Figure 4.
The figure shows a histogram of the execution times for the various
opcodes orderings generated for the mandelbrot benchmark. This
example is for the Python 3 switch interpreter on our Core 2 ma-
chine. Figure 5 shows the progress of the Monte Carlo method over
time for the fannkuch benchmark. This is for the Lua interpreter on
our Core 2 machine.

Table 6 summarises the various speedups achieved on the dif-
ferent interpreters we measured on the Core 2. These speedups are
achieved by running each benchmark with the best possible order-
ing found for it. In contrast, Table 7 shows speedups (and an overall
average speedup) when just one ordering is used per set of bench-
marks. Tables 8 and 9 show the same results, but for our Nehalem
machine.

The random permutations for Monte Carlo are generated by the
Mersenne twister pseudorandom number generator, which has a
period of 219937 — 1 [14]. This will work for sequences up to size
2080 (which will have ~ 29932 permutations).

We see respectable speedups from the Monte Carlo approach,
but we want a deeper understanding of the cause. Figure 6 shows
two memory layouts with opcodes frequencies for the fannkuch
benchmark on the Lua interpreter. On the left we see the best
ordering found for that benchmark, on the right we see the worst.
After inspecting a number of these graphs, we do not see any
common visual pattern to account for the performance variations.

6. Hardware Analysis

We desire a deeper understanding of what is really going on in
hardware with the performance variation from different opcode
orderings. We will look at cache and branch prediction:

6.1 Cache

Firstly, we investigate the effect of level 1 instruction cache on the
performance of a switch-case interpreter. For our Lua benchmark
sample, we do not observe a significant number of instruction cache
misses. We evaluate this using Pin and Valgrind with a 32KB 8-way
set associative cache (the size of the cache in our Core 2 machine).
Additionally, We also record hardware performance counters via
PAPI [4]. Finally, we measure the code distance between the be-
ginning and end of the switch block by taking the address of labels
(this excludes executed code that is in functions outside of the in-
terpreter loop; but in Lua, code such as this is often the special case
anyway). The total address distance in the Lua interpreter loop is
5953 bytes. This is considerably less than the 32KB level 1 instruc-
tion cache on the Intel Core. Additionally, the full code size of the
interpreter is not all going to be needed in the instruction cache —
the frequency of opcodes is not distributed in such a uniform man-
ner, as the opcode frequency counts of the spectral norm benchmark
shown in Table 1 illustrate.

Table 10 shows estimated figures of the percentage of cycles
stalled due to L1 misses °. We calculate these from the cycle count
of the benchmarks and the L1-I misses as reported by the hardware
performance counters. In all cases, the proportion of time lost to L1
instruction cache misses is significantly less than 1%.

5 We assume a 14 cycle branch penalty (pipeline size) and a 15 cycle L1-I
miss penalty. Obviously these penalties are highly dynamic in a modern out-
of-order superscalar CPU, but our estimates are representative, and show a
large difference between cycles stalled due to branch mispredictions and
due to cache misses.

Preprint

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch 5% 18% 17% 5%
mandelbrot 14% 13% 20% 4.5%

fasta 22% 6% 3.5% 4.5%

n-body 55% 9% 15% 5%
binary-trees 4% 17% 12% 4%
spectral-norm 7% 39% 22% 1%

Table 6. Monte Carlo generation speedups on Core 2 (individually
tuned orderings).

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch 0% 14% 13% 5%
mandelbrot 13% 11.5% 19.5% 4.5%

fasta 18% 3% 2% 4.5%

n-body 35% 4.5% 13.5% 5%
binary-trees -1% 14% 9.5% 4%
spectral-norm 4% 38% 18% 1%

geo-mean 6% 14% 12.5% 2.5%

Table 7. Monte Carlo generation speedups on Core 2 (using one
pareto optimally tuned ordering).

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch 10% 18% 6% 4%
mandelbrot 40% 20% 13.5% 2.5%

fasta 14% 9.5% 2.5% 1.5%

n-body 3% 18% 9% 2%
binary-trees 45% 12.5% 6.5% 3%
spectral-norm 23% 28% 11.5% 2%

Table 8. Monte Carlo generation speedups on Nehalem (individu-
ally tuned orderings).

Benchmark Lua Python2.6 Python3 Python3-token
fannkuch 7.5% 16% 1.5% 2.5%
mandelbrot 35% 17% 10% 1%

fasta 125% 8.5% -1% 0.5%

n-body 2% 12.5% 6% 0%
binary-trees 1.3% 10.5% 4% 2%
spectral-norm 15% 19.5 10.5% 1%

geo-mean 11.5% 14% 5% 1%

Table 9. Monte Carlo generation speedups on Nehalem (using one
pareto optimally tuned ordering).

Benchmark Branch miss % L1-I miss %
fannkuch 14.46 0.01
mandelbrot 13.74 0.05
fasta 8.18 0.00
n-body 16.42 0.01
binary-trees 3.45 0.01
spectral-norm 13.17 0.03
median 13.45 0.01
mean 11.57 0.02

Table 10. PAPI performance counter results for Lua showing
stalled cycles due to branch misspredictions and cache misses as
a percentage of total cycles.

2011/6/29

1.2 I I I I I I I
1.0 | . .
0.8 | .

0.6 |- 1

Frequency

0.4 | i

H.Iﬂnan_

15 20 25 30 35 40
Memory

0.2 |-

0.0

(a) Opcode memory layout for best ordering found via Monte Carlo.

Frequency

x 107
1.2 I I I I I I I

1.0 |- M T
0.8 | T
0.6 |- b

0.4 -]

L de .

15 20 25 30 35 40
Memory

(b) Opcode memory layout for worst ordering found via Monte Carlo.

Figure 6. Execution frequency of opcode implementation positions in memory. Both figures show frequencies for the fannkuch benchmark

on Lua (38 opcodes).

6.2 Branch Prediction

Since instruction cache misses do not appear to be that much of
a concern for the interpreter, we turn to investigating the effect of
branch prediction.

Table 10 shows estimated figures of the percentages of cycles
stalled due to branch mispredictions. We calculate these from the
cycle count of the benchmarks and the branch misses as reported
by the hardware performance counters. We see that branch mispre-
diction is commonplace and significant.

Branch mispredictions can be caused by conditional branch
misses. We looked at those for the orderings generated by our
Monte Carlo technique, but did not observe a correlation between
conditional branch mispredictions and execution time. The alterna-
tive cause of branch mispredictions is indirect branch misses.

Figure 7(a) shows execution times and indirect branch mispre-
diction rates for various opcode orderings found through the Monte
Carlo method (x-axis is sorted by execution time). It is clear from
this figure that ordering affects execution speed mainly through in-
direct branch misses. Figure 7(b) shows execution times, total indi-
rect branch mispredictions and level 1 instruction cache misses for
various opcodes orderings found through Monte Carlo. This figure
also shows that the instruction cache is not a significant determi-
nant of execution speed (the cache axis is not shown, but it is 25
times smaller than the indirect branch axis).

The low token threaded speedups we witnessed from Monte
Carlo generation also support the claim that indirect branch pre-
diction is the cause of varying execution speed.

An explanation of the effect of opcode ordering on indirect
branch misprediction is that the Core microarchitecture includes an
indirect branch predictor like the Intel Pentium M [10]. Uzelac and
Milenkovic [21] reverse engineered the indirect branch predictor in
the Pentium M. Their work shows that the iBTB is indexed by a
path information register, which is updated with a shift and XOR
on the 6 least significant bits of the indirect branch target address.
Moving opcode implementations in an interpreter will change the
bits of the target, and this will lead to changes in accuracy in
the path information register, and consequentially changes in the
accuracy of indirect branch misprediction.

6.3 Branch prediction as a Cost Function

Since we know that the ordering primarily affects execution time
through branch mispredictions, we could also have used the branch
misprediction hardware counter while searching for a good order-

Preprint

ing. We tried this, but found that it was not as good as execution
speed, and it was unnecessary to use a proxy in any case. This
means that indirect branch prediction is not the only issue, even
if it is the dominant one.

7. Feedback-Directed Search

In the previous sections we looked at frequency-based algorithms
to find orderings and an initial metaheuristic based on Monte Carlo
generation of orderings. We now explore a more guided approach
for finding satisficing orderings.

7.1 Simulated Annealing

Once more inspired by the travelling salesman problem, we use
simulated annealing as a ‘smarter’ method to generate a good
ordering. The solution search space is coherent, so we can traverse
it by transitioning to the next candidate solution by modifying the
current one. Simulated annealing is an appropriate heuristic search
method as it does not get stuck in local maxima. The diameter of
the search space is small, which is good for simulated annealing —
we can get from one state to any other in n(n — 1)/2 steps.

Algorithm 2 shows our simulated annealing algorithm. Our
initial candidate is simply the default ordering in the interpreter.
Figure 8 shows the progress of the simulated annealing algorithm
over time on the fannkuch benchmark on Lua. We evaluated the
algorithm for Lua on the Core architecture and present our results
in Figure 9. We provide results for individually tuned orderings
for each benchmark as well as a global pareto optimal ordering®.
We do not see improvements over the best Monte Carlo generated
orderings.

7.2 Hill Climbing

With simulated annealing, we did not see any results that were
better than Monte Carlo. This is likely because we are limited to a
small number of iterations (750), due to the high cost of evaluating
each ordering, whereas typical simulated annealing systems might
run for millions of iterations. We also may not have found the ideal
parameters for simulated annealing — the values for k, cooling
fraction and steps per temperature. We did observe progress after
the algorithm had cooled and was not accepting bad solutions
anymore.

6We consider an ordering Pareto optimal if it maximizes the geometric
mean of the speedups over the baseline for each benchmark.

2011/6/29

50
45

T T T T
= Execution time

0.75 [= Indirect branch miss rate 40
Q
£ 35
-
.S 0.70 30
= 25
ot
% 20
M 0.65
15
10
0.60 5
0 100 200 300 400 500

(a) Execution times vs. indirect branch misprediction rates for different opcode (b) Execution times vs. indirect branch mispredictions vs. level 1 instruction
cache misses (axis not shown) for different opcode orderings generated by Monte

orderings generated by Monte Carlo (sorted by execution time).

Indirect branch miss rate (%)

x 107

0.80 T T T T 2.5
= Execution time
= L1-I misses 2.0
g 075 1 — TIndirect branch misses 4‘\4
'g M/‘V\WM 1.5
g o0 b WMW\MM‘WM’WW W .
fo | M‘W”W ML
§ (NW‘UJWUWM ‘r\ VW'N WW Wl ' 1.0
" 0.65 L/l ‘ o
| WU
| | |
0.60 N T Y | ’uL,JJLV,,M'LAM.MJuL’d» UW 0.0
o 100 200 300 400 500

Carlo (sorted by execution time).

Figure 7. Lua interpreter executing the fasta benchmark on Core 2. The two figures show data from different orderings.

067 T T T T 1} I I
0.66 - i

0.65 |- i
0.64 i
0.63 B
0.62 I B

0.61 | 1

Execution time (cost)

0.60 |- i

0.59 I I I I I I I
0 100 200 300 400 500 600 700

Number of iterations

800

Figure 8. Progress over time of simulated annealing on Lua
fannkuch benchmark on Nehalem.

[Baseline
[l Pareto Optimal
B Indvidual Best

Speedup

fannkuch
mandelbrot
fasta

n—body
binary—trees
spectral-norm
nsieve
fibonacci
matrix—mul
nested—loops

Figure 9. Simulated annealing results for the Lua interpreter on
Core 2. Pareto optimal refers to one ordering that works best with
all benchmarks.

Preprint

Algorithm 2 Simulated annealing algorithm used to traverse the
solution space.

1: cooling_fraction < 0.8

: cooling_steps <— 30

: steps_per_temp <— 100

k<+1

: temperature <— 1

: current_perm <— - - -

: current_value <— evaluate(current_perm)

: for i = 0 to cooling_steps do

9: temperature <— temperature X cooling_fraction

10: for 7 = O to steps_per_temp do

11: possible_solution +— random_swap(current_perm)
12: cost <— evaluate(current_perm)

13: merit <+ 6(curremivallue—cosl)/(k X temperature)
14: if cost < current_value then

15: current_value < cost

16: current_perm <— possible_solution
17: else if merit > random|[0, 1] then

18: current_value < cost

19: current_perm <— possible_solution
20: end if

21: end for

22: end for

23: return current_perm

We evaluate hill climbing as a search strategy as it is an ap-
proach that converges faster than simulated annealing. The simplest
form of hill climbing, steepest ascent, would evaluate every neigh-
bor, and transition to the best. However, that is not practical for us,
as our neighbors are all the possible switches of pairs in the order-
ing and there are () pairs, which means that even in Lua, with
38 opcodes, we will have 703 neighbors at each step. Because of
this, and our high evaluation cost, we evaluate stochastic hill climb-
ing. In particular we do first-choice stochastic hill climbing (always
picking the first neighbor if it is uphill).

Figure 10 shows the progress of the basic algorithm over time
for the Lua interpreter running the fannkuch benchmark. We see the
algorithm go for long periods while making little or no progress.
We look at two techniques to combat this:

2011/6/29

Indirect branch misses executed

0.630 T T T T T T
0.625 1

0.620 i
0.615 B
0.610 i
0.605 B
0.600 B

Execution time (cost)

0.595 |- B

0.590 Il Il Il Il Il Il
0 50 100 150 200 250 300 350

Number of iterations

Figure 10. Progress over time of the first-choice stochastic hill
climbing algorithm on Lua fannkuch benchmark on Nehalem.

0.565 I I I I I I I

0.560 - B

0.555 |- 1

0.550

Execution time (cost)

0.545

0.540 I I I I I I I
0 100 200 300 400 500 600 700 800

Number of iterations

Figure 11. Progress over time of the first-choice stochastic hill
climbing algorithm with error consideration and periodic restarts
algorithm on Lua fasta benchmark on Nehalem.

Algorithm 3 First-choice stochastic hill climbing with periodic
restarts (and error consideration) algorithm used to traverse solu-
tion space.

1: not_improved_count <— 100
2: loop
3: if not_improved > 100 then
not_improved_count <— 0
current_perm <— random_perm()
current_value <— evaluate(current_perm)
best_value <— current_value
end if
9: possible_solution <— random_swap(current_perm)
10: cost <— evaluate(current_perm)
11: delta < current_value — possible_solution_cost
12: delta_best <— best_value — possible_solution_cost
13: not_improved <— not_improved + 1
14: if delta > —error and delta_best > —error then

i A A

15: current_perm <— possible_solution
16: current_value <— cost

17: if current_value < best_value then
18: best_value < current_value

19: not_improved < 0

20: end if

21: end if

22: end loop

Preprint

e Since we are measuring execution time, sampling error is a
concern. The hill climbing algorithm is greedy, and will only
accept better solutions, but it should also accept equal solutions;
in this way it can traverse a plateau and possibly ascend again.
However, it is possible to get stuck on a plateau and not make
progress if — due to a measurement error while evaluating an
ordering — we measure a particularly low execution time. This
way, there will be no transitions to neighbors that may have true
equal cost, and the algorithm will not make progress. To avoid
this scenario, we modify the algorithm to allow transitions to
inferior solutions, provided they are within the error range (a
figure we find empirically). This change alone would allow
gradual descent, so we also keep track of the best value found
so far, and refuse to accept transitions to potential solutions that
are not within the error range of the best.

We also perform periodic restarts of the algorithm if no progress
is made (an improvement on the best solution is not found) after
a fixed number of iterations.

Algorithm 3 shows our modified hill climbing algorithm and
Figure 11 shows the progress of this modified algorithm over time
for the Lua interpreter running the fasta benchmark. The algorithm
restarts if no progress is made in 100 iterations. In this example, it
restarts 4 times. We see that is able to make more progress than the
naive initial hill climbing algorithm.

Figure 12 shows the results of the algorithm for our benchmark
set on our Nehalem machine. The algorithm does not find better
individually tuned orderings than the Monte Carlo method, but it
does find a better Pareto optimal ordering for the benchmark set,
even though we evaluate it using a larger benchmark set than we
did for Monte Carlo.

Part of the reason we did not see even larger improvements over
Monte Carlo is that algorithms such as hill-climbing and simulated
annealing suit a problem best when the cost of incremental evalua-
tion is lower than cost of global evaluation. This is not the case here
— we must perform a global evaluation on each transition. The cost
of evaluating a given ordering is constant, but it is a high constant
(approximately 100 seconds per ordering).

8. Experimental Methodology
8.1 Benchmarks

Our benchmark set is taken from the Computer Language Bench-
marks Game [8]. A lack of established benchmark sets for scripting
languages makes these suites a common source of benchmarking
for scripting language implementations [5, 17].

We use the GCC compiler with the option -frno-reorder-blocks to
stop our re-orderings from being negated by basic block reordering
performed by the compiler’s software trace cache. We compile both
interpreters with maximum optimization (-O3).

When evaluating opcode permutations, we run each bench-
marks 15 times, and take the median. While a higher number of
runs is obviously more desirable, we found this to be a good trade-
off between accuracy and time for our purposes; a larger number
would not enable us to evaluate as many candidate solutions. More
complex techniques have been proposed by Leather et. al [12] to
dynamically determine the number of runs required to eliminate
noise in an iterative tuning scenario. Regardless, our results for dif-
ferent opcode orderings are fully reproducible.

8.2 Hardware Configuration
We evaluate our techniques on two systems:

e Intel i5 650 (Nehalem Westmere) 3.2 GHz CPU with 4 GB
memory, running Ubuntu GNU/Linux 9.10 with kernel version
2.6.31-22. GCC version 4.4.1.

2011/6/29

1.6 T T T T T

I [Baseline A—
[Pareto Optimal
""""""""""""""" B Indvidual Best [---—

o

3

S 08f .

o

w
06 [.
04 - .
02 .

fasta
n—body
nsieve

=
3]
3
=
=
g
£

mandelbrot
binary—trees
spectral-norm
fibonacci
matrix—mul
nested—loops

Figure 12. First-choice stochastic hill climbing with periodic
restarts (and error consideration) results for the Lua interpreter on
Nehalem. Pareto optimal refers to one ordering that works best with
all benchmarks.

e Intel Core 2 Q6600 (Core Kentsfield) 2.4 GHz CPU with 6 GB
memory, running Ubuntu GNU/Linux 10.04 with kernel version
2.6.32-29. GCC version 4.4.3.

8.3 Bytecode Traces

Python provides an internal data structure, dxpairs, that encodes the
opcode pair frequencies. However, we opted against using it since
it is only practical to access it from a Python program itself, and
the bytecodes related to this access code will also get included in
the trace. Therefore we simply dumped the opcode numbers from
the interpreter as they were executed, and translated these into the
appropriate opcode names.

8.4 Compiler Label Alignment

Compilers attempt to make intelligent alignment decisions for
code. This is to maximize the amount of code that fits into a cache
line, achieving the best hit ratio from the instruction cache (lowest
amount of time stalled waiting to fetch code from memory). The
GCC compiler can align functions, jumps, labels and loops.

GCC has an option -falign-labels=[n] that allows the program-
mer to specify an alignment for labels. We experimented with this
option, however we found from assembly inspection that we could
only increase the alignment bit count, and not reduce it. We manu-
ally removed the alignment pseudo-assembler (.p2align) directives
and found a speedup of 1.2% on the fannkuch benchmark with
the Lua interpreter. For comparison, disabling reordering for this
benchmark led to a 2% speedup. Disabling these two ‘optimiza-
tions’ led to a total speedup of 3.3%.

For Python 2 and 3, we did not observe alignment directives
between every opcode implementation. This may be due to Python
having significantly more code in opcode implementations.

9. Related Work

As described previously in Section 4, Brunthaler [5] presents a for-
malization of the problem of interpreter opcode ordering (instruc-
tion scheduling) for an interpreter with an extended opcode set, and
proposes that the bottleneck is instruction cache misses. We inves-
tigated that algorithm for the ‘stock’ Lua and Python interpreters
but did not find it to be a good approach. We also found that the
main influence of varying performance in these interpreters was in-
direct branch mispredictions. With an extended opcode set virtual
machine, it is conceivable that cache misses are more important to
execution time than branches.

Preprint

McFarling [15] presents a profile-based algorithm to reposition
programs in memory to reduce instruction cache misses. The effect
of his algorithm was comparable to a tripling of cache size in
some instances. However, he saw declining results as cache size
increased — modern workstation caches are even larger than the
maximum size he measured on a MipsX simulator.

Code positioning is also explored by Pettis and Hansen [18].
Their work presents profile-guided code positioning at the proce-
dure and basic block levels. Their profiles guide the movement of
code that will probably not get executed out of the local mem-
ory space of the ‘hot’ code. They primarily get performance in-
creases from better code locality in the instruction cache, but they
also achieve some speedup from a better ordering of conditional
branches. Our work investigates the interplay between code po-
sitioning and indirect branches, for which modern hardware has
much more sophisticated predictors.

Zhao and Amaral use feedback-guided techniques to generate
optimized code for switch-case statements [22]. They present two
feedback-guided techniques to generate code. Their work aims to
improve performance by (1) enabling functions with large switch
statements to be inlined, (2) improving instruction cache behavior
by moving ‘cold’ code, and (3) improving case selection perfor-
mance by decreasing the number of cases to chose from. Their ex-
periments show speedups of up to 4.9%. Unfortunately, they do not
provide hardware performance counter numbers to show the cause
of their speedups. Our results are for the specific case of switch
statements in interpreters, and we have shown that indirect branch
prediction is much more important for performance.

Interpreter opcode ordering (partitioning) is investigated by Lin
and Chen [13]. They present Java code arrangement for embedded
NAND flash memory. They use profiling to relocate basic blocks
within the interpreter to improve locality. Their technique was able
to reduce cache misses by 96% in the best case. The instruction
cache size of embedded devices is much smaller than modern
workstation processors, so their work is not directly comparable
to ours.

Ertl et al. [7, 9] showed that indirect branch prediction is a large
factor in the performance of VM interpreters. They proposed su-
perinstructions (new VM instructions which consist of a sequence
of existing instructions) and VM instruction replication as methods
of reducing indirect branch mispredictions on the existing proces-
sors of the time, which used simple branch target buffers to predict
indirect branches. Our results show that where the processor has
a two-level indirect branch predictor, the order and placement of
the case statements for VM instructions can also have a significant
impact on indirect branch prediction.

The effect of linking order as a source of measurement bias has
been described by Mytkowicz et al. [16]. They attribute measure-
ment bias due to link order as an alignment issue, and using the
m5 simulator they see i-cache miss variances when the link order
is changed. They suggest branch prediction may also be a cause
in general. Our work investigates code positioning for interpreters,
and shows indirect branch mispredictions to be the most important
factor in performance.

10. Applicability to Java

While we do not evaluate our techniques for a Java virtual machine,
we believe our findings are equally applicable to static languages
implemented on virtual machines, such as Java. We speculate that
it may have an even more substantial effect on Java performance
due to (1) the larger number of opcodes in the Java VM, (2) the
less work done per Java opcode, and (3) the lack of run-time type
checks which cause some of the branch mispredictions in dynamic
languages.

2011/6/29

11.

We have shown that interpreter opcode ordering can have a signifi-
cant impact on the performance of VM interpreters. Existing work
in this area has aimed at improving locality to reduce instruction
cache misses. We have implemented two existing algorithms, and
shown that in our experiments instruction cache misses do not have
a major impact on performance.

To better understand the effect of opcode ordering on execu-
tion time we implemented a metaheuristic (Monte Carlo) to gen-
erate better orderings than can be found with frequency-based ap-
proaches. By analysing the resulting orderings, we found that —
contrary to previous assumptions — the main impact of opcode re-
ordering is from its effect on indirect branch prediction on modern
processors.

We also implemented two feedback-directed search techniques
and provided results. We have demonstrated our conclusions
through extensive experiments on the interpreters of Lua, Python
2.6 and Python 3 on the Intel Core and Nehalem architectures.

In our future work we intend to infer good orderings based on
the knowledge of the indirect branch predictor internals elucidated
by Uzelac and Milenkovic.

Conclusion and Further Work

References

[1] M. M. Aleksandar, A. Milenkovic, and J. Kulick. Demystifying Intel
branch predictors. In In Workshop on Duplicating, Deconstructing and
Debunking, pages 52—61. John Wiley & Sons, 2002.

[2] J. Bang-Jensen, G. Gutin, and A. Yeo. When the greedy algorithm
fails. Discrete Optimization, 1(2):121 — 127, 2004. ISSN 1572-5286.
URL http://dx.doi.org/10.1016/j.disopt.2004.03.007.

[3] J. R. Bell. Threaded Code. Commun. ACM, 16(6):370-372, 1973.
ISSN 0001-0782. URL http://doi.acm.org/10.1145/362248.
362270.

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scal-
able cross-platform infrastructure for application performance tuning
using hardware counters. In Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (CDROM), Supercomputing ’00, Wash-
ington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7803-9802-
5. URL http://portal.acm.org/citation.cfm?id=370049.
370424.

S. Brunthaler. Interpreter instruction scheduling. In J. Knoop, editor,
Compiler Construction, volume 6601 of Lecture Notes in Computer
Science, pages 164—178. Springer Berlin / Heidelberg, 2011. URL
http://dx.doi.org/10.1007/978-3-642-19861-8_10.

K. Casey, D. Gregg, and M. Ertl. Tiger — an interpreter genera-
tion tool. In R. Bodik, editor, Compiler Construction, volume 3443
of Lecture Notes in Computer Science, pages 139-139. Springer
Berlin / Heidelberg, 2005. URL http://dx.doi.org/10.1007/
978-3-540-31985-6_18.

K. Casey, M. A. Ertl, and D. Gregg. Optimizing indirect branch pre-
diction accuracy in virtual machine interpreters. ACM Trans. Pro-
gram. Lang. Syst., 29, October 2007. ISSN 0164-0925. URL http:
//doi.acm.org/10.1145/1286821.1286828.

CLBG. The Computer Language Benchmarks Game. Available at
http://shootout.alioth.debian.org/, 2011. URL http://shootout.
alioth.debian.org/.

M. A. Ertl and D. Gregg. Optimizing indirect branch prediction
accuracy in virtual machine interpreters. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and
implementation, PLDI °03, pages 278-288, New York, NY, USA,
2003. ACM. ISBN 1-58113-662-5. URL http://doi.acm.org/
10.1145/781131.781162.

S. Gochman, R. Ronen, A. B. I. Anati, T. Kurts, A. Naveh, A. Saeed,
Z. Sperber, and R. Valentine. The Intel Pentium M Processor: Microar-
chitecture and Performance. Intel Technology J., 7(2), May 2003.

[11] M. Kao. Encyclopedia of algorithms. Springer Reference. Springer,
2008. ISBN 9780387301624.

[4]

[5

[ty

[6]

[7]

[8]

[9]

[10]

Preprint

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
(21]

[22]

H. Leather, M. O’Boyle, and B. Worton. Raced profiles: efficient
selection of competing compiler optimizations. In Proceedings of the
2009 ACM SIGPLAN/SIGBED conference on Languages, compilers,
and tools for embedded systems, LCTES *09, pages 50-59, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-356-3. URL http:
//doi.acm.org/10.1145/1542452.1542460.

C.-C. Lin and C.-L. Chen. Code arrangement of embedded java
virtual machine for nand flash memory. In Proceedings of the
3rd international conference on High performance embedded archi-
tectures and compilers, HIPEAC’08, pages 369-383, Berlin, Hei-
delberg, 2008. Springer-Verlag. ISBN 3-540-77559-5, 978-3-540-
77559-1. URL http://portal.acm.org/citation.cfm?id=
1786054.1786088.

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Trans. Model. Comput. Simul., 8:3-30, January 1998.
ISSN 1049-3301. URL http://doi.acm.org/10.1145/272991.
272995.

S. McFarling. Program optimization for instruction caches. In Pro-
ceedings of the third international conference on Architectural sup-
port for programming languages and operating systems, ASPLOS-III,
pages 183-191, New York, NY, USA, 1989. ACM. ISBN 0-89791-
300-0. URL http://doi.acm.org/10.1145/70082.68200.

T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Produc-
ing wrong data without doing anything obviously wrong! In Proceed-
ing of the 14th international conference on Architectural support for
programming languages and operating systems, ASPLOS ’09, pages
265-276, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-406-
5. URL http://doi.acm.org/10.1145/1508244.1508275.

M. Pall. The Lua]JIT Project. Available at http://luajit.org, 2011. URL
http://luajit.org.

K. Pettis and R. C. Hansen. Profile guided code positioning. In
Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation, PLDI 90, pages 16-27, New
York, NY, USA, 1990. ACM. ISBN 0-89791-364-7. URL http:
//doi.acm.org/10.1145/93542.93550.

R. Radhakrishnan, N. Vijaykrishnan, L. John, and A. Sivasubrama-
niam. Architectural issues in Java runtime systems. In High-
Performance Computer Architecture, 2000. HPCA-6. Proceedings.
Sixth International Symposium on, pages 387 -398, 2000. URL
http://dx.doi.org/10.1109/HPCA.2000.824367.

Sun. The K virtual machine (KVM). Whitepaper, May 2000.

V. Uzelac and A. Milenkovic. Experiment flows and microbench-
marks for reverse engineering of branch predictor structures. In
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on, pages 207 —217, april 2009. URL
http://dx.doi.org/10.1109/ISPASS.2009.4919652.

P. Zhao and J. Amaral. Feedback-directed switch-case statement
optimization. In Parallel Processing, 2005. ICPP 2005 Workshops.
International Conference Workshops on, pages 295 — 302, june 2005.
doi: 10.1109/ICPPW.2005.32.

2011/6/29

