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Abstract Rare mutations in AβPP, PSEN1, and PSEN2 cause uncommon early onset forms of Alzheimer’s disease (AD), and
common variants in MAPT are associated with risk of other neurodegenerative disorders. We sought to establish whether common
genetic variation in these genes confer risk to the common form of AD which occurs later in life (>65 years). We therefore
tested single-nucleotide polymorphisms at these loci for association with late-onset AD (LOAD) in a large case-control sample
consisting of 3,940 cases and 13,373 controls. Single-marker analysis did not identify any variants that reached genome-wide
significance, a result which is supported by other recent genome-wide association studies. However, we did observe a significant
association at the MAPT locus using a gene-wide approach (p = 0.009). We also observed suggestive association between AD and
the marker rs9468, which defines the H1 haplotype, an extended haplotype that spans the MAPT gene and has previously been
implicated in other neurodegenerative disorders including Parkinson’s disease, progressive supranuclear palsy, and corticobasal
degeneration. In summary common variants at AβPP, PSEN1, and PSEN2 and MAPT are unlikely to make strong contributions
to susceptibility for LOAD. However, the gene-wide effect observed at MAPT indicates a possible contribution to disease risk
which requires further study.
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INTRODUCTION38

The neuropathological hallmarks of late-onset39

Alzheimer’s disease (LOAD) are assumed to provide40

major clues to pathogenesis. These include extracel-41

lular plaques, which are predominantly made up of42

insoluble amyloid-� protein, and neurofibrillary tan-43

gles (NFTs), intracellular accumulations of paired44

helical filaments, which are comprised mainly of45

hyperphosphorylated forms of the microtubule asso-46

ciated protein, tau [1]. Genes involved in the amyloid47

pathway and the tau gene, MAPT, have therefore long48

been considered as putative candidates for involvement49

in LOAD susceptibility.50

Amyloid-� is formed from the cleavage of amyloid-51

� protein precursor (AβPP) by �- and �-secretases.52

Mutations within AβPP, plus presenilin 1 (PSEN1)53

and presenilin 2 (PSEN2), which encode part of the54

�-secretase complex, can cause the autosomal domi-55

nant, predominantly early-onset forms of Alzheimer’s56

disease [2, 3]. To date, 32 pathogenic AβPP mutations57

have been identified in patients with early-onset58

Alzheimer’s disease (EOAD) (Alzheimer Disease59

& Frontotemporal Dementia Mutation Database;60

http://www.molgen.ua.ac.be/admutations). These61

mutations increase cleavage of AβPP by �-secretase62

[4]. In addition, 185 PSEN1 and 13 PSEN2 pathogenic63

mutations have been observed in EOAD patients64

which increase �-secretase cleavage of AβPP [4].65

Genetic variation at the MAPT locus has been con-66

vincingly associated with an increased risk of the67

sporadic tauopathies progressive supranuclear palsy68

(PSP) and corticobasal degeneration (CBD) [5]. The69

associations reported include several polymorphisms70

that span the MAPT locus and which are in high linkage 71

disequilibrium (LD). These variants form two extended 72

haplotypes H1 and H2, which have been shown to cap- 73

ture the common haplotypic variation across the gene. 74

H1, the more common haplotype, consists of multi- 75

ple sub-haplotypes. One of these, H1c has been found 76

to capture the observed association between H1 and 77

both PSP and CBD more effectively [6]. H2 is a less 78

common, single, un-recombining haplotype. 79

In addition a recent genome-wide association study 80

(GWAS) identified association between MAPT and 81

Parkinson’s disease (PD) [7], where three single 82

nucleotide polymorphisms (SNPs) at the locus sur- 83

passed genome-wide significance. Simón-Sánchez and 84

colleagues observed that the risk alleles at each SNP 85

are in LD with the H1 haplotype, thus the findings 86

are consistent with those from other neurodegenerative 87

disorders. 88

While AβPP, PSEN1, and PSEN2 are established 89

contributors to rare forms of AD, as is MAPT to other 90

neurodegenerative disorders including PD, PSP, and 91

CBD, the question remains whether these genes are 92

implicated in the common form of AD which occurs 93

later in life (>65 years). Relatively recent studies 94

testing these genes for association with LOAD have 95

produced both positive [8–17] and negative results 96

[18–24]. This includes analyses of the MAPT H1 and 97

H1c haplotypes [8, 16, 17, 19, 21, 24]. However, these 98

studies have been underpowered to detect common risk 99

alleles of the effect sizes typically seen in common 100

disorders. We therefore tested variants at the AβPP, 101

PSEN1, PSEN2, and MAPT loci for association with 102

LOAD in an extended version of the Genetic and 103

Environmental Risk in AD Consortium 1 (GERAD1) 104
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case-control dataset, previously published by Harold105

and colleagues [25], consisting of 3,940 AD cases and106

13,373 controls.107

MATERIALS AND METHODS108

SNPs within 20 kb of AβPP, PSEN1, PSEN2, and109

MAPT were analyzed for single-marker and gene-110

wide association to LOAD within the GERAD1111

GWAS dataset (directly genotyped and imputed).112

Meta-analysis between GERAD1 and two publically113

available datasets was also performed for markers114

selected from the GERAD1 single-marker analysis.115

The details of all analyses are given below.116

GERAD1 samples117

The total sample analyzed in this study was com-118

prised of 4,957 AD cases and 9,682 controls previously119

described in Harold and colleagues [25] plus an addi-120

tional 5,529 controls. The sample included 4,113 cases121

and 1,602 elderly screened controls recruited by the122

Medical Research Council (MRC) Genetic Resource123

for AD (Cardiff University; Institute of Psychia-124

try, London; Cambridge University; Trinity College125

Dublin), the Alzheimer’s Research UK (ARUK) Col-126

laboration (University of Nottingham; University of127

Manchester; University of Southampton; University128

of Bristol; Queen’s University Belfast; the Oxford129

Project to Investigate Memory and Ageing (OPTIMA),130

Oxford University); Washington University, St Louis,131

United States; MRC PRION Unit, University Col-132

lege London; London and the South East Region133

AD project (LASER-AD), University College Lon-134

don; Competence Network of Dementia (CND) and135

Department of Psychiatry, University of Bonn, Ger-136

many and the National Institute of Mental Health137

(NIMH) AD Genetics Initiative. In addition, 844 AD138

cases and 1,255 elderly screened controls were ascer-139

tained by the Mayo Clinic, Jacksonville, Florida; Mayo140

Clinic, Rochester, Minnesota; and the Mayo Brain141

Bank. All AD cases met criteria for either prob-142

able (NINCDS-ADRDA [26], DSM-IV) or definite143

(CERAD [27]) AD.144

A total of 6,825 population controls were also145

included. These were drawn from large existing146

cohorts with available GWAS data, including the147

1958 British Birth Cohort (1958BC) http://www.148

b58cgene.sgul.ac.uk), the NINDS funded neurogenet-149

ics collection at Coriell Cell Repositories (Coriell) (see150

http://ccr.coriell.org/), the KORA F4 Study [28], the151

Heinz Nixdorf Recall Study [29, 30], and amyotrophic 152

lateral sclerosis controls [31]. 153

Additional controls, not previously analyzed, 154

included 1,456 elderly screened controls from 155

the Lothian birth cohort, University of Edinburgh 156

(http://www.lothianbirthcohort.ed.ac.uk/), plus 4,069 157

population controls from either the 1958BC (n = 1,596) 158

or the National Blood Service [32] (n = 2,477). Addi- 159

tional genotypes were also made available for 1,068 160

1958BC controls previously included in the Harold and 161

colleagues publication [25]. All individuals included in 162

the analysis have provided informed consent to take 163

part in genetic association studies and we obtained 164

approval to perform a GWAS including 19,000 par- 165

ticipants (MREC 04/09/030; Amendment 2 and 4; 166

approved 27 July 2007). 167

Genome-wide analysis 168

The GWAS was performed as described by Harold 169

and colleagues [25]. 5,715 samples were genotyped 170

using the Illumina 610-quad chip; genotypes for the 171

remaining subjects (n = 14,453) were made available 172

either from population control datasets or through 173

collaboration and were genotyped on the Illumina 174

HumanHap 1.2M, 610, 550 or 300 BeadChips. Prior to 175

association analysis, all samples and genotypes under- 176

went stringent quality control (QC), which resulted in 177

the elimination of 58,841 autosomal SNPs and 2,855 178

subjects. Thus, in Stage 1, we tested 528,747 autosomal 179

SNPs for association in up to 17,313 subjects (3,940 180

AD cases and 13,373 controls, of whom 3,534 were 181

elderly controls were screened for cognitive decline 182

or neuropathological signs of AD). The genomic con- 183

trol inflation factor λ [33] was 1.060 (λ1000 = 1.010), 184

suggesting little evidence for residual stratification. 185

SNPs were tested for association with AD using logis- 186

tic regression, assuming an additive model. Specific 187

details of the logistic regression analysis and the 188

covariates included are given elsewhere [25]. Genome- 189

wide significance was defined as p < 5 × 10−8 as 190

suggested by Pe’er and colleagues [34]. 191

GERAD1 imputation analysis 192

AD summary statistics were based on 3,940 cases 193

and 13,373 controls from UK, USA, and Germany 194

typed with the Illumina Chips 1.2M, 610K, 550K, 195

and 300K. Genotypes at the 201,228 SNPs common 196

to each of the 4 chips were used as input for imputa- 197

tion. The imputation was performed using IMPUTE2 198

software [35] with two phased reference panels, the 199

http://www.b58cgene.sgul.ac.uk
http://www.b58cgene.sgul.ac.uk
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1000 genomes (http://www.1000genomes.org) August200

2009 release and Hapmap3, r. II. NCBI build 36 posi-201

tions were used for all markers in this study. QC202

filters applied included a minor allele frequency (MAF)203

≥0.01 and an INFO score (representing imputation204

quality)≥0.8. After QC 4,685,506 markers remained.205

The AD case/control data were then analyzed using206

logistic regression including covariates accounting for207

country of data collection and the five principal com-208

ponents obtained with EIGENSTRAT [36] software209

based on individual genotypes for the GERAD1 study210

participants. The genomic control inflation factor λ for211

the imputed dataset was 1.11.212

Gene-wide analysis213

All SNPs located within A�PP, PSEN1, PSEN2,214

and MAPT that were either directly genotyped within215

the GERAD1 sample or imputed were identified.216

SNPs were assigned to a gene if they were located217

within ± 20 kb of any transcript corresponding to that218

gene. P-values were calculated under an additive219

disease model and adjusted for genomic control (geno-220

typed λ = 1.06, imputed λ = 1.11).221

Gene-wide analysis was performed based on the222

Simes [37] method for conducting multiple tests of sig-223

nificance. The Simes method is less conservative than224

the Bonferroni method when the tests are not indepen-225

dent, and is thus better suited for analyzing multiple226

SNPs from the same gene (where the individual asso-227

ciation tests are likely to be correlated due to linkage228

disequilibrium). If the p-values for the individual tests229

are ordered such that p(1) ≤ p(2) ≤ . . . ≤ p(n) then the230

null hypothesis of no association in the gene is rejected231

at significance level � if p(j) ≤ j�/n for any j = l,...,n.232

The corrected p-value for the joint significance test of233

all SNPs in a gene using this method (denoted “Simes234

p-value”) is given by the minimum of p(j) × (n/j).235

Meta-analysis with additional datasets236

Meta-analysis was performed on GERAD1 and two237

publically available GWAS datasets from the Trans-238

lational Genomics (TGEN) Research Institute and the239

Alzheimer’s Disease Neuroimaging Initiative (ADNI).240

The TGEN sample, previously reported by Reiman241

and colleagues [23], is comprised of 861 cases and242

550 controls. Imputation of this dataset was performed243

using MACH software [38] with the August 2010 1000244

genomes reference panel. SNPs were tested for asso-245

ciation using logistic regression assuming an additive246

model. Sample population (USA or Netherlands) was247

included as a covariate.248

The ADNI (http://www.loni.ucla.edu/ADNI) [39] 249

GWAS data was subjected to QC-filtering prior to asso- 250

ciation analysis. This included retaining individuals 251

with missing genotype rates <0.01, with mean auto- 252

somal heterozygosity between 0.32 and 0.34, and with 253

mean X-chromosome heterozygosity either <0.02 for 254

males, or between 0.25 and 0.40 for females. Following 255

QC, 151 AD cases and 177 controls were analyzed in 256

this study. Imputation was performed using IMPUTE2 257

software [35] and the August 2010 1000 genome data 258

release. SNPs were tested for association with AD 259

using logistic regression assuming an additive model. 260

Meta-analysis was performed by inverse variance 261

weights (IVW) meta-analysis using summary data (i.e., 262

odds ratios (OR) and standard errors). The standard 263

error statistic included in the inverse variance weights 264

meta-analysis accounts for variation in sample size 265

between studies. The Cochran’s Q-test and the I2 het- 266

erogeneity index were used to assess heterogeneity 267

between studies. Significant evidence of heterogene- 268

ity was determined by a Cochran’s Q-statistic p < 0.1 269

or I2 > 50. In these instances a random effects meta- 270

analysis was performed; alternatively, meta-analysis 271

with a fixed effect model was used. 272

RESULTS 273

Analysis of AβPP, PSEN1, PSEN2, and MAPT 274

A summary of the results is given in Table 1. 275

The most significant p-values are shown for both 276

genotyped and imputed SNPs. Single-marker analysis 277

did not identify any variants within these four genes 278

that reached genome-wide significance (p < 5 × 10−8) 279

in either analysis. At the MAPT locus, rs11656151 280

shows the greatest evidence for association with 281

AD (imputed p = 8.8 × 10−5). rs11656151 is located 282

within intron 8 of MAPT isoform I-467 (NM 016835). 283

The most significant SNP at the PSEN1 locus is a 284

1000 genomes marker at chr14 : 72745579 (NCBI36, 285

imputed p = 1.9 × 10−4) which is located within intron 286

8 of PSEN1 isoform 1 (NM 000021) and lies within a 287

4555 bp of a deletion which has been identified in two 288

AD families. This deletion spans exon 9 of PSEN1 289

which results in an in-frame skipping of exon 9 and 290

an amino acid change at the splice junction of exon 8 291

and 10 [40, 41]. At the AβPP locus, rs381743 shows 292

the greatest evidence for association with AD (imputed 293

p = 0.002). It is located 15 kb 5’ to the AβPP gene. The 294

most significant SNP within PSEN2 shows a borderline 295

significant association with AD (rs12405469 imputed 296

p = 0.041). This SNP is located 7 kb 3’ to PSEN2. 297
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Table 1
Analysis of AβPP, PSEN1, PSEN2, and MAPT in the GERAD1 dataset

GWAS results Imputed Results

Single-marker analysis Gene-wide analysis Single-marker analysis Gene-wide analysis

Gene Gene position ± 20 KB (NCBI36) SNP ID OR p value Simes p value SNP ID Info OR P value Simes p value

A�PP chr21 : 26,154,732-26,485,003 rs2830088 0.94 0.010 0.362 rs381743 0.87 0.92 0.002 0.420
PSEN1 chr14 : 72,652,932-72,776,862 rs362350 0.90 0.020 0.240 chr14-72745579 0.80 1.37 1.9 × 10−4 0.077
PSEN2 chr1 : 225,104,896-225,170,427 rs2073489 0.96 0.136 0.611 rs12405469 0.81 0.94 0.041 0.784
MAPT chr17 : 41,307,544-41,481,546 rs8079215 1.10 0.001 0.034 rs11656151 0.84 1.13 8.8 × 10−5 0.009

The most significant results are shown for SNPs directly genotyped and those imputed in the dataset. Odds Ratios (OR) are based on the minor allele. Gene-wide analysis of AβPP, PSEN1, PSEN2,
and MAPT in the GERAD1 dataset using the Simes method is also given.

Table 2
Single-marker and meta-analysis results for the most significant SNPs within AβPP, PSEN1, PSEN2, and MAPT, plus the H1 haplotype tag SNP rs9468, within three independent LOAD GWAS
samples (GERAD1, TGEN, and ADNI). Inverse variance weights (IVW) meta p-values were calculated from summary statistics. Odds ratios (OR) refer to the minor allele. Meta p-values given

are based on a fixed effect model unless Q statistic p < 0.1 or I2 > 50. In these instances a random effects model was used. N/A = Not available

GERAD1 TGEN ADNI Meta-analysis

Gene SNP ID Info OR p value RSQR OR p value Info OR p value OR p value Q-statistic I2

A�PP rs381743 0.87 0.91 0.002 0.96 0.97 0.789 N/A N/A N/A 0.92 0.003 0.586 0
PSEN1 chr14-72745579 0.80 1.36 1.9 × 10−4 0.71 0.75 0.378 N/A N/A N/A 1.10 0.743 0.071 69
PSEN2 rs12405469 0.81 0.94 0.041 0.99 1.06 0.573 N/A N/A N/A 0.95 0.072 0.264 20
MAPT rs11656151 0.84 1.13 8.8 × 10−5 0.89 1.08 0.538 0.95 1.21 0.283 1.13 4.7 × 10−5 0.855 0
MAPT rs9468 0.87 0.89 7.8 × 10−4 0.95 0.96 0.725 0.98 0.83 0.289 0.89 5.2 × 10−4 0.786 0
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We attempted to impute these variants in two publi-298

cally available GWAS datasets [23, 39]. These results299

as well as the meta-analysis of all three datasets are300

given in Table 2. Meta-analysis of these variants did not301

produce any genome-wide significant variants. How-302

ever, we observed a slight increase in significance303

of the association between the MAPT polymorphism304

rs11656151 (p = 4.7 × 10−5) and AD. While not sig-305

nificant, the TGEN and ADNI datasets both showed306

the same direction of effect as GERAD1 dataset for307

this variant.308

In addition to single-marker analysis, we performed309

gene-wide analysis using all SNPs located within310

20 kb of AβPP, PSEN1, PSEN2, and MAPT (Table 1).311

Gene-wide analysis may offer a number of possible312

advantages over single locus tests [42]. For example,313

if there is more than one independent association sig-314

nal within a gene or set of markers, combining these315

into a single statistic may offer enhanced power over316

single SNP analysis [43]. We detected no significant317

association between AβPP, PSEN1, or PSEN2 and AD318

using this approach. However, MAPT shows signifi-319

cant gene-wide association (Simes p = 0.009) which320

survives multiple testing correction for the four genes321

analyzed.322

Further analysis of MAPT association323

Previous studies of MAPT have reported association324

between the H1 haplotype and AD [16, 17] as well325

as other neurodegenerative disorders [6]. The marker326

rs9468 defines H1/H2 status [19]. In our imputed327

dataset rs9468 shows some evidence of association to328

AD (p = 7.8 × 10−4, OR = 0.89), with the risk allele (T)329

a proxy for the H1 haplotype. We imputed rs9486 in330

both the TGEN and ADNI datasets (Table 2). Meta-331

analysis of all three samples slightly increased the332

significance of this variant (p = 5.2 × 10−4). However,333

the H1 subhaplotypes including H1c could not be ana-334

lyzed as only 5 out of the 6 markers, which define these335

haplotypes could be reliably imputed in the GERAD1336

dataset.337

DISCUSSION338

AβPP, PSEN1, PSEN2, and MAPT are all impli-339

cated by AD pathology and been shown to have genetic340

effects on neurodegenerative disorders. In order to341

determine whether these genes cause susceptibility342

to LOAD, we analyzed AβPP, PSEN1, PSEN2, and343

MAPT in an imputed GWAS dataset of 3,940 cases344

and 13,373 controls. Association analysis of variants 345

at each locus revealed no genome-wide significant 346

SNPs. This observation is supported by other recent 347

AD GWAS studies, which do not observe genome- 348

wide significance at these loci [44–46]. Taken together 349

this data suggests that common variation at these loci 350

does not provide a strong contribution to LOAD sus- 351

ceptibility. 352

Conversely, we did observe a significant association 353

between MAPT and AD using a gene-wide approach 354

(p = 0.009), an analysis that has not been performed 355

within the recent GWAS studies. A significant gene- 356

wide result can be suggestive of multiple independent 357

association signals within a gene. However, if gen- 358

uine AD susceptibility variants exist at the MAPT 359

loci, they are likely to be of weak effect. For exam- 360

ple, rs11656151, the most significant single-marker at 361

MAPT in our dataset, has an OR of 1.13. Meta-analysis 362

of three GWAS datasets provided evidence of con- 363

sistency between samples. However, the TGEN and 364

ADNI datasets are relatively small and replication in 365

much larger samples is needed. 366

The marker rs9468, tags the H1 haplotype which 367

has been found to be overrepresented in both PSP 368

and CBD cases [6]. Furthermore, the top hit in a 369

recent PD GWAS of 3,361 cases and 4,573 controls 370

(rs393152, p = 1.95 × 10−16) tags the H1 haplotype 371

[7]. Marker rs9468 showed some evidence for associa- 372

tion to LOAD in the GERAD1 dataset (p = 7.8 × 10−4). 373

In addition, we observed the same direction of effect 374

in the TGEN and ADNI datasets. However, as with 375

rs11656151, this marker needs to be explored in larger 376

datasets. Furthermore, as a result of insufficient data, 377

we could not determine whether refining the H1 haplo- 378

type into a subhaplotype such as H1c, which has been 379

found to be associated with neurodegenerative disor- 380

ders CBD and PSP, would increase the significance of 381

association observed. 382

While our results suggest that common variation 383

at AβPP, PSEN1, PSEN2, and MAPT does not pro- 384

vide a strong contribution to AD risk, it is possible 385

that these loci contain as yet undetected rare variants 386

of larger effect. Genome-wide association studies are 387

underpowered to detect these variants and sequenc- 388

ing of several thousand cases and controls would be 389

required to detect rare variants at these loci. 390

In conclusion, it is unlikely that common variation 391

at AβPP, PSEN1, PSEN2, and MAPT provide strong 392

contributions to susceptibility for LOAD. However, the 393

gene-wide effect observed at MAPT indicates a pos- 394

sible contribution to disease risk. Replication of this 395

result is necessary although it is likely that large sample 396
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sizes will be required to achieve the power necessary397

to show a true effect.398
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