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Abstract

A complex sequence of tests on components and the system is a part of many

manufacturing processes. Statistical imperfect test and repair models can be used

to derive the properties of such test sequences but require model parameters to

be specified. We describe a technique for estimating such parameters from typical

data that are available from past testing. A Gaussian mixture model is used

to model the wide variety of statistical properties of test data, including outliers,

multi-modality and skewness, from which test properties are derived. Model fitting

is through a Bayesian approach, implented by Markov chain Monte Carlo.
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1 INTRODUCTION

Many manufacturing processes involve a complex sequence of tests on components and

sub-systems that are done prior to shipping the product to the customer. Which tests

are conducted, the action to be taken when a unit fails a test — such as scrap, repair and

retest or ignore — can have a dramatic effect on field reliability. Optimal test sequencing,

that trades off test cost with product reliability, therefore can be an important element in

the production design process, particularly in industries that manufacture complicated

and expensive products that must be reliable and have high availability; it is no surprise

that the problem has received most attention in the literature on integrated circuit design

and production (Grout, 2005; Sun, 2008). Another example, and the motivation for the

work presented in this paper, is to optimizing production testing in the manufacture of

telecommunications network components, where testing may involve a complex schedule

of tests and it is recognized that large cost savings arise from well-planned testing (Fisher

et al., 2007a,b).

The typical test optimization process begins with specification of the parameters of

each test, such as the product quality (e.g. proportion of units that should pass the

test) and the test accuracy (e.g. the rate of false positives and negatives). Other factors,

such as the time and cost of the tests and constraints on the schedule, like orderings

on tests and when integration of components or subsystems must take place, are also

specified. Using this information, a test sequence that optimizes a metric of interest,

such as cost, production time, coverage (proportion of potential faults that could be

detected) or achieved system reliability, is derived.

In this paper we do not look at the issue of optimizing the test schedule given test

parameters, but consider a solution to the problem of how the test parameters are defined

in the first place. Thus our work can be thought of as providing the input into the test

optimization process. It is potentially important to do this well; it is recognized that

the optimal test sequence can be highly sensitive to test parameter values (Dick et al.,

1994). Specifically, we propose a solution for how data from production test results —

that is to say the measurements that are recorded when the test is conducted — may be

used for inference of the test model parameters of a particular imperfect test and repair
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model (Fisher et al., 2007a). This model is certainly applicable to most of the tests that

are done in telecommuncations equipment manufacture, and we contend it should be

applicable to testing in other similar manufacturing industries where test measurement

results are routinely stored. In the conclusion the general principle of the solution is

discussed and how it is applicable to other test models.

Work on test optimization is found in the statistics, operations research, electronic

engineering, software engineering and production management literature; recent papers

from these fields include Feyzioglu et al. (2006), Jei-Zheng and Chen-Fu (2008), Li and

Lam (2005), Nachlas et al. (1990) and Shi and Sandborn (2006). Typically, deriving the

sequence will start with the specification of a model for the tests under consideration.

Then the test model parameters are specified and finally an optimization procedure

to search for an optimal test sequence is implemented. A wide variety of models and

optimization algorithms have been proposed; ant colony (Song et al., 2007) and genetic

(Sakthivel and Narayanasamy, 2007) algorithms are currently popular for optimization.

Ideally, some sensitivity analysis is also conducted.

The inference of the value of these parameters from test measurement data is not

as straightforward as it might appear at first for several reasons. First, the test mea-

surement data are not directly related to the test model parameters. Rather, the test

measurements themselves are what are stored. For example, consider a test that mea-

sures a voltage and passes the unit if the voltage is within specified limits. A natural

model for the voltage measurement is not specified in terms of test parameters such

as the probability of a false positive or false negative test result. We address this by

defining a model for the measurement data and then relate that model to the test model

parameters. This relationship is a deterministic function for the test model of Fisher

et al. (2007a) that we use. We fit the measurement data to the measurement model by

a Bayesian approach which then gives us a posterior distribution of the test parameters

through a change of variable. Second, we want the inference procedure to be applicable

to a wide variety of tests that are conducted. Our experience with telecommunications

equipment is that the measurement data display a wide variety of behaviour that are

challenging to model, such as multimodality and extreme outliers. We address this
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by using a Gaussian mixture model for the measurement data, which is fitted by the

standard Bayesian approach of reversible jump MCMC (Richardson and Green, 1997).

Finally, the data are sometimes censored; for example, the database may only record

that a measurement was within acceptable limits, rather than the actual value. In this

case inference with a Gaussian mixture model is very difficult but it is possible to fit a

single Gaussian model. We also discuss specification of prior distributions on measure-

ment model parameters given that the inference procedure should be as automatic as

possible, with intervention from the test engineer only for unusual cases.

There is considerably less work on this initial stage of the problem than on the test

sequence optimization itself. The closest work that we have found is that of Bounceur

et al. (2007), where the problem of estimating test metrics for analogue circuits, before

production is started, is considered. Monte Carlo simulation of the circuit and potential

faults is used to derive estimates, hence the approach does not make use of production

data. The first attempt by the authors to estimate test parameters from measurement

data used a classical point estimate approach based on modelling the data as Gaussian,

but it did not give an estimation error and produced very inaccurate estimates if the

data were not normal (Wilson et al., 2007) or few. This led to the development of the

model in this paper. So the novelty of our work is the observation that measurement

data can be used to estimate test model parameters, but that this is only successful if

the data can be modelled reasonably well, and the implementation of this for a specific

test model. It also adds to the growing literature on applications of mixture models in

reliability and elsewhere.

The paper is organized as follows. Section 2 describes the data. In Section 3 we de-

scribe the imperfect test and repair model. Section 4, describes the Bayesian estimation

method and how it is implemented. Section 5 applies the method to simulated and real

data, and illustrates the effect of censoring on the inference.

2 DATA

We assume that there are three sets of measurements available from the testing process:

4



1. The most numerous data are the measured values from each unit when it is tested

for the first time. This is known as the “first-pass” data. Units that pass are not

observed again. Let y = y1, . . . , yn denote the measured values from the first pass

tests on n units;

2. There are some data available from retesting of units that failed the test and were

repaired. This is known as the “second-pass” data. For our application, the second

pass data consists of how many of the units passed the test after repair, rather

than the measurements themselves. The number of units to be retested following

repair is denoted l and the number that passed is denoted ns.

3. There are data from a set of “one-off” tests, where a single unit is tested m

times. Such tests are occasionally carried out by the engineers to learn about the

repeatability of the test results. We define z = z1, . . . , zm to be the measured

values from the one-off test.

While the quantity being measured in the test may be continuous, sometimes the

available one-off and first pass data only show whether the test was passed or not. In

this case we define zj and yi to be 1 or 0, according to whether the test on the unit

passed or failed.

3 MODEL

3.1 The Test Model

Figure 1 is a diagram of the test model of Fisher et al. (2007a) that we use throughout

this paper. In this model, units are tested and a value y is observed. The test is

passed if y lies within specified limits (L,U). In the telecommunications application, the

measurements may be continuous (e.g. a voltage) or discrete (e.g. a defect count). Units

that fail the test are sent for repair and then retested. For the purposes of optimizing

the test sequence, the parameters of interest for this test are:
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• The incoming quality of the units, defined to be the proportion of units that “truly”

satisfy the specification that is being tested, which is denoted Pgood;

• The probability of a false negative test result (e.g. the test fails a unit that is

actually good), which is denoted α;

• The probability of a false positive test result (e.g. the test passes a unit that is

actually bad), which is denoted β;

• The probability that a unit that is truly bad is repaired successfully, which is

denoted Prepair.

We assume that truly good units that fail the test cannot then be repaired to be bad.

3.2 The Data Measurement Model

As defined in Section 2, the data pertain to the value that is measured by the test. We

denote the value of the property being measured as x. A Gaussian mixture model is

used for x, since it is sufficiently flexible to be able to model the wide range of behaviour

that we have seen in practical examples, such as extreme outliers, skewness and multi-

modality. Therefore:

px(x) =
K∑
k=1

pk
1√

2πσ2
k

exp

(
− 1

2σ2
k

(x− µk)2

)
. (1)

We denote the observed value of x as y, and assume Gaussian measurement error, so

that:

py|x(y |x) =
1√

2πs2
e−(y−x)2/2s2 . (2)

This implies that, marginally, y is a Gaussian mixture with weights pk , means µk and

variances κ2
k = σ2

k + s2:

py(y) =
K∑
k=1

pk
1√

2πκ2
k

exp

(
− 1

2κ2
k

(y − µk)2

)
. (3)

In what follows, it will be more convenient to parameterize the data measurement model

in terms of the parameters for the mixture model for y. We define θ = {K, pk, µk, κ2
k | k =
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Combiner

Incoming Population
Prop. good is Pgood

Test

Good units pass with prob. 1 - alpha
Bad units pass with prob. beta

PASS

Repair

FAIL

Repair bad to good 
with prob. Prepair

Figure 1: Flow chart of the test and repair model.

1, . . . , K} to be the set of mixture model parameters for y. Hence the data measurement

model is parameterized by θ and s2, with the restriction mink κ
2
k > s2.

The joint distribution of x and y is a bivariate Gaussian mixture with weights pk,

means (µk, µk)
T and covariances(

κ2
k − s2 κ2

k − s2

κ2
k − s2 κ2

k

)
, (4)

for k = 1, . . . , K.

3.3 Relating the Test Model to the Data Measurement Model

Since a unit is classified to be good if x is in the interval (L,U), and passes the test if y

is in the interval (L,U), we can say the following:

• The incoming quality is:

Pgood = P (L ≤ x ≤ U |θ, s2) =
∑
k

pk

[
Φ

(
U − µk√
κ2
k − s2

)
− Φ

(
L− µk√
κ2
k − s2

)]
,

where Φ is the standard normal distribution function;

• The false positive probability is

α = P (y < L or y > U |L ≤ x ≤ U,θ, s2) = 1−P (L ≤ y ≤ U |L ≤ x ≤ U,θ, s2)

= 1− P (L ≤ x ≤ U,L ≤ y ≤ U |θ, s2)

Pgood

,
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the numerator being a weighted sum of bivariate normal probabilities:

P (L ≤ x ≤ U,L ≤ y ≤ U |θ, s2)

=
∑
k

pk

[
Φx,y(U,U |µk, κ2

k, s
2)− Φx,y(U,L |µk, κ2

k, s
2)− Φx,y(L,U |µk, κ2

k, s
2)

+Φx,y(L,L |µk, κ2
k, s

2)

]
, (5)

where Φx,y(· |µk, κ2
k, s

2) is the bivariate normal distribution function with mean

(µk, µk)
T and the covariance matrix of Equation 4;

• The false negative probability is β = P (L ≤ y ≤ U |x < L or x > U,θ, s2), which

can be written as

β =
P (Y ≤ U |θ)− P (Y ≤ L |θ)− P (L ≤ x ≤ U,L ≤ y ≤ U |θ, s2)

1− P (L ≤ x ≤ U |θ, s2)

=

∑
k pk

[
Φ
(
U−µk
κk

)
− Φ

(
L−µk
κk

)]
− P (L ≤ x ≤ U,L ≤ y ≤ U |θ, s2)

1− Pgood

,

where P (L ≤ x ≤ U,L ≤ y ≤ U |θ, s2) is given in Equation 5.

So 3 of the 4 test model parameters — Pgood, α and β — are easily-computed functions

of the data measurement model parameters, being weighted sums of univariate and

bivariate Gaussian probabilities. In the next section we see that the remaining test

model parameter — Prepair — appears in the likelihood for the measurement data, so

can be inferred directly.

Figure 2 is a directed acyclic graph representation of the measurement and test

models.

4 STATISTICAL INFERENCE

The goal is to compute p(Pgood, α, β, Prepair | data). In this section, it is seen that the

likelihood is most easily written in terms of θ, s2, xone and Prepair, from which the

posterior distribution p(θ, s2, xone, Prepair | data) may be computed. The (deterministic)

8



i = 1,...,nj = 1,..,m

y_iz_j

theta

xone

s^2 L, U

Prepair n_s

Pgood alpha beta

Figure 2: Directed acyclic graph representation of the measurement and test models,

and the relationship between them.

9



definitions in Section 3.3 allow us to compute the desired posterior distribution of Pgood,

α, β and Prepair by a change of variable. This is implemented by Monte Carlo simulation

from p(θ, s2, xone, Prepair | data), from which the change of variable is achieved by applying

the functions of Section 3.3 to the simulated values θ and s2.

4.1 Likelihood for the One-off and First Pass Data

If the measurements themselves are recorded then the likelihood for y is

p(y |θ) =
n∏
i=1

py(yi |θ) (6)

and that for z is:

p(z | s2, xone) =
m∏
j=1

py|x(zj | s2, xone), (7)

where xone is the unknown true value of the unit used in the one-off test. Equations 2

and 3 give the definitions of py and py|x.

If interval censored data are recorded then the likelihood is Bernoulli for both y and

z with success probabilities

Py(θ) = Py(L ≤ y ≤ U |θ) =
K∑
k=1

pk

[
Φ

(
U − µk
κk

)
− Φ

(
L− µk
κk

)]
(8)

and

Pz(s
2, xone) = Py|x(L ≤ y ≤ U |x = xone, s

2) = Φ

(
U − xone

s

)
− Φ

(
L− xone

s

)
. (9)

respectively. Hence:

p(y |θ) = Py(θ)ny(1− Py(θ))n−ny ; (10)

p(z | s2, xone) = Pz(s
2, xone)

nz(1− Pz(s2, xone))
m−nz (11)

where ny and nz are the number of units passing in the first pass and one off data

respectively.
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4.2 Likelihood for the Second Pass Data

We always assume pass/fail data for the second-pass test. The probability of passing is

Ps = P (pass 2nd test | fail 1st test). Applying the partition law and Bayes’ law we can

show that:

Ps =
α(1− α)Pgood + (1− α)Prepair(1− β)(1− Pgood) + β(1− Prepair)(1− β)(1− Pgood)

αPgood + (1− β)(1− Pgood)
.

(12)

The likelihood for ns units passing from l is Bernoulli:

p(ns |Pgood, α, β, Prepair) = P ns
s (1− Ps)l−ns . (13)

4.3 The Prior

The likelihood is written in terms of θ, s2, xone and Prepair, and so for convenience it is

preferable to write a prior for these variables as well. For practical implementation of

the method, it is unreasonable, on the grounds of the time and effort required, to expect

the test engineer to enter much information for each test separately, and so we focus on

generic a priori knowledge about the model parameters that can be used for all tests.

We assume prior independence between Prepair and the others, hence

p(θ, s2, xone, Prepair) = p(Prepair) p(θ) p(s2 |θ) p(xone |θ, s2).

Prior for Prepair: Since Prepair is a probability, we propose to use a beta distribution:

p(Prepair) =
Γ(B1 +B2)

Γ(B1)Γ(B2)
PB1−1

repair (1− Prepair)
B2−1, (14)

for 0 ≤ Prepair ≤ 1. We suggest the usual non-informative values B1 = B2 = 0.5 as a

default setting.

Prior for θ: We expect most units to pass the test, and so it is reasonable to say that

most mixture components in the model for y have means that are in or close to (L,U).

We do this by placing independent normal priors on the µk, with means mµ = 0.5(U+L)

(e.g. the centre of the accept interval) and variances s2
µ = (L+ U)2, so that about 38%
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of the prior masses of the µk lie in (L,U). An inverse gamma prior is placed on each κ2
k

with scale parameter aκ and shape parameter bκ, chosen so that for a typical mixture

component with a mean in (L,U), the probability over the interval (L,U) is not small,

but that also allows for large values of κ2
k if necessary. We use aκ = 3(L + U)2/32 and

bκ = 0.5, which gives a heavy-tailed prior with mode at κ2
k = (L+U)2/16; at this modal

value for κ2
k the mixture component has between 50% and 96% of its probability mass

in (L,U). A uniform prior is placed on the weights pk with support {pk ≥ 0 |
∑

k pk =

1}. The normal, inverse gamma and uniform distributions are conjugate priors for the

Gaussian mixture so simplify the calculation of the posterior.

Our experience for the telecommunications tests is that the number of components

K in the mixture model for x and y will not be large. We place a geometric prior on K

with mean 3.

Prior for s2 given θ: An inverse gamma prior is defined for s2 with scale parameter

as and shape parameter bs, that must be truncated to s2 < mink κ
2
k (see Section 3.2).

Non-informative default settings of as = bs = 0.5 may be used if there is no further

information on the likely value of s2.

Prior for xone given θ and s2: This is the Gaussian mixture of Equation 1.

Prior in the case of censored data: When the data are interval censored, we fit

only the single component Gaussian model because the data say almost nothing about

the number of components in the mixture. Here, the prior specification becomes more

important because the data are less informative. The measurement model parameters

are now µ, κ2 and s2. We assume a priori that µ is likely to be in the accept interval.

If there is some a priori knowledge that µ should be located roughly at mµ, let µ be

normally distributed with a mean mµ and a variance s2
µ such that 95% of the probability

mass lies in (L,U) e.g. s2
µ is such that Φ((U − mµ)/sµ) − Φ((L − mµ)/sµ) = 0.95. If

there is no a priori knowledge about the location of µ then we use mµ = (L + U)/2

as a default setting. To determine a prior for κ2 and s2, we opt for determining hard

bounds to their value. First, it should be that the measurement variance is less than
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the population variance, so that s2 < Var(x) = κ2 − s2, which implies s2 < 0.5κ2. A

proportion π is specified that is a prior lower bound to the proportion of units passing

the test; typically π should be close to 1 so a value closer to 0, say π = 0.05, would

be very conservative. This equates with variances κ2 and s2 that are bounded so that

P (L ≤ y ≤ U) ≥ π. Roughly speaking, this means that κ2 is bounded above by

(0.5(U −L)/z0.5(1+π))
2, where z0.5(1+π) is the 50(1 +π) percentile of the standard normal

distribution. So we can place a uniform prior distribution for (κ2, s2) on the triangle

0 ≤ κ2 ≤ (0.5(U − L)/z0.5(1+π))
2, s2 ≥ 0, s2 < 0.5κ2.

4.4 Computation of the Posterior of the Test Model Parame-

ters

The posterior distribution p(Pgood, α, β, Prepair |y, z, ns) is computed by Monte Carlo sim-

ulation, which is facilitated by making one approximating assumption. The simulation

uses the decomposition

p(Pgood, α, β, Prepair |y, z, ns) = p(Pgood, α, β |y, z, ns) p(Prepair |y, z, ns, Pgood, α, β).

For the former term, it has been noted that the likelihood for ns as a function of Pgood,

α and β is dominated by the likelihoods for y and z, so a reasonable approximation is

p(Pgood, α, β |y, z, ns) ≈ p(Pgood, α, β |y, z).

Making this approximation allows much simpler sampling of θ and s2, as shown next.

So the simulation is done by generating (Pgood, α, β) from p(Pgood, α, β |y, z) and then

Prepair is simulated from p(Prepair |y, z, ns, Pgood, α, β).

Simulation from p(Pgood, α, β |y, z): Given that Pgood, α and β are functions of θ

and s2, samples from p(Pgood, α, β |y, z) can be generated by simulating θ and s2 from

p(θ, s2, xone |y, z) and computing the corresponding values of Pgood, α and β from the

functions of Section 3.3.

A Gibb’s sampler is applied to p(θ, s2, xone |y, z). Samples of s2 are drawn from

p(s2 |θ, xone,y, z) ∝ p(z |xone, s
2) p(xone |θ, s2) p(s2),
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for s2 < mink κ
2
k. Samples of xone are drawn from

p(xone |θ, s2,y, z) ∝ p(z |xone, s
2) p(xone |θ, s2),

and samples of θ = {K, pk, µk, κ2
k | k = 1, . . . , K} are drawn from

p(θ | s2, xone,y, z) ∝ p(y |θ) p(xone |θ, s2) p(θ), κ2
k > s2.

Since the number of mixture components K is is unknown, θ is of variable dimension.

The details of the full conditional distributions and how they are sampled are in the

appendix.

Simulation from p(Prepair | y, z,ns, Pgood, α, β): Because Prepair does not appear

in the likelihood for either y or z, by Bayes Law:

p(Prepair |y, z, ns, Pgood, α, β) ∝ p(ns |Pgood, α, β, Prepair) p(Prepair), 0 ≤ Prepair ≤ 1,

which is easily computed, being proportional to the likelihood of Equation 13 multiplied

by the prior term in Equation 14. So, given a sample of (Pgood, α, β), the corresponding

sample of Prepair may be generated from p(Prepair | all data, Pgood, α, β) by the inverse

distribution method.

Computation of posterior distribution in the censored data case: In this case

a single Gaussian is assumed for x. The likelihood is the product of Equations 10, 11

and 13 and can be written in terms of only 5 parameters: µ, κ2, s2, xone and Prepair. A

discrete approximation to this posterior can be computed exactly on a grid of values,

and then the change of variable to Pgood, α, β and Prepair applied to the grid to yield a

discrete approximation to p(Pgood, α, β, Prepair |y, z, ns).

5 EXAMPLES

5.1 Simulation Study

To explore the effectiveness of the algorithm of Section 4, two simulation studies are

presented.
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In the first, data were simulated from a Gaussian mixture model with 7 compo-

nents. The means, variances and weights of the components were (1.1,2.1,2.5,3.5,4,6,20),

(0.1,0.1,0.1,1.0,0.5,0.2,0.2) and (0.05,0.2,0.2,0.3,0.1,0.05,0.1) respectively. The measure-

ment variance was s2 = 0.05 and the true value of the unit used in the one-off tests

was xone = 3.6. Units were accepted if they were measured to be in the interval

(1.1, 4.5). This led to true test model parameter values of Pgood = 0.754, α = 0.0251

and β = 0.0631; Prepair is specified to be 0.8. Sample sizes were n = 1000, m = 100 and

n2 = 6.

The method of Section 4 was implemented to compute the posterior distribution,

based on an MCMC run of 2×105 iterations, with the first 5×104 iterations discarded as

burn-in. It was run on 100 sets of data that were simulated from the Gaussian mixture

model. For each data set, a posterior mean and 90% marginal posterior probability

interval of Pgood, α, β and Prepair were computed from the sample average, 5th percentile

and 95th percentile of the MCMC samples. Table 1 summarizes the results of the study,

which indicate that the method performed quite well, with perhaps some slight bias in

the posterior mean and the coverage results indicating that generally the uncertainty is

somewhat overestimated; the result for Prepair is out of line with this but this is for a

posterior with high variance.

A second study was done to explore the performance of the Gaussian mixture model

on skewed data. Values for x were assumed to come from a skewed Weibull distribution

with distribution function P (X ≤ x) = 1− exp(−(0.25x)1.4), x ≥ 0; this has mean 3.64

and median 3.08. Gaussian measurement error was still assumed. The measurement

Average (std. dev.) Coverage of (5%, 95%)
Parameter True value of posterior means probability intervals
Pgood 0.754 0.723 (0.014) 100%
α 0.0251 0.0302 (0.0029) 98%
β 0.0631 0.0585 (0.0038) 100%

Prepair 0.800 0.702 (0.159) 89%

Table 1: Summary of performance of method over 100 simulated Gaussian mixture data

sets. Coverage is percentage of probability intervals that contained the true value.
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variance and true value of the one-off test unit were kept at 0.05 and 3.6; the accept

interval was (0, 8). A simulation of 107 values of x and y was used to estimate the true

values of the test parameters as: Pgood = 0.572, α = 0.0161 and β = 0.0215; Prepair was

specified to be 0.8. Sample sizes for the data were n = 1000, m = 100 and n2 = 6.

The method of Section 4 was implemented to compute the posterior distribution,

based on an MCMC run of 2× 105 iterations, with the first 5× 104 iterations discarded

as burn-in. This was run on 100 sets of data. Table 2 summarizes the results of the study,

and we see that the method returns accurate estimates of the test model parameters.

The performance of the posterior means is similar to the first study; broadly accurate

with modest evidence of some bias towards 0.5. The exception is α, which has not been

estimated well with significant bias. The true value of 0.0161 is the closest

5.2 A Real Example

Figure 4 shows data from a real test that have been linearly transformed to preserve

confidentiality. The accept limits for this test are (43, 53). The histogram of the first

pass data shows three distinct modes in the data, of which one lies well inside the accept

interval and two lie well outside (at more than 10 standard deviations of the data lying

inside the accept interval). The middle mode in the histogram consists of 61 values that

have exactly the same value.

Sample sizes are: n = 878 (of which 807 passed), m = 22 (of which all passed and

the sample standard deviation is 0.035) and n2 = 3 (of which 2 passed). The method of

Section 4 was implemented, with 106 iterations of the MCMC sampler computed, with

the first 105 iterations ignored as burn-in. Convergence and mixing of the sampler are

Average (std. dev.) Coverage of (5%, 95%)
Parameter True value of posterior means probability intervals
Pgood 0.572 0.516 (0.032) 100%
α 0.0161 0.0244 (0.0018) 68%
β 0.0215 0.0258 (0.0020) 100%

Prepair 0.800 0.752 (0.148) 95%

Table 2: Summary of performance of method over 100 simulated Weibull data sets.
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illustrated in Figure 3. There are some concerns about mixing of some components of θ,

but they do not seem to be reflected in the sampled values of the test model parameters,

which appear to exhibit good convergence and mixing.

Figure 5 are estimated marginal posterior distributions, based on a kernel density ap-

proximation from the MCMC samples. The resulting posterior means and (2.5%, 97.5%)

probability intervals were: Pgood = 0.92, (0.89, 0.94); α = 0.0030, (0.0011, 0.0066);

β = 0.020, (0.006, 0.042); Prepair = 0.60, (0.11, 0.96). The estimate of Prepair has high

variance due to the small sample of second pass data.

As regards model fit, Figure 4 also shows the Gaussian model fit to the first pass

data, using the usual MCMC approximation:

p(y | data) ≈ 1

D

∑
k

py(y |θ(d)),

where θ(d) is the dth of D samples after burn-in from the MCMC method. While the

principal mode in the data is captured well, the middle mode has been modelled by

a component with large variance, that also accounts for the right mode. It is noted

that while this may be unsatisfactory from the point of view of modelling the first pass

data, it is not necessarily of concern from the point of view of estimating the test model

parameters because they only depend on interval probabilities of the mixture model,

which may be estimated well. As another model assessment check, the measurement

error is quite small in this example, so Pgood should be close to the proportion of first

pass data that pass the test, which is 807/878 = 0.92. That matches the posterior mean

of Pgood, suggesting that we have estimated it well in spite of the poor estimation of

some of the modes of the first pass data by the mixture. Computation time was about

3× 105 iterations per hour, using code written in MATLAB and run on an i-Mac with

2.8GHz dual core processor.
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Figure 3: Trace plots of MCMC output for the real test data example (clockwise from

top left) K, s2, logit(Pgood) and β.

Figure 4: Histograms of first pass data, with model fit (left) and one off data (right)

for a telecommunications equipment test.
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Figure 5: Posterior distributions of (clockwise from top left) Pgood, α, Prepair and β for

the real test data example.
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5.3 Real Example with Censored Data

To illustrate the effect of censoring, the real example data was taken and it was as-

sumed that the first pass and one-off data were interval censored, so that our data were

simply pass/fail. A single component Gaussian model was fitted. The prior specifica-

tion of Section 4.3 was followed. The analysis gave posterior means and (2.5%, 97.5%)

probability intervals as: Pgood = 0.95 (0.87, 0.997); α = 0.061 (0.007, 0.120); β =

0.303 (0.038, 0.620); Prepair = 0.55 (0.13, 0.99). Contrasting these with their analysis

in Section 5.2, it can be seen that the posterior distributions have considerably higher

variance, reflecting the loss of information from the censoring, particularly for estimation

of α and β.

6 CONCLUSIONS

A Bayesian approach to estimating test properties of an imperfect test and repair model

from test measurement data has been presented. The method is able to handle multi-

modal distributions for the data through a Gaussian mixture. The first observation is

that the usual problems of good estimation of mixture models are encountered, partic-

ularly with the use of the reversible jump sampler (Brooks and Guidici, 2000), such as

difficulty in identifying all modes, and mixing, but they are not necessarily detrimental

to estimation of the test parameters, which depend on good estimation of interval prob-

abilities of the mixture model. It is seen from the example data and others that have

been fitted, that these interval probabilities are often estimated quite well even when the

mixture model does not perform so well. When data are censored, a single Gaussian can

be fitted and good estimates of test parameters can be obtained, although with higher

posterior variance.

The examples show that estimation seems reasonably accurate but could be im-

proved. However we point out that the procedure is completely automatic, with no

tuning parameters to be specified. This is an important property of the method for its

use in the field. We argue that the performance of the method, given this lack of inter-

vention, makes it useful. A disadvantage of the method is the computation time — at
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least 1 hour per data set is recommended for our MATLAB code with 2008 processing

power — meaning that this is not a method that can be employed in an online test

sequence design. On the other hand, these estimations can often be carried out offline

and the estimates stored for use in an online setting.

The general scheme outlined — specifying a test measurement model for x and y,

deriving the test parameters as functions of the parameters of that model, fitting data

to the measurement model and applying that fit to estimate the test parameters —

is equally applicable to other distributions for x and y given x, either continuous or

discrete. It can also be applied to other test models, as long as the relationship with the

test measurement model can be established. The mixture of Gaussian model was chosen

because of its flexibility, in line with the desire to keep the method automatic. This

leads to the question of how much better the performance would be with an informed

choice of model, and if this is worth the burden of model selection.

Several other issues have come out of the work so far. First, it is reasonable for some

tests to assume that measurement error variance changes with x e.g. multiplicative error.

The extension of the model to this case, by transformation of the data or parametric

modelling of the variance structure, should be straightforward and present few new

computational difficulties. Also, in some tests we have observed that the measurement

error variance s2 can in fact be larger than the population variance, contrary to our

prior opinion. In this case the data are not as informative but the model is still fitted

satisfactorily, although the posterior distributions will have high variance. Second, more

work can be done to specify informative priors that could help analyses, especially in the

censored data case. Another issue is that we have left Prepair to be defined directly rather

than through the measurement model. This means that we have no way of using the

test measurements to infer anything more than the probability that a repair succeeds or

not. A model for the effect of repair on the measured value would allow a more detailed

understanding of the performance of the repair process.

Currently this approach is used to compute point and interval estimates of the many

tests that are used in typical production testing in telecommunications. These are done

separately for each test and used as inputs into a separate test sequence optimization
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tool. The full benefit of the Bayesian approach would be realized by treating optimal

test sequencing as decision making under uncertainty, the uncertainty quantified by the

posterior distributions of test parameters. There are clearly dependencies between the

tests, since they are applied to the same units, and may occur in the same produc-

tion facility, which are ignored. A hierarchical model for the set of tests, that allowed

borrowing of strength from tests with a lot of data, is one approach to modelling this

dependence that would be easy to implement.
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Derivation of the Distributions for Sampling from

p(θ, s2, xone |y, z)

Monte Carlo simulation from p(θ, s2, xone |y, z) is done by a Gibbs sampler. Samples

of s2, xone and the components of θ = {K, pk, µk, κ2
k | k = 1, . . . , K} are sampled from

their full conditional distributions. Because xone and y are Gaussian mixtures, it is

convenient to define mixture component indicator variables ax ∈ {1, . . . , K} for xone and

ai ∈ {1, . . . , K} for yi, i = 1, . . . , n, with probability distributions given by the mixture

model weights: p(ax |θ) = pax and p(ai |θ) = pai . Let A = {ai | i = 1, . . . , n}. Both ax

and A are also sampled, hence the Gibb’s sampler is applied to p(θ, s2, xone,A, ax |y, z).

Sampling ax: This is sampled by the inverse transform method from the discrete

distribution

p(ax |θ, s2, xone,A,y, z) ∝ p(xone |θ, s2, ax) p(ax |θ)

∝ pax√
κ2
ax − s2

exp

(
− 1

2(κ2
ax − s2)

(
(xone − µax)2

))
, ax = 1, . . . , K.
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Sampling xone: This is sampled from

p(xone |θ, s2,A, ax,y, z) ∝ p(z |xone, s
2) p(xone |θ, s2, ax)

∝ exp

(
−1

2

(
(xone − µax)2

(κ2
ax − s2)

+
1

s2

∑
j

(zj − xone)
2

))
,

which is a Gaussian distribution with variance σ2
one = s2(κ2

ax − s
2)/(s2 + m(κ2

ax − s
2))

and mean

σ2
one

(
m

s2
z̄ +

µax
κ2
ax − s2

)
.

Sampling s2: This is sampled from

p(s2 |θ, xone,A, ax,y, z) ∝ p(z | s2, xone) p(xone |θ, s2, ax) p(s
2)

∝
[
(s2)−(1+bs+0.5m)e−(as+0.5

P
j(zj−xone)2)/s2

] e−0.5(xone−µax )2/(κ2
ax
−s2)√

κ2
ax − s2

,

with the constraint that s2 < κ2
ax . The term in square brackets is an inverse gamma

distribution and dominates the function when m is not small. This suggests an indepen-

dent Metropolis sampler with proposal distribution as this inverse gamma distribution,

with scale parameter as + 0.5
∑

j(zj − xone)
2 and shape parameter bs + 0.5m, truncated

to (0, κ2
ax). Given a current value s2, a new value s2

∗ is proposed from this truncated

inverse gamma and accepted with probability

min

{
1,

(κ2
ax − s

2
∗)
−0.5e−0.5(xone−µax )2/(κ2

ax
−s2∗)

(κ2
ax − s2)−0.5e−0.5(xone−µax )2/(κ2

ax
−s2)

}
.

Sampling A: The ith component ai of A is sampled by the inverse transform method

from the discrete distribution

p(ai |θ, xone,A−i, ax,y, z) ∝ p(yi |θ, ai) p(ai |θ)

∝ pai
κai

exp

(
− 1

2κ2
ai

(yi − µai)2

)
, ai = 1, . . . , K,

for i = 1, . . . , n.
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Sampling θ = {K,pk, µk, κ
2
k |k = 1, . . . ,K}: Because K is unknown, θ is of

unknown dimension. We adapt the reversible jump method of Richardson and Green

(1997) to sample from its full conditional distribution

p(θ | s2, xone,A, ax,y, z) ∝ p(y |θ,A) p(xone |θ, s2, ax) p(θ).

Were the full conditional distribution of θ to be proportional to simply p(y |θ,A) p(θ)

then it would follow the model and method of Richardson and Green (1997) for updating

the components of θ, including proposing changes in the number of mixture components

K. The full conditional distributions of the µk, κ
2
k and pk would be Gaussian, inverse

gamma and Dirichlet respectively. The only change to the method of Richardson and

Green (1997) would come from the fact that the inverse gamma distributions for κ2
k are

truncated to (s2,∞), which is easily handled.

However we have the extra term p(xone |θ, s2, ax) in the full conditional distribution

that complicates matters somewhat in the following manner:

• For the pk, the effect is minimal. The full conditional distribution of (p1, . . . , pK)

is Dirichlet with parameters 1 + I(ax = 1) + N1, . . . , 1 + I(ax = K) + NK , where

Nk = |{i | ai = k}|.

• For the µk and κ2
k, the effect is a little more complicated. A simple idea is to use

p(y |θ,A) p(θ) as proposal distributions in a Metropolis step. For µk, this leads

to proposing µ∗k from a Gaussian with mean

κ−2
k

∑
i: ai=k

yi + s−2
µ mµ

κ−2
k Nk + s−2

µ

and variance (κ−2
k Nk + s−2

µ )−1, then accepting with probability

min

{
1,
p(xone |θ including µ∗k, s

2, ax)

p(xone |θ including µk, s2, ax)

}

=

1, if k 6= ax,

min
{

1, exp
(

1
2(κ2

k−s2)
((xone − µk)2 − (xone − µ∗k)2)

)}
, if k = ax.
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• For κ2
k, a value κ2,∗

k is proposed from an inverse gamma distribution with scale

parameter aκ + 0.5
∑

i: ai=k
(yi − µk)2 and shape parameter bκ + 0.5Nk, truncated

to (s2,∞) in order to respect the constraint that s2 < mink κ
2
k. This is accepted

with probability:

min

{
1,
p(xone |θ including κ2,∗

k , s2, ax)

p(xone |θ including κ2
k, s

2, ax)

}
=


1, if k 6= ax,

min

1,

√
κ2
k−s2 exp

 
− (xone−µk)2

2(κ
2,∗
k

−s2)

!
√
κ2,∗
k −s2 exp

„
− (xone−µk)2

2(κ2
k
−s2)

«
 , if k = ax.

• Finally, for K, we can use the split/merge/birth/death proposals from Richardson

and Green (1997), the only change being that the accept probabilities for the pro-

posals are multiplied by the expression p(xone |θ for the proposed K, s2, ax)/p(xone |θ for the current K, s2, ax).

The explanation of these moves and the derivation of the accept probability is

lengthy and we refer to Richardson and Green (1997) for the details.
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