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Electronic structure of graphene beyond the linear dispersion regime
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Among the many interesting features displayed by graphene, one of the most attractive is the simplicity with
which its electronic structure can be described. The study of its physical properties is significantly simplified by the
linear dispersion relation of electrons in a narrow range around the Fermi level. Unfortunately, the mathematical
simplicity of graphene electrons is limited only to this narrow energy region and is not very practical when dealing
with problems that involve energies outside the linear dispersion part of the spectrum. In this communication we
remedy this limitation by deriving a set of closed-form analytical expressions for the real-space single-electron
Green function of graphene which is valid across a large fraction of the energy spectrum. By extending to a
wider energy range the simplicity with which graphene electrons are described, it is now possible to derive more
mathematically transparent and insightful expressions for a number of physical properties that involve higher
energy scales. The power of this new formalism is illustrated in the case of the magnetic (RKKY) interaction in
graphene.
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I. INTRODUCTION

Graphene-related materials have been in the scientific lime-
light for the past few years due to the numerous applications
envisaged for them.1 In addition to the huge potential for
applicability, one key feature that makes graphene particularly
popular is the simplicity with which many of its physical
properties can be described, primarily due to the simple disper-
sion relation for its electrons. The linearity of this dispersion
relation around the Fermi level enables the description of
graphene electrons in terms of massless Dirac fermions.2 This
introduces a great level of mathematical transparency in the
portrayal of their properties, which nevertheless is limited only
to a narrow range of energies around the Fermi level. Energy
values outside this range are often needed, for example, when
gated graphene systems are considered1 or when calculation of
a relevant physical quantity requires an integral over energy,
but lack the mathematical transparency of those within the
linear dispersion regime.

In this communication we show how this limitation can
be circumvented by deriving a fully analytical closed-form
expression for the single-electron Green function of graphene
in real space, a quantity that is instrumental in describing the
behavior of graphene electrons. Because Green functions are
used in the study of several physical properties, improvements
in their mathematical description will enable far more transpar-
ent and insightful expressions for the corresponding physical
quantities. This is particularly true for distant-dependent
interactions across a graphene sheet, for example, the effect of
an impurity on the physical properties of the system at a certain
distance away from where it is introduced. Another example
is the interaction of two impurities embedded into the sheet. In
both cases, for distances of more than a few lattice spacings, the
interactions involved are mediated by the conduction electrons
of the graphene host. The Green functions calculated in this
paper describe the equilibrium properties of these electrons
at low temperatures, allowing us to investigate the underlying
interactions within a mathematically transparent framework.
Such a methodology allows for the prediction of certain

features of the interaction without recourse to numerical
calculations.

The remainder of the paper is organized as follows. The
general method for calculating the Green function required is
introduced in Sec. II. The important directions of the graphene
geometry, namely the armchair and zigzag directions, are
illustrated and an explicit calculation for the real-space off-
diagonal Green function element in each of these directions is
performed in Secs. II A and II B, respectively. The accuracy
of our approach is demonstrated by comparison with a fully
numerical calculation. An extension of the method for arbitrary
directions and intersublattice cases is discussed in Sec. II C.
The potential applications of our approach are discussed in
Sec. III, before an explicit illustration is given for the case of
the magnetic interaction in graphene in Sec. III A. Here a fully
analytical method is used to derive the principal features of the
interaction within the RKKY approximation.

II. METHOD AND CALCULATIONS

The general formula for the single-electron Green function,
within the nearest-neighbour tight-binding framework, in its
eigenstate basis is

Ĝ(E) =
∑

�k

{
|�k,+〉〈�k, + |
E − E+(�k)

+ |�k,−〉〈�k, − |
E − E−(�k)

}
, (1)

where E is the energy, |�k,±〉 is the eigenvector labeled by the
wave vector �k, and E± is the corresponding eigenvalue defined
as

E±(�k)

= ±t

√
1 + 4 cos

(√
3ky a

2

)
cos

(
kx

a

2

)
+ 4 cos 2

(
kx

a

2

)
.

(2)

The quantities a and t correspond to the lattice parameter
of graphene and its nearest-neighbor electronic hopping,3

respectively, which are hereafter used as our units of distance

155432-11098-0121/2011/83(15)/155432(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.155432


S. R. POWER AND M. S. FERREIRA PHYSICAL REVIEW B 83, 155432 (2011)

FIG. 1. (Color online) Schematic of the graphene lattice with the
zigzag (armchair) direction denoted by the blue (red) arrow marked
“Z” (“A”). The filled and hollow circles represent carbon atoms on
each of the two sublattices that compose the graphene lattice.

and energy. Our choice is such that the x (y) direction is
aligned to the zigzag (armchair) geometry of the graphene
lattice as is shown schematically in Fig. 1. A simple unitary
transformation defines the real-space basis |j,ζ 〉, where the
index j labels the two-atom unit cell and the index ζ refers to
the intracell atoms corresponding to the two distinct sublattices
of graphene, represented by filled and hollow circles in Fig. 1.
When projected onto two different states |j,ζ 〉 and |j ′,ζ 〉
located in real space by the respective vectors �Rj and �Rj ′ ,
the Green function is written as

〈j,ζ |Ĝ(E)|j ′,ζ 〉 = a2
√

3

8π2

∫
dkx

∫
dky

E ei�k.( �Rj − �Rj ′ )

E2 − E2+(�k)
, (3)

where the integrals over kx and ky are performed over the
first Brillouin zone of graphene. Although we have selected
two states that belong to the same sublattice (ζ = ζ ′), this
constraint can be easily relaxed and generalized to describe
the propagator between sites on different sublattices. Before
proceeding, we will outline the basic steps taken to obtain
the Green function. We tackle the first integral by analytical
continuation to the complex plane, where it is subsequently
solved using the residue theorem.4,5 The remaining integral
can then be solved in the case of moderately large separation
vectors by using the stationary phase approximation (SPA).6

A. Armchair direction

We first consider the case of separation vectors �Rj − �Rj ′

along the (armchair) y direction. By showing how to obtain
the Green function for this particular case we hope to illustrate
the general method for calculating Green functions for any
direction. Note that the position vectors appear only as a
difference and can be further simplified by defining � ≡
| �Rj − �Rj ′ |. In this case, the integral is performed over the
Brillouin zone shown in Fig. 2 and the first integral, over ky , can
be evaluated by extending ky to the realm of complex numbers
and changing the integration contour from a straight line on the
real axis to the boundaries of a semi-infinite rectangle in the

FIG. 2. (Color online) Constant energy plots of the function E+(�k)
in reciprocal space for a few different energies. Horizontal and
vertical axes are rescaled as kxa/2 and kya

√
3/2, respectively, so

they are plotted as dimensionless quantities. The rectangular shaded
area delimits the first Brillouin zone over which the integrals for
the armchair direction case are taken. Constant energy plots for two
specific energies, E = 0.7|t | (solid) and E = 1.8|t | (dashed), are
drawn with thicker lines. The corresponding stationary wave vectors
q̃ for these energies are highlighted with arrows. Note that the sign
of q̃, shown as positive here for simplicity, must be chosen according
to the conditions outlined in the text.

upper half of the complex plane, with its base lying on the real
axis between − 2π

a
√

3
and 2π

a
√

3
. Because the integrand vanishes

in the limit Im[ky] → ∞ and because the parts of the contour
that are parallel to the imaginary axis cancel each other out, the
ky integral can be evaluated by simply identifying the poles of
the integrand lying inside the integration contour and finding
their respective residues,4 that is,

G�(E) = i a

4πt2

∫ π
a

−π
a

dkx

E eiq�

cos
(

kx a

2

)
sin

(
qa

√
3

2 ]
) . (4)

Note that the scalar product 〈j,ζ |Ĝ(E)|j ′,ζ ′〉 is now more
concisely expressed as G�(E) and that

cos

(
qa

√
3

2

)
=

E2

t2 − 1 − 4 cos2
(

kxa

2

)
4 cos

(
kxa

2

) (5)

defines the wave vector q that comes out of the first integral.

Although Eq. (5) provides a unique definition for cos( qa
√

3
2 ),

it does not specify the sign of q uniquely. Its sign is selected
by imposing that q must necessarily lie within the integration
contour of the ky integral.

The kx dependence contained in the wave vector q, as seen
in Eq. (5), means that the integrand in Eq. (4) is an oscillatory
function of kx that oscillates very rapidly for large values of the
separation �. In this case, the only nonvanishing contribution
to the Green function comes from regions for which the
phase of the exponential function is stationary. To locate these
stationary points we must impose that dq/dkx = 0, which
leads to solutions of the form

k̃x =
{

± 2
a

cos−1
(√

t2−E2

2t

)
if |E| < |t |

0 if |E| > |t |
. (6)

Note that due to a topological change in the constant energy
surfaces of the function E+(�k) at E = ±t we separate the
energy band into two separate regions, namely the inner region
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defined by |E| < |t | and the outer region defined by |E| > |t |.
Both stationary solutions written above are valid throughout
the entire energy spectrum. However, outside those specified
regions, albeit solutions, they give rise to complex values for
the wave vectors q. With complex wave vectors, the integrand
of Eq. (4) tends to vanish for any sizable separation �, meaning
that the stationary values outside the ranges listed in Eq. (6)
should have very little influence in the overall results for the
Green functions.7 The same can be understood from purely
geometrical arguments applied to the constant energy surfaces
ofE+(�k) in reciprocal space, depicted in Fig. 2. When searching
for stationary solutions for q, which in this case lie parallel to
the y axis, the two solutions resulting from Eq. (6) are the only
possible (real) ones within the rectangular Brillouin zone of
the hexagonal lattice. The tilde symbol (∼) will hereafter be
used to refer to the values of kx and q satisfying the stationary
condition. Therefore, the wave vector q when expanded in
a Taylor series around the stationary value k̃x has no linear
component and, up to second order, is approximated by

q ≈ C1 + C2(kx − k̃x)2, (7)

where

C1 =
⎧⎨
⎩

± 2
a
√

3
cos−1

(
−√

t2−E2

t

)
if |E| < |t |

± 2
a
√

3
cos−1

(
E2−5t2

4t2

)
if |E| > |t |

(8)

and

C2 =

⎧⎪⎨
⎪⎩

± a

4
√

3

(
E2+3t2

E
√

t2−E2

)
if |E| < |t |

± a

4
√

3

(
E2+3t2√

(t2−E2)(E2−9t2

)
if |E| > |t |.

(9)

Note that the sign of C1 must be chosen to ensure that q lies
within the ky integration contour as before. The sign of C2 is
determined by its correspondence to the curvature of q at k̃x .
If we now insert Eq. (7) into Eq. (4) and make use of the fact
that kx and q will not vary very much around their respective
stationary values k̃x and q̃, we are left with a much simplified
expression for the Green function, which now reads

G�(E) = iaEeiC1�

4πt2 cos
(

k̃xa

2

)
sin

(
q̃a

√
3

2

)
∫

dkx eiC2(kx−k̃x )2�.

(10)

The remaining integral is a well-known Gaussian integral
whose solution gives

G�(E) = iaEeiC1�

4πt2 cos
(

k̃xa

2

)
sin

(
q̃a

√
3

2

)
√

i π

C2 �
. (11)

This can be rewritten in a more transparent fashion using
the definitions in Eqs. (6), (8), and (9) to provide a completely
analytical expression for the off-diagonal Green function
matrix element between two graphene sites separated by a
distance � along the armchair direction. For positive values
of energy (E > 0), we find

G�(E) =
√

2

iπ

1√
(E2 + 3t2)

√
t2 − E2

√
1

�′

⎧⎪⎨
⎪⎩

−i
√

E( iE+√
t2−E2

t
)�

′
if E < |t |

E√√
E2−9t2

[
E2−5t2−i

√
(t2−E2)(E2−9t2)
4t2

]�′

if E > |t |,
(12)

where �′ = 2�

a
√

3
. We again consider the distinct cases E < |t |

and E > |t | and note that the only occasion when both
stationary points contribute is at energies very near E = ±t .7

Figure 3 compares both the real and imaginary parts of the
Green function for the case of � = 10

√
3a obtained by the

analytical expression above with those obtained through a
numerical evaluation of Eq. (3). For E < 0 we note that
the real (imaginary) part of the Green function is an odd
(even) function of energy, as can be seen in Fig. 3, and
make use of the relations Re[G�(−E)] = −Re[G�(E)] and
Im[G�(−E)] = Im[G�(E)].

At first glance one might think that the replacement of the
well-established linear dispersion approximation with another
that is valid only for asymptotically large values of separation
is unlikely to improve the range of validity of the overall
result. However, as seen in Fig. 3 there is hardly any noticeable
difference between the analytical and numerical results across
the entire energy band. Because the analytical expression relies
on the stationary phase argument, this remarkable agreement
is likely to regress as the separation (�) is reduced. To
test how good an approximation Eq. (11) is, in Fig. 4, the
fraction F1% of the bandwidth for which the relative error
between the numerical and analytical evaluations is less than

1% is plotted as a function of the separation. The plot
with circular points corresponds to the armchair direction.
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FIG. 3. (Color online) G�(E) as a function of energy (in units of
|t |) for the case of � = 10

√
3a. Top (Bottom) panel shows the real

(imaginary) part of the Green function. Lines correspond to the results
evaluated by Eq. (11), whereas points are the result of brute-force
numerical calculations of Eq. (3).
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FIG. 4. (Color online) Fraction F1% of the bandwidth for which
the error between the analytical and brute force numerical results
is below 1%, plotted as a function of the separation � (in units of
a). The circles (triangles) correspond to separations in the armchair
(zigzag) direction.

Even for small separations (� ≈ 10a), the energy range for
which the Green functions are very accurately described by
our analytical expression exceeds 90% of the bandwidth. In
other words, there is only a very narrow energy range in
which the disagreement exceeds 1%. Most remarkably, as the
separation is increased this small range decreases very rapidly,
indicating that Eq. (11) is capable of accurately describing the
Green function across almost the entire energy spectrum for
separation values larger than a few lattice parameters. This is
a major advantage when compared to the narrow fraction of
the bandwidth that meets the linear dispersion criterion.

B. Zigzag direction

We now turn our attention to the case of separation
vectors �Rj − �Rj ′ along the (zigzag) x direction. By following
the same approach described for the armchair direction the
relevant Green function can be similarly calculated. The major
difference between the calculations is that the ordering of the
integrals is swapped. For the zigzag direction, we first perform
a contour integral over kx before making use of the SPA to solve
the remaining integral over ky . We make a different choice
of Brillouin zone, as shown in Fig. 5, which will simplify
the selection of stationary points later. By performing the
first integral similarly to before, we arrive at an expression
analogous to Eq. (4) for the off-diagonal Green function in the
zigzag direction

G�(E) = i a
√

3

8πt2

∫ 2π

a
√

3

−2π

a
√

3

dky

E eiq�

sin(q a) + sin
(

q a

2

)
cos

( kya
√

3
2

) ,

(13)

FIG. 5. (Color online) The constant energy surfaces of the
function E+(�k) as before with the Brillouin zone for the zigzag case
now illustrated by the shaded area. The thick lines once more refer to
constant energy plots for E = 0.7|t | (solid) and E = 1.8|t | (dashed).
The corresponding stationary wave vectors q̃ for these energies are
highlighted with arrows. Note that the sign of q̃, shown as positive
(solid) or negative (dashed) only for simplicity, must be chosen
according to the conditions outlined in the text. For clarity the arrows
are shifted slightly in the vertical direction, but it should be noted that
all the stationary points occur at ky = 0.

where q now represents the poles coming out of the kx integral,
which are given by

cos

(
qa

2

)

= −1

2

⎡
⎣cos

(
kya

√
3

2

)
±

√
E2

t2
− sin2

(
kya

√
3

2

)⎤
⎦ .

(14)

It should be noted that in the zigzag case there are two
contributions to the integral arising from the two possible sign
choices of the poles in the definition above. The correct overall
sign for q in each case is selected as before by ensuring that
q lies within the integration contour. The contributions from
each pole must then be summed to give the final result. As
before, we assert that the only nonvanishing contributions to
the integral in Eq. (13) occur when the phase of the exponential
term is stationary. Imposing dq/dky = 0 we find the stationary
solution k̃y = 0.

Unlike the stationary points calculated for the armchair
direction, the zigzag direction stationary points are inde-
pendent of energy. This fact is evident when the constant
energy plots in Fig. 5 are examined from the perspective of
stationary values of ky . The separation of the energy band
into two separate regions is not necessary in this case as the
stationary points for both regions occur for the same value
of ky . The wave vector q is now Taylor expanded as before
and we find expressions for C1 and C2 analogous to Eqs. (8)
and (9)

C+
1 = ±2

a
cos−1

(
t ± E

2t

)

C−
1 = ±2

a
cos−1

(−t ± E

2t

) (15)
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and

C+
2 = ± t

aE

t − E√
(3t − E)(t + E)

C−
2 = ± t

aE

t + E√
(3t + E)(t − E)

. (16)

The superscript sign in the expressions for C1 and C2 refer
to the choice of sign in Eq. (14). Using these expressions
the integral once more reduces to a Gaussian integral whose
solution gives

G�(E) =
∑
α=±

ia
√

3E

8πt2

√
iπ

Cα
2 �

× eiCα
1 �

sin(q̃α a) + sin( q̃α a

2 ) cos
( k̃y

α
a
√

3
2

) , (17)

where the sum over α includes the contributions arising from
the choice of sign for the poles. Equations (15)–(17) can
be combined as before to provide a single fully analytical
expression for the off-diagonal Green function matrix element
between two graphene sites separated by a distance � in the
zigzag direction. This is found to be

G�(E) =
√

1

2iπ�′

(√
E

|t |(t − E)

[−t+E−i
√

(3t−E)(E+t)
2t

]�′

[(3t − E)(E + t)]1/4

+
√

E

|t |(t + E)

[−t−E+i
√

(3t+E)(E−t)
2t

]�′

[(3t + E)(E − t)]1/4

)
, (18)

where �′ = �
2a

. Here we have a single expression that
describes the Green function across the entire band. In Fig. 6
we compare the expression for the Green function calculated
here with the result of a fully numerical calculation, for the case
of � = 20a. As with the armchair direction, an excellent match
is found across the entire band. The plot in Fig. 4 (triangular
symbols) shows the discrepancy between the numerical and
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FIG. 6. (Color online) G�(E) as a function of energy (in units
of |t |) for the case of � = 20a. Top (Bottom) panel shows the real
(imaginary) part of the Green function. Lines correspond to the results
evaluated by Eq. (17), whereas points are the result of brute-force
numerical calculations of Eq. (3).

analytical results as a function of distance. Once more we find
that beyond a couple of lattice spacings there is only a very
narrow energy range in which the disagreement exceeds 1%.

C. Other directions and cases

Having presented the derivation of the Green function for
the separation vector along the armchair and zigzag directions,
it is straightforward to generalize it to other cases. For arbitrary
directions, although the procedure is similar, we shall see that
the identification of the poles or stationary solutions may result
from high-order polynomial equations that are not always
analytically solvable.

In the armchair (zigzag) case, the expression for the station-
ary point k̃x (k̃y) is given by an easily solvable expression of the
form dq/dk = 0. This expression arises from the decision to
take the contour integral along the k-space direction parallel to
the separation vector �Rj − �Rj ′ , which results in a phase term
equal to the pole of the contour integral. Since the expressions
for the poles in the armchair and zigzag directions, Eqs. (5) and
(14), respectively, are easily found from Eq. (2), the calculation
of all the necessary quantities is quite straightforward. To
extend this approach to an arbitrary separation vector, we
must first rewrite Eq. (2) in terms of k-space vectors k‖ and
k⊥ which are parallel and perpendicular, respectively, to the
required separation vector. Following this, we must perform
the contour integral over k‖ to get an expression for the Green
function analogous to Eq. (4). However, the expression for
the poles of this contour integral will depend strongly on
the separation vector chosen and will usually result from a
high-order polynomial equation that may need to be solved
numerically. It is important to note that this equation will
depend only on the direction, and not the length, of the
separation vector, so once the Green function for a particular
direction has been constructed it is valid for any required
distance across the graphene lattice in that direction.

A similar methodology holds for the case of Green func-
tions between sites on the different sublattices of graphene. In
this case Eq. (3) must be altered slightly to read

〈j,ζ |Ĝ(E)|j ′,ζ ′〉 = a2
√

3

8π2

∫
dkx

∫
dky

tf (�k) ei�k.( �Rj − �Rj ′ )

E2 − E2+(�k)
,

(19)

where now we have ζ �= ζ ′, with f (�k) = e
iky a√

3 +
2 cos( kxa

2 )e
−iky a

2
√

3 . The integral can now be split into two
parts with different phase terms coming from the two
components of f (�k). These can then be solved individually
using the approach described above to give the required Green
function.

III. APPLICATION

The usefulness of having an analytical expression for
the real space Green function, valid throughout the entire
electronic energy band, becomes obvious when physical
properties of graphene involving energy scales outside the
linear dispersion region are investigated. This is particularly
advantageous when such properties carry size or position
dependence because in this case Eq. (11) for the armchair
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direction, or Eq. (17) for the zigzag direction, can be more
concisely expressed in the form

G�(E) = A(E) eiC1(E)�

√
�

, (20)

so the E and � dependencies are clearly distinguished.
Furthermore, even in the case when the functional form of the
coefficient A(E) is not particularly simple, the expressions in
Eqs. (11) and (17) can be used to expand the Green function in a
polynomial series, which is undoubtedly far simpler and more
treatable than the original expression in Eq. (3). We anticipate
that the ability to clearly isolate the distance dependence in
the Green function will allow a more transparent treatment of
some of the more eagerly investigated properties of graphene.

This approach will be shown more clearly in the next
section when our formalism is used to investigate the magnetic
interaction between two magnetic moments in graphene. This
type of interaction is perfectly suited for investigation using
our approach since it is mediated by the conduction electrons
of the graphene host. However, there are many other interesting
physical properties that can be explored. The interaction
between precessing magnetic moments is one area of particular
interest. Within the random-phase approximation this dynamic
coupling can be described by an integral over a complex
function involving the convolution of Green functions. Initial
numerical results in carbon nanotubes, which are closely
related to graphene, suggest that the range of the dynamic
interaction may be greater than that of the more familiar static
case.8–10 We anticipate that an extension of the description
provided below for the static case may be useful in attempting
to solve the required integral analytically and understand the
distance dependence of the dynamic coupling. The ability
of our approach to obtain Green functions over a very large
fraction of the energy band becomes increasingly important in
this case due to the convolution of Green functions of different
energies that appears in the expression.

Another topic that lends itself to our approach is the effect
of disorder11 and, in particular, the effect of an impurity on
the properties of graphene. Friedel oscillations, occuring in
the local density of states as a function of distance from an
introduced impurity, have been studied within the linear dis-
persion regime using a Green function formalism.12 Although
the local density of states is associated with the diagonal
term of the Green function, the distance dependence of the
oscillations will be determined solely by the off-diagonal term
calculated here. Similarly, the signatures of magnetic adatoms
in graphene when probed by scanning tunneling spectroscopy
have also been investigated using a theoretical approach.13

This method again avails of Green function methods within
the linear dispersion regime. We anticipate that our approach
may allow for an extension of such studies to energies beyond
the linear dispersion regime.

A. Application to RKKY interaction

To demonstrate the power and applicability of our new
formalism, we turn our attention to the magnetic interaction in
graphene. This interaction determines the relative orientation
of magnetic moments embedded in graphene and has been
the subject of many recent papers,14–20 as an understanding

of this interaction is a major step in the implementation
of graphene devices in the field of spintronics. When the
linear dispersion approximation is used, a cutoff function is
required to prevent the result diverging due to high-energy
contributions. There has been some debate about the effect
of the cutoff function chosen on the resultant interaction
calculated.14,15,18 Other approaches to circumvent this prob-
lem involve numerical calculations18,20 which can lack the
transparency of an analytical solution. Here we shall show
that the decay rate and oscillation period of the interaction
as a function of distance emerge naturally from a simple
calculation using our formalism and without resorting to an
energy cutoff or a restriction to the linear dispersion regime.
The exchange energy, J , within the RKKY approximation21–23

is proportional to the static susceptibility, χ , which can in
turn be written in terms of Green functions, allowing us
to write J�(EF ) ∼ Im

∫
dEf (E)G2

�(E) for two moments
occupying like-sites in the graphene lattice separated by a
distance �, where f (E) is the Fermi function. This quantity
relates to the energy difference between the ferromagnetic
and antiferromagnetic alignment of the moments, with its
sign giving the energetically favorable alignment. Using the
expression in Eq. (20), we write

J� ∼ Im
∫

dE
B(E)e2iC1(E)�

�[1 + eβ(E−EF )]
, (21)

where B(E) = A2(E), β = 1
kBT

, T being the temperature and
kB the Boltzmann constant. The integral in Eq. (21) can be
solved by replacing it with a contour integral in the energy
upper-half plane. In this case the poles are given by the
zeros of the denominator of the Fermi function, namely the
Matsubara frequencies, Ep = EF + i(2p + 1)πkBT , where p

is an integer labeling the poles. Writing the coefficient B(E)
as a Taylor series, and the wave vector C1(E) as a first-order
expansion, around the Fermi energy gives

J� ∼ kBT

�

∑
l

1

l!
B(l)e2iC

(0)
1 �

×
∑

p

e2iC
(1)
1 (Ep−EF )�(Ep − EF )l , (22)

using B(l) [C(l)
1 ] to denote the lth derivative of B [C1] evaluated

at the Fermi energy. This can be rewritten as

J� ∼ 1

�

∑
l

B(l)

l!

e2iC
(0)
1 �[

2iC
(1)
1

]l

dl

d�l

{
kBT

2sinh
[
2C

(1)
1 πkBT �

]
}

.

(23)

In the low temperature limit, T → 0, this expression simplifies
to one of the form

J�(EF ) ∼
∑

l

B(l)(EF )
e2iC1(EF )�

�l+2
. (24)

In this form the oscillation period and decay rate of the
interaction at different Fermi energies can be easily extracted.
The decay rate in the asymptotic limit24 is determined by the
leading term in Eq. (24), namely l = 0, suggesting that, in
general, J ∼ �−2. However, at EF = 0, it is straightforward
to determine from Eq. (12) for the armchair direction, and
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from Eq. (18) for the zigzag direction, that the coefficient
B(0) vanishes and the decay rate is in fact determined by the
first surviving term, l = 1, resulting in J ∼ �−3 for undoped
graphene, as reported elsewhere.14,15,18,20 Also, at EF = 0, the
oscillation period is perfectly commensurate with the graphene
lattice spacing and thus oscillations are masked. When EF �=
0, the leading term does not vanish, and the oscillation period
is no longer commensurate with the lattice spacing, leading to
the observed oscillatory interaction15 that decays as J ∼ �−2.
Note that these conclusions are reached for values of EF

regardless of whether they lie within the linear dispersion
regime. The correct decay rate and oscillatory behavior for the
RKKY interaction in graphene have emerged naturally and
in a mathematically transparent fashion from our formalism,
without resorting to the linear response approximation or the
need for a cutoff function. As far as the authors are aware,
this is the first time this has been performed within a fully
analytical framework.

IV. CONCLUSIONS

In summary, we have derived closed-form expressions for
the single-electron Green function of graphene in real space
that does not rely on the linearity of its dispersion relation

near the Fermi level. The full derivation of this quantity for the
two principal directions investigated on the graphene lattice
has been presented along with a discussion for extending the
methodology to other cases. The expressions are valid across
a very large fraction of the energy band and yet remain math-
ematically transparent. The newly acquired simplicity with
which we can describe the electronic properties of graphene
will lead to insightful new ways of studying the physical
properties of this material at energy scales well beyond the
linear dispersion regime. The approach described here for
the magnetic interaction can be modified straightforwardly to
extend the validity of expressions derived in topics including,
but not limited to, modeling the dynamic magnetic coupling
and the effects of adatoms in graphene systems.
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