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Abstract 

Line  scratches are a c o m m o n  f o r m  of degradation in 
archived mot ion  picture f i lm.  The  automatic  restora- 
t ion  of such, material has become of increasing interest 
in the last f e w  years with the rase of consumer digi- 
tal video applications and the need t o  supply more pro- 
gramming material of a n  acceptable quality in a mult i -  
media context. This  paper introduces mechanisms for 
removing line artefacts f r o m  degraded images. It also 
proposes schemes which solve for both the image data 
and the hidden model parameters simultaneously. T h e  
algorithms introduced are based o n  the use of the 2D- 
AR process as  a n  underlying image model and employ a 
Bayesian approach. T h e  Gibbs sampler is  used to  draw 
samples f r o m  the underlying image texture and so cre- 
ate a convincing interpolation in the region previously 
obscured by the line feature. 

Line scratches are a common problem in archived 
film. The problem is transferred to video during the 
telecine transfer process. The artefact is easily visible 
as a vertical line of bright or dark intensity] oriented 
more or less vertically over much of the image. It may 
be caused when material from some particle is smeared 
vertically over the film material in the projector or by 
the abrasion of the film as it passes over some particle 
caught in the mechanism. 

As digital video broadcasters and those wishing to  
release material on DVD are faced with the prospect of 
restoring previously released] but degraded material] it 
has become more attractive to  seek automatic methods 
for restoration. The EU project AURORA, which ter- 
minates at the end of 1998 was set up in 1995 to  address 
the problem of creating real time hardware for achiev- 
ing good quality automatic restoration. Line scratch 
removal was one of the problems addressed] although 
the solution developed will not appear in hardware just 
yet. 

The general idea has been to split the line removal 
process into two stages, an initial detection step fol- 
lowed by an interpolation or reconstruction step. Pre- 
vious work [l, 31 has introduced deterministic and 
stochastic methods for the detection of t8his artefact. 
This paper concentrates on the interpolation problem. 
The remcm! of tho defect is treated as a missing data 
problem. The following material explores stochastic 
varieties of reconstruction and presents a fast scheme 
for model based interpolation. In particular the in- 
troduced ideas are presented based on the requirement 
to  solve for all the parameters jointly. The algorithms 
presented here therefore mark a distinct departure from 
the usual ideas of treating model parameter estimation 
separate from image data interpolation. 

1 Line removal 

The 2D Autoregressive (AR) model can be used as 
the basis for image interpolation in the same manner 
as that introduced in [2, 31 for image sequences us- 
ing the 3D (spatiotemporal) AR model. However the 
region to be interpolated now extends over much of 
the image and so the underlying data is statistically 
non-stationary. Thus those interpolation ideas must 
be modified for use here. Furthermore, because the 
artefact often persists in the same location across sev- 
eral frames, it is not possible to reliably use the tem- 
poral redundancy in image sequences to help with re- 
construction. In what follows, the worst case scenario 
is assumed in which the same location in consecutive 
frames is corrupted and there is no motion in the re- 
gion of the defect. The problem is then essentially a 
purely spatial one and the use of a 2D AR process is 
considered for interpolating across such huge connected 
regions. 
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2 Missing data interpolation 

It is assumed that the underlying image generation 
process is autoregressive. Thus a pixel in the original, 
clean image, I(x), where x is a spatial position vector, 
can be modelled as 

P 

I(x) = .k(.)I(X + Sk) + 4x1 (1) 
k=l 

A particular pixel in frame n (of an image sequence) at  
site x is therefore predicted by a linear combination of 
pixels in the current frame plus an added excitation or 
residual error e(x) N N(O,az(x)). The P coefficients 
of the model, which define the linear combination, are 
denoted a k  for IC = 1..  . P.  The pixels used in the pre- 
diction are called the support or neighbourhood of the 
model and are mapped by the P spatial offset vectors 
q k .  Note that the model parameters are non-stationary 
in order to capture the statistical non-stationarity in 
interesting images. 

The observed degraded sequence G, may be mod- 
elled by a switching process such that the data that 
is the corruption (i.e. the line defect) is switched into 
the original clean data at specific sites. This switching 
process is monitored by the field (or image) b(x). At 
a corrupted site b(x) = 1, otherwise the site is 0. The 
missing pixels in the image are therefore indicated at 
sites where b(x) = 1. It is assumed that the indicator 
field has already been determined by a detection pro- 
cess and it now delineates vertical swathes of material 
which is corrupted. The problem then is to design a 
process for interpolating the missing data at the sites 
indicated, using the model defined in equation 1. 

2.1 A Bayesian framework for joint esti- 
mation of missing data and model pa- 
rameters 

Given the corrupted data G, it is required to solve 
for the unknown data I(x) at sites indicated by b(x) = 
1. The other hidden unknowns are the non-stationary 
model coefficients a(x) (where a is a vector of P co- 
efficients at location X) and the non-stationary resid- 
ual variance g,"(x). To effect this solution it is there- 
fore prudent to manipulate p(BIG(x), b(x)) which is the 
probability of all the unknowns (denoted by the vector 
0) given the observed degraded data and the missing 
regions delineated by b(x). 

It will emerge in later discussion that the model pa- 
rameters are assumed to be fixed on a block basis. 
Define the unknown pixels (at sites where b(x) = 1) 
within such a block as i, and the known pixels as 

ik. The model parameters within the block are thus 
a(x), c," (x). Proceeding in a Bayesian fashion, the con- 
ditional may be rewritten in terms of a product of a 
likelihood and a prior as follows: 

2.1.1 The likelihood 

The data likelihood p(ik1.) can be derived from the 
pseudo-likelihood of the data within a block. Note 
that within a block, the residuals e(x) will be a sample 
from a multivariate Gaussian distribution. Scanning 
the residuals in a raster fashion within this block al- 
lows the formation of an excitation vector e. Consider 
a block of pixels of size M x M (denote this block by 
m) and allow for a border of pixels around the edges 
of this block (so that (x + q k )  will never result in a 
location outside the M x M block). An equation for 
the error at every pixel within a centred B x B block 
inside m ( B  < M )  can be written as below. 

(3) e = Ai 

where i represents an M 2  x 1 column vector of row or- 
dered pixels from the M x M block, e is a B2 x 1 column 
vector of errors (made up of prediction error equations 
in frames), and A a matrix of coefficients satisfying the 
model equation at all the considered points. This coef- 
ficient matrix is of size B2 x M 2 .  The vector i contains 
intensities of both known and unknown pixels. 

Because the joint distribution for the residuals e in- 
side a block is normal, the data likelihood (for both 
known and unknown data) can therefore be written 

where N = B x B. 
To generate alternate forms for the likelihood the 

vector i can be separated into two vectors i, (U for 
unknown) and ik (IC for known), which represent 
the known and unknown pixel intensities (marked by 
b(x) = 0 , l  respectively) then equation 3 can be written 
as 

e = Akik + A,i, (5) 

Here, Ak, A, are the coefficient matrices correspond- 
ing to the known and unknown data vectors. They are 
submatrices of the A matrix, made by extracting the 
relevant columns. 
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2.1.2 The priors where xi indexes the locations of each of the N pixels 

For simplicity a uniform prior is assigned to a although 
it is acknowledged that a prior encouraging stable mod- 
els would be more appropriate. The variance o: is 
assigned a non-informative prior ~ ( 0 : )  c( I/.,", follow- 
ing [5]. 

2.2 Solving for the unknowns 

The solution is generated by manipulating 
p(i,, a(x), o,"(x)lik). For instance the MAP esti- 
mate is generated by maximizing the distribution 
with respect to the unknowns. Unfortunately, due 
to the nonlinear nature of the expression, a closed 
form solution to the optimization problem is not 
available. The Gibbs sampler is used here to  generate 
the required estimates numerically. 

2.3 The Gibbs sampler 

Consider that i contains at least the missing pix- 
els (indicated at  b(x) = 1 ) and their immediate AR 
support. Recall that the missing pixels are denoted i, 
and the remaining pixels as i k .  The Gibbs Sampler 
then operates iteratively, given some starting guess for 
the unknowns, by drawing random samples from the 
conditional posterior distribution for each unknown in 
turn: 

in the inner B x B block within m. The derivation of 
these expressions can be found in [3]. The draws are 
undertaken given the current state of the image data 
in the current iteration of the Gibbs sampler. 

A separate sampling step can then be em- 
ployed for drawing the unknown pixels using i, - 
p(i,lik, b, a, 0,"). In practice the draw for i, can be per- 
formed either on a pixel by pixel basis, or on a block 
basis. The use of block based draws helps to speed up 
convergence of the sampler, but does require computa- 
tionally expensive manipulations in particular a matrix 
inversion. The pixel by pixel draw requires only simple 
point wise manipulations, but takes longer to converge. 

Manipulation of an alternate form for the like- 
lihood allows an expression for the conditional 
p(i,lb, i k ,  a, o,") to be written as follows: 

p(i,lb, ik, a, 0,") c( N&,  o,"[AzAu]-l) (8) 
where i, = [AzA,]-lAzAkik (9) 

Thus the Maximum Likelihood estimate, for instance, 
for the missing data is i,. 

The utility of the algorithm is increased if there al- 
ready exist initial estimates for the missing data in par- 
ticular (of course). Such estimates may be generated 
by crude median filtering or by using the least, squares 
interpolant in the missing region. 

a - p(ali, o:, b); o," - p(o,"Ia, i, b); i, N p(i,la, i k ,  02, b) 3 The JOMBEI algorithm 

where b is a vector containing the indicator variables 
which are the result of the detection stage, and the 
location argument x has been dropped for simplicity. 
These conditionals can be derived by manipulation of 
the joint posterior given in equation 2. 

The convergence of the Gibbs Sampler is generally 
improved if several unknowns are sampled jointly [4]. 
This is possible using the method of composition [5]. 
The reader is directed to [3] for details. The result of 
this manipulation is a recipe for a joint draw for the 
model parameters within each block as follows. 

Tthe steps for interpolating the locations indicated 
by b ( x )  = 1 are enumerated here. The algorithm is 
called JOMBEI for J o i n t  Model Based Estimation 
and Interpolation, to reinforce that both the model 
parameters and the missing data are estimated jointly. 
Preamble It is assumed that some detection process 
has delineated regions to  be interpolated by entering 
b(x) = 1 in the indicator image, b. The P vectors qk 
are defined by the user to cover some region around 
a predicted pixel location. A typical choice would be 
the 8 pixel causal neighbourhood. The image is divided 
into blocks ( M  x M )  which overlap by at least the size of 
the model support. A kick start for the process can be 
made by interpolating the missing regions using either 
a median filter (crude) or the least squares interpolant. 

p(ali, b, 0,") = Np(i, oZ(ITI)-') 
p(a,"1i7 b, = lG((N - p) /2 '  E(i' i)/2) (6) 

where E( . )  is the sum squared prediction error in a 
block using the Least Squares estimate of the coeffi- 
cients i. It is defined as follows: 

The process 

1. Each block is scanned and in those blocks in which 
missing data is indicated, a sample for the model 
coefficients a(x), D,"(X) (where x indicates some 

~ ( a ,  i) = e2(xi) (7) reference point in each block, the upper left hand 
position for instance) is drawn. This is done using 

N 

i=l 
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the following steps (where the current block is de- 
noted M ) .  The current state of the pixels in rn is 
denoted io. 

(a) Generate the least squares estimate for a us- 
ing the Normal equations with the data in 
the current block, io. 

(b) Generate the sum squared prediction error 
E(a,io) in that block using this set of coeffi- 
cients. 

(c) A sample for U:,  U: is then drawn from an 
Inverted Gamma distribution. 

p(a21i0) = IG((N - P) /2 ,E /2 )  (10) 

This is a more difficult draw and is achieved 
by the recipe reported in [5].  

is then drawn from 
(d) A sample for the coefficients, a, in block M 

See [ 5 ,  31 for details. This draw involves cal- 
culating the square root of ITI. 

(e) Repeat this step at all blocks of interest. 

2. Generate a sample for the unknown data i, in each 
of the block by drawing from N&, u,”[ATA,]-~), 
where i, is the least squares (or ML) estimate for 
the missing data given in equation 9 and the model 
parameters are set to the samples drawn in that 
block during the previous step i.e. a:,a,. This 
draw proceeds in a similar fashion as that outlined 
with the draw for a, in the first step, since both 
distributions are multidimensional Normal. 

3. Alternative: To reduce computation it is possible 
to sample at each pixel site in turn. The modifi- 
cations required are straightforward and result in 
A, becoming a vector which makes the necessary 
inverse simple to calculate. Note that for single 
site sampling, sites should be visited in a checker- 
board fashion so that the support used in the next 
site does not overlap with the support used in the 
current site. For an 8 pixel causal neighborhood 
(lag of 2 pixels in each direction) this implies a 
checker pattern spaced by 5 pixels. 

4. Iterate this pair of draws, the joint sample for the 
model parameters followed by the sample for the 
missing data across the entire image until conver- 
gence. 

4 Results: Maximal versus Sampled or 
Stochastic estimation 

Because of the sometimes large gaps that need to 
be interpolated and the subsequent increase in non- 
stationarity over these large regions, the least squares 
or ML interpolant is somewhat blurred (the ‘maximal’ 
interpolant). This ‘blurring’ or lack of texture is per- 
haps not so easily noticed in a still image, but in a se- 
quence of images the rather flat interpolant stands out 
against the otherwise grainy film texture, especially if 
there is motion. In fact the main contributor to the 
annoying visibility of the reconstructed region is that 
it remains in nearly the same place in each frame. In 
some respects this is a moot point since the line re- 
moval is one stage in a chain of restoration modules 
which will also involve noise reduction. After noise re- 
duction it is harder to see the difference between the 
texture in the interpolated regions as compared to the 
surroundings. However, to affect a complete solution it 
is better to employ samples from the posterior distri- 
bution for the unknown data rather than employ the 
least squares interpolant. The samples tend to have 
a closer match with the textural behaviour of the film 
in the surrounding regions simply because they rep- 
resent the stochastic texture in the real image better 
than a single ‘maximal’ estimate. Figure 1 illustrates 
this phenomenon, including the observation that both 
types of interpolation are superior to the result using 
subtraction of an estimated line cross section. 

Figure 2 shows results from a video sequence con- 
tributed by the RTP archives in Lisbon, one of the 
partners in AURORA. The interpolation was achieved 
here by using the fully sampled process in which both 
the missing data and the model parameters were esti- 
mated over 200 iterations using a block size of 16 x 16 
pixels and the same model as used for the previous ex- 
ample. The reconstructions show good performance. 
Note that the restoration is incomplete, there are still 
blotches (Dirt and Sparkle) and noise to be removed 
from this example, however this is the first step in the 
chain of events that would result in a clip suitable for 
DVD release for instance. 

5 Summary comments 

Reconstruction of this kind of persistent artefact re- 
mains a difficult problem. The visibility of artefacts 
due to  possible errors in the reconstruction is poten- 
tially high. It is particularly important to capture the 
stochastic nature of the underlying image texture, even 
if it is just to resynthesise the film grain noise effect 
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in relatively low activity regions. This paper has pre- 
sented just such a technique which employs Bayesian 
analysis t o  allow the exploration of the space of pos- 
sible interpolants. The reader is directed to detailed 
examination of the general interpolation problem in [3] 
which derives a fast algorithm for calculating the least 
squared estimate for the missing data. Pictures of a 
better quality can be found at 

www.mee.tcd.ie\"ack\cd\lines\lines.htm 
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Figure 2. Reconstruction of artefacts in the SIT- 
DOWN sequence, using sampled 2D AR inter- 
polation with an 8 tap causal model. From top 
to  bottom: Original image (256 x 512 portion); 
Location of detected lines in white; Interpola- 
tion. 

Figure 1. Left to  right: Portion of original 
KNIGHT image: Result of subtracting esti- 
mated line profile; Least Squares Interpolation 
of line region; Sampled Interpolation in line re- 
gion. 
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