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Abstract

The security w-calculus is a typed version of the asynchronous m-calculus in which
the types, in addition to constraining the input/output behaviour of processes, have
security levels associated with them. This enables us to introduce a range of typing
disciplines which allow input or output behaviour, or both, to be bounded above or
below by a given security level.

We define typed versions of may and must equivalences for the security w-calculus,
where the tests are parameterised relative to a security level. We provide alternative
characterisations of these equivalences in terms of actions in context; these describe
the actions a process may perform in a given typing environment, assuming the
observer is constrained by a related, but possibly different, environment.

The paper also contains non-interference results with respect to may and must
testing. These show that certain form of non-interference can be enforced using our
typing systems.

Key words: Distributed Systems, Picalculus, security types, non-interference,
testing equivalences.

1 Introduction

The asynchronous w-calculus, [3,14], is a simple formalism for describing dis-
tributed processes. It presupposes a set of channel names through which pro-
cesses communicate. Thus a?(X) P is a process which inputs some value v
on the channel a, and executes the body P in which X has been substituted
by the value v, while output on the same channel is denoted by a!(v). These
two primitives, together with operators for parallelism, |, repetition, *, and
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channel scoping, (new n) , make the w-calculus a very powerful language. For
example the term P,

xreq?(z,y) (newr) si(z,7) | r7(2) y!(2)

describes a process which repeatedly receives a request on the channel req,
consisting of a value, bound to x, and a return channel, bound to y. This value
is in turn sent along the channel s, presumably serviced by some independent
server, together with a private return channel r, generated specifically for this
purpose. A response is awaited from the service, on the reply channel r, which
is then forwarded on the original return channel y.

Numerous typing systems have been developed for this language, [19,24,25].
Most are based on judgements of the form

re=p

indicating that the process P is well-typed with respect to the channel en-
vironment I', which associates capabilities with the free channel names of P.
Usually these capabilities are some elaboration of

read capabilities r(T): the ability to read values of type T from a channel
write capabilities w(T): the ability to write values of type T to a channel

For example let A denote the tuple type (int,w(int)); a value of this type
will consist of a pair, the first element of which is an integer, and the second
a channel on which integers may be written. If I associates the type r(A)
with the channel req and the type w(A) with s, we would expect the above
term, P, to be well-typed with respect to I'. However for this to be true the
local channel r needs to be generated with the write capability w(int), to be
sent along the channel s, and the read capability r{int), which is used by the
process itself. Thus if we were to annotate all bound names and variables with
their required types we would obtain the annotated term

xreq?(z,y): A (newr:R) sz, 7) | r?(2) y!(2) (%)

where R is the type {w(int), r(int)}. This term is well-typed with respect to
the above mentioned environment I'.

Intuitively the use of types constrain the behaviour of processes, ensuring no
misuse of channels. By defining sophisticated forms of types process behaviour
can be more or less constrained, while at the same time the advantages of well-
typing can be preserved. For example a form of polymorphism is investigated
in [19], while in [12] security levels are associated with capabilities, to obtain
so-called security types. Suppose we have two security levels, high, denoted
by top, and low, denoted by bot. Then we would have capabilities of the form



Feop( L), Tbot{T), Wiop(T), Wpot(T), where T in turn a security type. By varying
the precise definition of a security type we can either implement resource
access control methodologies, or ensure forms of non-interference, [2,9,7]. In
this paper we will be concerned with the latter, using a mild variation of
the I-types of [12]; essentially types are sets of read/write capabilities, where
in addition each capability is annotated by a security level taken from some
complete lattice (SL,<,M, L, top, bot). We will refer to the asynchronous 7-
calculus, augmented with these types, as the security m-calculus.

The statement of non-interference results requires some definition of process
behaviour; intuitively a system is interference-free if it’s low level behaviour is
independent of changes to high-level behaviour. The main topic of this paper
is an investigation of the notion of behaviour of process, relative to a security
level, for the security m-calculus.

Process behaviour is relative to some typing environment I' and therefore we
wish to develop a relation of the form

s P~Q

meaning, intuitively, that in the typing environment I', both P and @ exhibit
the same o-level behaviour. By this we mean that a o-level observer will
be unable to discern a difference between P and (). For example low-level
observers will be unable to see any high-level actions performed by P, Q.
But more importantly we assume that these observers are constrained by the
typing environment [' and therefore actions disallowed by this environment
will also be invisible to observers.

For example suppose the channel a is not in the domain of I'. Then we would
expect

'>% al(v) | bl{w) ~ bl{w)

regardless of the value of o because no observer, well-typed with respect to I,
will be able to interact with P along the channel a. More generally this will
also be true if I' associates with a only an output capability. Similarly if I’
only associates with it an input capability we will have

'e?Qla?(z)T ~ Q
for any process Q.

In this paper we investigate may and must testing equivalences, [17,10] for
the security m-calculus. In particular we give an alternative characterisation
of these behavioural equivalences which, as might be expected from [17,10],
are based on the sequences of actions that a process can perform. But here
these sequences are relative to both a security level and a typing environment.



Unfortunately the situation is even more complicated, as the typing environ-
ment of the observer and that of the process being observed may not in general
be the same. For example consider the term P, given in (%) above. To be well-
typed relative to an environment I', I' needs to associate appropriate types
with the free names of P, namely req and s. Now consider a computation
involving an observer, also well-typed with respect to I, interacting with P.
After an interaction on the channel req the process evolves to P;:

(newr:R) sl{v,r) | r?(z)b!(z),

for some value v and channel b sent by the observer. At this stage both the
observer and the observed process P; can still be typed relative to I, as both
v and b must have been known to the observer, and therefore be typeable in
I'. However now the observed process generates a new channel r, with type
R = {r(int), w(int)}. But because of the type associated with s in T, r is
only sent to the observer with the subtype consisting of the one capability
w(int). Subsequently the observer is working relative to I',r:{w(int)}, the
environment ' augmented with a new entry for r, whereas the observed process
is working with respect to the different environment I, r:{r{int), w(int)}.

In general the observed process and the observing process will be constrained
by related but different environments.

Our characterisation of the behavioural equivalences will be based on what we
call a Context Labelled Transition System. Here actions take the form

AP 5 T A's P

indicating that in the typing environment A the process P can perform the
action p to interact with some o-level observer which in turn is type-able in
the environment I'; this action may change the typing environments of both
the observer and the observed processes, to I'" and A’ respectively. If the type
environments [' and A satisfy some minor conditions, (are compatible), we
say that the above judgement is an action in contert. May equivalence will be
characterised in terms of appropriate sequences of such actions in context while
must equivalence will also require the development of appropriate notions of
acceptance sets.

The remainder of the paper is organised as follows. In Section 2 we formally
define the syntax of the security m-calculus, together with its (standard) oper-
ational semantics. This is followed, in Sub-section 2.3, with a range of typing
systems. In the most straightforward we have the judgements

re=pP

where ' is a type environment, associating types to channel names and vari-
ables. This means that relative to I', P uses its channels correctly as in-



put/output devices, ignoring their security annotations. We also have judge-
ments of the form
't P

o

which indicates that in addition P uses channels with security level at most
o. Similarly we have a typing relation

repP

indicating that P uses channels with at least security level o. Indeed we can
go further, designing relations such as I' , P or I' *° P where the read
capabilities or the write capabilities of processes are independently constrained.
For all of these typing relations Subject Reduction is easily established.

Section 3 is the heart of the paper. First the behavioural preorders and equiva-
lences are defined, by adapting the standard framework, [17,10], to the security
m-calculus. We obtain the relations

I'>y P~y Q

and
r Do P Zmust Q

indicating that P and @ can not be distinguished, relative to may/must ex-
periments respectively, by any testing process 7" such that I' ; T, that is any
test running at security level at most o, relative to the type environment.
This is followed by an exposition of the Context LTS, actions in context and
their properties. Sub-section 3.3 then contains an alternative characterisation
of ~pqy in terms of sequences of actions in context, while in Subsection 3.4
we give a much more complicated characterisation of ~,,, .

One benefit of having behavioural equivalences relativised to security levels is
that non-interference results can be stated succinctly. Section 4 contains two
such statements, and their proofs. The first gives conditions ensure that

>y P gy Q implies ', P | H gy Q | K.

It turns out to be sufficient to require that the read capabilities of P and @
be bounded above by o, that is I' k5, P, @, and that the write capabilities of
H and K be bounded below by some § & o, that is ' **° H, K.

This is quite a general non-interference result. For example in the case where
Q@ is P and K is the empty process 0 we obtain

Toy P ey P | H

indicating that, under the conditions of the theorem, the process H can not
interfere with the behaviour of P.



This result is not true for the must equivalence. As explained in Section 4, this
is because our types allow contention between processes running at different
security levels over read access to channels. However by restricting the type
system, allowing only single level types, we show that the same result holds for
~ust; these types only allow a channel to be used either for communication
between security levels, or for communication within a given security level,
but not both.

The paper ends with a brief survey of related work.

2 The Language

In this section we define the language, its operational semantics and the typing
system with which we will be concerned.

2.1 The Types

We presuppose a complete lattice (SL,=,M, L, top, bot) of security annota-
tions, ranged over by o, p,.... For each ¢ we assume a set of basic types at
that level, of the form B,. If the security annotation is omitted, as in int,
then we assume it has security level bot; as we shall see values of these types
are available to all processes. Also, as explained in the Introduction, a o-level
channel type, for channels accessible to processes with security clearance at
level o, consists of a set of o-level capabilities, i.e. a subset of Cap,. These may
either be a read capability, of the form r,(T), for some appropriate p and T,
or a write capability, of the form w,(T). These capabilities are constrained by
consistency requirements. For example since values with the capability w, (T)
are written to by o-level processes we require that T in turn be a o-level type.

Types, i.e. sets of capabilities, are also constrained. For simplicity in a given
type we only allow at most one write capability, and for each level o at most
one read capability at that level. More importantly we ensure that, relative
to security levels, only write-ups, [9,2], are allowed by requiring that if w,(T)
and r,(S) are in a type then p < p'; the additional constraint that T be a
sub-type of S is well-known [19,13]. The formal definition is as follows:

DEFINITION 2.1. (Types, Capabilities and Subtyping) Let Type,, Cap, be the



least sets, and <:, consistent the least relations, which satisfy:

(RT-BASE)

o - P20

B, € Type,

(RT-WR) (RT-RD)

A € Type, A € Type,

N - A 0X2p

w,(A) € Cap, r,(A) € Cap,

(RT-WRRD) (rRT-TUP)

—S gﬁn Capo, S consistent Ai < Type(, (W)

S € Typeo (Ah SRR Ak) € Typea
(U-WR) w,(A) < w,(B) if B<: A
(U-RD) rs(A) < ry(B) ifA< B
(U-BASE) B, < B, ifo <p

(U-RES) {cap;}ier < {capl;}jes if (Vj)(3i) cap; < cap]
(u-TUP) (Ay,...,Ag) < (By,...,Bg) if (Vi) A; < B;

The set of capabilities Cap is consistent if

(a) wy(A), w,(B) € Cap implies 0 = p and A is B
(b) rs(A), r,(B) € Cap implies A is B
(c) wy(A), r,(B) € Cap implies A <: B.

These types correspond very closely to the I-types of [12]; the rule (RT-RD)
ensures that only write-ups are allowed, from low-level processes to high-level
processes. But we allow multiple read capabilities, which will enable us to
be more flexible with respect to allowing/disallowing reading from a channel
at different security levels. However subtyping is more restrictive; unlike [12]
they can only be sub-typed at the same security level; r,(A) <: r,(B) only if
o = p. Nevertheless this is compensated for in the existence of multiple read
capabilities.

EXAMPLE 2.2.

e The set {Wpot(int), rpe (int), rop(int) } is a bot-level channel type, that is
an element of Typeyq; that is channels of this type may be transmitted on
bot-level channels. In turn these channels may be written to by a bot-level
process or read by either a bot-level or a top-level process.

e The type {wpot (int), ryop (int) } restricts reading from the channel to top-level
processes, although bot-level ones can write to it.



o The set {wiop(int), rpet(int), rop(int)} is not a valid type as it contains a
read capability at a lower level than its write capability.

e The set {wyop (int), reop(int) } is a top-level type but not a bot-level one; that
s, it is in Type,,, but not in Typey,.

PROPOSITION 2.3. For every o, Type, is a preorder with respect to <:, with
both a partial meet operation I and a partial join L.

Proof. The (partial) functions M and U are defined by structural induction on
types. They are determined by the clauses

re(A) Mr (A"Y = r, (AN A")

o (A) T (AY) = {rs(A), rp(A)}
Wy (A) Mw,(A"Y = w,(A LAY

(o (A) Uy (AT) = 1, (A L1 A"
wo(A) Liwg (A') = wy (A 11 AV

and these definitions are extended homomorphically to tuple types. [

Multiple read capabilities in a type, such as {Wpet(int), rpo(int), riop(int)},
allows processes at different security levels to read from the same channel. We
can eliminate such contention by using a restricted set of types.

DEFINITION 2.4 (SINGLE-LEVEL TYPES). Let SIType be the least set of types
obtained by changing the second condition in the definition of consistent of
Definition 2.1 to read:

r,(A),r,(B) € Cap implies p = o and A is B.

Note that these types still allow communication from low-level processes to
high-level processes. We leave the reader to check that these types, ordered
by <: also has both partial meet and join operations.

2.2 Syntax and Operational Semantics

The syntax of the w-calculus, given in Figure 1, uses a predefined set of names,
ranged over by a, b, ... and a set of variables, ranged over by x,y, z. Identifiers
are either variables or names. We also assume a set of basic values, ranged
over by buv, each of which belong to a given basic type.

The binding constructs (newa:A) @ and u?(X : A) @ introduce the usual no-
tions of free names and variables, fn(P) and fv(P), respectively, and associated



Fig. 1 Syntax

XY == Patterns
P,Q = Terms
T Variable
ul(v) Output
X1,..., X Tuple
u?(X:A)P Input (% ¥ P
if u = v then P else ) Matching
U, V, W 1= Values
(newa:A) P Name creation
bv Base Value
P|Q Composition
a Name
*x P Replication .
x Variable
0 Termination
(U1, .., ug) Tuple

notions of substitution and a-equivalence, =, are defined as usual. Moreover
the typing annotations on the binding constructs are omitted whenever they
do not play a role, as will most occurrences of the empty process 0.

The behaviour of a process is determined by the interactions in which it can
engage. To define these, we give a labelled transition semantics (LTS) for the
language. The set Act of actions, is defined as follows:

o= Actions
T Internal action
a?lv Input of v on a
(¢:C)alv Output of v on a revealing private names ¢ (¢ C fn(v))

Visible actions (all except 7) are ranged over by «, 8 and if « is an output
action we use £(a) to denote the bound names in «, together with their
types: £((¢: C)alv) = (&: C). Further, let n(u) be the set of names occurring
in y, whether free or bound. We say that the actions ‘a?v’ and ¢(¢: C)alv’ are
complementary, with @ denoting a complement of «.

The LTS is defined in Figure 2 and for the most part the rules are straightfor-
ward; it is based on the standard operational semantics from [16], to which the
reader is referred for more motivation. Note that in the communication rule
(L-com) it is assumed that « is an output action; we omit the corresponding
symmetric rule, in which @) performs the output. The last part of the rule
(L-¢TXT) uses a standard structural congruence over terms. This is defined
to be the least equivalence generated by the axioms given in Figure 2, which
extends =, and is preserved by the static operators (| and (newa) ). Note
that because of this rule structurally equivalent processes can perform exactly



Fig. 2 Labelled Transition Semantics

(L-ourt) (L-IN)

al(v) 4% 0 a?(X) P 4% P{vx}

(L-OPEN)

P ¢:Claly, P’ b;éa
(newb:B) P (b:B)(c:C a!v; P! bEfn(’U)
(L-com)

P2 P, Q-5 (Q
P1Q = (new€(a)) (P'[ Q)

(L-EQ)
. ; u # w
if w =u then P else ) — P if uw =w then P else ) - @
(L-cTXT)
P -5 P! P - p! b c
P PP P|Q& g o Em@

QIP Q| P
P -5 P’ ¢ n(u)

n

(newa:A) P 45 (newa:A) P @
P=Q, Q4% P
P - P!

The structural congruence axioms:

(S-NEWNEW) (new a)(newb) P = (newb)(newa) P ifa #b
(S-NEWPAR) P |(newa) @ = (newa) (P | Q) if a & fn(P)
(s-comm) PlQ=Q|P

(S-ZERO) P|0 =P

the same set of actions.

We end this sub-section with a result which emphasises the asynchrony of
message reception:

LEMMA 2.5 (ASYNCHRONOUS ACTIONS). IfP (e:Claly, Pl yhop P = (new é: C) (al(v)]
P").

Proof. By induction on the derivation of P (e:Claly, pr - [

10



Fig. 3 Typing Rules

(T-1D) (T-BASE) (T-TUP)

T(u) < A bv € B, Thou:A (Vh)

'Fu:A I'Fbv:B, I'F (v1y..oy0) ((Aq, .0y Ag)

(T-EQ)

(T-IN) (T-out) 'Fuw: A, v:B

I X:AFP Tk u:iw,(A) T-Q

IC'Fur,(A) F'Fov:A Fn{u:B,v:A} - P

FFu?(X:A)P  T'Ful{v) 'k if u = v then P else Q
(T-NEW) (T-STR)
T a:AFP TP Q

'k (newa:A) P TFP|Q,*P,0

2.3 The Typing System

A type environment is a finite mapping from identifiers (names and variables)
to types. We adopt some standard notation. For example, let I, u: A denote
the obvious extension of I'; I', u : A is only defined if u is not in the domain of I'.
The subtyping relation <: together with the partial operators M and LI may also
be extended to environments. For example I' <: A if for all u in the domain of
A, I'(u) <¢ A(u). We will normally abbreviate the simple environment {u: A}
to u: A and moreover use v: A to denote its obvious generalisation to values;
this is only well-defined when the value v has the same structure as the type

A.

The first typing system is given in Figure 3, where the judgements take the
form
re=rp

Intuitively this means that the process P uses all channels as input/output
devices in accordance with their types, as given in I'. It is the standard typing
system for the m-calculus, [19,13], adapted to our types; note that the security
levels on the capabilities do not play any role. The rule (LT-EQ), which uses
the partial meet operator on type environments, is explained in detail in [13],
where it is argued to be useful for capability-based type systems, such as ours.

We can also design a type inference system which not only ensures that chan-
nels are used according to their types but also controls the security levels of
the channels used. One such system is given in Figure 4, where the judgements
now take the form

re P

o

This indicates that not only is P well-typed as before but in addition it uses
channels with security level at most o. (This corresponds to the typing sys-

11



Fig. 4 Security Typing Rules

(LT-EQ)
(LT-IN) (Lr-ouT) '+ U,ZA,’U:B
IX:ALP oA Tt Q
C'Fu:rg(A) I'Fuiwg(A) IFm{u:B,v:A} L P
00 ————— 0=x0 :
FEu?(X:A)P I'E ul(v) ' if w = v then P else
(LT-NEW) (LT-STR)
Ta:AL P TEPQ
L'k (newa:A) P 'L P|Q,*P,0

tem used in [12].) The only difference is in the input/output rules, where the
security level of the channels used are checked. For example I' k. a!(v) only
if in [' the channel a can be assigned a security level 6 < ¢, in addition to
having the appropriate output capability in I'.

We can also design a typing system
repP

which which ensures that P uses channels with security level at least o. The
only change is to demand in the input/output rules that o < §:

(HL-IN) (HL-0UT)
IX:A¥EP 'Fwv:A
'Fuwu: I’5<A> I'-wu: Wdelta<A>

og=<4

o=<4d

FEu?(X:A)P 'k ul{v)

We can provide further mix and matches. For example the type system
'k, P

ensures that all channels from which values are read have a read capability
of at most o; the security level of the output channels is unexamined. This
system is obtained by using the rules in the original Figure 3 but with the rule
(T-IN) replaced with (LT-IN); the output rule is left unchanged. In a similar
manner we can define relations I',, P, ' P and I' M P.

THEOREM 2.6 (SUBJECT REDUCTION).  Let I represent any of the rela-
tions, -, k&, k., ¥, k., ¥ and suppose A+ P. Then

o P13 Q implies AIFQ

o P 9% Q implies there exists a type A such that rs(A) € A(a) and if AMv: A
is well-defined then ATMv:AlF Q.
Moreover 6 < o when |- ist; ork, and o <6 if it is ¥ or .

12



o P (E:Claly Q implies there erists a type A such that A+ a:ws(A), A,é:CH
v:A and A,¢:CIF Q.
Moreover 6 < o when |- ist; ork, and o <0 if it is ¥ or F*°.

Proof. Similar to that of Theorem 3.5 of [12], although in the case of the action
a?v, the conclusion is a little stronger. However the proof is straightforward.
For example consider the case when P is the term a?(X :B) R, the move is
a?(X) R 4% R{vx} and A k5 P. From the typing rules we have A - a:rs(B)
for some 0 < 0 and A, X : B F, R. From the former we know that there exists
some A <: B such that rs(A) € A(a); from the latter, and Subsumption, we
have A, X : A k£ R. A standard Substitution Lemma can now be applied for
any v such that AMwv:A is well-defined to obtain AT wv:A kL R{vx}.

d

3 Behavioural Theories

In this section we develop two behavioural theories of typed processes, based
on the general testing theories of [17,10]. In the first section we adapt the orig-
inal definitions from [17,10] to our language. This is followed by a subsection
defining the Context LTS alluded to in the Introduction. Two further subsec-
tions use this LTS to determine the may and must versions of our behavioural
equivalence.

3.1 Testing Processes

A test or observer is a process with an occurrence of a new reserved resource
name w, used to report success. We let T' to range over tests, with the typing
rule I' k; w!() for all I'. When placed in parallel with a process P, a test may
interact with P, producing an output on w if some desired behaviour of P has
been observed. We write

P may T
T | P —=s* R for some R such that R can report success, i.e. R %5 The
stronger relation

P must T

holds when in every computation
T|\IPH5R-5H... R, 5.
there is some Ry, k > 0, which can report success.

We can obtain a testing based behavioural preorder between processes by
demanding that they react in a similar manner to a given class of tests. Here

13



Fig. 5 Context LTS

(c-our)

rs(A) € I'(a) 5<o
[Abal(v) 2%, TNo:A; A0~

(c-IN)

I'Fa:ws(B)

'Fv:B §=<o

[A>a?(X:A)P %, T;ANv:Ap P{yx} B< A
(c-OPEN)

;A b:Bp P Qs T A" P! b+a

T;Ab (newb:B) P Qe 17 A7 P! b e fn(v)

(c-EQUIV)
(c-RED) F; A P s, F'; A'> P!
Py P P=Q
AP 5, T A P AP Q 5, T A P

(c-cTxT)

AP 2, T A'> P!

AbxP 5, T A'>xP | P
A P 425, T A's P/

F;ADP‘Q—“—)U F';A'DP'|Q bn(u) ¢ fn(Q)

TAbQ| P 45, T A >Q | P!

Fa:A;Aa:A> P 45, T a:A; A a:A> P
a & n(u)

A (newa:A) P45, T A’ (newa:A) P’

we choose the class of tests which are well-typed and use channels from at
most a given security level o; that is we require that processes react in the
same manner to all tests T such that I' k5 T.

DEFINITION 3.1 (TESTING PREORDERS). We write ' >, P Ty Q if for
every test 1" such that I' ;, T, P may T implies () may T'.

Similarly I' >, P T ,,ust () means that for every such 7', P must 7' implies
@ must 7.

We use ~qy and ~,,s denote the related equivalence relations.

So for example setting o to be bot, I' bpoy P 4y (2 means that in the type
environment [', P and () are indistinguishable by low-level observers, from a
may testing point of view.

14



3.2 The Context Labelled Transition System

It is well-known, [17,10], that testing equivalences are closely related to the
ability of processes to perform sequences of actions. We have explained in the
Introduction that here we need to relativise these sequences to security levels
and to a pair of typing environments, one for the observer and one for the
process being observed.

The rules for the Context LTS, are given in Figure 5. The judgements take
the form
AP L, T A'> P

This judgement should be understood as expressing the fact that:

The process P, in it’s current type environment A, when run concurrently
with any observing process 7" such that I' i; 7T, can perform the action
. This will transform P into P’ and may also transform the current type
environment to A’ and that of the observing process to I'".

Note that judgements are a more explicit form of the typed actions, developed
in [11] for m-calculus. These actions can take three forms:

internal move: I'; A> P 5, I'; Ax P’ This corresponds to an internal move
by P, which does not depend on its environment. These moves are com-
pletely determined by the semantics given in Figure 2; see the rule (C-RED).

input move: ;A P 2% T'; A’ > P' Here the observing process sends a
value v to P along the channel a. The type environment of the observing
process does not change, but that of P may be augmented by knowledge of
v of which it was previously unaware. An appropriate write capability on a
is required of the observing process for the action to take place; see the rule
(C-IN).

output move: I'; A P {8a% V- A’ P’ Here P sends a value v along the
channel a to the observing process, and typically the observers type en-
vironment I" will be augmented with knowledge of v. However the type
environment of P may also be increased by associating with the new iden-
tifiers (¢) their declared types; this is implemented in the rule (C-OPEN).
Here an appropriate read capability is required of the observing process for
the action to take place; see the rule (c-ouT).

The rules in Figure 5 are straightforward and only the first two deserve com-
ment. (C-IN) states that a?(X :A) P can receive v along a from a o-level
observer provided the observer has a write capability on a at a level at most
o, and it has the value v at an appropriate type. (C-OUT) is more subtle. In
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principle the observer could receive v from the observed process a!{v) at any
type B such that I - a:rs(B), where § < 0. However to eliminate much po-
tential nondeterminism in the LTS our rule dictates that for a given § < o the

observer receives v at the minimum B such that I F a : rs(B); this is the type
A such that rs(A) € T'(a).

Note that in the output actions we do not record the types of the bound names.
These we only required in Figure 2 in order to implement communication
between processes; see the rule (L-cOM). Here we do not need to formalise, at
least directly, communication between the process P and its observer.

We can describe precisely the form these judgements can take:

LEMMA 3.2. Suppose I'; AP 5, T"; A'> P,

w=r: Here I" =T and A" = A.

u=a?v: Here ' = T while A" = ANv:A for some type A such that T' -
v:B, a:ws(B), for some § <o and B < A

pu=(¢)alv: Here A' = A, ¢:C for some sequence of types C such that A, ¢:C +
v:A, whileT' =T Mwv:A for some A such that rs(A) € T'(a), where 6 < 0.

Proof. Straightforward rule induction on I'; AP 45, T, A'> P, O

However we are only interested in a subset of the possible judgements which
can be derived from the rules in Figure 5. We say that the two type environ-
ments I' and A are compatible if

o I'M A exists
e domain(A) C domain(I').

The main property of this relation is given by:

LEMMA 3.3. Suppose I' and A are compatible. Then I' - a:w,(A) and A +
a:ry(A"y imply A< A" and p < p'.

Proof. Simple calculation. [

The triple I'; A > P is said to be a configuration if

e [' and A are compatible
o AFP.

When this is the case we will refer to the judgment I'; A P -5, T"; A'> P’
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as an action in context.

Configurations are preserved by these actions:

LEMMA 3.4. IfT; AxP -5, T7; A'vP' is an action in context then I'; A'> P’
is a configuration.

Proof. From Lemma 3.2 we know exactly the form I'' and A’ can take, de-
pending on u. In each case it is straightforward to show that they are com-
patible. The simplest way to show that A’ = P’ is using rule induction on
A P4, T AP O

In future we will limit our attention to judgements I'; A> P £, T'; A'> P/,
which are actions in contexrt. This has important consequences, in the case
when 4 is an output action (&:C)alv. It means that the only new names
gained by the observer, that is names in the domain of I” which are not in
that of I'; are ¢. In other words if w is an identifier in v which does not occur
in ¢ the observer already knows about it. However the action may increase the
type at which the observer knows w. It is also worth noting that the two rules
(c-IN) and (C-0OUT) are apriori partial; that is (C-IN) can only be applied if
AMuv:A is well-defined while (c-0UT) requires I' T v: A to be well-defined.
However it is easy to show that for actions in context these environments are
in fact well-defined whenever the corresponding premises hold. Moreover in
(c-IN) the side-condition B <: A may be omitted as it is always satisfied.

We can also determine the circumstances under which the unconstrained ac-
tions, from Figure 5, can give rise to actions in context.

LEMMA 3.5. Suppose P 5 Q) and let I'; A> P be a configuration.

p=r71: Here ;A P T, T A Q

p=a?v: Here if T F v:B, a:ws(B), where § < o then I; AP 4% T A
v:Ap Q for some A such that B < A.

p=(¢:C)alv: Here if rs(A) € I'(a) for some § < o then I'; A > P {Qaly
Fmov:A;AE:CoQ.

Proof. By ruleinduction on P -5 (). We examine the case when p is (¢: é)a!v,
where the induction requires a weakening of the hypothesis, namely that
AF P and ' A exists.

e Suppose P 5 @ is inferred using (L-OUT). We can immediately apply
(c-ouT) to obtain the required T; A > P 4% TI'Muv:A; A Q, provided
['Mwv:A exists.

However P has the form a!(v) and from A + P we know that A F
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v:B,a:w,(B) for some B. Applying Lemma 3.3 we obtain B <: A. Then it
is easy to show the existence of [' M wv: A from the fact that A and ' are
compatible.

e Suppose P -5 (@ is inferred using (L-OPEN), that is

(newb:B) P’ (b:B)(e:Claly,

because P’ {&Ckaly 0

A F P implies A,b:B F P' and the existence of I' 1T A also ensures
that of I' M A,b:B. In short the (weaker) inductive hypothesis holds of
['; A, b: B> P and therefore by induction we can obtain the action in context
;A b:Bp P Qe O An application of (C-OPEN) gives the required
I; Ap p D@y

0

Note that in actions in context T'; A> P -5, TV; A'> (@ the resulting environ-
ments, A’; T, are not in general determined by I" and A. The change in the
environment of the observed process, the change from A to A’, is determined
by the declared types of new names introduced by the process. For example
consider

P, = (newc:Cy) al{c)0, P, = (newc:Csy) al{c)0,

where C; are two different types. Then, assuming I, A have appropriate ca-
pabilities associated with a, we have

[A> P des TA ¢:Ci >0
[;AD PpyLdels T'A ¢:Cyn0

The reason for this lack of determinism is that the types of bound names
are not recorded in the actions in context. However were we to record their
types we would then have processes which are obviously behaviourally indis-
tinguishable, P, and P, for example, which would have different actions in
context.

The lack of determinism of the observers type environment, the change from
' to IV, will however play a role in the next section. This arises because of the
rule (c-ouT) in Figure 5. In general I'(a) may contain two read capabilities,
rs, (A1) and rgs, (As), in which case I may take either of the forms I'Mwv: A, or
['Mwv:As. However by restricting ourselves to single-level types this problem
does not arise.

We say [ is a single-level environment if it only uses single-level types. For
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such environments we can define the partial predicate I' after, s by induction
on s as follows:

s =¢: Here I' after, s =T

s =a?v-s': Here I' after, s =T after, s

s = (€)alv - '+ Here I after, s is only defined if rs(A) € I'(a) for some 6 < o,
in which case it is (' M v: A) after, s'.

LEMMA 3.6. If['; ApP =25, IV; A'vQ, where I is a single-level environment,
then T after, s is defined and I = T after, s.

Proof. By induction on the derivation of I'; A P -5, [ A'>Q. O

3.3 May testing

In this section we give a characterisation of the relation I'>, P L0y Q-

Actions in context are generalised to (asynchronous) traces in context as fol-
lows:

DEFINITION 3.7 (TRACES). Let ['; Ap P =%, ['; A'> P’ be the least relation
such that:

(TR-T)

AP S, T A" > P (TR-¢)

I"A'> PP =, T";A"> P"

A> P =, T A" P A P=,T;A>P
(TR-@)

AP -2, T A > P
I A'p P =2, TV A" > P
[;Ap P s TV A"p Pl

(TR-ASYNC)
'Fv:A
CyAMv:ANa:ws(Ay> P|al{v) =, ;A" > P" 5 <
[;Ap P s T A"p P! -

Note that, for simplicity, we have allowed some redundancy here. The rule
(TR-), where « is an input action a?v, can actually be derived from (TR-ASYNC)
and (TR-T).
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We now show how interactions between a process P and a o-level observer T',
that is a computation from 7" | P, can be decomposed into a trace in context
from P and the complementary sequence from 7'. It will become clear that it is
sufficient to only consider new free observers, that is observers which contain
no occurrence of the binders (newa) .

THEOREM 3.8 (TRACE DECOMPOSITION). Let I'; A P be a configuration
and suppose T | P —5* R for some new free observer T such that T' ; T.
Then there exists a trace in context

A P =, T A's P
and a derivation T = T', where R has the form (newé:C) (T' | P').

Proof. By induction on the derivation of T'| P ——* R. Consider the non-trivial
case when this is of the form T'| P ——»-* R. There are essentially three cases:

e Output from 7T to P. In this case we have T 2% T}, P 4'% P and T} |P, —=+*
R.
['k T means I' - v:B, a:ws(B), for some § < ¢ and B, and so we may
apply Lemma 3.5 to obtain the action in context

;AP 4% TAMNv:AD Py

for some B <: A. Moreover the compatibility of I' and Arv: A follows from
that of I' and A.

Subject Reduction implies that I' ; 7} and therefore we may apply in-
duction to obtain

TAB P =, T A > P and T, == T'

where R has the form (new é: C) (T" | P'). The required s is a?v - 5.
e Output from P to 7. In this case we have T' 2% T, p (&€ p - and
T, | P, —=* Ry, where R has the form (newé:C) R;.
Here I' & T implies I' F rs(A) for some § < ¢ and so we can apply
Lemma 3.5 to obtain the action in context

;AP @eds Pry:AAé:Co P

Also by Subject Reduction we know I'Mwv: Ak Ti. So we may apply induc-
tion to obtain a trace in context

IFnv:A;AE:Co P =5, T A'> P,

and the reduction T} = T". The required s in this case is (é)alv - 5.
e Internal actions by P or T. In this case a simple argument by induction
suffices.
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O

The converse is more straightforward:

THEOREM 3.9 (TRACE COMPOSITION). Suppose [5A> P =, I";A'> P
and T = T' for some s. Then there exists a derivation T | P =" R, where
R has the form (newé:C) (T"| P').

Proof. By induction on s. [

Refering to the statement of this theorem note that Subject Reduction ensures
that A’ F P'. However in general we do not have that [V k5 1", even under the
assumption I' k. 7T'.

ExAMPLE 3.10. Let P, T be the processes (new c: C) al{c) and a?(x: Ag) z!{)
respectively and let I'; A map a to the type {rs, (A1), rs,(A2), wpot(C)}, where
Ay, Ay, C are the types rpor(), Woot(), {A1, Aa} respectively; here we assume
0; < 0. Then

T

o

AFP
[;AbP L8 T c:AA'S0
T 5 cl)

but T', c: Ay t£ ().

The problem lies, again, with the use of multi-level types, as in the example
a may be read at the two levels, 01, 0s.

LEMMA 3.11. Let T be a single-level environment. Suppose I' 5 T and I"after,
s is defined. Then T ==> T" implies T after, s 5 T".

Proof. By induction on s. [

This Lemma may now be applied to the conditions of the Trace Composition
Theorem, Theorem 3.9, to ensure when I is a single-level environment we can
also conclude that I k; T7; here IV can only be I after, s.

We may now state a sufficient condition to ensure two processes are related
with respect to may testing.

DEFINITION 3.12. For any configuration C let Ase¢”(C) = {s|C =%, }
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PROPOSITION 3.13. Suppose A+ P, QQ, where ' and A are compatible. Then
Aseq’(I'; A P) C Aseq’ (I A Q) implies Ty P 5 gy Q-

Proof. First notice that to show I'>, P Ly @ it is sufficient to consider
new free observers T such that I' &, T. For given any other test 7" there exists
newfree T such that 7' = (newé:C) T and 7" | P can eventually report a
success if and only if 7" | P can.

So suppose P may 7', where 7" is a new free test such that ' i; 7. Then there
exists a computation 7| P —* R, where R can report a success. Because I'; A
P is a configuration Theorem 3.8 can be used to obtain the decomposition into
a trace 1n context

AP =, 1A' P
and a sequence T =% T", where R has the form (newé:C) (1" | P').

Since Aseq” (['; A P) C Aseq’ (T'; A @) there exists a corresponding trace in
context from @,

CAPQ =, T A Q.
Trace Composition, Theorem 3.9, can now be used to recombine this with
T =% T’ to obtain a successful computation from 7| Q. O

To prove the converse we need to design tests which can detect the ability
of processes to perform traces in context. Specifically we will construct a test
T(T,s,0), a newfree process such that I' &, T'(T, s, o), with the property that
P may T (T, s,0) if and only if there is some A such that ['; A> P =%, Note A
will not be used in the definition and the tests will only be defined for certain
combinations of I" and s.

For convenience we only consider traces in which only simple identifiers are
output, rather than vectors; that is the output actions are of the form alv or
(¢)ale. The generalisation to general output actions of the form (¢:C)alv is
very straightforward, but notationally complex. The definition of T'(T, s, o) is
by induction on s.

e: T(T,e,0) is wl().
a?v - s: In this case the test is defined only if
- there exists some 0 < o such that I' - a:ws(A) for some type A such that
F-v:A
- T(T, s,0) is defined.
If this is the case then T'(T',a?v - s,0) is defined to be

al(v) | T(T,s,0).

a'v - s: Here the test is defined if
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- v € domain(T")
- there exists some type A such that rs(A) € I'(a) for some § < o
- T(I'Mwv:A,s,0) is defined.
For each such A let T (I',alv - s,0) be the test
a?(z:A)if x =vthenT(I'Mv:A s,0)else 0
Then the required test is
Ta,(T,alv-s,0)@...@Ta, (I',alv - s,0)

where A; ... Ay is the set of all types which satisfy the conditions above and
@ represents an internal choice operator. This is easily definable by

T U = (newe:C) () | 70T | c?() U)

where C is the type {w, (), r;(}}.
(c)alc - s: Here the test is defined if
- there exists some type A such that rs(A) € T for some § < o
- T(T,c: A, s,0) is defined.
Here again T'(T', (¢)alc - s,0) has the form

T, (T, (e)alc-s,0) @ ... Ty, (T, (c)alc - s,0)

where A; range over all the types satisfying these conditions. For such an
A, TA(T, (¢)ale - s,0) given by

a?(z:A)if x € I(I', A) then 0 else (T'(T',c: A, s, 0)){*c]}

where I(I'; A) is the finite set of identifiers {u | I' F uw:A} and if z €
I then P else () represents the obvious nested if then else structure.

The required properties of these tests are collected in the following Lemmas.

LEMMA 3.14. IfT(T, s,0) is defined then

'L T(T,s,o)
T(T,s,0) == R, where R 2%

Proof. By a straightforward induction on s, although there are considerable
details to be checked. For example when s has the form alv - s’ then for I' &
T(T',s,0) to be true it is essential that v to be in the domain of I'. O

LEMMA 3.15. If there exists some P and some A such that I'; AP =% then
T(T,s,0) is defined.
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Proof. By induction on the judgement I'; AP =%. As an example we consider
one case, when it has the form

D;ADP 2% PMv:A;Ab P =5
where rs(A) € T" for some A and § < 0.

By induction we know T'(I' Mv: A, s’ o) is defined. From Subject Reduction
we know A F v:A and since I' and A are compatible we have that v is in
the domain of I'. So for at least one A the test Ty (I, alv - §',0) is defined. It
follows that T'(T',alv - §',0) is also defined. [

It therefore follows from the Composition Theorem that I'; A > P =% implies
P may T(T', s,0). We also have the converse:

LEMMA 3.16. Suppose T(T',s,0) exists and I'; A> P is a configuration. Then
P mayT(T,s,o) implies T'; A> P =%,

Proof. By induction on s, and by way of example we consider the case when
it has the form alv - s'.

By examining the form of T'(T', 5, o) it must be that P —+*2% P’ for some P’
such that P’ may T(I'Mv:A, s’ o) for some A such that rs(A) € I'(a), where
0 <o.

Subject Reduction means A F P’ and therefore it is easy to check that ' M
v:A; A> P'is a configuration. So we may apply induction to obtain

FMov:A;Ap P =2

Lemma 3.5 gives
[ABP ¥ a8 Ty A; A P

and the result now follows by (TR-a) in Definition 3.7. O

It therefore follows that

THEOREM 3.17 (ALTERNATIVE CHARACTERISATION OF MAY TESTING). Suppose
At P,Q, and I' is compatible with A. Then I' >, P Trgy Q if and only of

Aseq’ (I A P) C Aseq’ (I A Q).

Proof. The sequence of Lemmas establishes that whenever I'; A > P is a con-
figuration,

['As P = if and only if (T(T, s, 0) exists and P may T'([', s, 0)).
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This is all that is required to prove the converse of Proposition 3.13. [

3.4 Must Testing

In this section examine the relation I' >, P L, @Q; in particular we give
necessary and sufficient criteria for ensuring I'>, P T, ), based on traces
i context.

The extra ingredients required to capture must testing, in addition to traces,
are well-known from [17,10]; they include a convergence predicate, indicating
that a process has no internal infinite computations, and acceptance sets, in-
dicating the next possible actions in which a process can engage. Here these
need to be generalised from processes to configurations; they must also be
relativised to security levels.

DEFINITION 3.18 (CONVERGENCE). We say the configuration C converges,
written C |}, if there is no infinite sequence of derivations

C5C ... 0D

This relation is then parameterised to sequences in context and security levels
by

e: CYifC |
s = (&)alv-s': C° sif C | and whenever C L8458 ¢’ ¢’ ||7 5.
s=alv-s': C|7 sif

e 'Fa:ws(A),v:A for some § <o

e AMv:ANa:ws(Ay>al(A) | P 7 ¢

Note that the requirements in the input case are taken directly from the
rule (TR-ASYNC). Note also that for a configuration I'; A > P whether or not
it converges is actually independent of the typing environments I' and A;
it is only dependent on the semantics of P as given in Figure 2. However
convergence relative to a sequence in contert is in general dependent on these
environments.

We now adapt the definition of Acceptance sets, [10], to the security 7-calculus.
First let
O°(C)={a!| Fv.C *%,}

and
R°(C) = {a?| Iv.C &, }UO’(C).
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DEFINITION 3.19 (ACCEPTANCE SETS). For a configuration C, let A(C, s),
its o-level acceptance set after s , be defined by

{R°(C")|C=,C /}
Similarly let its output acceptance set after s be given by
{O0°(C) | C=,C" /}

Note only acceptance sets from stable configurations, configurations C' such
that C' /~, are used.

The security m-calculus is asynchronous and therefore, as explained in [4],
acceptance sets are too discriminating, when used to characterise must testing;
to see this it is sufficient to consider the simple example

a?(x) 0 Cypust 0.

The same reference goes on to explain that the use of output acceptance sets
must also be relativised to sets of input actions, which we now explain.

Input Completions. We use I7(C) to denote the set of input actions which
the configuration C can perform at level o, {a?v | C <%, }. More generally
we use I to denote an arbitrary multi-set of input actions, ¢(I) to denote
{a? | a? € I} and ¢([) its converse, {a! | a?v € I }.

Then \J is defined to be the least relation which satisfies

e C /> and I°(C) NI = () implies C \,7 C
e C =, C'and C'\J C" implies C \Jyy;, C".

Intuitively C' \§ C' means that C can evolve to a stable configuration C’ by
performing a subset of the input actions in the multi-set I; moreover this
subset is maximal in the sense that C’' can not perform any of the remaining
actions.

DEFINITION 3.20 (ASYNCHRONOUS ACCEPTANCE SETS). For a configuration
C, let O7(C, s), its o-level asynchronous acceptance set after s, relative to the
multi-set of input actions I, be defined by

{O07(C") | C ==, C'N\JC"}.

With one final notational convention we can mimic the alternative character-
isation of must testing from [4]. We write ' allows, a?v if ' k5 a!(v); this is
generalised to sets of actions in the normal manner.
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DEFINITION 3.21. Let C, D be configurations of the form I'; Ar P, I'; A'>Q
respectively. Then C <7 D if for every s,

C |} simpliesa) D | s
b) VD € A’(D, s),VI such that ¢(I) N D = () and
(T after, s) allows, I,
40 € O7(C, s) such that O —¢(I) C D.

THEOREM 3.22. LetT', A be single-level environments and suppose A + P, (@,
where I' is compatible with A. Then I'v, P T Q if and only if I'; A> P K7
[A>Q.

The remainder of this subsection is devoted to the proof of this theorem. We
will assume all triples ['; A > P are configurations, and that all environments
are single-level.

PrOPOSITION 3.23. [ A P K2 I A Q implies I' >y P Tpust Q-

Proof. (Outline) The proof follows the outline of that of Lemma 4.4.13 of [10],
although the details are more complicated because of asynchrony and the use
of type environments and security levels.

Let T be an arbitrary new free test such that I' - P and suppose P must 7.
We show Q must 7. Let

T|Q(ETQ|Q0)L)61L> ...... Ck% (1')

be an arbitrary maximal computation from 7' | @, where we may assume each
Ci, has the form (new ¢ : Cy) Ty | Q. We must show that for some £, T} Wiy

First suppose that the computation (t) is finite, ending in C,. Using Trace
Decomposition it can decomposed into

T'AbQ=5T;A>Q,
T=5T,

From Lemma 2.5 we can assume 7, has the form a;!(vy) | ...ag!(vg) | T7,
where T" cannot perform any input moves. Let I denote the multi-set of input
actions, {a;?vy, ..., a;?v;}. We will use I' | T/, where I' is a subset of I, to
denote the the obvious term consisting of 7" in parallel with the multi-set
of output atoms determined by I'. Finally let D denote the acceptance set
determined by the configuration C,. Note that ¢(I) N D = .

At this stage let us suppose that I'; A> P || s. Then we can apply the
hypothesis to obtain an O € Of(I'; A P, s) such that O —¢(I) C D. This
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means that there is a trace

AP =, T AP L, T Ay > P

where
Fm; Am > P, 7L> (1)
s A > P 2% for any a?v eI —1T' (2)

By trace composition we can form
T|\P-Z*T,| P, (I,|T") | Py, IL=1-1T.

If we can show that this is maximal, that is (I | T") | B,, /=, then we are
finished because P must 7' means that for some k, Tj, <X,

The only possibility is a communication between P, and I, | T". In both cases
below we rely on the fact that the environments are singl-level, enabling us to
employ Lemmas 3.6 and 3.11.

Input: For some a?v € I, P,, 4%,
Here from Lemma 3.6 we know that I'; and '), are I' after, s. Applying
Lemma 3.11 it follows that ', F a!(v), which by Lemma 3.5 is sufficient to
ensure that T',,; A, > Py, 2%, This contradicts (2) above.

Output: Here we have P, {9av) and 77 2%
Again from Lemma 3.11 we know I',, &5 7" and therefore a! € O C D; so
Qn 192, for some value w. Because of the structure of our language, T %%
implies that 7" 4*% is also true, and therefore we have a contradiction of
the maximality of C,.

This completes the proof, under the assumptions that I'; A> P |7 s and

the computation under scrutiny, (f), is finite. However these assumptions

can be taken care of in the standard manner, as in the proof of Lemma
4.4.13 of [10].

O

As in the case of may testing the proof of the converse depends on the ability
to define well-typed tests which determine the relation <?. Here there are two
possible reasons why configurations may not be related; one associated with
convergence, the other with a mismatch of acceptance sets. We treat each in
turn. As in the previous sub-section to avoid notational complexity we only
consider simple output actions, where only single names are transmitted. We
also use some of the derived notation developed in that sub-section.

Tests for Convergence. We define the terms T (T, s, 0) by induction on s:
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e: Here Te(L, s,0) = wl{) ® w!()
alv-s's Here To(T, s,0) is given by

(newn) nl{) [ n?(Yw!() |a?(z:A) ifz =0
then n?() Tc(F Mov:A, s, 0)
else 0

where rs(A) € I'(a) for some 6 < o
(c)alc - §': In this case T¢(T', s, 0) is given by

(newn) n!() [n?()w!() |a?(z:A) if z € I(T', A)
then 0
else (n?()Te(T,c: A, s, 0)){%]}

where again rs(A) € I'(a) for some § < o
a?v - s's Here To(T, s,0) is only defined if I' - a:ws(A),v: A for some 6 < o,
in which case it is
al(v) | T¢(T, §', o)

We leave the reader to check the following:

LEMMA 3.24. IfT5A>Q =, I'; A'> @', where Q' if then

e Tc(T,s,0) is defined
o 'L Te(T,s,0)
L] Q mu/ét Tc(r, 8,0).

Proof. By induction on s. [

COROLLARY 3.25. I'b, P ust Q and I'; A P U7 s implies I'; A>Q 7 s

Proof. Suppose, on the contrary, that for some s, I'; A P || s, while I'; A >
Q =, I'"; A’ Q, for some Q' such that Q' |f. By the previous Lemma it is
sufficient to show P must T¢(T, s, 0), which can easily be done by induction
ons. [l

Tests for Acceptance Sets. Let us first extend the predicate allows, to
apply to output acceptance sets, in addition to sets of input actions. We write
[ allows, O if, for each a! € O, rs(A) € I'(a) for some § < o, and ' - v: A for
some value v; note that this means I' i a!(v).

We now define terms T'(T', s, O, I, o), where O is an output acceptance set and
I is a set of input actions, by induction on s. The inductive cases are very
similar to the corresponding cases in the definition of the tests for convergence.
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e: Here T'(T',s,0,1,0) is only defined if I allows, O, I, in which case it is

[[{aw) [a?v eI} |[[{a?(z:A)wK) |al € O}.

Here the type A, is determined by the fact that ' allows, O.
alv - s's Here the test is given by

(newn) nl{) [ n?(Yw!() |a?(z:A) if z =0
then n?()T(C'Mwv:A, s, 0,1,0)
else 0

where A is determined by rs(A) € I'(a) for some 6 < o.
(c)alc- s': Here it is defined by

(newn) nl{) [ n?()w!{) | a?(z:A) if z € I(T',A)
then 0
else (n?()T(T,c:A,s',0,1,0)){%}

where, again, rs(A) € I'(a) for some § < 0.
a?v - §'s Here, as in the tests for convergence, the test is only defined if ' F
a:ws{A),v: A for some § < o, in which case it is

al(v) | Te(T, s',0,1,0)

We leave the reader to establish the following two Lemmas:

LEMMA 3.26. Suppose (I after, s) allows, O, and that T; A > Q =, for
some A. Then T(T,s,0,1I,0) is well-defined and T'; T(T, s,0,1,0). d

LEMMA 3.27. Suppose T(T,s,0,1,0) is defined and O' N O # O for every
O' € O(I'; A P,s). Then I'; A P |7 s implies P must T(I', 5,0, 1,0).
We are now ready to prove the alternative characterisation:

THEOREM 3.28. (Theorem 8.22) T'by P Coust @ if and only if T'; A> P <°
[A>Q

Proof. Because of the previous sequence of results it is sufficient to prove
A P £° I'; A @ implies that there exists a test T such that I' 5 T,
P must T, while @) mugt 7. In view of Corollary 3.25 there must be some s
such that I'; A> P |J? s and some computation

[APQ=%,C, A=TR(C) (%)
and some I such that (I" after, s) allows, I and ¢(I)N A = () with the property
that for every O' € OJ(I';Ap> P,s), O' € AU¢(l). Let O (I’ A Pys) =
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{04, ...,0,} and for each ¢ choose a;! such that a;! € O; — (AUE(I)). Let O
be the set {a1!,...,a,!}.

We now have all the ingredients to apply the previous two Lemmas to ob-
tain the test T(I',s,0,1,0), well-typed with respect to I' at level o such
that P must T'(I', 5,0, I, o). However the computation (x) above shows that
Q mugt T'(T', s,0,1,0), since ¢(O) Ne(I) = 0.

d

4 Non-Interference Results

In this section we reconsider the approach taken to non-interference in Section
4 of [12]. The essential idea is that if a process is well-typed at a given level o
then its behaviour at that level is independent of processes “running at higher
security levels”; or more generally “running at security levels independent to
o”. A particular formulation of such a result was given in Theorem 5.3 of [12]:

THEOREM 4.1. IfT'k P,Q and ' = H, K, where H, K are o-free processes,
then I'>, P o2y, Q implies oy P | H ~p,, Q| K.

Here, because of our more refined notions of well-typing, we can give offer
a significant improvement on this Theorem, and moreover the formulation is
actually easier.

Let us say that the security level § is independent of o if § A 0. We can
ensure that a process H is “running at a security level independent to ¢” by
demanding that A ¥ H, for some § independent of o. In fact we will only
require the weaker typing relation A F° H. This ensures that all the output
actions of H are at a level independent of o, as can be deduced from the
following property:

LEMMA 4.2. Suppose A ¥*° H. Then I'; A> H 5, where p is an outpul

action, implies § < p.

Proof. By induction on the derivation of I'; A> H £ ,. The only non-trivial
case is the base case I'; A > al(v) 2%, 0.

Here we have A F a:wy(A) for some § < ¢'. Because of (c-ouT) we know
I' - a:ry(B) for some p' < p. We can now apply Lemma 3.3 to obtain §' < p'
from which it follows that 6 < p. O

We can now state our first non-interference result. Note that it applies to
processes such that A &, P, @ rather than A 5 P, (0; only their input actions
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need to be at level at most o.

THEOREM 4.3 (NON-INTERFERENCE 1). LetT' and A be compatible and sup-
pose Ak, P, Q. Then

['p7 P Cipay @ tmplies T Pl H Cgy Q| K
provided A F° H, K for some § independent of o.

Proof. Because of Proposition 3.13 it is sufficient to prove
[A> P|H =, implies I;Ap P =%,

This is proved by induction on the derivation of I'; A> P | H =%,. The base
case, when s is g, is trivial, and there are three possibilities for the inductive
case.

First suppose the derivation has the form
AP |H 2, T A'b R=5,

Here there are two cases.

« is performed by P: So R has the form P’ | H and
AbP %, T A's P

By Subject Reduction, Theorem 2.6, we know A’ I, P’ and therefore we
can apply induction to obtain the result.
« is performed by H: Here R has the form P | H' and

A H %, T A's H.

From the previous Lemma we know o must be an input, say a?v, and from
Lemma 3.2 we know that I' is simply I' and A’ must take the form AMv: A
for some type A. By weakening we therefore have A’ . P and we may
apply induction to obtain IV; A’ > P =% .

From the same Lemma we know that ' - a:ws(B), v:B for some § < o
and B <: A. So we can infer

DA Mv:BMa:ws(B) b Pl al(v) =5, .

An application of (TR-ASYNC) now gives the required I'; A> P |

The second possibility is that the derivation is derived using an instance of
(TR-ASYNC). Here a simple inductive argument suffices.
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The final possibility is that it has the form
A P|H 5, T A'> R =5,

If the initial 7 action is performed either by P, or by H then (by Subject
Reduction) we can apply induction to obtain the result. So there remains two
cases:

Output from H to P: It turns out that this is not possible, because § £ o.
Suppose we did have such an output. Then we would have

AW H, H {8y
AL, P, P4 P

Applying Subject Reduction we would have

At a:wy(A), §=<¢
At a:ry(B), o <o

The consistency requirement on types implies ' < o', which contradicts

0Ao.
Output from P to H: Here the derivation takes the form

;A P|H T, T;Ab (6:C)(P' | H') =,

where P 9e% pr and H 4™ H'. So there exists a sequence s¢, associated
with s, such that

I;A;6:CoP | H 25, (%)
with the property that for for any R such that I'; A; ¢: C> R =&, it follows
that I'; Ap (6: C)R =,.
Applying induction to (x) we obtain
[A;¢:Co P =s,
Note that this is possible since Subject Reduction gives
Ac:CE, P, AMv:Ar° H'

where A is a type such that A,é:C <t AMwv:A. (In fact A is the type at
which v is sent by P.)
It follows that I'; A, ¢: C'> P’ | al{v) £, and therefore

;A (newé: C) (P! | al{v)) =2, .
But by Lemma 2.5 we know

P = (newé:C) (P' | al(v))
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and the result follows.

O

We end the paper with a non-interference result with respect to must testing.
Note that Theorem 4.3 is no longer true when L,,,, is replaced by L,,us, as
the following example shows.

EXAMPLE 4.4. Let A denote the type {Wpot(), rbot(); fop()} and B denote
{rewp() } Further, let I' map a to A and n to the type {Wpot(A), rpot (A), reop(B) }.
Now consider the processes P and H defined by

P < nl{a) | n?(z:A) z!1{) H<<n?(z:B)0
It is very easy to check that I' k., P and I M*® H. However
;T P |0 s P H

because of the bot level test a?() w!().

The presence or absence of H determines whether or not there is read con-
tention on the channel n, which in turn influences the deadlock capabilities of
P with respect to the channel a.

Here the problem is the type of the channel n; it may be read at both level bot
and top. Note that such examples, where there is contention between reads at
different levels, can not be expressed in the join calculus, [5].

A not unreasonable restriction would be to require that the read capability
of channels be confined to a particular security level. This would not rule out
inter-level communication, but simply control it more tightly. This restriction
can be enforced by requiring the type-checking to use single-level types and
forbidding high-level processes to read from low-level channels.

THEOREM 4.5 (NON-INTERFERENCE 2). Let I' and A be compatible single-
level environments and suppose Ak, P, Q). Then

[>% P Coust @ implies T Pl H Cyet Q| K
for all finite processes H, K such that A ¥ H, K for some § independent of

g.

Note that we must restrict our attention to finite H and K since must testing
is sensitive to divergence; if H is a divergent term then we could not expect
['p? P|0 ~pus P| H to hold when P is a convergent term. This problem
is avoided by restricting attention to finite terms,which can never diverge.
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Restricting H and K to use channels at level at least d, together with the
use of single-level types, ensures that there is no contention, as exhibited
in Example 4.4, between high and low level processes over read access to a
channel.

The remainder of the section is devoted to the proof of this final result of
the paper. Throughout we will assume I' and A are compatible single-level
environments, A k, P, A ¥ H for some ¢ independent of o, and moreover
that H is a finite process.

LEMMA 4.6. For every s, I'; A P |7 s if and only if T; A> P | H |7 s.

Proof. One direction is easy, ['; A> P {7 s implies ['; A> P | H JJ s.
Conversely, because H is finite, we can assume that
IAbP|H =5, (6:C)(P'| H')

for some P’ such that P’ Jf. We leave the reader to prove, by induction on this
derivation, that I'; A> P =%, (¢': C") P’ for some ¢/,C'". O

PROPOSITION 4.7. Suppose A € A?(T; A> P, s) and I is a multi-set of inputs
such that c(I)NA = () and (Tafter, s)allows, I. Suppose further that T'; AP |}°
s. Then there exists some O € OJ(I'; A> P | H,s) such that O —¢(I) C A.

Proof. By induction on the derivation

I'Ap P=,D, where A=R’(D)

e The empty derivation.
Here A = R?(I"; A P). This means that P /- but we may have P| H
either because H - or there maybe a write up from P to H. But because
H is syntactically finite and P |} we know there is some P’ | H' such that
P|H o* P'|H /.

By Lemma 2.5 we know that R7(I'; A> P' | H') C A and therefore, since
c()NA=0,T;A>P'|H'\JT;A> P'| H'. The required O may therefore
be taken to be the output subset of A.

e The derivation has the form I'; A P {9a% TV. A'p P! =55 D,
By Subject Reduction we know A’ L, P’ and therefore we may apply in-
duction to obtain O € O(I'; A>P'| H, s) with the required properties. The
result now follows since OJ(I'; A> P'| H,s) COJ(I'; Av P | H, (c)alv - s)

e The remaining cases are similar.

0
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We also have the converse.

PROPOSITION 4.8. Suppose A € A°(I'; A> P | H,s) and, as in the previous
Proposition, I is a set of inputs such that c(I)NA = 0 and (I'after, s)allows, I.
Then there exists some O € O9('; A> P, s) such that O —¢(I) C A.

Proof. Again by induction on the derivation
I[CA>P|H =, D, where A=R?(D)
As an example we examine the case
I'TArP|H -5 D' =%, D,

where the initial 7 consists of a communication between P and H. This must
be a write-up from P to H; so D' has the form I'; A > (¢: C)P' | H', where
p &y prand H <% H'. We know P has the form (¢:C)(a!(v) | P'), but
more importantly that rs(A) € A(a) for some ¢ independent from o (7).

What this means is there can can be no communication between a!(v) and
any @ such that Ak, Q.

Now the derivation T;A > (¢:C)P' | H' =%, D can be transformed into
T;Aé:Co P | H 25, &, where R7(D) = R?(D). Moreover we can ap-
ply induction to this derivation, to obtain O € O¢(T; Aé:C» P, s¢) such
that O —¢(I) C A.

We can use (1) to prove O is also in O(T; A, é: C'>al{a) | P!, 5¢). The result
now follows since

OI(T; A, é:Coala) | Py se) COIUT; A é:Cré:Calla) | P s).

d

COROLLARY 4.9. (Theorem 4.5) suppose Ak, P, Q. Then
[ P Cust @ implies T P | H Sous @ | K

for all finite processes H, K such that A ¥ H, K for some 6 independent of
.

Proof. Tt is sufficient to prove
AP P<’T;AvP|H and T;Ab P | H K’ T; A P.

These follow from the two previous Propositions and Lemma 4.6. [J

36



5 Conclusions and Related Work

This paper is a direct continuation of the research reported in [12]. There we
focused on the general topic of security types, showing that resource access
control could be enforced using a typing system and information flow control
could be obtained by a restriction to the set of types employed. The import
of Subject Reduction was emphasised by developing a Type Safety Theorem,
which in turn required a version of the language in which processes were tagged
with their security levels. Here we concentrated on types for information flow,
calling the resulting language the security m-calculus. The first main result
consists of alternative characterisations of may and must testing for this lan-
guage. These use a novel labelled transition system, with judgements of the
form
A>P L5 T A's P!
which records the security levels at which actions occur, together with their
effect on the type environment of the process under observation, A, and the
effect on the, possibly different, type environment of the observing process, I'.
This labelled transition system is a generalisation of that used in [11] to char-
acterise typed behavioural equivalences for the m-calculus. There judgements
take the simpler form
'>P 4T P

in which the type environment of the observed process, namely A, and changes
to this environment, remain implicit. Our characterisation theorems would also
be expressed in terms of these more abstract judgements, but the explicit use of
the type environment of the observed processes, the As, makes the statement
of our non-interference results more straightforward; see the formulations of
Theorem 4.3 and Theorem 4.5.

Our second main result extends the non-interference result from [12], show-
ing that non-interference, with respect to both may and must testing, can be
enforced using types. However it remains to be seen to what extent this ap-
proach, non-interference through types, can be used to obtain useful instances
of non-interference. For example in [8] a wide range of security properties have
been shown to be expressible in terms of non-interference and it would be in-
teresting to see whether these can be enforced by typing constraints using a
type system such as ours. This would involve extending our language to in-
clude cryptographic primitives, such as those from [1], but we believe that this
is not problematic.

A general overview of the use of static analysis techniques to enforce information-
flow policies may be found in [22]. Useful surveys of research into non-interference

in process languages are given in [6,21] ! . Much of this work is behaviour based;

1 For the use of types for other languages see [23].
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systems are deemed to be interference-free if their trace sets, sequences of ac-
tions labelled high or low, satisfy certain properties. Here we use a more exten-
sional approach, saying that a system is interference-free if low-level observers
are unable to discern the presence or absence of high-level components. Such
high-level definitions may be intuitively attractive but they are not necessar-
ily easy to deal with. So, for example, to obtain our non-interference results
we needed to give more intensional characterisations, in terms of sequences of
high and low level actions. Moreover our use of these characterisations, in the
proofs of our non-interference results, are very similar in nature some of the
definitions of non-interference given in [6,7]. For example the proof technique
used in Theorem 4.3 recalls the non-interference property called NDC in [6].
However a formal comparison is not straightforward; definitions, in papers
such as [20,6,21] are for very simple untyped versions of CCS or CSP, while
we deal with the more expressive m-calculus.

However the main difference in the two approaches may be summarised as
follows:

e we propose validating a process for non-interference using syntax-directed
typechecking

e in [6] and related work, a process is validated by checking semantics-based
properties such as trace sets.

In [15] a type system is given which guarantees non-interference with respect
to an extension of the 7-calculus; moreover non-interference is expressed with
respect to a barbed congruence. However the language used is a considerable
extension of the m-calculus, with operators for selection based input/output,
based on disjunctive patterns, and it is the behaviour of these operators which
are mainly constrained by the type system. The types used are also very so-
phisticated. Unlike ours, which are simply annotated versions of the standard
Pierce/Sangiorgi types, [18], they track the use of channels, using annotated
affine and linear types, and capture causal relationships between actions by

a partial composition on these types, using ideas based on the graph types of
[25].

Finally [5], which uses security labels attached to messages in the join cal-
culus to formulate non-interference, argues via an example for the use of a
behavioural equivalence stronger than may testing. The formulation uses weak
barbed congruence but could have equally well used must testing equivalence;
indeed it is difficult to envisage a practical scenario in which there is some-
thing to be gained from assuming attackers have the extra power associated
with the former rather than the latter. We have also already pointed out (in
Example 4.4) that the join calculus can not be used to express situations in
which there is read contention between different security levels. Nevertheless
the approach used to develop a type system for the join calculus for detecting
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information flow seems to be quite general and may also be applicable to the
asynchronous m-calculus.
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