
Persistent current and Drude weight for the one-dimensional Hubbard model from current

lattice density functional theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys.: Condens. Matter 24 055602

(http://iopscience.iop.org/0953-8984/24/5/055602)

Download details:

IP Address: 134.226.252.155

The article was downloaded on 07/03/2012 at 16:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/24/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 24 (2012) 099601 (1pp) doi:10.1088/0953-8984/24/9/099601

Erratum: Persistent current and Drude
weight for the one-dimensional Hubbard
model from current lattice density
functional theory
2012 J. Phys.: Condens. Matter 24 055602

A Akande and S Sanvito

School of Physics and CRANN, Trinity College, Dublin 2, Ireland

E-mail: akandea@tcd.ie

Received 31 January 2012
Published 13 February 2012
Online at stacks.iop.org/JPhysCM/24/099601

Figure 5 of the original article should have been replaced with
figure 5 below.

Figure 5. Drude coefficient Dc as a function of the interaction
strength U/t (top panel) and of the number of sites in the ring, L
(bottom panel). All the calculations are for quarter filling and the
results in the top panel are for a 60-site ring. In the figure we
compare CLDFT results (dotted black lines) with those obtained by
the BA technique in the thermodynamic limit (dashed red lines).
Calculations in the lower panel are for U/t = 2.
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Abstract
The Bethe ansatz local density approximation (LDA) to lattice density functional theory
(LDFT) for the one-dimensional repulsive Hubbard model is extended to current-LDFT
(CLDFT). The transport properties of mesoscopic Hubbard rings threaded by a magnetic flux
are then systematically investigated by this scheme. In particular we present calculations of
ground state energies, persistent currents and Drude weights for both a repulsive homogeneous
and a single impurity Hubbard model. Our results for the ground state energies in the metallic
phase compare favorably well with those obtained with numerically accurate many-body
techniques. Also the dependence of the persistent currents on the Coulomb and the impurity
interaction strength, and on the ring size are all well captured by LDA-CLDFT. Our study
demonstrates the value of CLDFT in describing the transport properties of one-dimensional
correlated electron systems. As its computational overheads are rather modest, we propose this
method as a tool for studying problems where both disorder and interaction are present.

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum dots, routinely made by electrostatically confining
a two-dimensional electron gas [1], have been extensively
studied in recent years [2]. The interest in these low-
dimensional structures stems from the fact that their
physics is controlled by quantum effects. Furthermore, while
sharing many similarities with real atoms, quantum dots
manifest intriguing low-energy quantum phenomena, which
are specific to them. This is because their properties can be
influenced by external factors such as the geometry or the
shape of the confining potential and the application of external
fields. Clearly some of these features are not accessible in
real atoms. Research in the past has been motivated by the
possibility of developing novel quantum dot based devices
in both the fields of quantum cryptography/computing [3]
and spintronics [4], as well as by the simple curiosity of
exploring the properties of many-electron systems in reduced
dimensions.

Quantum rings represent a particular class of quantum
dots [5, 6], where electrons are confined in circular regions
[7, 8]. The circular geometry can sustain an electrical current,
which in turn can be induced by threading a magnetic flux
across the ring itself. Such a magnetic flux produces exciting
effects such as Aharonov–Bohm (AB) oscillations [9, 10]
and persistent currents [11], effects that have been earlier
anticipated [12–14]. In one dimension (1D) the persistent
currents have been thoroughly studied [11, 15–20]. These,
as well as many other physical properties of the ring, are a
periodic function of the magnetic flux quantum,80 = hc/e (h
is Planck’s constant, c the speed of light and e the electron’s
charge).

A number of earlier theoretical studies [16–20] on
persistent currents focused on unveiling the role of electron
correlations and disorder over the electron transport. This line
of research is inspired by the fact that electronic correlation in
1D always leads to non-fermionic low-energy quasi-particle
excitations. In fact, even in the presence of weak interaction,
1D fermions behave differently from a Fermi liquid and their
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ground state is generally referred to as a Luttinger liquid. This
possesses specific collective excitations [21].

There are two theoretical frameworks commonly used
to study finite 1D rings [22]. The first is based on the
continuum model, where electrons move in a uniform
neutralizing positive background and interact via Coulomb
repulsion, e2/4πε0r (ε0 is the vacuum permittivity, e the
electron charge, r the distance between two electrons). The
second framework is populated by lattice models, where
the electronic structure is written in a tight-binding form
and the electron–electron interaction is commonly described
at the level of the Hubbard Hamiltonian [23, 24]. In
both frameworks exact diagonalization (ED) has been the
preferential solving strategy for small systems (small number
of sites and electrons) [19, 25]. Additional methods used
to study quantum rings over lattice models include the
Bethe ansatz (BA) [26, 27], renormalization group [28] and
density matrix renormalization group [29, 30]. In contrast,
the continuum model has been tackled with self-consistent
Hartree–Fock techniques [31], bosonization schemes [32],
conformal field theory [33], current-spin density functional
theory [34] and quantum Monte Carlo methods [35].

Many of the methods developed for solving lattice models
for interacting electrons suffer from a number of intrinsic
limitations connected either to their large computational
overheads or to the need of using a drastically contracted
Hilbert space. Density functional theory (DFT) can be
a natural solution to these limitations. DFT is a highly
efficient and precisely formulated method [36, 37], originally
developed for the Coulomb interaction (this is commonly
known as ab initio DFT) and then extended to lattice
models [38–40]. Lattice DFT (LDFT) is based on the
rigorously proved statement that the ground state of an
interacting electron system is a universal functional of
the local site occupation. The functional, as in ab initio
DFT, is unknown explicitly. However, all the many-body
contributions to the total energy can be incorporated in a
single term, the exchange and correlation (XC) energy, for
which a hierarchy of approximations can be constructed.

The most commonly used approximation for the XC
energy in ab initio DFT is probably the local density
approximation (LDA) [37, 41], where the exact (unknown)
XC energy is replaced by that of the homogeneous electron
gas. The theory is then expected to work best in situations
close to those described by the reference system, i.e. close
to the homogeneous electron gas. Since in a 1D Fermi
liquid theory breaks down, the homogeneous electron gas is
no longer a good reference. For the homogeneous Hubbard
model it was then proposed [40, 42] to use instead the BA
construction of Lieb and Wu [27]. Such a scheme was then
applied successfully to a wide range of situations [43–49]
and more recently it has been extended to time-dependent
problems [48, 50–52] and to the 3D Hubbard model [53].

LDFT can be further extended to include the action
of a vector potential, i.e. it can be used to tackle
problems where a magnetic flux is relevant. This effectively
corresponds to the construction of current-LDFT (CLDFT).
Such an extension of LDFT was proposed recently for

one-dimensional spinless fermions with nearest-neighbor
interaction [54]. Furthermore, very recently Tokatly has
presented a rigorous formulation of time-dependent current
DFT (TDCDFT) on a lattice [55] similar to an earlier work
based on power series construction [56].

In the present work, we extend the CLDFT construction
of [54] to the repulsive Hubbard model. The newly proposed
functional is then used to investigate total energies, persistent
currents and Drude weights of a mesoscopic ring threaded by
a magnetic flux. These quantities are compared with the same
calculated by exact methods, namely by exact diagonalization
for small systems and by asymptotically exact expressions for
large ones. Such a benchmark exercise is one of the main
contributions of this work, which determines the level of
accuracy of CLDFT in describing electron transport problems.
In addition we investigate the scaling properties of both the
persistent currents and the Drude weights with the ring length
and the interaction strength. In particular we are able to
propose a complete scaling law for both the persistent current
and the Drude weight as a function of ring size and interaction
strength in the metallic limit of the Hubbard model.

Notably these tests return us a functional capable of
describing at the quantitative level the Hubbard model in
a magnetic field in the metallic limit. Considering the
fact that our CLDFT scales cubically with the number
of atomic sites (the scaling can be made linear by using
more sophisticated matrix diagonalization techniques), in
contrast with the exponential scaling of many-body numerical
schemes, CLDFT appears to be an intriguing option for
investigating problems involving large ensemble averages.
Electron conduction in disorder systems or in the presence of
electron–phonon coupling appears as two natural choices and
they will be explored in the future.

The paper is organized as follows. Section 2 reviews
the theoretical foundations leading to the construction of
CLDFT and to its LDA. Then we present our results for
both homogeneous and defective rings, highlighting the main
capabilities and limitations of our scheme, and finally we
conclude.

2. Theoretical formulation of current lattice DFT

Current DFT (CDFT) is a generalization of the DFT
formalism to Hamiltonians that include an external vector
potential, i.e. it is a generalization of the theory to
external magnetic fields [57]. In this case the theory is
constructed over two fundamental quantities, namely the
electron density, n, and the paramagnetic current density, Ejp.
The Hohenberg–Kohn theorem [36] is thus expanded to the
statement that the ground state n andEjp uniquely determine the
ground state wavefunction and consequently the expectation
values of all the operators [58, 59]. Equally important is
the fact that the standard Kohn–Sham construction can also
be employed for CDFT, so that the many-body problem
can be mapped onto a fictitious single-particle one, with
the two sharing the same ground state n and Ejp [58, 59].
Practically one then needs to solve self-consistently a system
of single-particle equations. Also for CDFT all the unknowns
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of the theory are incorporated in the XC energy, which then
needs to be approximated.

The scope of this section is to describe how ab initio
CDFT has been translated to lattice models and how a suitable
approximation for the Hubbard Hamiltonian in 1D can be
constructed. Note that a similar formulation can be elaborated
also in higher dimensions, although the lack of exact results
makes the construction of suitable approximations much
more problematic as one depends only on numerical analysis
for small systems. Our description follows closely the one
previously given by Dzierzawa et al [54]. In general a
vector potential, EA, enters into a lattice model via Peierls
substitution [60, 61], where the matrix elements of the
EA-dependent Hamiltonian, H(Er, Ep + e

c
EA), can be written in

terms of those for EA = 0 as

〈ER
′

|H
(
Er, Ep+

e

c
EA
)
|ER〉 = 〈ER

′

|H(Er, Ep)|ER〉e−
ie
h̄c

∫ ER′
ER
EA·dEs
, (1)

where c is the speed of light and |ER〉 is the generic orbital
located at the position ER and belonging to the basis set
(here assumed orthogonal) used to construct the tight-binding
Hamiltonian.

When the Peierls substitution is applied to the
construction leading to the 1D Hubbard model the only term
in the Hamiltonian that gets modified is the kinetic energy T̂ .
This takes the form

T̂ = −t
L∑

σ,l=1

(e−i8σ l/Lĉ†
σ l+1ĉσ l + hc), (2)

where we have considered a system comprised of L atomic
sites (note that the ring boundary conditions imply L+1 = 1).
In equation (2), ĉ†

σ l (ĉσ l) is the creation (annihilation) operator
for an electron of spin σ (σ =↑,↓) at the l-site, t is the
hopping integral and 8σ l is the phase associated with the lth
bond, which effectively describes the action of EA. Here hc
denotes the hermitian conjugate. The remaining terms in the
Hamiltonian are unchanged so that the 1D Hubbard model in
the presence of a vector potential is defined by

Ĥ8
Hubbard = T̂ + Û +

L∑
l

vext
l n̂l, (3)

where {vext
l } is the external potential (vext

l is the on-site
energy of the l-site), while the Coulomb repulsion term is
Û = U

∑L
l=1n̂↑ln̂↓l, with U being the Coulomb repulsion

energy and n̂σ l = ĉ†
σ lĉσ l. Throughout this work we always

consider the diamagnetic (non-spin-polarized) case so that
8↑l = 8↓l = 8l and n↑l = n↓l = nl.

The first step in the construction of a CLDFT is the
formulation of the problem in a functional form. The basic
variables of the theory are the site occupation nl = 〈9|n̂l|9〉

and bond paramagnetic current, jl = 〈9|ĵl|9〉, where |9〉
is the many-body wavefunction and the bond paramagnetic
current operator is defined as

ĵl = −it(e−i8l/Lĉ†
σ l+1ĉσ l − hc). (4)

In complete analogy to ab initio CDFT we can write the total
energy, E , of the Hamiltonian (3) as a functional of the local
external potentials and phases

E = F[nl, jl] +
∑

l

vext
l nl +

∑
l

8ljl, (5)

so that

nl = 〈n̂l〉 =
∂E
∂vext

l
, jl = 〈ĵl〉 =

∂E
∂8l

. (6)

F[nl, jl] is a universal functional, in the sense that it does
not depend on the external potential vext, although note that
one has a different F[nl, jl] for every U/t. The functional
derivatives of F[nl, jl] with respect to {nl} and {jl} satisfy the
following two equations

vext
l = −

∂F
∂nl

8l = −
∂F
∂jl
. (7)

Note that equations (5) through (7) follow directly from the
properties of the Legendre transformation.

In order to make the theory practical one has now to
introduce the auxiliary single-particle Kohn–Sham system.
This is described by a single-particle Hamiltonian, Ĥs, whose
ground state site occupations and bond paramagnetic currents
are identical to those of the interacting system (described by
equation (3)). Ĥs reads

Ĥs
= T̂s

+

L∑
l

vs
l n̂l, (8)

where T̂s
= −t

∑L−1
σ,l=1(e

−i8s
l /Lĉ†

σ l+1ĉσ l + hc) and the
associated local effective potentials and phases are vs

l and 8s
l

respectively. The single-particle Schrödinger equation is then

Ĥs
|9s
α〉 = εα|9

s
α〉, (9)

and the site occupation is defined as

ns
l =

∑
α

fα〈9
s
α|n̂l|9

s
α〉, (10)

where fα is the occupation number. An analogous expression
can be written for jsl .

The energy functional associated with the Kohn–Sham
system, F s, can be constructed by performing again a
Legendre transformation

F s
= E s

−

∑
l

vs
l n

s
l −

∑
l

8s
l j

s
l , (11)

where E s is the total energy of the single-particle system and
the following two equations are valid

vs
l = −

∂F s

∂ns
l
, 8s

l = −
∂F s

∂jsl
. (12)

The crucial point is that in the ground state the real and
the Kohn–Sham systems share the same site occupation and
paramagnetic current, i.e. nl = ns

l and jl = jsl .
Thus one is now in the position of defining the XC

energy, E xc, as usual, i.e. as the difference between F for
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the interacting and the Kohn–Sham systems after the classical
Hartree energy E H has also been subtracted,

E xc
[nl, jl] = F[nl, jl] − F s

[nl, jl] − E H
[nl]. (13)

Note that for all the functionals in equation (13) we took the
short notation {nl} → nl and {jl} → jl, i.e. the functionals
depend on all the on-site occupations and bond paramagnetic
currents. The single-particle effective potentials and phases
can now be defined. In fact by taking the functional derivative
of equation (13) with respect to nl and jl and by using the
equations (7) and (12) one obtains

vs
l = vext

l + vH
l + vxc

l , 8s
l = 8l +8

xc
l , (14)

where

vxc
l =

∂E xc
l

∂nl
, 8xc

l =
∂E xc

l

∂jl
, (15)

and vH
l = ∂E H

l /∂nl (=Unl/2) is the Hartree potential.
Finally E xc can be re-written in terms of the expectation

values of the original Hamiltonian. In fact by substituting the
functional forms of F and F s into the equation (13),

E xc
= E − E s

+

∑
l

(vs
l − vext

l )nl

+

∑
l

(8s
l −8l)jl − E H

[nl], (16)

by using the equations (3) and (8),∑
l

(vs
l − vext

l )nl = E s
− E − 〈9s

|T̂s
|9s
〉 + 〈9|T̂ + Û|9〉,

(17)

and again by substituting equation (17) into (16), one obtains
a close expression for the XC energy

E xc
= 〈9|T̂ + Û|9〉 − 〈9s

|T̂s
|9s
〉

+

∑
l

(8s
l −8l)jl − E H

[nl]. (18)

Once the theory is formally established the remaining
task is that of finding an appropriate approximation for E xc. As
for the case of standard LDFT [42, 43], the strategy here is that
of considering the BA solution for the homogeneous limit of
Ĥ8

Hubbard (this is defined in equation (3) by setting vl = v and
8l = 8) and then of taking its local density approximation
n→ nl, 8→ 8l [54], i.e.

E xc
LDA[nl, jl] =

∑
l

exc
[nl, jl], (19)

where exc
[n, j] = E xc

[n, j]/L is the XC energy density
(per site) of the homogeneous system. The first term of
the equation (18) can be calculated exactly using the BA
procedure [62]. This provides the ground state energy as a
function of n and 8, so that one still needs to re-express it
in terms of n and j. However, the phase variable 8 can be
eliminated from the ground state energy by using

j =
∂E(n,8)
∂8

. (20)

Thus, finally one can explicitly write exc(n, j) (the full
derivation for the 1D Hubbard Hamiltonian is presented in the
appendix)

exc(n, j) = exc(n, 0)+ 1
23

xc(n)j2, (21)

where

exc(n, 0) =
E BA(n, 0)− E 0(n, 0)− E H(n)

L
,

3xc(n) =
1
2

[
1

D0
c(n)
−

1
DBA

c (n)

]
.

(22)

In the equations above E 0(n, 0) and D0
c(n) are respectively

the non-interacting ground state energy and charge stiffness,
while E BA(n, 0) and DBA

c (n) are the same quantities for the
interacting case as calculated from the BA. Finally, the XC
contributions to the Kohn–Sham potential can be obtained
by a simple functional derivative (in this case by a simple
derivative) of the exchange and correlation energy density
with respect to the fundamental variables n and j, i.e. they are

vxc(n, j) =
∂exc(n, j)

∂n
= vxc

1 (n, 0)+
1
2

vxc
2 (n)j

2,

8xc(n, j) =
∂exc(n, j)

∂j
= 3xc(n)j,

(23)

where

vxc
1 (n, 0) =

∂exc(n, 0)
∂n

, vxc
2 (n) =

∂3xc(n)

∂n
. (24)

Then, by taking the LDA one obtains

vxc
BALDA(nl, jl) = vxc(n, j)|n→nl,j→jl

8xc
BALDA(nl, jl) = 3

xc(n)j|n→nl,j→jl ,
(25)

where BALDA, as usual, stands for Bethe ansatz LDA.
In the panels of figure 1 we present exc(n, 0), 3xc(n),

vxc
1 (n, 0) and vxc

2 (n) as a function of the electron density, n, for
different interaction strengths U/t. As in the case of standard
LDFT also for CLDFT there is a divergence in the n-derivative
of both exc(n, 0) and 3xc(n) at half-filling (n = 1), which
results in a discontinuity of both vxc

1 (n, 0) and vxc
2 (n). Such a

discontinuity arises in correspondence of the metal–insulator
transition present in the 1D Hubbard model for finite U/t.
Importantly in the case of 3xc(n) the divergence is also in
3xc(n) itself.

The solution of the Kohn–Sham problem proceeds as
follows. First an initial guess for the site occupations is used to
construct the initial local paramagnetic current density. Then,
the functional derivatives of equations (25) are evaluated
at these given n and j so that the Kohn–Sham potential
is constructed. The Kohn–Sham equations are then solved
to obtain the new set of Kohn–Sham orbitals from which
the new orbital occupations and bond paramagnetic currents
are calculated (by using equation (10)). The procedure is
then repeated until self-consistency is reached, i.e. until the
potentials (or the densities) at two consecutive iterations vary
below a certain threshold. After convergence is achieved the
total energy for the interacting system is calculated from

E =
∑
α

fαεα + E xc
[nl, jl] − E H

[nl] −
∑

l

vxc
l nl, (26)
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Figure 1. The XC energy density (per site) and potential for a homogeneous 1D Hubbard ring threaded by a magnetic flux as a function of
the electron density and for different values of interaction strength U/t: (a) exc(n, 0), (b) 3xc(n), (c) vxc

1 (n, 0) and (d) vxc
2 (n).

where the first term is the sum of single-particle energies and
the other terms are the so-called double counting corrections.

3. Results and discussion

We now discuss how CLDFT performs in describing both
the energetics and the transport properties of 1D Hubbard
rings in the presence of a magnetic flux. For small rings our
results will be compared with those obtained by diagonalizing
exactly the Hamiltonian of equation (3), while CLDFT for
large rings will be compared with the BA solution. First we
will consider homogeneous rings and then we will explore
the single impurity problem. Note that this analysis, exploring
both small sizes and the approach to the thermodynamic limit,
is crucial for establishing the universality of our constructed
functional. It is very much in the spirit of testing the LDA
in standard ab initio DFT, where the theory is exact for the
homogeneous gas, but extrapolated for situations where the
density is not homogeneous, e.g. molecules, atoms, surfaces
etc.

3.1. Homogeneous rings: general properties

In this section we focus our attention on discussing the general
features of CLDFT applied to homogeneous Hubbard rings
threatened by a magnetic flux, i.e. on the performance of
CLDFT in describing the Aharonov–Bohm effect. We start
our analysis by comparing the CLDFT results with those
obtained by ED. Since ED is numerically intensive such a
comparison is limited to small systems.

In figure 2 we present the first low-lying energy levels, E ,
calculated by ED as a function of the magnetic flux, 8, for
a small 12-site ring at quarter filling (n = 1/2). In particular
we present results for the non-interacting case (panel (a)) and
for the interacting one at three different interaction strengths:

(b) U/t = 2, (c) U/t = 4 and (d) U/t = 6. Exact results (ED)
are in black, while those obtained with CLDFT in red. In
general the ground state energy is minimized at 8 = 0 when
the number of electrons is N = 4m + 2 and at 8 = π for
N = 4m, with m being an integer [63]. Here we consider the
case N = 4m+ 2 where the ground state is a singlet [64].

For non-interacting electrons, U/t = 0, the total energy
of the singlet ground state is a parabolic function of 8. Also
the various excited states have a parabolic dependence on 8
and simply correspond to single-particle levels with different
wavevectors. As the electron–electron interaction is turned
on the non-interacting spectrum gets modified in two ways.
Firstly there is a second branch in the ground state energy
as a function of 8 appearing at around 8 = ±π (see the
blue arrows in panel (b) of figure 2). This originates from the
degeneracy lifting between the single and the triplet solution
at 8 = ±π , with the triplet being pushed down in energy and
becoming the ground state. The 8 region where the ground
state is a triplet widens as the interaction strengths increases.
The second effect is the expected increase of the absolute
value of the ground state total energy as U/t increases.

Since CLDFT is a ground state theory, it provides access
only to the ground state energy, E . This is calculated next and
plotted in figure 2 in the interval −π ≤ 8 ≤ π for different
U/t. As one can clearly see from the figure, the performance
of CLDFT is rather remarkable, to a point that the CLDFT
energy is practically identical to that calculated with ED.
However, CLDFT completely misses the cusps in the E(8)
profile arising from the crossover between the singlet and the
triplet state. Level crossing invalidates the BA approximation,
leading to the interacting XC energy (see equations (37) in the
appendix) and so failures are expected [65]. This observation
is in agreement with earlier studies [22] in which the inability
of CDFT to reproduce level crossing was already noted. Also
note that our formulation is non-spin polarized, so that triplet
states cannot be described. This unfortunately is a present
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Figure 2. The low-lying energy spectrum, E , of a 12-site ring at quarter filling (n = 1/2) as a function of the magnetic flux, 8, and
calculated for different interaction strengths U/t. The black dotted lines represent ED results while the dashed red ones are for CLDFT.
Note that for the non-interacting case, U/t = 0, in panel (a) there is no difference between CLDFT and ED. Panels (b)–(d) are for the
interacting case at different interaction strengths: (b) U/t = 2, (c) U/t = 4 and (d) U/t = 6. In panel (b) the blue arrows indicate the region
where the triplet state becomes the ground state.

limitation of the method. Here we just wish to point out that
the formulation of a spin-polarized LDFT is in its infancy
even for the case where no vector potential is included [66].
With all this in mind, as long as the singlet remains the
ground state, the agreement between CLDFT and ED results
is remarkable, even if this small ring is rather far from being
a good approximation of the thermodynamic limit (the BA
solution) upon which the functional has been constructed.

Having calculated the total energies with both ED and
CLDFT, the corresponding persistent currents, j, can be
obtained by taking the numerical derivative of E(8) with
respect to8. In figure 3 we show results for the 12-site ring at
quarter filling (n = 1/2), whose total energy was presented
in figure 2. In particular we plot j only over the period
−π < 8 < π , since all the quantities are 2π periodic. The
figure confirms the linearity of the persistent currents with the
magnetic flux for all the interaction strengths considered. The
same is also true for other fillings for the 12-site ring (not
presented here) away from half-filling. We also observe that
the magnitude of persistent currents reduces with increasing
U/t for both ED and CLDFT and that the precise dependence
of j on U/t is different for different fillings. This is in
good agreement with previous calculations based on the BA
technique [67].

ED is computationally demanding and cannot be
performed beyond a certain system size. For this reason,
in order to benchmark CLDFT for larger rings, we have
calculated the ground state energy with the BA method.
An example of these calculations is presented in figure 4,
where once again we show E(8) for L = 20, U/t = 4 and
different numbers of electrons. Also in this case the agreement
between the BA results and those obtained with CLDFT is
remarkably good as long as the ground state is a singlet.
Interestingly we note that the agreement is better for low

Figure 3. Persistent current profile, j, for a 12-site ring at quarter
filling (n = 1/2) obtained with both ED and CLDFT for different
U/t. The full lines are the j calculated with ED while the dashed
ones are for CLDFT.

filling but it deteriorates as one approaches the half-filling
case (N = 20 in this case). This is somehow expected given
the discontinuity of 3xc and of the derivative of exc at n = 1
(see figure 1), leading to the Mott transition. The presence
of these discontinuities, although qualitatively correct, poses
numerical problems and losses in accuracy.

The final quantity we wish to consider is the charge
stiffness or Drude weight, Dc, defined as

Dc =
L

2
∂2 E(n,8)
∂82

∣∣∣∣
8=0

. (27)

This is essentially the slope of the persistent current as
a function of 8 calculated at 8 = 0 and defines the
magnitude of the real part of the optical conductivity in the
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Figure 4. Ground state energy, E(8), as a function of the magnetic flux, 8, calculated with both the BA technique (dotted black line) and
CLDFT (dashed red line). Calculations are carried out for L = 20, U/t = 4 and different numbers of electrons: (a) N = 2 (n = 1/10),
(b) N = 6 (n = 0.3), (c) N = 10 (n = 1/2) and (d) N = 14 (n = 0.7).

long-wavelength limit (see appendix for more details). Dc
determines both qualitatively and quantitatively the transport
properties of the ring. Importantly in the limit of large rings
it exponentially vanishes for insulators, while it saturates to a
finite value for metals. Many studies have been devolved to
calculating Dc for interacting systems. Römer and Punnoose
have studied Dc for finite Hubbard rings using an iterative BA
technique [65]. Eckern et al explored the relation between Dc
and the so-called phase sensitivity, 1E , for spinless fermions.
1E is the difference in the total energy calculated at 8 = 0
(periodic ground state) and that at8 = π (antiperiodic ground
state) [68, 69]. A similar approach has been earlier used
to study the effect of disorder on persistent current for the
Hubbard model at half-filling [70]. Recently a density matrix
renormalization group algorithm has been developed to deal
with complex Hamiltonian matrices and used to calculate Dc
for spinless fermions [30].

Since the agreement between CLDFT and ED is proved
for small rings (the slopes of the persistent currents as a
function of 8 calculated with CLDFT and ED are essentially
identical in figure 3) we concentrate here on a larger system,
namely a homogeneous 60-site ring at quarter filling. Our
results for the Drude weight as a function of U/t are presented
in figure 5. Again the CLDFT data are compared with those
calculated with the BA in the thermodynamic limit (L →
∞) and the agreement is rather satisfactory. We note that,
as for the ground state energy, also for the Drude weight
the CLDFT seems to perform less well as U/t increases,
i.e. as the interaction strength becomes large. Then in the
lower panel of figure 5 we illustrate the scaling properties of
Dc as a function of the number of sites in the ring, L (we
consider quarter filling and U/t = 2). Clearly Dc does not
vanish at any lengths demonstrating that the system remains
metallic. Furthermore it approaches a constant value already
for L > 40. In the picture we also report the asymptotic value
predicted by the BA in the thermodynamic limit L→∞ for

Figure 5. Drude coefficient Dc as a function of the interaction
strength U/t (top panel) and of the number of sites in the ring, L
(bottom panel). All the calculations are for quarter filling and the
results in the top panel are for a 60-site ring. In the figure we
compare CLDFT results (dotted black lines) with those obtained by
the BA technique in the thermodynamic limit (dashed red lines).
Calculations in the lower panel are for U/t = 2.

this set of parameters. We find that the calculated CLDFT
value is only 0.06% larger than the BA one, i.e. it is in quite
remarkable good agreement.
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Figure 6. Persistent current, j, as a function of the number of sites in the ring, L, and for different electron occupations, n: (a) U/t = 2,
(b) U/t = 4. Results are obtained with both the exact BA technique and CLDFT. In the figure the persistent currents are calculated at
8 = π/2, i.e. j = j(π/2).

3.2. Scaling properties

Next we take a more careful look at the scaling properties of
the persistent currents and the Drude weights as a function
of both the ring size and the interaction strength. It is well
known that j is strongly size dependent, since it originates
from electron coherence across the entire ring [30]. For a
perfect metal one expect j to scale as 1/L [25]. In figure 6
the value of the persistent currents as a function of the ring
size are presented for different electron fillings and for the
two representative interaction strengths of U/t = 2 (a) and
U/t = 4 (b). Calculations are performed with both the exact
BA and CLDFT. As a matter of convention we calculate the
persistent currents at 8 = π/2.

In general we find a monotonic reduction of the persistent
current with L and an overall excellent agreement between
the BA and the CLDFT results over the entire range of
lengths, occupations and interaction strengths investigated. A
non-linear fit of all the curves of figure 6 returns us an almost
perfect 1/L dependence of j with no appreciable deviations at
any n or U/t. This indicates a full metallic response of the
rings in the region of parameters investigated, thus confirming
previous results obtained with the BA approach [67].

Then we look at the dependence of j and Dc on the
interaction strength. In this case we consider a 60-site ring
and four different electron fillings. In general for small
fluxes one expects j = 2Dc8/L and our numerical results
of figure 7 demonstrate that this is approximately correct
also for our definition of persistent currents (j = j(8 =
π/2)) over the entire U/t range investigated. We find
that both j and Dc monotonically decrease as a function
of the interaction strength, essentially meaning that the
predicted long-wavelength optical conductivity is reduced as
the electron repulsion gets larger.

Also in this case the agreement between the BA and
the CLDFT results is substantially good, although significant
deviations appear in the limit of large U/t and electron filling
approaching half-filling. This again corresponds to a region of
the parameter space where the XC potential approaches the
derivative discontinuity.

Table 1. Exponents for the empirical scaling laws of equation (28)
as fitted from the data of figure 7.

n βCLDFT βBA

0.3 0.036 0.036
0.5 0.085 0.104
0.7 0.151 0.246
0.9 0.202 0.754

It was numerically demonstrated in the past [67] that the
persistent current (and so the Drude weight) at half-filling
follows the scaling relation j ∼ e−U2/ξ , with ξ ∼ 1. However,
to the best of our knowledge, no scaling relation was ever
provided in the metallic case. We have then carried out a fitting
analysis (the fit is limited to values of j and Dc for U/t > 2)
and found that our data can be well represented by the scaling
laws

j = j0 (U/t)
−β , Dc = D0 (U/t)

−γ . (28)

In general and as expected we find β = γ and a quite
significant dependence of the exponents on the filling. In
particular table 1 summarizes our results and demonstrates
that the decay rate of both the persistent currents and the
Drude weights increases as the filling approaches half-filling.
Note that β was extracted for rings containing 60 sites
but the same fit repeated for L = 40 gives almost identical
results. Furthermore the table also quantifies the differences
between the BA and the CLDFT solutions, whose exponents
increasingly differ from each other as the electron filling gets
closer to n = 1 (for n = 0.7 and n = 0.9 we find βBA

∼

2βCLDFT and βBA
∼ 4βCLDFT respectively).

Finally, by combining all the results of this section we
can propose a scaling law for both the persistent currents and
the Drude weights, valid in the metallic limit of the Hubbard
model, i.e. away from half-filling, and in the thermodynamic
limit, i.e. for L� 1. This reads

j =
j0(n)

L

(
U

t

)−β(n)
, (29)
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Figure 7. Persistent current, j, and Drude weight, Dc as a function of interaction strength U/t for a 60-site ring at different fillings. Results
are obtained with both the exact BA technique and CLDFT.

where both the constant j0 and the exponent β are functions
of the electron filling n. Note that an identical equation holds
for Dc.

3.3. Scattering to a single impurity

Having established the success of the BALDA to CLDFT
for the homogeneous case we now move to a more stringent
test of the theory, namely the case of a ring penetrated by
a magnetic flux in the presence of a single impurity. Such
a problem has already received considerable attention in
the past [34, 71, 72]. Note that, as in ab initio DFT, this
is a situation different from the reference system used to
construct the BALDA (since it deals with a nonhomogeneous
system) and therefore one might expect a more pronounced
disagreement with the exact results. As the BA equations are
integrable only for the homogeneous case we now benchmark
our CLDFT results with those obtained by ED. This, however,
limits our analysis to small rings.

The single impurity in the ring is described by simply
adding to the Hamiltonian of equation (3) the term

Ĥimp = εimpn̂i, (30)

where εimp is the modification to the on-site energy at
the impurity site i. The inclusion of an impurity produces
in general electron backscattering so that we expect the
persistent currents to get reduced. In figure 8 we present
the general transport features for this inhomogeneous system.
Calculations have been carried out with CLDFT for a ring
comprising 53 sites and N = 26, U/t = 4. Again the persistent
currents are calculated at 8 = π/2.

Panel (a) shows j as a function of the impurity on-site
energy. As expected from standard scattering theory the
current is reduced as εimp increases, thus creating a potential
barrier. The electron density profile for this situation is
presented in panel (b), where one can clearly observe
an electron depletion at the impurity site and Friedel’s
oscillations around it.

A quantitative assessment of our CLDFT results is
provided in figure 9 where they are compared with those
obtained by exact diagonalization for a 13-site ring close
to quarter filling (N = 6). In particular we present j as a
function of the impurity potential, εimp, for both U/t = 2 and
4. In general we find a rather satisfactory agreement between
CLDFT and the exact results in particular for small εimp
and U/t. As the electron scattering becomes more significant
deviations appear and the quantitative agreement is less good.
Importantly we notice that the ED results systematically
provide a persistent current lower than that calculated with
CLDFT, at least for the values of electron filling investigated
here. This seems to be a consistent trend also present for the
homogeneous case (see figure 7), although the deviations in
that case are less pronounced (for the same electron filling
and interaction strength).

We tentatively conclude that most of the errors in the
impurity problem may be attributed to the errors already
present in the homogeneous case. In addition we may
speculate on the possible source of the additional errors
specific to the scattering situation. Previous calculations for
spinless fermions [54] point to the difficulties in applying the
BALDA when backscattering is significant. Related to this
issue is the fact that the exact XC functional, as in the case
of standard LDFT [49], may be intrinsically nonlocal. This is
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Figure 8. (a) Persistent current, j, as a function of single impurity strength, εimp, obtained from the CLDFT for L = 53, N = 26, U/t = 4
and 8 = π

2 . In (b) we show a typical site density profile for a positive single impurity site potential.

Figure 9. Comparison between the persistent currents calculated with CLDFT (black symbols and dotted line) and by ED (red symbols and
dashed line) for a 13-site ring and N = 6. The js are obtained at 8 = π/2 for two different values of the interaction strength, namely
U/t = 2 (a) and U/t = 4 (b).

an aspect that certainly deserves further investigation. In any
case CLDFT already provides satisfactorily good results for
the scattering problem and this is achieved only at a minor
computational cost. As such CLDFT appears as the ideal
tool for investigating the interplay between electron–electron
interaction and disorder in low-dimensional structures.

4. Conclusion

In this work we have presented an extension of the BALDA
for the one-dimensional Hubbard problem on a ring to
CLDFT. We have then investigated the response of interacting
rings to an external flux both in the homogeneous and
inhomogeneous case, and we have compared our results
with those obtained by numerically exact techniques. For the
homogeneous case we have been able to extract a new scaling
law as a function of chain length and interaction strength for
both the persistent currents and the Drude weights at various
electron fillings in the metallic limit.

In general we have found that CLDFT performs rather
well in calculating both the persistent currents and the Drude
weights in the homogeneous case. Furthermore a similar level
of accuracy is transferred to the impurity problem. With these
results in hand we propose to use CLDFT in the study of
AB rings where the combined effect of electron–electron

interaction and disorder can be addressed for large rings,
so that a numerical evaluation of the various scaling laws
proposed in the past can be accurately carried out.
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Appendix. Local density approximation for the
CLDFT

We use the BA solution for the homogeneous part of the
Ĥ8

U (equation (3)) to estimate the XC energy. Then the local
approximation is taken,

E xc
LDA[nl, jl] =

∑
l

exc
[nl, jl]. (31)

Here exc(=
E xc
[n,j]
L ) is the XC energy per site for the

homogeneous system, which is provided in equation (18). The
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first term of the equation (18) can be calculated exactly using
the BA procedures [62] to obtain the ground state energy as
a function of n and 8. Then the phase variable 8 can be
eliminated from the ground state energy to contain the current
via

j =
∂E(n,8)
∂8

. (32)

The complete flux dependence of the ground state energy
for the Mott insulator phase (n = 1) in the thermodynamic
limit has been shown to be [64]

E(n,8)− E(n, 0) =
2Dc(n)

L
(1− cos8), (33)

while away from half-filling and L→∞ this is

E(n,8)− E(n, 0) =
Dc(n)

L
82. (34)

Here Dc(n) is the charge stiffness (Drude weight) defined as

Dc =
L

2
∂2 E(n,8)
∂82

∣∣∣∣
8=0

. (35)

In physical terms the Drude weight Dc is the real part of the
optical conductivity σ1(w) in the long-wavelength limit [64],

σ1(w) = 2πDcδ(w)+ σ
reg
1 (w), (36)

where we took h̄ = e = c = 1. If we denote E BA(nBA,8BA)

and E 0(n0,80) respectively as the ground state energy for
the interacting system (first term in equation (18)) and for the
non-interacting one (second term in equation (18)), away from
half-filling we will write

E BA(nBA,8BA) = E BA(nBA, 0)+
DBA

c (nBA)

L
82

BA,

E 0(n0,80) = E 0(n0, 0)+
D0

c(n0)

L
82

0,

(37)

and

jBA(nBA,8BA) = 2
DBA

c (nBA)

L
8BA,

j0(n0,80) = 2
D0

c(n0)

L
80.

(38)

The fundamental requirement of the KS mapping is that
nBA = n0 = n and jBA

= j0 = j while we note that 8BA = 8

and 80 = 8
s in equation (18). By substituting equations (37)

and the expressions for8s and8 obtained from equation (38)
into (18) one obtains

E xc(n, j) = E BA(n, 0)− E 0(n, 0)− E H(n)

+
L

2
3xc(n)j2, (39)

where

3xc(n) =
1
2

[
1

D0
c(n)
−

1
DBA

c (n)

]
. (40)

Here D0
c(n) is the non-interacting charge stiffness defined as

D0
c(n) =

2t

π
sin
(nπ

2

)
(41)

for L → ∞. DBA
c (n) can then be obtained in the

thermodynamic limit by using [73]

DBA
c (n) =

1
2π
[ξc(Q)]

2 vc (42)

where ξc is an element of the dressed charge matrix, which
is used to describe the scattering between the quasi-particles
and vc is the velocity of the charge excitation. Therefore one
finally obtains

exc(n, j) = exc(n, 0)+ 1
23

xc(n)j2, (43)

so that

vxc
BALDA(nl, jl) =

∂exc(n, j)

∂n

∣∣∣∣
n→nl,j→jl

(44)

and

8xc
BALDA(nl, jl) =

∂exc(n, j)

∂j
= 3xc(n)j

∣∣∣∣
n→nl,j→jl

. (45)
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