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Spatial correlations in polydisperse, frictionless, two-dimensional packings
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We investigate next-nearest-neighbor correlations of the contact number in simulations of polydisperse,
frictionless packings in two dimensions. We find that disks with few contacting neighbors are predominantly in
contact with disks that have many neighbors and vice versa at all packing fractions. This counterintuitive result
can be explained by drawing a direct analogy to the Aboav-Weaire law in cellular structures. We find an empirical
one parameter relation similar to the Aboav-Weaire law that satisfies an exact sum rule constraint. Surprisingly,
there are no correlations in the radii between neighboring particles, despite correlations between contact number

and radius.
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Disordered packings of particles are the quintessential
model for amorphous materials such as granular packings [1],
emulsions [2], wet foams [3], and glass formers [4]. While the
contact number distribution and its average near the random
close-packing density [1-3,5-9] have been extensively studied
in these systems, little is known about spatial correlations
in the contact network. Various models that have recently
been put forward to predict the density [10], distribution of
contact numbers [2], and forces [11] in random close packings
implicitly assume the absence of such correlations.

We address this question through simulations of a two-
dimensional model system with polydisperse, frictionless soft
disks. At the random close-packing density ¢., the disks just
touch and have an average contact number (z) close to 4 as
required for mechanical stability [1,12,13]. Due to disorder
the individual contact numbers z are distributed according to
some distribution P(z) that depends on the polydispersity of
the disk size distribution [2]. Here, we investigate whether
spatial correlations in the contact network exist.

In our simulations we find that disks with many contacts
favor neighbors with fewer contacts and vice versa. These
correlations persist for all packing densities. This result is
a direct analog to the well-known Aboav-Weaire law in
the field of cellular structures which states that cells with
fewer neighbors are surrounded by cells with many neighbors
[14-18]. We show that our results are in excellent agreement
with a modified Aboav-Weaire law. Since geometrical con-
straints in the packing dictate that smaller particles have fewer
contacts on average [2], one may expect similar correlations
for the size distribution in the packing, namely, that larger
particles are surrounded by smaller ones. Surprisingly, we find
that the size of the central particle is uncorrelated to the average
size of the contacting neighboring particles.

We simulate the disordered packings by using Durian’s
soft disk model [9], as implemented by Langlois et al. [19].
The disks have a harmonic repulsion proportional to their
overlap and experience viscous tangential drag. We use 1500
polydisperse disks whose radii are drawn from a Gaussian
distribution with a mean (r) and a variance o, = (0.304(r))?.
The polydispersity allows us to access a wide range of contact
numbers, which is important to measure next-nearest-neighbor
correlations. The disks are randomly placed in a periodic box
at low packing fraction and then allowed to relax while their
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radii are slowly increased. The simulation terminates when the
total elastic energy due to overlaps reaches a steady state at a
predefined packing fraction. For each packing density, up to 10
different packings are created to increase the statistics of our
correlation measures. Upon reaching mechanical equilibrium,
disks with fewer than three contacts (rattlers) are removed for
the analysis of the contact network but are accounted for in
the packing fraction. Contacts are defined as overlaps between
disks.

We study packings which range from the random close
packing density ¢, up to ¢ = 1.35. Note that the overlap area
between bubbles is counted twice in the calculation of ¢ in line
with previous simulations of packings [1]. In our simulations
we find ¢, = 0.845 and the corresponding average contact
number (z) = 4.07 £ 0.04, which is close to the isostatic
prediction (z) =4 [1]. As shown in the inset of Fig. 1, (z)
increases approximately as 4 4 3.29./¢ — ¢, close to the
isostatic point, which is consistent with previous results [6,7].
We study packings up to ¢ = 1.35, where the average contact
number reaches (z) = 6.

Figures 1(a) and 1(b) show the distribution of the relative
contact number, P(z — (z)), for different packing fractions
and their respective variance p, = (z%) — (z)?, where (7') =
>, 7' P(2). The shape of the distribution is independent of the
packing fraction as evidenced by the collapse of P(z — (z))
onto a master curve. The corresponding variance w, varies
slightly due to the fact that the minimum contact number is
3. This collapse is surprising and means that the the shape of
P(z) around its mean depends on P(r) but not on ¢.

Next, we address the main result of our work—the cor-
relations in the contact network of the packings at different
densities. Given a disordered packing of frictionless disks
with a certain global average contact number (z), are the local
contact numbers of neighboring particles correlated? Here, we
define neighbors to be disks in contact, i.e., disks that overlap.
In order to quantify nearest-neighbor correlations, we measure
m(z), which is the average contact number of the neighbors of
a disk with contact number z.

This approach is analogous to the pioneering work of Aboav
[17] on polycrystals, which established spatial correlations
in the coordination number of cells in a cellular structure.
He found that many-sided cells are surrounded by few-sided
cells on average and vice versa. It has been noted by Weaire
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FIG. 1. (Color online) (a) The contact number distribution P(z —
(z)) for different packing fractions ¢: (x) 0.845, (x) 0.88, (V) 0.92,
(+)0.96, () 1.0, () 1.07,(O) 1.14,(O) 1.2, and (>) 1.35. The inset
shows the variation of the average contact number (z) with packing
fraction ¢. The red (solid) line corresponds to the square root scaling
fit: (z) = 4 + 7904/P — P, where zo = 3.29. (b) The variance of P(z),
o, Versus (z).

[18], that m obeys an exact sum rule which is independent of

dimensionality:
ZmzP(z) = ZzzP(z), (D
Z z

where 7 is the coordination number of the cells. This sum rule
is based on a counting argument and is independent of the
physics governing the underlying structure. In the absence of
correlations in the coordination number between neighboring
cells, m(z) is simply a constant (= m). It follows from the sum
rule that in this case m = (z) + u>/(z) [14]. In the context
of cellular structures, this is referred to as a topological gas,
although its existence is disputed [15]. The Aboav-Weaire
relation is a solution of the sum rule

m=(z) —a+ (z)a+ u)/z, 2

where a is an empirical parameter. For a topological gas, a =
—u2/(z), but in a natural cellular structure such as dry foam
a ~ 1 [14,16]. Therefore, many-sided cells have few-sided
neighbors and vice versa. One can interpret this anticorrelation
as a partial screening of the topological charge (z — (z)) by
its nearest neighbors whose combined charge is z(m — (z)).
Even though the validity of Eq. (2) cannot be deduced from
first principles, most two-dimensional (2D) cellular structures,
such as polycrystals and dry foams, obey this relation well
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FIG. 2. (Color online) Nearest-neighbor correlations of the con-
tact number. (a) (m — (z))z — uo versus (z — (z)) for three different
densities: (x) 0.854, (A) 1.0, and () 1.2. The error bars are
standard deviations from the mean. The lines are fits to Eq. (4). The
dotted lines correspond to the uncorrelated prediction a = —u,/(z).
(b) [(m — (2))z — ua]/b versus (z* — (z%)) for all densities [same
symbols as in Fig. 1(a)]. The dotted line corresponds to the slope —1.
The inset shows the fit parameter b as a function of (z).

[15-17], with the notable exception of random Voronoi
tessellations [20].

The counting argument that leads to the sum rule [Eq. (1)]
was originally developed for cellular structures but holds
equally well for neighbors in a contact network of a disordered
packing. The main difference is that in 2D cellular structures
with threefold vertices, (z) = 6 [14], while frictionless pack-
ings in two dimensions have an average contact number (z)
greater than or equal to 4 depending on the packing fraction
[1,6].

The results for m are shown in Fig. 2(a), where we plot
(m — (2))z — pp versus (z — (z)) for three different packing
fractions. For the Aboav-Weaire law [Eq. (2)] to hold we
expect the data to follow a line with slope —a. Clearly, the
data do not follow the uncorrelated prediction a = —u,/(z),
instead we observe spatial correlations: disks with few contacts
are surrounded by disks with many contacts and vice versa.

020302-2



SPATIAL CORRELATIONS IN POLYDISPERSE, ...

Another key result is the deviations from purely linear
behavior, especially at higher packing fractions.

In order to account for this nonlinearity, we expand
the Aboav-Weaire law in terms of the moments of the
contact number distribution such that it still satisfies the sum
rule

(m—(z—pa=—) G =), (3)
i=1

where the ¢;’s are arbitrary constants. If ¢; = 0 fori > 1, one
recovers the usual Aboav-Weaire law with ¢; = a. In order to
fit our data it proved sufficient to only make ¢, nonzero, which
leads to

wa(l + b) + b(z)?

m = (z) — bz + , “)
z

where b = ¢;. This is a one parameter fit, similar to the Aboav-
Weaire law. However, mz is now quadratic in z, instead of
linear. As shown in Fig. 2(b), Eq. (4) captures the nonlinearity
well and leads to a much improved fit compared to Eq. (2).
Including higher-order terms in the expansion [Eq. (3)] does
not improve the fit significantly. The inset of Fig. 2(b) shows
the decrease of the parameter b with (z), which means that the
screening of topological charge decreases as the isostatic point
is approached.

We would like to stress that the analogy between corre-
lations in the coordination number in disordered frictionless
packings and cellular structures is not obvious, since these
systems are governed by different local and global constraints.
Although polydisperse packings can be tesselated into a
cellular structure [2], not all faces of a cell correspond to con-
tacts; therefore the existence of correlations in packings does
not follow naturally from similar correlations in disordered
cellular structures.

There is also a correlation between contact number and
particle size in polydisperse packings [2]. Larger particles have
more contacts on average, since one may fit more particles
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FIG. 3. (Color online) The average contact number (z|r) for a
given particle radius r at different packing fractions ¢: (x) 0.845,
(v) 0.92, and (OJ) 1.14. Lines are fits to Eq. (5). The inset shows the
fit parameter y as a function of ¢.
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around them on average. Figure 3 shows the average contact
number of a particle with radius r, (z|r) = Y __zP(z|r), where
P(z|r) is the conditional probability of a particle of radius r
to have a contact number z. It is well described by the linear
relation

(zlr) = (@)1 +y@r/(r) — DI (&)

Since (z|r) is constrained by the equality fooo(zlr)P(r)dr =
(z), there is only one empirical fit parameter y, which varies
little with ¢ (Fig. 3, inset). However, this linear relationship
does break down at low r, since (z|r) > 3. A similar result
exists in the field of cellular structures and is known as Lewis’
law [15,21].

Given the nearest-neighbor correlations in the coordination
number [Eq. (4)] and the correlation between size and contact
number [Eq. (5)], are smaller particles surrounded by larger
ones, similar to observations in cellular structures [22]?

In order to study radii correlations, we measured (R,,|7),
which is the average radius of neighboring disks in contact
with a disk of radius r. Figure 4 shows (R,,|r)/(r) versus
r/(r) for ¢.. No correlations are apparent and the result agrees
well with the uncorrelated prediction R, which is discussed
below.

The counting argument that leads to the Weaire sum rule
for the coordination number can also be applied for the radii.
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FIG. 4. (Color online) Nearest-neighbor correlations of the radii.
(a) (R |r) versus r/(r) for ¢ = 0.845. The dotted line corresponds to
the uncorrelated prediction R, [Eq. (7)]. The inset shows R, versus
(z). (b) (Runlr)/ Ry, versus r/(r) for all densities [same symbols as
in Fig. 1(a)].
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Analogously, the average radius of the neighbors (R, |r) needs
to satisfy the following relation:

/(Rnnlr)(ZV)P(r)dr:/ r{zlr)P(r)dr (6)
0 0

The left-hand side of the equation amounts to an integral over
the disk radii » weighted by (z|r). In the absence of correlations
(R, |r) is a constant (= R,,,), and we have

_ Jo rten P@ydr 5 i) Porydr
Jo~(zlr) P(rydr (z) ’

Substituting the empirical relation for (z|r) [Eq. (5)], we find
that R,, = (r)(1 + y02/(r)?), which is slightly larger than (r)
and varies little with ¢ [inset Fig. 4(a)]. At ¢., we obtain R, =
1.042(r), which is consistent with our results from Fig. 4(a).
At higher packing fractions shown in Fig. 4(b), (R,.|7)/Run
remains constant and close to 1. Only for high and low r are
slight deviations due to low statistics observed.

While the absence of correlations in the radii for neighbor-
ing particles may be expected given our preparation procedure
where particles are placed in the box at random, it is surprising
in the light of the two correlations we have measured, namely,
the correlations between contact numbers of neighboring
particles [Eq. (4)] and the correlation between size and contact
number [Eq. (5)]. The reason for this counterintuitive result
is that the relationship between the average contact number m
and the corresponding average radius R, does not follow the
linear relation [Eq. (5)] for a single disk [23].
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Although we have only shown results for packings with
Gaussian distributed radii, similar correlations are observed
for other polydispersities such as bidisperse distributions [23].

In conclusion, we studied polydisperse, frictionless pack-
ings at various packing densities. We find that disks with many
contacts are surrounded by disks with few contacts and vice
versa. As the isostatic point is approached, the screening of
topological charges becomes weaker but does not vanish and is
well described by a modified Aboav-Weaire law. This result is
adirect analog of the topological screening observed in cellular
structures. Nevertheless, the physical origin of the screening
parameter b remains unclear, much like the a parameter in the
Aboav-Weaire law [14].

We want to emphasize that the sum rules for the contact
number and radii are valid in any dimension. Therefore, one
may expect similar correlations in three-dimensional packings
as well as in frictional packings [24]. It remains to be seen
whether these correlations depend on the preparation history
of the packing, which is known to have an influence on

¢ [25].
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