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Abstract ���

Many insects with smooth adhesive pads can rapidly enlarge their contact area by ���

centripetal pulls on the legs, allowing them to cope with sudden mechanical ���

perturbations such as gusts of wind or raindrops. The short time scale of this reaction ���

excludes any neuromuscular control; it is thus more likely to be caused by mechanical ���

properties of the pad’s specialised cuticle. This soft cuticle contains numerous ���

branched fibrils oriented almost perpendicularly to the surface. Assuming a fixed ���

volume of the water-filled cuticle, we hypothesized that pulls could decrease the fibril ���

angle, thereby helping the contact area to expand laterally and longitudinally. �	�

Three-dimensional fluorescence microscopy on the cuticle of smooth stick insect pads �
�

confirmed that pulls significantly decreased the fibril angle. The fibril angle variation ���

appeared insufficient to explain the observed increase in contact area. Direct strain ���

measurements in the contact zone demonstrate that pulls not only expand the cuticle ���

laterally (indicating a negative Poisson's ratio of the pad’s cuticle), but also add new ���

contact area at the pad's perimeter.  ���
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1 Introduction ���

Many insects possess fluid-mediated adhesive pads to safely adhere to almost all �	�

known surfaces [1,2]. Whilst the adhesive pads of several insect groups such as flies �
�

and beetles are densely covered with flexible setae, the smooth pads found in other ���

insects such as ants, stick insects and cockroaches are “pillow-like” soft structures. ���

Although obviously distinct in their morphology, both designs provide good adhesion ���

to surfaces with unpredictable roughness by maximizing the contact area between the ���

pad and the surface. In smooth adhesive pads a two-phasic adhesive secretion helps to ���

fill gaps between small surface asperities and allows the insects to combine capillary ���

adhesion with resistance against sliding [3]. ���

Besides the presence of an adhesive emulsion, an additional remarkable adaptation of ���

the smooth arolia is the highly specialised adhesive cuticle. It is characterized by �	�

fibrils which are aligned almost perpendicularly to the surface [4-8]. SEM of freeze �
�

fractures and TEM of the arolium of stick insects (Carausius morosus) showed that ���

these cuticular rods originate from the endocuticular layer and are 44 to 74 �m long ���

with an average diameter of 1.65 �m. Towards the surface the thick rods branch into ���

finer fibrils [7]. This specialised type of cuticle has evolved several times ���

independently in Arthropods, but its detailed function is still unclear. The branched ���

fibril structure probably helps the pads to conform to surface roughness at different ���

length scales [9,10]. Moreover, it has been proposed that the fibrous structure is ���

responsible for the pads' frictional anisotropy, i.e. the higher friction of pads in the ���

pulling direction, which allows animals to increase adhesion by opposing their feet, �	�

thereby achieving shallower force vectors [11,12]. It has been found that this direction �
�

dependence is largely explained by the variation in adhesive contact area [1]. ���

However, it is still unclear what role the fibrillar ultrastructure plays for this dynamic ���

reaction.  ���

A dynamic control of adhesive contact area has been demonstrated for ants that can ���

actively and passively change the size of their contact area [13]. When the legs are ���

pulled towards the body, ant adhesive pads in partial contact with a surface can ���

rapidly unfold. Due to the ‘chain-like’ morphology of the segmented insect tarsus, a ���

distal adhesive pad can transit significant forces only in the pulling direction, and both ���

pushing forces and lateral forces are likely small. The passive, purely mechanical �	�



  

nature of the ants' unfolding reaction is confirmed by the finding that it can occur �
�

extremely fast, sometimes within less than a millisecond [14]. This passive increase of ���

adhesive contact area allows insects to quickly react to mechanical perturbations such ���

as wind or raindrops [13,15]. Neuronally controlled reflexes in insects typically take ���

much longer (>5 ms in the locust leg [16]; 10-15 ms for Blatta orientalis and ���

Periplaneta americana [17]). This delay clearly excludes a neuromuscular control of ���

the contact area within this time frame [13,16].  ���

It is unlikely that such useful mechanical "preflexes" are confined to ants, and ���

preliminary findings indeed indicate that a similar preflex reaction occurs in stick ���

insects (Carausius morosus), where the arolium cannot be unfolded, in contrast to the �	�

situation in ants and bees [14]. Variation of the direction of the shear movement �
�

showed that the passive variation of contact area is direction dependent. As in ants, ���

contact area increased for pulls and decreased for pushes [14].  ���

If muscular control cannot explain the increase of contact area, what is the underlying ���

mechanism of these passive reactions? For the smooth pads of ants it has been shown ���

that the complex mechanical arrangement of the arolium results in the passive ���

unfolding of the pad [13]. However, no such morphological adaptation is present in ���

the smooth pads of other insect species, such as stick insects or cockroaches. Could ���

the specialised cuticle of the pads itself play a role in the increase of contact area?  ���

If shearing of the cuticle is linked to a change of the fibril orientation, a proximal pull �	�

(towards the body) should reduce the fibril angle and decrease the thickness of the �
�

adhesive cuticle. Assuming that the cuticle is a cuboid with constant volume (height x 	��

width x length), any change of fibril orientation should be correlated with a change of 	��

contact area, as the pad is expected to expand along the proximal-distal and the lateral 	��

axis when the height decreases. Conversely, a distal pushing movement (away from 	��

the body) may lead to an increased fibril angle, resulting in a contraction of the 	��

adhesive contact area and easier detachment (see Figure 1).  	��

In this study we test this hypothesis by using fluorescence and interference reflexion 	��

microscopy to quantify in vivo the effect of proximal pulls on the fibril orientation and 	��

to measure the strain within the adhesive contact zone.  		�



  

2 Materials and methods 	
�

2.1 Study animals  
��

Adult female Indian stick insects (C. morosus) were taken from a laboratory colony in 
��

which insects were kept at 24°C and fed with water and food ad libitum.  
��

Making use of their natural stick-like mimesis posture with their legs in line with the 
��

body, the stick insects were slid into a glass Pasteur pipette with their front legs 
��

protruding. The tarsus of one leg was fixed to a rigid soldering wire attached to the 
��

pipette. The last tarsal segments and the non-adhesive dorsal side of the arolium were 
��

carefully embedded in fast-hardening dental cement (Protemp, ESPE) to prevent any 
��

active movements of the adhesive organ (see Figure 1 A). 
	�

2.2 Visualisation of the fibril structure  

�

The arolia of the fixed legs were brought into contact perpendicularly with a smooth ����

glass coverslip (“normal” position) and then carefully pulled over 50 �m in the ����

proximal direction (“pull”) using a micromanipulator (speed approx. 10�m/s) ����

mounted on the microscope stage. Great care was taken to ensure that the adhesive ����

pad remained in static contact with the substrate at all times, as any sliding movement ����

with a resulting shift of the fibril pattern would have interfered with the automated ����

fibril angle measurements. ����

The fibrous cuticle of the adhesive pad shows a characteristic blue auto-fluorescence ����

under UV illumination. This suggests that it contains resilin (although more rigorous ��	�

tests are required for confirmation), a protein providing high resistance to mechanical ��
�

fatigue frequently found in regularly deforming cuticle [18,19]. To increase the ����

signal-to-noise ratio and reduce image distortions to a minimum, images were ����

recorded using a mercury short-arc lamp (HBO 103 W/2, Osram) at an excitation ����

wavelength of 365 nm and emission wavelengths of > 425 nm. At this illumination ����

the adhesive fluid within the contact zone did not fluoresce and thus did not interfere ����

with the measurements.   ����

A Leica DRM HC microscope equipped with a motorized stage (LSTEP, Märzhäuser) ����

and a triggered camera (10 bit monochrome CCD QICam, INTAS) were used to ����

capture image stacks at 100x magnification and a frame rate of 1 Hz (500ms exposure ��	�

time + 500ms movement of the stage). These stacks consisted of 100 consecutive ��
�



  

images focussing “into” the pad’s cuticle (starting slightly outside the pad), and 100 ����

images captured whilst focussing “out”, with a z-distance between consecutive frames ����

of 0.192 �m. For the analysis, we selected 50 consecutive frames from the inwards ����

movement and the 50 corresponding frames from the outwards movement for the ����

automated tracking, starting at approx. 4 �m focal depth. By comparing the "in" and ����

"out" patterns we checked the stacks for pad movements during the capturing process. ����

Throughout the paper, we refer to the optical axis of the microscope (i.e. the axis ����

perpendicular to the glass substrate) as z-axis; the projection of the leg onto the ����

surface (i.e. the direction of the pushing/pulling movement) is called x-axis and the ��	�

transverse direction (orthogonal to x and z) y-axis (see Fig.1). ��
�

Measurements of the contact area of the same pads were taken before and after the ����

shear movement at 5 x magnification using reflected light and a custom-made Matlab ����

script.  ����

2.3 Reconstruction of the fibril structure  ����

The human eye is very good at pattern recognition and pattern completion, even at ����

relatively low signal-to-noise ratios [20,21]. While the small individual fibrils were ����

not clearly visible on single images, the movement of the pattern was apparent in ����

animated image stacks (see videos 1 and 2).  ����

To eliminate any observer bias, all identification characteristics were removed from ��	�

the image stacks and the data were analysed in random order.  To reduce noise and ��
�

increase the visibility of the fibrils, each frame was 2D-FFT-bandpass filtered (90 nm- ����

4.5 �m). Fibril angles were manually digitised from sagittal views in the middle of the ����

pad using the ImageJ “volume viewer” plug-in [22] (the sagittal view corresponds to ����

the x-z-plane in Figure 1). ����

Using a different, automated image analysis method, we verified the fibril angle ����

results obtained by digitisation of sagittal views (see videos 1 and 2). The fibril ����

structure's displacement vectors from one image of the z-stack to the next were ����

tracked using an optical flow algorithm [23], developed using the CImg library. As ����

the depth (z-position) of the imaging plane was moved through the cuticle, the local ��	�

rate of displacement with depth provided a measure of the fibril angle.  ��
�

 ����



  

Data for fibril angles and contact area were tested for normal distribution using ����

“Kolmogorov-Smirnov” and paired t-tests were used to test for significant differences ����

between the “normal” and the “pulled” group. If not stated otherwise, all values are ����

given as means ± standard error (s.e.). ����

2.4 Direct strain measurements in the contact zone ����

To analyse the detailed mechanism of contact area increase, we studied the adhesive ����

contact zone of stick insect arolia during pushing and pulling movements using ����

interference reflexion microscopy (at 100x magnification and monochromatic ��	�

illumination of 546 nm). Stick insects were mounted as before, but on a ��
�

micromanipulator outside the microscope stage, and the arolium of one foot was ����

brought into contact with a glass coverslip mounted on a holder on the microscope ����

stage. Three pairs of short (50 µm displacement) pulls and pushes were performed by ����

moving the microscope stage, with a velocity of 100 µm s-1 and 2 s pause after each ����

movement.  ����

Images of different regions of the contact zone were recorded at 2 Hz. To avoid blur ����

during the pad movement, we analyzed the first or second frame after the ����

pulls/pushes. The characteristic pattern of folds in the contact zone allowed us to ����

quantify the strain both along the x and the y axis (i.e. proximal-distal and lateral) ��	�

caused by the pushing-pulling movements (see Figure 1 A). We define strain for our ��
�

situation as  ����

push

pushpull

l

ll −
=ε ,    (1) ����

where lpull and lpush are the distances between two characteristic points in the contact ����

zone after a pull or push, respectively.  ����

3 Results  ����

3.1 Effect of pulling on the fibril angle  ����

The UV fluorescence image stacks of C. morosus adhesive pads clearly revealed the ����

three-dimensional, fibrous structure of the procuticle (see Figure 2 B and C).  ����



  

The mean angle measured from reconstructed sagittal views of the fibril structure for ��	�

the normal pad position was 71.26 ± 1.3° (n=10). After the pulling movement the ��
�

mean angle was significantly reduced to 61.44 ± 1.3° (n=10, t9=7.43, P<0.001, see �	��

Figure 3 A).  �	��

The angles measured using the automated tracking were consistent with the angles �	��

digitized from reconstructed sagittal views. A direct comparison between manual �	��

digitisation and automated tracking showed perfect consistency (65.5° vs. 63.2°, see �	��

Video 2). However, although the automated tracking method provided reliable �	��

measurements for intermediate fibril angles, it could not resolve the smaller angles �	��

after proximal pulls. Thus the manual digitization of reconstructed sagittal views �	��

proved to be the better option. �		�

3.2 Effect of pulling on the adhesive contact area  �	
�

The contact areas of the adhesive pad were significantly higher after the pulling �
��

movement (paired t-test, t =-11.40, P<0.001) with a mean of 60144 �m2 for the �
��

“normal” and a mean of 72504 �m2 for the “sheared” condition (see Figure 3 B). �
��

Thus, the pull increased the contact area on average by 20.80 ± 1.72 % (n=10).  �
��

After the pull, the proximal-distal “length” of the contact area (measured along the �
��

proximal-distal ‘middle line’ of the contact area) was largely unchanged (paired t-test, �
��

t9=-0.253, P>0.05), whereas the lateral (transverse) “width” significantly increased �
��

(paired t-test, t9=12.43, P<0.001). Therefore, the aspect ratio of the contact area (i.e. �
��

width/length) significantly increased from 2.70 ± 0.06 to 3.15 ± 0.06 (paired t-test, �
	�

t9=-4.37, P<0.001, see Figure 4). These results show that the increase in contact area �

�

was mainly the result of the increased pad width while pad length remained largely ����

constant.  ����

The correlation between contact area size and fibril angle was measured by ����

calculating the change in contact area per degree change in fibril angle for each pair ����

of measurements. All ratios were negative and significantly different from zero (mean ����

incline -1798 ± 499 �m2/degree, one-sample t-test, t9=-3.600, P<0.001).  ����

3.3 Strain in the contact zone ����

Direct measurements in the adhesive contact zone of stick insects using IRM ����

confirmed the presence of strains (as defined by Equation 1), ranging from -4.0% to ��	�



  

8.7%. Strain was positive both in the proximal-distal and in the lateral directions (one-��
�

sample t-tests significant both for proximal-distal: t39=2.92, P<0.01, and lateral: ����

t39=4.22, P<0.001; Figure 5). However, the relative magnitude of the two in-plane ����

strain components was different depending on the region on the pad. While proximal-����

distal and lateral strains were not significantly different from each other near the ����

lateral (left and right) edges of the pad (t23=1.62, P>0.1), the transverse strain ����

dominated significantly in the middle of the contact zone (t14=3.03, P<0.01, Figure 5).  ����

From the overall mean strains of 0.92% (proximal-distal) and 1.87% (transverse), it ����

can be estimated that cuticle expansion during the pull should increase the adhesive ����

contact area by 2.8%. For the pad studied in this experiment, contact area increased ��	�

from 102445 ± 1756 µm2 (push) to 107919 ± 1591 µm2 (pull), i.e. by 5.3%. Thus, ��
�

cuticle expansion only partly explains the observed contact area increase. ����

At the same time, the IRM recordings showed that during pulls, new areas of adhesive ����

cuticle came into contact at the edge of the pad. As we could only analyze image pairs ����

where the pad edge was visible both after the pull and the push, our data do not allow ����

a detailed assessment on which sides of the pad contact area was mainly gained (or ����

lost). However, successful image pairs from the distal, lateral edges of the pad contact ����

zone (see Figure 5) show that the "new" cuticle zone added during the pull was as ����

wide as 10.3 µm (measured perpendicularly to the pad edge; n=22, median=1.8 µm, ����

range 0.2 – 10.3 µm).  ��	�

Assuming that a cuticle zone of 1.8 µm width is added around the whole perimeter of ��
�

the pad (length measured as 1350 µm), the contact area would grow by 2430 µm2, i.e. ����

by 2.4%. This value is in good agreement with the above estimate of 2.8%; the ����

observed contact area increase of 5.3% therefore represents a combination of cuticular ����

expansion (~54%) and addition of new contact area (~46%).  ����

3.4 Regular microstructure in the outer arolium cuticle ����

When testing various combinations of surface properties to increase the visibility of ����

the fibril pattern using interference reflection microscopy, we observed a regular ����

“fingerprint” like pattern on the arolia of C. morosus (see Figure 6). The pattern ����

consisted of a succession of bright and dark sinusoidal lines oriented transversely, i.e. ��	�

perpendicular to the distal-proximal axis of the adhesive pad. The mean periodicity of ��
�

the pattern along the proximal-distal axis was 414.4 ± 33 nm (n=14).  ����



  

The visibility of this pattern appeared to depend on the refractive index of the ����

substrates. The pattern was visible on Polyimide (PI-2611)-coated coverslips (n0 = ����

1.9) and very clear on mica substrates (n0 � 1.59), but it had only weak contrast on ����

glass coverslips (n0 = 1.52). The pattern was present throughout the entire contact ����

area, and it was only visible in the outer zone of the cuticle, up to a focal depth of ca. ����

2 �m . Thus, this pattern did not interfere with our fibril angle measurements. The ����

depth of the "fingerprint" pattern suggests that it is the result of a regular, directional ����

arrangement of the fine cuticular fibrils in the outer "branching" zone of the arolium ��	�

cuticle [7]. Higher-resolution electron microscopy imaging of this zone is required to ��
�

test this hypothesis. ����

4 Discussion  ����

Our study shows that in vivo measurements and 3D-reconstruction of the fibrils are ����

possible with standard UV fluorescence microscopy. The fibril angles measured using ����

the presented in vivo technique varied between 55.19 and 78.62°. These results are in ����

good agreement with 2D SEM images of freeze-fractures of fixed adhesive organs ����

(see Figure 2 A and [7,11]). As the weak UV auto-fluorescence of the cuticle required ����

relatively long exposure times (500ms), our recordings were limited to pads in ����

completely static contact and therefore to small pulling forces. Although insect ��	�

adhesive pads can generate some static friction [3,24,25] only very small shear forces ��
�

do not result in any sliding movement over long periods of time. As the friction of ����

insect pads strongly increases with sliding velocity [24] shear forces can be more than ����

ten times larger than this "remaining" friction for faster pulls [3,25]. The fibril angle ����

variation is probably a function of the applied force (acting against spring-like ����

elements tending to return the fibres to their original position). Thus, it is likely that ����

significantly smaller fibril angles will occur for the stronger pulling forces that insects ����

experience under natural conditions. However, studying the fibril angles under such ����

conditions will require methods for statically applying large shear forces to the pad's ����

cuticle.  ��	�

A possible source of error in our fibril angle measurements are image distortions ��
�

resulting from out-of-focus fluorescence. More advanced microscopic techniques ����

such as confocal microscopy would probably improve the accuracy of the ����

measurements. A better image quality would also facilitate the use of automated ����



  

image processing algorithms for fibril tracking, which are preferable in terms of ����

speed. Computer-based image deconvolution can effectively reduce noise and ����

increase the image quality of some selected image stacks. However, computation ����

times of 6-8 hours for a single image stack currently restrict the practical use of this ����

method.  ����

4.1 Larger contact areas coincide with smaller fibril angles ��	�

Our results show that larger contact areas resulting from pulls coincide with smaller ��
�

fibril angles. Even very weak pulls significantly increased the contact area and �	��

decreased the fibril angle. This confirms the validity of our hypothesis that shearing �	��

movements result in changes of the fibril orientation. Can the measured variation �	��

explain the observed change in contact area?  �	��

A simplified model can be used to estimate the effect of the fibrils on the contact area. �	��

If the length L of the fibrils is constant, and the cuticle height h is coupled with the �	��

fibril angle � (0° < � < 90°), the height can be described by  �	��

Lh ⋅= αsin     (2) �	��

Assuming that the volume of the cuticle is constant (A·h = A’·h’), where A' and h' �		�

denote the contact area and height after a pull, respectively, the new contact area A' �	
�

should depend on the change of the fibril angle (from � to �') as �
��

A'= A⋅
sinα
sinα'    (3)

 �
��

So far, no direct experimental support exists for the assumption of constant cuticular �
��

volume. However, the assumption is plausible because soft cuticle is a completely �
��

water-filled material that does not contain air [26] and water is effectively �
��

incompressible at physiological pressures. Thus, a volume change of the cuticle �
��

requires fluid flow into or out of this region of the cuticle, which may be slow as it �
��

has to pass perpendicularly through the outer membrane of the epidermal cells or �
��

laterally through adjacent, relatively thin and dense areas of cuticle. Particularly �
	�

during rapid pad deformations such as those caused by sudden perturbations, the �

�

amount of fluid flow is probably negligible.  ����



  

Equation 3 shows that the observed change of � from 71.26 to 61.44° predicts an ����

increase in contact area of 7.8 %, which is smaller than the observed change of about ����

20 %. This suggests that not only the fibre angle is responsible for the change in ����

adhesive contact area. ����

One possibility is that a pull could slightly rotate the pad, thereby bringing new ����

cuticle area into surface contact on its proximal side. While such a "rolling" ����

movement would have a neutral effect on contact area for a spherical pad, the contact ����

area could increase for other pad shapes such as asymmetrical “bean-like” pads, ��	�

which have a smaller radius of curvature on the distal than on the proximal side. In ��
�

this situation, even small changes of the pad’s orientation could result in ����

overproportional changes in contact area. A “rotation” model could also explain the ����

observed change of the adhesive contact area’s shape.  ����

However, the results of our strain measurements in the adhesive contact zone speak ����

against a simple "rotation" model. Firstly, we found that new contact area is also ����

added at the distal margin of the contact zone. Secondly, the observed contact area ����

increase occurred not only by the addition of new contact area at the pad edge but also ����

by expansion of the adhesive cuticle.  ����

Therefore, a third, related mechanism may apply, where both pad rotation and ��	�

reduction of the fibril angle increase the hydrostatic pressure in the cuticle, tending to ��
�

expand the contact area in all directions.  ����

This prediction in turn contrasts with our finding that pulls significantly increased the ����

“width” of the contact area but left the proximal-distal “length” virtually unchanged. ����

The dominance of lateral over proximal-distal expansion was also evident from our ����

strain measurements within the contact area. It therefore appears that despite a ����

tendency to expand in all directions, the adhesive cuticle responds to pulls by ����

elongating only slightly along the pull but strongly in the lateral direction. This ����

behaviour may be based on the cuticle's ultrastructure. Lateral expansion may involve ����

a lateral "fanning out" of the rods. While perfectly perpendicular rods should fan out ��	�

equally well in the proximal-distal and the lateral directions, proximal-distal fanning ��
�

may become constrained for smaller rod (fibril) angles so that lateral expansion ����

should dominate. Moreover, the folding pattern in the adhesive contact zone (see ����



  

Figure 5 A) might also play a role. As these folds run mainly along the proximal-����

distal axis, the cuticle and epicuticle may be more extensible in the lateral direction. ����

4.2 A proximal pull leads to a lateral expansion of the contact area ����

Our results show that the pad cuticle responds to a proximal-distal pull with a lateral ����

expansion. This unusual behaviour suggests that smooth pad cuticle is a material with ����

a negative Poisson's ratio. For a material, the Poisson's ratio is the negative of the ratio ����

of lateral to axial strain under uniaxial extension or compression. Negative Poisson's ��	�

ratios have been observed for some anisotropic crystals and materials comprised of ��
�

fibrous networks [27-29]. ����

The dynamic control of adhesive contact area investigated here for stick insects is ����

analogous to the passive increase of adhesive contact area in ants [13]. As in ants, a ����

passive, purely mechanical “preflex” reaction may allow insects to respond instantly ����

to perturbations tending to detach them from the substrate. Besides the advantage of a ����

rapid contact area increase for unexpected mechanical perturbations, a change of the ����

fibril angle could also assist a controlled peeling movement of the proximal rim of the ����

contact zone. The stress distribution at the peeling edge is determined by the bending ����

stiffness of the cuticle [30]. Reducing the fibril angle by a pull may result in a smaller ��	�

proximal-distal distance between the single fibres, likely increasing the bending ��
�

stiffness of the adhesive pad’s cuticle. This would prevent peeling and thereby ����

increase adhesive forces. Conversely, pushing movements may produce more ����

perpendicularly orientated fibrils, making the cuticle more easily deformable and ����

peelable and allowing easy detachment during locomotion.  ����

While almost all previous attempts to produce biomimetic adhesives have focused on ����

the gecko's fibrillar adhesive system, the potential of smooth pads as a source of ����

inspiration is still untapped. Fibrous auxetic (negative Poisson ratio) structures might ����

provide a new mechanism for adhesives to achieve rapid attachment and detachment ����

via shear forces [12]. Application of this principle in synthetic adhesive pads may ��	�

help the development of controllable adhesives and climbing robots. ��
�
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Figure 1: Hypothetical model for the passive contact area increase of smooth pads. A) ��
�

Schematic drawing indicating the orientation of the fibrils within a fixed adhesive pad ����

and the orientation of the axes used in this study. The lateral y-axis is orientated ����

perpendicular to the image plane. B) A pulling movement of the pad on the surface ����

may reduce the angle � of the cuticular fibres. Assuming a constant length of the ����

fibrils, reducing the fibril angle will reduce the structure’s height (h). If the structure’s ����

height decreases, the average spacing between the fibres ds (measured within the x-z-����

plane) will be reduced, too. This “compression” might increase the effective elastic ����

modulus of the adhesive pad. C) If the volume of the fibrous structure is constant (a × ����

b × h), decreasing its height to h’ should enlarge the contact area by a factor of h/h'.  ��	�

Figure 2: A) SEM image of a freeze fractured C. morosus arolium showing the ��
�

branching fibrils within the outer cuticle layer. B) Reconstructed fibril structure from ����

UV fluorescence image stacks of an adhesive pad in “normal” contact (C. morosus, ����

contact area at top). C) After a proximal pull the angle of the fibres to the cuticle ����

surface decreased.  ����

Video 1: Field images illustrating the results of automated tracking of a fibrous ����

structure in the contact zone from C. morosus from selected frames over a focal depth ����

of 9.7 �m. The arrows show the primary vector length and orientation for each point ����

of the frame’s analysis grid (proximal-distal from left to right). The depth indicated is ����

measured from the contact area. ��	�

Video 2: Automatically reconstructed apparent fibril “movement” of 4.9 �m over a ��
�

focal depth of 9.7 �m for the image sequence of video 1, resulting in a fibril angle of ����

63.2°. The square represents the tracked movement of the whole pattern. ����

Figure 3: A) Fibril angles of one adhesive pad (C. morosus) before and after a ����

proximal pull of 50 �m. The two groups are significantly different (paired t-test, ����

t9=7.43, P<0.001). B) After the pull the contact areas of the adhesive pad were ����

significantly larger (paired t-test, t9=-11.40, P<0.001).  ����

Figure 4: Change in contact area proportions of C. morosus after a proximal pull of ����

ca. 50 �m. A) Whilst the proximal-distal “length” of the adhesive pads did not ����



  

significantly increase after a pull, the lateral “width” did (for details see text). B) After ��	�

the pull the aspect ratio (width/length) of the contact area increased significantly.  ��
�

Figure 5: Strain measurements in the adhesive contact zone of C. morosus. A) ����

Interference reflexion microscopy images of corresponding area of the contact zone ����

after a push (left) and a pull (right). Lines mark length measurements between ����

corresponding landmarks on the pad to calculate proximal-distal and lateral strain. B) ����

Summary of proximal-distal and lateral strain measurements at different positions of ����

the pad (left, middle and right region of the contact area). See text for the definition of ����

pulling strain. ����

Figure 6: A) Interference reflexion microscopy image of C. morosus arolium in ����

contact with a mica surface (illuminating numerical aperture: 0.27, �=546 nm, ��	�

brightness and contrast enhanced). B) Fourier filtering of the image reveals a regular, ��
�

fingerprint-like micro-pattern with a proximal-distal periodicity of 414.4 ± 33 nm �	��

(mean ± s.e., n=14). The proximal part of the arolium is on the right side of the �	��

images. �	��
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